
TRANSFORMATION AND

SYNTHESIS OF ARTIFACT-CENTRIC

BUSINESS PROCESSES

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Supervisors

Assoc Prof Jian Yu

Assoc Prof Quan Bai

Dr Sira Yongchareon

May 2020

By

Naga Jyothi Kunchala

School of Engineering, Computer and Mathematical Sciences

Abstract

In today’s dynamic business environment, business process modeling (BPM) has be-

come a fundamental tool in many organizations to gain operational benefits and stay

competitive with their rivals. Thus, there is always an increasing demand for modeling

paradigms to support flexible and reusable process design, facilitate the accommodation

of rapidly changing business requirements, and provide insights on process progress to

improve process performance and minimize operating costs.

The activity-centric and artifact-centric approaches are the two major modeling

paradigms in BPM. While the traditional activity-centric paradigm emphasizes repres-

enting activities and their control flows, the recent artifact-centric paradigm provides

equal support to control flow and data by incorporating “artifacts” which are key busi-

ness entities and their lifecycles. In recent years, the artifact-centric paradigm has been

extensively studied and there is evidence that this paradigm provides better flexibility

and reusability support compared with the traditional activity-centric paradigm.

With the prevalence of the artifact-centric paradigm, the transformation of traditional

activity-centric process models into artifact-centric process models has emerged as an

important research challenge. Most of the existing approaches for this purpose have a

restricted view on the artifacts and their interaction (or synchronization) dependencies,

and only support a semi-automatic transformation. Furthermore, these approaches

focus on transforming standalone activity-centric process models that specify activities

performed in one single organization, while ignoring the inter-organizational business

2

process (IOBP) models that represent activities and data (artifacts) distributed among

various organizations. In addition, the transformation of artifact-centric process models

into activity-centric process models has also received considerable attention, as the

activity-centric process models provide better process view compared with the artifact-

centric process models that contain unorganized sets of business rules. The existing

approaches to achieve this objective are also limited in terms of using artifact lifecycles

rather than the artifact-centric process models to construct the activity-centric process

models and only supporting a semi-automatic transformation.

Therefore, automated approaches are required to improve the scope and efficiency

of the proposed transformations. In this regard, this thesis aims to address the following

research questions: (1) How to efficiently transform the activity-centric process models

into the artifact-centric process models?; (2) How to merge the collaborating processes

of activity-centric IOBP (inter-organizational business process) models?; and (3) How

to construct the activity-centric process models from the artifact-centric process models.

First, an efficient tree-based approach is proposed to transform activity-centric

process models into artifact-centric process models. The proposed transformation

mainly aims to synthesize or generate synchronized lifecycles of artifacts from the

activity-centric process models. The proposed approach provides a set of algorithms

that initially extracts the hierarchical tree representation of the activity-centric process

model, then generates a lifecycle for every artifact, and also synchronizes the gener-

ated lifecycles. The proposed approach is demonstrated using a case study and also

implemented and evaluated using a process model collection from the BPM Academic

Initiative (BPMAI).

Second, a process interaction-based approach is proposed to merge the collaborating

processes of activity-centric inter-organizational business process (IOBP) models that

have artifact annotations in order to synthesize the lifecycles of artifacts from the result-

ing integrated process models. The proposed approach comprises a set of algorithms

3

that merge two or more collaborating processes based on their interaction patterns.

Specifically, the approach first identifies the type of interaction, such as synchronous

or asynchronous, between the collaborating processes and then merge them according

to the rules formulated for each type of process interaction. The proposed approach is

demonstrated using a case study and also implemented and evaluated using a model

collection from the BPMAI.

Last, a reverse transformation approach is proposed for constructing activity-centric

process models from artifact-centric process models, and for checking the consistency

between the constructed model and the base model. A trace-based method is used

to analyze the model consistency, where the execution traces of the base model is

analyzed over the execution traces of the constructed model. The proposed approach

is demonstrated using a case study and also implemented and evaluated using two

motivating process models.

4

Contents

Abstract 2

Attestation of Authorship 11

Publications 12

Acknowledgements 13

Dedication 14

1 Introduction 15
1.1 Activity-Centric and Artifact-Centric Modeling 18

1.1.1 Activity-Centric Business Process Modeling 18
1.1.2 Artifact-Centric Business Process Modeling 19

1.2 Research Questions . 20
1.3 Research Objectives . 22

1.3.1 Synthesizing Artifact Lifecycles from Activity-Centric Process
Models . 22

1.3.2 Merging Collaborating Processes of Inter-Organizational Busi-
ness Process (IOBP) Models . 24

1.3.3 Constructing Activity-Centric Process Models from Artifact-
Centric Process Models . 26

1.4 Thesis Contributions . 27
1.4.1 An Approach to Synthesize Artifact Lifecycles from Activity-

Centric Process Models . 27
1.4.2 An Approach to Merge Collaborating Processes of Activity-

Centric IOBP Models . 28
1.4.3 An Approach to Construct Activity-Centric Process Models

from Artifact-Centric Process Models 29
1.5 Thesis Outline . 29

2 Literature Review 31
2.1 Activity-centric business process modeling 31

2.1.1 Process Modeling . 32
2.1.2 Process Realization . 35

5

2.1.3 Inter-Organizational Business Process Modeling 39
2.2 Artifact-centric business process modeling 43

2.2.1 Process Design Methodology 46
2.2.2 Process Discovery and Construction 48
2.2.3 Process Specification and Verification 50
2.2.4 Inter-Organizational Business Process Modeling 55
2.2.5 Process Realization . 57

2.3 Process Model Transformation . 61
2.3.1 Process Tree Generation . 61
2.3.2 Artifact Lifecycle Synthesis . 63

2.4 Process Model Merging . 66
2.5 Process Model Construction . 70
2.6 Summary . 73

3 Synthesizing Artifact Lifecycles from Activity-Centric Process Models 74
3.1 Motivating Example . 75
3.2 Problem Statement and Definitions . 77
3.3 The Synthesis Approach . 80
3.4 Algorithms . 82

3.4.1 Building a Process Tree . 82
3.4.2 Generating Artifact Lifecycles 86
3.4.3 Refining and Synchronizing Artifact Lifecycles 90

3.5 Evaluation . 95
3.5.1 Case Study . 95
3.5.2 Implementation . 98
3.5.3 Experimental Discussion . 98
3.5.4 Performance Analysis . 101

3.6 Discussion and Related Work . 103
3.7 Summary . 104

4 Merging the Collaborating Processes of Activity-Centric Inter- Organiza-
tional Business Process Models 105
4.1 Motivating Example . 106
4.2 Problem Statement and Definitions . 108
4.3 The Merge Approach . 111

4.3.1 Process Interaction Patterns . 111
4.3.2 Merge Overview . 114
4.3.3 Types of Merge . 115

4.4 Algorithms . 122
4.4.1 Parallel Merge: Merging Non-Synchronous Nodes 124
4.4.2 Interactive Merge: Merging Synchronous and Asynchronous

Nodes . 128
4.5 Evaluation . 135

4.5.1 Case Study . 135

6

4.5.2 Implementation . 140
4.5.3 Experimental Discussion . 141
4.5.4 Performance Analysis . 144

4.6 Discussion and Related Work . 145
4.7 Summary . 146

5 Constructing Activity-Centric Process Models from Artifact-Centric Pro-
cess Models 147
5.1 Motivating Example . 148
5.2 Problem Statement and Definitions . 151
5.3 Approach Overview . 153
5.4 Algorithms . 154

5.4.1 Model Construction . 154
5.4.2 Extract Model Traces . 161
5.4.3 Trace-based Analysis . 164

5.5 Evaluation . 165
5.5.1 Case Study . 165
5.5.2 Implementation . 172
5.5.3 Experimental Discussion and Analysis 173

5.6 Discussion and Related Work . 174
5.7 Summary . 175

6 Conclusion and Future Directions 177
6.1 Thesis Contributions . 177

6.1.1 The Synthesis Approach . 178
6.1.2 The Merge Approach . 178
6.1.3 The Construction Approach . 179

6.2 Limitations and Possible Improvements 180
6.3 Future Research Directions . 181

6.3.1 Internet-of-Things (IoT) . 182
6.3.2 Block Chain . 183

References 186

Appendices 201

7

List of Tables

3.1 Dataset . 100

4.1 Summary of symbols used . 114
4.2 Data Set . 142

5.1 Artifact-centric Process Model (ACP Model) 149
5.2 ACP Log . 151
5.3 ACP Model of Purchasing Process . 168
5.4 Execution Log of Purchasing Process Model 170

8

List of Figures

2.1 A Business Process Diagram represented in BPMN (White, 2004) . . 37
2.2 Process-view approach (Jiang, Shao, Gao, Qiu & Li, 2010) 42
2.3 Lifecycle of Guest Check (Nigam & Caswell, 2003) 44
2.4 Four Dimensional Framework (Bhattacharya, Hull & Su, 2009) 45
2.5 Design Methodology from (Bhattacharya et al., 2009) 47
2.6 Artifact-centric View Framework (Yongchareon, Yu, Zhao et al., 2015) 57
2.7 Artifact-centric Process Realization Framework (Ngamakeur, Yongchareon

& Liu, 2012) . 60

3.1 Customer Order Process . 76
3.2 Synthesis Approach . 81
3.3 Customer Order Process (updated AAPM) 83
3.4 Process Tree of AAPM . 85
3.5 Lifecycle of Product artifact . 88
3.6 Generated Lifecycle of Order artifact 92
3.7 Refined Lifecycle of Order artifact . 93
3.8 Statechart representation of Product artifact lifecycle 93
3.9 Synchronized artifact lifecycles of customer order process 94
3.10 Histogram of Sorted BPMN Model Collection 96
3.11 Excerpt of the Recruitment Process Model 97
3.12 Visualization of Process Tree of Customer Order Process 99
3.13 Visualization of Synchronized Artifact Lifecycle of Customer Order

Process . 99
3.14 Execution times of Synthesis algorithms 102

4.1 Buyer-Seller Inter-organizational Business Process (IOBP) 107
4.2 Process Interaction Patterns . 112
4.3 Types of Merge . 116
4.4 Parallel Merge . 117
4.5 Synchronous Non-Split Merge . 118
4.6 Synchronous Non-Split Merge . 119
4.7 Synchronous Split Merge . 120
4.8 Asynchronous Non-Split Merge . 121
4.9 Asynchronous Split Merge . 122
4.10 Parallel Merge . 126

9

4.11 Parallel Merge . 127
4.12 Synchronous Merge . 131
4.13 Synchronous Merge . 132
4.14 Asynchronous Split Merge . 134
4.15 Histogram of Sorted BPMN Choreography Process models 136
4.16 Excerpt of AirTravel Process Model . 137
4.17 Buyer-Seller IOBP and its Integrated Process Model 140
4.18 Integrated Process Model of Buyer-Seller IOBP 141
4.19 Execution times of Merge algorithms 144

5.1 Transformation Approach . 154
5.2 The constructed Activity-Centric Process Model 157
5.3 Execution Traces of Activity-Centric Process Model 163
5.4 Process Traces and Analysis . 165
5.5 Purchasing process model (Yongchareon et al., 2015) 167
5.6 An Abstracted Activity-Centric Model of Purchasing Process 170
5.7 The constructed Activity-Centric Model of Purchasing Process 171
5.8 XML Format of ACP Model . 173

A.1 Complete Recruitment process model 203
A.2 Process tree fragment of Recruitment process model 204
A.3 Lifecycle of Position artifact . 204
A.4 XML Specification of BPMN Process Model 205
A.5 AirTravel Process Model . 206
A.6 The constructed Activity-Centric Model of Purchasing Process 207

10

Attestation of Authorship

I hereby declare that this submission is my own work and
that, to the best of my knowledge and belief, it contains no
material previously published or written by another person
nor material which to a substantial extent has been accepted
for the qualification of any other degree or diploma of a
university or other institution of higher learning.

Signature of candidate

11

Publications

Kunchala, J., Yu, J., Yongchareon, S., Wang, G. (2020, February). Trace-Based
Approach for Consistent Construction of Activity-Centric Process Models from
Data-Centric Process Models. In Australasian Database Conference (pp. 42-54).
Springer.

Kunchala, J., Yu, J., Yongchareon, S., Liu, C. (2019). An approach to merge collab-
orating processes of an inter-organizational business process for artifact lifecycle
synthesis. Computing Journal (IF 2.063, CORE A), 1-26.

Kunchala, J., Yu, J., Yongchareon, S., Han, Y. (2017, January). Towards merging collab-
orating processes for artifact lifecycle synthesis. In Proceedings of the Australasian
Computer Science Week Multiconference (pp. 1-8).

Kunchala, J., Yu, J., Sheng, Q. Z., Han, Y., Yongchareon, S. (2015, September).
Synthesis of artifact lifecycles from activity-centric process models. In 2015 IEEE
19th International Enterprise Distributed Object Computing Conference (pp. 29-37).
IEEE.

Kunchala, J., Yu, J., Yongchareon, S. (2014, October). A survey on approaches to
modeling artifact-centric business processes. In International Conference on Web
Information Systems Engineering (pp. 117-132). Springer.

12

Acknowledgements

With immense pleasure and respect, I would like to thank everyone who contributed to
the successful completion of my doctoral study. I would have never accomplished this
thesis without the love and support of many people.
First and the foremost, I am deeply grateful to my primary supervisor Dr Jian Yu. I
would like to express sincere gratitude to Dr Jian Yu for being with me and helping me in
every step of my PhD journey. From Dr Jian Yu, I received insightful suggestions, hearty
support, and invaluable encouragement during the course of this study. The research
methods and wisdom shared during the meetings were the major contributions toward
the successful completion of this thesis. I would also like to thank for providing the
teaching opportunity here at the School of Engineering, Computer, and Mathematical
Sciences (SECMS), which helped me improve my communication and teaching skills,
also to socialize and interact with students and other staff members. I would also like to
thank Dr Jian Yu for helping me to find a PhD Fees Scholarship and one-off stipend,
which helped me to concentrate on research without a financial distress.
Next, I would like to thank my second supervisor Dr Quan Bai for his valuable guidance
and motivation. Dr Quan Bai has always provided insightful suggestions starting from
the time of my successful admission to the completion.
I would also like to express my sincere gratitude to my additional supervisor Dr
Sira Yongchareon. With immense knowledge in the Artifact-centric Business Process
Modeling (ACBPM) research area, Dr Sira has guided me through and offered valuable
suggestions in almost every stage of my PhD study.
I am also thankful to numerous staff at AUT, including Saide and Karishma. I would
thank for their friendship, advice, moral and social support, and for guiding and sharing
their research knowledge and experience. The SCCRL research lab has been my
second home during the last few years and I found fabulous people especially Monjur
and Abid whose incredible hard work, determination, and perseverance helped me to
keep motivated. The SERL research lab has also been an amazing research group to
familiarize with and share ideas.
Finally, I am grateful and indebted to my family especially to my parents Mrs Papamma
Thanniru and Mr Nageshwara Rao Thanniru, and my beloved husband Mr Hari Babu
Kunchala and children Sharath Chandra Kunchala and Nikhil Chandra Kunchala for
their extreme care, love and support during this long journey.

13

Dedication

With great love and respect, I dedicate this thesis to my beloved husband Mr Hari Babu
Kunchala and children Sharath Chandra Kunchala and Nikhil Chandra Kunchala.

14

Chapter 1

Introduction

Business processes have become a major driving force enabling organizations to achieve

defined objectives and to stay competitive in the ever-changing business environment.

Business process modeling (BPM) is one of the foundational characteristics of busi-

ness process management (Van der Aalst, 2013; Jonnavithula, Antunes, Cranefield &

Pino, 2015), aiding organizations in designing and managing their business processes.

BPM can increase productivity and decrease costs by streamlining business operations.

Process models are a means to achieve these objectives by communicating business

information to a wide range of people – from analysts who sketch the initial drafts of

the processes and system developers responsible for implementing these processes, to

the customers who use the final product (R. Liu, Bhattacharya & Wu, 2007).

In today’s competitive marketplace, BPM is a prominent tool helping organizations

refine their business operations to gain as well as provide value to their customers.

BPM intends to separate process logic from application logic in order to improve

process efficiency by enabling the automation of business processes (Orlowska, 1997).

Recently, BPM has greatly accelerated through two technological evolutions, including

Service-Oriented Architecture (SOA) and Internet of Things (IoT). SOA provides a set

of design principles and methodologies (MacKenzie et al., 2006) to aid organizations in

15

Chapter 1. Introduction 16

constructing loosely-coupled and inter-operable business processes using web services.

SOA also helps organizations to update their business processes in a more rapid and

cost-effective manner; and to seamlessly obtain and integrate new business partners

and customers. IoT has the potential to connect physical and digital objects, when they

are equipped with smart devices, such as sensors and actuators (Goyal & Jain, 2011;

Friedow, Völker & Hewelt, 2018), to serve a specific purpose. Many organizations

have already implemented IoT technology for monitoring their business processes –

including manufacturing, retailing and transportation, in order to gain some of the

benefits of IoT, such as reducing costs and improving process visibility and efficiency

(Pundir, Jagannath & Ganapathy, 2019).

The integration of such technologies can bring new challenges to organizations,

mainly in the modeling and management of their business processes. Thus, modeling

paradigms are required to enable flexible and reusable process designs to address

emerging business requirements. Currently, the activity-centric and artifact-centric

approaches are the two major paradigms in BPM that can address these requirements.

Both paradigms aim to represent two important aspects of a business process including:

control flow and data. The control flow represents the partial order between activities,

events, and gateways, whereas the data (or data aspects) represent the key business

objects (or entities), their states, attributes including their interrelations (Meyer, Smirnov

& Weske, 2011). A data object represents the information (such as physical/electronic

documents) that is created, manipulated and used by a business process. The activity-

centric approach is a traditional approach that places more emphasis on the control

flow aspect and treats data as simple black boxes that act as input and output to these

activities. On the other hand, the artifact-centric approach provides equal support to both

the control flow and data aspects. Business artifacts (or artifacts) and their interacting

lifecycles are the building blocks of artifact-centric process models (Nigam & Caswell,

2003). An artifact is a business-related object that is created, evolved and archived as

Chapter 1. Introduction 17

it passes through a business process (Cohn & Hull, 2009). The lifecycle captures all

possible stages that an artifact navigates from its creation to archiving.

The activity-centric and artifact-centric approaches support modeling both the

standalone processes that are used within an organization and those that span several

organizations, such as inter-organizational business processes (IOBPs). The traditional

activity-centric approach has been extensively used to support the dynamic cooperation

of IOBPs in a Service-Oriented setting (2006; 2010), and is also used for the modeling,

execution and monitoring of IoT-aware business processes (Petrasch & Hentschke, 2015;

Schönig, Ackermann, Jablonski & Ermer, 2018). In recent years, the artifact-centric

approach has also been identified as one promising paradigm that lends itself well

to Service-Oriented collaboration due to its modular nature (R. Liu, Wu & Kumaran,

2010; Yongchareon et al., 2015). This approach has also been extended to monitor the

compliant execution of IOT-enabled IOBPs. (Meroni, Di Ciccio, Mendling et al., 2017;

Meroni, Baresi, Montali & Plebani, 2018).

In recent years, transformation between the activity-centric and artifact-centric

paradigms has been proposed as an important research aspect to understand the rela-

tionship between the two paradigms (S. Kumaran, Liu & Wu, 2008; R. Liu et al., 2010).

However, most of the existing research has focused on unidirectional transformation

neglecting that both paradigms are compatible to each other such that one can be trans-

formed into the other and vice versa (Meyer & Weske, 2013). In addition, the existing

approaches for the activity-centric process transformation into the artifact-centric pro-

cess neglect the interaction dependencies between the artifacts (Ryndina, Küster & Gall,

2006; Cabanillas, Resinas, Ruiz-Cortés & Awad, 2011). Thus, this thesis aims to bridge

these gaps between the activity- and artifact-centric paradigms by proposing approaches

that not only fill the above specified gaps but also facilitate the transformation between

these two mainstream modeling paradigms. The remaining chapter is organized into five

sections. Section 1.1 reviews the two major paradigms for business process modeling.

Chapter 1. Introduction 18

Section 1.2 outlines the research questions. Section 1.3 summarizes the objectives of

the proposed research. Section 1.4 summarizes the research contributions of this thesis.

Section 1.5 provides an outline of this thesis.

1.1 Activity-Centric and Artifact-Centric Modeling

In this section, the benefits and drawbacks of each modeling paradigm are discussed as

well as the domains where the activity-centric and the artifact-centric paradigms can be

useful to gain major advantage.

1.1.1 Activity-Centric Business Process Modeling

The traditional activity-centric approach is more beneficial in the classical business

domain, where the process flow is based on a predefined order of activities, such as

accounting, insurance handling and municipal procedures (Meyer & Weske, 2013).

An activity-centric approach is imperative in nature, which means it is characterised

by a straightforward execution of predefined execution paths, which may result in con-

siderable process efficiency for static and standardised business processes (Goedertier,

Vanthienen & Caron, 2015). In addition, most of the activity-centric modeling lan-

guages, such as UML and BPMN 1, provide clear visual representations of business

processes.

Although this approach is efficient in modeling activity-driven processes, it becomes

difficult to understand these processes when they grow in size and complexity (R. Liu

et al., 2010). This drawback is mainly due to their tightly-coupled process structures,

which also make it difficult to extend and reuse these processes naturally (S. Kumaran

et al., 2008). In addition, due to the the lack of a holistic view of the control flow and
1Business Process Model and Notation, http://www.bpmn.org/

Chapter 1. Introduction 19

data aspects, business people using this approach often focus on the execution of activ-

ities rather than the data emerging from them, thus hindering operational innovations

(Bhattacharya, Gerede, Hull, Liu & Su, 2007). The absence of data in activity-centric

process models can also bring challenges in designing effective user-friendly human

interfaces (Yongchareon et al., 2018) that are responsible for driving overall process

execution in process management systems. Therefore, the activity-centric approach is

considered less efficient for modeling processes such as those in the healthcare domain

(Künzle & Reichert, 2011), for which both the control flow and data are crucial.

1.1.2 Artifact-Centric Business Process Modeling

In recent years, the artifact-centric approach (Nigam & Caswell, 2003) has gained

increased attention for elevating data to the same level as the control flow. Over a

decade, this approach has been studied by several academic and industrial researchers

whose efforts lead to the emergence of various design methodologies (Bhattacharya

et al., 2009; Kovář, Beránek & Feuerlicht, 2017), frameworks (Bhattacharya et al.,

2009; Cohn & Hull, 2009; Kucukoguz & Su, 2010; Limonad, Boaz, Hull, Vaculin &

Heath, 2012; Ngamakeur et al., 2012; Solomakhin, Montali, Tessaris & De Masellis,

2013; Yongchareon et al., 2015), meta-models (G. Liu et al., 2009; Abiteboul, Bourhis,

Galland & Marinoiu, 2009; Kucukoguz & Su, 2010; Hull et al., 2010; Lohmann & Wolf,

2010), modeling tools (Strosnider, Nandi, Kumaran, Ghosh & Arsnajani, 2008; Cohn,

Dhoolia, Heath, Pinel & Vergo, 2008; Heath et al., 2013) and user-centric approaches

(Sukaviriya, Mani & Sinha, 2009; Yongchareon, Liu, Zhao & Xu, 2010; Yongchareon

et al., 2018) in support to this new modeling paradigm.

The application of the artifact-centric approach in various domains, including

insurance and global finance (S. Kumaran et al., 2008; Chao et al., 2009; Cohn &

Hull, 2009) has revealed that this approach provides rich and natural communication of

Chapter 1. Introduction 20

business operations and processes among diverse stakeholders of an organization, and

also lends itself well to process componentization and extension (Cohn & Hull, 2009;

S. Kumaran et al., 2008) compared with the traditional activity-centric approach. The

existing literature has also demonstrated that the artifact-centric approach offers higher

flexibility and reusability support than the traditional activity-centric approach (R. Liu

et al., 2010; Yongchareon et al., 2015). The other key advantages of this approach are

in reducing process complexity and business-level articulation, providing an ability

to analyze and reconcile changes from multiple business perspectives (eg. process

and organization) and also enabling the rapid creation of IT solutions (Bhattacharya,

Caswell, Kumaran, Nigam & Wu, 2007; R. Liu et al., 2010). As discussed above, the

existing literature of these two modeling paradigms acknowledges that the activity-

centric paradigm is useful in a static business environment where the process efficiency

is of major concern, as most of the existing process specification and execution standards

support this traditional paradigm (Meyer & Weske, 2013; de Leoni, Maggi & van der

Aalst, 2015; Caron & Vanthienen, 2016). While in a dynamic environment, the artifact-

centric approach can be adopted to build flexible and reusable process structures that

can quickly adapt to changing business requirements and also bring cost benefits.

1.2 Research Questions

In recent years, the artifact-centric approach has gained significant interest due to its

aforementioned benefits. Process flexibility is the remarkable benefit of this paradigm

with loosely-coupled process structures that allow changes at both design-time and run-

time. As discussed in the previous section, various aspects of both the activity-centric

and artifact-centric paradigms have been extensively studied, showing a promising

trend in their state of the art. However, further research is suggested to bridge the gap

between these two modeling paradigms to communicate their importance, value and

Chapter 1. Introduction 21

usefulness to a wider business and research community (Hull, 2008; S. Kumaran et

al., 2008; Meyer & Weske, 2013; Yongchareon et al., 2015; Hull, 2017; Mendling et

al., 2018). Therefore, this thesis focuses on addressing three key research questions to

provide increased support for organizations that intend a transformation between their

activity-centric and artifact-centric process models.

RQ 1. How to efficiently transform the traditional activity-centric process models

into the artifact-centric process models?

The artifact-centric approach describes a business process in terms of artifacts that

represent key business entities and their interacting lifecycles. With the increased

significance of this approach, the research community has focused on the transforma-

tion of traditional activity-centric process models into artifact-centric process models.

The proposed transformation mainly aims to generate or synthesize the synchronized

artifact lifecycles from the activity-centric process models. The existing approaches

(S. Kumaran et al., 2008; Eshuis & Van Gorp, 2016) for reaching this objective are

limited in terms of having a restricted view on the artifacts and their synchronization

dependencies or only supporting semi-automatic transformation (Ryndina et al., 2006).

Therefore, an automated approach must be proposed to address these limitations and

facilitate the defined transformation.

Artifact-centric process models are particularly useful to ensure the correct execution

of business processes that span several organizations (Küster, Ryndina & Gall, 2007),

such as IOBPs that share artifacts to achieve a common business goal. The existing

transformation approaches can be utilized to synthesize the artifact-centric process

model of an IOBP, if the collaborating processes of IOBP are merged into a single

integrated process. Thus, this requirement leads to the following research question.

RQ 2. How to merge the collaborating processes of activity-centric inter-organizational

business process models?

The transformation of activity-centric IOBPs is not proposed, mainly due to the

Chapter 1. Introduction 22

challenges in capturing artifacts and preserving their state and interaction dependencies.

Therefore, an approach must be proposed to address the above research question.

The value of an artifact-centric approach is realized in the flexible representations

that allow business people to easily update and manage their business processes (Nigam

& Caswell, 2003). However, the declarative rule-based modeling of this approach that

offers higher flexibility often results in process models that are less comprehensible than

the activity-centric process models, due to their large and unstructured sets of business

rules (Haisjackl & Zugal, 2014; Caron & Vanthienen, 2016). Thus, this requirement

leads to the following research question.

RQ 3. How to construct the activity-centric process models from the artifact-centric

process models?

There are a few approaches that use object (artifact) lifecycles to generate activity-

centric process models (Küster et al., 2007; Redding, Dumas, Hofstede & Iordachescu,

2008; Meyer & Weske, 2013) rather than the artifact-centric process models that contain

business rules. Therefore, an approach that uses artifact-centric process models to

construct activity-centric process models must be proposed.

1.3 Research Objectives

This section elaborates on the objectives of proposed research, including the motivation

to study each of the research questions.

1.3.1 Synthesizing Artifact Lifecycles from Activity-Centric Pro-

cess Models

The artifact-centric approach provides a compelling way to model and manage business

processes. This approach is now incorporated into organizations such as IBM (Chao et

Chapter 1. Introduction 23

al., 2009) and Unicorn (Kovář et al., 2017), enhancing the way that these businesses

model and deploy their business operations and processes. The holistic view that this

approach takes avoids the notorious discrepancy between the process modeling and data

modeling of the traditional activity-centric approach which considers these two aspects

separately (Bagheri Hariri, Calvanese, De Giacomo, Deutsch & Montali, 2013).

