
INFORMATION EXTRACTION FROM

TV SERIES SCRIPTS FOR UPTAKE

PREDICTION

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTER AND INFORMATION SCIENCES

Supervisors

Dr. Parma Nand

Dr. Muhammad Asif Naeem

August 2017

By

Junshu Wang

School of Engineering, Computer and Mathematical Sciences

Declaration

I hereby declare that this submission is my own work and

that, to the best of my knowledge and belief, it contains no

material previously published or written by another person

nor material which to a substantial extent has been accepted

for the qualification of any other degree or diploma of a

university or other institution of higher learning.

Signature of candidate

2

Acknowledgements

It is my pleasure to acknowledge all the individuals who have directly or indirectly

helped me in the journey of this research.

Most importantly, I express my deepest gratitude to all the members of my family, from

the bottom of my heart. With their support, I made the decision to come to AUT for this

degree and this thesis.

I would like to thank Dr Parma Nand. As my primary supervisor, he helped me in the

early stage of selecting this topic and guided me throughout the entire course of this

work. Moreover, I learnt a lot of knowledge from two papers in which Dr Parma was

the lecturer. I also thank Dr Muhammad Asif Naeem. As my secondary supervisor, he

has offered valuable guidance in the brainstorming sessions.

I would also like to thank the company Parrot Analytic for initiating this research topic

and providing guidance along the way.

I would like to extend my appreciation to another two people in the School of

Engineering, Computer, and Mathematical Sciences at AUT, for their advice and

assistance throughout the course of this thesis. They are: Dr. William Liu, the

Programme Leader of MCIS; and Sharda Mujoo, the Academic Administrator.

3

Abstract

The script of a movie, or of an episode of a television series, describes the setting,

the storyline, and the scene changes. It also details the movement, actions, non-oral

expression, and dialogues of the characters.

The script is assessed by potential investors. If it is considered to be qualified,

a decision is made to arrange funds and other resources to create the real product,

i.e. a movie or a television series. This action of approving the project is known as

green-lighting.

Many studies have been conducted on building models to predict the success of

movies. However, the majority of these studies exploit factors which only become

known after the decision of green-lighting, or after the release of the products. Only

a few studies have focused on predictive models based on pre-greenlighting factors,

which are available before the decision of green-lighting.

In comparison, there are even less models that forecast the performance of television

series exploiting pre-greenlighting factors.

This study aims to extract features from scripts of pilot episodes, which are the first

episodes of television series. These features will be exploited to construct predictive

models for uptake of the television series.

Three data sources were employed, including the IMDB, the OpenSubtitles2016

4

corpus, and television series scripts retrieved from multiple websites. The scripts were

then parsed, and the structures were analysed. Subsequently, features were extracted

and data matrices were generated. These features and data matrices were used in

classification algorithms for training and construction of predictive models. The output

from the prediction models was then used for prediction of the uptake. However, the

results were not as compelling as expected.

The present research was compared with previous studies on the same topic. The

evaluation results are discussed, and suggestions for future work are given.

5

Contents

Declaration 2

Acknowledgements 3

Abstract 4

1 Introduction 11
1.1 Background . 11
1.2 Scripts . 12

1.2.1 Elements in scripts . 12
1.2.2 PDF as the Script Carrier . 16
1.2.3 Slices and Lines . 17

1.3 The Present Work . 18

2 Literature Review 20
2.1 Predictive Models . 20
2.2 Character Network . 23
2.3 Script Parsing . 25
2.4 Other Aspects . 26

3 Data Sources 27
3.1 Raw Data Sources . 27

3.1.1 Internet Movie Database . 27
3.1.2 OpenSubtitles2016 . 28
3.1.3 Scripts of TV Series . 29

3.2 Parsing PDF . 30
3.3 Matching with IMDB data . 32
3.4 Summary . 33

4 Features from Statistic and Character Network 35
4.1 Basic Statistical Features . 35
4.2 Character Related Features . 37

4.2.1 Identify Characters . 37
4.2.2 Feature sets . 38

4.3 Character Network . 39

6

4.3.1 A Brief Introduction to Graph 39
4.3.2 Social Graph and Character Network 43
4.3.3 Primary Characters . 43
4.3.4 Features . 44

4.4 Summary . 47

5 Distributed Representation 48
5.1 Introduction . 48

5.1.1 Word Embedding . 48
5.1.2 Document Embedding . 53

5.2 Models . 55
5.3 Results . 56
5.4 Summary . 57

6 Features from NLP 58
6.1 Venues of Scenes . 58
6.2 Named Entities . 62

6.2.1 Introduction . 62
6.2.2 Approaches based on Gazetteers and Rules 63
6.2.3 Statistical Supervised-Learning Approaches 64
6.2.4 Other Approaches . 68
6.2.5 Features Employed by NER Systems 69
6.2.6 Results . 71

6.3 Keywords of Primary Characters . 76
6.3.1 Keywords and Dependencies 76
6.3.2 Dependency Representation . 82
6.3.3 Dependency Parsing . 85
6.3.4 Keywords Extraction . 89
6.3.5 Results . 93

6.4 Activities . 96
6.4.1 Stanford Open IE . 96
6.4.2 Results . 100

7 Predictive Models and Results 102
7.1 Genres . 102

7.1.1 Genre Classifiers . 103
7.1.2 Results . 105

7.2 Model . 107
7.2.1 Data Preprocessing . 107
7.2.2 Classifiers . 112
7.2.3 Results . 115

7

8 Discusson 119
8.1 Predictive Models . 119
8.2 Distributed Representation . 123
8.3 Character Network . 125
8.4 Emotions . 126
8.5 Others . 127

9 Conclusion and Future Work 129

References 133

Appendix A List of 512 Series 144

Appendix B Parameters for MLP 149

Appendix C More Details of Genre Classifiers 152

Appendix D Non-Print Material 154

Appendix E Example Classifier Test Record 155

Appendix F Example Code Snippet 157

8

List of Tables

6.1 Example of Pattern Rules for NER . 64
6.2 Example Keywords of Primary Characters 95

7.1 Results of Genre Classifiers . 106
7.2 Final Datasets . 112
7.3 Results of Classifiers . 117
7.4 Models atop DS_script_bow . 117
7.5 Models atop DS_all_wiki_w2v . 117
7.6 Models atop DS_all_wiki_d2v . 118
7.7 Models atop DS_all_subt_w2v . 118
7.8 Models atop DS_all_subt_d2v . 118

C.1 Genre Classifier - Naive Bayes . 152
C.2 Genre Classifier - DR . 153
C.3 Genre Classifier - MLP parameters . 153

9

List of Figures

1.1 Script Page - Lines and Blocks . 13
1.2 Scirpt Page - Indents . 14
1.3 Script Page - Parenthetical . 15

4.1 Character Network Example . 44
4.2 Numbers of Primary Characters . 45

5.1 CBOW and skip-gram in word2vec . 51

6.1 Venue Terms - top 20 . 60
6.2 Venue Terms - Frequency of Top100 . 61
6.3 Venue Terms - Cloud . 62
6.4 A Simplified HMM for NER . 67
6.5 Named Entity - Person . 73
6.6 Named Entity - Location and Organisation 75
6.7 Dependencies within a sentence . 78
6.8 Phrase Tree and Dependency Tree of a sentence 81
6.9 Activity Terms - top 20 . 101
6.10 Activity Terms - top 20 by script frequency 101

7.1 Frequencies of Genres . 103
7.2 Distribution of Pilot Ratings . 108

C.1 Frequencies of Genres . 152

10

Chapter 1

Introduction

1.1 Background

The storyline of a movie or of an episode of a television series is described by a script.

The script details the movement, actions, non-oral expression, and dialogues of the

characters. It also describes the setting of the story and the changes of the scenes.

After accomplishment of the script writing, a script (or a collection of scripts for

a television series consisting of many episodes) is presented to the potential investors.

If the script (or the collection of scripts) is considered to be qualified, then a decision

will be made to arrange funds to recruit the director, the actors, and other necessary

teams, to create the real product, i.e. the movie or the television series. The action of

approving the project is also known as green-lighting.

For a movie, after the accomplishment of the product, it will be brought to the

market. There are many possible metrics that could be used to measure the success of a

movie. Two typical metrics are the financial result (the so-called box office) and the

ratings given by review websites.

As for a multi-seasonal television series, it is commonly planned on a seasonal basis.

The processes of script writing, episode capturing, and broadcasting, are continuous.

11

Chapter 1. Introduction 12

A common practice is that, scripts for only one season, or less, are prepared before

shooting, and only a few (that is three, two, or even one) episodes are completed in

advance.

Practicable metrics to measure the performance of a television series include the size

of the audience and ratings given by reviewers. Another two recently adopted metrics

include whether a series survives for one or two seasons (Hunter & Breen, 2017a) and

the number of episodes in a single season (Hunter & Breen, 2017b).

A pilot episode is the test episode of an intended television series. It helps investors

to make decision on whether to fund the television series.

If the television series is successfully released, the pilot episode will commonly be

aired as the very first episode.

1.2 Scripts

1.2.1 Elements in scripts

A script consists of a sequence of consecutive scenes.

Each scene comprises a slug line (the heading) and a list of blocks.

The slug line consists of three segments. The first states whether the scene is interior

(INT.), exterior (EXT.), or both. The second segment introduces the venue of the scene,

such as in a meeting room or on roadside. Unlike these two segments which give spatial

information, the optional third segment expresses the time information, for instance,

morning or sunset.

There are two types of blocks, which are named as desc-block and talk-block

respectively in the current study. A talk-block represents a piece of spoken content.

The headline of a talk-block, which is always in uppercase, denotes the speaker. The

Chapter 1. Introduction 13

Figure 1.1: Script Page - Lines and Blocks

Chapter 1. Introduction 14

Figure 1.2: Scirpt Page - Indents

Chapter 1. Introduction 15

Figure 1.3: Script Page - Parenthetical

headline may contain extra information such as V.O. (voice over), O.S. (off screen), O.C.

(off camera), or CONT’D (continued). Every other line in a talk-block represents a part

of the spoken content if it is not parenthesized. Otherwise, the line is used to express

accompanying action or attitude of the speaker. A desc-block describes settings of the

scene, movement and actions of characters, events, as well as any other information that

should be conveyed besides of spoken content.

All the scripts collected for the present work are in PDF format.

Content of PDF files is organised in pages. A script commonly, but not necessarily

begins with a cover page, which introduces the title of the movie/episode, editors of

the script, and other information such as revision and release date etc. Except for

the first page, other pages representing the scenario all have page numbers and might

have page-headers which express the name of the movie/episode, the revision, and

the release date. These pages could also have page-footers, which might contain the

"(CONTINUED)" instruction, or other information.

Multiple revisions of a script could be released, including early drafts, the revision

for green-lighting, the revision for shooting, and the final revision which is documented

after the shooting. Within the later revisions, scenes might be organised into a list of

acts, each of which is composed of several scenes. Also within the later revisions, there

could be other information introduced before the first scene, e.g. the cast list.

Chapter 1. Introduction 16

Within a script, elements related to the page structure are considered to be meaningless

to the present research, thus, they will be ignored. Additionally, only a minor proportion

of the collected scripts organises their scenes into lists of acts. Hence, the concept of

act is not involved.

The elements such as scenes, slug-lines, and blocks are related to the storyline of

the episodes. They will be extracted from the PDF files and made easy to access. In

order to extract these elements, the lines in scripts are classified into these types:

• slug line

• line of disc-blocks

• headline of talk-blocks

• line of spoken content in talk-blocks

• parenthetical line in talk-blocks

1.2.2 PDF as the Script Carrier

It is speculated that the collected PDF files, which carry the scripts, are generated from

different approaches. Consequently, the files could be divided into three groups.

• Files of the first group contain text objects. These files are generated by script-writing

applications or text-editing software.

• Files of the second group also contain text objects. The text is recognised from

images which are produced by scanning physical papers.

• In a different manner, files of the third group contain image objects. These images

are also produced by scanning, but the process of text recognition has not been

applied.

Chapter 1. Introduction 17

Files that belong to the third group will be ignored in the present work since processing

of them would consume too much of the time budget.

1.2.3 Slices and Lines

The text entity described by the PDF file is not a text line. Instead, it is the text slice.

The information provided for each slice includes text content, font size, the coordinates,

etc.

The text content of a slice could be as much as one line, and as little as one letter.

From another perspective, each line in PDF file could consist of one single slice or a

few slices.

Each page in PDF file could be considered as a plane with bi-dimensional Cartesian

coordinate system, where the origin is usually the bottom-left point, the x-axis orients

from left to right, and the y-axis orients from bottom to top. For every text slice, a

rectangle on the plane is required to display its content. The bottom-left point of the

rectangle is denoted by the coordinates. The width and height of the rectangle could be

calculated from letters in the text slice and setting of the font.

In a PDF page, the slices with the same y coordinate usually could be combined to

create a text line.

The indent of a line is defined as the x coordinate for the leftmost slice within the

line. Indents of the lines which belong to a particular category are often same. Moreover,

in a certain PDF file, the indent of slug lines and the indent of the desc-block lines are

also identical.

Accordingly, four indents could be outlined for the five line categories:

• indent-desc for slug-lines and the lines in desc-block

• indent-talk for lines of spoken content in talk-block

Chapter 1. Introduction 18

• indent-character for headline of the talk-block

• indent-parenthetical for parenthetical lines in talk-block

1.3 The Present Work

The present study aims to extract features from the scripts of television series only, and

then to exploit these features to establish models to predict the performance of intended

television series.

Chapter 2 firstly reviews previous research, which focus on building predictive

models for the performance of movies and television series, especially those that

employ factors available before green-lighting. It then inspects previous studies on

extracting character networks from multiple sources, especially from movie scripts.

Lastly, works related to script parsing are also examined.

The reviews of studies related to distributed representations and several NLP (natural

language processing) techniques are in Chapter 5 and Chapter 6.

Chapter 3 introduces data sources, collecting and processing of original material,

including script parsing, and IMDB data organisation, etc. Chapter 4 introduces

extraction of features from basic statistics and character networks extracted from

the scripts. Chapter 5 introduces extraction of features by adopting the distributed

representation techniques. Chapter 6 presents feature extractions via typical NLP

techniques, including the bag-of-words language model, named entity recognition,

dependency parsing, and relation extraction.

Chapter 7 contains two parts. In the first part, genre classifiers are constructed. The

genre information of television series, which is adopted as predictive features, could

Chapter 1. Introduction 19

be supplied as additional information of an intended television series, or be predicted

by genre classifiers which take only the scripts as input. The second part demonstrates

establishment of the predictive models. The data matrices corresponding to the extracted

features in the previous chapters are concatenated, and multiple datasets are prepared.

These datasets are then used to construct and test the predictive models. The accuracies

of these predictive models are also presented in the second part.

The methodology adopted by the current study and the intermediate results are

demonstrated in chapters 3, 4, 5, 6, and 7. Final results are given in Chapter 7.

Chapter 8 presents the discussion.

Chapter 9 concludes this thesis with suggestions for future research.

Chapter 2

Literature Review

2.1 Predictive Models

Several studies have focused on building models that predict the success of movies.

However, the predictive features exploited by these studies are mainly post-greenlighting

factors, which become known only after the plan of a movie is published, or the product

has been completed or released. Mestyán, Yasseri and Kertész (2013) predicted the

movie box office based on activity data from related Wikipedia pages before the release

of a movie. Asur and Huberman (2010) forecasted the box office performance using data

collected from multiple social media and web sources including Twitter, IMDB, and

YouTube. Sawhney and Eliashberg (1996) forecasted long-term revenue by exploiting

box office of early weeks.

Only a few studies that employ pre-greenlighting factors to do prediction have been

conducted.

Eliashberg, Hui and Zhang (2007) extracted information from spoilers of movies and

built a model to forecast the ROI (Return On Investment) of movies. The researchers

intended to implement their approach with movie scripts. However, they failed to collect

20

Chapter 2. Literature Review 21

enough scripts in electronic format. Thus a compromise was made, and the researchers’

attention was restricted to spoilers. Movie spoilers are written by viewers after they

watch a movie, and a well-written spoiler can extensively summarise the storyline of

the movie. The information extracted from spoilers includes (1) semantics (produced

by functions of Microsoft Word, and include Number of characters, Number of words,

Number of sentences, Passive sentences, Characters per word, all of which are actually

basic statistics), (2) bag-of-words, (3) genre and content analysis. The first two are

low-level characteristics and are available without understanding the storyline. The

collection of these two is completed automatically. The third point presents high-level

aspects of the storyline, and is therefore collected by human experts with cinema

training. The technique chosen to establish the predictive model is the Bag-CART

(Bootstrap Aggregated Classification and Regression Tree). The main reason this model

was chosen was that factors were thought to interact with each other in a nonlinear,

complex fashion. Moreover, the adopted methodology was expected to be easy to

interpret and lead to intuitive insights.

Gil, Kuenzel and Caroline (2011) extracted character networks from movie scripts

and then calculated values of several metrics of the networks. These values were

later employed to build predictive models for many aspects, including the scale of the

audience. However, the performance of the audience classifier was poor. Gil et al.

(2011) concluded that "there does not seem to be a strong link between the plot structure

of a movie and its rating or reception".

Eliashberg, Hui and Zhang (2014) developed a methodology to predict the potential

revenue at the time of green-lighting. From a database of 300 movie scripts, three layers

of information were extracted. These are semantics (some statistics, including number of

scenes, percentage of interior scenes, average length of dialogues, etc.), bag-of-words,

and genre/content. During this process, screenwriting domain knowledge, human

input, and NLP techniques were adopted. Subsequently, by adopting the kernel-based

Chapter 2. Literature Review 22

approaches, two slightly different models were established. Results of experiments

showed that the proposed approach outperforms several benchmark methods, including

regression and tree-based methods (including Bag-CART, which was employed by

Eliashberg et al. (2007)), and others. The results loosely reflected practical results of

movie studios (Eliashberg et al., 2014). For future work, it was suggested to extract a

wider set of textual variables and features from scripts. Eliashberg et al. (2014) stated

that to the best of their knowledge, the study is the first one that collected and analysed

actual movie scripts.

Hunter, Smith and Singh (2016) conducted a study that was both comparable and

complementary to the work of Eliashberg et al. (2014). In this study, the size of the text

network of the scripts was used as one of the predictive features. The steps to calculate

the value are:

• First, the MMCs (multi-morphemic compounds) were identified.

• Second, each MMC was decomposed into its constituent morphemes, and each

morpheme was "assigned to a conceptual category defined by its most remote

etymological root" (Hunter, Smith & Singh, 2016).

• Third, for each screenplay, a symmetrical matrix where "rows and column labels

were the etymological roots associated with all MMCs" (Hunter, Smith & Singh,

2016) was created.

• Finally, sizes of the resulting networks were calculated.

Subsequently, the ordinary-least squares (OLS) regression analysis was adopted to build

the model. The results demonstrate strong support for the hypothesis that "the size of

the text network is positively associated with box office performance" (Hunter, Smith &

Singh, 2016).

Chapter 2. Literature Review 23

For television series, there were even less studies that adopted pre-greenlighting

information to predict the performance.

To the best of the knowledge of the present study, at the beginning of this work,

the only two published studies on the topic were: Hunter, Chinta, Smith, Shamim and

Bawazir (2016); Hunter, Smith and Chinta (2016). It seems that these two studies were

conducted by the same team in the same year. The two works exploit "three previously

untested" predictive factors (Hunter, Chinta et al., 2016), all of which could be collected

before a decision of green-lighting. These three factors are (1) originality of the concept

of the show, (2) the track record of success of the creators, and (3) the size of the

conceptual network generated from the script. While the first two factors demand extra

inputs, the third factor only requires the scripts. The target feature in these two studies

is the size of the audience of the episodes. The results showed that the collected features

are both positive and significant.

2.2 Character Network

Several studies have been conducted on extracting character networks, which are also

named social graphs, from text works, such as 19th-century literary (Elson, Dames &

McKeown, 2010), Shakespeare’s work (Moretti, 2011), and Marvel Comics (Alberich,

Miro-Julia & Rosselló, 2002). The extracted character networks were used to improve

the understanding of the text works.

An early study on constructing character networks for movies and television series

was conducted by Weng, Chu and Wu (2009). The co-occurrences of the characters

in scenes were exploited to support the process of connection establishing, which is

the main activity of network establishing. However, the co-occurrences are determined

by analysing the video contents, but not by analysing scripts, which is the focus of the

Chapter 2. Literature Review 24

present work. Later, the character networks were used to promote the understanding of

the scenario, by identifying lead roles and detecting communities.

Park, Oh and Jo (2012) employed characters’ co-participating in dialogues, instead

of their co-occurrences in scenes, to establish connections between characters for

construction of networks. In this study, the video, the script, and the subtitle of a movie

were employed to identify characters and detect the length of dialogues. Specifically,

the dialogue time was extracted via the technique of script-subtitle alignment, which is

explained by Ronfard and Thuong (2003); Turetsky and Dimitrova (2004), according to

Park et al. (2012). The degree centrality metric of the network was used to categorise

characters into major, minor, and extra.

Park and You (2012) proposed a procedure that provides recommendations for the

green-lighting decision. Firstly, a character network was built from the script. Secondly,

metrics were extracted by employing social network analysis techniques. Lastly, these

metrics of a being examined script were compared with metrics of past successful

scripts. During this procedure, the collection of emotional words, identified with help of

WordNet (Miller, 1995; Fellbaum, 2010), was also involved. However, the methods for

character network construction and the comparison, as well as how a recommendation

is presented, were not detailed. Considering that newly written scripts will be involved

in the proposed procedure, it can be speculated that character networks can only be

built based on the scripts.

From movie scripts, Jung, You and Park (2013) employed characters’ co-participating

in dialogues to extract character networks. Further, by adopting emotional factors, the

characters were categorised into protagonist (main characters), tritagonist (supporters

of main characters), and antagonist (opponent of main characters).

Gil et al. (2011) extracted character networks from movie scripts and texts of plays

Chapter 2. Literature Review 25

(such as The Complete Words of William Shakespeare). The approach used in this

work to detect a connection between two characters is named the Closeness approach,

wherein a connection is established if two characters speak nearby lines in the same

scene. The purpose of this logic is to overcome the issue caused by very long scenes.

Subsequently, values of several metrics of the character networks were computed. These

metrics include the number of characters, clustering coefficient, character centrality,

betweenness centrality, etc., which were then exploited to build predictors to forecast

many aspects which include the audience.

A recent study conducted by Makris and Vikatos (2016) exploited the co-occurrences

of characters in scenes to construct character networks. The movie scripts used in

this study were crawled from the IMSDB (Internet Movie Script Database)1. The

co-occurrences were detected mainly in three steps. Firstly, the Wikipedia pages of

the movies were accessed for detecting characters of each movie. Secondly, the lines

that contain EXT. or INT. were detected from the movie scripts, and subsequently, each

script was cut into scenes by using these lines as boundaries. Lastly, co-occurrences of

characters in the scenes were recognised.

2.3 Script Parsing

To the best of the knowledge of the present work, the only study focusing on the parsing

of movie scripts was conducted by Agarwal, Balasubramanian, Zheng and Dash (2014).

Based on NLP (Natural Language Processing) and ML (Machine Learning) techniques,

their approach categorises each line into one of these classes: S for scene boundary;

N for scene description; C for character name; D for dialogue; and M for meta-data.

Subsequently, the structure of a script could be understood, and co-occurrences of

1http://www.imsdb.com/

Chapter 2. Literature Review 26

characters could be detected.

The main challenge in the early stage of this study (Agarwal et al., 2014) was the

absence of training data. A methodology was adopted to create training data from

well-structured scripts, wherein some factors could be employed to give class tags to

the lines. One significant factor is the indentation of lines. Another factor is the tags of

EXT and INT which indicate boundaries of scenes.

In the study by Makris and Vikatos (2016), the method to cut a script into scenes

was briefly mentioned. That is using the lines which contain EXT or INT as boundaries

of scenes.

2.4 Other Aspects

The techniques of distributed representation are capable of representing a word

or a piece of text with a relatively low-dimensional, high-dense real number vector.

Two renowned techniques of them are the word2vec (Mikolov, Chen, Corrado & Dean,

2013; Goldberg & Levy, 2014) and doc2vec (Le & Mikolov, 2014; Lau & Baldwin,

2016). More details about distributed representation are introduced in Chapter 5.

A named entity (NE) is a physical existence or an abstract existence with a specific

name. Some typical types of NE include Location, Organisation, and Person. The

process of named entity recognition (NER) detects mentions of NEs from sentences.

More details about NER are introduced in Section 6.2.

The relations between words of a sentence are asymmetrical, and these relations are

named the dependencies. More details about dependencies, such as the representation,

parsing, as well as its applications are introduced in Section 6.3 and Section 6.4.

Chapter 3

Data Sources

3.1 Raw Data Sources

3.1.1 Internet Movie Database

The Internet Movie Database 1, commonly abbreviated as IMDb or IMDB, is one of the

most extensive, comprehensive, authoritative, and famous online databases focusing

on movies and television series. It provides information about many aspects including

language, running time, genres, rating, directors, writers, stars (actors and actresses),

user reviews, etc.

The IMDB has been exploited by lots of research. The attribute "rating" which

is on a scale from 0 to 10, is the quantification of user opinion towards the movie

or television series. It is demonstrated as a decent indicator for predicting box office

success (Hsu, Shen & Xie, 2014; Bae, Lee & Park, 2014), and is also connected to

the popularity of the video products (Fraile & Guerri, 2014). The attribute "genre"

was adopted by Kabinsingha, Chindasorn and Chantrapornchai (2012) as an predictive

feature to forecast the ratings. Other employed attributes include "user reviews" (Mesnil,

1http://www.imdb.com

27

Chapter 3. Data Sources 28

Mikolov, Ranzato & Bengio, 2014) and "connections" (Canet, Valero & Codina, 2016).

Besides the ordinary web pages, IMDB provides alternative interfaces to access

their data 2. Via the plain-text-file interface, data was retrieved in a mass manner, then

the information which is useful for later work was extracted and subsequently organised

and stored in the JSON format.

The present study uses the rating information of television series as the target

feature and adopts the genre information as part of the predictive features in the phase

of establishing predictive models.

Another two sources, TMDB 3 and tv.com 4, also provide data about ratings and

genres. However, the amounts of the collected television series of these two sources are

much less compared to IMDB. Therefore, the two alternatives are not involved.

3.1.2 OpenSubtitles2016

Maintained by the OPUS (open parallel corpus) 5 project, the collection OpenSubtitles is

compiled from a huge database of subtitles of movie and television series. As a parallel

corpus, the collection contains the same contents represented in multiple languages. It

is adopted by several studies focusing on Machine Translation (Tiedemann, 2016) and

other subjects (Lison & Meena, 2016).

The most recent major release of the corpus is OpenSubtitles2016 (Lison & Tiedemann,

2016). The present study utilises the English part of the corpus, which contains more

than three million sentences and more than 1.8 billion words in total. The data is

adopted as a domain corpus to train models that generate distributed representations of

the pilot scrips.

2http://www.imdb.com/interfaces
3https://www.themoviedb.org
4http://www.tv.com/shows/
5http://opus.lingfil.uu.se

Chapter 3. Data Sources 29

3.1.3 Scripts of TV Series

A script is a document that details the scenario of a movie or an episode of a television

series. It narrates the movement, actions, expression, and dialogues of the characters. It

also explains the settings and changes of the scenes. A script should describe visual

and aural, as well as behavioural and lingual information considering the movies and

television series are rich media. The script is also known as screenplay or specifically

teleplay provided it is for a television episode.

A single source which could provide sufficient eligible teleplays for the current study

has not been found. The website IMSDb 6 is claimed as the "largest script resource" on

the web. However, it hosts only movie scripts, which does not satisfy the requirement.

The corpus CATS (Corpus of American Television Series) (Dose, 2013) is compiled

from contemporary American television series. Unfortunately, it only retains the spoken

language.

Therefore, television series scripts are collected from multiple websites, which

include7:

• http://www.bbc.co.uk/writersroom/scripts

• http://www.zen134237.zen.co.uk/

• http://leethomson.myzen.co.uk/

• http://scripts.tv-calling.com/

There are 2992 scripts collected in total, all of which are in PDF format. Among

them, less than half, 1414 to be precise, are scripts of the pilot episodes.

6http://www.imsdb.com/
7 Two other websites,tvwriting" (https://sites.google.com/site/tvwriting/) and simplyscripts

(http://www.simplyscripts.com/tv.html), introduce lots of scripts, which, however, are hosted by websites
in the list.

Chapter 3. Data Sources 30

A pilot episode is the first episode of the first season of a television series. Within the

pilot episode, main characters and core cast are introduced, and the world view of the

television series is briefly presented to the audience. As a test episode, the performance

of the pilot will help the investor to determine whether to take the intended series into a

capturing phase or not.

The pilot scripts are selected for further parsing, and others are omitted. The reason

is that the pilot episodes are more worthy to study compared with other episodes

because a pilot is captured before the launch of the potential new entertainment product.

Moreover, ranks of the pilots would not be influenced by a pre-sequence.

3.2 Parsing PDF

A few steps are involved in the process of parsing the scripts which are in PDF format.

Step-I adopts the Python library pdfminer 8, a tool for processing PDF documents.

Its low-level interface allows invoking of registered functions for events of page_begin,

page_end, and text_slice.

By taking the PDF documents as input, this step intends to generate intermediate

result files in plain-text form to describe the pages and text slices. For the page_begin

event, a line of "## PAGE-BEGIN" is produced. For the page_end event, a line of "##

PAGE-END" is produced. For the text_slice event, two lines are appended to the output

file. The first line begins with "## SLICE", and embodies the coordinates information.

The second line is the text content of the slice.

The PDF files which store content in images are not eligible for this step. This fact

8https://pypi.python.org/pypi/pdfminer/

Chapter 3. Data Sources 31

further reduces the size of the script collection.

This step successfully delivers 1095 plain-text files.

Step-II analyses output of Step-I to detect values of the four previously discussed

indents.

Some facts concerning the indents are:

• The indent of the slug-lines is indent-desc, while slug lines could be easily

determined since they always begin with INT. or EXT.

• The presences of these outlined indents (except desc-parenthetical) are usually

frequent than others.

• The four indents could be sorted by their values from small to large as:

– indent-desc

– indent-talk

– indent-parenthetical

– indent-character

• Content of a parenthetical line is always enclosed in parentheses.

• Only a minor proportion of the collected scrips contain parenthetical lines.

The intermediate result files generated by Step-I are iterated for multiple passes

in this step. The first pass seeks slices that begin with INT. or EXT., which help to

determine indent-desc. The second pass finds out the frequency distribution of the

indent values. Subsequently, the top three most frequent indents are picked out, which

commonly include indent-desc, indent-talk, and indent-character. A third pass tries to

detect desc-parenthetical.

Chapter 3. Data Sources 32

Desired indents are eventually detected from 952 scripts during this step.

Step-III takes the output of Step-I and Step-II as input and delivers recognised

structures of the scripts. Numerous slices are identified as noises and excluded from the

structure. These noises include the page numbers, page headers, page footers, scene

numbers appeared in some scripts, etc.

In this step, lines are created by either using a single slice or combining slices

with the same y coordinate. Furthermore, lines are classified into five categories. A

character-line indicates the beginning of a new talk-block, which will be ended by a

line that is neither talk-line nor parenthetical-line. A list of continuing desc-lines is

combined as a desc-block. A slug line causes a new scene.

Finally, a sequence of scenes is recognised for each script, and this output is stored

in JSON format.

3.3 Matching with IMDB data

The raw IMDB data are kept in several plain-text files. Each of these files stores one

single aspect of the information. For instance, the file genres.list only contains the genre

information of the movies and television series.

In each of these files, there are descriptive texts at the beginning and the ending. The

informative data lines comprise the meaningful main body, whose boundaries could be

manually detected. Then by parsing these informative lines, data concerning language,

rating, and genre are extracted and stored in JSON format. 9

A television series as an entirety and all of its episodes could be given a rating value

unless IMDB has not gathered sufficient votes from the audience.

9[http://www.imdb.com/help/show_leaf?usedatasoftware] Creation of a database is only permitted
for individual personal use.

Chapter 3. Data Sources 33

A television series could belong to multiple genres. For instance, the "Agents of

SHIELD" is tagged as action, drama, and sci-fi.

Preliminarily, contents and structures are successfully extracted from pilot scripts of

952 television series. The language of these television series are checked in this step,

and all are in English, which is not surprising since all of them are taken from English

websites.

Ratings (ranks) of these pilots are then sought from the structured JSON storage.

The ratings will be used as the target feature in the phase of building predictive models,

thus only the pilots with a rating are worthy of remaining in the working collection.

After this step, the working collection is significantly smaller and retains 512 pilot

scripts.

Lastly, genres of these 512 television series are extracted from the JSON storage.

The genre tags given to these series include drama, comedy, sci-fi, and so on.

3.4 Summary

The dataset is built from three data sources, including television series scripts, IMDB

data, and OpenSubtitles2016.

From multiple websites, nearly 3000 television series scripts are downloaded.

Among them, circa 1400 are pilot scripts, which are selected for further work. Contents

and structures of these pilot scripts are extracted via three steps: (I) select objects of

text slices from PDF files; (II) detect values of key indents; (III) combine slices into

lines, and build blocks and scenes from lines.

The IMDB data provides rating, genre, and other information of a great quantity of

Chapter 3. Data Sources 34

movies and television series.

A group of pilot scripts is eventually selected as the working collection. They have

rating and genre information provided by IMDB data. Besides, contents and structures

of these scripts are successfully extracted from them. The number of the selected scripts

is 512.

The English part of the corpus OpenSubtitles2016 contains more than 1.8 billion

words. It is adopted as a domain corpus to train models which generate distributed

representations for the script documents.

Chapter 4

Features from Statistic and Character

Network

4.1 Basic Statistical Features

A television series script consists of an array of scenes, each of which could be interior,

exterior, or both. Every scene consists of one or more blocks, each of which is either

desc-block or talk-block.

From the knowledge of the structure of a script, some statistical feature sets could

be directly drawn out.

• FS_num_scene the number of scenes

• FS_num_scene_ext the number of exterior scenes

• FS_ratio_word_t2a the ratio of number of spoken words to number of all words

• FS_ratio_scene_ext2all a list of four values, which are calculated by:

35

Chapter 4. Features from Statistic and Character Network 36

1. divide the scene list into four sub lists, whose lengths are approximately

same;

2. for every sub list, calculate the ratio of number of exterior scenes to number

of all scenes.

Comparing with a single value ratio_ext2all, four values could additionally express

the trend of ratio change.

By counting the number of blocks within every scene, a list of values could be

composed. However, since scene numbers of different episode scripts are different, the

generated list could not be directly used as features. Instead, the arithmetic mean and

standard deviation (SD) of the values are adopted.

For a list of values L = (x1, x2, ..., xn), the equations to calculate its arithmetic

mean (denoted as mean(L), also known as x̄) and SD (denoted as SD(L)) are:

x̄ =mean(L) =
1

n
⋅

n

∑
i=1

xi (4.1)

SD(L) =

¿
Á
ÁÀ 1

n
⋅

n

∑
i=1

(xi − x̄)2 (4.2)

Similarly, numbers of sentences, words, talk-blocks, talk-sentences, and talk-words,

as well as the ratio of spoken words to all words of the scenes, could be used to extract

features by computing the mean and standard deviation of corresponding lists. These

feature sets are listed below:

• FS_scene_num_block

• FS_scene_num_sentence

• FS_scene_num_word

Chapter 4. Features from Statistic and Character Network 37

• FS_scene_num_talk_block

• FS_scene_num_talk_sentence

• FS_scene_num_talk_word

• FS_scene_ratio_word_t2a

Comparably, by counting numbers of sentences and words within every talk-block

to compose lists of values, and then calculating the mean and SD of the lists, these

feature sets could be extracted:

• FS_tb_num_sentence

• FS_tb_num_word

4.2 Character Related Features

4.2.1 Identify Characters

A headline of a talk-block indicates the speaker of the following spoken content. In

most cases, the name of the speaker is directly given. In the second category of cases,

instead of names, descriptive words are adopted to refer to the speaker, mainly for the

reason that the character is unimportant or an introduction of the name is not necessary.

Some examples of the descriptive words include the policeman, the receptionist, the

blond, and the president. These words are then chosen to represent the speaker. In a

rare third category of instances, only parenthesized information is given, and no name

or descriptive noun is presented. In this case, if the indicator CONT’D (which means

continued) or MORE is given, the speaker of the last talk-block will be determined as

the speaker of the present talk-block.

Chapter 4. Features from Statistic and Character Network 38

By identifying speakers of the talk-blocks, characters who appear in the episode are

recognised.

There could be a situation that a character never speaks, wherein the character

cannot be identified by the described method. However, this situation is assumed to be

very rare and is thus ignored by this study.

Another potential method to identify characters is to employ the Named Entity

Recognition (NER) technique and select the PERSON entities. However, a name’s

appearance in the script cannot guarantee that it is a character in the story. Moreover, a

character might be referred to by words other than a name, such as the policemen, as

previously described. Therefore, the NER technique is not involved in this step.

4.2.2 Feature sets

For each character, numbers of his/her talk-blocks, spoken sentences, and spoken words

could be counted. Furthermore, these numbers of all the characters in the entire script

compose three lists, whose mean value and SD are used as these feature sets:

• FS_role_num_talk_block

• FS_role_num_talk_sentence

• FS_role_num_talk_word

By counting the number of speakers in a scene, the number of the characters who

appear in the scene is determined. Actually, there might be a character who appears in a

scene but doesn’t say anything. However, this situation is assumed to be very rare and

is therefore ignored. Additionally, a list of such numbers of all the scenes is composed,

then its mean value and SD are used as the following feature set:

• FS_scene_num_role

Chapter 4. Features from Statistic and Character Network 39

4.3 Character Network

In the context of television series scripts and film scripts, the terms character network

and role network are used as aliases of the term social network.

The present study only focuses on undirected graphs.

4.3.1 A Brief Introduction to Graph

A graph G can be described by a set of vertices V and a set of edges E.

An edge is an association between two vertices, both of which are elements of V.

An edge could have a specific direction from one vertex to the other. An edge could be

assigned a numeric value named weight as a measurement of the association. Between

two vertices, there could be no edge, only one edge, or even many edges. The last case

could also be considered as having one edge with a weight larger than one.

If a graph permits multiple edges between a pair of vertices, this graph is referred

to as a multi-graph. Otherwise, if only one edge is permitted, it is referred to as an

uni-graph in this study.

An extreme example of a graph comprises many vertices, and has edges for every

pair of vertices. Another extreme example of a graph is a single vertex with no edge.

If a vertex could be reached by another vertex via one edge or several edges, this

two vertices are connected, and the list of ordered edge(s) is called a path. Between a

pair of vertices, there could be more than one path, among which length of the shortest

one is defined as the distance between the two vertices. If any pair of vertices in a graph

is connected, this graph is referred to as a connected graph. Furthermore, if any pair of

vertices is directly connected by an unique edge, it is a complete graph.

A component of a graph is defined as either a connected subgraph or an isolated

single vertex. A graph could contain (1) only one component, in which case it is a

Chapter 4. Features from Statistic and Character Network 40

connected graph itself or comprises only one vertex; or (2) multiple components. An

extreme example of the second case is a graph which consists of many vertices but

without a single edge.

Some graph-level and vertex-level metrics are:

• The density of a graph is the ratio of the number of existing edges to the number

of all possible edges.

• The eccentricity of a vertex is its maximum distance to any other vertices.

• The diameter of a graph is the maximum eccentricities of all its nodes.

• The radius of a graph is the minimum eccentricities of all its nodes.

• The degree of a vertex is the number of edges adjacent to it. In an unweighted

graph, this measure equals to the number of neighbours of a vertex.

For a group of three vertices (A, B, C), if they are connected by two edges (ab, bc),

they form a connected triplet <(A, B, C), (ab, bc)>. Further, if a third edge bc exists so

that a triangle <(A, B, C), (ab, bc, ca)> is constructed, then a closed triplet <(A, B, C),

(ab, bc), (ca)> is formed.

From another angle, a triangle <(A, B, C), (ab, bc, ca)> contains three closed

triplets, which are:

< (A, B, C), (ab, bc), (ca) >

< (A, B, C), (ab, ca), (bc) >

< (A, B, C), (bc, ca), (ab) >

Based on the concept of triplets, two metrics to measure the degree to which vertices

tend to cluster together are:

Chapter 4. Features from Statistic and Character Network 41

• The transitivity of a garph G (denoted as T(G)) is the ratio of number of closed

triplets to number of connected triplets.

T(G) =
Nclosed−triplets

Nconnected−triplets

=
3 ⋅Ntriangle

Nconnected−triplets

(4.3)

• The clustering coefficient of a vertex v is the ratio of number of existing triangles

that contain the vertex v to number of all possible triangles which contain the

vertex v and two of its neighbours. For a vertex v, defining NTv as number of

triangles containing v and Dv as the degree of v, the equation to calculate its

clustering coefficient CC(v) is:

CC(v) =
2 ⋅NTv

Dv ⋅ (Dv − 1)
(4.4)

The concept can be simplified as ratio of existing edges between neighbours of v

to all potential edges between them.

To quantify the intuitive feeling that some vertices are more central than others in

most graphs, the concept of centrality is introduced. It measures the extent of how

important or influential a node is within a given graph (Martin, Zhang & Newman,

2014).

• Within an unweighted graph G, the degree centrality of a vertex is the ratio of

its degree to its potential highest degree, which equals to the number of all other

vertices in G.

• Within an unweighted, connected graph G which contains N vertices, the closeness

centrality of a vertex v is the reciprocal of the sum of distances between v and

all other vertices in G, multiplied by N -1 as a measure of normalisation. The

Chapter 4. Features from Statistic and Character Network 42

equation is:

Closeness(v) = (∑
N−1

i=1
Distance(v,vi))

−1

⋅ (N − 1) (4.5)

• Within an unweighted, connected graph G which contains N vertices, for every

pair of vertices (s, t), there exsits one or various shortest paths, of which some

or all might pass through a specific vertex v. For the vertex v, defining σ(s,t) as

the number of shortest paths between the pair (s,t), and σ(s,t∣v) as the number of

these paths passing through v, the betweenness centrality is the sum of the ratios

of σ(s,t∣v) to σ(s,t) for every pair of vertices, multiplied by the reciprocal of the

number of all potential pairs of the vertices except v as a measure of normalisation.

The equation is:

Betweenness(v) = (∑
s,t∈V

σ(s,t∣v)

σ(s,t)
) ⋅

2

(N − 1) ⋅ (N − 2)
(4.6)

The degree centrality is a simple neighbourhood-based measure. In a given graph,

the degree centrality of a specific vertex is only affected by direct neighbours. The

closeness centrality is distance based. It could be influenced by the status of non-neighbour

vertices. The betweenness centrality, which is shortest path-based, is more advanced.

Even edges between non-neighbour vertices can contribute to it.

The normalisation procedures are essential to calculations of closeness and betweenness

centralities, otherwise, the scale of the graph can be problematic when comparing these

values of vertices from different graphs (Koschützki, Lehmann, Tenfelde-Podehl &

Zlotowski, 2005).

Not every centrality metric is suitable to every application (Koschützki, Lehmann,

Peeters et al., 2005). Thus, besides the above mentioned examples, many other

sophisticated centrality metrics have been suggested, such as eigenvector centrality,

Chapter 4. Features from Statistic and Character Network 43

page-rank centrality, and various edge-level centralities. Nevertheless, these are not

involved in this study.

4.3.2 Social Graph and Character Network

The social graph (also social network) is a special category of graph. The vertices of a

social graph are people, and the edges correspond to some kind of relationship between

people. For instance, in a social network service (also social network site, SNS), every

account is a vertex, and the friend relation between two accounts is an edge. In an email

system, every user is a vertex, and an edge could be established if email communication

between a pair of users has occurred. Since many emails could be delivered between

two users, a weight could be assigned to an edge.

In the current study, social networks are built up from television scripts. The

characters of an episode serve as the vertices in the graph. Accordingly, the term

character network is used as an alias in the current setting.

A co-participating of two characters in a dialogue is considered as a connection

between them. Because a pair of characters could co-participate in several dialogues,

multiple connections between them are possible. This fact is reflected by an edge

between the two vertices with a weight value larger than one. Accordingly, a weighted

graph is constructed.

By omitting the weight attribute of the edges, an unweighted graph could be drawn

from the weighted graph.

4.3.3 Primary Characters

The characters are sorted (arranged in a certain order, from more to less) according to

five criteria:

Chapter 4. Features from Statistic and Character Network 44

Figure 4.1: Character Network - Pilot of "The Flash"

• by how many scenes they present

• by how many times they talk

• by how many words they speak

• by their degrees in the weighted graph

• by their degrees in the unweighted graph

Then five lists are generated.

By selecting the top two from each list, a group of primary characters for every

script is determined. A character could be selected from multiple lists. For example, a

man who has the largest degrees might also speak the most words.

These primary characters are adopted in further processes of feature extraction.

4.3.4 Features

For each television script, character networks are established.

Chapter 4. Features from Statistic and Character Network 45

Figure 4.2: Numbers of Primary Characters

Those include the weighted graph (which could also be seen as a multi-graph

introduced in 4.3.1) here named MG, and the unweighted graph (which is an uni-graph

introduced also in 4.3.1) here named UG. The largest components within MG and UG

are named MC and UC respectively.

By adopting the same method, but only using the first half of the scenes, character

networks HALF_MG and HALF_UG are constructed. Similarly, HALF_MC and

HALF_UC are defined.

For each of the graph-level metrics involved, the corresponding feature set comprises

three valuse: (1) value of the character network constructed by using the first half of the

scenes; (2) value of the character network constructed by using all of the scenes; (3) the

ratio of the first two.

Accordingly, the features reflect not only the value of the metric, but also how it

changes along with advancement of the story.

The graph-level (character network level) feature sets include:

• FS_cnet_num_components includes three values: the first value v1 is the number

of components of HALF_MG which equals to that of HALF_UG; the second

Chapter 4. Features from Statistic and Character Network 46

values v2 is the number of components of MG which equals to that of UG; the

third one v3 is the ratio of v2 to v1.

• FS_cnet_density density of HALF_UG, of UG, and the ratio.

• FS_cnet_transitivity transitivity of HALF_UG, of UG, and the ratio.

• FS_cnet_diameter diameter of HALF_UC, of UC, and the ratio.

• FS_cent_radius radius of HALF_UC, of UC, and the ratio.

• FS_cent_num_nodes number of nodes of HALF_UC, of UC, and the ratio.

• FS_cent_num_edges_u number of nodes of HALF_UC, of UC, and the ratio.

• FS_cent_num_edges_m number of nodes of HALF_MC, of MC, and the ratio.

• FS_cent_ration_edge_m2u the ratio of number of edges of UG to that of MG

For every detected primary character, values of various metrices were collected.

However, the collected values could not be used as features directly since numbers of

detected primary characters vary from script to script. Instead, for every metric, the

mean value and the SD of the values are adopted.

For example, the feature FS_cnet_role_degree_u is related to the metric of degree

in UC. In other words, the feature is composed by mean value and SD of the values of

the meric degree of the primary characters in UC.

The vertex-level (character level) feature sets include:

• FS_cnet_role_degree_u is related to degree in UC

• FS_cnet_role_degree_m is related to degree in MC

• FS_cnet_role_clustering is related to clustering coefficient in UC

Chapter 4. Features from Statistic and Character Network 47

• FS_cnet_role_eccentricity is related to eccentricity in UC

• FS_cnet_role_betweenness is related to betweenness centrality in UC

• FS_cnet_role_closeness is related to closeness centrality in UC

4.4 Summary

This chapter introduced:

1. features from general statistics;

2. features from character based statistics;

3. features from graph-level metrics of the character networks;

4. features from vertex-level (character level) metrics of the character networks.

It also introduces how to construct character networks and how to determine primary

characters.

The collection of all the statistic-related features is denoted as the FS_stat, and the

collection of all the character network-related features is denoted as the FS_cnet.

Chapter 5

Distributed Representation

This chapter introduces schemes to represent a word or a piece of text, for example, a

paragraph or a document, as a real number vector, where every single value is commonly

not easy to explain, but the entirety is expressive.

5.1 Introduction

5.1.1 Word Embedding

The artificial neural network (henceforth ANN) based, distributed word representations

are also known as the word embeddings (Y. Li et al., 2015). The basic idea is that the

contextual information of a word is feasible of constituting a significant representation

of the word. Furthermore, in the projected multi-dimensional space, words would be

near to each other provided they appear in similar contexts in the training corpus (Levy,

Goldberg & Ramat-Gan, 2014).

Some characteristics of word embeddings are:

• A single word is mapped to a real number vector space.

48

Chapter 5. Distributed Representation 49

• Dimension of the vector is relatively low, i.e. between 50 and 1000.

• A matrix, which is composed of word embeddings of a number of words, is dense,

which means that the vast majority of the cell values are not zero, and any cell

value is different to most of the others.

• The vector represents contextual and semantic information of a word. From

another perspective, words that have similar semantic meanings will have similar

vectors. Also, similarities of words are easy to calculate.