In recent years, research on the transformation of the traditional activity-centric

process models into artifact-centric process models has received considerable atten-

tion. The proposed transformation aims to synthesize (or generate) the synchronized

lifecycles of artifacts from activity-centric process models. A synchronized artifact

lifecycle is a commonly used visual representation of an artifact-centric process model

that represents process behaviour in a set of states that an artifact assumes throughout

a business process and its dependencies with the states of other artifacts. Some of the

benefits that stem from such a transformation include reduced process complexity and

reusable process design (R. Liu et al., 2010); and improved flexibility and efficient user

interface development (Yongchareon et al., 2018). Therefore, this thesis focuses on

proposing an approach to facilitate this transformation.

In the past several years, some approaches have been proposed to achieve this

objective (Ryndina et al., 2006; S. Kumaran et al., 2008; Cabanillas et al., 2011; Eshuis

& Van Gorp, 2012; Meyer & Weske, 2013). However, the existing approaches have

some limitations in either not supporting automatic transformation or having a restricted

view on the artifacts and their synchronization (or interaction) dependencies. For

example, the approaches presented in (S. Kumaran et al., 2008; Eshuis & Van Gorp,

2012) restrict the flow of artifacts among activities, and the approaches presented in

(Ryndina et al., 2006; Cabanillas et al., 2011) do not represent the synchronization

dependencies of artifacts (or objects) in the generated lifecycles, which degrades the

understanding of process behaviour. Similarly, the approach presented in (Meyer &

Weske, 2013) does not support automatic model transformation and this approach is not

Chapter 1. Introduction 24

thoroughly evaluated.

Clearly, for any organization that intends to transform its traditional activity-centric

process models into artifact-centric process models, an automated approach that does

not pose such restrictions is always desirable. Therefore, this thesis aims to present

an automated approach that synthesizes the lifecycles of artifacts from activity-centric

process models that contain artifact data flows. These lifecycles are also synchronized to

show interaction dependencies between artifacts. The synthesized artifact lifecycles are

useful to ensure the correct execution of business processes by tracking their progress

towards the defined business objectives. The existing works use a case study and a

set of process models to evaluate their approaches. This study also follows similar

evaluation criteria, where the feasibility of the proposed approach will be demonstrated

using a case study and the applicability and efficiency is evaluated by utilizing a process

model collection from the BPM Academic Initiative (Kunze, Berger, Weske, Lohmann

& Moser, 2012).

1.3.2 Merging Collaborating Processes of Inter-Organizational Busi-

ness Process (IOBP) Models

Due to growing business requirements, organizations tend to integrate their business

processes to better serve their customers’ needs and achieve competitive benefits. In

this context, an Inter-Organizational Business Process (IOBP) model enables two or

more organizations to represent their business activities to achieve a common business

objective. IOBP provides a collaborative environment, where participating organizations

can coordinate through mutual contracts agreed upon to fulfill their objectives while

maintaining their privacy and autonomy.

Both, the activity-centric and artifact-centric approaches provide support to the mod-

eling and management of these IOBPs. The activity-centric IOBP can be represented

Chapter 1. Introduction 25

as a set of collaborating processes, where they exchange some information (or data) to

perform a business activity. The artifact-centric IOBP is represented as a set of lifecycles

of artifacts and their synchronization dependencies. Recent studies have explored how

the artifact-centric modeling can facilitate collaboration between organizations (Hull,

Narendra & Nigam, 2009; Yongchareon et al., 2015). When organizations involved

in such collaborative environments intend to shift their IOBPs from the traditional

activity-centric approach to the artifact-centric approach, an automated approach is

needed to facilitate such a transformation. However, unlike standalone activity-centric

process models, the transformation of activity-centric IOBPs is challenging due to

the data (artifacts and states) shared between the collaborating processes to conduct a

business activity.

In recent years, process merging has become increasingly important for organiza-

tions to redesign their business processes in order to gain operational improvements

and cost savings. There exist many research contributions for merging business process

models (S. Sun, Kumar & Yen, 2006; Gottschalk, van der Aalst & Jansen-Vullers, 2008;

La Rosa, Dumas, Uba & Dijkman, 2013; Schunselaar, Leopold, Verbeek, van der Aalst

& Reijers, 2014; Zemni, Mammar & Hadj-Alouane, 2016; Huang, Li, Liang, Xue &

Wang, 2018). However, these existing works focus on merging standalone process

models by considering their common process elements, irrespective of the data aspect.

Additionally, only a few of them support the automatic merging of process models.

For example, the merge approaches presented in (S. Sun et al., 2006; La Rosa et al.,

2013) can only support the semi-automatic merging of standalone process models, and

those presented in (Gottschalk et al., 2008; Schunselaar et al., 2014; Zemni et al., 2016;

Huang et al., 2018) use similarity matching between the process models, where the

matching nodes are first mapped into the merged model and then the remaining nodes

are added based on their execution dependencies with the previously merged fragments.

Based on the notion of process merging, a novel approach is proposed that merges

Chapter 1. Introduction 26

the collaborating processes of IOBP models containing artifacts. The proposed merge

approach combines processes based on the synchronous and asynchronous process

interaction patterns that define the type of communication between the collaborating

processes. This approach is also validated by following evaluation criteria from the

existing literature, where the feasibility and applicability of the proposed approach is

evaluated using a case study and a set of IOBP models from varying business domains.

The structural and behavioural aspects of the resulting merged (or integrated) process

models are also proved using theorems.

1.3.3 Constructing Activity-Centric Process Models from Artifact-

Centric Process Models

Nowadays, organizations increasingly rely on web service technologies to implement,

manage and automate their business processes. The automation starts from process

models that represent a series of activities to achieve a specific business goal. Automa-

tion efficiency is reduced if these models are specified with many alternative execution

paths, which increase complexity and degrade the process efficiency. The activity-

centric approach is imperative in nature, which requires a process model to explicitly

specify every alternative execution sequence during design-time. On the other hand,

the artifact-centric approach follows a declarative style to describe process behaviour,

where the execution sequence of activities is governed by business rules. Although the

artifact-centric approach provides higher design-time flexibility, most of the existing

process models are designed using the activity-centric approach. This is mainly due

to the existence of numerous modeling notations, tools and web technologies that

provide higher intuitiveness and run-time efficiency for activity-centric process models.

Therefore, a reverse transformation approach is proposed, where artifact-centric process

models are used to construct activity-centric process models.

Chapter 1. Introduction 27

A few approaches exist for the defined transformation (Küster et al., 2007; Meyer &

Weske, 2013; Prescher, Di Ciccio & Mendling, 2014; De Giacomo, Dumas, Maggi &

Montali, 2015). However, these approaches have different objectives and limitations.

For example, the approaches presented in (Küster et al., 2007; Meyer & Weske, 2013)

aim to generate activity-centric process models from unsynchronized object lifecycles.

The approach presented in (Prescher et al., 2014) produces duplicate tasks that lead

to an increased number of execution alternatives for the resulting process models.

Similarly, the approach presented in (De Giacomo et al., 2015) does not consider the

parallel states of objects. Therefore, an approach is proposed here that supports the

automatic transformation and addresses the above mentioned limitations. Following the

evaluation criteria from the existing literature, the feasibility of the proposed approach

is demonstrated using a case study and the applicability is evaluated using prototype

implementation.

1.4 Thesis Contributions

This thesis aims to study the activity-centric and artifact-centric approaches to business

process modeling and address the three research questions outlined in Section 1.2. In

this section, the research contributions of this thesis are briefly summarized.

1.4.1 An Approach to Synthesize Artifact Lifecycles from Activity-

Centric Process Models

This thesis proposes an automated approach to transform activity-centric process models

into artifact-centric process models. The proposed approach aims to synthesize the

artifact lifecycles and their synchronization dependencies from the activity-centric

process models that contain artifact data flows. To achieve this objective, the approach

Chapter 1. Introduction 28

first generates a tree representation of the activity-centric process model and then

constructs the lifecycle for each artifact inherent in the process model. Moreover, the

synchronization dependencies between the artifacts are also identified and modelled in

the synthesized artifact lifecycles.

The proposed synthesis approach consists of algorithms, which are implemented

to support the automatic transformation of activity-centric process models. A process

model collection from the repository of BPM Academic Initiative has been utilized

to evaluate the feasibility and applicability of the proposed approach. Compared to

the existing approaches, this approach does not restrict the flow of artifacts, considers

synchronization dependencies between the artifacts and is useful to automatically

synthesize artifact-centric counterparts such as the synchronized artifact lifecycles from

activity-centric process models.

1.4.2 An Approach to Merge Collaborating Processes of Activity-

Centric IOBP Models

This thesis proposes an automated approach to merge the collaborating processes of

activity-centric IOBP models that contain artifact data flows. The proposed approach

is based on the synchronous and asynchronous interactions between the collaborating

processes. Specifically, rules are proposed that define ways to combine both the

interacting and non-interacting nodes of collaborating processes. Algorithms are also

presented based on these rules to support automatic merging. The algorithms are

implemented and evaluated to show their feasibility and applicability using a subset of

IOBPs from different business domains.

The proposed merge approach compliments the synthesis approach by extending

support to IOBP models. Compared to the existing process merging approaches, the

proposed approach does not demand the collaborating processes of IOBP models with

Chapter 1. Introduction 29

common process fragments and also considers their data aspects.

1.4.3 An Approach to Construct Activity-Centric Process Models

from Artifact-Centric Process Models

An automated approach is proposed to construct activity-centric process models from

artifact-centric process models. The proposed approach consists of algorithms to support

the construction of activity-centric process models and to determine their consistency

with the base models. A trace-based method is a part of these algorithms, which extracts

the execution traces of constructed models and analyzes these traces over the execution

traces of artifact-centric process models to check the consistency between the base and

constructed process models. The feasibility and applicability of the proposed approach

is demonstrated using a process model from the supply chain domain.

The proposed algorithms are also implemented and evaluated using two motivating

business scenarios. Compared to the existing approaches, the proposed approach

supports automatic construction and it does not result in duplicate tasks, thus avoiding

the redundant execution alternatives in the constructed process models.

It is worth mentioning that the scope of the above discussed transformation ap-

proaches is limited to structured (and semi-structured) process models that contain

commonly used modeling constructs including artifacts and states. Thus, one may need

to extend these approaches to transform process models that contain other modeling

elements such as nested loops or subroutines.

1.5 Thesis Outline

This thesis is organized into six chapters. In this section, the key contents of each of the

remaining chapters are briefly summarized.

Chapter 1. Introduction 30

Chapter 2 presents the necessary background to the activity-centric modeling

paradigm and reviews the overwhelming evolution of the artifact-centric approach

over the last decade. This chapter also discusses related works regarding the three

research questions highlighted and discussed in the previous section.

Chapter 3 presents an automated approach to transform activity-centric process

models into artifact-centric process models. In this chapter, the problem statement is

first formulated and then each key notion used in resolving the proposed problem is

formally defined. Then, the synthesis approach is presented and the three important

phases of this approach is discussed in detail. A case study is also presented along with

the implementation and evaluation details of the proposed approach. The performance

analysis of the proposed approach is also demonstrated.

Chapter 4 presents an automated approach to merge the interacting processes of an

activity-centric IOBP model that contains artifact data flows. In this chapter, different

types of merge notions and their corresponding rules are proposed. The algorithms

that are defined based on the proposed rules are presented and their implementation

and evaluation details are also discussed. The performance analysis of the proposed

approach is also demonstrated.

Chapter 5 presents an approach for the construction of activity-centric process mod-

els from artifact-centric process models. The proposed approach provides algorithms to

construct the activity-centric process model and to determine the consistency between

the constructed model and the base model. A comprehensive business case is used to

demonstrate the feasibility of the proposed approach, which is also implemented and

evaluated using two motivating business scenarios.

Chapter 6 summarizes the objectives and contributions of this thesis and concludes

the thesis by presenting a discussion on the limitations and future directions of the

proposed research.

Chapter 2

Literature Review

In this chapter, a critical review of the literature is presented to provide the context in

which the research is undertaken. This chapter also classifies and discusses existing

works related to the three research questions outlined in the previous chapter. Section

2.1 presents the necessary background to an activity-centric business process mod-

eling approach. Section 2.2 reviews the state of the art of artifact-centric business

process modeling approach. Section 2.3 discusses the existing works related to the

activity-centric process model transformation (RQ1). Section 2.4 discusses the existing

approaches to the merging of business processes (RQ2). Section 2.5 discusses the

existing approaches to activity-centric process model construction (RQ3). Section 2.6

outlines the summary of this chapter.

2.1 Activity-centric business process modeling

The activity-centric approach emphasizes the representation of structured activities

carried out to achieve business objectives, where the data involved in conducting

these activities is of secondary concern. This traditional approach is considered more

appropriate for traditional domains, such as accounting, insurance and municipal

31

Chapter 2. Literature Review 32

procedures, where the process flow is based on the activities that need to be executed in

a specific order (Meyer & Weske, 2013).

A large volume of literature exists in support to the modeling, management and

execution of activity-centric business processes. In the following, we briefly elaborate

on some of the key contributions regarding this traditional modeling paradigm.

2.1.1 Process Modeling

Several activity-centric modeling notations exist that vary in methods of capturing a

business process and their level of expressive power. The most commonly used graphical

notations include UML Activity Diagrams (UML AD) (Dumas & Ter Hofstede, 2001),

Business Process Model and Notation (BPMN) (White, 2004), Event-driven Process

Chain (EPC) (Kindler, 2004; Keller, Scheer & Nüttgens, 1992), and Yet Another

Workflow Language (YAWL) (Van Der Aalst & Ter Hofstede, 2005). Each of these

modeling notations provides its own set of constructs and semantics to represent business

processes.

UML Activity Diagrams (UML AD) (Dumas & Ter Hofstede, 2001) is one of the

commonly used modeling notations for representing business processes. A business

process model expressed in UML AD can specify activities and their associations,

including the business objects that flow among these activities. The modeling constructs

of this notation also support parallelism and the event-driven behaviour of complex

business processes (Eshuis, 2006).

Event-driven Process Chain (EPC) (Keller et al., 1992) is another modeling language

used to represent temporal and logical dependencies between the activities of a business

process. EPC provides three types of modeling elements, including functions (to capture

the business activities), events (to specify pre- and post-conditions of functions) and

connectors (that link functions and events) to construct an activity-centric process model

Chapter 2. Literature Review 33

(Kindler, 2004).

Yet Another Workflow Language (YAWL) (Van Der Aalst & Ter Hofstede, 2005) is

a modeling language based on Petri Nets (Murata, 1989) which is proposed to facilitate

the modeling of complex workflows. YAWL is extended from workflow nets (a class

of Petri Nets) described in (Van der Aalst, 1998; Van Der Aalst, Van Hee & van Hee,

2004). This extension provides modeling support to multiple instances, composite tasks,

OR-joins, removal of tokens and directly connected transitions in a complex workflow

(Van Der Aalst & Ter Hofstede, 2005).

Business Process Model and Notation (BPMN) (White, 2004) is another modeling

notation that gained popularity for specifying business processes in a highly expressive

manner (Chinosi & Trombetta, 2012). The primary objective of BPMN is to provide a

graphical notation, called Business Process Diagram (BPD), that is easily understand-

able to business users.

In recent years, BPMN has grown as an OMG Standard (B. P. M. N. OMG, 2006)

by presenting intuitive and highly expressive modeling constructs for representing both

standalone and inter-organizational business processes (IOBPs). Therefore, this thesis

will utilize this notation for representing activity-centric process models. In order to

familiarize the reader with BPMN, a brief discussion of the modeling constructs of this

notation follows. These modeling elements are mainly categorized into Flow Objects,

Data, Connecting Objects, Swimlanes and Artifacts (Zafar et al., 2018; Dijkman, Dumas

& Ouyang, 2008).

Flow Objects (Events, Activities and Gateways). These are the key modeling

constructs that specify the behaviour of a business process. An event (start, intermediate,

end) in this category represents an occurrence of some action that may have an impact

on the business process. The start event acts as a trigger to initiate the process. The

intermediate event represents the occurrence of an event in between the starting and

ending of a business process. The end event represents the completion of a process.

Chapter 2. Literature Review 34

Activities constitute units of work performed in a business process and gateways are for

controlling the flow of these activities.

Data (Data Objects, Data Inputs, Data Outputs and Data Stores). These elements

represent the data entities used and produced by the activities in the BPMN process

model. While the data objects refer to entities, their mapping as input and output to

related activities are specified using data inputs and data outputs. The data stores are

mechanisms to store data objects in order to support the execution of activities.

Connecting Objects (Sequence Flow, Message Flow and Association). These ele-

ments are the means to represent flow objects that are connected to form a process flow.

While a sequence flow represents an order of flow elements, the message flow shows the

interaction between different process components. An association is for representing

information flows in a BPMN process model. Usually, associations are for linking data

objects to BPMN activities.

Swimlanes (Pools and Lanes). These elements are for grouping primary modeling

constructs. Pools are used to set the boundaries of a business process, where a pool

represents at most one business process. Lanes are for representing sub-partitions

within a pool and are used to organize and categorize activities. Most commonly, a lane

represents an organizational role in a BPMN process model.

Artifacts (Data Object, Group and Annotation). These elements are used to provide

additional information about a business process in the form of data objects. Group

provides a means to categorize several process elements together according to certain

criteria. Annotation is for adding more information to comprehend a process component

or the process itself.

As discussed above, each modeling notation has its own constructs and capabilities

to represent business processes. The formal languages, such as Petri Nets (Murata,

1989) and Pi calculus (Milner, 1999), also support the modeling and verification of

activity-centric business processes.

Chapter 2. Literature Review 35

2.1.2 Process Realization

The Web Service Business Process Execution Language (WS-BPEL or BPEL) (Andrews

et al., 2003) and Web Services Choreography Description Language (WS-CDL) (W3C,

2005) are the two commonly known languages that provide a code-based way to specify

activity-centric processes executable in the process management systems (Marrella et

al., 2015).

Business Process Execution Language (BPEL)

The Business Process Execution Language for Web Services (previously known as

BPEL4WS) (Andrews et al., 2003) is a popular, commonly accepted and specialized

language that emerged as a de-facto industry standard for defining executable business

processes. BPEL extends the web service interaction model (Andrews et al., 2003)

and became an OASIS standard (Arkin et al., 2005) for web service composition and

orchestration. It is an XML-based language designed to execute a series of web-based

transactions and/or characterize interfaces needed to complete web-based transactions in

a service-oriented setting. BPEL combines two workflow languages: WSFL (Leymann

et al., 2001) and XLANG (Peltz, 2003), and supports a web service technology stack

that contains SOAP, WSDL, UDDI, WS-Reliable Messaging, WS-Addressing, WS-

Coordination and WS-Transaction (Andrews et al., 2003; Ouyang et al., 2007).

BPEL provides an environment where enterprises can easily and efficiently develop

their business processes and quickly respond to changing needs. BPEL is platform

independent and supports features such as scalability and flexibility. To define business

processes, BPEL provides a variety of XML constructs, including: partners to define

the actors in a business transaction; containers to define the messages that need to

be transmitted; operations to define the type of web services required; and port types

to define the web service connections required for the operations (Andrews et al.,

Chapter 2. Literature Review 36

2003; Ouyang et al., 2007). These constructs can also be used to specify the order of

operations, their looping and synchronous and asynchronous requirements.

In addition to process orchestration, BPEL has also been extended to support Cho-

reography (Decker, Kopp, Leymann & Weske, 2007) as a choreography, language

named BPEL4Chor. Orchestration refers to the process, where one central web service

(process) controls all the involved web services and coordinates the execution of differ-

ent operations on them. Here the central web service only knows about the composition,

other web services are not required to realize that they are involved in that composition.

On the other hand, process choreography does not rely on a central coordinator. Thus,

every web service in this setting knows exactly when to execute its operations and when

to interact with other web services. Process-centric languages such as UML and BPMN,

can be naturally mapped to BPEL (Ouyang, Dumas, Ter Hofstede & Van der Aalst,

2006; Ouyang, van der Aalst, Dumas & Ter Hofstede, 2006; Ouyang, Dumas, Breutel

& ter Hofstede, 2006).

Web Services Choreography Description Language (WS-CDL)

The WS-CDL is an XML-based specification language for describing cross-organizational

collaborations in a choreography setting, where multiple parties exchange messages

using web services to accomplish a common business objective. WS-CDL is designed

to define the observable behaviours of multiple parties involved in the collaboration

from a global perspective (Kavantzas, Burdett, Ritzinger & Lafon, 2005). WS-CDL

has been designed in a manner that it can be used in conjunction with the WS-BPEL

(web services business process execution language). Mendling et al. (2008) proposed

to derive the BPEL process definitions for every collaborating party from a WS-CDL

choreography model.

Figure 2.1 presents an example of process choreography, where a business process

diagram (BPD) is represented using the modeling constructs of BPMN. Here, the BPD

Chapter 2. Literature Review 37

Figure 2.1: A Business Process Diagram represented in BPMN (White, 2004)

is used to capture the interaction between two participants or entities. As shown in

the figure, the two participants (Doctor and Patient) are separated by pools and their

interaction is represented through message flows that are exchanged to carry out some

activity.

There are some existing works on modeling and executing activity-centric process

interactions under SOA. Decker et al. proposed choreography modeling by extending

Petri Nets (as interaction Petri Nets) (Decker & Weske, 2007) and BPMN (as interaction

BPMN (iBPMN)) (Decker & Barros, 2007) for representing process interactions. It

is stated that, these extensions can improve the way designers create and understand

interaction models and also help in reducing compatibility issues. Later, Decker and

Weske presented a comprehensive toolset (Decker & Weske, 2011) that includes a

modeling environment for iBPMN interaction models and interaction Petri Nets, and

supports the analysis of these models.

Barker et al. (2009) also introduced a choreography language, named Multiagent

Protocols (MAP), based on process calculus (Milner, Parrow & Walker, 1992) for the

specification, verification and enactment of web service interactions. Wieczorek et al.

Chapter 2. Literature Review 38

(2009) presented a choreography modeling language, called Message Choreography

Modeling (MCM), to address the service interaction requirements in the ERP software

development context.

There also exists a few declarative languages to specify activity-centric processes

and their interactions. Let’s Dance (Zaha, Barros, Dumas & ter Hofstede, 2006) is a

declarative language for modeling behavioural dependencies between web services that

capture message interactions from both local and global viewpoints. This language

is proposed based on Computation Tree Logic (CTL) (Clarke & Emerson, 1981) to

address the crucial requirements (abstraction, comprehensibility and suitability) of

service interaction modeling.

Van der Aalst and Pesic (2006) proposed a declarative service flow language, called

DecSerFlow, for the specification and enactment of service flows and their monitoring

based on constraints (or rules) defined in temporal logic (Clarke, 1999). The authors

state that this language can be extended to monitor the conformance of service flows.

Later, Montali et al. (2010) adopted DecSerFlow to propose mappings onto Linear

Temporal Logic (LTL) (Jard & Jeron, 1989) and Abductive Logic Programming (Kakas,

Kowalski & Toni, 1992) to enrich the expressiveness of this declarative language, and

also to enable the verification of service choreographies.

DECLARE (Pesic, Schonenberg & Van der Aalst, 2007) is a constraint-based

system that provides declarative semantics to model, execute and verify activity-centric

processes based on temporal logic which is mainly used in specifying the constraints

that a process model should follow during its execution. DECLARE can be used to

develop and execute DecSerFlow models (Van Der Aalst & Pesic, 2006; Montali et al.,

2010) or other models specified in LTL based language.

Chapter 2. Literature Review 39

2.1.3 Inter-Organizational Business Process Modeling

A plethora of approaches exist for the modeling and management of activity-centric

Inter-Organizational Business Processes (IOBPs). Most of these existing approaches

extend the key concepts of public views and private views proposed in (van der Aalst &

Weske, 2001) to support this requirement.

Van der Aalst and Weske (2001) were the first to propose a view-based approach

(Public-to-Private (P2P)) to support inter-organizational workflow modeling based

on the idea of inheritance. The proposed approach enables each participant in the

collaboration to have a controlled visibility over their public workflow (common part

of original workflow that all the participants have agreed upon) and private workflow

(part of the workflow that belongs to a specific participant) and allows the refinement of

their private parts without affecting the agreed execution of original workflow. Van der

Aalst and Basten (2002) later proposed inheritance-preserving transformation rules to

guarantee that the dynamic changes made by a participant do not affect the privacy and

autonomy of other participants involved in the workflow collaboration.

Liu and Shen (2003) proposed an approach to derive a process view model from

conventional activity-centric process models to provide different participants with the

required process information in the form of an abstracted process for the effective

management of workflow. The authors also presented an algorithm to support the

automatic generation of a process view model and a formalism to define that model.

This model is further extended in (D. R. Liu & Shen, 2004) to address coordination

issues in managing workflows within inter-organizational collaboration.

Chiu et al. (2004) proposed an interoperation model to facilitate the management

of E-service contracts and their interoperability based on the notion of workflow views.

As an interaction mechanism, workflow views (Chiu, Karlapalem, Li & Kafeza, 2002)

provide increased support for the cross-organizational workflow interaction and enable

Chapter 2. Literature Review 40

controlled visibility of subworkflows by external parties.

Schulz and Orlowska (2004) proposed to facilitate the execution of cross-organizational

workflows. The authors designed an architecture for cross-organizational workflows

to enable the execution of private workflows without compromising the privacy and

contingency of other private workflows and a scalable visibility of structural information

to trading partners.

Chebbi et al. (2006) presented a view-based approach to support the dynamic co-

operation of inter-organizational workflows in a service-oriented setting. The proposed

approach provides varying levels of visibility over workflows and their resources to

enable participating organizations to retain the privacy and security of their internal

workflows. The approach also enables participants having freedom to change their

workflows without reflecting that change on their roles in the workflow cooperation.

Lin (2007) proposed an approach to model loosely-coupled inter-organizational

workflow from the local process views of participating organizations. A design compat-

ibility analysis mechanism and its implementation tool are also presented for detecting

incompatibilities among different organizations from their local process views.

Eshuis and Grefen (2008) presented an approach to automatically construct custom-

ized process views from a structured cross-organizational business process. To protect

the privacy and ownership of a participant, a customized process view is constructed by

hiding the private information of the underlying process and providing only the details

requested by the other participant.

Zhao and Liu (2006) proposed a matrix-based framework, which enables a particip-

ating organization to derive tracking structures over relative workflows (X. Zhao, Liu

& Yang, 2005) and the involved relevant workflows of its partner organizations. The

framework also supports workflow monitoring through generated tracking structures.

The authors later proposed a role-based process view model (X. Zhao, Liu, Sadiq &

Kowalkiewicz, 2008) to support view derivation and composition between different

Chapter 2. Literature Review 41

participants. A process view can be derived from another view or composed from

multiple views. Rules have been defined to guarantee the structural consistency and

validity of resulting process views. Following works of these authors (X. Zhao, Liu,

Sadiq, Kowalkiewicz & Yongchareon, 2009, 2011) focused on presenting a frame-

work that supports process abstraction and concretisation and enables the process view

implementation in the web service environment.

Jiang et al. (2010) proposed a process view approach to manage cross-organizational

workflows that combines process views and Timed Colored Petri Net (TCPN) (Jensen

& Kristensen, 2009). This approach is presented in Figure 2.2, which includes a

formal definition, the mapping from TCPN workflow models to process-view workflow

models in which the control flow and data flow aspects are considered together, and

the collaborative execution mechanisms of cross-organizational workflow instances.

In addition, a hybrid Peer-to-Peer (P2P) based decentralized workflow management

system (WMS) combined with the process-view approach is also proposed and built on

top of the open JXTA platform to provide a flexible and scalable architecture for the

management of cross-organizational workflows.

Ye et al. (2009) presented a framework to construct atomicity-preserving process

views and their analysis. The framework is based on process algebra and used to

analyze a set of interacting public process views that use atomicity spheres (Schuldt,

Alonso, Beeri & Schek, 2002). Similarly, Bouchbout and Alimazighi (2011) proposed

a framework based on the principles of SOA for modeling inter-organizational business

processes which preserves the autonomy, privacy and heterogeneity of participating

entities.

Eshuis et al. (2011) introduced the notion of transactional process views to facilitate

trustworthy and fine-grained collaboration between organizations. These views are

constructed form an internal business process annotated with transactional properties,

including nested and chained transactions, and can be used to obtain robust and reliable

Chapter 2. Literature Review 42

Figure 2.2: Process-view approach (Jiang et al., 2010)

process behaviours from the public external level.