• The word embedding models are trained with ANN.

word2vec

The idea of representing words in vector space can be traced back to as early as 1986

1. This approach is capable of capturing similarities between words. Conversely, the

intuitive approach, which treats words as atomic units, lacks such ability.

An early study on employing ANN to construct language models and generate

distributed word representations was conducted by Bengio, Ducharme, Vincent and

Jauvin (2003). The employed ANN is a feedforward neural network which embeds

a linear projection layer and a nonlinear hidden layer. The proposed model became

popular and the study was followed by various others (Mikolov, Chen et al., 2013).

Another genre is to adopt a recurrent neural network (Mikolov, Kopecky, Burget,

Glembek et al., 2009; Mikolov, Karafiát, Burget, Cernockỳ & Khudanpur, 2010), which

overcomes limitations of feedforward NN such as the necessity of declaring context

length. In addition, comparing with the shallow neural networks, the recurrent NN is

eligible of encoding more complex patterns efficiently (Mikolov et al., 2010; Bengio,

LeCun et al., 2007). The recurrent NN has only one hidden layer besides the input layer

and the output layer. What makes it superior is that the hidden layer is connected to
1That is by Hinton, Mcclelland and Rumelhart (1986), according to Mikolov, Chen et al. (2013)

Chapter 5. Distributed Representation 50

itself. From another angle, the hidden layer takes input from both the input layer and

previous state of itself. This fact reveals some kind of short term memory since former

states of the hidden layer are capable of influencing latter states.

The nonlinear hidden layers in these models make the neural networks sophisticated.

However, on the other hand, they are also the main reason for computational complexities.

To address the issue of computational expensiveness during the procedure of learning

distributed representations of words, Mikolov, Chen et al. (2013) proposed two relatively

simple model architectures, which might produce less precise results, but is capable of

training much more data efficiently.

The first model architecture is named the Continuous Bag-of-Words Model (CBOW),

whose architecture is similar to the feedforward NN but without the nonlinear hidden

layer. During the training, a few words from the history and from the future of the word

being examined is involved. The fact that the term bag-of-words is part of the name

results from the fact that orders of the history words are not taken into the computation.

On the other hand, while the CBOW yields continuous distributed representations of the

context of a certain word as output, the standard bag-of-words model pursues a single

value for a distinct word.

The second model architecture is the Continuous Skip-gram Model (skip-gram),

which is similar to CBOW. The underlying thought of skip-gram is to learn vector

representations of words that are good at predicting surrounding words. More formally,

given a sequence of training words (w1,w2, ...,wT), the objective is to maximise the

average log probability (Mikolov, Sutskever, Chen, Corrado & Dean, 2013):

1

T
⋅∑

T

t=1
∑

j∈nb(t)
log p(wj ∣ wt) (5.1)

where nb(t) is the collection of neighbours of the index t (exclude t itself). Conversely,

Chapter 5. Distributed Representation 51

the CBOW tries to predict a word based on the context.

Figure 5.1: CBOW and skip-gram, from Mikolov, Chen et al. (2013)

Mikolov, Sutskever et al. (2013) proposed extensions for the skip-gram model. One

extension, the negative sampling algorithm, is a simplified variant of Noise Contrastive

Estimation. It was proposed to replace the hierarchical softmax algorithm which was

originally adopted, in order to accelerate the calculation of p(wj ∣ wt) in the Equation

5.1 and yield better outcomes for frequent words. Another extension is subsampling of

frequent words, which improveed the accuracy of vector representations of less frequent

words.

The proposed models by Mikolov, Sutskever et al. (2013); Mikolov, Chen et al.

(2013) are implemented in the word2vec project2.

Details of the CBOW and skip-gram are explained by Rong (2014); Mikolov,

Sutskever et al. (2013); Goldberg and Levy (2014).

bag of contexts

Another approach to mapping a word into vector space without employing a neural

network, is the bag of contexts, also named distributional similarity representation or

2https://code.google.com/archive/p/word2vec/

Chapter 5. Distributed Representation 52

explicit vector-space representations (Levy et al., 2014), which captures the contexts

where the word occurs. According to Levy et al. (2014), the bag of contexts representations

have been extensively studied.

The context of a certain word is its surrounding words within a specific window size.

For instance, given a word sequence (wa wb wc wd we wf wg), the context of the word

wd could be defined as < wb, wc, we, wf >.

Given a vocabulary V and a collection of context C, the scheme will generate a

sparse matrix S of size ∣V∣ × ∣C∣. The value Sij of each cell within the matrix expresses

the measure of the association between a certain word w ∈ V and a certain context

c ∈ C. There are many methods to calculate the Sij . A common method is the PPMI

(positive pointwise mutual information) (Bullinaria & Levy, 2007). The equations to

calculate the PPMI are:

Sij = PPMI(wi, cj) (5.2)

PPMI(w, c) = PMI(w, c) if PMI(w, c) > 0 else 0 (5.3)

PMI(w, c) = log P (w, c)

P (w) ⋅ P (c)
= log freq(w, c) ⋅ ∣ corpus ∣

freq(w) ⋅ freq(c)
(5.4)

In the Equation 5.4, ∣ corpus ∣ is the number of words in the corpus; freq(w)

and freq(c) are the numbers of occurrences of word w and context c respectively;

freq(w, c) is the number of times that w appears in c.

For a brief summarisation, some facts of the bag of contexts scheme are: (i) each

dimension of the vector directly corresponds to a particular context, thus each cell in

the constructed value matrix could be explained; (ii) the dimension of the vector is very

high; (iii) the matrix is sparse; (iv) ANN is not involved during establishment of the

Chapter 5. Distributed Representation 53

models.

conclusion

Experiments conducted by Mikolov, Chen et al. (2013) and Mikolov, Sutskever et al.

(2013) reveal that the continuous skip-gram model with negative-sampling algorithms

outperforms other models included in analyses, in terms of both training speed and

quality of produced word embeddings. A substantial drawback of the bag of contexts

scheme is that the generated matrix is high-dimensional and sparse.

Therefore, the present study will adopt word2vec in skip-gram mode to generate

word embeddings in later work.

5.1.2 Document Embedding

In many NLP tasks, such as text classification and text clustering, fixed-length vector

representations of the input texts are required. The term document embedding is used

by Lau and Baldwin (2016) to refer to the embedding of a word sequence, ignoring the

granularity concern.

A renowned scheme with a long history3 that meets the requirement is the bag-of-words

(BOW) model. The procedure of building a BOW model is briefly introduced in section

§6.1. During the early step, a term could be created in forms of unigram (one single

word), bigram (two adjacent words), or n-gram (several continuous words), or further

skip-gram (several words that might not be consecutive in the text).

The BOW model has some drawbacks. First, the word order information is less

reflected. For instance, while using unigram terms, the two sentences Tom chased Jerry

and Jerry chased Tom would have the exact same vector representation. Second, the

3Could be traced back to Harris (1954) according to Le and Mikolov (2014)

Chapter 5. Distributed Representation 54

representations are high-dimensional and sparse. Moreover, it has very little sense

concerning word semantics (Le & Mikolov, 2014).

The word2vec proposed by Mikolov, Sutskever et al. (2013); Mikolov, Chen et al.

(2013) sparked the boom of many studies adopting word embeddings. Amongst these

studies, Sultan, Bethard and Sumner (2015); Wieting, Bansal, Gimpel and Livescu

(2015); Lau and Baldwin (2016) exploit the simple averaging of the word embeddings

of the constituents of a document as its vector representation.

This scheme overcomes the drawbacks of the BOW model, which are the sparsity

and high-dimension of generated data matrix. However, the order of words is still

not taken into consideration. For instance, the two sentences Tom chased Jerry and

Jerry chased Tom would have identical dense vector representations.

Le and Mikolov (2014) proposed the Paragraph Vector, also known as paragraph2vec

and doc2vec4, as an extension to word2vec to extend the learning of embedding from

words to pieces of texts, ranging from sentences, paragraphs, to documents. Two modes

of doc2vec are introduced.

The first mode, the dbow (distributed bag of words), works in a similar way as the

skip-gram mode of word2vec (Le & Mikolov, 2014), except that "the input is replaced

by a special token representing the document" (Lau & Baldwin, 2016). In the dbow

mode, the order of words in the text is ignored. However, it is conceptually simple and

requires to only store the "softmax weights" (Le & Mikolov, 2014).

The other mode is named dmpv (distributed memory of paragraph vector). For the

input, a document token is introduced, and is concatenated, rather than summed, with

representations of words from a certain sliding window over the text (Le & Mikolov,

2014). This mode takes the order of words into consideration.
4See https://radimrehurek.com/gensim/models/doc2vec.html

Chapter 5. Distributed Representation 55

Other proposed schemes for representing texts into vector space include skip-thought

(Kiros et al., 2015) and paragram-phrase (Wieting et al., 2015).

Results of experiments by Lau and Baldwin (2016) showed that: (1) doc2vec

outperforms word2vec and bag-of-words model (with n-gram), especially in tasks with

long documents; (2) dbow is better than dmpv; (3) the skip-thought model performs

poorly; (4) comparing with doc2vec, the paragram-phrase model performs better on

shorter texts, but worse on longer texts.

5.2 Models

The present work utilised two pre-trained models 5. These two models were trained

with the English Wikipedia Corpus 6 by Lau and Baldwin (2016). One model was

trained by the word2vec scheme in skip-gram mode and was renamed from wiki_sg to

model_wiki_w2v. The other model was trained by the doc2vec scheme in dbow mode

and was renamed from enwiki_dbow to model_wiki_d2v. The size of a vector generated

by any of these two models is 300.

Two extra models were trained by exploiting the English part of the OpenSubstitle2016

corpus (see §3.1.2) . One was trained by word2vec scheme in skip-gram mode and is

referred to as model_subt_w2v. The other model was trained by doc2vec scheme in

dbow mode and is referred to as model_subt_d2v. The size of a vector generated by any

of these two models is 500.
5https://github.com/jhlau/doc2vec
6See https://github.com/attardi/wikiextractor

Chapter 5. Distributed Representation 56

5.3 Results

Four matrices representing document embeddings of the pilot script were generated:

• FS_dr_wiki_w2v learned with word2vec and the model model_wiki_w2v, and is

averaging of the word embeddings.

• FS_dr_wiki_d2v learned with doc2vec and the model model_wiki_d2v.

• FS_dr_subt_w2v learned with word2vec and the model model_subt_w2v, and is

averaging of the word embeddings.

• FS_dr_subt_d2v learned with doc2vec and the model model_subt_d2v.

Each of these matrices was generated via two steps. Take FS_dr_wiki_w2v as an

example:

• Assemble the word2vec representations, learnt with model_wiki_w2v, of all the

pilot scripts, and denote the resulting data matrix as DM .

• Apply the min-max-scale procedure to each dimension of DM so as to transform

the value range of the column to [0,1]. Given a column X , the equation to

transform a cell value x is:

xscaled =
x −minX

maxX −minX

(5.5)

These matrices will be exploited in the establishing and comparison of predictive

models in later works.

Chapter 5. Distributed Representation 57

5.4 Summary

This chapter introduced the notions of word embedding, which is the low-dimensional

dense vector representation of words, and document embedding, which is the low-dimensional

dense vector representation of sequences of words.

This chapter also introduced the two schemes to generate word embeddings and

document embeddings respectively: word2vec and doc2vec.

Two pre-trained models were downloaded: model_wiki_w2v and model_wiki_d2v.

By exploiting the English part of OpenSubtitle2016, two new models were trained:

model_subt_w2v and model_subt_d2v.

Four datasets of document embeddings of the pilot scripts, corresponding to the

four models, were generated.

Chapter 6

Features from NLP

This chapter introduces the features extracted by exploiting Natural Language Processing

(NLP) techniques.

6.1 Venues of Scenes

In television series scripts, the venues of the scenes are declared in the slug lines. A

slug line always begins with "INT.", or "EXT.", or both. Then follows the venue phrase,

which comprises one word or several consecutive words. An optional third part, which

is normally separated from the venue phrase by a dash sign, indicates the time.

The venue phrases were collected and processed via a series of steps.

Step I is to remove worthless words. Firstly, a list of stopwords was determined by

combining sklearn1 stopwords and nltk2 English stopwords. Any word in this list is

considered to be extremely common and was therefore removed from venue phrases.

Secondly, the name of a character might appear in the venue phrases, for example,

"Barry’s apartment". Therefore, a procedure of filtering out characters’ names was

1http://scikit-learn.org/
2http://www.nltk.org/

58

Chapter 6. Features from NLP 59

involved. Lastly, since the slice indicating time is not always explicitly separated, time

words might incorrectly be selected, such as the "day" and "night". These words were

also eliminated.

In Step II, terms were determined from the venue phrases by collecting single

words as unigrams and pairs of adjacent words as bigrams.

Both unigram and bigram are worthy to choose. Compared with unigram, the

bigram model reserves sequential information of the words to some extent. Hence, the

venue "meeting room" could be discriminated from "living room". On the other hand,

the unigram model helps to pick out "room" from both "meeting room" and "living

room", which are distinct from the venue "street".

There are more than 14 thousand venue terms determined in total in this step.

Among them, the number of venues whose appearance frequency is larger than 50 is

less than 200. Considering that the working collection contains more than 500 scripts, it

could be deduced that the vast majority of the venue terms appear in only a few scripts.

Figure 6.1 shows the top 20 most frequent terms. Figure 6.2 shows the distribution

of frequencies of the top 100 most frequent terms. Figure 6.3 shows top frequent terms

in the word cloud style.

In Step III, a matrix of term quantity was established. A term vector was firstly

created by selecting the existing venue terms. As soon as a venue term appears in one

television script, it will be selected, and every unique term will be selected no more than

once. Subsequently, for each script, a value vector was created by counting the numbers

of occurrences of every venue term. Lastly, the matrix was composed by combining

value vectors of all the scripts.

It is not surprising that the created matrix was sparse since most of the venue terms

only appear in a few scripts.

Chapter 6. Features from NLP 60

Figure 6.1: Venue Terms - Top 20

In Step IV, a matrix of TF-IDF values was established.

The term quantity (also raw term frequency) model supposes that, a script A would

be more relevant to a specific venue term t than another script B if the occurrence of t

in A is slightly more frequent than in B. However, if the number of all occurrences of

all terms in A is much larger than in B (more generally, if the length of document A is

much longer then another document B), then this supposition is clearly doubtable. To

address this issue, an adjustment was introduced, where for a document d, the number

of occurrences of a term t (N(t,d)) was divided by the number of all occurrences of all

terms (N(T,d)), then the Term Frequency (TF) value (denoted as TF(t,d)) is obtained.

The equation is:

TF(t,d) =
N(t,d)

N(T,d)
(6.1)

Another effect of this adjustment is the range of values were scaled down to [0,1].

Hence very large values were avoided.

The term frequency model supposes that, for a specific document d, if the TF values

of two terms are equal, then they are of the same significance to the document. However,

Chapter 6. Features from NLP 61

Figure 6.2: Venue Terms - Frequency of Top100

in cases where one term appears only in d whilst the other one appears everywhere,

then their importance is clearly distinctive from each other. Accordingly, the concept of

Document Frequency (DF) is introduced. For a term t in a collection of documents

D, its document frequency value DF(t,D) is the number of documents that contain t.

Furthermore, the Inverse Document Frequency (IDF) value of the term t (denoted

as IDF(t,D)) in the collection of document D, which is constituted by ND documents,

could be calculated by the equation:

IDF(t,D) = log
ND + 1

DF(t,D) + 1
+ 1 (6.2)

This equation ensures that the IDF value will never be zero (log 1), and a term that

never appeared, whose DF value is zero, would not cause failure.

Lastly, the TF-IDF value (denoted as TFIDF(t,d)) of a term t in document d can

be computed by:

TFIDF(t,d) = TF(t,d) ⋅ IDF(t,D) (6.3)

Chapter 6. Features from NLP 62

Figure 6.3: Cloud of Frequent Venue Terms

In Step V, the TF-IDF matrix is normalised. For each column x = [[x1, x2, ..., xn]]

in the matrix, firstly its l2-norm ∣x∣2 is calculated:

∣x∣2 =

√

∑
n

k=1
∣xk∣2 (6.4)

Next, every single value in the column was divided by the ∣x∣2. As a result, the scale of

the values in each column was adjusted to [0,1].

Through these steps, a data matrix was generated for the feature set:

• FS_venues

6.2 Named Entities

6.2.1 Introduction

A named entity (NE) is a physically existing object or an abstract existence, which is

referred to via a proper name. In a text, a named entity is commonly denoted by a

proper noun, which could be a single word or a combination of several adjacent words.

Chapter 6. Features from NLP 63

Some examples include Sheldon Cooper, Auckland, and AUT.

A named entity could be classified into a certain category. The most studied

categories include PERSON, LOCATION, and ORGANIZATION. Some other examples

include DATE, TIME, and GPE (geo-political entity).

The process of Named Entity Recognition (NER) aims to identify textual mentions

of the named entities from the surrounding texts, and to further classify them into

predefined categories.

There are many approaches to performing the NER task. One group of approaches

is based on gazetteers and rules, compared to another, which is based on statistical

models.

6.2.2 Approaches based on Gazetteers and Rules

An intuitive method to perform NER is to firstly for each category compile a list of

entity names, which is also called a gazetteer that commonly refers to a domain specific

lexicon, and to then check whether words (and phrases) within a text ever appear in these

gazetteers. However, the compilation of such gazetteers is reportedly the bottleneck in

the design of NER systems (Mikheev, Moens & Grover, 1999).

In addition, rules to determine named entities could be involved. For instance, the

system introduced by Riloff and Phillips (2004) has the ability to exploit manually

defined pattern rules, each of which can check for lexical, syntactic, and semantic

properties associated with words or constituents. Table 6.1 presents two examples of

these rules.

The gazetteers and rules could be completely handcrafted. They could also bootstrap

from some initial handcrafted instances, and then get iterative extensions semi-automatically.

Nevertheless, both of these two strategies require expensive manual efforts. Additionally,

Chapter 6. Features from NLP 64

Table 6.1: Examples of Pattern Rules exploited by Riloff and Phillips (2004)

Pattern <NP-HEAD:word=Corp.> –>NP-COMPANY
Example International Business Machines Corp.
Pattern <NP-ALLWORDS:case=Capitalized> <PUNC:word=COMMA>

<NP-HEAD:sem=LOCATION> –> NP-LOCATION
Example Salt Lake City, Utah

these gazetteer-rule-based approaches have low coverage and only work well on narrow

domains (Mohit, 2014).

6.2.3 Statistical Supervised-Learning Approaches

By adopting statistical approaches, models to detect named entities are established by

supervised learning.

The fundamental requirement for a statistical approach is an annotated corpus,

wherein information is embedded to describe whether words in sentences belong to a

specific category of NE or not. One scheme to represent the NE information is to mark

them as chunks with SGML tags. For example:

As introduced by <PER> Sheldon Cooper </PER>, there are
significant educational institutions located in the <LOC> Auckland
Central </LOC>, notably the <ORG> University of Auckland </ORG>
and the <ORG> AUT </ORG>.

The more popular sequence labelling schemes assign a label to each word. For instance,

the BIO representation uses labels to indicate whether a word is at the Beginning, Inside,

or Outside an NE.

As/O introduced/O by/O Sheldon/B-PER Cooper/I-PER, there/O
are/O significant/O educational/O institutions/O located/O in/O the/O
Auckland/B-LOC Central/I-LOC, notably/O the/O University/B-ORG
of/I-ORG Auckland/I-ORG and/O the/O AUT/B-ORG.

A variant of BIO, the BILOU representation which significantly outperforms the former

Chapter 6. Features from NLP 65

one (Ratinov & Roth, 2009), additionally uses the label L to point out the last word of

an NE, and uses U to denote that a word is a unit-length NE.

As/O introduced/O by/O Sheldon/B-PER Cooper/L-PER, there/O
are/O significant/O educational/O institutions/O located/O in/O the/O
Auckland/B-LOC Central/L-LOC, notably/O the/O University/B-ORG
of/I-ORG Auckland/L-ORG and/O the/O AUT/U-ORG.

The creation of an annotated corpus requires intensive manual work. However, as

long as it accomplished, the corpus can be used by an unlimited number of statistical

and machine learning approaches.

Subsequently, a probabilistic representation of the annotated corpus needs to be

established. This representation is a probabilistic model (also statistical model). From

the mathematical perspective, a statistical model encompasses a collection of possible

observations (also events) and the probability distributions of these observations. The

collection of events is called the sample space. In the setting of NER, an example event

is that the word "Central" appears after "Auckland" and is part of a LOCATION entity.

More specifically, the models involved in statistical approaches for NER are generally

belong to the probabilistic graphical model (PGM), which uses a graph to express the

structure of conditional dependencies between the observations. For instance, in a naive

PGM, a node "Auckland" could have two outgoing connections to the node "Central"

and the node "and", while for each of the connections a probabilistic value is correlated.

Some well known PGMs for the NER task include the Hidden Markov Model

(HMM) (Mohit, 2014; Freitag & McCallum, 1999), the Max Entropy Markov Model

(MEMM, also named Conditional Markov Model, CMM) (Borthwick, 1999), and the

Conditional Random Field (CRF) (Finkel, Grenager & Manning, 2005). These PGM

approaches take the sequence labelling view over the NER task which considers it as

a structured prediction problem for a sequence of variables (Mohit, 2014). That is to

Chapter 6. Features from NLP 66

take sequences of tokens (sentences which are constituted by words in the setting of

NER, as well as Part-Of-Speech (POS) tagging) as inputs and deliver a sequence of

labels for each sequence of tokens as output. Named entities can then be recognised by

understanding these labels. This is different from the approaches based on gazetteers

and rules, which directly pick out entities from sentences. This is also distinct from a

classification process, which produces a class label for each input entry.

More specifically, for a given sequence of tokens (t1...tn), the task is to determine

the most possible sequence S of labels (y1...yn):

S = argmax
y1...yn

P (y1...yn ∣ t1...tn) (6.5)

According to the Bayes’ theorem:

P (A ∣ B) =
P (B ∣ A) ⋅ P (A)

P (B)
(6.6)

for a certain token sequence (t1...tn), the problem could be transferred and simplified

to:

S = argmax
y1...yn

P (t1...tn ∣ y1...yn) ⋅ P (y1...yn) (6.7)

More Details of HMM

The HMM assumes that the token sequence is generated from the learnt statistical

representation of the training data. During the generation, there is a Markov process,

which means that the probability of assigning a label to a token depends only on a

limited number of recent tokens and their labels. If an HMM only examines one

previous token and its label during the generation, it is called the first order HMM. The

Chapter 6. Features from NLP 67

assumption of the first order HMM further allows to shorten the context for computing

P (y1...yn) and simply use P (yi ∣ yi−1). Thus for a given sequence of tokens (t1...tn),

the intended sequence S of labels (y1...yn) should satisfy:

S = argmax
y1...yn

n

∏
i=1

P (ti ∣ yi) ⋅ P (yi ∣ yi−1) (6.8)

In the HMM approach, a finite state machine (FSM) is involved, wherein each state

is corresponding to a label. The Figure 6.4 shows the FSM of a simplified HMM which

could help to detect NE without category information.

Figure 6.4: FSM of A Simplified HMM for NER (Mohit, 2014)

During the process of generating, each token position in the sequence is corresponding

to a probabilistic state transition, where next label is decided, and after the transition, a

new token is generated according to the new label.

During the training of the HMM, two sets of parameters are studied from the training

data (annotated corpus in NER setting):

• P (yi ∣ yi−1) - state transition probability, that is the conditional probability of the

label of current token given the label of previous token

• P (ti ∣ yi) - the probability of generating a specific token given a certain status

In general, the procedure of determining a state sequence for a certain token

Chapter 6. Features from NLP 68

sequence is called decoding. For the HMM decoding, a commonly used algorithm is

the Viterbi. It is well explained by Jurafsky and Martin (2014).

A Brief Comparison

The HMM, MEMM, and CRF are all statistical hidden state sequence models (Finkel

et al., 2005). They need statistics of annotated corpora for training. They work with

sequence of tokens whose states are not explicitly known.

The HMM assumes that tokens are independent of each other. By contrast, the

MEMM and CRF do not have such an assumption. This allows the two to benefit from

various further features.

While labelling a token, the HMM and CRF both consider future observations,

which however, is not taken into account by MEMM.

To conclude, the CRF is the best among the three introduced models.

6.2.4 Other Approaches

Unsupervised techniques are reportedly used to augment, but not replace, handcrafted

features and domain-specialised knowledge resources such as gazetteers (Lample,

Ballesteros, Subramanian, Kawakami & Dyer, 2016).

The SVM technique has been employed as a supervised learning approach for NER

tasks (Asahara & Matsumoto, 2003; Ju, Wang & Zhu, 2011).

Neural architectures have also been used. Collobert et al. (2011) adopted CNN

together with CRF. Lample et al. (2016) adopted LSTM, a variant of the Recurrent

Neural Network, also together with CRF, to construct their NER system.

In practice, many (if not most) of the NER systems combine two or more of the

Chapter 6. Features from NLP 69

previously mentioned approaches. These systems have shown improvement over their

non-hybrid counterparts (Mohit, 2014).

6.2.5 Features Employed by NER Systems

Nadeau and Sekine (2007) summarised several features of words, which could be

exploited by NER systems. The word-level features include:

• case - whether a word is uppercased, lowercased, capitalised, or mixed-cased

• punctuation - whether a word contains special punctuations such as period,

apostrophe, hyphen, or ampersand

• digit - whether a word matches special digit patterns, for example, the forms of

dates, percentages, etc.

• morphology:

– prefix, suffix of a word

– stem, or lemmatised form of a word

– whether a word has a special ending

• features by special functions:

– n-grams of characters

– alphabetical or non-alphabetical

– lowercased or uppercased transforms

• POS-tag:

Standing for the part-of-speech tag, a POS-tag is a label correlated to a

word which denotes its category, from the perspective of the role the word

Chapter 6. Features from NLP 70

plays within the grammatical structure of the surrounding context, which is

commonly a sentence.

Interestingly, the task of automatic POS-tagging is similar to NER. The

techniques used in NER tasks for feature extracting (introduced in this

subsection except for POS-tag itself), model establishing and label predicting

(such as HMM, CRF, and the ANNs) for NER are also suitable for the

POS-tag task.

While some NER implementations require the POS-tag as a necessity, e.g.

NLTK 3, some others do not, for instance, the Stanford NER 4, which

declares that it use similar features for POS-tag and NER tasks 5.

The context level features include:

• number of occurrences of a word (or phrase) and its transforms such as uppercased,

lowercased, and capitalised, in the document

• other entities in the context

• cooccurrences, which means other words frequently appear alongside a certain

word

• coreferences, which are other expressions of the same entity

In a recent study, Lample et al. (2016) combined character-based representation

(Ling et al., 2015) and distributed representation (Mikolov, Sutskever et al., 2013) as

the features of the to be examined words.
3http://www.nltk.org/book/ch07.html
4https://nlp.stanford.edu/software/CRF-NER.shtml
5https://nlp.stanford.edu/software/crf-faq.html#pos

Chapter 6. Features from NLP 71

6.2.6 Results

The present study employed the Stanford NER to recognise named entities from

desc-blocks and talk-blocs of the prepared television series scripts. The Stanford

NER expolits the CRF as the underlying statistical model. Meanwhile, it adopts the

Gibbs sampling method to exploit features from long distance structures (Finkel et al.,

2005).

Three categories of NEs were collected, including LOCATION, ORGANIZATION,

and PERSON.

A PERSON entity who is not a character in the television series might be a famous

figure in the real world or in an fictional setting. The mentions of these famous figures

might be influential to the ratings of the episodes, hence these entities are of interest. A

series of processes were adopted to identify potential famous individuals.

• First, the PERSON entities whose names are identical to a character’s name were

filtered out. The collections of characters’ names used here were compiled from

the speakers of the talk-blocks as introduced in §4.2.1.

• Second, entities with some special names were abandoned. These include John

Doe and Jane Doe, which are names used as placeholders in some circumstances6.

Another instance is DING DONG, which is the sound of a doorbell nevertheless

mistakenly classified.

• Third, the names which refer to identical PERSON entities were unified.

– The names JFK, JOHN F KENNEDY, KENNEDY were all altered to the

JFK.
6https://en.wikipedia.org/wiki/John_Doe

Chapter 6. Features from NLP 72

– The names SHERLOCK, HOLMES, S HOLMES were all altered to SHERLOCK

HOLMES.

– The name JESUS was accounted as JESUS CHRIST.

– The name EINSTEIN was accounted as ALBERT EINSTEIN.

– OBAMA was accounted as BARACK OBAMA.

– J LO was accounted as JENNIFER LOPEZ.

• Lastly, the names which appear in one script only, or comprise only one word

whose length is less than eight, were discarded. Before this procedure, there were

more than eight thousand items in the examining list, which contains many very

common name such as John, Danny, Emily, etc. Remarkably, after this procedure,

only some 330 were kept and these are much more expressive.

Among them, JESUS CHRIST is the most frequently mentioned. The name

appears 483 times in 216 pilot scripts. Both numbers are much larger than the

following examples. To be precise, according to the criteria of script frequency,

the second and third most popular names, BARACK OBAMA and JFK, appear in

28 and 23 scripts respectively; according to the criteria of frequency, the second

and third most popular names, JFK and SHERLOCK HOLMES, appear for 60

and 57 times respectively. Moreover, in the vast majority of cases, people use

other names to express person entities. By contrast, people say JESUS or JESUS

CHRIST mostly in order to represent their emotions.

Therefore, the name JESUS CHRIST is not included in the list of potential famous

figures.

Figure 6.5(a) shows names and frequencies of the 20 most popular PERSON entities.

Figure 6.5(b) shows names and frequencies of the 20 most popular names by script

frequency. An interesting observation is that JFK and OBAMA are within the top

Chapter 6. Features from NLP 73

three in both of the two lists. In contrast, the popularities of other politicians, such

as GEORGE BUSH, BILL CLINTON and HILLARY CLINTON, are much lower. The

scientist EINSTEIN and writer SHAKESPEARE are also admired by these scripts, whilst

the most liked fictional characters are SHERLOCK HOLMES and HARRY POTTER.

(a) Person - Top 20 by Frequence (b) Person - Top 20 by Script Frequency

(c) Person - All by Frequency (d) Person - All by Script Frequency

(e) Person - Cloud by Frequency (f) Person - Cloud by Script Frequency

Figure 6.5: Named Entity - Person

The collected LOCATION and ORGANIZATION entities were also processed by

handcrafted rules. Some of them were eliminated, while some of them were renamed.

Firstly, in many scripts, names of characters are incorrectly recognised as locations

Chapter 6. Features from NLP 74

and organisations. Thus, a procedure of eliminating the locations and organisations

whose name is also the name of a character in the same script, was involved.

Secondly, some certain locations are referred to by multiple names. These were

unified. For instances, US and USA were reformed to UNITED STATES, while LA was

changed to LOS ANGELES.

Thirdly, many brands were selected as organisations. For example, PORSCHE,

CADILLAC, NIKE, and CHANEL. A list of brands was manually composed, and these

brands were removed from the collection of identified ORGANIZATION entities.

Figure 6.6(a) shows the frequencies and names of the top 20 most popular locations,

while Figure 6.6(g) shows these of the top 20 most popular location by script frequency.

The Figure 6.6(c) shows frequencies of the top 100 most popular locations.

For the organisations, the three counterpart figures are Figure 6.6(b), Figure 6.6(h),

and Figure 6.6(d).

Three categories of named entities for each pilot episodes were determined. Then,

names of these entities were directly used as terms instead of drawing n-grams in the

process of creating matrices of TF-IDF values as introduced in §6.1.

After these steps, three data matrices corresponding to the three NE categories were

generated for these three features sets:

• FS_NE_PERSON

• FS_NE_LOCATION

• FS_NE_ORGANISATION

Chapter 6. Features from NLP 75

(a) Location - Top 20 (b) Organisation - Top 20

(c) Location - Frequency of Top 100 (d) Organisation - Frequency of Top 100

(e) Location - Cloud (f) Organisation - Cloud

(g) Location - Top 20 by Script Frequency (h) Organisation - Top 20 by Script Frequency

Figure 6.6: Named Entity - Location and Organisation

Chapter 6. Features from NLP 76

6.3 Keywords of Primary Characters

6.3.1 Keywords and Dependencies

In pilot scripts, descriptions of the primary characters give valuable information

concerning their appearance, age, profession, and other characteristics. Additionally,

some sentences in the scripts provide temporary statuses of the primary characters.

Moreover, certain phrases could reflect the nature of a character indirectly.

The following list shows some example sentences selected from the scripts 7. In

sentences 1. and 2., ages (early30s; late 30s) and appearances (attractive, shoulder-length

dark hair; athletic build, rugged good looks) are given. In sentences 1. and 4.,

professions (doctor and detective) are given. It can also be learnt from sentence 3.

that the character is a time traveller. Sentences 5. and 6. represent the primary

characters’ statuses, which are frustrated and confused. The phrase holding court in

sentence 7. is a reflection of the social skill or social status of the character.

1. DR. CASSIE REYNOLDS, early 30s, attractive, shoulder-length dark hair,

checks the time.

2. He steps into a beam of light coming from a broken window, revealing: COLE,

late 30s, athletic build, rugged good looks.

3. "A time traveler named Cole" disappears before your eyes.

4. Detective Olshansky, NYPD.

5. And as she turns to get in line for a dog, and a frustrated Sherlock follows.

6. Joan, confused, looks to her hands.
7Sentences 1., 2., 3., 7. are selected from the pilot script of 12 MONKEYS; and 4., 5., 6. are selected

from ELEMENTORY

Chapter 6. Features from NLP 77

7. The hand belongs to: Mason Frost, holding court with a group of attractive

socialites.

These basic settings of the primary characters are also basic settings of the pilot

episodes, and the temporary status of a character can be seen as a reflection of an event

in the storyline. Therefore, they might be influential to the ratings of these episodes. In

the present study, the words and phrases which offer such information, either directly or

indirectly, are named keywords of the primary characters.

By understanding the relations between the words within the sentences which

contain one or more names of the primary characters, the keywords can be detected.

According to Nivre (2006), the syntactic structure of a sentence is constituted of

lexical elements, i.e. the words, which are linked by binary asymmetrical relations; and

these relations are named the dependencies. Within each of the dependency relations,

one word is named the head (also governor, regent), while the other is the dependent

(also modifier). Moreover, the dependences of dependents to governors can be of

various types. For example, a dependence could be established between a verb and

its subject or object. Also, it could be established between a noun and an adjective

which further specifies the noun. Figure 6.7 shows the dependencies within a sample

sentence. In the figure, each dependency is illustrated by a directed arc, which points

from the governor to the dependent, with the type of the dependency being presented

too. Summarily, a dependency relation could be described by a triple: the two involved

words, and the type of the relation.

Many NLP tasks such as machine translation and question answering also benefit

from dependency representations since it allows easy access to information concerning

predicate-arguments structure and modifiers (De Marneffe, MacCartney, Manning

et al., 2006). Moreover, the triple form maps straightforwardly onto semantic web

Chapter 6. Features from NLP 78

Figure 6.7: Dependencies within a sentence (Nivre, 2006)

representations (De Marneffe & Manning, 2008b).

A list of criteria for constructing dependency relations and for distinguishing the

governor and the dependent is compiled by Nivre (2006) based on previous proposals.

Denoting the governor (head) as H, the dependent as D, and the grammaric construction

(which contains H and D) as C, these criteria are:

1. H determines the syntactic category of C and can often replace C.

2. H determines the semantic category of C; D gives semantic specification.

3. H is obligatory; D may be optional.

4. H selects D and determines whether D is obligatory or optional.

5. The form of D depends on H (agreement or government).

6. The linear position of D is specified with reference to H.

Nevertheless, it is not necessary for a dependency to comply with all of these rules.

According to Nivre (2006), Hudson (1991) suggested that typical dependency instances

could satisfy all or most of these criteria, while more peripheral instances could

satisfy fewer of them. From another perspective, according to Nivre (2006), Mel’čuk

(1988) advocated that dependencies can be divided into three categories, which are

morphological, syntactic, and semantic, while the syntactic ones are the focus of most

Chapter 6. Features from NLP 79

of the works in the field of dependencies. For each category, only a certain subset of the

rules are applicable.

Further, the syntactic dependencies in endocentric and exocentric constructions are

worthy to be distinguished. A grammatical construction is endocentric if it fulfils the

same linguistic function as one of its parts; otherwise, the construction is exocentric.

According to the definition, an endocentric construction naturally satisfies the first

criterion, while the exocentric construction apparently fails on that. For instance, in the

sentence in Figure 6.7, "financial ← markets" is endocentric thus it could be replaced

by the word markets, while in comparison "on → market" is exocentric so the word on

cannot serve as a substitute. Another endocentric example is the phrase "frustrated ←

Sherlock" in the 5th sentence selected from scripts. Two typical exocentric instances

are the relations between a verb and its object and subject, though these two kinds of

dependencies are semantic rather than syntactic.

From another perspective, dependency relations can be classified into categories of

head-complement, head-modifier, and head-specifier (Nivre, 2006).

The distinction between head-complement and head-modifier connects to the

conception of valency, which is usually related to the semantic predicate-argument

structure. As explained by Nivre (2006), "the idea is that the verb imposes requirements

on its syntactic dependents that reflect its interpretation as a semantic predicate". A

dependent in a head-complement relation corresponds to an argument of the semantic

structure. The argument could be obligatory, or optional, in which case only one

occurrence for each structure instance is permitted. By contrast, a dependent in a

head-modifier relation does not correspond to any particular argument. It could appear

for multiple times. Meanwhile, it tends to be optional.

The head-complement relations are exocentric, and head-modifier relations are

Chapter 6. Features from NLP 80

endocentric. As for the head-specifier relation, which is typically exemplified by the

determiner-noun relation, its instances are also exocentric (Nivre, 2006).

The collection of all the dependencies extracted from a sentence is eligible to

represent the sentence, and this collection is called the dependency structure of the

sentence. A directed acyclic graph (DAG) could be established by using words as

vertices and dependencies as directed edges, and ordinarily, this DAG has an explicit

root node. For each sentence, a root dependency is also usually created, which points

from a dummy "ROOT" word to the actual root word of the dependency graph, which is

typically the main verb of the predicate. It is helpful to the downstream applications.

Commonly, the underlying undirected graph of the dependency graph (the DAG) is

a tree. That means, by replacing the directed edges with undirected edges, the generated

graph is also acyclic. However, this is not always true. For example, from the sentence:

▸ Tom and Jerry are running.

the Enhanced Universal Dependencies Representation proposed by Schuster and Manning

(2016) will draw out these dependencies: nsubj(running → Tom); conj:and(Tom →

Jerry); nsubj(running → Jerry). By removing the directness, a cycle which involves

(running, Tom, Jerry) will emerge.

A competing schema for understanding the sentence structure is the phrase structure,

also known as the constituency structure, which views sentences in terms of the

constituency relation. From the viewpoint of constituency relation, a sentence is

initially divided into two parts, a subject noun phrase (NP) and a predicate verb

phrase (VP). Then each phrase will be recursive split until only one word left within

a phrase. Accordingly, the phrase structure described is the nesting of multiword

constituents, whereas for dependency structure, it is the relations between individual

Chapter 6. Features from NLP 81

words (De Marneffe et al., 2006).

In a tree that represents the phrase structure of a sentence, the root node corresponds

to the entire sentence, the leaves correspond to the words, and other nodes correspond

to different levels of phrases. Meanwhile, the content of each non-leaf node is the

combination of the contents of its children. For instance, for a simple two-word sentence,

"Cole disappeared", construction of the phrase tree demands for three nodes, which are

the root for the entirety, and two nodes for the subject and predicate respectively.

In a dependency graph, which is not always a tree, each node exactly corresponds

to an atomic element, which is a word or punctuation. Therefore, if ignoring the

punctuation nodes, the number of its nodes would be consistently less than the number

of nodes in a phrase tree that represents the same sentence. Figure 6.8 8 shows the

phrase tree and dependency tree of the same sentence.

Figure 6.8: Phrase Tree and Dependency Tree of a sentence

A treebank is a corpus where the sentence structures are parsed and annotated.

While original treebanks only provide phrase structure trees, several later ones adopt

dependency structure representation as the primary annotation format (De Marneffe

et al., 2006). A treebank could be created completely manually or semi-automatically

wherein the premiere result produced by a parser is later verified and corrected if

necessary. Either method requires intensive work by trained linguists. De Marneffe et

8https://en.wikipedia.org/wiki/Treebank

Chapter 6. Features from NLP 82

al. (2006) described a system that is capable of taking in phrase structure parses and

then generating typed dependency relations for English sentences.

6.3.2 Dependency Representation

There are various dependency representation standards, which employ different methods

to extract and categorise dependency relations. Between a particular pair of words in

a sentence, according to a certain standard, there might be no dependency relation;

while according to another standard, there might be a relation of a certain type; further,

according to a third standard, the relation between the two words might be of a distinct

type.

The system introduced by De Marneffe et al. (2006) presents word relations in the

Stanford Typed Dependencies Representations (the SD). According to De Marneffe and

Manning (2008b), the development of SD is based on three early works, which are the

Lexical-Functional Grammar (recently explained by Bresnan, Asudeh, Toivonen and

Wechsler (2015)), GR (Carroll, Minnen & Briscoe, 1999), and PARC (King, Crouch,

Riezler, Dalrymple & Kaplan, 2003), especially in terms of the grammatical relations

and type naming. What makes SD different is that it is designed to be an empirical

model for sentence representation, particularly in the contexts of relation extraction and

information extraction (De Marneffe & Manning, 2008b). Besides distinguishing the

argument and adjunct relation, SD pays more attention on NP-internal relations and

introduces new types such as the appositional modifier and adjectival modifier. Opposite

to the PARC representation, which provides information about individual words, such

as verb tense, adjective degree, type of named entity, etc., the SD does not.

The SD defines more than 50 grammatical relations, and these could be organised in

a hierarchy, rooted by the dependent relation which is the most generic (De Marneffe

Chapter 6. Features from NLP 83

& Manning, 2008b, 2008a). The first level children include arg (argument), mod

(modifier), cc (coordination), conj (conjunct), etc. Some descendants of the arg node

are nsubj (nominal subject) and dobj (direct object). Some descendants of the mod node

are amod adjectival modifier, advmod (adverbival modifier), and appos (appositional

modifier). When categorising a dependency relation, if it could be identified more

precisely, then a type tag further down in the hierarchy is assigned to it. Otherwise, a

more generic type tag is used.

There are various styles of SD representations (De Marneffe & Manning, 2008a).

Some are briefly introduced in the following discussion. The basic typed dependencies

of a sentence construct a tree structure. Each word in the sentence is a dependent

in exact one relation. In the collapsed style, dependencies related to prepositions,

conjuncts, etc. are collapsed to get direct dependencies, i.e. two dependency entries in

basic style could merge into one in this style. Dependencies, which could break the tree

structure, are taken into consideration. The CC-processed style (collapsed dependencies

with propagation of conjunct dependencies) makes more efforts towards sentences that

contain conjunctions. It does not guarantee the tree structure either.

The SD has been adopted by researchers in different domains, including for evaluating

newly proposed parsers (De Marneffe & Manning, 2008b).

A promotion for the original SD (De Marneffe et al., 2006; De Marneffe & Manning,

2008a, 2008b) was proposed by De Marneffe et al. (2013) to handle two limitations.

First, the original SD was incapable of understanding many unusual but difficult

constructions such as tough adjectives, free relatives, comparative constructions, and

small clauses. Second, the original SD was developed against newswire data. Hence

constructions which appear less, including questions, imperatives, discourse particles,

sentence fragments, and ellipsis have not been adequately considered. (De Marneffe et

al., 2013)

Chapter 6. Features from NLP 84

Among many dependency categories introduced by the promotion, the vocative, is

used to label the dialogue participant recognised in texts.

The SD was originally designed only for, and eventually emerged as the de facto

standard of, the dependency analysis of the English language. (Nivre et al., 2016)

A representation named Universal Stanford Dependencies was proposed by De Marneffe

et al. (2014) which attempts to reconstruct the underlying typology of SD so as to make

it more applicable cross-linguistically while keeping faithful to the design principles of

SD.

The Google Universal Dependency Treebank project introduced by McDonald et al.

(2013) uses SD as the starting point and adds modifications to capture the variety of

grammatical structures in diverse languages.

The Universal Dependency (the UD) is another proposal on multi-language competent

representation (Nivre et al., 2016). It is a single coherent standard by merging the

Universal Stanford Dependencies and Google Universal Dependicies, as well as

some other previous works 9, and it intended to replace these predecessors. The

UD provides a universal inventory of categories to facilitate consistent annotations of

similar constructions. It allows language-specific extensions to handle the idiosyncrasies

among the typological differences between the languages.

Schuster and Manning (2016) proposed two extensions of UD: the enhanced UD

and enhanced++ UD representations. The original UD (Nivre et al., 2016) work focuses

on the basic UD representation, which corresponds to the basic SD representation, and

mainly aims to meet the requirements of treebank annotation tasks. Meanwhile, the

enhanced UD and enhanced++ UD correspond to the collapsed and CC-processed SD

representations. The graph of a sentence by one of the later two might not be a tree

9These include SD, UDT (Google Universal Dependency Treebank), Google universal P.O.S tags,
HamleDT, etc., according to Nivre et al. (2016).

Chapter 6. Features from NLP 85

(Schuster & Manning, 2016). Compared with the basic UD, they are more suitable for

tasks which are concerned with the relations between content words, such as relation

extraction.

The Stanford Dependency Parser 10, which is employed in the present work to extract

word dependencies from pilot scripts, has once adopted the SD as the representation

of its output. Since the release of version 3.5.2 of the tool in 2015, the default output

representation switched to the UD 11 12.

6.3.3 Dependency Parsing

Dependency parsing is the process of extracting dependency relations between words

(and possible punctuations) from sentences. Nivre (2006) divided the dependency

parsing approaches into two genres: the grammar-driven and the data-driven, which

are not mutually exclusive.

Three trends of the grammar-driven approaches are distinguished. First, some

grammar-driven approaches are tied to a formalisation of dependency grammar which is

closely related to context-free grammar (Nivre, 2006). Second, some of them consider

the task as a constraint satisfaction problem and adopt eliminative parsing, which

means possible representations of a sentence are successively eliminated by checking

whether they violate certain constraints. The third trend does not essentially demand

complex grammars and parsing algorithms as the first two do. Instead, it is based on

a deterministic parsing strategy, which, according to Nivre (2006), basically "accept

words one by one starting at the beginning of the sentence and try linking each word

10https://nlp.stanford.edu/software/stanford-dependencies.shtml
11See the READEME in https://nlp.stanford.edu/software/stanford-parser-full-2016-10-31.zip
12For the newest version of UD: http://universaldependencies.org/

Chapter 6. Features from NLP 86

as head or dependent of every previous word" (Covington, 2001). Its requirement to

the grammar is to provide a function to determine whether a word could be governor

(head) of another.

The hallmark of a data-driven approach is the exploiting of a probabilistic model,

while for a grammar-driven approach, the hallmark is the employment of a formal

dependency grammar.

According to Nivre (2006), Eisner’s works is influential in the field of dependency

parsing. These include the introductions of several probabilistic models (J. M. Eisner,

1996; J. Eisner, 1997) and a further proposal of the notions bilexical grammar and

weighted bilexical grammar (J. Eisner, 2000). These works showed that generative

probabilistic modelling and supervised learning could be used in dependency parsing

missions and produce relatively good accuracy.

The approaches suggested by Kudoh and Matsumoto (2000); Yamada and Knight

(2001) use SVM to train classifiers to predict the next action of a shift-reduce procedure,

which repeatedly takes in words of a sentence from left to right along with producing

dependencies. During the shift-reduce procedure, two adjacent words are focused and

referred to as target words. The two target words are denoted as wi and wi+1 respectively.

Possible actions, which are output of the classifier, include:

• Shift moves the focus window to right: (wi,wi+1)⇐ (wi+1,wi+2).

• Right constructs a dependency relation between the two target words; add wi as

child of wi+1; and: (wi,wi+1)⇐ (wi−1,wi+1).

• Left constructs a dependency relation between the two target words; add wi+1 as

child of wi; and: (wi,wi+1)⇐ (wi−1,wi).

Chapter 6. Features from NLP 87

Chen and Manning (2014) described the Stanford Neural Network Dependency

Parser (the Stanford nndep), which is based on neural networks and transitions.

The transition system of Stanford nndep adopts the arc-standard algorithm. In

the arc-standard system, there are a buffer b which stores the to-be-processed part of

a sentence, a stack s which contains the being focused elements (words and maybe

punctuation), and the collection of determined dependency arcs named A. At any certain

moment, the collection of the states of b, s and A is called the configuration c.

During the progress of processing a sentence, the configuration changes. The initial

configuration is: s = [ROOTdummy]; b = [w1, ...,wn]; A = ∅. The final configuration is:

s = []; b = []; A = {d ∣ all_extracted_dependencies}.

The action of the configuration changes from one to another is named a transition.