Norta et al. (2014) presented a reference architecture for managing dynamic inter-

organizational business process collaboration. The proposed architecture supports the

evaluation and design of standard and concrete architectures for the business process

collaboration. A set of functional and non-functional requirements for the proposed

architecture have been defined from careful observation of collaboration features.

Reypens et al. (2016) presented a multi-level cyclical process framework to support

multiple stakeholders that participate in a collaboration network to create business

value. This framework enables maximizing value for both individual stakeholders in

the network and the network as a whole by presenting ways to address the challenges of

understanding and cooperating in a dynamic collaborative environment.

Recently, Barcelona et al. (2018) proposed a Collaborative Business Generation

(CBG) framework that follows a bottom-up approach to generate collaborative business

process model from the individual process models of different organizations that may

Chapter 2. Literature Review 43

have created with different modeling languages. The framework includes a meta-

model, a method, a set of model transformations and a tool to support the creation of

collaborative process models by maintaining privacy and autonomy.

2.2 Artifact-centric business process modeling

Nigam and Caswell (2003) proposed the notion of modeling business processes from

artifacts (or business artifacts) and their interacting lifecycles. In general, an artifact

can be described as a means to record information required to conduct the operations

of a business, while in business terminology it is better described as a key business-

relevant entity responsible for driving overall operations of a business (Kunchala, Yu

& Yongchareon, 2014). The lifecycle represents the behaviour of artifact in a several

possible stages that an artifact navigates in response to business activities.

The core objective of artifact-centric (operational) modeling is to provide an intuitive

and flexible representation to business people that is used to analyze, manage and control

their business operations. According to Nigam and Caswell (2003), an artifact and its

lifecycle can be defined as follows:

- “An artifact is a concrete, identifiable, self-describing chunk of information that

can be used by a business person to actually run a business”.

- “An artifact lifecycle captures the end-to-end processing of a specific artifact, from

creation to completion and archiving”.

To further demonstrate this modeling paradigm, an example of guest check artifact

and its lifecycle is presented in Figure 2.3. The guest check is a key entity in the

restaurant business around which the entire business is operated. As shown in the

figure, the lifecycle of a guest check artifact captures the processing steps of this artifact

in a set of tasks (or activities) and repositories. In the lifecycle, a task updates the

content of guest check and a repository stores this artifact until it is requested by another

Chapter 2. Literature Review 44

Figure 2.3: Lifecycle of Guest Check (Nigam & Caswell, 2003)

task. A task can also create new artifacts while processing an artifact, which results in

synchronization dependencies between corresponding artifact lifecycles.

It can be seen in Figure 2.3 how an artifact serves as a building block to model

the artifact-centric operational processes by aggregating the information (data) and

process (control flow) aspects in a more comprehensive manner (Kunchala et al.,

2014). According to Nigam and Caswell (2003), every artifact consists of a unique

identity and self-describing content that can be represented as nested name-value pair.

Technically, artifacts correspond to complex objects in the object-oriented (database)

world, which have structure and relations with associated formal algebra. The ER

(Entity-Relationship) data model can also be used to represent artifacts and their nested

attribute relations (Bhattacharya et al., 2009). The Extensive Markup Language (XML)

also provides syntax in the form of Data Type Definition (DTD) for specifying the

attributes of artifacts.

Bhattacharya et al. (2009) proposed a four-dimensional framework, named BALSA,

Chapter 2. Literature Review 45

for modeling artifact-centric business processes. The four inter-related but separable

dimensions of this framework are illustrated in Figure 2.4, which includes Business

Artifacts, Macro-Level Lifecycles, Services and Associations.

Figure 2.4: Four Dimensional Framework (Bhattacharya et al., 2009)

Business Artifacts (Information Model). Intuitively, business artifacts (or artifacts)

combine data and control flow into a holistic unit to drive an entire business process

execution. In general, the artifact not only contains data related to a business object but

also its lifecycle and other contextual information. These artifacts may have different

life expectancies, where some are short-lived and others are long-lived.

Macro-Level lifecycles. The (macro-level) lifecycles describe the possible business-

relevant stages in the evolution of artifacts, from their creation to completion and

archiving. The lifecycles are usually represented using a variant of finite-state machines,

where a state represents a stage in the life of an artifact.

Services. A service is a business task (or action) performed on an artifact to progress

Chapter 2. Literature Review 46

towards the objectives of a business. Invocation of a service on an artifact may change

the state and/or content of that artifact. Services are specified in a declarative manner

using pre- and post-conditions (Kunchala et al., 2014). A service here can correspond

to a service in the SOA-based distributed environment.

Associations. The associations describe how the services must be operated on

artifacts by specifying constraints. The constraints here correspond to conditions that

restrict the invocation of services on the respective artifacts. The constraints can be

specified in a procedural manner by using flowcharts (Nigam & Caswell, 2003) or in a

declarative style based on ECA (Event-Condition-Action) rules (Bhattacharya, Gerede

et al., 2007; Deutsch, Hull, Patrizi & Vianu, 2009; Fritz, Hull & Su, 2009).

Business artifacts, as a data-centric paradigm for workflow and business process

specification (Hull et al., 2009) have been successfully employed in various client

engagements at IBM (Bhattacharya, Gerede et al., 2007; Chao et al., 2009) for business

analysis and business-driven development. In the past decade, various aspects of this

paradigm have been extensively studied and extended to reveal the importance of this

approach in practice. In the following section, these research aspects are categorized

and existing literature is reviewed.

2.2.1 Process Design Methodology

The artifact-centric approach enables rich flexibility in the creation and evolution of

business processes through the separation of data and control flow aspects (Bhattacharya,

Gerede et al., 2007). There are some data-centric approaches, including: Adaptive Doc-

uments (ADocs) (S. Kumaran, Nandi, Heath, Bhaskaran & Das, 2003); Case handling

(Van der Aalst, Weske & Grünbauer, 2005); Document-oriented workflows (Wang &

Kumar, 2005); Adaptive Business Objects (ABOs) (Nandi & Kumaran, 2005); FlexCon-

nect (Redding, Dumas, ter Hofstede & Iordachescu, 2010); and PHILharmonicFlows

Chapter 2. Literature Review 47

(Künzle & Reichert, 2011). These approaches share some level of similarity with the

artifact-centric approach, where they also look at a process from the data perspective

with a central focus on evolving business entities.

Bhattacharya et al. (2009) proposed a design methodology based on the three-

level framework presented for processes that emphasize artifacts (or data) and their

(macro-level) lifecycles. As illustrated in Figure 2.5, this methodology consists of four

major steps. Step 1 is to discover the key business entities (artifacts) and important

stages in their lifecycles to develop a high-level business process specification. Step

2 is to construct Business Operation Models (BOM) from the logical specification

of discovered artifacts, services and their associations that are specified using ECA

rules. The BOM as a logical specification of business operations provides meaningful

insights to stakeholders and supports technical analysis and verification. Step 3 is to

develop the conceptual flow diagram that coordinates the artifacts and services in a

procedural manner to meet the operational requirements specified in the BOM. Step 4

is for obtaining an operational workflow system from the BOM specification.

STEP 1: Business Artifact Discovery

(a) Identify critical artifacts for the business process

(b) Discover key stages of artifact’ s life cycles from

 the scenario-based requirements

STEP 2: Design of Business Operations Model (BOM)

(a) Logical design of artifact schemas

(b) Specify services for artifacts needed for moving

artifacts through the life cycles

(c) Develop ECA rules that enable artifacts progress

in their life cycles

STEP 3: Design of Conceptual Flow Diagram

STEP 4: Workflow Realization

Figure 2.5: Design Methodology from (Bhattacharya et al., 2009)

Recently, Kovář et al. (2017) proposed a methodology, named uuProcess, that uses

business artifacts as a fundamental building block in modeling enterprise applications

to support the development of information systems by the Unicorn Group of companies

Chapter 2. Literature Review 48

(www.unicorn.com). The core components of this methodology are the artifacts and

their lifecycles, including activities. In this methodology, an artifact is used to store

descriptive information about tangible and intangible objects and its lifecycle is used to

manage activities that invoke these objects. This methodology was used successfully to

implement Unicorn’s internal operations and to manage their customer projects. The

resulting uuprocess models can be mapped to executable applications supported by the

Unicorn Universe Platform (Kökörčenỳ & Kovář, 2015), a digital construction kit for

the development of SOA-based applications from reusable process components.

2.2.2 Process Discovery and Construction

According to the design methodology presented in Figure 2.5, the artifacts and their

lifecycles must be discovered first to construct an artifact-centric process model. Dis-

covering the artifacts and their lifecycles require deep understanding of critical data and

how that data is being manipulated throughout the process. Following here are some

existing approaches for discovering and constructing artifacts-centric processes.

Fritz et al. (2009) proposed studying the automatic construction of goal-directed

declarative artifact-centric workflows with the concern of general setting, design-time

analysis, and the synthesis of workflow schemas from goal specifications. The proposed

approach consists of an algorithm to automatically construct an artifact-centric workflow

model from services that satisfy the specified conditions (or goals).

Maamar et al. (2010) proposed a method to discover and model artifacts from

business requirements. The method applies a bottom-up analysis to discover artifacts

from three perspectives: data, operation and connection, which describe the discovery

of artifacts and their dependencies, operations and their dependencies, and finally to

consolidate the artifacts and operations to build a system.

Nooijen et.al (2012) proposed a technique to discover the lifecycles of artifacts.

Chapter 2. Literature Review 49

The proposed technique consists of algorithms that can automatically extract artifact

schemas and corresponding lifecycle logs from a structured relational data source that

describes how each artifact evolves during process execution. This work has been

extended in (X. Lu, Nagelkerke, van de Wiel & Fahland, 2015), where the authors

focused on semi-automatically discovering the artifact-centric process models that

describe artifacts and their lifecycles, including the interactions between the artifacts.

Popova et al. (2013) aimed to address the problem of artifact lifecycle discovery.

The proposed method first generates artifact-centric logs by determining the events

that belong to the instances of artifacts, then discovers the lifecycle of every artifact

from the generated logs that are represented using Petri Nets. Then the discovered

lifecycles are translated into an artifact-centric meta-model, such as Guard-Stage-

Milestone (GSM) notation (Hull et al., 2010). The proposed method has been extended

and implemented as a generic open-source process mining framework, called ProM

(www.processmining.org), to automatically discover artifact lifecycles and their syn-

chronization conditions in the following works (Popova & Dumas, 2013; Popova,

Fahland & Dumas, 2015).

Li et al. (2017) presented an algorithm to support the automatic discovery of object-

centric behavioural constraint (OCBC) models from object-centric event logs. Similar

to an artifact-centric process, an OCBC declarative model describes the interaction

between data objects (or artifacts) and their complex dependencies.

Van Eck et al. (2017) studied the automatic discovery of composite state machines

representing artifact-centric processes from event data. The approach also supports

the analysis of behavioural interactions between artifacts. The proposed approach has

been fully implemented as a ProM plug-in and the CSM Miner, an interactive tool that

focuses on discovering and exploring state-based processes from multiple perspectives.

Chapter 2. Literature Review 50

2.2.3 Process Specification and Verification

Artifact-centric process specification and verification is one of the most largely explored

areas of research. In the past decade, many efforts have been made to support the

design and analysis of artifact-centric business processes. In this regard, the research

on process specification aimed at formalizing artifact-centric processes, while process

verification aimed at checking some temporal properties on these processes.

Liu et al. (2007) formulated nine operational patterns to describe the behaviour

of artifacts. These patterns form a basis for constructing artifact-centric operational

models. The authors also proposed the transformation of these operational models

into colored Petri Nets to verify the correctness of these models through reachability

analysis.

Gerede et al. (2007) aimed to analyze artifact-centric operational models by identi-

fying some properties in these models, such as arrival, persistence, uniqueness and

redundancy. Mainly, the authors propose a formalism for every construct of artifact-

centric operational models that enable the static analysis of these properties. Gerede

and Su (2007) proposed a temporal logic based language, named Artifact Behaviour

Specification Language (ABSL), for specifying lifecycle properties of artifacts. The

authors also presented a verification technique that analyzes behavioural properties,

including reachability and general temporal constraints specified in ABSL.

Bhattacharya et al. (2007) presented a formal model for specifying artifact-centric

business models using semantic web services in the spirit of OWL-S (Martin et al.,

2004) and declarative semantics based on business rules. The emphasis is placed on

analyzing the semantics of specified artifact-centric models in relation to reachability of

goal states, existence of dead ends and redundancy.

Zhao et al. (2009) also introduced a formal model for artifact-centric processes and

proposed a declarative language, called TiLE (Time Line Expression), based on Past

Chapter 2. Literature Review 51

LTL for specifying and enforcing business constraints during the execution of these

processes. The authors also present the complexity results on the satisfiability of TiLE

constraints.

Abiteboul et al. (2009) proposed an AXML (Active XML) artifact model based on

the extension of XML (Abiteboul, Benjelloun & Milo, 2008) to specify data-intensive

(artifact-centric) processes that evolve over time in a distributed setting. The AXML

artifact model captures various aspects of artifacts, such as their states, evolutions

specified using declarative constraints over lifecycles, interactions via web services and

history recorded as part of the artifact. The authors later proposed to verify the AXML

Systems based on Tree-LTL, a tree-pattern-based temporal logic (Abiteboul, Segoufin

& Vianu, 2009b, 2009a). An AXML system represents a set of interacting (AXML)

documents with embedded web service calls.

Lohmann and Nyolt (2011) proposed extensions for the BPMN standard notation to

support the modeling of artifact-centric business processes. These extensions include

artifacts, lifecycles, location information, access control, goal states, and policies.

Artifacts and their lifecycles form the key constructs of this model. Location information

specifies how the location of artifacts is changed. Access control specifies remote

accessibility of artifacts. The extensions, such as goal states and policies, are first

proposed in (Lohmann & Wolf, 2010) to exclude undesired behaviour of processes,

where policies mainly restrict the execution order of activities that use different artifacts

and goal states to specify desired final states for artifacts involved in the process.

Damaggio et al. (2011) addressed the problem of automatic verification of artifact-

centric business processes and artifact systems (Deutsch et al., 2009) with an objective

to enhance artifact-centric modeling. The authors achieved their goal through the static

verification of all the runs of an artifact system (a collection of artifacts and services)

in satisfying the desired correctness properties expressed in a LTL-FO (First Order

extension of Linear-time Temporal Logic (LTL)).

Chapter 2. Literature Review 52

De Giacomo et al. (2012) presented a verification formalism for conjunctive artifact-

centric services that pose balanced attention to both the data component (a full-fledged

relational database) and process component (tasks that act on database) following the

artifact-centric approach. These services also guarantee decidability through a suitable

use of conjunctive queries in specifying task pre-conditions and post-conditions. The

formalism verifies the temporal properties expressed in a first-order variant of µ-calculus

(Emerson, 1997; Luckham, Park & Paterson, 1970) under a reasonably weak acyclicity

(Fagin, Kolaitis, Miller & Popa, 2005) restriction on the effects of tasks. In this work,

the authors extended the formalism presented in their previous works (Cangialosi,

De Giacomo, De Masellis & Rosati, 2010; Hariri, Calvanese, De Giacomo, De Masellis

& Felli, 2011). The notion of conjunctive artifact-centric services was first introduced in

(Cangialosi et al., 2010), where the conjunctive queries and homomorphism are used for

the verification; and the work (Hariri et al., 2011) first studied the weak acyclic processes

over relational artifacts by using negation and full first-order queries in defining the

pre-conditions of actions.

There are some other declarative approaches to specify and verify artifacts and their

evolving lifecycles. Kucukoguz and Su (2010) proposed ArtiNets, a formal variant of

the artifact-centric workflow model, to specify artifact lifecycles and their constraints.

Inspired by a Declarative Service Flow Language (DecSerFlow) (Van Der Aalst & Pesic,

2006) that supports declarative constraints on service flows using temporal logic, the

ArtiNet workflow model also allows a declarative specification of lifecycle constraints

that govern workflow enactment towards the defined objective. The ArtiNet framework

resembles Petri Nets (Murata, 1989), with two differences: where artifacts form the

key constructs of ArtiNet model instead of tokens; and the firing rule that consumes

only one artifact though the corresponding transition contain multiple input or output

artifacts.

Hull et al. (2010) introduced a Guard-Stage-Milestone (GSM) meta-model for

Chapter 2. Literature Review 53

specifying the artifact lifecycles in a more declarative way. The authors also proposed

a formal specification and operational semantics for GSM in order to support the

interaction between multiple artifact instances (Hull et al., 2011). As the name implies,

GSM uses three key constructs in modeling artifact-centric processes, that include

stages, guards and milestones. Here, Stages represent activities to be performed by the

artifact instances; Milestones specify goals that the corresponding artifacts must achieve;

and the Guards refer to conditions or triggering events that control stages and milestones.

Event-Condition-Action (ECA) rules are used in the behavioural specification of GSM

models in order to support parallelism within artifact instances and modular structure

through hierarchical clustering of activities, thus enabling a basis for formal verification

and reasoning (Damaggio, Hull & VaculíN, 2013).

Belardinelli et al. (2012a) presented an abstraction technique to verify the artifact-

centric multi agent systems, i.e., systems of agents interacting through artifact systems.

The verification is through model checking, where the decidability of the deployed

artifact system is checked against temporal epistemic properties expressed in a FO-

CTLK. In this work, the authors extend their verification technique from their study

(Belardinelli, Lomuscio & Patrizi, 2011), where the basic temporal properties expressed

in FO-CTL for artifact systems were verified. The authors later proposed semantics

to GSM-based artifact-centric systems to verify the knowledge of participants in a

multi-agent setting (Belardinelli, Lomuscio & Patrizi, 2012b).

Gonzalez et al. (2012) presented an approach to verify GSM-based artifact systems.

The proposed methodology is based on developing a symbolic representation of the

GSM models for verifying the behaviour of artifacts. A model-checking tool GSM

Checker (GSMC) has also been implemented to support automatic verification. The

authors extended their formalism (Gonzalez, Griesmayer & Lomuscio, 2013) to define

and verify GSM-based artifacts systems from a multi-agent perspective, based on the

declarative semantics proposed for an artifact-centric multi-agent system (AC-MAS).

Chapter 2. Literature Review 54

Solomakhin et al. (2013) proposed an approach to automatically verify the decidabil-

ity property over GSM models by translating them into DCDSs (Data-Centric Dynamic

Systems) (Bagheri Hariri et al., 2013), a formal framework for data or artifact-centric

processes. Bagheri Hariri et al. (2013) proposed a formalism for verifying the decidab-

ility property over (relational) DCDSs based on the First Order variant of µ calculus.

The authors also proposed (Hariri, Calvanese, Montali, Santoso & Solomakhin, 2013)

an OWL 2 QL (Motik et al., 2009), the ontology-based semantics for the specification

and verification of temporal properties over the semantic layer of GSM models. The

authors introduced Semantically-enhanced Artifact Systems (SAS) as a variant of GSM,

which are verified according to the evolution in the underlying GSM model.

Deutsch et al. (2014; 2016; 2018) proposed the verification of Hierarchical Artifact

Systems (HAS) that extend the artifact systems of their previous work (Deutsch et al.,

2009) with the core elements of GSM model. The authors introduced a Hierarchical

LTL-FO (HLTL-FO), a variant of First Oder Linear Time Logic (LTL-FO) to verify

the core fragments of these systems, namely tuple artifact systems (TAS), which are

composed of a database, a set of artifact attributes and services that specify pre- and

post-conditions on these systems. An automatic verification tool for these systems

is also proposed and implemented in their following works (Y. Li, Deutsch & Vianu,

2017b, 2017a).

Guosheng Kang et al. (2019) proposed verifying the behavioural soundness of the

artifact-centric process model that includes synchronizations. The verification approach

maps each artifact lifecycle model to Petri Net and then integrates them into a workflow

net based on a set of synchronization rules. The reachability graph of this workflow net is

used to derive all the implicitly specified service execution sequences.The behavioural

soundness is then verified by investigating the proper completion of every service

execution sequence.

Chapter 2. Literature Review 55

2.2.4 Inter-Organizational Business Process Modeling

Several recent works have emphasized extending the artifact-centric paradigm to the

modeling and management of Inter-Organizational Business Processes (IOBPs). In this

regard, most of the existing works based their contributions on the notion of public and

private views (public and private) proposed in (van der Aalst & Weske, 2001).

Hull et al. (2009) proposed artifact-centric interoperation hubs to facilitate the

process collaboration in an inter-organizational setting. The hubs provide a centralized

location for autonomous organizations to communicate and synchronize their business

processes by sharing their public data to achieve a common objective. The authors

proposed three types of access restrictions Windows, Views and CRUD (Create-Read-

Update-Delete) for the participating organizations to see, read, write and modify data

(artifacts) from/to a hub. An inter-operation hub supports persistent visibility of artifacts

for each organization participating in the collaboration.

Lohmann and Wolf (2010) introduced the concepts of agents and locations-aware

artifacts based on a Petri Net model in the artifact-centric inter-organizational setting.

The authors proposed a mechanism to automatically generate an interaction model, that

may serve as a contract between the agents to ensure goal states are reached, by the

artifacts involved in the interaction. The authors believe that their interaction model is

more appropriate for artifact-centric inter-organizational business collaborations than

the idea of centralized artifact hubs such as those proposed in (Hull et al., 2009).

Yongchareon and Liu (2010) introduced a process view framework for artifact-

centric business processes. The framework consists of artifact-centric process (ACP)

models that describe a set of artifacts, services, rules and views; a construction approach

to build role-specific process views from the underlying processes based on some view

requirements; and a set of consistency rules that preserve the structural and behavioural

correctness of constructed view from the base process. The authors later extended this

Chapter 2. Literature Review 56

framework (Yongchareon, Liu & Zhao, 2011) to model artifact-centric IOBPs. The

Artifact-Centric Collaboration (ACC) model extends the ACP model (Yongchareon &

Liu, 2010) to capture inter-organizational processes with four core constructs: roles,

artifacts, services, and business rules. Here, the artifacts are classified into local (private)

and shared (public) that enable collaboration between organizations. The framework

supports the participated organizations to have their own view of the process and

freedom to change and implement their own parts while preserving global correctness

of the collaboration (Yongchareon et al., 2011). In this work, the authors also presented

a mechanism to validate public and private views to avoid the compliance issues in

process collaboration.

Yutian Sun et al. (2012) proposed a declarative choreography language for artifact-

centric business process collaboration, which can express correlations and collaborations

at process- as well as instance-level. The language is developed based on four key

aspects, including: artifact schema, cardinality constraints, messages and First Order

based logic rules. The authors also developed a mechanism to realize artifact-centric

process choreographies specified in the proposed language.

Yongchareon et al. (2015) proposed a formal view framework for the modeling and

verification of artifact-centric IOBPs. The framework is presented in Figure 2.6, which

consists of an artifact-centric process meta-model, mechanisms to construct private

(local process) and public (shared process) views, and a mechanism to validate changes

in the local processes. The framework is designed in such a way that it facilitates

participating organizations to customize their internal operations while ensuring the

global correctness of their collaboration. The authors also presented a software tool,

named Artifact-M, to help organizations to automatically construct a minimal and

consistent public view from their processes.

Koutsos and Vianu (2017) proposed to extract process-centric views consisting

of the sequences of services applied during the linear or branching-time runs of an

Chapter 2. Literature Review 57

 Figure 2.6: Artifact-centric View Framework (Yongchareon et al., 2015)

artifact workflow system. The authors also proposed a verification approach to check the

decidability for branching-time properties expressed using Linear Time and Branching

Time (LTL and CTL) Temporal Logic on these workflow systems.

2.2.5 Process Realization

According to the survey conducted by Hull in (2008), the implementation of artifact-

centric processes was challenging due to the lack of executable workflow technologies

and standards in support of this novel paradigm. One common approach to imple-

ment artifact-centric processes thus follows a process of transformation, where the

artifact-centric process is transformed into an activity-centric process that is then imple-

mented easily using existing workflow languages such as BPEL (Cohn & Hull, 2009;

Ngamakeur et al., 2012).

Bhattacharya et al. (2009) proposed a framework for the modeling and execution of

artifact-centric business processes. This framework consists of three levels: Business

Operations Model (BOM), Conceptual Flow and the Operational Workflow. BOM

Chapter 2. Literature Review 58

is the basis for system implementation. BOM mainly provides a detailed logical

specification for business process execution in terms of artifacts including services that

specify pre- and post-conditions and Event-Condition-Action (ECA) rules. Next, the

Conceptual Flow layer is for capturing the BOM in a procedural manner, while hiding

the implementation details and supporting process optimization. The bottom layer is

the Operational Workflow, where the executable services communicate using messages

and operate on the artifacts.

Cohn and Hull (2009) state that artifact-centric models are actionable, meaning

that they can be mapped to executable models using the IBM BELA (Business Entity

Lifecycle Analysis) tool (Strosnider et al., 2008). This tool enables process designers to

automatically generate executable models and run these models on tools like the IBM

Web Sphere Process Server (Ferguson, 2001). The authors also propose a prototype,

named Siena (Cohn et al., 2008) that uses a direct architecture, where the artifact

model is represented as an XML document and executed through a direct interpretation.

Siena also enables users to model business artifacts and processes as composite web

applications, which are then run on the underlying model execution engine (2008).

Guohua Liu et.al. (2009) introduced an Artifact Conceptual Flow (ArtiFlow) model

as a variant of the artifact-centric workflow model. The primitive constructs of this

model include: services, events, artifacts and repositories. The authors also proposed a

mapping from ArtiFlow to the BPEL in order to show that the automated realization

of artifact-centric workflow is achievable. Based on the ArtiFlow model, a prototype

implementation, called A-Stein, has been proposed in (D. Zhao, Liu, Wang et al., 2011)

for the management of artifact-centric systems.

Abiteboul et al. (2010) presented an AXART system based on the Active XML

(AXML) that extends the standard XML with embedded service calls (Abiteboul et al.,

2008; Abiteboul, Segoufin & Vianu, 2009b). This system can also be used to implement

artifact-centric process collaboration in a dynamic environment and to manage updates

Chapter 2. Literature Review 59

on the corresponding artifacts.

Xu et al. (2011) proposed an artifact-centric workflow model, namely EZ-flow,

based on ArtiFlow (G. Liu et al., 2009) and a mechanism that supports the run-time

modification of workflow execution. The proposed mechanism aims to study on how

workflow executions can be incrementally modified in order to accommodate changing

requirements in artifact-centric models by using a workflow engine.

Dong Li and Wu (2011) presented an algorithm to translate an artifact-based business

process model into BPEL. The authors also developed a tool to design and translate

artifact-based processes. The tool takes an SVG (XML-based) representation of the

artifact process and generates an executable BPEL based on a set of conversion rules.

Danfeng Zhao et al. (2011) proposed an approach for the execution and run-

time monitoring of artifact-centric business processes based on the ArtiFlow Model

introduced in (G. Liu et al., 2009). This approach also follows a translation from the

ArtiFlow model to the BPEL document to automatically implement and run on the

underlying BPEL engine.

Limonad et al. (2012) introduced a realization framework for Interoperation Hubs

(I-Hubs) that had been first proposed in (Hull et al., 2009) for artifact-centric inter-

organizational collaboration. I-Hubs combine the access control aspects of both data-

and process-based systems. This framework has been implemented as part of the

EU funded ACSI (Artifact-Centric Service Interoperation) project (Hull, 2011). The

ACSI project aims to combine the artifact-centric paradigm with SOA to achieve

higher levels of abstraction while integrating business processes across organizational

boundaries (Dumas, 2011). The ACSI Hub system (Boaz et al., 2014), with the

underlying Barcelona (Heath et al., 2013) and Siena (Cohn et al., 2008) artifact engines,

enables service orchestrations using GSM-based artifact lifecycles and finite-state

machine based artifact lifecycles.

Ngamakeur et al. (2012) proposed a framework for the realization of artifact-centric

Chapter 2. Literature Review 60

process models in a service-oriented setting. The framework is presented in Figure 2.7,

which consists of a workflow model and a mechanism to generate executable model

from the logical specification of an artifact-centric process (ACP) model. A prototype

ACP system is also developed to support automatic realization and execution, where the

proposed system uses business rules to control each state of process execution. Here, the

authors argue that the traditional approach to artifact-centric process realization posses

some drawbacks, particularly where the process transformation leads to difficultly in

process monitoring and also reduces its flexibility. Therefore, the authors proposed a

direct realization approach that does not require the transformation of artifact-centric

processes into traditional activity-centric processes.