There are three types of transitions defined in the arc-standard algorithms. Denoting si

as the ith element on the stack, the three transactions are:

• SHIFT: fetch next element from b and push into s.

• LEFT-ARC(l): create arc s2 ← s1 with label l and add it to A; remove s2 from s.

• RIGHT-ARC(l): create arc s2 → s1 with label l and add it to A; remove s1 from s.

The label of an arc is the category of the dependency relation. For example, it could be

amod or nsubj.

The arc-standard algorithm was employed early by Nivre et al. (2007), followed

by various other dependency parsing studies, such as Rasooli and Faili (2012); Zhou,

Zhang, Huang and Chen (2015).

The neural network is employed by Stanford nndep to select transactions for the

configurations. For each configuration, features are extracted via several steps:

• Compile a set of words SW , whose size is 18. These include:

Chapter 6. Features from NLP 88

– top three words on the stack and the buffer

– for the top two words on the stack, select their first and second leftmost /

rightmost children

– for the top two words on the stack, select their leftmost of leftmost and

rightmost of rightmost children.

• Compile a set of POS tags ST by selecting POS tag of each word in SW .

• Compile a set of arc label SL, whose size is 12. For each work in SW , if it is not

one of the top three on the stack or the buffer, select its corresponding arc label.

• Subsequently, every word in SW is represented as a multi-dimensional vector

value by adopting the word embedding technique. Similarly, every single POS

tag in ST and arc label in SL is mapped to multi-dimensional vector space.

The feature matrix constituted by these vector values is dense.

Both the POS tag set and the arc label set (either SD or UD) are small discrete

sets. Nevertheless, they contain semantical similarities (Chen & Manning, 2014). For

instance, the tag NN (singular noun) is closer to NNS (plural noun) than JJ (ajective),

and amod (adjective modifier) is closer to nmod (nominal modifier) comparing with

obj (object of verb). Thus, the word embedding representation of tags and arc labels

are adopted with the expectation of helping the classifier to capture semantic meanings.

Experiments suggested that the nndep can provide accurate dependency parsing

results at a fast processing speed. (Chen & Manning, 2014)

Chapter 6. Features from NLP 89

6.3.4 Keywords Extraction

Prepareration

For each primary character in each pilot script, sentences that contain the name

of the character are collected, from both the descriptive content (desc-block) and

spoken content (talk-block). Subsequently, the Stanford Neural Network Dependency

Parser and the pre-trained model english_UD 13 are employed to extract Universal

Dependencies from these sentences.

In addition, a collection named person_names is compiled, which contains all the

names of the recognised Person entities (§6.2) and identified characters (§4.2.1). To be

more precise, each element is one word, instead of a full name. For example, the person

name "Sheldon Cooper" will generate two elements for the collection: "Sheldon" and

"Cooper".

compound

The compound dependency is used for noun compounds. Within a noun phrase, the

rightmost word is the core, and every other word has a compound dependency on the

core. For instance, in the sentence:

▸ The author of the paper is Dr. Cassie Reynolds.

two compound dependencies will be extracted, which are (Reynolds → DR.) and

(Reynolds → Cassie).

The majority of the identified character names comprise only one word, which is

either the forename or the surname. In case it is the surname, by selecting the compound

dependencies whose first word is the character name, the compound dependents can be

gathered. If the forename, a little more effort is required for the gathering.

13https://nlp.stanford.edu/software/nndep.shtml

Chapter 6. Features from NLP 90

Subsequently, by excluding the dependents who appear in person_names , a group

of keywords (though normally contains zero or only one for each noun phrase) is

determined, which commonly indicates the profession of the character, such as a doctor,

detective, or professor.

apposition

An apposition (or appositional modifier) of a noun phrase NP, is another noun phrase

immediately to the right of NP, which serves to modify or further define NP. This

relation is represented by the appos dependency. For instance, within the sentence:

▸ The author of the paper is Dr. Cassie Reynolds, the professor.

there is an appos dependency: (Reynolds → professor).

For a noun phrase, which is a primary character in the current setting, multiple

appositional modifiers may coexist. For example, from the sentence:

▸ The author of the paper is the professor, Dr. Reynolds, also a musician.

two appos dependencies could be extracted, which are (professor → Reynolds) and

(professor → musician).

In any of the two circumstances, all the appositional words, which include the

appositional modifiers and the core noun itself, refer to a same entity. In a group of

appositional words, the name of the character might be the core word, which means it

is the governor of all other appos dependents; it could also be a dependent, in which

case its governor, also the core word, is another noun. The case where the name of

the primary character serves as both appos governor in some dependencies and appos

dependent in some other dependencies in the same sentence has not been observed.

It is vital to find out all the appositional words which refer to the primary character

from the sentence being examined. The adopted algorithm is briefly explained below.

Chapter 6. Features from NLP 91

Step I, collect all the words any of which is involved in at least one appos dependency,

with no word is permitted to appear for more than once. It needs to be realised that this

collection could not be simply used as the group of appositional words which all refer

to the primary character being examined because more than one entity might exist in

the sentence referred by multiple appositional words.

Step II, for each selected word, create a group that contains it; then gather all the

groups to create a set named GS. Consequently, the size of GS is equal to the size of

word collection established in Step I. Each element of GS is a group that comprises one

word, and any pair of groups contain different words.

Step III, for each appos dependency, denoting the two involved words as w_a and

w_b respectively; then from GS, find out the group g_a which contains w_a and the

group g_b which contains w_b; finally, if g_a does not equal to g_b, do merge them

into a new group, which will cause the size of GS be reduced by one.

Step IV, repeat the process in Step III until all the appos dependencies have been

passed through. At last, every group in GS will comprise at least two words.

Step V, select the group which contains the name of the character being examined.

In case the identified character name is a forename, more effort is demanded to

determine the appositional word group.

It is possible that no group will be eligible. In this case, the name of the character

or its compound governor must never have been selected in Step I. An optimisation to

handle the case has been adopted.

Each word in the selected appositional word group, except the name of the character

itself, is determined as a keyword, unless it is in person_names .

Chapter 6. Features from NLP 92

adjective modifier

The amod dependency represents the relation between an adjective modifier and the

core noun. All the amod dependents whose governor is either in the appositional word

group determined in the previous subsection or is the name of the primary character

being examined are collected and correlated to its governor.

Each selected amod dependent is used as a keyword. Furthermore, if its governor

is not the character’s name and not in person_names , then an additional keyword is

generated by combining the adjective and the governor.

From the sentence:

▸ There comes the famous high-rank agent, the energetic Captain James Bond.

these dependencies can be extracted:

• amod (agent → famous)

• amod (agent → high-rank)

• amod (Bond → energetic)

• compound (Bond → Captain)

• compound (Bond → James)

• appos (agent → Bond)

Provided the character name is Bond or is James, the compound list will be [Captain,

James, Bond], the appositional word group will be {Bond, agent}, and the selected

amod dependents will be: {Bond: [energetic], agent: [famous, high-rank]}. Eventually,

the determined keywords will be { captain, agent, energetic, famous, famous-agent,

high-rank, high-rank-agent }.

Chapter 6. Features from NLP 93

"named" or "called"

Given the character name is Goodfellow, then from a sentence:

▸ She is the assistant named Goodfellow.

the word assistant should be selected as a keyword. Dependencies extracted from the

sentence contain:

• acl (assistant → named)

• xcomp (named → Goodfellow)

According to De Marneffe and Manning (2008a), the acl dependency "is used for

finite and non-finite clauses that modify a noun", and "an open clausal complement

(xcomp) of a verb or an adjective is a predicative or clausal complement without its own

subject". A similar dependency of xcomp is the ccomp, which differently has an internal

subject (De Marneffe & Manning, 2008a).

By analysing the acl and xcomp dependencies, together with checking the words

"named" and "called", the objective of extracting keywords from such patterns can be

achieved. Further, the amod dependencies are also inspected. Therefore, from the

sentence:

▸ A time traveller named Cole disappears before your eyes. 14

for the character Cole, determined keywords include { time, traveller, time-traveller }.

6.3.5 Results

The Stanford Neural Networks Dependency Parser achieved accuracies approximate to

0.92 in experiments where models were trained and tested on the English Penn Treebank

(Chen & Manning, 2014). The dataset with which the english_UD model was trained
14selected from 12 MONKEYS

Chapter 6. Features from NLP 94

was not introduced. Nevertheless, since english_UD is published for general use, it

could be assumed that the style of the language of the pilot scripts is, to a particular

extent, distinct from the style of the language of the dataset on which english_UD is

trained. Subsequently, it could be speculated that accuracy of the extracted dependencies

is lower than 0.92.

For instance, from the sentence:

▸ The hand belongs to: Mason Frost, holding court with a group of attractive

socialites. 15

two extracted dependencies are amod(court → holding) and appos(Frost → count),

which means that court is recognised as an apposition of the person Frost and holding

is an adjective modifier of court. This is apparently wrong. However, based on the

incorrect dependencies, the keyword "holding-court" is determined, which is also

reasonable.

Another instance, from the sentence:

▸ DR. CASSIE REYNOLDS, early 30s, attractive, shoulder-length dark hair,

checks the time. 15

extracted dependencies include: amod(30s → early); appos(REYNOLDS → 30s);

amod(30s → attractive); amod(hair → shoulder-length); amod(hair → dark); appos(30s

→ hair); appos(30s → checks). It is inappropriate to recognise "30s", "hair", and the

verb "check" as appositional modifiers of the character. In addition, "attractive" should

be an adjective modifier of the person instead of her age.

Based on these dependencies, for the character REYNOLDS, the determined

keywords are: {30s, early, early-30s, attractive, attractive-30s, hair, shoulder-length,
15selected from 12 MONKEYS

Chapter 6. Features from NLP 95

shoulder-length-hair, dark, dark-hair}. Despite the inappropriateness of the dependencies,

fortunately again, most of these keywords are plausible, except the selection of "check".

However, similar to the word "check", many other selected words by the procedure

introduced in the previous subsection seem unsuitable to be a keyword. Some of these

words include "sit", "notice", "exchange", "study", "drive", "day", "thing", "thanks",

"pace", "watch", and so forth.

Accordingly, a word blacklist was compiled by manually choosing implausible ones

from the raw determination of keywords. Then all the selected words were filtered out

from the raw selection. This procedure could be further repeated, which will lead to an

increase of the blacklist and refinement of the determination of the keywords.

Table 6.2 shows keywords of several primary characters.

Table 6.2: Examples Keywords of Primary Characters

TV Series Character Keywords
12 MONKEYS Cole 30, frustrated, late-30s, light, restrained,

straightens, team, time, time-traveler, traveler
ELEMENARY Sherlock cop, eye, frustrated, hesitation, imperceptible,

imperceptible-hesitation, racing, smiling,
uneasy, unhappy, white-knuckles

HELIX Hataki accent, american, american-accent, dr.,
muffled, muffled-accent, pharmaceutical,
prepared, team

Overall, nearly six thousand keywords associated with the primary characters were

determined, then a matrix of TFIDF values for the pilot scripts was generated, which is

named the feature set FS_keywords.

Chapter 6. Features from NLP 96

6.4 Activities

The present work employed the Stanford Open Information Extraction 16 (Stanford

Open IE) to extract relation triples from pilot scripts. Terms that describe activities were

then created based on these triples.

6.4.1 Stanford Open IE

The approach of Stanford Open IE consists of two stages: split a sentence into

independent clauses, and shorten the clauses by removing unnecessary components.

splitting

An example of splitting a sentence into clauses is from the sentence:

▸ Born in a small town, she took the midnight train.

the produced clauses include:

▷ she took the midnight train

▷ she born in a small town

The objective of this stage is to yield clauses, any of which is independent both

syntactically and semantically, and is entailed by an original sentence.

To perform the split, firstly the establishment of the dependency tree of a sentence

is required by the Stanford Open IE. Subsequently, the dependency tree is traversed

recursively. At every node, for each of the outgoing edge, which is an edge that points

to any of its children, the action required needs to be determined. This action could

be decomposed into two parts that include the action to be applied on the dependency

edge, and the action to be applied on the being focused node.
16https://nlp.stanford.edu/software/openie.html

Chapter 6. Features from NLP 97

There are three categories of actions that could be performed on the dependency

edge:

• Yield yields a new clause on the dependency edge and then recurses on the edge.

A typical example of this action is that the dependency ccomp(said → like) in the

sentence "Poseidon said that you like to swim", which would yield the clause

"you like to swim".

• Recurse recurses on the edge without yielding new clause. A circumstance

suitable for this action is that in the sentence:

▸ The incident that Mr. Careless lost his gun was known to the public.

the intermediate constituent "the incident that Mr. Careless lost his gun"

should be further examined to identify the clause "Careless lost gun".

• Stop instructs not to recurse on this edge since it is supposed that no clause is

entailed in the subtree. This is the appropriate action for most (if not all) of the

edges which connect leaf nodes. It might also be selected for other edges in which

case the algorithm could be made more efficient.

There are also a number of categories of actions that could be performed on the

node being examined:

• Subject Controller - This action is designed for the case that the subject of the

node being examined needs to serve as the subject of the child node. For example,

in the sentence:

▸ Born in a small town, she took the midnight train.

there exists the dependency advcl(took→ born), and the subject of took, which is

she, should be used as the subject of born in the extracted clause.

Chapter 6. Features from NLP 98

• Object Controller - Analogous to the above action, this is designed for the case

that the object of the node being examined needs to serve as the subject of the

child node. For example, in the sentence:

▸ I persuaded Fred to leave the room.

there exists the dependency xcomp(persuaded→ leave), and the object of persuaded,

which is Fred, should be used as the subject of leave in the extracted clause.

• Parent Subject - As Angeli, Premkumar and Manning (2015) explained, this

action is prepared for the case that the node being examined has only one outgoing

edge and should be taken "as the (passive) subject of the child".

Although more actions for the focus node could easily be imagined, Angeli et al. (2015)

reported that these three already supply good coverage in practice.

A classifier was trained to determine actions for traversing the dependency tree

(Angeli et al., 2015). The adopted features to train the classifier include the label of the

edge (category of the dependency), the label of the incoming edge of the node being

examined, POS tags of the involved nodes, etc.

For a brief conclusion, the classifier determines actions for an edge and the governor

of the dependency, and a Yield action will generate a clause.

shortening

The objective of this stage is to, (1) by removing unnecessary components, further

compact the clauses while retaining their core semantics, and eventually, (2) based on

the condensed clauses, create triples each of which contains a subject, a verb phrase,

and an object.

Chapter 6. Features from NLP 99

In the logic for shortening clauses, many factors are considered:

• whether there is one of the natural logic operators, which include all, some, no,

many, etc.

• whether removing the dependent of an arc will make the governing component

more general, more specific, or neither. For example, removing red from

amod(car → red) will make it more general, while removing approximately

form advmod(100 → approximately) will make it more specific. Therefore,

removing a nonsubsective adjective usually results in a significant change of the

meaning of a constituent.

• whether the dependent is a nonsubsective adjective.

The nonsubsective adjective is a special type of adjective. If a phrase consists of

a nonsubsective adjective and a noun, then this phrase is not an instance of that

noun (Pavlick & Callison-Burch, 2016). For example, a fake policeman is not a

policeman.

Therefore, removing a nonsubsective adjective usually results in a significant

change of the meaning of a constituent. The list of nonsubsective adjectives

compiled by Nayak, Kowarsky, Angeli and Manning (2014) is exploited by

Stanford Open IE.

• whether removing of the prepositional attachment would break the integrity of a

meaning.

Details of the compact logic is explained by Angeli et al. (2015).

Once compact clauses are produced, triples are built by matching them with several

straightforward patterns.

Chapter 6. Features from NLP 100

6.4.2 Results

A triplet comprises a subject, a verb phrase, and an object phrase. Activity terms for

each generated triplet are built. The steps are:

• For any word in the verb phrase and the object phrase, if it is equal to a recognised

person name, then it is replaced with the word someone.

• All the words in the verb phrase and the object phrase are lemmatised.

• Combine all words in the verb phrase and determine it as an activity term, unless

the combination is included by a manually created blacklist, which contains

be_in, be_on, be_at, etc.

• Combine all words in the verb phrase and the object phrase and determine this as

an activity term, unless the combination contains more than five words.

Thus, usually two activity terms are created from one triplet.

Eventually, nearly 294 thousand activity terms were determined. Among them,

approximately 19 thousand appear in more than one pilot scripts. These circa 19

thousand terms were selected as features, and a data matrix of TFIDF values of these

features for the pilot scripts was generated, which is named the features set FS_activies.

Figure 6.9 shows the top 20 activity terms by frequency. Figure 6.10 shows the top

20 activity terms by script frequency. 17

17 The lemmatisation result of stares is star. The word gonna is transformed into gon in triplets.

Chapter 6. Features from NLP 101

Figure 6.9: Activity Terms - Top 20

Figure 6.10: Actitity Terms - Top 20 by Script Frequency

Chapter 7

Predictive Models and Results

7.1 Genres

The genre information of the TV series drawn out from the IMDB data source is used

as a part of the predictive features.

Different genres are not mutually exclusive. In practice, a television series commonly

belongs to multiple genres. For instances, the series 12 Monkeys belongs to drama,

mystery, adventure, thriller, and sci-fi; and another series, The Chicago Code, belongs

to action, crime, and drama.

The 512 television series involved in the present work belong to 20 genres. The

Figure 7.1 shows these genres and their frequencies. The most popular genre is drama,

with 333 TV series belonging to it. Meanwhile, some genres rarely appear, such as

biography, musical, and western.

After the establishment of the intended predictive model, the genre information of

an input pilot script (which apparently is not one of the 512) might not be provided.

Hence, eleven genres, whose frequency is larger than 20, were selected and classifiers

will be trained for each of them. These eleven genres are: action, adventure, comedy,

102

Chapter 7. Predictive Models and Results 103

Figure 7.1: Frequencies of Genres

crime, drama, fantasy, horror, mystery, romance, sci-fi, and thriller.

The present work employs the scikit-learn1 library to train genre classifiers.

7.1.1 Genre Classifiers

The present study employed two classification algorithms, which are the Naive Bayes

and Multilayer Perceptron, to construct genre classifiers. Naive Bayes is fast and easy

to implement, thus is often adopted as a baseline in text classification tasks (Rennie,

Shih, Teevan & Karger, 2003). The Multilayer Perceptron approach has the advantage

of yielding good performances (C. H. Li & Park, 2006).

For each genre, three groups of classifiers were trained.

Group I: BOW-NB

The datasets exploited in this group are matrices of TF-IDF2 values extracted via

the bag-of-words language models of the pilot scripts.

During the process of constructing the bag-of-words models, various values for the

1http://scikit-learn.org
2see Step IV in §6.1

Chapter 7. Predictive Models and Results 104

parameters were explored. The five parameter options for the step of creating n-gram

terms are: (1,1), (1,2), (1,3), (2,2), (2,3). Here, the pair (min,max) indicates that

a term is permitted to contain at least min words, but no more than max. Thus, (1,1)

allows only the unigram, while (1,3) allows unigram, bigram, and trigram. The five

options for the parameter concerning how many top frequent terms to remain are

1000,2000,5000,10000, and 100000. Consequently, there are 25 possible parameter

combinations, which lead to 25 data matrices of TF-IDF values.

The classifier employed in this group is the Naive Bayes 3.

Group II: DR-NB

The datasets exploited in this group are the four data matrices which comprise

distributed representations of the pilot scripts (§5.3).

The classifier employed in this group is also the Naive Bayes.

Group III: DR-MLP

The datasets exploited in this group are identical to the datasets in Group II.

The classifier employed in this group uses a multilayer perceptron (MLP, which

is a type of feedforward neural network) algorithm that trains via Backpropagation 4.

Several options are provided concerning the structure of the hidden layers: (5,), (10,),

(15,), (15,10), (20,), (15,15,15). Here, the length of a tuple explains the number

of hidden layers, and a figure expresses how many neurones are in its corresponding

layer. For instances, (5,) indicates one hidden layer containing five neurones, and

(15,10) indicates two hidden layers containing fifteen and ten neurones respectively.

Two options for the parameter concerning the maximum number of iterations are 100

and 200. Options for the L2 penalty parameter are 0.1, 1, 5, 10, 15, and 20. There are

72 different combinations of the parameters in total. Thus 72 instances of the MLP

classifier were trained.
3http://scikit-learn.org/stable/modules/naive_bayes.html#multinomial-naive-bayes
4http://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification

Chapter 7. Predictive Models and Results 105

For each genre, there are two possible predicted classes, pos and neg, indicating whether

a TV series belongs to the genre or not. An issuer for any of the genres is that the

classes are unbalanced. Accordingly, the SMOTE (Synthetic Minority Over-sampling

TEchnique) (Chawla, Bowyer, Hall & Kegelmeyer, 2002) procedure was applied to all

the four datasets for all of the eleven genres to oversample the minority class to achieve

balances.

The SMOTE procedure first determines a number of (five in the current work)

nearest neighbours of an instance (the seed instance) of the minority class, and then

creates synthetic samples based on the neighbours and the seed instance itself as new

fake instances of the minority class.

A synthetic instance is generated by selecting a random point at the line segment

which connects the seed instance and one of its neighbours in the multi-dimensional

space defined by the features.

Some advanced variants of the original SMOTE include Borderline-SMOTE (Han,

Wang & Mao, 2005) and SVM-SMOTE (Nguyen, Cooper & Kamei, 2011).

7.1.2 Results

The accuracies of the classifiers were measured by the F-score of the pos class. Denoting

the F-score of the pos class as Fpos, the equation is:

Fpos = 2 ⋅
Precisionpos ⋅Recallpos
Precisionpos +Recallpos

(7.1)

wherein, Precisionpos is the rate of the number of correctly identified positive items

to the number of all identified positive items, Recallpos is the rate of the number of

correctly identified positive items to the number of all actual positive items, and the

F-score is the harmonic mean of the two values.

Chapter 7. Predictive Models and Results 106

The classifier instances are assessed via the three-fold cross validation.

The accuracies of the best classifiers in each of the three groups, for all the eleven

genres, are in Table 7.1. Some observations are:

Table 7.1: Results of Genre Classifiers

GENRE BOW-NB DR-NB DR-MLP
action 69 .4031 .4318 .5003
adventure 28 .2732 .3448 .4002
comedy 218 .7790 .8195 .8209
crime 111 .5856 .5694 .6511
drama 333 .8521 .8627 .8721
fantasy 33 .2508 .3710 .4261
horror 31 .1862 .2885 .4215
mystery 91 .4698 .4785 .4836
romance 53 .2090 .2597 .3477
sci-fi 54 .3790 .4392 .5638
thriller 111 .5304 .5303 .5655

• The best classifier, whose accuracy is 0.8721, was trained for the genre drama

with the MLP algorithm, exploiting distributed representations associated with

the feature set FS_dr_subt_d2v.

• Only two genres, the drama and comedy, have trained classifiers that can produce

accuracies better than 0.80.

• With the number of television series that belong to a certain genre becoming

larger, the accuracy of the best classifier for this genre becomes higher. The genre

drama possesses the most (333) TV series and its best classifier gives the best

accuracy (0.8721). The genre comedy possesses the second most (218) instances,

and its best classifier gives the second best accuracy (0.8209). Other genres follow

the same trend, except for mystery and romance.

Chapter 7. Predictive Models and Results 107

• While comparing classifiers of a single genre, the best DR-MLP classifier always

outperforms the best DR-NB classifier, which normally outperforms the best

BOW-NB classifier.

An exception is the genre drama, whose best BOW-NB classifier is better than

its best DR-NB classifier. Another exception is the genre thriller, whose best

BOW-NB classifier and best DR-NB classifier have very similar performances.

Moreover, the best DR-MLP classifiers of horror and sci-fi promote the classification

accuracies of these two genres for more than 10 percent.

More details about the genre classifiers are presented in Appendix C.

The feature set FS_genre is designed to represent whether a TV series belong to

the discussed genres.

7.2 Model

7.2.1 Data Preprocessing

Ratings

The ratings of pilot scripts extracted from the IMDB data source are used as the target

feature. The IMDB ratings are on a scale from 0 to 10, rounded to one decimal place.

For instance, the rating of the pilot of 12 Monkeys is 8.2.

Amongst the ratings of the 512 pilots, the highest value is 9.4, and the lowest value

is 3.7. The most frequent rating value is 7.5. The Figure 7.2 depicts the distribution of

the pilot ratings.

According to their ratings, the 512 pilots were then classified into three bins.

• RB_30 ranges from 0.0 to 7.3 and contains 162 pilots.

Chapter 7. Predictive Models and Results 108

Figure 7.2: Distribution of Pilot Ratings

• RB_31 ranges from 7.4 to 7.8 and contains 156 pilots.