Figure 2.7: Artifact-centric Process Realization Framework (Ngamakeur et al., 2012)

Yongchareon et al. (2014) proposed a workflow execution platform for artifact-

centric collaborative processes in a service-oriented setting. The platform is developed

based on the view-based concepts proposed in their previous works (Yongchareon et al.,

2011, 2015). By utilizing event-driven and service-oriented architectures for its design

and implementation, this platform can be useful to enable centralized control in the

distributed environment.

Fan et al. (2015) demonstrated the automatic translation of artifact-centric business

processes into activity-centric processes to execute them on a process execution engine

called JTangFlow. The authors first proposed flow models for these two types of process

models and presented an algorithm to demonstrate mapping between the corresponding

Chapter 2. Literature Review 61

flow models.

Lei et al. (2016) proposed a distributed framework for artifact-centric business pro-

cess modeling by leveraging the REST (Representational State Transfer) architectural

style. In this work, the authors mainly focused on improving the scalability of artifact-

centric BPM systems in large-scale applications. A prototype, named ArtiREST, was

also developed, which supports automated realization and monitoring of artifact-centric

process models.

The above discussed existing works reveal how the artifact-centric approach can

facilitate process enactment and evolution, in addition to enabling effective business

process collaboration compared to the traditional activity-centric approach.

2.3 Process Model Transformation

With the momentum of the artifact-centric paradigm, the BPM research has focused on

relating this paradigm with the traditional activity-centric paradigm. In this regard, the

transformation of activity-centric process models into artifact-centric process models

has received major attention. The proposed research is motivated from this initiative

and aims to propose an automated approach to facilitate the model transformation.

The transformation approach proposed in this thesis is related to two categories of

existing research: process tree generation and artifact lifecycle synthesis. Therefore,

the following section presents a detailed discussion on the existing works in these two

categories.

2.3.1 Process Tree Generation

Vanhatalo et al. (2007) proposed a tree-based technique to analyze process models

represented as workflow graphs to find control-flow errors. The proposed technique

Chapter 2. Literature Review 62

generates a Process Structure Tree (PST), a directed tree by decomposing a block-

structured process model into a special kind of process fragment named canonical

single-entry-single-exit (SESE) fragments. This approach is proposed based on the

notion of a program structure tree (Johnson, Pearson & Pingali, June, 1994), which is

a hierarchical representation of program structure based on the SESE regions of the

control flow graph.

Kuster et al. (2008) proposed an approach that extends the Process Structure Tree

(PST) (Vanhatalo et al., 2007) to detect and resolve the differences in process models in

the absence of change logs. Vanhatalo et al. (2009) presented a unique and modular

process decomposition technique with an extended version of their PST called Refined

Process Structure Tree (RPST), which represents the hierarchy of subworkflows to

analyze structural aspects of process models.

Polyvyanyy et al. (2009) also extended PST (Vanhatalo et al., 2007) to propose

an abstraction technique for managing process model complexity. The authors later

proposed (2010) another abstraction approach that generates a tree representation for

process models to manage the model complexity. The objective of this abstraction

approach is to transform the unstructured process models represented in BPMN and

EPC with an arbitrary topology into well-structured ones under fully concurrent bi-

simulation to facilitate the implementation of resulting processes in standards such

as BPEL. This technique was implemented later in (Polyvyanyy, García-Bañuelos &

Dumas, 2012).

As discussed above, there are several approaches to generate tree representations

of business process models for different purposes, such as analyzing and resolving the

control flow errors of process models. This section mainly discussed the techniques that

are related to the transformation (synthesis) approach proposed in this thesis. In this

context, the goal is different, where the approach proposed in this thesis builds the tree

representation (or process tree) of an activity-centric process model that is annotated

Chapter 2. Literature Review 63

with artifacts and states in order to generate the lifecycles of artifacts from the resulting

process tree.

2.3.2 Artifact Lifecycle Synthesis

Ryndina et al. (2006) presented an approach to generate object lifecycles from business

process models represented in UML activity diagrams. This approach checks the

possible compliance violations of generated object lifecycles with the given lifecycles

and resolves them by iteratively working on them. The proposed approach uses a set

of high-level rules for generating object lifecycles from the business process models

that contain object data flows. However, these rules do not consider synchronization

dependencies that capture the object interactions, which are crucial to observe the

consistent behaviour of the base process from its generated object lifecycles. In addition,

the evaluation of this approach is limited, where only a simple insurance process model

is used to demonstrate the applicability and efficiency of the proposed approach.

Kumaran et al. (2008) proposed an approach to study the duality between the

object-centric processes and activity-centric processes. This approach uses a notion

of domination, where the lifecycles are generated for those objects that are highly

manipulated by the activities of activity-centric process model. The generated lifecycles

are then linked to create synchronization dependencies between the corresponding

objects. Liu et al. (2010) extended this approach to formally demonstrate the duality

between the two modeling paradigms and to show the value of proposed transformation

in achieving three key aspects, including: process componentization, reusable process

design, and accelerating the IT solution development. However, this approach is limited

in that it only considers the objects written by the activities, thus missing the objects

that they read, for the purpose of object lifecycle generation.

Eshuis and Van Gorp (2012) proposed an automated approach to synthesize the

Chapter 2. Literature Review 64

object lifecycles from the process models represented using UML activity diagrams.

This approach consists of two steps, namely pre-processing and filtering. In the pre-

processing step, the process model is transformed into a normal form to ensure that each

activity node has only one incoming and outgoing edge. In the filtering step, for each

object in the process model, a set of filtering rules is used to create its dedicated activity

diagram by filtering out the irrelevant nodes that do not have respective object flows.

The filtered models are then used to generate the lifecycles of objects. The authors

presented a way to translate these object lifecycles into hierarchical statecharts and also

refined and extended the proposed approach (Eshuis & Van Gorp, 2016) with synthesis

rules that are used to coordinate the filtered process models based on their common

object coordinator. Although this approach claims to be automatic, a manual rewriting

of the process model is required when the pre-processing step fails. In addition, this

approach poses restriction on the object flows, where each object must have at least one

incoming and one outgoing flow from/to the activity node(s) of the process model.

Cabanillas et al. (2011) presented a model-driven approach with algorithms that

support automatic generation of object lifecycles from the BPMN process models.

This is a three-step approach, where the BPMN process model is first mapped to a

semantic Petri Net, then a reachability graph is obtained by analyzing the Petri Net,

and finally object lifecycles are generated by processing the reachability graph in a

node by node fashion. The proposed approach is developed as a prototype by reusing

the code of ProM (Van der Aalst et al., 2009), the process mining toolkit. However,

this prototype only implements step 2 and 3 of the proposed procedure, therefore the

mapping step has to be done manually. In addition, this approach is only useful for

generating the unsynchronized object lifecycles and is not applicable to process models

that use AND-gateways that capture the parallel dependencies between the object states.

Popova and Dumas (2012) proposed a method to translate the Petri Net models into

the GSM (Guard-Stage-Milestone) models. In this work, the authors aim to address the

Chapter 2. Literature Review 65

problem of discovering artifact-centric process models from event logs. Thus, rather

than using event logs to generate the GSM models, the proposed method uses existing

process mining algorithms for mining the Petri Net models from event logs. It then

discovers the lifecycle for every artifact and generates GSM models from the discovered

lifecycles. This method is implemented as a software plug-in for ProM, however, the

authors only used a case study to demonstrate the feasibility of the proposed method.

This method also ignores the synchronization dependencies between artifacts, without

which it is difficult to check the behavioral consistency between the base process and

its generated object lifecycles.

Meyer and Weske (2013) proposed a roundtrip transformation between activity-

centric process models and artifact-centric process models by utilizing the synchronized

object lifecycles that act as a mediator between both modeling paradigms. The pro-

posed roundtrip consists of 5 high-level descriptive algorithms, which are used for the

transformation of an artifact-centric process model into the synchronized object life-

cycles, and then into an activity-centric process model; for enriching the activity-centric

process model with attribute information; a synthesis algorithm for transforming an

activity-centric model into the synchronized object lifecycles; then into an artifact-

centric model with business rules. Although the synthesis algorithm of the proposed

roundtrip considers both the parallel states and the synchronization dependencies of

artifacts, the feasibility and applicability of this algorithm is only demonstrated using a

simple order and delivery process.

As discussed above, there are various works on generating artifact-centric process

models from activity-centric process models that contain artifact data flows. However,

most of them have a restricted view of the artifacts and their synchronization dependen-

cies that make it difficult to observe the process behavior. In addition, only a few of

them present semi-automated/automated approaches with a limited focus on their applic-

ability and evaluation to reveal the strengths of these approaches in practice. Therefore,

Chapter 2. Literature Review 66

in this thesis, an automated synthesis approach is presented and how this approach

addresses the aforementioned limitations to facilitate the proposed transformation is

discussed.

2.4 Process Model Merging

In recent years, process merging and consolidation has emerged as a common approach

to combine the business processes of two or more organizations to gain benefits, such

as to create synergies, for diversification and to increase their market share (Gottschalk

et al., 2008). Several approaches exist in the literature for merging/consolidating

activity-centric process models. However, the objective of these approaches is different

compared to the approach proposed in this thesis, which aims to merge the collaborating

processes of activity-centric IOBP models in order to support the transformation of the

resulting merged (or integrated) models into the artifact-centric counterparts (such as

synchronized artifact lifecycles). Hereafter, existing approaches to process merging and

consolidation are discussed in detail.

Shuang Sun et al. (2006) presented an approach to merge workflow nets, where the

input models are merged based on the mapping between their tasks or by applying a

set of merge patterns (sequential, parallel, conditional and iterative). The mapped tasks

are copied into the merged model and the proposed patterns are applied for merging

the differed regions of two WF-nets. According to the given merge patterns, the parts

of one workflow are merged with another workflow sequentially (by replacing the

common regions or inserting one into another), or parallelly (by using control flow

constructs and-split and and-join), or in a conditional manner (using or-split and or-join

constructs), otherwise following an iterative merge (where the parts of two workflows

are considered in an iterative manner). Although the proposed approach is useful for

merging both similar and non-similar workflows, it is not automated and it does not

Chapter 2. Literature Review 67

consider the data aspect. In addition, the proposed merge is not evaluated sufficiently to

provide valuable insights into real problems.

Mendling and Simon (2006) proposed a similar approach to merge two process

views of the same business process represented using the Event-driven Process Chain

(EPC) modeling notation. Here, the approach is threefold, where it first identifies the

semantic relationships between the activities of two different EPCs; next defines a

merge operator to produce an integrated EPC; and then restructures the resulting EPC

based on a set of restructuring rules. However, the proposed approach is only applicable

to process models that share common activities and that do not contain data aspects. In

addition, this approach is not automated and only a case study was used to demonstrate

its applicability.

Gottschalk et al. (2008) also focused on merging two EPCs by presenting an

algorithm. The algorithm conducts the merge in three phases, which include: reducing

the input EPCs into functional graphs; merging them into a single function graph; and

then to convert the merged function graph back into an EPC. The algorithm has been

implemented in the ProM to support automatic merging of process models. Although

the proposed merge considers different EPCs, they are still required to have a similarity

in their execution, and they contain no data aspects.

La Rosa et al. (2010) presented a merging algorithm to construct a configurable

process model from a collection of process models that belong to multiple application

domains. The proposed merge algorithm works by extracting the common fragments of

input process models, creating a single copy of these common elements and appending

the differences as branches of configurable connectors. A set of reduction rules have

been proposed to simplify the merged process model. An extension to this algorithm to

deal with process graphs containing data and resource attributes is presented in (La Rosa

et al., 2013). The implementation of the merge algorithm is a tool to support the semi-

automatic construction of consolidated configurable process models. However, this

Chapter 2. Literature Review 68

algorithm is only useful to merge process models that have common process fragments,

but no data flows.

Bulanov et al. (2011) presented an approach that uses Temporal Process Logic

(TPL) formalization to merge process models. This approach conducts merging in

four steps, which include: an encoding of both processes in terms of TPL formulas;

then solving contradictions between the two process models; merging the two sets of

formulas; and to reconstruct the final process model based on a set of unified formulas.

The proposed approach is limited because it does not consider the data aspects, only

supports semi-automated merging and it lacks thorough evaluation.

Derguech and Bhiri (2011) also proposed an approach to merge a collection of

business process variants to deliver a configurable business process model. The proposed

approach starts with the mapping of input process variants into EPCs. Any structural

conflicts that arise during this mapping are identified and resolved as a pre-processing

before merging them. The merging algorithm is then used to combine the EPCs and a

set of reduction rules are used to simplify the merged model to obtain a configurable

business process model. The proposed algorithm is implemented and evaluated using

manually created process variants. Like the above approaches, this approach also

requires common process nodes that share identical labels to merge and ensure the

behaviour of process variants.

Assy et al. (2013) proposed an approach to extract and merge business process

fragments around particular activities to construct a consolidated fragment for each

activity. The algorithm presented in this work consolidates the process fragments in

four steps. First, merging the redundant activities and edges (that belong to same source

and target) that are on the same level, where the unmerged activities and edges are then

linked to this merged fragment. Second, redundant activities located on different layers

are merged by preserving their structural correctness. Third, the labels of merged edges

are combined. Finally, an exclusive flow is assigned to other edges. The consolidated

Chapter 2. Literature Review 69

fragment can be presented as a configurable subprocess that includes associated activity,

its neighbor fragments and connection elements. The proposed approach was implemen-

ted and evaluated using a process model collection. As discussed above, this approach

is also limited to process fragments without data elements and uses the common nodes

for merging.

Schunselaar et al. (2014) proposed an automated approach to construct a config-

urable process model based on the general notion of merging business processes. The

configurable process model captures the commonalities and variabilities of multiple

business process models. An automated analysis technique is also proposed to analyze

the consistency between the input and output process models. The proposed analysis

technique is implemented as a ProM plug-in. However, only a preliminary evaluation

was carried out to demonstrate the usability of this approach.

Zemni et al. (2016) proposed a mechanism to construct a process model from two

or more business process fragments represented in BPMN. The mechanism is based on

the notion of path matrices, which were introduced to represent the node-based graphs

of business processes. The gateway path matrices are used to represent each business

process fragment, where the respective elements that share similar source and target

activities are merged in a pairwise manner. The proposed mechanism is implemented

and evaluated using a library of industrial business process fragments. However, this

approach also demands common process regions to merge process models that contain

no data aspects.

Derguech et al. (2017) presented an algorithm for merging a set of capability-

annotated process models into a capability-annotated configurable process model by

extending the merge algorithm presented in their previous work (Derguech & Bhiri,

2011). The proposed algorithm merges process models based on their business capab-

ilities that report on what actions each process element must achieve. The algorithm

is implemented and evaluated using manually created and annotated business process

Chapter 2. Literature Review 70

variants. Time and compression rate metrics were considered for evaluating the effi-

ciency of the proposed merge algorithm. However, the focus of this algorithm was also

on merging process models based on their common actions.

Recently, Huang et al. (2018) presented an automated approach to consolidate

business processes by applying process topic clustering based on business process

libraries. The proposed approach consists of a graph mining algorithm to extract

process patterns by identifying frequent subgraphs under the same process topic. That

information is then filled into a table, and, finally, the identified frequent subgraphs

are merged to obtain the consolidated business process. The proposed approach was

evaluated using SAP reference models. However, the proposed consolidation was also

based on the similarity of process regions, without considering the data aspects.

Although several merge approaches exist, none of them have been proposed for

merging the collaborating processes of activity-centric IOBPs that contain artifact data

flows. Therefore, this thesis proposes an approach (Kunchala, Yu, Yongchareon & Liu,

2019) that does not demand common process fragments and can merge collaborating

processes by considering the artifacts and states shared between them. The resulting

merged activity-centric process model can then be used to generate synchronized artifact

lifecycles by utilizing the synthesis approach proposed in this thesis.

2.5 Process Model Construction

In recent years, process flexibility and efficiency have been two major concerns for

organizations who want to quickly adapt to their changing requirements and outperform

their competitors. The BPM literature shows that imperative models (such as activity-

centric process models) are more comprehensible and can offer higher efficiency,

while rule-based declarative models (such as artifact-centric process models) are more

flexible, when the underlying processes are not too large (Pichler et al., 2011; Caron

Chapter 2. Literature Review 71

& Vanthienen, 2016). Therefore, several research works have been carried out to

support the forward and reverse transformation of activity-centric and artifact-centric

process models. As the existing approaches to forward transformation have already

been discussed in Section 2.3, this section discusses the existing works on reverse

transformation that aim to transform artifact-centric process models into activity-centric

process models.

kuster et al. (2007) presented an automated approach to generate (activity-centric)

business process models from one or more (reference) object lifecycles. The authors

introduced the two notions: conformance and coverage for checking the possible

compliance violations between business process models and object lifecycles. The con-

formance checks whether a business process contains only those object state transitions

that are defined in the given object lifecycle; and the coverage to express requirements

for the transitions and states in a reference object lifecycle that must be covered by a

business process. However, the proposed approach uses unsynchronized object life-

cycles to generate the (activity-centric) process model rather than the (object-centric)

process model that contains business rules.

Redding et al. (2008) proposed a transformation from the object behaviour models

represented in state machines to the process-oriented models. The transformation is

based on the identification of causal relations in the state machine and encoding those

relations in a heuristics net, from which a Petri Net model is generated and further used

to derive the YAWL representation of the process model. The derived model is then

simplified using a set of reduction rules. The proposed approach was implemented and

evaluated using an asset inspection object model. However, this approach is not useful

for transforming process models that contain business rules.

Meyer and Weske (2013) proposed an approach to support a roundtrip transformation

between the artifact-centric processes, activity-centric processes and synchronized

object lifecycles. However, this approach also uses the synchronized object lifecycles

Chapter 2. Literature Review 72

to generate the activity-centric process models rather than the rule-based artifact-centric

process models.

Prescher et al. (2014) proposed an approach to transform declarative process models

into behaviourally equivalent Petri Net models. The proposed transformation first maps

the declarative constraints of the input model into regular expressions, which are then

transformed into the Finite State Automaton (FSA). The resulting FSA is then used

to derive the Petri Net model. This approach was implemented and evaluated using a

real business case. However, the proposed approach has a drawback that it produces

duplicate tasks in the resulting process models that increase the complexity with a

higher number of execution alternatives for the resulting process models.

De Giacomo et al. (2015) proposed an extension to BPMN constructs for modeling

declarative business processes, where the extension has been named as BPMN-D. The

authors also proposed algorithms to translate the declarative models into the BPMN-D

models, where the proposed translation involves translating the standard Finite State

Automaton of the input model to an equivalent Finite-state Constraint Automaton, then

to translate it into BPMN-D. An algorithm for the direct translation of Declare (van

Der Aalst, Pesic & Schonenberg, 2009) model into the BPMN-D is also presented.

However, this approach does not consider the parallel states of objects.

Fan et al. (2015) proposed an approach to automatically translate artifact-centric

business processes into activity-centric processes to execute them on a process execution

engine called JTangFlow. In this regard, an algorithm is presented that follows a mapping

between the two process models to achieve the translation. However, this approach is

also not useful for translating the declarative process models.

As discussed above, there exist some approaches related to the transformation of

artifact-centric process models into activity-centric process models. However, these

approaches either use synchronized or unsynchronized object lifecycles to construct

the activity-centric process models or they result in models with duplicate tasks and

Chapter 2. Literature Review 73

can not handle parallelism. Therefore, this thesis proposes a direct model-to-model

transformation approach (Kunchala, Yu, Yongchareon & Wang, 2020) that does not

introduce duplicate tasks and handles parallelism in the process models.

2.6 Summary

This chapter contains an in-depth literature review to ensure familiarity with the studies

that underpin this domain, existing research, challenges, possible opportunities and ques-

tions. The most relevant findings of this review are summarized in this chapter, based

on them important research gaps were identified, and the objectives were formulated

and stated in Section 1.2 and 1.3 of this thesis.

This chapter mainly presented the necessary background for the activity-centric

paradigm. The overwhelming evolution of the artifact-centric paradigm over the last

decade was also discussed, which showed how this paradigm has received attention

from various academic and industrial researchers and how it has gained popularity

as one of the mainstream approaches in BPM. In addition, existing works relating to

the three research questions to be addressed in this thesis were discussed. It was also

demonstrated that the existing literature lacks efficient approaches to address these

issues, which motivated this further research on the three key issues. Therefore, this

thesis proposes to resolve these issues by presenting some approaches that efficiently

work for the given problems.

Chapter 3

Synthesizing Artifact Lifecycles from

Activity-Centric Process Models

The artifact-centric approach to business process modeling has received considerable

attention for elevating data logic to the same level as the process flow logic. The ob-

jective of artifact-centric modeling is to provide an intuitive and flexible representation

to business people which is used to analyze, manage and control their business oper-

ations. With the growing significance of this modeling approach, the transformation

of traditional activity-centric process models into artifact-centric process models has

emerged as an important research question. The proposed transformation mainly aims

to synthesize or generate indispensable units of artifacts such as their lifecycles and

their synchronization dependencies.

As described in Chapter 2, although several approaches to the defined objective

exist, an automated approach with a holistic view on the flow of artifacts and their

synchronization dependencies is still needed to address the limitations of existing

approaches and facilitate the proposed transformation. Therefore, in this chapter,

a tree-based synthesis approach to automatically generate the lifecycles of artifacts

from the activity-centric process models that contain a set of artifacts and states is

74

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 75

presented. Specifically, algorithms are proposed to construct process trees reflecting

the hierarchical structure of activity-centric process models, to generate the lifecycles

of artifacts by traversing through the process trees and to refine and synchronize these

lifecycle models to show the interrelations between the corresponding artifacts. The

feasibility of the proposed approach will be demonstrated using a case study and the

applicability and performance will be evaluated through in-lab experiments using a

process model collection from BPM Academic Initiative (BPMAI) (Kunze et al., 2012).

The remaining chapter is organized into seven sections. Section 3.1 introduces

a motivating example based on a customer order processing scenario. Section 3.2

formulates the problem statement and defines some of the key notions used in deriving

a solution for the proposed problem. Section 3.3 presents an overview of the proposed

synthesis approach. Section 3.4 presents algorithms for each step of the synthesis

approach. Section 3.5 demonstrates a case study, the implementation and performance

evaluation of the proposed approach. Section 3.6 discusses and reviews the related

work. Section 3.7 summarizes the contributions of this chapter.

3.1 Motivating Example

In this section, a motivating example on Customer Order Processing to demonstrate the

proposed approach is presented. Figure 3.1 shows the order process that is represented

in Business Process Modeling Notation (BPMN) with artifact data flow annotations.

This process model 1 is adopted from (Meyer & Weske, 2013), where the BPMN

constructs such as events, activities, gateways (XOR, AND), sequence flows, artifacts

and their associations are used to capture the processing steps of customer order.

The event, activity and gateway elements of the process model are classified as

nodes, as they represent nodes on the process network, while sequence flows represent

1The terms process and process model are interchangeably in the rest of this thesis

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 76

edges of that process network. Here, a gateway that contains multiple outgoing sequence

flows is called a split (or open) type of gateway and a gateway that contains multiple

incoming sequence flows is called a merge (or close) type of gateway. The nodes can be

further classified into atomic, that includes event and activity nodes, and non-atomic,

such as gateway nodes as they have an internal structure.

Receive
Order

Analyze
Order

Check
Stock

Plan
Product

Schedule
Product

Manufacture
Product

Ship
Product

Send
Invoice

Receive
Payment

Product
[shipped]

Order
[shipped]

Inovice
 [init]

Invoice
[sent]

Order
[invoiced]

Invoice
[paid]

Order
[paid]

O
rd

er
[r

ej
ec

te
d

]

[i
n

 s
to

ck
]

Product
[scheduled]

Product
[planned]

Order
[init]

Order
[received]

Order
[rejected]

Product
[init]

Order
[checked]

Product
[not in
stock]

Order
[confirmed] Prodcut

[in stock]

Product
[manufact

ured]

[confirmed]

 Order

 Product

 [not in stock]

LEGEND

Start
Event Task/Activity Gateway Sequence Flow Artifact Association

End
Event

Figure 3.1: Customer Order Process

As illustrated in Figure 3.1, order processing is initiated upon receiving a customer

request and completed with the order’s delivery or rejection. Order, Product and Invoice

are the three artifacts involved in fulfilling the customer request. As annotated in the

process, every artifact has a name and a state that the artifact is currently residing

in. The states can be changed when the activities invoke the associated artifacts. For

example, after receiving a customer request, the state of the Order artifact is changed

from init to received by the ReceiveOrder activity. Next, the AnalyzeOrder activity

places the Order artifact in either the confirmed state or in the rejected state. In case of

confirmed state, the Order artifact undergoes a set of processing steps from CheckStock

to ReceivePayment, until it reaches its final state of paid; otherwise it enters the rejected

state and the process terminates. Similarly, the artifacts Product and Invoice pass

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 77

through several activities and states to complete their processing.

Regarding artifact data flow, it is worth mentioning that an activity node can have

multiple input and output artifacts, as illustrated in the above process. For example, the

SendInvoice activity has two input artifacts Order and Invoice, and also outputs these

two artifacts in different states. Likewise, to represent the case that an activity might

output an artifact in different states, for example the AnalyzeOrder that outputs Order

in either the rejected or confirmed state. For these cases, multiple artifact annotations,

i.e., having the same name but in different states are used, as seen in Figure 3.1.

It is clear from the above two cases that a split type of gateway succeeds an activity

node that produces multiple states for an artifact, where each of these states must be

associated with a different branch of the gateway. Similarly, a merge type of gateway

precedes an activity node that receives an artifact with multiple states as input from

each branch of the gateway. For example, the AND-Merge gateway precedes the

ManufactureProduct activity that takes planned and scheduled states of the Product

artifact as input from different branches of the AND-Split gateway.

Intuitively, the artifact data flow annotation in the given process model enables the

generation of the lifecycle or state transition of every artifact, whose states and their

dependencies are specified in such an artifact-annotated process model (or AAPM). For

example, the lifecycle of an Order artifact starts with Init state, then passes through the

states Received, Confirmed (or Rejected), Checked, Shipped, Sent and finally ends in

the Paid state.

3.2 Problem Statement and Definitions

In this section, the research problem targeted in this chapter is formally stated and all the

key notions used in deriving a solution for the given problem are defined. These notions

include: Process Model, Artifact-Annotated Process Model, Process Tree, Artifact

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 78

Lifecycle and Synchronized Artifact Lifecycle.

PROBLEM (ARTIFACT LIFECYCLE SYNTHESIS). Given an activity-centric

process model annotated with data flow of artifacts and their states, the lifecycle of

every artifact and their synchronization dependencies from this process model must be

synthesized.

The scope of this chapter is to generate artifact lifecycles based on the control

flow and data flow of standalone activity-centric process models. Therefore, only a

subset of relevant BPMN elements is considered to model the motivating example,

as presented in Figure 3.1, instead of the entire BPMN modeling constructs. For

example, elements such as swimlanes and message flows are excluded here, as they are

used for representing the inter-organizational business processes and their interactions.

Therefore, a standalone activity-centric process model is defined as follows:

Definition 1. Process Model: A process model denoted with π0 = (E, A, G, F), where

- E is a finite set of events. Every event has a type in E.Type = {Start, End};

- A is a finite set of activities;

- G is a finite set of gateways. Every gateway has a type in G.Type = {XOR, AND};

and Gopen is used to represent opening (split) gateways and Gclose is used to represent

closing (merge) gateways;

- F ⊆ (E ∪A∪G)× (E ∪A∪G) is the set of sequence flow relations among events,

activities and gateways.

The process model is assumed to be block-structured. A block-structured process

model, such as the given motivating example, contains exactly one start and one end

node, all the gateway branches are properly nested, and each further node is on a path

from the start to the end node (Backus et al., 1960; Kiepuszewski, Ter Hofstede &

Bussler, 2000). As annotations on artifacts and data flows are optional in majority of

activity-centric process models (Meyer & Weske, September, 2013), to differentiate

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 79

these models, from now on, the proposed (customer order) process model is named the

Artifact-Annotated Process Model (AAPM), which is defined as follows:

Definition 2. AAPM (Artifact-Annotated Process Model): An AAPM Π is a superset

of process model π0 = {E,A,G,F}: Π = π0 ∪ {D,S, I,O}, where

- D is a finite set of artifacts;

- S is a finite set of states;

- I = D × S × A is the input relation between an artifact at a specific state with

an activity. For example, as seen in Figure 3.1, (Order, Init,ReceiveOrder) ∈ I ,

meaning that the artifact Order at state Init is an input to the ReceiveOrder activity node.