• RB_32 ranges from 7.9 to 9.9 and contains 194 pilots.

An imbalance is observed amongst the three bins; that is the number of pilot scripts

in RB_32 is nearly 1.25 times that of RB_31. Though the difference is relatively

insignificant, the imbalance could lead to incorrectness of predictions of the to be built

classifiers, since many data mining algorithms tend to ignore or misclassify minority

samples (Longadge & Dongre, 2013).

An undersampling procedure was applied by removing pilots from RB_30 and

RB_32. Afterwards, each of the three bins contained the same number, i.e. 156, of

pilots. Eventually, in total 468 pilot scripts participated in the process of establishing

predictive models.

Terms of keywords and activities

Terms of keywords and activities have been determined in early works (§6.3 and

§6.4). Some examples of keyword terms are athletic, working mother, small owner and

teammate 5. Some examples of activity terms are be sorry, be very angry, see person

5Selected from keyword terms of Outnumbered.

Chapter 7. Predictive Models and Results 109

and wear sexy dress 6.

Four language models have been prepared for generating distributed representations

(§5.2). Two of them, model_wiki_w2v and model_wiki_d2v, are pre-trained by other

research work and were fetched from the internet. The other two, model_subt_w2v and

model_subt_d2v, were trained in the present work, by exploiting the English part of the

OpenSubtitle2016 corpus, which contains circa 1.8 billion words.

For the collection of keyword terms of a particular pilot script, two distributed

representations were generated: one using the two wiki models (the kw-wiki-rep), the

other using the two subt models (the kw-subt-rep).

The steps to generate the kw-wiki-rep are described below:

• Step I: for a specific keyword term, compute its representation by averaging the

word2vec representations of all of its constituent words, using the model_wiki_w2v

language model.

• Step II: average the representations of all keyword terms computed in Step I;

denote this average as w2v_rep.

• Step III: for a specific keyword term, if it comprises more than one word, then

get it doc2vec representation by using the model_wiki_d2v language model.

• Step IV: average the representations of keyword terms computed in Step III;

denote it as d2v_rep.

• Step V: average w2v_rep and d2v_rep, then the kw-wiki-rep is generated.

Similarly, the kw-subt-rep is generated, with using model_subt_w2v instead of

model_wiki_w2v and using model_subt_d2v instead of model_wiki_d2v.

6Selected from actitivy terms of Outnumbered

Chapter 7. Predictive Models and Results 110

Correspondingly, for the collection of activity terms of a particular pilot script, two

distributed representations are generated: the ac-wiki-rep and the ac-subt-rep.

For keywords, by assembling all the kw-wiki-rep and kw-subt-rep of all the pilot

scripts, and subsequently performing the min-max-scale (introduced in §5.3) procedure

on each dimension, data matrices for these two feature sets were generated:

• FS_dr_kw_wiki (contains 300 dimensions 7)

• FS_dr_kw_subt (contains 500 dimensions)

For activities, by assembling all the ac-wiki-rep and ac-subt-rep of all the pilot

scripts, and subsequently performing the min-max-scale procedure on each dimension,

data matrices for these two feature sets were generated:

• FS_dr_ac_wiki (contains 300 dimensions)

• FS_dr_ac_subt (contains 500 dimensions)

Matrices by the bag-of-words model

Matrices for the four feature sets: FS_venues, FS_ne_person, FS_ne_location, and

FS_ne_organisation, were constructed with the bag-of-words model. Widths of these

matrices were more than thirteen thousand, eight thousand, three thousand, and three

thousand, respectively.

A procedure of dimension reduction was applied by selecting K-best columns from

each matrix by measuring the value of mutual information between a column and the

target feature, i.e. the rating. After the procedure, only 500 dimensions remained for

each of the four data matrices.

The feature set FS_genre was originally low dimensional, thus the dimension

reduction action was not applied to it.
7See §5.2.

Chapter 7. Predictive Models and Results 111

Normalisation

All the prepared data matrices were normalised.

The data matrices containing distributed representations of the pilot scripts were

normalised via the min-max-scale approach (§5.2). These include data for the feature

sets of FS_dr_kw_wiki, FS_dr_kw_subt, FS_dr_ac_wiki, FS_dr_ac_subt, as well as

FS_dr_wiki_w2v, FS_dr_wiki_d2v, FS_dr_subt_w2v, FS_dr_subt_d2v.

The data matrices containing TFIDF representations of the pilot scripts were

normalised via the l2 − norm approach (§6.1). These include data for the feature

sets of FS_venues, FS_ne_person, FS_ne_location, FS_ne_organisation.

The data matrices for FS_stat and FS_cnet were normalised via the min-max-scale

approach.

Datasets

As the last step of the preparation of datasets for training predictive models for pilot

rating, some of the data matrices were concatenated.

• The data matrices for feature sets of FS_stat, FS_cnet, FS_venues, FS_ne_person,

FS_ne_location, FS_ne_organisation, and FS_genre, were concatenated. The

resulting dataset was denoted as DS_basic.

• The data matrics for FS_dr_kw_wiki and FS_dr_ac_wiki were concatenated,

and the resulting dataset was denoted as DS_kw_ac_wiki.

• The data matrics for FS_dr_kw_subt and FS_dr_ac_subt were concatenated,

and the resulting dataset was denoted as DS_kw_ac_subt.

• The four data matrices that contain distributed representations of the pilot scripts

are named as below:

Chapter 7. Predictive Models and Results 112

– DS_script_wiki_w2v for FS_dr_wiki_w2v

– DS_script_wiki_d2v for FS_dr_wiki_d2v

– DS_script_subt_w2v for FS_dr_subt_w2v

– DS_script_subt_d2v for FS_dr_subt_d2v

Table 7.2: Final Datasets

DS_all_wiki_w2v = DS_basic + DS_kw_ac_wiki + DS_script_wiki_w2v
DS_all_wiki_d2v = DS_basic + DS_kw_ac_wiki + DS_script_wiki_d2v
DS_all_subt_w2v = DS_basic + DS_kw_ac_subt + DS_script_subt_w2v
DS_all_subt_d2v = DS_basic + DS_kw_ac_subt + DS_script_subt_d2v

Subsequently, four final datasets were generated by concatenating these intermediate

datasets, as showed in Table 7.2. These four will be exploited to train the predictive

models.

Moreover, a dataset named DS_script_bow was prepared which contains TFIDF

values extracted from the unigram bag-of-words model of the pilot scripts. The measure

employed for dimension reduction is the mutual information, and 3000 features are

kept. Classifiers that trained with DS_script_bow will be used as baseline classifiers.

7.2.2 Classifiers

The scikit-learn8 (Pedregosa et al., 2011; Buitinck et al., 2013) library implements

various classifier algorithms.

The five datasets introduced in the previous section, namely DS_all_wiki_w2v,

DS_all_wiki_d2v, DS_all_subt_w2v, DS_all_subt_d2v, and DS_script_bow, are

fitted into several of the classifiers in scikit-learn, with different parameter options.

8http://scikit-learn.org/

Chapter 7. Predictive Models and Results 113

Random

A Random Classifier predicts class labels randomly, and the input dataset is completely

ignored. It is suitable to be used as a simple baseline.

The scikit-learn class DummyClassifier could be used as a random classifier.

Naive Bayes

Given a predictive feature vector (x1, x2, ..., xn) and denoting the target class as y, then

based on the Bayes theorem:

P (A ∣ B) =
P (B ∣ A) ⋅ P (A)

P (B)
(7.2)

and the assumption that predictive features are independent:

P (xi ∣ y, x1, ..., xi−1, xi+1, ..., xn) = P (xi ∣ y) (7.3)

the Naive Bayes algorithm considers that:

P (y ∣ xi, ..., xn) =

P (y) ⋅
n

∏
i=1

P (xi ∣ y)

P (x1, ..., xn)
(7.4)

Therefore, the predicted class y needs to satisfy:

argmax
y

P (y) ⋅

n

∏
i=1

P (xi ∣ y) (7.5)

The scikit-learn class MultinominalNB implements the Naive Bayes algorithm and is

suitable for text classification tasks 9.
9http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html

Chapter 7. Predictive Models and Results 114

KNN

The KNN stands for K-Nearest Neighbours. The most popular class label of the K

number of nearest neighbours, measured by the Euclidean distance, in the multi-dimensional

space defined by the feature vector, is selected as the prediction for a to be classified

entry.

The option of the value K is limited to the range [2,5]. Thus based on a certain

dataset, four KNN classifier instances were trained and tested.

The KNN implementation in scikit-learn is the KNeighborsClassifiers.

Nearest Centroid

A centroid for each class is firstly calculated. Then the label of the class whose centroid

is the nearest to a test entry is assigned to it.

In scikit-learn, the implementation is NearestCentroid.

Random Forest

By adopting the random forest approach, a number of decision trees are trained by

exploiting several subsamples of the training dataset, and these trees then vote to decide

a class label for a to be classified entry.

In the present work, a subsample was generated by randomly selecting entries with

replacement from the training dataset. This means that an entry could be repeatedly

selected and thus could appear multiple times in the generated subsample.

Comparing with stand along decision trees, the random forest improves the predictive

accuracy and controls the issue of overfitting (Breiman, 2001).

In scikit-learn, the implementation is RandomForestClassifier.

Chapter 7. Predictive Models and Results 115

Linear Models

Several scikit-learn classifiers based on linear models are adopted.

In scikit-learn, the class SGDClassifier implements the procedure of using the

Stochastic Gradient Descent (SGD) approach to learn linear classifiers. The SGD is

easy to implement and is an efficient method (Zhang, 2004), even on large scale dataset

(Bottou, 2010).

The class Perceptron is another simple linear algorithm for large scale learning. It

is a basic neural network architecture, and could be considered as a modified version of

SGD (Aggarwal, 2015).

The class LinearSVC is an "implementation of Support Vector Classification for the

case of a linear kernel". 10

MLP

The multilayer perceptron is a kind of feedforward neural network. It has at least one

hidden layer besides the input layer and output layer. It is capable of learning non-linear

models. (Aggarwal, 2015)

The class MLPClassifier implements the MLP algorithm, and uses backpropagation11

to train.

Several groups of the parameters were exploited for the MLP model training in the

present work (Appendix B).

7.2.3 Results

The accuracies of classifiers were measured by the F-score, which is the weighted

average of the F-score of each class. The three-fold cross validation was employed to

10http://scikit-learn.org/stable/modules/svm.html#svm-classification
11Briefly introduced by Sathyanarayana (2014).

Chapter 7. Predictive Models and Results 116

assess the classifiers.

In each of the five datasets, entries are averagely distributed into three classes.

Therefore, the random classifier will always provide an accuracy of approximate 1/3.

The best results of all the trained classifier instances on all five datasets are presented

in Table 7.3.

It could be observed that, the highest accuracy of all the classifiers is only 0.4850,

which is unexpectedly poor.

The MLP classifier outperformed all others on all of the five datasets. The SGDClassifier

and the Perceptron performed worse even than the naive random classifier in most

of the circumstances. The Naive Bayes approach also underperformed the random

classifier on the baseline dataset.

Five classifiers out of the eight (exclude random classifier) reached their best

score when fitted with the dataset DS_all_subt_d2v. Two of the other three gave

the highest accuracies on the dataset DS_all_wiki_d2v. Different from all others, the

KNN classifier, performed best on the baseline dataset, which distinctively does not

include a sector of distributed representations or any particularly extracted feature.

The tables from 7.4 to 7.8 show more details of the best classifier instances on the

five datasets separately.

Chapter 7. Predictive Models and Results 117

Table 7.3: Resuls of Classifiers on Five Datasets

algorithm baseline wiki-w2v wiki-d2v subt-w2v subt-d2v
Random .3333 .3333 .3333 .3333 .3333
Naive Bayes .2774 .3890 .3839 .3970 .4189 ⋆
Nearest Centroid .3684 .4043 .4087 .4094 .4154 ⋆
KNN .4052 ⋆ .3792 .3501 .3715 .3724
Perceptron .1771 .3116 .3837 ⋆ .3391 .2684
Random Forest .4186 .4188 .3849 .4045 .4407 ⋆
SGD .2488 .2722 .3065 ⋆ .2507 .2227
Linear SVC .3589 .3576 .4036 .4311 .4314 ⋆
MLP .4636 .4615 .4786 .4722 .4850 ⋆

Table 7.4: Models atop DS_script_bow

algorithm accuracy parameters
Naive Bayes .2774
Nearest Centroid .3684
KNN .4052 n_neighbors: 5
Perceptron .1771 alpha: 0.0001
Random Forest .4186 criterion: entropy
SGD .2488 alpha: 0.001
Linear SVC .3589 tol: 0.0001
MLP .4636 hidden-layers: (15,)

max-iter: 100
alpha: 0.1

Table 7.5: Models atop DS_all_wiki_w2v

algorithm accuracy parameters
Naive Bayes .3890
Nearest Centroid .4043
KNN .3792 n_neighbors: 3
Perceptron .3116 alpha: 0.0001
Random Forest .4188 criterion: entropy
SGD .2722 alpha: 0.001
Linear SVC .3576 tol: 1e-05
MLP .4615 hidden-layers: (15, 10, 10)

max-iter: 200
alpha: 8

Chapter 7. Predictive Models and Results 118

Table 7.6: Models atop DS_all_wiki_d2v

algorithm accuracy parameters
Naive Bayes .3839
Nearest Centroid .4087
KNN .3501 n_neighbors: 5
Perceptron .3837 alpha: 0.0001
Random Forest .3849 criterion: entropy
SGD .3065 alpha: 0.0001
Linear SVC .4036 tol: 0.0001
MLP .4786 hidden-layers: (20,)

solver: sgd
learning-rate: adaptive
max-iter: 500
momentum: 0.9

Table 7.7: Models atop DS_all_subt_w2v

algorithm accuracy parameters
Naive Bayes .3970
Nearest Centroid .4094
KNN .3715 n_neighbors: 5
Perceptron .3391 alpha: 0.0001
Random Forest .4045 criterion: entropy
SGD .2507 alpha: 0.0001
Linear SVC .4311 tol: 0.0001
MLP .4722 hidden-layers: (15, 10, 10)

max-iter: 200
alpha: 3

Table 7.8: Models atop DS_all_subt_d2v

algorithm accuracy parameters
Naive Bayes .4189
Nearest Centroid .4154
KNN .3724 n_neighbors: 3
Perceptron .2684 alpha: 0.0001
Random Forest .4407 criterion: entropy
SGD .2227 alpha: 0.0001
Linear SVC .4314 tol: 0.0001
MLP .4850 hidden-layers: (50,)

max-iter: 100
alpha: 1

Chapter 8

Discusson

8.1 Predictive Models

The present study prepared five datasets. These include the DS_script_bow, which

comprises TFIDF values of terms calculated via the unigram bag-of-words language

model and is used for learning baseline classifiers. The other four datasets, namely

DS_all_wiki_w2v, DS_all_wiki_d2v, DS_all_subt_w2v, and DS_all_subt_d2v, were

constructed with data corresponding to the extracted features (§7.2.1).

The IMDB ratings of the pilot episodes, which range from 0 to 10 rounded to one

decimal place, were used as the target feature after being sorted into three bins. In

addition, some entries of the datasets were discarded to achieve a balance amongst the

three classes.

Several classifier implementations from the scikit-learn library were employed.

These include the Naive Bayes classifier MultinominalNB, the KNeighborsClassifiers,

the nearest centroid classifier NearestCentroid, the RandomForestClassifier,

three linear models (SGDClassifier, Perceptron, LinearSVC), and the multilayer

perceptron MLPClassifier. In addition, the DummyClassifier, which always ignores

input data and gives random class labels as predictions, was also adopted as a baseline

119

Chapter 8. Discusson 120

classifier.

The datasets, together with the rating labels, were fitted into the classification

algorithms, and consequently, classifier instances were created and tested. Multiple

options were prepared for some parameters of the classification algorithms, especially

the MLPClassifier, thus on each dataset, a specific classifier could be instantiated for

numerous times. Among them, the champion instance was then selected for further

comparison with (1) instances trained on the same dataset with different classification

algorithms, or (2) instances trained on different datasets with the identical classification

algorithm with probable different parameter settings. The accuracies of these champion

classifier instances are presented in Table 7.3.

The highest accuracy, achieved by the MLPClassifier on the DS_all_subt_d2v

dataset, is only 0.4850. This is a poor result that is even lower than 0.5. Compared

with the accuracy 1/3 given by the baseline dummy random classifier, the value 0.4850

shows an undeniable improvement, however, the advantage against the accuracy 0.4636

provided by the MLPClassifier on the baseline dataset, is not very compelling.

To the best of the knowledge of the present work, the only line of research on

predicting the success of new television series based on pre-greenlighting information

was conducted by Starling Hunter and his colleagues.

In the works of Hunter, Chinta et al. (2016); Hunter, Smith and Chinta (2016), three

previously untested predictive factors were employed to forecast the audience sizes of

television series.

The three factors are (1) originality of the concept of the television series, (2) the

track record of success of the creators, and (3) the size of the conceptual network

generated from the pilot script. All three can be gathered before the decision on whether

to launch the new TV series or not. However, collection of the first two predictive

factors requires extra resources other than scripts, and demands heavy manual work. The

Chapter 8. Discusson 121

approach to constructing the conceptual network, which is also named as text network,

was introduced by Hunter (2014); Hunter, Chinta et al. (2016). The third factor is also

referred to as the cognitive complexity by Hunter and Breen (2017b, 2017a).

These two works adopted the audience sizes, measured in millions, as the target

feature. The data was collected mainly from the "Episodes" subsection of the Wikipedia1

pages concerning the television series, and also from TV Series Finale2 and TV.com3.

Hunter, Chinta et al. (2016) concluded that "the size of the largest component of

the text network was a positive and significant predictor of the total audience". The

statement is supported by the regression models constructed in the works, including

GLS (generalized least squares) (Hunter, Chinta et al., 2016) and OLS (ordinary least

squares) (Hunter, Chinta et al., 2016; Hunter, Smith & Chinta, 2016). Conversely,

though the features extracted in the current work are relatively diverse, their significance

has not been sufficiently proved.

The major differences between the present work and the two studies discussed above

(Hunter, Chinta et al., 2016; Hunter, Smith & Chinta, 2016) include:

• The two studies only selected TV series which were cast by one of the four major

US television networks, namely ABC, NBC, CBS and Fox, while the present

research collected all accessible English pilot scripts.

• The two studies exploited the audience sizes as the target feature, while the

present work exploited IMDB ratings.

• The two studies adopted regression algorithms, while the present work adopted

classification algorithms.

1https://en.wikipedia.org
2http://tvseriesfinale.com
3http://www.tv.com/

Chapter 8. Discusson 122

• The demands for the manual work between the two previous studies (Hunter,

Chinta et al., 2016; Hunter, Smith & Chinta, 2016) and the current research for

feature extraction are different.

The cognitive complexity was generated semi-automatically. The collection of

the other two factors (i.e. the originality of the concept and the track record of

the creators) also requires intensive manual works.

By contrast, only a small amount of manual labour is required for feature

extraction in the present work. The current study does not have sufficient human

resources available for intensive handwork.

When the current study was about to end, another two works in Hunter’s study line

were declared. Hunter and Breen (2017b) adopted the three same predictive factors to

forecast the numbers of episodes in the first season of new television series. Hunter

and Breen (2017a) similarly exploited the three factors, together with some extras

(including whether a series belongs to the crime genre, the calendar year when the series

is debuted, etc.), to predict whether a television series would be cancelled in the first

two seasons, or be renewed for more seasons. Moreover, the second study (Hunter &

Breen, 2017a) focuses on 30 cable networks and streaming services, instead of the four

major networks.

The two works report a positive and significant impact of the cognitive complexity

on the performance of series.

According to Hunter and Breen (2017a), Bielby and Bielby (1994) have expressed

the argument that "all hits are flukes" concerning prediction of success of television

series, which means that "there are no formulas for success, no single factor or

combination of factors that predict commercial success of new television series". Hunter

Chapter 8. Discusson 123

and Breen (2017a) recommended that their results, together with related prior studies,

have challenged and overturned the argument.

However, the current study would argue differently. Though the studies conducted

by Hunter and his colleagues are admirable, their results are not solid enough to

overbalance the "all hits are flukes" viewpoint. The reasons for this argument are listed

below.

• To survive two seasons is not a good sign of the success of a television series

bacause people’s opinions towards multiple-seasonal series vary over time.

• The fact that the number of episodes in the first season is large is not a good sign

of success, as there are other factors that could be influential.

• The substantial relevance between cognitive complexity and audience size was

reported only on television series selected from the four major network.

Nevertheless, for further work, it is worthy to adopt the cognitive complexity as a

predictive feature to forecast the IMDB rating exploited in the current work.

8.2 Distributed Representation

Table 7.1 shows that, with the same Naive Bayes algorithm, nine genres amongst

the eleven achieved higher accuracy on the data matrix of distributed representations

compared with on the data matrix established based on the bag-of-words language

model.

In addition, it could be observed from Table 7.3 that amongst the eight involved

classification algorithms, only one, namely the KNN, achieved the best score on the

bag-of-words based dataset, compared with others which mainly consist of distributed

representations of texts.

Chapter 8. Discusson 124

These two facts suggest that the distributed representations, which are low-dimensional

and of high-density, better characterise the texts compared with the bag-of-words

models.

Five of the eight classifiers performed better on the dataset DS_all_wiki_d2v than

on the dataset DS_all_wiki_w2v. As shown in Table 7.2, the difference between the

two datasets is their third constituents, which are respectively the DS_scirpt_wiki_d2v

and the DS_script_wiki_w2v. The dataset DS_all_wiki_d2v was generated with the

model model_wiki_d2v; meanwhile, the dataset DS_all_wiki_w2v was generated with

the model model_wiki_w2v. These two models were similarly trained with the English

Wikipedia corpus, but by different algorithms (schemes), which were doc2vec and

word2vec respectively.

Similarly, six of the eight classifiers performed better on the dataset DS_all_subt_d2v

than on the dataset DS_all_subt_w2v. The difference between these two datasets

is that their third constituent datasets, which are the DS_script_subt_d2v and the

DS_script_subt_w2v respectively, were generated with the models model_subt_d2v

and model_subt_w2v respectively. These two models were similarly trained with the

English part of the OpenSubtitle2016 corpus, but by different schemes, which were

doc2vec and word2vec respectively.

These two facts suggest that the doc2vec is a better approach than word2vec to

learning distributed vector representations of texts. This confirms the results reported

by Lau and Baldwin (2016).

It also could be observed from Table 7.3 that among the eight classifiers, five

performed better on DS_all_subt_w2v than on DS_all_wiki_w2v, and six performed

better on DS_all_subt_d2v than on DS_all_wiki_d2v. These four datasets corresponded

to the four models, i.e. model_subt_w2v, model_wiki_w2v, model_subt_d2v, and

Chapter 8. Discusson 125

model_wiki_d2v, respectively.

A possible cause of this observation is the higher dimension, i.e. 500, of the

generated vectors by model_subt_*, while the number of dimension of the generated

vectors by model_wiki_* is 300. Another possible cause is that model_subt_* were

trained with domain corpus, considering that the corpus OpenSubtitles2016 is constituted

of a huge number of subtitles of television series and movies.

For future work, it could be helpful to train distributed language models with a

corpus that combines the English Wikipedia, the OpenSubtitle2016, and scripts of

television series and movies. It also could be beneficial for the trained model to be

capable of generating relatively higher dimensional (e.g. 800) vector representations.

A number of other schemes to train distributed language models have been proposed.

These include the GloVe (Pennington, Socher & Manning, 2014), the FastText (Joulin,

Grave, Bojanowski & Mikolov, 2016), and the LexVec (Salle, Idiart & Villavicencio,

2016a, 2016b). It might be helpful to employ these schemes to learn distributed models

for further research.

8.3 Character Network

The current study adopted the characters’ co-participating in dialogues to construct

character networks. Furthermore, values of several metrics of the networks were

computed and later used as predictive features to build classifiers. However, these

values were combined with many others to perform as data matrices, hence have not

been evaluated separately.

The innovation here is that the current study not only constructs character networks

based on the information of full pilot scripts but also constructs networks based on the

Chapter 8. Discusson 126

information extracted from the first halves of the scripts. Accordingly, the evolutions of

the networks, together with their final state, are expressed to some extent.

8.4 Emotions

The words which express emotions could be useful for characterising the pilot scripts.

A naive method to detect emotional words is to check whether the lexical name,

provided by WordNet (Miller, 1995; Fellbaum, 2010), of a word, equals to noun.feeling

or not. However, this method might select irrelevant words, such as thing, distance, or

weight.