For the convenience of reading, the form ReceiveOrder.I = {Order.init} is used to

represent an input relation;

- Similarly,O = A×D×S is the output relation between an activity and an artifact at a

specific state. For example, as seen in Figure 3.1, (ReceiveOrder,Order,Received) ∈

O, meaning that the artifact Order at state Received is an output of ReceiveOrder, and

it can also be written as ReceiveOrder.O = {Order.Received}.

From the above definition, it can be seen that I andO define the data flow of artifacts

over the original activity-centric process model.

Definition 3. Process Tree: A tree is recursively defined as a node (called the root)

connected to the roots of other trees. A process tree is a tree with Node = {SEQ} ∪

π.E ∪ π.A ∪ π.G.

A node on the process tree can be an event, an activity, or a gateway of an AAPM,

or a special node called SEQ, which means its child nodes are in sequential order.

Naturally, on a process tree the corresponding input and output artifacts and states can

be attached to an activity node as its properties.

Statecharts are used to represent the lifecycle models of artifacts. Statecharts are

well-known for illustrating entity behaviour as a set of states (simple or composite)

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 80

and their transitions; they also have the notion of orthogonal regions for specifying

concurrent states. An artifact lifecycle is defined based on the formal semantics of

statecharts proposed in (Mikk, Lakhnechi & Siegel, December, 1997; O. OMG, 2007).

Definition 4. Artifact Lifecycle: The lifecycle of artifact denoted with Ld = (d.S , ρ, T ,

λ, OG), where

- d.S is the finite set of states of an artifact d;

- ρ = {initial, choice, junction, fork, join} is a finite set of pseudostates;

- T ⊆ S × S is a finite set of state transitions;

- λ ⊆ (ρ∪S)×(S ∪ρ) is the set of transition relations among states and psudostates;

- OG is the set of orthogonal regions. Every region is a finite set of states β,

pseudostates ρ̄ and transition relations λ̄, where β ⊂ d.S, ρ̄ ⊂ ρ and λ̄ ⊂ λ. Two states s1,

s2 are said to be orthogonal, iff ∃og1, og2 ∈ OG, where og1 ≠ og2 ∧ s1 ∈ og1 ∧ s2 ∈ og2.

Definition 5. Synchronized Artifact Lifecycle: A synchronized artifact lifecycle denoted

with SL = (LD,Ψ), where

- LD is the finite set of artifact lifecycles;

- Ψ is the finite set of synchronization edges between the artifact lifecycles. Every

edge ψ = (si, sj), where si ∈ Ldi ∧ sj ∈ Ldj .

3.3 The Synthesis Approach

The synthesis is defined as the derivation of synchronized artifact lifecycles from the

tree representation of an artifact-annotated process model (AAPM). The overview of

synthesis approach is presented in Figure 3.2, where the three steps in resolving the

synthesis problem are depicted with the inputs they utilize and the outputs they produce

after execution. This section briefly elaborates each of these steps, while the algorithms

for these steps are presented and explained in detail in the next section.

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 81

Step 1: Build Process

Tree of an AAPM

Step 2: Generate

Artifact Lifecycles

Artifact-Annotated

Process Model

(AAPM)

Process Tree of

AAPM

Step 3: Refine and

Synchronize Artifact

Lifecycles

 Artifact

Lifecycles

Synchronized

Artifact Lifecycle

Figure 3.2: Synthesis Approach

STEP 1(Building a Process Tree). Given an artifact-annotated process model

(AAPM) Π, the corresponding process tree Node is constructed by tracing through the

sequence flow nodes of this process model.

In this step, a tree representation of the given AAPM is built. The resulting process

tree hierarchically encloses the nodes of AAPM by following their direct sequence flow

relations. Mainly, the tree building is initiated at the start node and is terminated at

the end node of the process model. All the nodes, including the start and end nodes

of AAPM, are appended to the root node (SEQ) of the resulting process tree. Prior to

appending each process node, its type is checked as either atomic or non-atomic. When

compared to the atomic nodes, such as events and activities, the non-atomic gateway

nodes are tackled differently in order to capture their internal structure. Therefore,

unlike the atomic nodes, for every gateway, the build is repeated to append all its branch

nodes to the process tree.

STEP 2 (Generating Artifact Lifecycles). Given an artifact-annotated process model

(AAPM) Π, the lifecycle of every associated artifact Ld is generated by traversing

through the tree representation of this process model.

In this step, every node of the process tree built in Step 1 is searched for states to

generate the lifecycles of artifacts. Mainly, the input and output of each activity node in

the process tree is examined to retrieve the states that correspond to an artifact, which

are then organized to generate its lifecycle.

STEP 3 (Refining and Synchronizing Artifact Lifecycles). Given an artifact lifecycle

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 82

Ld with some irrelevant elements (duplicate states and empty gateways) , the refined

artifact lifecycle is obtained by removing these elements and is synchronized with other

artifact lifecycles by considering their concurrent state changes in AAPM.

In this step, the artifact lifecycles resulting from Step 2 are refined in order to

remove irrelevant elements. Mainly, the duplicate states that have a direct sequence

flow relation and empty gateway nodes (if any) are removed from the generated artifact

lifecycles. The refined lifecycles are then synchronized to show the interactions between

the corresponding artifacts by considering the concurrent state changes caused by the

activity nodes in the given process model.

3.4 Algorithms

In this section, algorithms for each step of the synthesis approach are presented. Prior

to defining these algorithms, an updated version of the motivating example (or AAPM)

is presented in Figure 3.3, where empty tasks (Phi or Φ) (Natschläger, August, 2011)

are inserted at every direct sequence flow that connects a split type of gateway with

its merge. An artifact with its state associated to the corresponding gateway branch

is annotated as an input and output to these empty tasks. Here, the empty tasks are

useful to capture the dependency (exclusive or parallel) of artifact states associated with

each gateway node of AAPM in the resulting lifecycles. In the following sections, the

updated AAPM, as presented in Figure 3.3, is utilized to demonstrate the key aspects of

proposed algorithms.

3.4.1 Building a Process Tree

Algorithm 3.1 defines a procedure to build a tree representation of AAPM. The resulting

process tree encloses the nodes of AAPM in a hierarchical structure. As mentioned in

the previous section, a sequential node, SEQ, is used to represent the root node of the

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 83

Receive
Order

Analyze
Order

Check
Stock

Plan
Product

Schedule
Product

Manufacture
Product

Ship
Product

Send
Invoice

Receive
Payment

Product
[shipped]

Order
[shipped]

Inovice
 [init]

Invoice
[sent]

Order
[invoiced]

Invoice
[paid]

Order
[paid]

O
rd

e
r

[r
ej

ec
te

d
]

[i
n

 s
to

ck
]

Product
[scheduled]

Product
[planned]

Phi

Order
[rejected]

Phi

Order
[init]

Order
[received]

Order
[rejected]

Product
[init]

Order
[checked]

Product
[not in
stock]

Order
[confirmed]

Prodcut
[in stock]

Product
[manufact

ured]

Prodcut
[in stock]

 Order

[confirmed]

 Product

 [not in stock]

Figure 3.3: Customer Order Process (updated AAPM)

process tree. To this SEQ root, the algorithm appends all the (first-level) direct sequence

flow nodes of AAPM as child nodes. For example, the nodes Start, ReceiveOrder and

AnalyzeOrder in Figure 3.3 can be appended as child nodes to SEQ, as they have a

direct sequence relation. While start and end nodes are always connected in a sequence

relation in any process, it is feasible to use SEQ to represent the parent of these same

level process nodes.

The BuildTree() recursive function defined in Algorithm 3.1 takes as input, an empty

tree root r (SEQ) and the node set of AAPM. As stated in the algorithm, starting at the

first node (start) of AAPM, each process node (v) is examined for its type and then is

appended accordingly to the tree. Therefore, based on the defined conditions (in line

3, 5 and 7), a node must be atomic (event or activity) or non-atomic (gateway (split)),

containing an internal structure. For every activity, the algorithm also preserves the

corresponding input and output artifact annotation in the process tree as their properties.

Here, the algorithm does not consider the no operation (NOP) nodes, such as the close

gateway (merge) nodes, as they have no effect on the artifacts and their states.

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 84

Algorithm 3.1: Building a Process Tree of AAPM
Input : Process tree Node with empty root r (SEQ) and node set of AAPM

(Π)
Output : Complete process tree Node of AAPM Π

1 Function BuildTree(r : Node , v : Π):
2 if v ≠ null then
3 if v ∉ GClose then
4 r.AppendChild(v)
5 if v ∈ A then
6 AnnotateIO(v)
7 else if v ∈ GOpen then
8 foreach c← GetSeqNext(v) do
9 vc ← SEQ

10 v.AppendChild(vc)
11 BuildTree(vc, c)
12 end
13 v ← GetCloseNode(v)
14 end
15 v ← GetSeqNext(v)
16 BuildTree(r, v)
17 end
18 end
19 End Function

The AppendChild() function in the algorithm is used to append a node to its parent

node in the process tree. While every event and activity node is appended directly to

their corresponding parent node in the tree, for every gateway its open (split) node is

appended first and then the BuildTree() function is recursively invoked to append its

branch nodes. The GetSeqNext() function in the algorithm returns the direct successor

(next sequence flow node) of a process node. Likewise, the GetCloseNode() function is

used to obtain the close (merge) gateway node of a gateway.

Figure 3.4 presents the process tree of AAPM, built using Algorithm 3.1. As

shown in the figure, the first-level sequence flow nodes of AAPM: Start, ReceiveOrder,

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 85

AnalyzeOrder, XOR-Split gateway and End appear as the first-level child nodes of

root SEQ, as they hold a direct sequence flow relation. For every activity node, the

AnnotateIO() function in the algorithm annotates the associated input and output artifacts

with states, which can also be seen from the process tree.

Receive
Order

Analyze
Order

SEQ SEQ

Check
Stock

Ship
Products

Send
Invoice

Receive
Payment

Manufacture
Product

SEQ SEQ

Plan
Product

Schedule
Product

Phi

Order
[Received]

Order
[Received]

Order
[Init]

Order
[Rejected]

Order
[Confirmed]

Order
[Rejected]

Order
[Rejected]

Product
[Init]

Order
[Confirmed]

Order
[Checked]

SEQSEQ

Product
[In Stock]

Product
[In Stock]

Product
[Not In
Stock]

Product
[Planned]

Product
[Not In
Stock]

Product
[Scheduled]

Product
[Manufac-

tured]

Product
[Planned]

Product
[Scheduled]

Product
[In Stock]

Product
[Manufac-

tured]

Product
[Shipped] Order

[Shipped]

Order
[Shipped]

Invoice
[Init]

Order
[Invoiced]

Invoice
[Sent] Order

[Invoiced] Invoice
[Sent]

Invoice
[Paid]

Order
[Paid]

Product
[In Stock]

Product
[Not In
Stock]

SEQ

Phi

Figure 3.4: Process Tree of AAPM

Specifically, Algorithm 3.1 follows a step-by-step procedure to build a process tree,

where after appending a node its next sequence flow node is obtained using the function

GetSeqNext() and is appended in a next sibling relation. Similarly, for every sequence

flow (branch) node of an open gateway (split) node, the algorithm appends a new SEQ

node (in line 8 and 9), as its child node. The node vc in the algorithm denotes this new

SEQ node to which all the nodes flowing on the corresponding gateway branch are

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 86

appended. Here, the BuildTree() function is recursively invoked to append these branch

nodes as the next-level child nodes of the new SEQ node.

Figure 3.3 presents an example, where the second XOR-Split gateway node of

AAPM has two sequence flow nodes: AND-Split gateway and Phi activity. Therefore,

for each of these nodes, a new SEQ node is appended as a child to the corresponding

XOR-Split gateway node in the process tree. The nodes AND-Split and Phi are then

appended as next-level child nodes of these two new SEQ nodes, as shown in Figure

3.4. As mentioned above, the close gateway (XOR-Merge) node is not appended to the

process tree.

In this manner, starting at the first (start) node of AAPM, the build is continued until

the last node (end) is reached. The process tree resulting from Algorithm 3.1 is used in

the following step to generate the lifecycle for every artifact of AAPM.

3.4.2 Generating Artifact Lifecycles

Algorithm 3.2 defines a GenerateLifecycle() recursive function that generates lifecycle

for every artifact present in AAPM. The input to this function is a process tree Node

that is built using Algorithm 3.1 and an artifact d, while the output is an artifact lifecycle

Ld. According to Algorithm 3.2, for each artifact of AAPM, the recursive function

traverses every node of process tree to retrieve the states that are used to generate its

lifecycle. Here, the algorithm follows the Pre-order Depth First Search (DFS), where,

starting at the left most node (or sub tree) of root, every next node is searched until the

right most node (or sub tree) of the root is reached in a depth first manner, meaning that

all of the deeper level nodes are searched.

As shown in the process tree presented in Figure 3.4, all the gateway and SEQ

nodes are non-leaf nodes, as they have at least one child node, whereas the event and

activity nodes are leaf nodes. Similar to Algorithm 3.1, this algorithm also tackles the

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 87

non-leaf and leaf nodes differently (see line 3, 5 and 9). Therefore, as defined, the

start and end nodes are directly added to the corresponding artifact lifecycle. Whereas,

for every activity (lines 5-8), its input and output artifacts are searched to retrieve the

required states and, as defined in the algorithm (in line 6 and 7), a state is added to the

corresponding artifact lifecycle only when there is one copy of that artifact associated

with the input or output of that activity.

Algorithm 3.2: Generating an Artifact Lifecycle
Input : Process tree Node and artifact d
Output : Lifecycle of artifact Ld

1 Function GenerateLifecycle(v : Node, d : Π.D):
2 foreach v ∈ Node do
3 if v ∈ E then
4 Ld.AddInSeq(v)
5 else if v ∈ A then
6 if ∣v.I.D ∩ {d}∣ = 1 or ∣v.O.D ∩ {d}∣ = 1 then
7 Ld.AddInSeq(d.s)
8 end
9 else if v ∈ GOpen then

10 Ld.AddInSeq(GOpen)
11 foreach SEQ ∈ v do
12 GOpen.AddBranch()
13 GenerateLifecycle(SEQ)
14 end
15 Ld.AddInSeq(GClose)
16 end
17 end
18 End Function

The AddInSeq() function in the algorithm is used to add a node, such as event or

gateway, and also an artifact state to the corresponding artifact lifecycle. Therefore, as

the name implies, a node or a state can be added in a sequence relation to the previously

inserted element (node or state) in the lifecycle. As defined in the algorithm (lines

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 88

9-16), while dealing with a gateway node, an empty open gateway (split) node is first

inserted into the artifact lifecycle in order to show the dependency between the states

that belong to different branches of the gateway. The GenerateLifecycle() function is

then called recursively to each of its SEQ child nodes, which traverses through their

deeper level nodes and adds the associated states to the lifecycle. After completing all

the SEQ child nodes, a close gateway (merge) node is added in the lifecycle that merges

all the branches of the corresponding open gateway.

Figure 3.5 presents the lifecycle of Product artifact generated using Algorithm 3.2

from the process tree presented in Figure 3.4. As described above, starting at the left

most node (Start) of SEQ (root), the algorithm searches through all its next nodes

ReceiveOrder, AnalyzeOrder, XOR-Split and End to find the states {Init, In Stock, Not

In Stock, Planned, Scheduled, Manufactured, Shipped} of Product artifact and adds

them to its (empty) lifecycle, preserving their dependencies.

In Stock

Planned

Scheduled

Manufactured

ShippedInit
Not In Stock

Not In Stock

In Stock

Figure 3.5: Lifecycle of Product artifact

In detail, to generate a Product artifact lifecycle, the start node is added first and

then its following nodes are traversed for the states of this artifact. While the nodes

ReceiveOrder and AnalyzeOrder do not contain states related to Product artifact, the

child nodes of XOR-Split are traversed next. Therefore, as described above, before

calling a recursive function that searches the child nodes of XOR-Split, an empty split

node of this gateway is added in the lifecycle, as shown in Figure 3.5, and then its

child nodes are traversed. Here, as only the second (right) SEQ node of the XOR-Split

gateway has nodes (activities) that contain states belonging to the Product artifact, the

other branch of this gateway node in the lifecycle appears empty. In this manner, each

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 89

activity node in the process tree is searched and the states are arranged based on their

dependencies to generate the artifact lifecycles of AAPM.

Algorithm 3.3: Generating all the Artifact Lifecycles of AAPM
Input : Process tree Node and set of empty artifact lifecycles LD
Output : Complete lifecycles of artifacts LD

1 Function GenerateLifecycle(Node , LD):
2 foreach v ∈ Node do
3 if v ∈ E then
4 foreach Ld ∈ LD do
5 Ld.AddInSeq(v)
6 end
7 else if v ∈ A then
8 if ∣v.I.D ∩ {d}∣ = 1 or ∣v.O.D ∩ {d}∣ = 1 then
9 Ld.AddInSeq(d.s)

10 end
11 else if v ∈ GOpen then
12 foreach Ld ∈ LD do
13 // block (starts)
14 Ld.AddInSeq(GOpen)
15 end
16 foreach SEQ ∈ v do
17 GenerateLifecycle(SEQ,LD)
18 end
19 foreach Ld ∈ LD do
20 Ld.AddInSeq(GClose)
21 end
22 // block (ends)

23 end
24 end
25 End Function

In Algorithm 3.3, an alternative procedure to generate the lifecycles of artifacts is

presented. In comparison to Algorithm 3.2, which requires one complete traversal of

the process tree to generate one artifact lifecycle, Algorithm 3.3 generates all the artifact

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 90

lifecycles in one traversal of the process tree. This goal is achieved mainly by retrieving

the states and adding them to the corresponding artifact lifecycles simultaneously.

Algorithm 3.3 takes a process tree Node and a set of empty artifact lifecycles LD as

input to generate complete artifact lifecycles. Similar to Algorithm 3.2, this algorithm

also initiates at the start node of the process tree, and checks every node for its type,

such as event or activity or gateway (see line 3, 7 and 11). Here, the event and gateway

nodes are added to every artifact lifecycle simultaneously. Similarly, for activities, their

inputs and outputs are checked for artifacts and the states associated with each of them

are added to the corresponding lifecycles at the same time. The block (lines 13-22)

enclosed in Algorithm 3.3 is used to preserve the dependencies between the artifact

states from the process tree to the resulting lifecycles.

As demonstrated above, this algorithm requires one traversal of the process tree

to generate all the artifact lifecycles. Therefore, it is clear that Algorithm 3.3 is more

efficient than Algorithm 3.2, as it can generate all the artifact lifecycles in only one

traversal of the process tree.

3.4.3 Refining and Synchronizing Artifact Lifecycles

The artifact lifecycles generated using Algorithm 3.2 and 3.3 may result in some du-

plicate states and empty gateways (i.e., the gateways that do not contain any states

on their branches). This is mainly due to the activity nodes that retain their own set

of input and output annotation (artifacts and states) from the process model in the

corresponding process tree. For example, the Order[Received] appears twice, as an

output of ReceiveOrder and also as an input of its next node AnalyzeOrder, in the

process tree, presented in Figure 3.4. Therefore, the resulting Order artifact lifecycle

contains two consecutive Received states, as shown in Figure 3.6. Similarly, every phi

activity node in the process tree contains the same input and output artifact annotation,

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 91

which also leads to duplication in the corresponding lifecycles.

Algorithm 3.4: Refining an Artifact Lifecycle
Input : Generated artifact lifecycle Ld
Output : Refined artifact lifecycle Ld

1 Function RefineLifecycle(v ∶ Ld):
2 if v ≠ null then
3 if v ∉ G then
4 vnext ← v.GetSeqNext(v)
5 if vnext = v then
6 Ld.Remove(v)
7 end
8 else
9 if v ∈ GOpen then

10 foreach vnext ← GetSeqNext(v) do
11 if vnext = GClose then
12 count← count + 1

13 else
14 RefineLifeCycle(vnext)
15 end
16 end
17 if count = ∣GetAllSequenceF lows(v)∣ then
18 Ld.Remove(v)
19 end
20 end
21 end
22 v ← v.GetSeqNext(v)
23 RefineLifeCycle(v)
24 end
25 End Function

In addition, empty gateways that have no states on their branches may also appear

in the generated lifecycles if none of the child nodes of a gateway node in the process

tree contain states that belong to the corresponding artifacts. Therefore, refinement

is suggested as a post-processing step to resolve each of these possibilities, where

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 92

the empty gateways and one of the two identical states that are in direct sequence

relation must be removed. To obtain the fine-grained synchronized artifact lifecycles,

it is important to resolve these inconsistencies before the generated lifecycles are

synchronized. Therefore, a procedure is stated in Algorithm 3.4 that generates the

refined artifact lifecycles by removing all the irrelevant elements.

According to Algorithm 3.4 (lines 5-7), in an artifact lifecycle, a state that is identical

to its succeeding state is removed using the Remove() function if they have a direct

sequence relation. Similarly, a gateway (open) is removed (lines 8-21) if all its outgoing

sequence flows are directing to its close gateway node. Here, a counter variable (count)

is used to enumerate these outgoing sequence flows, based on which a gateway is

removed if the value of this variable is equal to the number of branches that a gateway

has. After the refinement step, the resulting lifecycles can be mapped to statechart

representations, as shown in Figure 3.8.

The lifecycle of the Order artifact, presented in Figure 3.6 is reconsidered, as it

contains some irrelevant elements as described above. The refined lifecycle of the Order

artifact is given in Figure 3.7, where the duplicates of the states Received, Rejected,

Shipped and Invoiced are removed. In addition, the empty gateways, such as the parallel

gateway and the exclusive gateway (that encloses the parallel gateway) are also removed

from the original lifecycle of the Order artifact.

Rejected

Checked Shipped Paid

Init Received

Confirmed

Received

Shipped

Rejected

InvoicedInvoiced

Figure 3.6: Generated Lifecycle of Order artifact

As mentioned above, the refined lifecycles can be mapped to statecharts. For

example, in Figure 3.8 the refined Product artifact lifecycle is mapped to a statechart,

where all the XOR-Split and XOR-Merge gateway nodes are replaced with choice

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 93

Rejected

Confirmed InvoicedShipped PaidChecked

Init Received

Figure 3.7: Refined Lifecycle of Order artifact

and junction pseudo states and all the AND-Split and AND-Merge gateway nodes are

replaced with fork and join pseudo states. Also, the parallel states, such as Planned and

Scheduled, are separated from the orthogonal regions of the fork pseudo state to show

the concurrency between them.

In Stock

Planned

Scheduled

Manufactured

ShippedInit
Not In Stock

Not In Stock

In Stock

Init

In Stock

Not In Stock

Planned

Scheduled

Manufactured

Shipped

LEGEND

Initial
State State Choice Transition Fork/Join

Orthogonal
Region

Final
State

Figure 3.8: Statechart representation of Product artifact lifecycle

Next, the refined lifecycles are synchronized to show the relationship between the

corresponding artifacts. The synchronization process is simple, where a set of artifact

lifecycles are synchronized by connecting their states that changed simultaneously.

Clearly, the states of any two artifacts are synchronized if they both are associated with

the output of an activity node. Therefore, according to the following pseudo code the

lifecycles Ldi , Ldj of two artifacts di and dj are synchronized at states that belong to

the output set (O) of the same activity v. The Synchronize() function is for adding a

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 94

synchronization edge between the states of any two artifact lifecycles.

foreach v ∈ A do

if (di, dj) ∈ v.O and (si ∈ Ldi and sj ∈ Ldj) then
Synchronize(si, sj)

end
end for

Sent PaidInit

Invoice

Init

In Stock

Not In Stock

Planned

Scheduled

Manufactured

Shipped

Rejected

Confirmed InvoicedShipped PaidChecked

Init Received

Product

Order

Figure 3.9: Synchronized artifact lifecycles of customer order process

The synchronized artifact lifecycles of the motivating example are presented in

Figure 3.9. The figure mainly depicts the lifecycles of the Order, Product and Invoice

artifacts that capture their end-to-end processing in a set of states with dotted lines

representing their synchronization. In this figure, the first synchronization line indicates

that the states Checked, In stock and Not In Stock belong to the output of the same activity

node, CheckStock. Similarly, the Shipped state of Order and Product artifacts and the

Invoiced, Sent and Paid states of Order and Invoice artifacts are also synchronized.

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 95

3.5 Evaluation

In this section, a case study is demonstrated to show the feasibility of the proposed

approach. The implementation and performance evaluation of the proposed algorithms

is also discussed.

3.5.1 Case Study

In this section, a recruitment process model is used to analyze the feasibility of synthesis

approach. This process model represents the steps in recruiting for a job position, and

is chosen from the BPMN process model collection, obtained from the repository of

the BPM Academic Initiative (BPMAI) (Kunze et al., 2012). BPMAI provides process

model collections in different modeling languages such as BPMN, EPC and Petri Net

for the purposes of teaching and empirical research.

The model collection obtained from BPMAI has different types of BPMN process

models, including: standard, choreography and conversation. These process models

vary in size, connectivity, complexity as well as domain. The motivating example

presented in Figure 3.1 is a standard type of process model, whereas the choreography

and conversation represent the interacting processes. While there are thousands of

standard process models in the model collection, it was challenging to choose an

appropriate case for this study. To find an appropriate case, the process models that

comply with the basic requirements specified in the previous section and closely align

to Definition 1 were first identified. Then, the process models were sorted based on

their connectivity and size (number of events, activities and gateways).

Figure 3.10 presents a histogram to give more statistical information on the process

collection chosen for this study. As illustrated by the histogram, the process count

decreases with the increase in process size (element count), which means there are only

a limited number of large and complex processes available for this study. Therefore,

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 96

a moderately complex case was chosen that represents a position recruitment process

from the highest range 120-140 presented in the histogram.

0

500

1000

1500

2000

N
u

m
b

er
 o

f
p

ro
ce

ss
 m

o
d

el
s

Element count of process models
0-20 20-40 40-60 60-80 80-100 100-120 120-140

Figure 3.10: Histogram of Sorted BPMN Model Collection

Figure 3.11 shows, where the recruitment process model describes a set of activities

in fulfilling a job position, mainly these include the processing steps of the key artifact

Position of this process. For ease of understanding, this section only presents an excerpt

of the recruitment process model, while the complete process model can be found in

the Appendix, in Figure A.1.

It is worth mentioning that some of the structural inconsistencies of this process

model were resolved before utilizing this for the proposed study. Mainly, this process

model initially had no artifact data flows, as the majority of process models in the

BPMN model collection are control-flow specific. Therefore, a label analysis based data

extraction tool (Meyer & Weske, September, 2013) was used to enrich the recruitment

process model with artifacts and states. The extraction tool enriched this process model

with 46 artifacts and 99 states.

The proposed algorithms were then applied to the enriched model. In order to

generate the lifecycle of every artifact, the algorithms first construct a tree model of this

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 97

Recruitment

Manager identify

a position

RM confirm

with client

manager

Review

position profile

with HR

Pass position

profile to client

end manager

Receive Position

description

Sometimes followup

with client-up

management

return signed appointment letter

and commencement to HR

serviceby candidate

select another

candidate

arrange a medical

test

RM notify his/her team and

client HR service of he

outcome

HR representative

makes a formal

written offer

if succeed ,made a

formal verbal offer

send a letter of

appointment with a

commencement pack

close

vacancy

Position

[not

vacant]

Position

[vacant]

Position

[vacant]

Position

 [not vacant]

Position

[confirmed]

Position

[consistent

with rule]

Position

[inconsist

ent with

rule]

Position

 [consistent with

rule]

Position

 [inconsistent

with rule]

Position

profile

[passed]

Position

description

[received]

Verbaloffer

[made]
Outcome

[notified]

renegotiation

[not succeed]

Offer

[not

 accepted]

renegotiation

[not succeed]

Offer

[not accepted]

candidate

[selected]

Medical

test

[arranged]

Offer

[made]

vacancy

[closed]

Appointment

letter

[returned]

Appointment

letter

[sent]

Written

offer

[made]

Phi

Position

[not

vacant]

Position

[inconsiste

nt with

rule]
Phi

Figure 3.11: Excerpt of the Recruitment Process Model

process model. In the Appendix, Figure A.2 depicts a part of the process tree that is

useful to synthesize the lifecycle of Position artifact of this process model. Then the

lifecycles are constructed by deriving states that correspond to each artifact from the

tree model; and finally, the lifecycles are refined and synchronized.

In the Appendix, Figure A.3 depicts the refined Position artifact lifecycle. As

described in the above section, to generate the lifecycle of Position artifact, Algorithm

3.2 traverses each node of the process tree fragment, presented in Figure A.2, and

extracts the states {Vacant, Not Vacant, Confirmed, Consistent with rule, inconsistent

with rule, Demand for role, No demand, New or Change existing, CLA5 and upwards,

<CLA5, Approved, Determined by RM, not Determined by RM} of this artifact and

adds them according to their dependency relation. The lifecycle is then refined and

synchronized with other lifecycles (see Figure A.3). The refined artifact lifecycles of

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 98

the recruitment process with states, transitions including their synchronizations revealed

the feasibility of the proposed synthesis approach.

3.5.2 Implementation

This section elaborates on the prototype tool, named Synthesis Tool, developed to further

evaluate the proposed approach. The tool takes as input an Artifact-Annotated Process

Model (AAPM), specified in Extensible Markup Language (XML), and generates the

synchronized artifact lifecycles. The tool is implemented using Java (Swing and AWT)

concepts and XML is used in the specification of all the representations including

AAPM, process tree and the synchronized artifact lifecycles. The Java API for XML

Processing (JAXP) (Davidson & Mordani, 2000) is used to parse and generate each of

these XML specifications. The sample of XML specification of the AAPM (BPMN)

process model can be found in the Appendix, in Figure A.4.

In order to synthesize, the tool first extracts the process tree from AAPM, generates

the artifact lifecycles from the process tree and then refines and synchronizes the

lifecycles. The tool also provides a Graphical User Interface (GUI) to visualize all

these extracted representations and also outputs their XML specifications. For example,

Figure 3.12 and 3.13, present the process tree and synchronized artifact lifecycles of the

motivating example (see Figure 3.1) generated using the synthesis tool.

3.5.3 Experimental Discussion

To evaluate the applicability of the proposed approach, experiments were conducted

using the dataset presented in Table 3.1, which has a small collection of process models

that have been chosen from the sorted (BPMAI) model collection discussed in the

previous section. This dataset contains 10 process models that represent different

domains including: Travel registration (P1), Business report exchange processing (P2),

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 99

Figure 3.12: Visualization of Process Tree of Customer Order Process

Figure 3.13: Visualization of Synchronized Artifact Lifecycle of Customer Order
Process

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 100

Order delivery and payment processing (P3), Credit card transaction (P4), Risk analysis

and management (P5), Donation process (P6), User account creation (P7), Online

shopping (P8). This set also includes the customer order processing(P9) and recruitment

process(P10) models used in the above sections to demonstrate the feasibility of the

proposed approach. As given in the table below, the 10 process models range from 9 to

135 in terms of their element (nodes, artifacts and states) count and are variable in size

(total number of elements) and complexity (the total number of elements and the depth

of the process model). While artifact-annotation is mandatory for the proposed approach,

the Data Extraction tool (Meyer & Weske, September, 2013) was used to enrich the

control-flow specific process models of this set. The extraction tool is developed based

on the label analysis technique introduced in the previous section.

Table 3.1: Dataset

Elements Test Processes

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

events 2 2 2 2 2 2 2 2 2 2

tasks 5 6 11 10 11 16 31 28 30 95

gateways 2 4 4 4 6 6 12 18 18 38

artifacts 2 5 4 10 3 10 10 15 26 46

states 7 7 13 12 18 18 32 29 36 99

Total 18 24 34 38 40 52 87 92 112 280

The Data Extraction tool transforms a process model without data annotation into

a process model with explicitly defined data annotation. Mainly, this tool extracts the

artifacts and states from the activity labels and data conditions associated with each

XOR-Split gateway node in the process model. The Data Extraction tool is implemented

with Natural Language Processing (NLP) capabilities, which aid the analysis of activity

labels and facilitate the artifact and state extraction. Therefore, this tool was utilized to

enrich the process models of the given dataset, for evaluating the proposed approach.

The resulting data enriched process models are then given to the synthesis tool for

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 101

building their tree representations and to generate, refine and synchronize the resulting

artifact lifecycles.

The Data Extraction tool has some limitations, in that it requires every activity label

in the process model to be described in a verb-object style and every XOR gateway

to be annotated with branch conditions in order to extract more than one state for an

object (artifact). Due to these limitations, the evaluation was restricted to a small set of

process models that satisfies the given requirements.

3.5.4 Performance Analysis

The efficiency of synthesis algorithms was first analyzed based on their time complexity

and then based on the results of experiments conducted using the dataset presented in

Table 3.1. As described above, the process models of this set vary in size and complexity.

Mainly, the execution times of synthesis algorithms presented in Section 3.4, on each of

these process models is used as a measure to analyze their efficiency. While it is obvious

that the times may vary from execution-to-execution, the tests have been repeated for

up to 10,000 times and the average execution time of each synthesis algorithm on each

process model has been calculated and recorded during the experiments.

It is worth mentioning that complexity of a process model is used as metric to evalu-

ate the efficiency of proposed approach. Complexity was mainly identified considering

the four key perspectives including: activity, control-flow, data-flow and resource com-

plexity of a process model discussed in (Cardoso, 2005). These perspectives focus on

the number of activities that a process model has, the number of control-flow constructs

including start, end nodes and the gateway elements such as splits, joins, mapping of

the data objects to activities. In this context, the complexity of each process model

from the given dataset is mainly derived based on the size (events, activities, gateways,

artifacts and states) and depth of the process model.

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 102

y = 0.135x + 2.6583
R² = 0.8819

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

Process Models

Algorithm 1

y = 0.1933x + 2.3889
R² = 0.8963

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

Process Models

Algorithm 2

y = 0.2883x + 2.1583
R² = 0.8844

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

Process Models

Algorithm 3

y = 0.0483x + 2.7139
R² = 0.864

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

Process Models

Algorithm 4

Figure 3.14: Execution times of Synthesis algorithms

The graphs presented in Figure 3.14 illustrate the execution times of each algorithm

over the given dataset. It was observed that the execution times of algorithms depend on

different parameters. For instance, Algorithm 3.1 depends on the number of nodes (size)

and the complexity (depth) of a process model, whereas Algorithm 3.2 and 3.3 depend

on the size and depth, including the number of artifacts that a process model contains.

Compared to Algorithm 3.2, the execution time of Algorithm 3.3, which defines an

alternative procedure to generate artifact lifecycles, is more efficient, as it takes only

one traversal of the process tree to generate all the artifact lifecycles. Algorithm 3.4

mainly depends on the number of artifacts and states in a process model.

Regression analysis is used to determine how the execution times of these algorithms

depend on one or more variants of the process models. The analysis results in a positive

linear relationship between the two variables, which can be interpreted as the execution

time increasing with the increase in process size and complexity. Therefore, it is clear

from the given graphs that, the performance of each algorithm is directly proportional

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 103

to the size and complexity of the process model. In accordance with the analysis

of proposed algorithms from the experiments, it can be concluded that the proposed

algorithms can be performed in a nearly linear-time.

3.6 Discussion and Related Work

Although the activity-centric paradigm has been considered beneficial for control-flow

specific processes, features such as backward navigation, event-driven behaviour and

conversational client interaction are difficult to support with activity-centric process

models (S. B. Kumaran, Liu & Wu, 2012). The impedance mismatch is another problem

that arises due to the separation of the control flow and data aspects in activity-centric

information systems (Dumas, 2011; Russo, Mecella, Patrizi & Montali, 2013; Siadat,

Shokohyar & Shafahi, 2019).

The artifact-centric approach is primarily appreciated for its intuitiveness and the

ability to facilitate business communication (Hull, 2008). With the seamless integration

of the control flow and data aspects, this approach can resolve most of the aforemen-

tioned problems caused by the traditional approach (Dumas, 2011; S. B. Kumaran et

al., 2012). Over a decade, the artifact-centric approach has been practiced and applied

successfully in various domains, including Health (Künzle & Reichert, 2011), Insurance

(S. Kumaran et al., 2008) and Finance (Chao et al., 2009). Additionally, it has been

acknowledged as this approach provides higher flexibility and extensibility (Xu et al.,

2011; Yongchareon et al., 2015) compared with the traditional activity-centric approach.

With the momentum of the artifact-centric approach, several works (S. Kumaran

et al., 2008; R. Liu et al., 2010; Meyer & Weske, 2013; Eshuis & Van Gorp, 2016)

have emphasized the generation of artifact-centric counterparts from activity-centric

processes that contain artifact data flows. However, as discussed in Chapter 2, the

existing approaches have either a limited view of the artifacts and their synchronizations

Chapter 3. Synthesizing ALCs from Activity-Centric Process Models 104

or they only support semi-automatic transformation. When compared to the existing

approaches, this thesis presents a fully automated approach that is not only useful

for generating artifact lifecycles, but also to synchronize the generated lifecycles. In

addition, the details of implementation and comprehensive evaluation that reveal the

applicability and efficiency of the proposed approach in practice have been presented.

The synthesis approach proposed in this chapter is related to the one presented in

our work (Kunchala, Yu, Sheng, Han & Yongchareon, 2015), with a major extension,

where this chapter improved the synthesis algorithms for efficiency, evaluated them

extensively with a case study and implementation, and also analyzed the performance

using the BPMAI process model collection.

3.7 Summary

In this chapter, the first research question (RQ1) is addressed by presenting an automated

approach that aims to transform traditional activity-centric process models into artifact-

centric process models. While recursive algorithms are ubiquitous for their intuitive

nature, such algorithms were presented and it was demonstrated how they can facilitate

the proposed transformation. To synthesize the lifecycles of artifacts, the proposed

algorithms extract a tree representation of the activity-centric process model, generate

each artifact lifecycle by traversing through the process tree, and, finally, refine and

synchronize the artifact lifecycles. A case study is demonstrated using a recruitment

process model to show the feasibility of the proposed algorithms. The implementation

and performance evaluation of the proposed algorithms by utilizing a process model

collection was also discussed.

Chapter 4

Merging the Collaborating Processes

of Activity-Centric Inter-

Organizational Business Process

Models

With the emergence of the artifact-centric paradigm, several transformation approaches

have been proposed to synthesize the lifecycles of artifacts from the standalone

activity-centric process models. However, the synthesis is challenging for the inter-

organizational business process (IOBP) models, as their artifacts and states are shared

among their collaborating processes. Thus, unlike a standalone process model, the

synthesis of artifact lifecycles from an IOBP requires the process interactions to be

captured while preserving the dependencies between the involved artifacts and states in

the resulting lifecycles.

This chapter aims to propose an approach that can be used to solve the problem

of the transformation of activity-centric IOBP models into artifact-centric process

models, remaining from chapter 3, where a transformation approach was presented

105

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 106

for the standalone activity-centric process models. The approach presented in this

chapter is based on the notion of process merging. As discussed in chapter 2, most

of the existing works in this regard focus on combining the process models that have

common process fragments and that do not contain the artifacts and states. Therefore,

an automated approach that aims to merge the collaborating processes of an activity-

centric IOBP model that contains artifact data flows is proposed (Kunchala et al., 2019).

The proposed merge approach is comprised of algorithms that combine the nodes of

two or more collaborating processes to generate an integrated (or merged) process

model which can be used to synthesize the artifact lifecycles pertinent to an IOBP. The

proposed algorithms are also implemented and evaluated using the BPMAI process

model collection.

The remaining chapter is organized into seven sections. Section 4.1 introduces a

motivating example based on an Order Processing Scenario. Section 4.2 formulates

the problem statement and defines the key notions used in deriving a solution for the

proposed problem. Section 4.3 presents an overview of the proposed merge approach

and defines the patterns for process interactions. Section 4.4 presents algorithms for the

merge approach. Section 4.5 demonstrates a case study and the implementation and

performance evaluation of the proposed approach. Section 4.6 discusses and reviews

the related work. Section 4.7 summarizes the contributions of this chapter.

4.1 Motivating Example

In this section, a Buyer-Seller e-business process scenario is presented (Kunchala, Yu,

Yongchareon & Han, 2017) to demonstrate the proposed approach. The process model

given in Figure 4.1 is an IOBP, represented using the BPMN modeling notation. As

shown in the figure, the IOBP consists of collaborating processes Buyer and Seller that

belong to two different organizations.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 107

Send
Payment

Payment
Approval

Request
Payment

Receive
Invoice

Receive
Order

Invoice
[received]

Order
[received]

Payment
[requested]

Payment
[approved]

Make
Order

Plan
Product

Manufacture
Product

Receive
Payment

Receive
Order

Check
Stock

Schedule
Product

Send
Order and

Invoice

Plan
Delivery

Order
[received]

Product
[Not In
Stock]

Product
[planned]

Product
[Scheduled]

Product
[made]

Product
[Delivery
planned]

Product
 [In Stock]

Order
[sent]

Invoice
[sent]

Invoice
 [cleared]

Payment
[received]

Order
[init]

Invoice
[closed]

Seller
Process

Buyer
Process

Record
Payment

Payment
[recorded]

Clear
Invoice

Order
 [paid]

Payment
[sent]

Figure 4.1: Buyer-Seller Inter-organizational Business Process (IOBP)

An organized set of activities depicted in the given Buyer-Seller IOBP are implemen-

ted by the two organizations to fulfil their common business objective. In this chapter,

an artifact-annotated version of IOBP (shortly AAIOBP) is used, which is an IOBP

annotated with artifacts and states. The process highlighted (grey) in the figure is a main

process (Buyer) that initiates the collaboration with its participating process (Seller).

The dotted lines with an arrow head represent the interactions between the Buyer and

Seller processes. Every interaction represents a message flow that is associated with

artifact(s) and state(s) that are sent and received between the two collaborating processes

to perform a business activity.

The Buyer-Seller collaboration here aims to fulfil the order-delivery process. There-

fore, the Buyer of one organization initiates the collaboration by placing an order with

the Seller of another organization and it ends with the successful delivery and payment

of the product. On the other end, the Seller process starts with receiving an order from

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 108

the Buyer, and ends with successful delivery of the product and invoice clearance.

In order to fulfill their objectives, the Buyer and Seller processes interact at several

stages by sending and receiving corresponding artifacts and states. For example, in the

given IOBP the first interaction is from the Buyer process, where a message is sent to or-

der a product from the node MakeOrder to the node ReceiveOrder of the Seller process,

by passing an Order artifact with its associated state init. In the same way, the Seller

process sends back the two artifacts Order and Invoice from its SendOrderandInvoice

node when the product is ready. In this manner, as shown in Figure 4.1, the Buyer and

Seller processes interact to complete the order processing.

4.2 Problem Statement and Definitions

In this section, the research problem targeted in this chapter is first stated and then some

of the key notions of the proposed solution are defined. These notions include Process

Model, Artifact-Annotated Inter-Organizational Business Process (AAIOBP) Model and

Integrated Process Model.

PROBLEM (PROCESS MERGING). Given an activity-centric IOBP model with

artifact data flows, an integrated process model that not only contains the nodes and

interactions (data flows) of the collaborating processes, but also preserves their structure

and behaviour must be derived.

To address the above defined problem, the merge is considered as an ideal solution

that is used to combine (or integrate) the collaborating processes of IOBP. However,

the proposed merge should not only combine the nodes of collaborating processes but

also their interactions and must preserve their structure and behaviour in the resulting

integrated process. When properly merged, the resulting integrated process model can

enable the synthesis of behaviour preserved artifact lifecycles.

It is worth mentioning that the motivating example (AAIOBP), presented in Figure

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 109

4.1, combines all the fundamental elements of BPMN, therefore each (collaborating)

process model of the given AAIOBP and an AAIOBP itself is formally defined as

follows:

Definition 6. (Process Model). A process model denoted with π = (E, A, G, F), where

- E is a finite set of events. Every event has a type in E.Type = {Start, End};

- A is a finite set of activities;

- G is a finite set of gateways. Every gateway has a type in G.Type = {XOR, AND};

and GS is used to represent split (opening) gateways and GM is used to represent merge

(closing) gateways;

- F ⊆ (E ∪A∪G)× (E ∪A∪G) is the set of sequence flow relations among events,

activities and gateways.

Definition 7. (Artifact-Annotated IOBP (AAIOBP) Model). An AAIOBP model de-

noted as Π = {π} ∪ {D,S, I,O,M} is a set of collaborating business processes, where

- D is a finite set of artifacts;

- S is a finite set of states;

- I =D × S ×A is the input relation between artifacts, states and activities.

- O = A ×D × S is the output relation between artifacts, states and activities.

- M is a set of message flow relations between the nodes of collaborating processes.

Every collaborating process of AAIOBP is assumed as block-structured and structur-

ally sound. It is worth noting that, to avoid behavioural inconsistencies in the resulting

integrated process, a pair of nodes of the main process can only interact with a pair of

nodes of the collaborating process that have a similar dependency. Meaning that, the

nodes that have a sequence dependency between them can only interact with nodes that

have the same dependency, similarly the nodes that have either parallel or exclusive de-

pendency (for example: the nodes inside a parallel or exclusive gateway of one process)

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 110

can only interact with nodes that are either parallel or exclusive (inside a parallel or

exclusive gateway of other process).

Next, definitions are provided for a structured process model and well-behaved

process model based on work on structure workflow modeling (Kiepuszewski et al.,

2000).

Definition 8. (Structured Process model (SPM)). A structured process model is induct-

ively defined as below, meaning that a SPM can take one of the following forms.

1. A process consisting of a single activity node is a SPM.

2. Let P and M be SPMs and GS and GM be the split and merge nodes of a parallel

(AND) gateway. The process with an initial node GS and final node GM , and with

sequence flows between GS and the activity node of P , between the activity node of P

and the GM , between GS and the activity node of M , and between the activity node of

M and the GM , is also a SPM (See Figure 4.4).

3. Let P and M be two SPMs. The merge of these processes, where the activity

node of P has a sequence flow to the activity node of M is then also a SPM. The initial

node of this SPM is the activity node of P and its final node is the activity node of M

(See Figure 4.5).

4. Let P and M be SPMs and GS and GM be the split and merge nodes of a parallel

gateway. The process with an initial node GS and final node GM , and with sequence

flows between GS and the activity node of P , between the activity node of P and the

GM ; between GS and the activity node of M , and between the activity node of M and

the GM ; between the GM and the next activity node of M is also a SPM by extending

Definition 3(2)(See Figure 4.9).

Definition 9. (Well-behaved Process Model). A process model is well-behaved if that

model never leads to deadlock nor results in multiple active instances of the same

activity. Every structured process model is therefore a well-behaved process model.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 111

4.3 The Merge Approach

The collaborating processes of AAIOBP have a decentralized peer-to-peer (P2P) in-

teraction, where every participating process will have the same capabilities and can

initiate the interaction. As described above, the interaction is through messages, mainly

between the activity nodes of collaborating processes, where a process initiates an

interaction by sending messages to another process.

In order to systematically carry out the merge, it is necessary to classify the process

interactions into patterns that uniquely represent each interaction. Therefore, W3C

message exchange patterns (MEPs) (Chinnici et al., 2007) are adopted and classified

into two types of process interaction patterns: synchronous and asynchronous. Each of

these interaction patterns are clearly described in the following section.

4.3.1 Process Interaction Patterns

Based on the message exchange patterns (MEPs) proposed in (Chinnici et al., 2007),

different patterns are derived, namely Out-then-In and In-then-Out patterns, and Only-

Out and Only-In patterns for defining the synchronous and asynchronous process

interactions. Below, an interaction pattern is formally defined as a 3-tuple.

Definition 10. (Interaction Pattern). I ⊆ Π.M denote a set of interaction patterns (or

message flows) between the nodes of collaborating processes. Every interaction pattern

i ∈ I is associated with a tuple (Itype, d, s), where Itype refers to one of the two types

of interaction patterns {sync, async}, whereas d and s represent the associated artifacts

and states, respectively, where d ⊆ Π.D ∧ s ⊆ Π.S.

We can see an example from Figure 4.2.a, where the Out-then-In and In-then-Out

patterns represent the synchronous interaction between the nodes of collaborating pro-

cesses, while the patterns Out-Only and In-Only represent the asynchronous interaction.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 112

Figure 4.2: Process Interaction Patterns

For ease of understanding, this figure omits the artifacts and states associated with each

message flow.

Synchronous interaction (Out-then-In, In-then-Out). The synchronous interaction is

a blocked or two-way interaction between processes. In this type of interaction, the

main process is blocked from execution after sending a message and is resumed after

receiving a return message from the collaborating process. Here, the main process is

said to have an Out-then-In pattern, as it sends first and then receives a return message

from the collaborating process, while the collaborating process will have an In-then-Out

pattern, as it receives first and then returns a message back to the main process.

A simple example from Figure 4.2 may be considered to further comprehend these

patterns, where the processes P1 and P4 have the Out-then-In patterns as they are

sending and then receiving the messages to/from the collaborating processes P2 and P3

which in turn have the In-then-Out patterns.

Asynchronous Interaction (Out-Only, In-Only). The asynchronous interaction is

a non-blocked or one-way interaction, in which the main process can continue its

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 113

execution after sending a message to the collaborating process. Here, this interaction

can be defined using the two asynchronous patterns, where the sending process is said

to have an Out-Only pattern, as it only sends the message and the receiving process

contains an In-Only pattern, as it only receives the message.

As shown in Figure 4.2.b, the sending processes P5 and P8 contain Out-Only

patterns and the receiving processes P6 and P7 contain In-Only patterns.

From here onwards, the nodes associated with the interaction patterns are referred

to as sync nodes, while the nodes that have no interaction patterns are referred to as

non-sync nodes. Therefore, these nodes are formally defined as follows.

Definition 11. (Sync and Non-Sync Nodes). An activity node ai is a sync node, if

ai ∈ πi.A and there exists a mapping m ∶ ai → i or m ∶ i → ai, where i ∈ I is an

interaction pattern, otherwise it is referred to as a non-sync node.

For a sync node for instance ai, ai.T ype returns its node type such as sync or

non-sync and ai.Itype returns its interaction pattern such as synchronous (sync) or

asynchronous (async). A gateway can also be called as a sync node if at least one of its

branch nodes have an interaction pattern.

A pair of sync nodes can be referred to as sender sync node and receiver sync node,

where the sender sync node contains either synchronous Out-then-In or asynchronous

Only-Out pattern and the receiver sync node contains either a synchronous In-then-Out

or an asynchronous Only-In pattern. For example, referring to Figure 4.2.a, the nodes

A1, D1, M1 and T1 are sender sync nodes, while the nodes B1, C1, N1 and S1 are

receiver sync nodes. Here, we can see another sync node C2 that participates in the

synchronous interaction with C1. The remaining nodes are the non-sync nodes, as they

do not have any interaction patterns.

Definition 12. (Sync and Non-Sync Sets). The sync set ci ⊆ πi is a set of sequence

flow nodes (subprocess) of the receiving (can be main or collaborating) process that

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 114

Table 4.1: Summary of symbols used

Symbol Description

∥ Merge

m⇢ c Message flow between nodes m and c

m1.......mk Subprocess of πm

m→ c Flow relation between m and c

GS Split node of parallel (AND) gateway

GM Merge node of parallel (AND) gateway

Sc Split Condition

⊧ Satisfies (Ex. m ⊧ Sc)

mpre,mpost The pre and post split nodes of m

is involved in a specific synchronous interaction pattern, while we can refer to a set of

sequence flow nodes that have no participation in the interaction, as a non-sync set.

A sync set (Receive Order,...., Send Order and Invoice) can be observed from

Figure 4.1, which is a subprocess of Seller process that participates in the synchronous

interaction with the Make Order node of Buyer process.

4.3.2 Merge Overview

The merge is defined as a process of combining or integrating the nodes of any two

collaborating processes of an Artifact-Annotated Inter-Organizational Business Process

(AAIOBP) model following their synchronous and asynchronous interaction patterns. It

is worth mentioning that, after the merge, the message flows between the collaborating

processes will turn as the flow relations between their nodes in the resulting integrated

process model and the associated artifacts and states are annotated as input and output

to the nodes that send and receive them.

In the following sections, the merge is demonstrated over a pair of collaborating

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 115

processes. Without a loss of generality, more than two collaborating processes can be

merged in a two by two manner.

Definition 13. (Merge). Let πm and πc be the two collaborating processes of AAIOBP

Π, then their merge is expressed as πm∣∣πc = ΠI = (Ei, Ai, Gi, Di, Si, Fi, Ii, Oi), where

the integrated process ΠI is a finite sets of events, activities, gateways, artifacts, and

states, including the sequence flow relations, and the input and output artifact and state

relations of activities. In simple terms, the merge is a union of all the collaborating

processes of an AAIOBP model.

From the above definition, the definition for the integrated process model can be

derived as follows.

Definition 14. (Integrated Process Model). An integrated process ΠI = {π0∪π1∪...∪πn}

is an integration of all the collaborating processes of Π an AAIOBP model, which can

be expressed as
n

⋃
i=1
πi.

4.3.3 Types of Merge

The merge is classified into two types: Parallel Merge and Interactive Merge, as

illustrated in Figure 4.3. Here, the classification is mainly to differentiate the nodes that

participate in the collaboration with those that have no participation. Therefore, the

parallel merge emphasizes the combining of the process nodes that do not send and

receive messages.

While on the other hand, the interactive merge combines the interacting nodes based

on their interaction patterns. Therefore, as shown in the figure, the interactive merge is

divided into synchronous and asynchronous types, which are further classified to deal

with splitting and non-splitting of the nodes based on their message flows.

Next, the above merge types are briefly elaborated and the algorithms for each of

them are defined.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 116

Merge

Interactive

Parallel

Synchronous

Asynchronous

Non-Split

Split

Non-Split

Split

Figure 4.3: Types of Merge

Parallel Merge. This is a technique for merging the non-interacting (non-sync) nodes

of two collaborating processes, meaning that the nodes that do not contain interaction

patterns. As no dependencies exist among non-sync nodes, a new parallel (AND)

gateway node is used to merge them, where the non-sync node from each of the

collaborating processes is added to a different branch of this new gateway. A rule to

merge two nodes in parallel is defined below.

Definition 15. (Parallel Merge). Let m ∈ πm, c ∈ πc be the nodes of two collaborat-

ing processes that have no interaction, then the parallel merge ∣∣P of these nodes is

formulated by using the rule given below.

m∣∣P c = m,c

m, c,GS →m,GS → c,m→ GM , c→ GM

(4.1)

Where GS and GM are the split (open) and merge (close) nodes of a new parallel (AND)

gateway.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 117

m

c

m

c

πm

πc

Figure 4.4: Parallel Merge

An example is presented in Figure 4.4, where a new parallel (AND) gateway is

used to support the parallel execution of non-sync nodes, as they do not require waiting

for messages associated with artifacts and states. According to the given rule, the two

non-sync nodes must be attached to different branches of the gateway so that they can

run in parallel. Here, the branches of And-Split gateway node are merged when a new

sender sync node or an end node is reached in either of the collaborating processes.

Interactive Merge. This is a technique for merging the interacting (sync) nodes of

two collaborating processes, meaning that the nodes contain interaction patterns. An

interactive merge always starts from the sync node that contains a synchronous Out-

then-In pattern or asynchronous Out-Only pattern. The other important aspect of this

merge is to split the sync node depending on a condition defined below.

Definition 16. (Split Condition). An activity node ai ∈ πi.A is split into aprei and aposti ,

if it satisfies a condition that, ∀(di, sj) ∈ Oi(ai), if (di, sk) ∈ Ri(ai) ∧ sj ≠ sk. Here

Oi(ai) is the set of output artifacts of ai and Ri ⊂ Oi(ai) is the set of artifacts returned

to ai. When split, for example the node ai is referred to as a split node.

According to the above split condition, an activity node of main process is split

into pre and post nodes, if each of its output artifacts and states are different from the

artifacts and states that are returned to it from the activity node of collaborating process.

Here a node must be split, when artifact states need to be inserted between the beginning

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 118

and the end of the execution node.

A. Synchronous Merge. This merge follows a sequential approach, meaning that it

connects two sync nodes, such as the sender sync node and the receiver sync node, in

a sequence relation. As mentioned at the start of this section, synchronous merge is

further divided into two types: non-split and split.

i. Synchronous Non-Split Merge. The synchronous non-split merge is applied when

there is no splitting of a sender sync node while merging it, as its output artifact and

state is the same as the one it receives from the receiver sync node. The synchronous

non-split merge of two collaborating nodes is defined as follows.