A better way is to adopt a prepared list of emotional words. A list proposed by

Elliott (1992) contains 198 direct emotional words, while another list, collected by

Salway and Graham (2003), contains 627 direct emotional words. The disadvantage of

this method is that words containing hidden emotions would be omitted, e.g. the word

nightmare.

A more advanced method is to adopt the technique of Lexical Affinity, which could

associate a word with a probabilistic affinity for a particular emotion. According to

Jung et al. (2013), the lexical affinity value denoting a word to an emotion can be

calculated by conceptual distance, which can be measured by the number of nodes in a

path connected by a hypernym or synonym (Richardson, Smeaton & Murphy, 1994;

Park, Yoo, Kim & Jo, 2011).

By leveraging the emotion senses, together with the character network structure,

Jung et al. (2013) divided characters into three categories: protagonist (main characters),

tritagonist (supporters of main characters), and antagonist (opponent of main characters).

The tritagonist and antagonist are both minor characters. If a minor character has a

similar emotion vector to the main character, this minor is categorised as tritagonist.

Chapter 8. Discusson 127

Otherwise, the minor is an antagonist.

Makris and Vikatos (2016) has successfully further detected communities within

the character networks of the movie scripts, by exploiting the linguistic and emotional

features extracted with the LIWC (Pennebaker, Francis & Booth, 2001) tool. The

community detecting algorithm employed is described in Blondel, Guillaume, Lambiotte

and Lefebvre (2008); Fortunato (2010).

Though having been considered, nevertheless due to time limitation, the factor of

emotion has not been engaged in the present work. For future work, it is recommended to

adopt the emotion factor to build vector representations and analyse character networks.

8.5 Others

The keywords of the main characters are extracted by understanding the dependency

parsing tree and recognising special patterns or dependency structures. However, there

could be some patterns or dependency structures that contain useful information but have

not been recognised. Thus for future work, a suggestion is to detect more dependency

structures and patterns that support the extraction of keywords.

In the present work, some character-based information has been collected, including

statistic data, keyword terms, activity terms, etc. Moreover, character-based data

concerning emotion could also be gathered. Therefore, character-based analysis of the

pilot scripts could be a viable research direction.

The movie scripts have a similar structure to television series scripts. In addition, a

movie script commonly describes a complete story and its scenario is normally richer

than a pilot script.

Chapter 8. Discusson 128

Therefore, the methods adopted and proposed in the present research could easily

be ported to movie scripts, and the outputs might be more satisfactory.

Chapter 9

Conclusion and Future Work

The aim of the present work was to extract features from the scripts of television series,

and subsequently construct predictive models to forecast the performance of the series.

Raw materials were collected from three data sources, i.e. the IMDB database, the

OpentSubtitles2016 corpus, and a collection of television series scripts fetched from

multiple websites. The genre and rating information were extracted from the IMDB

database. The scripts of pilots were selected and parsed, then structures of these pilot

scripts were obtained, including scenes, blocks of descriptions, and blocks of spoken

content.

Several feature sets were determined and data matrices corresponding to these

feature sets were created. These include:

• Features were firstly extracted from the basic statistics of the constituents of the

pilot scripts.

• Based on the characters’ co-participating in dialogues, a character network for

each pilot script was established. Several metrics of the network were then

129

Chapter 9. Conclusion and Future Work 130

adopted as features.

• Two approaches to generating distributed representations of texts were adopted,

which are word2vec and doc2vec. Two models, pre-trained with the English

Wikipedia corpus, were downloaded. Two additional models were trained using

the English part of the OpenSubtitles2016 corpus. By adopting these four models,

distributed representations of the pilot scripts were generated.

• The TFIDF matrix of the venues of scenes was generated.

• Three types of named entities were recognised. Then TFIDF matrices of these

named entities were created.

• By understanding the parsed dependencies between the words of sentences,

terms of keywords for characters were determined. Subsequently, distributed

representations of these keyword terms were created.

• Terms of activities were determined from the triplets, which represent relations

between characters and other entities. Then similarly distributed representations

of these activity terms were created.

By concatenating the created data matrices, four datasets were generated, which

corresponded to the four distributed representation models. Each entry in these datasets

corresponds to a pilot script.

The rating information extracted from the IMDB database was adopted as the target

feature. The value of the IMDB rating ranges from 0 to 10, rounded to one decimal

place. The values were binned into three classes. Furthermore, for keeping balance

among the three classes, some entries in the datasets were discarded.

Chapter 9. Conclusion and Future Work 131

Several classification algorithms implemented in the scikit-learn library were employed

to build the models. These algorithms include the Naive Bayes, the K-Nearest Neighbours,

the Nearest Centroid, the Random Forest, three linear models, and the multilayer

perceptron.

The four datasets, together with the rating class labels, were fitted into these classifier

algorithms to create classifier instances. Multiple options for many parameters of these

classification algorithms were prepared, especially for parameters of the multilayer

perceptron. Therefore, a large number of classifier instances were built, tested, and

compared.

However, having not lived up to the expectation, even the result delivered by the

best classifier instance was poor.

Although the result is not as compelling as expected, the significance of the present

research includes:

• Character networks were constructed by using both (1) all scenes of each script

and (2) first half scenes of each script.

• The keyword terms of characters were determined by understanding the dependency

parses of the sentences in the pilot scripts.

• The distributed representations of determined keyword terms, of determined

activity terms, and of the entireties of pilot scripts, were exploited as predictive

features.

The approach proposed in the present research to extract features from scripts

of television series will be adopted by the company Parrot Analytics. The extracted

Chapter 9. Conclusion and Future Work 132

features, together with many other features which the company has already prepared,

will be exploited to establish predictive models for forecasting performance of new

television series.

Some suggestions for future work are:

• Try to employ cognitive complexity as a predictive factor.

• Try other metrics as the target feature.

• Develop criteria for further selection of television scripts.

• Try more options for the parameters of the classifier algorithms.

• Try other techniques that generate distributed representations. These include

GloVe, FastTest, and LexVec.

• Develop more rules to detect keyword terms from parsed dependencies between

words.

• Extract features associated with emotions.

• Try other sophisticated architectures to build the predictive models, for instance,

deep neural networks.

References

Agarwal, A., Balasubramanian, S., Zheng, J. & Dash, S. (2014). Parsing screenplays
for extracting social networks from movies. EACL 2014, 50–58.

Aggarwal, C. C. (2015). Data mining: the textbook. Springer.

Alberich, R., Miro-Julia, J. & Rosselló, F. (2002). Marvel universe looks almost like a
real social network. arXiv preprint cond-mat/0202174.

Angeli, G., Premkumar, M. J. & Manning, C. D. (2015). Leveraging linguistic structure
for open domain information extraction. In Proceedings of the 53rd annual
meeting of the association for computational linguistics (acl 2015).

Asahara, M. & Matsumoto, Y. (2003). Japanese named entity extraction with
redundant morphological analysis. In Proceedings of the 2003 conference of
the north american chapter of the association for computational linguistics
on human language technology - volume 1 (pp. 8–15). Stroudsburg, PA,
USA: Association for Computational Linguistics. Retrieved from http://dx
.doi.org.ezproxy.aut.ac.nz/10.3115/1073445.1073447 doi:
10.3115/1073445.1073447

Asur, S. & Huberman, B. A. (2010). Predicting the future with social media. In
Web intelligence and intelligent agent technology (wi-iat), 2010 ieee/wic/acm
international conference on (Vol. 1, pp. 492–499).

Bae, S. M., Lee, S. C. & Park, J. H. (2014). Utilization of demographic analysis
with imdb user ratings on the recommendation of movies. Journal of Society for
e-Business Studies, 19(3).

Bengio, Y., Ducharme, R., Vincent, P. & Jauvin, C. (2003). A neural probabilistic
language model. Journal of machine learning research, 3(Feb), 1137–1155.

Bengio, Y., LeCun, Y. et al. (2007). Scaling learning algorithms towards ai. Large-scale
kernel machines, 34(5), 1–41.

133

http://dx.doi.org.ezproxy.aut.ac.nz/10.3115/1073445.1073447
http://dx.doi.org.ezproxy.aut.ac.nz/10.3115/1073445.1073447

References 134

Bielby, W. T. & Bielby, D. D. (1994). " all hits are flukes": Institutionalized decision
making and the rhetoric of network prime-time program development. American
Journal of Sociology, 99(5), 1287–1313.

Blondel, V., Guillaume, J., Lambiotte, R. & Lefebvre, E. (2008). Fast unfolding of
community hierarchies in large network, 2008. J. Stat. Mech. P, 1008.

Borthwick, A. (1999). A maximum entropy approach to named entity recognition
(Unpublished doctoral dissertation). Citeseer.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent.
In Y. Lechevallier & G. Saporta (Eds.), Proceedings of compstat’2010: 19th
international conference on computational statisticsparis france, august 22-27,
2010 keynote, invited and contributed papers (pp. 177–186). Heidelberg:
Physica-Verlag HD. Retrieved from http://dx.doi.org/10.1007/
978-3-7908-2604-3_16 doi: 10.1007/978-3-7908-2604-3_16

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

Bresnan, J., Asudeh, A., Toivonen, I. & Wechsler, S. (2015). Lexical-functional syntax
(Vol. 16). John Wiley & Sons.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., . . .
others (2013). Api design for machine learning software: experiences from the
scikit-learn project. arXiv preprint arXiv:1309.0238.

Bullinaria, J. A. & Levy, J. P. (2007). Extracting semantic representations from word
co-occurrence statistics: A computational study. Behavior research methods,
39(3), 510–526.

Canet, F., Valero, M. Á. & Codina, L. (2016). Quantitative approaches for evaluating
the influence of films using the imdb database. Comunicación y Sociedad, 29(2),
151.

Carroll, J., Minnen, G. & Briscoe, T. (1999). Corpus annotation for parser evaluation.
arXiv preprint cs/9907013.

Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. (2002). Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16, 321–357.

Chen, D. & Manning, C. D. (2014). A fast and accurate dependency parser using neural
networks. In Emnlp (pp. 740–750).

http://dx.doi.org/10.1007/978-3-7908-2604-3_16
http://dx.doi.org/10.1007/978-3-7908-2604-3_16

References 135

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. & Kuksa, P. (2011).
Natural language processing (almost) from scratch. Journal of Machine Learning
Research, 12(Aug), 2493–2537.

Covington, M. A. (2001). A fundamental algorithm for dependency parsing. In
Proceedings of the 39th annual acm southeast conference (pp. 95–102).

De Marneffe, M.-C., Connor, M., Silveira, N., Bowman, S. R., Dozat, T. & Manning,
C. D. (2013). More constructions, more genres: Extending stanford dependencies.
Proceedings of DepLing.

De Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen, K., Ginter, F., Nivre, J. &
Manning, C. D. (2014). Universal stanford dependencies: A cross-linguistic
typology. In Lrec (Vol. 14, pp. 4585–92).

De Marneffe, M.-C., MacCartney, B., Manning, C. D. et al. (2006). Generating typed
dependency parses from phrase structure parses. In Proceedings of lrec (Vol. 6,
pp. 449–454).

De Marneffe, M.-C. & Manning, C. D. (2008a). Stanford typed dependencies manual
(Tech. Rep.). Technical report, Stanford University.

De Marneffe, M.-C. & Manning, C. D. (2008b). The stanford typed dependencies
representation. In Coling 2008: proceedings of the workshop on cross-framework
and cross-domain parser evaluation (pp. 1–8).

Dose, S. (2013). Flipping the script: A corpus of american television series (cats) for
corpus-based language learning and teaching. Corpus Linguistics and Variation
in English: Focus on Non-native Englishes.

Eisner, J. (1997). An empirical comparison of probability models for dependency
grammar. arXiv preprint cmp-lg/9706004.

Eisner, J. (2000). Bilexical grammars and their cubic-time parsing algorithms. In
Advances in probabilistic and other parsing technologies (pp. 29–61). Springer.

Eisner, J. M. (1996). Three new probabilistic models for dependency parsing:
An exploration. In Proceedings of the 16th conference on computational
linguistics-volume 1 (pp. 340–345).

Eliashberg, J., Hui, S. K. & Zhang, Z. J. (2007). From story line to box office: A new
approach for green-lighting movie scripts. Management Science, 53(6), 881–893.

Eliashberg, J., Hui, S. K. & Zhang, Z. J. (2014). Assessing box office performance

References 136

using movie scripts: A kernel-based approach. IEEE Transactions on Knowledge
and Data Engineering, 26(11), 2639–2648.

Elliott, C. D. (1992). The affective reasoner: A process model of
emotions in a multi-agent system (Doctoral dissertation, Evanston, IL,
USA). Retrieved from https://condor.depaul.edu/elliott/ar/
ftp/elliott-thesis.pdf (UMI Order No. GAX92-29901)

Elson, D. K., Dames, N. & McKeown, K. R. (2010). Extracting social networks from
literary fiction. In Proceedings of the 48th annual meeting of the association for
computational linguistics (pp. 138–147).

Fellbaum, C. (2010). Wordnet. In R. Poli, M. Healy & A. Kameas (Eds.), Theory
and applications of ontology: Computer applications (pp. 231–243). Dordrecht:
Springer Netherlands. Retrieved from https://doi.org/10.1007/978
-90-481-8847-5_10 doi: 10.1007/978-90-481-8847-5_10

Finkel, J. R., Grenager, T. & Manning, C. (2005). Incorporating non-local information
into information extraction systems by gibbs sampling. In Proceedings of
the 43rd annual meeting on association for computational linguistics (pp.
363–370). Stroudsburg, PA, USA: Association for Computational Linguistics.
Retrieved from https://doi-org.ezproxy.aut.ac.nz/10.3115/
1219840.1219885 doi: 10.3115/1219840.1219885

Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3), 75–174.

Fraile, F. & Guerri, J. C. (2014). Simple models of the content duration and
the popularity of television content. Journal of Network and Computer
Applications, 40, 12 - 20. Retrieved from http://www.sciencedirect
.com/science/article/pii/S1084804513001859 doi: http://doi
.org/10.1016/j.jnca.2013.08.010

Freitag, D. & McCallum, A. (1999). Information extraction with hmms and shrinkage.
In Proceedings of the aaai-99 workshop on machine learning for information
extraction (pp. 31–36).

Gil, S., Kuenzel, L. & Caroline, S. (2011). Extraction and analysis of character
interaction networks from plays and movies. Retrieved June, 15, 2016.

Goldberg, Y. & Levy, O. (2014). word2vec explained: deriving mikolov et al.’s
negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722.

Han, H., Wang, W.-Y. & Mao, B.-H. (2005). Borderline-smote: a new over-sampling
method in imbalanced data sets learning. Advances in intelligent computing,

https://condor.depaul.edu/elliott/ar/ftp/elliott-thesis.pdf
https://condor.depaul.edu/elliott/ar/ftp/elliott-thesis.pdf
https://doi.org/10.1007/978-90-481-8847-5_10
https://doi.org/10.1007/978-90-481-8847-5_10
https://doi-org.ezproxy.aut.ac.nz/10.3115/1219840.1219885
https://doi-org.ezproxy.aut.ac.nz/10.3115/1219840.1219885
http://www.sciencedirect.com/science/article/pii/S1084804513001859
http://www.sciencedirect.com/science/article/pii/S1084804513001859

References 137

878–887.

Harris, Z. S. (1954). Distributional structure. Word, 10(2-3), 146–162.

Hinton, G. E., Mcclelland, J. L. & Rumelhart, D. E. (1986). Distributed representations,
parallel distributed processing: explorations in the microstructure of cognition,
vol. 1: foundations. MIT Press, Cambridge, MA.

Hsu, P. Y., Shen, Y. H. & Xie, X. A. (2014). Predicting movies user ratings with imdb
attributes. In D. Miao, W. Pedrycz, D. ŚlE(C)zak, G. Peters, Q. Hu & R. Wang
(Eds.), Rough sets and knowledge technology: 9th international conference, rskt
2014, shanghai, china, october 24-26, 2014, proceedings (pp. 444–453). Cham:
Springer International Publishing. Retrieved from http://dx.doi.org/10
.1007/978-3-319-11740-9_41 doi: 10.1007/978-3-319-11740-9_41

Hudson, R. A. (1991). English word grammar. B. Blackwell.

Hunter, S. (2014). A novel method of network text analysis. Open Journal of Modern
Linguisitics, 4(2), 350.

Hunter, S. & Breen, Y. (2017a). Predicting the success of new cable series from their
pilot episode scripts: An empirical approach. Business and Management Studies,
3(3), 1–9.

Hunter, S. & Breen, Y. (2017b). W(h)ither the full season: An empirical model
for predicting the duration of new television series? first season. Advances in
Journalism and Communication, 5(3), 38–97. doi: 10.4236/ajc.2017.52005

Hunter, S., Chinta, R., Smith, S., Shamim, A. & Bawazir, A. (2016). Moneyball for tv:
A model for forecasting the audience of new dramatic television series. Studies
in Media and Communication, 4(2), 13–22.

Hunter, S., Smith, S. & Chinta, R. (2016). Predicting new tv series ratings from their
pilot episode scripts. International Journal of English Linguistics, 6(5), 1.

Hunter, S., Smith, S. & Singh, S. (2016). Predicting box office from the screenplay: A
text analytical approach. Journal of Screenwriting, 7(2), 135–154.

Joulin, A., Grave, E., Bojanowski, P. & Mikolov, T. (2016). Bag of tricks for efficient
text classification. arXiv preprint arXiv:1607.01759.

Ju, Z., Wang, J. & Zhu, F. (2011, May). Named entity recognition from biomedical
text using svm. In 2011 5th international conference on bioinformatics and
biomedical engineering (p. 1-4). doi: 10.1109/icbbe.2011.5779984

http://dx.doi.org/10.1007/978-3-319-11740-9_41
http://dx.doi.org/10.1007/978-3-319-11740-9_41

References 138

Jung, J. J., You, E. & Park, S.-B. (2013). Emotion-based character clustering for
managing story-based contents: a cinemetric analysis. Multimedia tools and
applications, 65(1), 29–45.

Jurafsky, D. & Martin, J. H. (2014). Speech and language processing (Vol. 3). Pearson.

Kabinsingha, S., Chindasorn, S. & Chantrapornchai, C. (2012). Movie rating approach
and application based on data mining. International Journal of Engineering and
Innovative Technology (IJEIT) Volume, 2.

King, T. H., Crouch, R., Riezler, S., Dalrymple, M. & Kaplan, R. M. (2003). The parc
700 dependency bank. In Proceedings of the eacl03: 4th international workshop
on linguistically interpreted corpora (linc-03) (pp. 1–8).

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A. & Fidler,
S. (2015). Skip-thought vectors. In Advances in neural information processing
systems (pp. 3294–3302).

Koschützki, D., Lehmann, K. A., Peeters, L., Richter, S., Tenfelde-Podehl, D. &
Zlotowski, O. (2005). Centrality indices. In U. Brandes & T. Erlebach (Eds.),
Network analysis: Methodological foundations (pp. 16–61). Berlin, Heidelberg:
Springer Berlin Heidelberg. Retrieved from http://dx.doi.org/10
.1007/978-3-540-31955-9_3 doi: 10.1007/978-3-540-31955-9_3

Koschützki, D., Lehmann, K. A., Tenfelde-Podehl, D. & Zlotowski, O. (2005).
Advanced centrality concepts. In U. Brandes & T. Erlebach (Eds.), Network
analysis: Methodological foundations (pp. 83–111). Berlin, Heidelberg: Springer
Berlin Heidelberg. Retrieved from http://dx.doi.org/10.1007/978
-3-540-31955-9_5 doi: 10.1007/978-3-540-31955-9_5

Kudoh, T. & Matsumoto, Y. (2000). Use of support vector learning for chunk
identification. In Proceedings of the 2nd workshop on learning language in
logic and the 4th conference on computational natural language learning-volume
7 (pp. 142–144).

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K. & Dyer, C. (2016). Neural
architectures for named entity recognition. arXiv preprint arXiv:1603.01360.

Lau, J. H. & Baldwin, T. (2016). An empirical evaluation of doc2vec with practical
insights into document embedding generation. arXiv preprint arXiv:1607.05368.

Le, Q. & Mikolov, T. (2014). Distributed representations of sentences and documents.
In Proceedings of the 31st international conference on machine learning (icml-14)
(pp. 1188–1196).

http://dx.doi.org/10.1007/978-3-540-31955-9_3
http://dx.doi.org/10.1007/978-3-540-31955-9_3
http://dx.doi.org/10.1007/978-3-540-31955-9_5
http://dx.doi.org/10.1007/978-3-540-31955-9_5

References 139

Levy, O., Goldberg, Y. & Ramat-Gan, I. (2014). Linguistic regularities in sparse and
explicit word representations. In Conll (pp. 171–180).

Li, C. H. & Park, S. C. (2006). Text categorization based on artificial neural networks.
In International conference on neural information processing (pp. 302–311).

Li, Y., Xu, L., Tian, F., Jiang, L., Zhong, X. & Chen, E. (2015). Word embedding
revisited: A new representation learning and explicit matrix factorization
perspective. In Ijcai (pp. 3650–3656).

Ling, W., Luís, T., Marujo, L., Astudillo, R. F., Amir, S., Dyer, C., . . . Trancoso, I.
(2015). Finding function in form: Compositional character models for open
vocabulary word representation. arXiv preprint arXiv:1508.02096.

Lison, P. & Meena, R. (2016). Automatic turn segmentation for movie &
tv subtitles. In 2016 ieee workshop on spoken language technology :. (QC
20161014)

Lison, P. & Tiedemann, J. (2016). Opensubtitles2016: Extracting large parallel corpora
from movie and tv subtitles. In Proceedings of the 10th international conference
on language resources and evaluation.

Longadge, R. & Dongre, S. (2013). Class imbalance problem in data mining review.
CoRR, abs/1305.1707. Retrieved from http://arxiv.org/abs/1305
.1707

Makris, C. & Vikatos, P. (2016). Community detection of screenplay characters. In Ifip
international conference on artificial intelligence applications and innovations
(pp. 463–470).

Martin, T., Zhang, X. & Newman, M. E. J. (2014, Nov). Localization and centrality
in networks. Phys. Rev. E, 90, 052808. Retrieved from https://link.aps
.org/doi/10.1103/PhysRevE.90.052808 doi: 10.1103/PhysRevE
.90.052808

McDonald, R. T., Nivre, J., Quirmbach-Brundage, Y., Goldberg, Y., Das, D., Ganchev,
K., . . . others (2013). Universal dependency annotation for multilingual parsing.
In Acl (2) (pp. 92–97).

Mel’čuk, I. A. (1988). Dependency syntax: theory and practice. SUNY press.

Mesnil, G., Mikolov, T., Ranzato, M. & Bengio, Y. (2014). Ensemble of generative
and discriminative techniques for sentiment analysis of movie reviews. CoRR,
abs/1412.5335. Retrieved from http://arxiv.org/abs/1412.5335

http://arxiv.org/abs/1305.1707
http://arxiv.org/abs/1305.1707
https://link.aps.org/doi/10.1103/PhysRevE.90.052808
https://link.aps.org/doi/10.1103/PhysRevE.90.052808
http://arxiv.org/abs/1412.5335

References 140

Mestyán, M., Yasseri, T. & Kertész, J. (2013). Early prediction of movie box office
success based on wikipedia activity big data. PloS one, 8(8), e71226.

Mikheev, A., Moens, M. & Grover, C. (1999). Named entity recognition without
gazetteers. In Proceedings of the ninth conference on european chapter of the
association for computational linguistics (pp. 1–8).

Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J. & Khudanpur, S. (2010). Recurrent
neural network based language model. In Interspeech (Vol. 2, p. 3).

Mikolov, T., Kopecky, J., Burget, L., Glembek, O. et al. (2009). Neural network based
language models for highly inflective languages. In Acoustics, speech and signal
processing, 2009. icassp 2009. ieee international conference on (pp. 4725–4728).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani & K. Q. Weinberger (Eds.), Advances
in neural information processing systems 26 (pp. 3111–3119). Curran
Associates, Inc. Retrieved from http://papers.nips.cc/paper/
5021-distributed-representations-of-words-and-phrases
-and-their-compositionality.pdf

Miller, G. A. (1995, November). Wordnet: A lexical database for english. Commun.
ACM, 38(11), 39–41. Retrieved from http://doi.acm.org.ezproxy
.aut.ac.nz/10.1145/219717.219748 doi: 10.1145/219717.219748

Mohit, B. (2014). Named entity recognition. In Natural language processing of semitic
languages (pp. 221–245). Springer.

Moretti, F. (2011). Network theory, plot analysis. New Left Review. Retrieved from
https://litlab.stanford.edu/LiteraryLabPamphlet2.pdf

Nadeau, D. & Sekine, S. (2007). A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1), 3–26.