Definition 17. (Synchronous Non-Split Merge). Let m ∈ πm, c ∈ πc be the nodes

of two collaborating processes that participate in a synchronous interaction, then the

synchronous non-split merge ∣∣Sn of these nodes is formulated as the following rule.

m∣∣Sn

c = m,c,m⇢ c, c⇢m

m,c,m→ c
(4.2)

An example can be seen in Figure 4.5, where the two interacting nodes m and c that

have a synchronous interaction pattern are merged in sequence, which means they are

connected in sequence in the resulting integrated process model.

m

c

m c

πm

πc

Figure 4.5: Synchronous Non-Split Merge

Next, a rule to merge a node (sender sync node) and the subprocess (receiver sync

set) of two collaborating processes that have a synchronous interaction is defined.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 119

Let m ∈ πm, c1, ..., cn ⊆ πc be a node and the subprocess of two collaborating

processes that participate in a synchronous interaction, then the synchronous non-split

merge ∣∣Sn of these process nodes is based on the rule given below.

m∣∣Sn

c = m, (c1,, cn),m⇢ c1, cn ⇢m

m,c,m→ c1, c1 → (c2, ..., cn)
(4.3)

Figure 4.6 demonstrates how a sender sync node of the main process is merged

with a sync set (or subprocess) of the collaborating process that participates in the

synchronous interaction. Similar to rule 4.2, the above rule also follows a sequential

approach to merge these nodes, where the complete block of the subprocess is connected

in sequence to the sender sync node as shown in the figure. For simplicity, artifact

annotation is omitted in this figure.

m

c1

m c1

c2 ck

ckc2

Subprocess of πc

Subprocess of πc

πc

πm

Figure 4.6: Synchronous Non-Split Merge

ii. Synchronous Split Merge. The synchronous split merge is a splitting of the sender

sync node into pre and post nodes while merging it, as its output artifact and state are

not the same as the one it receives from the receiver sync node. When split, the receiver

sync node becomes a part of the sender sync node, which takes input from the pre node

of sender sync node and passes input to the post node of sender sync node.

Definition 18. (Synchronous Split Merge). Let m ∈ πm, c ∈ πc be the nodes of two

collaborating processes that participate in a synchronous interaction, where m satisfies

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 120

the split condition Sc then the synchronous split merge ∣∣Ss of these nodes is formulated

by using the rule given below.

m∣∣Ss

c = m,c,m⇢ c, c⇢m,m ⊧ Sc

m,c,mpre → c, c→mpost
(4.4)

Figure 4.7 presents an example of synchronous split merge, where the node m is

split into mpre and mpost, as its output artifact and state is not same as the one it receives

from the node c. Here the splitting of a sender sync node is necessary in order to

complete its post-processing after receiving an input returned by its receiver sync node.

As shown in the figure, when m is split, the node c becomes a part of m, which takes

input from the pre node of m and passes input to the post node of m.

m

c

mpre c mpost

πm

πc

Figure 4.7: Synchronous Split Merge

B. Asynchronous Merge. The asynchronous merge specifies how the sync nodes with

asynchronous interaction pattern are merged. Similar to the synchronous merge, this

merge also follows either a sequential approach or parallel approach, depending on

whether the nodes satisfy the given split condition or not. The key difference here is,

instead of the sender sync node, the receiver sync node is split into pre and post nodes

if it satisfies the given split condition. The two merge notions of this type, including

Asynchronous Split Merge and Asynchronous Non-Split Merge, are clearly described

below.

i. Asynchronous Non-Split Merge. This merge follows a sequential approach, where

the sender sync node is connected in sequence to the receiver sync node, as the receiver

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 121

sync node does not satisfy the given split condition.

Definition 19. (Asynchronous Non-Split Merge). Let m ∈ πm, c ∈ πc be the nodes of

two collaborating processes that have an asynchronous interaction, then the asynchron-

ous non-split merge ∣∣An of these nodes is formulated as the following rule.

m∣∣An

c = m,c,m⇢ c

m, c,m→ c
(4.5)

An example of asynchronous non-split merge is given in Figure 4.8, where the

two nodes m and c that contain an asynchronous interaction pattern are connected in

sequence, as the receiver sync node c does not satisfy the given split condition.

m

c

m c

πm

πc

Figure 4.8: Asynchronous Non-Split Merge

ii. Asynchronous Split Merge. This merge is based on the notion of splitting the

receiver sync node into pre and post nodes if it satisfies the given split condition.

Similar to the parallel merge, here a new parallel gateway is used to merge the sender

sync node with the split nodes of the receiver sync node. Mainly the pre node of the

receiver sync node and the sender sync node are connected to different branches of the

parallel gateway in order to execute simultaneously and to pass input to the post node

of receiver sync node.

Definition 20. (Asynchronous Split Merge). Let m ∈ πm, c ∈ πc be the nodes of two

collaborating processes that have an asynchronous interaction, where c satisfies the split

condition Sc then the asynchronous split merge ∣∣As of these process nodes is formulated

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 122

as below.

m∣∣As

c = m,c,m⇢ c, c ⊧ Sc

m,c,GS →m,GS → cpre,m→ GM , cpre → GM ,GM → cpost
(4.6)

An example of an asynchronous split merge is presented in Figure 4.9, where the

receiver sync node c is split into cpre and cpost nodes, as it satisfies the given split

condition. According to the given rule, the sender sync node m and the pre node of

receiver sync node c must be connected in parallel and the post node of receiver sync

node c must be connected in sequence to these nodes after merging the parallel gateway.

m

c cpre

m

cpost

πm

πc

Figure 4.9: Asynchronous Split Merge

4.4 Algorithms

Algorithm 4.1 defines a procedure to merge the collaborating processes of AAIOBP.

The input to this algorithm is the two collaborating processes and an empty integrated

process model ΠI , while the output is a completely integrated process model. Merge()

is a recursive function that recursively calls upon a pair of nodes starting from the start

nodes of two processes and is terminated after merging their end nodes.

As defined in the algorithm (in line 4 and 5), the Merge() first combines the start

nodes of two processes and adds it to the integrated process model. Then, it considers

the next pair of nodes for merging and, depending on their node types (such as sync or

non-sync), the functions MergeSyncNodes() and MergeNon-SyncNodes() for parallel

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 123

and interactive merge are called. According to the algorithm (see lines 10-14), the func-

tion MergeSyncNodes() is called when the two process nodes m and c are sync nodes,

meaning that they have an interaction between them, while the MergeNon-SyncNodes()

is called when one among the two process nodes is a sync node. As mentioned in the

previous section, the sync node can be an activity or a gateway that encloses one or

more interacting nodes.

Algorithm 4.1: Merge the Collaborating Processes of AAIOBP
Input : Two collaborating processes πm and πc of AAIOBP (Π), an empty

integrated process model ΠI

Output : Complete integrated process model ΠI

1 Function Merge(m ∶ πm, c ∶ πc,ΠI):
2 if m ≠ null and c ≠ null then
3 if m ∈ πm.E and c ∈ πc.E then
4 if m = Start and c = Start then
5 ΠI ⇐ ΠI ∪ {Start}
6 else if m = End and c = End then
7 ΠI ⇐ ΠI ∪ {End}
8 end
9 else

10 if m.Type = sync and c.Type = sync then
11 MergeSyncNodes(m,c,ΠI)
12 else
13 MergeNon-SyncNodes(m,c,ΠI)
14 end
15 end
16 Merge(GetSeqNext(m),GetSeqNext(c),ΠI)
17 end
18 End Function

An example from the AAIOBP presented in Figure 4.1, where after merging the

start nodes of Buyer and Seller processes, the next pair of nodes MakeOrder and

ReceiverOrder are considered for merging. According to Algorithm 4.1, the node type

of these nodes (sync or non-sync) is first identified. As these nodes are of type sync, the

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 124

MergeSyncNodes() function defined in Algorithm 4.3 is invoked by passing these two

sync nodes and the integrated process model.

4.4.1 Parallel Merge: Merging Non-Synchronous Nodes

The procedure to merge the non-interacting (or non-sync) nodes is presented in Al-

gorithm 4.2. The recursive function MergeNon-SyncNodes() defined in the algorithm

is based on rule 4.1, formulated for parallel merge, where the two non-sync nodes are

merged in parallel by using a new parallel gateway. Input to this recursive function is a

pair of process nodes m and c, a parallel (AND) gateway GAND (with GS and GM , the

split and merge nodes) and the integrated process model ΠI . The output of this function

is the integrated process model ΠI with the newly merged fragment (GAND).

According to Algorithm 4.2 (line 2), the type of each node (sync or non-sync) is

tested before it is connected to the new parallel gateway. Here, only the non-sync nodes

are added to the gateway, otherwise they are handled by Algorithm 4.1 in the following

run. The AddInSeq() function is used to connect every non-sync node in sequence to

the parallel gateway and the AnnotateIO() function is used for annotating the input and

output artifacts and states for each merged node.

The parallel merge is based on different conditions defined in the algorithm (see

line 2, 11 and 18). Therefore, according to first condition, when both nodes m and c are

non-sync nodes, then each of them are connected in sequence to the split node (GS) of

new parallel gateway and then sequence flows are added from these nodes to the merge

node (GM) of the parallel gateway. Upon finishing the merge of these two non-sync

nodes, the Merge() recursive function defined in Algorithm 4.1 is invoked with the next

sequence flow nodes of m and c.

Figure 4.10 presents an example of the above case based on the motivating example,

where the two non-interacting nodes RecordPayment and ClearInvoice are merged using

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 125

a parallel gateway. As shown in the figure, the two non-interacting nodes are connected

to different branches of the parallel gateway with the corresponding artifacts and states.

Algorithm 4.2: Parallel Merge of Non-Synchronous Nodes
Input : Two nodes m, c, a new parallel gateway GAND with GS (split) and

GM (merge) nodes, an Integrated process model ΠI

Output : Integrated process model ΠI with complete parallel gateway GAND

1 Function MergeNon-SyncNodes(m ∶ πm, c ∶ πc,GAND,ΠI):
2 if m.Type ≠ sync and c.Type ≠ sync then
3 GS.AddInSeq(m)
4 AnnotateIO(m)
5 m =MergeNextNodes(m,GM)
6 GS.AddInSeq(c)
7 AnnotateIO(c)
8 c =MergeNextNodes(c,GM)
9 ΠI ⇐ ΠI ∪GAND

10 Merge(GetSeqNext(m),GetSeqNext(c),ΠI)
11 else if m.Type ≠ sync and c.Type = sync then
12 GS.AddInSeq(m)
13 AnnotateIO(m)
14 m =MergeNextNodes(m,GM)
15 GS.AddInSeq(GM)
16 ΠI ⇐ ΠI ∪GAND

17 Merge(GetSeqNext(m), c,ΠI)
18 else
19 GS.AddInSeq(GM)
20 GS.AddInSeq(c)
21 AnnotateIO(c)
22 c =MergeNextNodes(c,GM)
23 ΠI ⇐ ΠI ∪GAND

24 Merge(m,GetSeqNext(c),ΠI)
25 end
26 End Function

If the nodes satisfy the second condition (line 11), one among the two nodes is a

non-sync node and the other is a sync node. In this case, only the non-sync node for

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 126

instance m is added in sequence to the split node of parallel gateway. Then a sequence

flow is added from m to the merge node of parallel gateway and also from the split node

to the merge node. In this case, the sync node, for instance, c and the next sequence

flow node of non-sync node m are considered next for merging.

Record

Payment

Payment

[recorded]
Invoice

[closed]

Invoice

 [cleared]

Clear

Invoice

Order

 [paid]

Payment

[received]

Figure 4.10: Parallel Merge

An example for this case can be found in Figure 4.11, where a non-sync node such

as an XOR gateway block of the given AAIOBP, is appended to a branch of a new

parallel gateway. Here other branch of the parallel gateway is empty, as the second

node ReceivePayment that is paired for merging with this node is a sync node. As

mentioned above, the ReceivePayment sync node is considered for merging with the

next sequence flow node of an exclusive gateway in the following iteration of merge.

While in the last case (line 18), where the node c is a non-sync node and m can be a

sync node or an end node of one process. In this case, the node c is merged using a new

parallel gateway as explained above, and the node m is considered for merging with

the next node of c in the following run.

The function MergeNextNodes() defined below, is used in the algorithm to merge

the next sequence flow nodes of a non-sync node (non-sync set), which are also of type

non-sync. This function is useful, where instead of using a new parallel gateway, one

gateway can be sufficient to merge any following non-sync nodes. Therefore, as defined

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 127

Receive

Invoice

Receive

Order

Invoice

[received]

Order

[received]

Payment

Approval

Request

Payment

Payment

[requested]

Payment

[approved]

Figure 4.11: Parallel Merge

in the function, if the next sequence flow node next of a non-sync node n is also of type

non-sync, then this node is added in sequence to its previous node without the use of

a new parallel gateway. Here the merge is continued until a new sync node or an end

node in that process is reached. The parallel gateway is closed using the merge node

GM before this function is terminated.

Function: MergeNextNodes(n ∶ Π,GM ∶ GAND)

next = GetSeqNext(n)

while next.Type ≠ sync and next.Type ≠ End do
n.AddInSeq(next)

AnnotateIO(next)

n = next

next = GetSeqNext(next)
end

n.AddInSeq(GM)

return n

In Figure 4.11, an example for the above function can be found, where the two

non-sync (sequence flow) nodes RequestPayment and PaymentApproval of the XOR

gateway, which are also of type non-sync (as none of its branch nodes have interactions)

are added to the same branch of the parallel gateway in sequence with the XOR gateway.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 128

4.4.2 Interactive Merge: Merging Synchronous and Asynchron-

ous Nodes

Algorithm 4.3 defines a procedure to merge the interacting (or sync) nodes of two

collaborating processes. As described previously, the interactive merge is for merging

the nodes that contain either synchronous or asynchronous interaction patterns.

Algorithm 4.3: Merge Interacting Nodes
Input : Two nodes m, c and the integrated process model ΠI

Output : Integrated process model ΠI with nodes m and c
1 Function MergeSyncNodes(m ∶ πm, c ∶ πc,ΠI):
2 if m ∈ πm.A and c ∈ πc.A then
3 if m⇢ c or c⇢m then
4 if ⇢ .IType = Sync then
5 if m⇢ c then
6 SynchronousMerge(m,c,ΠI)
7 else if c⇢m then
8 SynchronousMerge(c,m,ΠI)
9 end

10 end
11 else if ⇢ .IType = Async then
12 if m⇢ c then
13 AsynchronousMerge(m,c,ΠI)
14 else if c⇢m then
15 AsynchronousMerge(c,m,ΠI)
16 end
17 end
18 else if (m ∈ πm.A or πm.G) and c ∈ πc.G then
19 ΠI ⇐ GS

20 IterateOverGatewayNodes(m,c,ΠI)
21 ΠI ⇐ GM

22 end
23 End Function

The MergeSyncNodes() function takes a pair of sync nodes, m and c, and the

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 129

integrated process model ΠI as input. The dotted arrow between m and c represents

their interaction, whose type (sync or async) can be obtained as defined in the algorithm

(in line 4). This function receives either two activity nodes or two gateways (AND or

XOR) or an activity node and a gateway that participate in the same interaction from

Algorithm 4.1. In case of two activity nodes (lines 2-17), the algorithm identifies the

type of interaction between them, and then invokes the corresponding merge function

that is either SynchronousMerge() or AsynchronousMerge() defined in Algorithm 4.4 or

4.5.

When Algorithm 4.3 receives an activity and a gateway (lines 18-22), then the

IterateOverGatewayNodes() function is used to iterate over the branches of the gateway

to find the node that interacts with the activity and to call the Merge() function by

passing the two interacting nodes. As defined in the algorithm, the split (GS) node of

the corresponding gateway must be first inserted into the integrated process model to

which the merged fragments are added in sequence, then a merge (GM) node is added.

Any branch node that remains (for being single) after this iteration can be inserted

between the split and merge nodes of the corresponding gateway in sequence. A similar

approach is followed for merging the nodes of two gateways, where every pair of their

branch nodes is merged and the resulting merged fragment is enclosed between the split

and merge nodes of the corresponding gateway in the integrated process model.

A. Synchronous Merge: Non-Split and Split

As introduced in the above section, the synchronous non-split and split merge is based

on the flow of artifacts between the nodes of two collaborating processes. This merge

type mainly considers the artifacts and states exchanged between the sync nodes, and

splitting or non-splitting the sender sync node based on the artifacts and states that it

outputs or receives in return from the receiver sync node.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 130

Algorithm 4.4: Synchronous Merge: Non-Split and Split
Input : Two interacting nodes x, y and the integrated process model ΠI

Output : Integrated process model ΠI with nodes m and c
1 Function SynchronousMerge(x, y,ΠI):
2 if x⇢ y then
3 if dout(x) = dret(x) then
4 p⇐ x.AddInSeq(y) ▷ Non-Split Merge

AnnotateInput(x)
5 AnnotateIO(y)
6 while ¬y ⇢ x do
7 ynext = GetSeqNext(y) ▷ if y is not a return node

p⇐ p ∪ y.AddInSeq(ynext)
8 AnnotateIO(ynext)
9 y = ynext

10 end
11 else
12 Split(x) ⇒ {xpre, xpost} ▷ Split Merge

p⇐ xpre.AddInSeq(y)
13 AnnotateInput(xpre)
14 AnnotateIO(y)
15 if y ⇢ x then
16 p⇐ p ∪ y.AddInSeq(xpost)
17 else
18 while ¬y ⇢ x do
19 ynext = GetSeqNext(y) ▷ if y is not a return node

p⇐ p ∪ y.AddInSeq(ynext)
20 AnnotateIO(ynext)
21 y = ynext
22 end
23 p⇐ p ∪ y.AddInSeq(xpost)
24 end
25 AnnotateIO(xpost)
26 end
27 ΠI ⇐ ΠI ∪ p
28 end
29 End Function

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 131

Algorithm 4.4 is for both split and non-split merging of sync nodes that have syn-

chronous interaction patterns. According to the split condition defined in the algorithm

(in line 3), the output data (artifacts and states) of sender sync node x is tested against

the data (artifacts and states) returned by the receiver sync node y. If they are the same,

then the algorithm follows a non-split merge approach, where the two sync nodes x and

y are merged in sequence.

Otherwise, the algorithm follows a split type of merge, where the sender sync node

x is split into xpre and xpost, as it is satisfying the given split condition that the output

data is different from the data that is returned by the receiver sync node y. In this case,

as defined in the algorithm the receiver sync node y is added in sequence to the pre

node xpre of sender sync node x and then the post node xpost of sender sync node x is

added in sequence to the receiver sync node y to have a sequence relation.

Algorithm 4.4 considers another case (see lines 17-24), where the receiver sync

node is a subprocess, the first node y of this subprocess receives data from the sender

sync node x, whereas the last node of this process returns the data back to the sender

sync node x. In this case, the algorithm connects every next node ynext of the receiver

sync node y in sequence to it, until the return node is reached.

Make

Order

Receive

Order

Order

[init]
Order

[received]

Figure 4.12: Synchronous Merge

Figure 4.12 presents an example for the synchronous non-split merge over a pair

of interacting nodes MakeOrder and ReceiverOrder of the given AAIOBP. It can be

seen in Figure 4.1, the output artifact and state of MakeOrder is the same as the one

it receives from the ReceiveOrder in return. Therefore, the MakeOrder node is not

required to be split according to the given algorithm, so these nodes are connected in

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 132

sequence, as shown in Figure 4.12.

To preserve the order of artifacts and states, Algorithm 4.4 implements the Annot-

ateInput() function to annotate only the input (artifacts and states) to the sender sync

node, while the receiver sync node is annotated with both the input and output using

the AnnotateIO() function in the resulting merged fragment as shown in the figure. It is

worth noting that, the restriction on the input and output annotation of activity nodes

is made by assuming that every artifact and state is an input and output to at least one

activity node in the process model.

Make

Order

Plan

Product

Manufacture

Product

Receive

Order

Check

Stock

Schedule

Product

Send Order

and Invoice

Plan

Delivery

Order

[received]

Product

[Not In

Stock]

Product

[In

Stock]

Product

[planned]

Product

[Scheduled]

Product

[made]

Product

[Delivery

planned]

Order

[init]

Order

[sent]

Invoice

[sent]

Figure 4.13: Synchronous Merge

Another example is presented in Figure 4.13, where the sender sync node (Make-

Order) receives a return message from the (subprocess or sync set) next sequence flow

node of the receiver sync node. Here, after merging the receiver sync node (Receive-

Order), each next sequence flow node of this node is merged in sequence to the sender

sync node, until the return node that is sending the return message is identified. There-

fore, as defined in the algorithm, the merge is continued until the return node is found

and attached in sequence to the sender sync node. Then, the next pair of nodes which is

the next node (XOR gateway) of MakeOrder and the next node (ReceivePayment) of

sync set (ReceiveOrder,...,SendOrderandInvoice) are considered for merging.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 133

B. Asynchronous Merge: Non-Split and Split

The algorithm to merge two nodes based on their asynchronous interaction patterns

is presented in Algorithm 4.5. The procedure of both the non-spit and split merge is

embedded as part of this algorithm. According to the non-split merge defined in the

algorithm, the sender sync node x and the receiver sync node y must be connected in

sequence. Similar to Algorithm 4.4, this algorithm also restricts the input and output

annotation of these merged nodes using the AnnotateInput() and AnnotateIO() functions.

Algorithm 4.5: Asynchronous Merge: Non-Split and Split
Input : Nodes x, y, a new parallel gateway GAND with GS (split) and GM

(merge) nodes, and an integrated process model ΠI

Output : Integrated process model ΠI with GAND

1 Function AsynchronousMerge(x, y,GAND,ΠI):
2 if x⇢ y then
3 if dout(y) = dret(y) then
4 p⇐ x.AddInSeq(y) ▷ Non-Split Merge

AnnotateInput(x)
5 AnnotateIO(y)
6 ΠI ⇐ ΠI ∪ p
7 else
8 Split(y) ⇒ {ypre, ypost} ▷ Split Merge

GS.AddInSeq(x)
9 AnnotateInput(x)

10 GS.AddInSeq(ypre)
11 AnnotateIO(ypre) x.AddInSeq(GM)
12 ypre.AddInSeq(GM)
13 GM .AddInSeq(ypost)
14 AnnotateIO(ypost)
15 ΠI ⇐ ΠI ∪GAND

16 end
17 end
18 End Function

In case of the split merge, the receiver sync node is split into pre and post nodes,

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 134

as it satisfies the given split condition. When split, a new parallel gateway is used,

where x and the pre node (ypre) of y must be added in sequence to the split node (GS)

of this new parallel gateway. Then, the sequence flows are added from these nodes to

the merge node (GM) of the parallel gateway. The post node (ypost) is then added in

sequence from this merge gateway node.

Figure 4.14 provides an example of the asynchronous split merge based on the

motivating example. Figure 4.1 shows where the nodes SendPayment and Receive-

Payment have an asynchronous interaction between them. Therefore, according to

the given algorithm, the output artifact and state of ReceivePayment node is checked

with the artifact and state it is receiving from SendPayment. These artifacts and states

are different, meaning that the ReceivePayment node is satisfying the split condition,

therefore the procedure for asynchronous split merge, as defined in the algorithm, is

used to merge these nodes.

Send

Payment

Receive

Payment

(pre)

Receive

Payment

(post)

Payment

[received]

Invoice

[closed]

Payment

[sent]
Payment

[approved]

Figure 4.14: Asynchronous Split Merge

According to the asynchronous split merge defined in Algorithm 4.5, the Receive-

Payment is split into pre and post as shown in Figure 4.14. Then the nodes SendPayment

and the pre node of ReceivePayment are connected in parallel using the split node

of new parallel gateway, then the sequence flows are added from these nodes to the

merge node of the parallel gateway. The post node of ReceivePayment is then added in

sequence to the merge gateway node.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 135

4.5 Evaluation

In this section, a case study and the prototype implementation and evaluation of the

proposed approach is discussed. This section also demonstrates how the proposed

approach can preserve the structure and behaviour of the base process in the resulting

integrated process model.

4.5.1 Case Study

An AirTravel process model was first utilized to study the feasibility of the proposed

approach. This process model was also chosen from the BPMAI model collection, and

it represents a collaboration among five entities, including: Passenger, Airline Check-in

Operator, Airline Departure-control System, Airline Service-desk Personnel and the

Airport Service-desk Personnel in fulfilling the passenger’s travel request. The travel

process is commenced, when a passenger simultaneously requests the airport check-in

operator for an outgoing passenger card and the security immigration instructions,

to collect the boarding pass. The airline check-in operator provides the requested

information and simultaneously finalizes the check-in and registers the finalization in

the airline departure-control system, which notifies the airline check-in operator of the

status of completed check-in. After acquiring the completed check-in status, the airline

check-in operator conducts the baggage check and provides the boarding pass if the

baggage is under limit, otherwise instructing the passenger to proceed to an appropriate

service counter. Then, the passenger either goes to the airport service-desk or the airline

sales-desk or airport premium counter to receive an explanation for excess baggage

payment and then proceeds to pay the excess baggage fee and to deposit the excess

baggage. After paying the excess baggage fee, the passenger receives the payment

receipt either from the airline or airport service-desk. This receipt is either submitted to

airport service-desk personnel or the airline check-in operator to acquire the boarding

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 136

pass. Upon acquiring the boarding pass, the passenger proceeds to board the flight.

300-350 250-300 200-250 150-200 100-150 50-100 0-50

Element Count of process models
0

50

100

150

200

250

300

Figure 4.15: Histogram of Sorted BPMN Choreography Process models

Figure 4.15 presents the histogram of BPMN process models that were sorted to

choose (from range 250-300) the AirTravel model for this study. This process model is

large, therefore an excerpt of this model is presented in Figure 4.16 for ease of under-

standing and to demonstrate the merge over its collaborating processes. The complete

model can be found in Figure A.5 of the Appendix. There are 8 artifacts involved in the

travel process, including Flight, Outgoing Passenger Card (OPC), Security Immigration

Instruction (SII), Baggage, Check-in, Airline, Payment and Boarding Pass. Some of

these artifacts can be observed from the above process model, which are shared between

the collaborating processes. As mentioned in the previous section, more than two

collaborating processes are merged in a two by two manner. Therefore, only a pair of

collaborating processes are merged in every iteration. As described above, initially the

passenger and the airline check-in operator interact in a synchronous way, where the

passenger provides the flight details to request some documents necessary to acquire

the boarding pass and the operator provides the requested documents. Therefore, the

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 137

A
ir

li
n

e
C

h
ec

k
-i

n
 O

p
er

a
to

r
P

a
ss

e
n

g
e
r

A
ir

li
n

e
D

ep
a

rt
u

r
e
-

co
n

tr
o
l

sy
st

em

A
ir

li
n

e
S

e
rv

ic
e
-d

es
k

P
e
rs

o
n

n
el

A
ir

p
o
r
t

S
e
rv

ic
e
-d

es
k

 P
er

so
n

n
e
l

Provide OPC

Provide security

immigration

instruction

Determine which airline

passenger is using

Acquire excess

payment

Provide

boarding pass

Acquire excess

payment

Provide excess

receipt

Register

finalisation

Notify of completed

check-in status

Provide OPC

instruction

Finalise

check-in

Check if excess

baggage exist

Instruct passenger to

proceed to

appropriate counter

Facilitate

deposit of

excess baggage

Acquire

excess

payment

Provide

boarding pass

Acquire excess

receipt

Send

boarding

pass

Acquire security

immigration

instruction (SII)

Acquire OPC

instruction

Receive Outgoing

Passenger Card

(OPC)

Provide

Baggage

Collect boarding

pass

Receive

instruction

Go to airport

service desk

Go to Airline

service desk

Go to premium

airline counter

Explain need to

pay for excess

baggage

Explain need to

pay for excess

baggage

Explain need to

pay for excess

baggage

Pay excess

fee

Acquire

boarding pass

Pay excess

fee

Acquire

excess

receipt

Deposit excess

baggage

Pay excess

fee

Go to airport

service desk

Go to check in

counter

Provide excess

receipt

Provide excess

receipt

Acquire

boarding pass

Acquire

boarding pass

Acquire

boarding pass

Provide

boarding pass

Bagges

[exceeds]
Baggage [not

exceeds] Boarding

Pass

[provided]

Bagges

[deposited]

Boarding

Pass

[provided]

OPC

[provided]

OPC

[instruction

provided]

SII

[acquired]

Baggage

[provided]

Boarding

Pass

[collected

Check-in

[notified]

Check-in

[registered]

Check-in

[finalisation]

Airline

[A2]

Airline

[A1]

Payment

[acquired]

BoardingP

ass

[provided]

Airline

[A2]

Airline

[A1]

Payment

[acquired]

Payment

[acquired]

Acquire

Notification

Status

OPC

[provided]

Flight

[booked]

Boarding

Pass

[send]

Payment

[acquired]

Payment

[provided]

Payment

[acquired]

Boarding

Pass

[acquired]

Baggage

[assessed]
Baggage

[invoiced]

Payment

[requested] BoardingP

ass

[acquired]

Payment

[not

acquired]

Payment

[acquired]

Payment

[not

acquired]

Payment

[processed]

Baggage

[not exceeding]

Baggage

[exceeding]

Flight

[dest1]

Flight

[dest3]

Flight

[dest2]

Payment

[recorded]

Baggage

[checked]

Flight

[instruction]

Figure 4.16: Excerpt of AirTravel Process Model

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 138

interacting nodes of these two collaborating processes participating in the synchron-

ous interaction are merged based on the rules (4.2 or 4.3 or 4.4) formulated for the

synchronous merge.