Nayak, N., Kowarsky, M., Angeli, G. & Manning, C. D. (2014). A dictionary
of nonsubsective adjectives (Tech. Rep.). Technical Report CSTR 2014-04,
Department of Computer Science, Stanford University, October.

Nguyen, H. M., Cooper, E. W. & Kamei, K. (2011). Borderline over-sampling for
imbalanced data classification. International Journal of Knowledge Engineering

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://doi.acm.org.ezproxy.aut.ac.nz/10.1145/219717.219748
http://doi.acm.org.ezproxy.aut.ac.nz/10.1145/219717.219748
https://litlab.stanford.edu/LiteraryLabPamphlet2.pdf

References 141

and Soft Data Paradigms, 3(1), 4–21.

Nivre, J. (2006). Dependency parsing. In Inductive dependency parsing (pp. 45–86).
Dordrecht: Springer Netherlands. Retrieved from http://dx.doi.org/
10.1007/1-4020-4889-0_3 doi: 10.1007/1-4020-4889-0_3

Nivre, J., De Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C. D., . . .
others (2016). Universal dependencies v1: A multilingual treebank collection. In
Lrec.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., . . . Marsi, E. (2007).
Maltparser: A language-independent system for data-driven dependency parsing.
Natural Language Engineering, 13(02), 95–135.

Park, S.-B., Oh, K.-J. & Jo, G.-S. (2012). Social network analysis in a movie using
character-net. Multimedia Tools and Applications, 59(2), 601–627.

Park, S.-B., Yoo, E., Kim, H. & Jo, G.-S. (2011). Automatic emotion annotation of
movie dialogue using wordnet. In Asian conference on intelligent information
and database systems (pp. 130–139).

Park, S.-B. & You, E. (2012). Story modeling for green light decision making. In
Proceedings of the international conference on it convergence and security 2011
(pp. 517–521).

Pavlick, E. & Callison-Burch, C. (2016). So-called non-subsective adjectives. The
SEM 2016 Organizing Committee., 114.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .
others (2011). Scikit-learn: Machine learning in python. Journal of Machine
Learning Research, 12(Oct), 2825–2830.

Pennebaker, J. W., Francis, M. E. & Booth, R. J. (2001). Linguistic inquiry and word
count: Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71(2001), 2001.

Pennington, J., Socher, R. & Manning, C. D. (2014). Glove: Global vectors for word
representation. In Emnlp (Vol. 14, pp. 1532–1543).

Rasooli, M. S. & Faili, H. (2012). Fast unsupervised dependency parsing with
arc-standard transitions. In Proceedings of the joint workshop on unsupervised
and semi-supervised learning in nlp (pp. 1–9).

Ratinov, L. & Roth, D. (2009). Design challenges and misconceptions in named entity
recognition. In Proceedings of the thirteenth conference on computational natural

http://dx.doi.org/10.1007/1-4020-4889-0_3
http://dx.doi.org/10.1007/1-4020-4889-0_3

References 142

language learning (pp. 147–155).

Rennie, J. D., Shih, L., Teevan, J. & Karger, D. R. (2003). Tackling the poor assumptions
of naive bayes text classifiers. In Proceedings of the 20th international conference
on machine learning (icml-03) (pp. 616–623).

Richardson, R., Smeaton, A. F. & Murphy, J. (1994). Using wordnet as a knowledge
base for measuring semantic similarity between words. In Proceedings of aics
conference (pp. 1–15).

Riloff, E. & Phillips, W. (2004). An introduction to the sundance and autoslog systems
(Tech. Rep.). Technical Report UUCS-04-015, School of Computing, University
of Utah.

Ronfard, R. & Thuong, T. T. (2003). A framework for aligning and indexing movies
with their script. In Multimedia and expo, 2003. icme’03. proceedings. 2003
international conference on (Vol. 1, pp. I–21).

Rong, X. (2014). word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738.

Salle, A., Idiart, M. & Villavicencio, A. (2016a). Enhancing the lexvec distributed
word representation model using positional contexts and external memory. arXiv
preprint arXiv:1606.01283.

Salle, A., Idiart, M. & Villavicencio, A. (2016b). Matrix factorization using window
sampling and negative sampling for improved word representations. arXiv
preprint arXiv:1606.00819.

Salway, A. & Graham, M. (2003). Extracting information about emotions in films.
In Proceedings of the eleventh acm international conference on multimedia (pp.
299–302).

Sathyanarayana, S. (2014). A gentle introduction to backpropagation. July.

Sawhney, M. S. & Eliashberg, J. (1996). A parsimonious model for forecasting gross
box-office revenues of motion pictures. Marketing Science, 15(2), 113–131.

Schuster, S. & Manning, C. D. (2016). Enhanced english universal dependencies: An
improved representation for natural language understanding tasks. In Proceedings
of the tenth international conference on language resources and evaluation (lrec
2016).

Sultan, M. A., Bethard, S. & Sumner, T. (2015). Dls @ cu: Sentence similarity from

References 143

word alignment and semantic vector composition. In Semeval@ naacl-hlt (pp.
148–153).

Tiedemann, J. (2016). Finding alternative translations in a large corpus of movie
subtitles. In Proceedings of the 10th international conference on language
resources and evaluation (lrec-2016), portoroz, slovenia.

Turetsky, R. & Dimitrova, N. (2004). Screenplay alignment for closed-system speaker
identification and analysis of feature films. In Multimedia and expo, 2004.
icme’04. 2004 ieee international conference on (Vol. 3, pp. 1659–1662).

Weng, C.-Y., Chu, W.-T. & Wu, J.-L. (2009). Rolenet: Movie analysis from
the perspective of social networks. IEEE Transactions on Multimedia, 11(2),
256–271.

Wieting, J., Bansal, M., Gimpel, K. & Livescu, K. (2015). Towards universal
paraphrastic sentence embeddings. arXiv preprint arXiv:1511.08198.

Yamada, K. & Knight, K. (2001). A syntax-based statistical translation model.
In Proceedings of the 39th annual meeting on association for computational
linguistics (pp. 523–530).

Zhang, T. (2004). Solving large scale linear prediction problems using stochastic
gradient descent algorithms. In Proceedings of the twenty-first international
conference on machine learning (p. 116).

Zhou, H., Zhang, Y., Huang, S. & Chen, J. (2015). A neural probabilistic
structured-prediction model for transition-based dependency parsing. In Acl
(1) (pp. 1213–1222).

Appendix A

List of 512 Series

100-questions 10-things-i-hate-about- 11-22-63 12-monkeys

1600-penn 32-brinkburn-street 666-park-avenue a-gifted-man

a-to-z about-a-boy absolutely-fabulous accidentally-on-purpos-

across-the-river-to-mo- agent-x alice alien-nation

allegiance almost-human alpha-house alphas

american-crime american-family american-gothic american-horror-story

angel-from-hell angie-tribeca animal-kingdom apple-tree-yard

aquarius archer are-you-there-chelsea arrow

ashes-to-ashes astronaut-wives-club awake awkward

back-in-the-game backstrom bad-girls bad-judge

bad-teacher ballers banshee bates-motel

battle-creek beast beautiful-people being-human

being-mary-jane believe benched bent

best-friends-forever betas betrayal better-with-you

big-shots big-time-in-hollywood– billions bionic-woman

black-ish black-mirror black-sails blindspot

bloodline blue-bloods blunt-talk body-of-proof

bonekickers bored-to-death bosch boss

boy-meets-girl braindead breaking-bad breaking-in

breakout-kings broad-city brooklyn-nine-nine bunheads

144

Chapter A. List of 512 Series 145

californication camp cane canterbury-s-law

carpoolers casanova cashmere-mafia castle

casual chaos charlie-s-angels chase

chicago-fire chozen code-black colony

combat-hospital common-law community complications

containment cougar-town crazy-ex-girlfriend criminal-minds-suspect-

crisis cristela crowded da-vinci-s-demons

dallas danni-lowinski dark-skies dead-boss

dead-of-summer death-valley defying-gravity detectorists

devious-maids dexter dickensian difficult-people

dig dirty-sexy-money do-no-harm dominion

dr-ken dracula drop-dead-diva eden

elementary eleventh-hour empire endgame

enlisted episodes extant eye-candy

fargo fear-the-walking-dead finding-carter flaked

flashpoint flesh-and-bone forever frankenstein

frankie franklin-bash free-agents friday-night-dinner

friends-with-better-li- from-darkness galavant game-of-silence

gang-related gcb gilmore-girls girlfriends-guide-to-d-

girls glory-daze go-on golden-boy

gossip-girl gotham grace-and-frankie graceland

gracepoint grandfathered gravity grimm

ground-floor growing-up-fisher guilt guys-with-kids

hallelujah halt-catch-fire hand-of-god hannibal

happy-town happy-valley happyish happyland

harry-s-law hart-of-dixie hawaii-five-0 helix

hell-on-wheels hellcats hidden highston

hindsight hit-the-floor hostages house-of-lies

house-of-saddam how-i-met-your-dad how-to-be-a-gentleman how-to-get-away-with-m-

huge human-target humans hustle

hysteria i-just-want-my-pants-b- i-live-with-models identity

impastor in-the-club in-the-flesh inside-no-9

Chapter A. List of 512 Series 146

intelligence into-the-badlands ironside isabel

izombie jamaica-inn jane-by-design jane-the-virgin

jennifer-falls justified kevin-from-work killer-women

killjoys king-and-maxwell kingdom kirstie

last-man-standing last-resort last-tango-in-halifax legends

life-in-pieces life-on-mars lights-out line-of-duty

london-spy lone-star longmire lost

love love-bites low-winter-sun lucifer

lucky-7 luther mad-dogs mad-love

mad-men madam-secretary magic-city man-seeking-woman

man-up manhattan marco-polo married

marry-me masters-of-sex me-and-mrs-jones men-at-work

mercy-street merlin miami-medical mind-games

minority-report missing mistresses mixology

mob-city modern-family monday-mornings motive

mozart-in-the-jungle mr-robinson mr-robot mr-sunshine

mystery-girls narcos nashville necessary-roughness

new-girl nikita no-heroics no-ordinary-family

noir ny-lon nyc-22 of-kings-and-prophets

off-the-map olympus once-upon-a-time one-big-happy

one-mississippi only-fools-and-horses ordinary-lies orphan-black

our-house outcast outlander outlaw

outnumbered outsiders outsourced pan-am

parenthood partners patito-feo peaky-blinders

perception perfect-couples person-of-interest playing-house

political-animals power preacher pretty-little-liars

prime-suspect proof public-morals pulling

pushing-daisies quantico queen-of-the-south raising-hope

ray-donovan reckless recovery-road rectify

red-band-society red-oaks red-widow reign

remember-me resident-advisors resurrection revolution

rex-is-not-your-lawyer ringer ripper-street rita

Chapter A. List of 512 Series 147

rita-rocks roadies rob rogue

roommates rosewood royal-pains rubicon

running-wilde rush rush-hour salem

samantha-who satisfaction scandal scorpion

sean-saves-the-world secrets-and-lies selfie sense8

sex-drugs-rock-roll shadowhunters signed-sealed-delivere- silicon-valley

single-ladies sirens sit-down-shut-up sneaky-pete

sons-of-tucson southland spy stalker

star-crossed state-of-affairs state-of-georgia stranger-things

suburgatory suits super-fun-night superstore

surviving-jack survivors switched-at-birth teen-wolf

telenovela terra-nova terriers the-100

the-affair the-americans the-big-bang-theory the-blacklist

the-bridge the-cape the-carrie-diaries the-catch

the-chicago-code the-client-list the-comedians the-crazy-ones

the-dead-zone the-detour the-divide the-event

the-exes the-expanse the-fades the-family

the-firm the-flash the-following the-fosters

the-game the-gates the-girlfriend-experie- the-glades

the-goldbergs the-good-guys the-good-wife the-goodwin-games

the-grinder the-honourable-woman the-killing the-knick

the-last-man-on-earth the-librarians the-line the-lottery

the-magicians the-mccarthys the-messengers the-michael-j-fox-show

the-middle the-mindy-project the-missing the-mob-doctor

the-musketeers the-mysteries-of-laura the-night-manager the-night-shift

the-odd-couple the-passing-bells the-philanthropist the-playboy-club

the-politician-s-husba- the-red-road the-replacement the-river

the-royals the-secret-of-crickley- the-slap the-strain

the-strip the-syndicate the-thundermans the-tomorrow-people

the-twilight-zone the-unusuals the-walshes the-whispers

those-who-can-t those-who-kill tin-man togetherness

touch traffic-light transparent trauma

Chapter A. List of 512 Series 148

trophy-wife true-detective turn twin-peaks

twisted tyrant unbreakable-kimmy-schm- uncle-buck

undateable undeclared under-the-dome underemployed

underground unforgettable unreal up-all-night

utopia v vegas veronica-mars

waterfront wayward-pines we-are-men wedding-band

weird-loners welcome-to-the-family westside what-remains

whitney wicked-city wild-card witches-of-east-end

wizards-vs-aliens wonderland work-it workaholics

working-class working-the-engels worst-week wrecked

wynonna-earp you-are-the-worst you-me-and-the-apocaly- you-re-the-worst

young-hungry your-family-or-mine zero-hour zoo

Appendix B

Parameters for MLP

The parameters to train the sklearn.neural_network.MLPClassifier are presented by

Table B.1.

0 hidden-layers [(5,), (10,), (15,), (15, 10), (20,), (15, 15, 15)]

max-iter [200, 500]

alpha [0.1, 1, 5, 10, 15, 20]

0k hidden-layers [(5,), (10,), (15,), (15, 10), (20,), (30,), (100,)]

max-iter [100, 200, 300]

alpha [0.1, 1, 5, 10]

1 hidden-layers [(5,), (10,), (15,), (20,)]

max-iter [100, 200, 300, 500, 800, 1000]

alpha [1, 10, 20]

1x hidden-layers [(50,), (100,)]

max-iter [100]

alpha [1, 10, 20]

2a hidden-layers [(15, 10)]

max-iter [50, 100, 200, 300, 500]

alpha [0.1, 1, 3, 5, 8, 10]

149

Chapter B. Parameters for MLP 150

2b hidden-layers [(30,)]

max-iter [50, 100, 200, 300, 500]

alpha [0.1, 1, 3, 5, 8, 10]

2c hidden-layers [(30, 20)]

max-iter [50, 100, 200, 300, 500]

alpha [0.1, 1, 3, 5, 8, 10]

2d hidden-layers [(15, 15), (15, 10, 10)]

max-iter [50, 100, 200, 300, 500, 800]

alpha [0.1, 1, 3, 5, 8, 10]

2e hidden-layers [(15,), (20,), (30,)]

max-iter [50, 100, 200, 300, 500, 800]

alpha [0.1, 1, 3, 5, 8, 10]

2f hidden-layers [(30, 20), (30, 15), (30, 10)]

max-iter [50, 100, 200, 300, 500, 800]

alpha [0.1, 1, 3, 5, 8, 10]

2g hidden-layers [(20, 15), (20, 10)]

max-iter [50, 100, 200, 300, 500, 800]

alpha [0.1, 1, 3, 5, 8, 10]

2ha hidden-layers [(10,), (15,), (20,)]

max-iter [10, 50, 100, 200, 500]

alpha [1, 5, 8]

learning-rate [’adaptive’]

2hc hidden-layers [(10,), (15,), (20,)]

max-iter [10, 50, 100, 200, 500]

alpha [1, 5, 8]

learning-rate [’constant’]

2hi hidden-layers [(10,), (15,), (20,)]

max-iter [10, 50, 100, 200, 500]

alpha [1, 5, 8]

Chapter B. Parameters for MLP 151

learning-rate [’invscaling’]

3aa hidden-layers [(10,), (15,), (20,), (100,), (200,), (300,), (500,)]

max-iter [200, 500, 1000]

alpha

learning-rate [’adaptive’]

momentum [0.9, 0.2]

solver [’sgd’]

3ac hidden-layers [(10,), (15,), (20,), (100,), (200,), (300,), (500,)]

max-iter [200, 500, 1000]

alpha

momentum [0.9, 0.2]

learning-rate [’constant’]

learning-rate-init [0.3]

solver [’sgd’]

3ai hidden-layers [(10,), (15,), (20,), (100,), (200,), (300,), (500,)]

max-iter [200, 500, 1000]

alpha

momentum [0.9, 0.2]

learning-rate [’invscaling’]

learning-rate-init [0.3]

solver [’sgd’]

Appendix C

More Details of Genre Classifiers

Figure C.1: Frequencies of Genres

Table C.1: Genre Classifier - Naive Bayes

GENRE accuracy ngram-range num-features
action .4031 (2, 2) 10k
adventure .2732 (2, 3) 2k
comedy .7789 (2, 2) 2k
crime .5856 (2, 2) 10k
drama .8520 (2, 2) 100k
fantasy .2507 (2, 2) 10k
horror .1861 (2, 3) 100k
mystery .4698 (2, 3) 100k
rank .4726 (2, 3) 10k
romance .2090 (2, 3) 5k
sci-fi .3790 (2, 2) 10k
thriller .5304 (2, 3) 1k

152

Chapter C. More Details of Genre Classifiers 153

Table C.2: Genre Classifier - DR

GENRE NB MLP
w2v d2v w2v d2v

wiki subt wiki subt wiki subt wiki subt
action .3902 .4042 .4318 .3837 .4779 .4555 .4565 .5003
adventure .2433 .2727 .3448 .2479 .3393 .3688 .3693 .4002
comedy .7722 .7507 .8195 .7891 .7954 .8106 .8209 .8197
crime .4917 .5286 .5694 .5219 .6273 .6511 .5888 .5951
drama .7931 .7895 .8328 .8627 .8432 .8414 .8620 .8721
fantasy .2328 .2355 .3710 .2467 .3510 .3948 .4261 .3971
horror .2125 .2513 .2885 .2790 .2804 .4215 .3501 .3536
mystery .4358 .4785 .4341 .4443 .4696 .4836 .4350 .4558
romance .2223 .2288 .2166 .2597 .2996 .2876 .2104 .3477
sci-fi .3919 .3877 .4392 .3849 .4890 .5638 .4880 .5145
thriller .4797 .5115 .5303 .4923 .5580 .5655 .5237 .5043

Table C.3: Genre Classifier - MLP parameters

GENRE accuracy dataset layers max-iter alpha
action .5003 d2v-subt (10,) 100 1
adventure .4002 d2v-subt (15,) 100 5
comedy .8209 d2v-wiki (15,) 200 20
crime .6511 w2v-subt (15, 10) 200 1
drama .8721 d2v-subt (15,) 100 15
fantasy .4261 d2v-wiki (15,) 100 1
horror .4215 w2v-subt (15, 15, 15) 200 10
mystery .4836 w2v-subt (15, 15, 15) 200 5
romance .3477 d2v-subt (10,) 100 0
sci-fi .5638 w2v-subt (15, 15, 15) 100 0
thriller .5655 w2v-subt (20,) 200 1

Appendix D

Non-Print Material

Some non-print material is collected and compressed.

• The file vault.tar.xz contains a fold for each of 512 television series.Intermediate

results are included.

• The folder w2v contains the trained word embedding model of the English part

of the OpenSubtitles2016 corpus with word2vec.

• The folder d2v contains the trained document embedding model of the English

part of the OpenSubtitles2016 corpus with doc2vec.

• The file code-n-data.tar.xz mainly contains the code.

• The file treasure.tar.xz contains data matrices and test records of the classifiers.

These could be downloaded from:

https://drive.google.com/open?id=0B6iYEYKt0aqFRWgtRE9COF8wX0E

154

Appendix E

Example Classifier Test Record

[

[" b e s t _ s c o r e " , 0 .48504273504273504] ,

[

" b e s t _ p a r a m " ,

"{ ’ c l f _ _ h i d d e n _ l a y e r _ s i z e s ’ : (5 0 ,) , " \

" ’ c l f _ _ m a x _ i t e r ’ : 100 , ’ c l f _ _ a l p h a ’ : 1}"

] ,

[

" m e a n _ t e s t _ s c o r e " ,

[

0 .48504273504273504 ,

0 .4722222222222222 ,

0 .452991452991453 ,

0 .4465811965811966 ,

0 .4465811965811966 ,

0 .42948717948717946

155

Chapter E. Example Classifier Test Record 156

]

] ,

[

" params " ,

{

" c l f _ _ h i d d e n _ l a y e r _ s i z e s " : [[5 0] , [1 0 0]] ,

" c l f _ _ m a x _ i t e r " : [1 0 0] ,

" c l f _ _ a l p h a " : [1 , 10 , 20]

}

] ,

[" x s o u r c e " , " combined . d2v . s u b t . d a t a "] ,

[" y s o u r c e " , " r ank . d a t a "] ,

[" param_key " , "1 x "]

]

Appendix F

Example Code Snippet

Parsing of PDF Files

from pdfminer.pdfdevice import PDFDevice

class _Extracter(PDFDevice):

def begin_page(self, page, ctm):

info = {

’page-id’: self._pageno,

’box’: page.mediabox,

}

output = ’## PAGE-BEGIN ## %s\n’ % json.dumps(info)

self._w(output)

def end_page(self, page):

self._pageno += 1

self._w(’## PAGE-END\n’)

def render_string(self, textstate, seq):

info = {’matrix’: textstate.matrix}

output = ’## LINE ## %s\n’ % json.dumps(info)

self._w(output)

157

Chapter F. Example Code Snippet 158

self._w(self._seq_to_text(seq, textstate.font))

self._w(’\n’)

Build Multi-Graph

import networkx as nx

def build_multigraph(scene_list):

model = nx.MultiGraph()

for scene in scene_list:

roles = []

for block in scene[’block’]:

if block[’type’] == ’TALK’:

roles.append(block[’role’])

role_set = set(roles)

if len(role_set) == 1:

mg.add_node(roles[0])

else:

mg.add_weighted_edges_from(build_edges(role_set))

Dependency Parsing

def parse_dep():

ctx ={

’nndep-path’: os.environ[’STANFORD_PARSER_PATH’],

’pwd’: os.environ[’PWD’],

}

nndep_cmd =

’cd %(nndep-path)s && java edu.stanford.nlp.parser.nndep.DependencyParser’ \

’ -model edu/stanford/nlp/models/parser/nndep/english_UD.gz’ \

’ -textFile %(pwd)s/db.sentences’ \

’ -outFile %(pwd)s/db.sentences.nndeps’ % ctx

Chapter F. Example Code Snippet 159

os.system(nndep_cmd)

Multi-Layer Perceptron

from sklearn.neural_network import MLPClassifier

from sklearn.pipeline import Pipeline

from sklearn.model_selection import GridSearchCV

def search_mlp(xsource, ysource, params):

clf = MLPClassifier(random_state=42)

pipeline = Pipeline([(’clf’, clf)])

gs_clf = GridSearchCV(pipeline, params, n_jobs=1,

scoring=None, cv=None).fit(xsoiurce, ysource)

info(gs_clf.best_score_)

info(gs_clf.best_params_)

info(gs_clf.best_index_)

info(gs_clf.best_estimator_)

info(gs_clf.cv_results_)

	Declaration
	Acknowledgements
	Abstract
	Introduction
	Background
	Scripts
	Elements in scripts
	PDF as the Script Carrier
	Slices and Lines

	The Present Work

	Literature Review
	Predictive Models
	Character Network
	Script Parsing
	Other Aspects

	Data Sources
	Raw Data Sources
	Internet Movie Database
	OpenSubtitles2016
	Scripts of TV Series

	Parsing PDF
	Matching with IMDB data
	Summary

	Features from Statistic and Character Network
	Basic Statistical Features
	Character Related Features
	Identify Characters
	Feature sets

	Character Network
	A Brief Introduction to Graph
	Social Graph and Character Network
	Primary Characters
	Features

	Summary

	Distributed Representation
	Introduction
	Word Embedding
	Document Embedding

	Models
	Results
	Summary

	Features from NLP
	Venues of Scenes
	Named Entities
	Introduction
	Approaches based on Gazetteers and Rules
	Statistical Supervised-Learning Approaches
	Other Approaches
	Features Employed by NER Systems
	Results

	Keywords of Primary Characters
	Keywords and Dependencies
	Dependency Representation
	Dependency Parsing
	Keywords Extraction
	Results

	Activities
	Stanford Open IE
	Results

	Predictive Models and Results
	Genres
	Genre Classifiers
	Results

	Model
	Data Preprocessing
	Classifiers
	Results

	Discusson
	Predictive Models
	Distributed Representation
	Character Network
	Emotions
	Others

	Conclusion and Future Work
	References
	Appendix List of 512 Series
	Appendix Parameters for MLP
	Appendix More Details of Genre Classifiers
	Appendix Non-Print Material
	Appendix Example Classifier Test Record
	Appendix Example Code Snippet