According to the proposed algorithms, after merging the start nodes of the Passen-

ger and Airline Check-In Operator processes, the parallel (AND) gateways of these

processes are considered for merging. As they both have interactions from their branch

nodes, each of their branch nodes are again considered in a pairwise manner for merging.

For example, the sender sync node AcquireSecurityImmigrationInstruction is connected

in sequence to the receiver sync node ProvideSecurityImmigrationInstruction follow-

ing the synchronous merge rules (4.2 or 4.3), as they have a synchronous interaction

between them. Here the sender node is not split into pre and post nodes, as its output

artifact (SII) and its state (issued) is same as the one (SII[issued]) it received from the

receiver sync node. Similarly, the other two interacting nodes AquireOPCInstruction

and ReceiveOPC are also not split, as they share the same artifacts and states. Thus,

each node that belongs to the AND gateway of the Operator process that interacts with

the nodes of Passenger process are connected in sequence based on the rule defined for

synchronous non-split merge (4.2). The above process model shows that the last branch

of the AND gateway in the Operator process has no corresponding branch in the AND

gateway and no interactions with the nodes of Passenger process, therefore in this case

a new branch is added to the corresponding AND gateway in the integrated process

model to which the two nodes FinaliseCheck-in and AcquireNotificationofStatus are

added in the same sequence relation. As described in the previous section, each pair of

these merged nodes is enclosed between the split and merge nodes of the AND gateway

in the integrated process model, as they belong to the same type of gateway in the base

collaborating processes.

After merging the two parallel (AND) gateways, the next nodes ProvideBaggage and

CheckIfExcessBaggageExists are merged using the synchronous split merge rule (4.4), as

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 139

the artifact Baggage and its state checked is not part of the returned message. Therefore,

ProvideBaggage is split into pre and post nodes, where the pre node is only annotated

with input artifacts and states, whereas the post node is annotated with all the output

artifacts and states of this node. Then the XOR-Split gateways of the two processes

are chosen for merging, where the two split nodes are first merged and added into the

integrated process model. Then the merge is repeated for each pair of their branch

nodes. Therefore, the non-interacting nodes are merged in sequence, as discussed above,

and for each interacting node of one gateway, the corresponding collaborating node is

identified by iterating over the branches of another gateway in the collaborating process,

and are merged according to their interaction type. The asynchronous interaction

between the nodes CollectBoardingPass and the ProvideBoardingPass can be observed,

where these nodes are merged in sequence according to the asynchronous non-split

merge rule (4.5). Similarly, the ReceiveInstruction and InstructPassenger are merged

according to the asynchronous split merge rule (4.6), as the ReceiveInstruction has the

Flight artifact with states dest1,dest2,dest3, which the InstructPassenger node has not

returned. In this manner, starting at the start nodes of two collaborating processes, the

merge continues until the end nodes of those processes are reached and merge into the

integrated process model.

The resulting integrated process is then merged with the Airline Departure-control

System process, as this process first interacts with the Operator process in the main Air-

Travel process. Therefore, the nodes RegisterFinalisation and NotifyCompletedCheck-

inStatus are merged with the FinaliseCheck-in and AcquireNotificationStatus nodes

using the asynchronous non-split merge rule (4.5), as they have the asynchronous in-

teractions and do not satisfy the split condition. In a similar manner, the nodes of the

remaining collaborating processes Airline Service-desk Personnel and Airport Service-

desk Personnel are also merged with the nodes of the above-resulting integrated process

model to obtain the complete integrated process model of the AirTravel process model.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 140

4.5.2 Implementation

The proposed algorithms were developed into a prototype tool that supports the auto-

matic merging of the collaborating processes of inter-organizational business processes

(IOBPs). The tool is developed based on Java concepts including Swings and AWT.

XML is used for specifying the IOBPs, while JAXP API is used in parsing these process

specifications and to generate an XML representation of the integrated process model.

The XML structure of the Buyer-Seller IOBP and its integrated process model gener-

ated by using the proposed prototype, can be observed in Figure 4.17. A web-based

visualization tool (Ltd, 2002) is used to visualize the integrated process model in Figure

4.18, as the current version of the proposed prototype supports this feature partially.

 Figure 4.17: Buyer-Seller IOBP and its Integrated Process Model

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 141

Figure 4.18: Integrated Process Model of Buyer-Seller IOBP

While the main objective of this research is to generate the lifecycles of artifacts

from the AAIOBP, the extension of this merge tool can be proposed, where this tool can

be extended with the synthesis tool that implements the synthesis approach presented

in Chapter 3. In this regard, a prerequisite is suggested, to merge the collaborating

processes of an AAIOBP in order to generate the lifecycles of artifacts pertinent to that

process model. This can be achieved, as the resulting integrated process model also

shares the similar structural and behavioural properties like a standard process model.

Therefore, the synthesis tool can be used to generate the artifact lifecycles from these

integrated process models.

4.5.3 Experimental Discussion

To evaluate the applicability of the proposed approach, experiments have been conducted

on the merge prototype using a small set of inter-organizational business process models

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 142

presented in Table 4.2, each of which represent the processes of different business

domains. These process models also vary in the number of collaborating processes,

their nodes and the involved artifacts. This set also includes the Buyer-Seller IOBP and

the AirTravel process model utilized to study the feasibility of the proposed approach.

Table 4.2: Data Set

IOBP

Domain

Collaborating

Processes

Nodes

Artifacts

Buyer-Seller 2 26 3

Job Recruitment 3 46 5

Ticket Booking 3 75 4

PayPal Invoice 4 42 7

Air Travel 5 66 8

One of the major requirements in process merging is to preserve the structural and

behavioural aspects of base process models in the resulting integrated process models.

Therefore, two theorems are proposed and proved to demonstrate that the proposed

approach can achieve this structural and behavioural consistency. The theorems are

proved constructively based on the definitions and rules presented in Sections 4.3 and

4.4 and follow the proof style as in (S. Sun et al., 2006).

Theorem 1. If two structured process models are merged based on the parallel, syn-

chronous and asynchronous merge rules, the resulting integrated process model must

also be a structured process model.

Proof. The proof is by construction and relies on Definition 8, where the different forms

of structured process models are explained. All the merging rules formulated above are

based on the notion of combining structured process models to create integrated process

models that are also structured. Therefore, the merge here is performed by taking a

structured region of one process model, and combining it with the structured region of

another process model to result in a new structured region. The proof is derived from a

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 143

case-by-case analysis.

Case (a) Parallel Merge. When two structured process models are merged in parallel

based on rule 4.1 using the split and merge gateway nodes, the resulting process model

is also structured, according to Definition 8(2).

Case (b) Synchronous Merge. When two process models are merged by synchronous

rules 4.2, 4.3 and 4.4, a structured process fragment is connected in sequence to another

structured process fragment. Since each fragment is structured, the resulting merged

process is also structured, based on Definition 8(3).

Case (c) Asynchronous Merge. When two structured process fragments are combined

according to rule 4.5 in sequence or rule 4.6 in parallel using the split and merge gateway

nodes, the resulting workflow is also structured, according to Definitions 8(3) and 8(4).

Thus, the merged process fragment or process model resulting from each type of

merge is structured, if the corresponding merge regions themselves are structured.

Theorem 2. If the merged fragments of two structured process models are structured,

then the integrated process that results from the rules defined for parallel, synchronous

and asynchronous merge notions is well-behaved.

Proof. The proof follows from Theorem 1, and Definition 9, which states every struc-

tured process model is well-behaved. Thus, we conclude that this theorem is true.

Based on the results of the experiments, it can be concluded that the proposed ap-

proach guarantees the structural and behavioural aspects of IOBP models in the resulting

integrated process models, as long as each of their collaborating processes are structured

and well-behaved and their interactions are non-overlapping. For example, this can

be observed from the integrated process model of the Buyer-Seller IOBP presented in

Figure 4.18, which preserves the structure and behaviour of two collaborating processes

of the Buyer-Seller IOBP given in Figure 4.1.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 144

4.5.4 Performance Analysis

The dataset presented in Table 4.2 is used to analyze the performance of the proposed

merge algorithms. As described above, this set represents process models from different

business domains that vary in the number of collaborating processes, elements (nodes,

artifacts and states) and their interactions(or message flows). While the proposed merge

algorithms are interdependent, their overall average execution times were recorded,

which can be seen in the graph presented in Figure 4.19.

y = 0.52x + 3.32
R² = 0.8325

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

Ti
m

e
(i

n
 m

ill
is

ec
o

n
d

s)

Inter-Organizational Business Processes

Figure 4.19: Execution times of Merge algorithms

The graph illustrates the execution times of the merge algorithms over the given

process models. It can be observed that the execution times of the merge algorithms

depend on different factors, such as the number of collaborating processes, nodes

and their interactions. From the graph, one may interpret that the execution times

of these algorithms increase with an increase in process complexity. However, it is

anticipated that the experiments conducted using the given dataset are not sufficient to

draw conclusions over the performance of the proposed algorithms.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 145

4.6 Discussion and Related Work

Modeling business processes from artifacts and their interacting lifecycles is the core

objective of an artifact-centric modeling paradigm. As discussed above, the existing

transformation approaches have focused on synthesizing the artifact-centric counter-

parts (lifecycles) from standalone activity-centric process models, while ignoring the

process models that represent business processes which cross organizational boundaries,

such as IOBP models. Therefore, this chapter proposed an approach to support the

transformation of activity-centric IOBP models into artifact-centric process models.

The proposed approach extends the scope of the synthesis solution presented in chapter

3 to the activity-centric IOBP models.

The solution proposed in this chapter is based on our work (Kunchala et al., 2017),

which first introduced the merge concepts for IOBP models. However, this chapter

compliments the existing work with the formalization of merge concepts, proposing

algorithms for automatic merging and also performing a thorough evaluation using

theorems and prototype implementation and experiments (Kunchala et al., 2019).

The proposed approach is related to existing research on process merging and con-

solidation. As discussed in Chapter 2, although there exists several merge approaches

(S. Sun et al., 2006; Mendling & Simon, 2006; Gottschalk et al., 2008; La Rosa et al.,

2010; Bulanov et al., 2011; La Rosa et al., 2013), they consider standalone process

models with common process fragments for merging. In addition, none of them have

been proposed for merging the collaborating processes of inter-organizational business

process models that contain artifact data flows. Therefore, when compared to these

works, the merge approach presented in this chapter is novel, as it does not require any

common process fragments and can merge collaborating processes by considering the

involved artifacts and states while also preserving their structure and behaviour of base

processes in the resulting integrated process.

Chapter 4. Merging the Collaborating Processes of Activity-Centric IOBP 146

4.7 Summary

In this chapter, the second research question (RQ2) is addressed by presenting an

approach that aims to merge the collaborating processes of IOBP models for the

purpose of generating artifact lifecycles from the resulting integrated process model.

The approach consists of a set of algorithms that enables the automatic process merging.

The algorithms were implemented and evaluated using a subset of IOBP models to

demonstrate the feasibility and applicability of the proposed approach. Moreover, the

structural and behavioural requirement for the resulting integrated process model was

validated using theorems. To the best of our knowledge, the proposed approach makes

the first contribution towards merging the collaborating processes of IOBP models that

builds on artifact data flows.

Chapter 5

Constructing Activity-Centric Process

Models from Artifact-Centric Process

Models

In recent years, many organizations have integrated their business processes with web

services to address the growing needs of their potential customers. In this regard,

process models present the design view of business processes, whereas web services

correspond to their executable view. Intuitive process models are of higher priority

for organizations to understand, document, communicate and improve their business

strategies. There exists a multitude of intuitive graphical notations, including BPMN

for modeling activity-centric business processes, where the resulting process models

can be naturally mapped to executable languages such as BPEL to achieve improved

efficiency.

On the other hand, artifact-centric process models represent the flow of artifacts,

where the invocation of activities on the associated artifacts can be restricted using

constraints, such as business rules (Yongchareon & Liu, 2010). Flexibility is the major

advantage of such declarative approaches (Caron & Vanthienen, 2016), as they do not

147

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 148

enforce specific execution flows, thus offering more freedom to design and modify the

resulting process models. However, the drawback of such declarative modelling is that

it is difficult to understand the structure and flow of these process models compared to

activity-centric process models. Therefore, a reverse transformation is proposed, where

an approach to transform artifact-centric process models into activity-centric process

models is presented. The proposed approach consists of algorithms to achieve this

objective and also to analyze the consistency between both the base and the constructed

process models (Kunchala et al., 2020). A case study is used to demonstrate the

feasibility of the proposed approach, while prototype implementation and evaluation is

used to demonstrate the applicability of the proposed approach.

The remaining chapter is organized into seven sections. Section 5.1 introduces a

motivating example based on an Order Processing Scenario. Section 5.2 formulates the

research problem and defines some key notions. Section 5.3 presents an overview of

the proposed transformation approach. Section 5.4 presents algorithms for the proposed

approach. Section 5.5 discusses the implementation and evaluation of the proposed

approach. Section 5.6 discusses and reviews the related work. Section 5.7 summarizes

the contributions of this chapter.

5.1 Motivating Example

In this section, an artifact-centric process model is presented, which describes a customer

order processing scenario, which is closely related to the one used in (Meyer & Weske,

2013), to demonstrate the proposed approach. The order process in Table 5.1 is described

based on the ACP model introduced in (Yongchareon & Liu, 2010), which consists

of three core constructs, including: artifacts, services and business rules. Artifacts

represent key business entities, which contain a finite set of attributes and states. The

Order, Product and Invoice are the three artifacts of the given process model that have a

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 149

Table 5.1: Artifact-centric Process Model (ACP Model)

Artifacts: Order, Product, Invoice

Activities: InitiateOrder (A), ReceiveOrder (B), AnalyseOrder (C), ConfirmOrder (D),

CheckStock (E), PlanProduct (F), ScheduleProduct (G), ManufactureProduct (H), ShipProduct (I),

SendInvoice (J), ReceivePayment (K), CloseOrder (L)

Business Rules: R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11

R1: Initiate order request

Pre-condition: λ (Order, wait)

Activities: InitiateOrder (Order)

Post-condition: λ (Order, init)

R2: Receive order from the customer

Pre-condition: λ (Order, init)

Activities: ReceiveOrder (Order)

Post-condition: λ (Order, received)

R3: Analyse the customer order

Pre-condition: λ (Order, received)

Activities: AnalyseOrder (Order)

Post-condition: λ (Order, confirmed) ∨ λ (Order, rejected)

R4: Confirm the customer order

Pre-condition: λ (Order, confirmed)

Activities: ConfirmOrder (Order)

Post-condition: λ (Product, init)

R5: Check stock for the product

Pre-condition: λ (Product, init)

Activities: CheckStock (Product)

Post-condition: λ (Product, in stock) ∨ λ (Product, not in stock)

R6: Plan and schedule for manufacturing the product

Pre-condition: λ (Product, not in stock)

Activities: PlanProduct (Product)

 ScheduleProduct(Product)

Post-condition: λ (Product, planned) ∧ λ (Product, scheduled)

R7: Manufacture the product

Pre-condition: λ (Product, planned) ∧ λ (Product, scheduled)

Activities: ManufactureProduct (Product)

Post-condition: λ (Product, made)

R8: Ship product to the customer

Pre-condition: λ (Product, in stock) ∨ λ (Product, made)

Activities: ShipProduct (Product, Order)

Post-condition: λ (Product, shipped) ∧ λ (Order, shipped) ∧ λ (Invoice, init)

R9: Send invoice to the customer

Pre-condition: λ (Product, shipped) ∧ λ (Order, shipped) ∧ λ (Invoice, init)

Activities: SendInvoice (Order, Invoice)

Post-condition: λ (Order, invoiced) ∧ λ (Invoice, sent)

R10: Receive payment from the customer

Pre-condition: λ (Order, invoiced) ∧ λ (Invoice, sent)
Activities: ReceivePayment (Order, Invoice)

Post-condition: λ (Invoice, paid) ∧ λ (Order, paid)

R11: Close the customer order

Pre-condition: λ (Order, rejected)

Activities: CloseOrder (Order)

Post-condition: λ (Order, closed)

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 150

finite set of attributes and states. The attributes are not specified in this process model,

as we consider them at the implementation level. However, an example of attributes

such as OrderID and CustomerID of Order artifact, which are defined in parallel to its

states.

Services represent business activities or tasks that take some artifacts in some states

as input, and output some artifacts and/or modify their attributes and/or states. The given

process model has a set of activities, each of which are labelled with an alphabet to easily

refer to them throughout the discussion. Business rules are for associating artifacts with

activities that read/update the attributes and states of these artifacts. A business rule

specifies conditions (pre, post) for an activity to invoke on the associated artifact(s) by

following the declarative Condition-Action style. Rules are used to prescribe, under

what pre-condition the activities are executed on the associated artifacts and the post-

condition that the activities have to satisfy, after their execution. In the given process

model, the complete set of business rules specify the control flow of ordering process

from its initiation to the completion.

It can be observed from Table 5.1, the process starts with the initiation of an order

request by the customer. After receiving the order request for a product, the customer

information is analyzed to decide whether to confirm the order or to reject it, in which

case the corresponding order is immediately closed, and the process is terminated.

When confirmed, the order is analyzed to check the availability of the ordered product.

The order is shipped to the customer if the requested product is in stock, otherwise the

product is planned, manufactured and then shipped. Then, it is the time to invoice the

order and send that to the customer for payment. In this case, the process is terminated

after receiving the payment from the customer.

Table 5.2 presents the process log that records the execution traces of the artifact-

centric process model presented in Table 5.1. These traces can be the recorded traces

during the process execution or manually defined traces by analyzing the process model.

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 151

Table 5.2: ACP Log

Log Traces Business Rules Activities

1 R1R2R3R4R5R6R7R8R9R10 ABCDEFGHIJK

2 R1R2R3R4R5R8R9R10 ABCDEIJK

3 R1R2R3R11 ABCL

The process log is compliant with the given model, meaning that it contains every

possible execution trace of the ACP model. Each process trace represents the execution

sequence of business rules i.e., the activities and their associated input (pre) and output

(post) artifacts. This process log is utilized to check the consistency between the ACP

model and the activity-centric process model constructed from this model.

5.2 Problem Statement and Definitions

In this section, the research problem targeted in this chapter is first stated and then

some of the key notions of proposed solution are formally defined, which include:

Artifact-Centric Process Model, Activity-Centric Process Model, Process Log and Trace

Match.

PROBLEM (PROCESS MODEL CONSTRUCTION). Given an artifact-centric pro-

cess model, an activity-centric process model that preserves the behaviour of base

process model must be constructed.

Here, an artifact-centric process (ACP) model is defined that is closely related to

existing definitions in (Yongchareon & Liu, 2010; Meyer & Weske, 2013).

Definition 21. (Artifact-Centric Process (ACP) Model). An ACP model Π is a three

tuple (Z,V,B) where,

- Z is a finite set of artifacts. Every artifact has a set of attributes, set of states S, an

initial state and a set of final states;

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 152

- V is a finite set of activities. Every activity contains a label and a finite set of

artifacts manipulated by this activity;

- B is a finite set of business rules. Every rule consists of a pre-condition α, post-

condition β and activities that manipulate the associated artifacts. In addition, the pre-

and post-conditions comprises a set of in-state (denoted with λ) and defined (denoted

with δ) functions connected by logical operators ∧, ∨.

The logical operators can reveal the relation between artifacts or dependencies

between their states, when used between different artifacts or the states of same artifact

that correspond to either a pre- or post-condition of a business rule. From such a

relation/dependency, the control flow relation of activities (executed in parallel or in

exclusive) that take these artifacts and states as input or produce them as output, can be

derived.

For example, the states confirmed and rejected of Order artifact have an exclusive

relationship between them as they are connected using the ∨ operator, therefore the

corresponding activities ConfirmOrder and CloseOrder must also execute in this ex-

clusive manner. Similarly, the states planned and scheduled of Product artifact have a

parallel relationship, as they are connected using the ∧ operator, thus the corresponding

activities PlanProduct and ScheduleProduct must also execute in parallel.

The modeling elements of BPMN graphical notation are used to represent the

constructed activity-centric process model. Therefore, the following definition is based

on this notation.

Definition 22. (Activity-Centric Process (or ACT) Model). An activity-centric process

model denoted with ΠP = (E, A, G, F, D, Sp, I, O), where,

- E is a finite set of event nodes. Every event is in E.Type = {Start,End};

- A is a finite set of activity nodes;

- G is a finite set of gateways. Every gateway is in G.Type = {XOR,AND}; and

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 153

GOpen and GClose are used to represent opening and closing gateway nodes;

- F ⊆ (E ∪A ∪G) × (E ∪A ∪G) is the set of sequence flow relations among event,

activity, and gateway nodes;

- D is a finite set of artifacts;

- Sp is a finite set of states;

- I =D × Sp ×A is the input relation among artifacts and activities;

- O = A ×D × Sp is the output relation among artifacts and activities;

The events, activities and gateways of the activity-centric process model are referred

to as nodes, to differentiate them from the modeling constructs of an ACP model.

Definition 23. (Process Log). A process log P is a finite set of execution traces TE ,

where E is the finite set of activities of P . Every trace te = e1, e2, ...en is a finite

non-empty sequence of activities, where ei ∈ E and t ∈ TE .

Definition 24. (Trace Match). Let t ∈ Π.T and tp ∈ ΠP .TA, we say t matches tp that

is t ≅ tp if for every ai ∈ t, ∃aj ∈ tp and ai = aj . The ≅ symbol is used to represent the

consistency between two process traces or two process models.

5.3 Approach Overview

In this section, an overview of the proposed transformation approach is presented. The

approach has two phases: model construction and model consistency checking. As

shown in Figure 5.1, Step 1 corresponds to the first phase, whereas Step 2 and Step 3

correspond to the second phase of the proposed approach.

In the first phase, an activity-centric process model is constructed from the artifact-

centric process model presented in Table 5.1, by obtaining the activities and associated

artifacts with states from the business rules and arranging them based on their input and

output artifact dependencies. In the second phase, the execution traces of the resulting

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 154

ACP Model

Activity-Centric

Process Model

Consistency

checking of

ACP Model and

Activity-Centric

Process Model

Extracted Process

Traces of Activity-

Centric Process Model

Step 1:

Construct

Process

Model

Step 2:

Extract

Traces

Step 3:

Trace-based

Analysis

Recorded Log

Traces of ACP

Model

Figure 5.1: Transformation Approach

activity-centric process model are extracted and matched with the traces recorded in the

execution log of the ACP model given in Table 5.2, to check the consistency between

the ACP model and the constructed ACT model.

5.4 Algorithms

In this section, algorithms are presented for each phase of the proposed transformation

approach and demonstrated using the motivating example presented in Table 5.1.

5.4.1 Model Construction

Algorithm 5.1 and 5.2 define the procedure to construct an activity-centric process

(ACT) model from an artifact-centric process (ACP) model. It is noted that Algorithm

5.2 is a part of Algorithm 5.1, though the model construction procedure is divided into

two parts for ease of understanding. The ConstructACTModel() function defined in

Algorithm 5.1 is recursively invoked for every business rule of the ACP model, from

which the activities and the associated input and output artifacts and states are retrieved

to construct the ACT model.

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 155

Algorithm 5.1: Construction of ACT Model from the ACP Model
Input : ACP (Π), ACT Model (ΠP) with start node (n)
Output : Complete ACT Model (ΠP)

1 Function ConstructACTModel(rule : Π, n : ΠP , cond ∶ rule):
2 if rule ≠ null then
3 if rule is not marked as completed then
4 if rule.α = cond then
5 AddActivities(rule,ΠP);
6 cond← rule.β

7 else if rule.α ⊂ cond then
8 foreach z.s ∈ cond do
9 r ← GetRule(rule, cond)

10 while r ≠ null do
11 if z.s ∈ r.α then
12 ConstructACTModel(r,ΠP , r.α)
13 end
14 r ← GetNext(r)
15 end
16 end
17 else if cond ⊂ rule.α then
18 foreach z.s ∈ α do
19 if ∃d.sp ∈ ΠP then
20 if ∣d.sp∣ = ∣z.s∣ then
21 if d.sp ∈ ΠP .ni then
22 if ni ∈ G.branchi then
23 MergeBranches(G)
24 end
25 ConstructACTModel(rule,ΠP , rule.α)
26 end
27 end
28 end
29 end
30 end
31 end
32 ConstructACTModel(GetNext(rule),ΠP , cond)
33 end
34 End Function

The ConstructACTModel() function takes as input the ACP model, an activity-

centric process (ACT) model with a start node and a data condition (cond), based on

which a business rule of ACP model is invoked. Initially, the pre-condition of the first

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 156

business rule is assigned to the cond (data condition) and is updated with the pre- or

post-condition of the corresponding business rule in each invocation of this function.

Algorithm 5.1 defines three conditions, where every business rule needs to satisfy

one of these conditions in order to be invoked by the ConstructACTModel() function.

Initially, as defined in line 3, a business rule is invoked only if it is not marked as

completed, meaning that the activities of this rule were not added in the ACT model.

According to the three conditions defined in the algorithm (in line 4, 7 and 17), a

business rule is invoked if its pre-condition is the same as the given cond, or it is a

subset of cond meaning that the pre-condition has one or more artifacts and states as

the cond, or the cond itself is a subset of the pre-condition of that business rule.

As in line 5, the AddActivities() function defined in Algorithm 5.2 is called, when

the pre-condition of a business rule matches the given data condition (cond). This

function is used for adding all the activities of the corresponding business rule with

their associated input and output artifacts and states into the ACT model. For example,

to construct the ACT model from the ACP model presented in Table 5.1, Algorithm

5.1 starts at business rule R1 of this process model, as its pre-condition matches with

the given cond, the AddActivities() function (defined in Algorithm 5.2) is called by

passing the business rule R1 and the ACT model (that only contains the start node).

The AddActivities() function adds the InitiateOrder activity of R1 in sequence with the

start node of the ACT model with the associated input and output artifact Order and its

states wait and init. Algorithm 5.2 also uses the gateway nodes (XOR, AND) to split

and merge the control flow. For example, an XOR gateway is used when a rule contains

an activity whose output has an artifact with more than one state, in which case the

activities of other business rules that use the same artifact and states as input are added

to different branches of the XOR gateway. Similarly, an AND gateway is used when a

rule has more than one activity that may use the same artifact(s) and state(s) as input,

in which case these activities are added to different branches of the AND gateway to

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 157

execute in parallel.

After completing the rule R1, the cond is updated with the post-condition of R1 as

in line 6 of Algorithm 5.1, and the ConstructACTModel() function is called for the next

rule R2 (line 32). Therefore, the pre-condition of R2 is checked with the cond, as there

is a match, the node ReceiveOrder is added to the ACT model with its associated input

and output artifacts and states using the AddActivities() function defined in Algorithm

5.2. Similarly, the activity AnalyzeOrder of rule R3 is added, as its pre-condition

satisfies the post-condition (cond) of R2. These nodes can be seen in Figure 5.2, which

illustrates the ACT model constructed using Algorithm 5.1 and 5.2.

Receive
Order

 (B)

Analyze
Order

(C)

Check
Stock
 (E)

Plan
Product

(F)

Schedule
Product

(G)

Manufacture
Product

(H)

Ship
Product

(I)

Send
Invoice

(J)

Receive
Payment

(K)

Product
[shipped]

Order
[shipped]

Inovice
 [init]

Invoice
[sent]

Order
[invoiced]

Invoice
[paid]

Order
[paid]

O
rd

er
[r

e
je

ct
ed

]

[i
n

 s
to

ck
]

Product
[scheduled]

Product
[planned]

Order
[init]

Order
[received]

Order
[rejected]

Product
[init]

Product
[not in
stock]

Order
[confirmed]

Prodcut
[in stock]

Product
[made]

[confirmed]

Initiate
Order

 (A)

Close
Order

 (L)

Order
[closed]

Order
[wait]

Confirm
Order

 (D)

 Order

 Product

 [not in stock]

Figure 5.2: The constructed Activity-Centric Process Model

In case the pre-condition of a business rule is a subset of cond (line 7), then for one

or more artifact(s) and state(s) of this cond, every next rule is traversed to check if its

pre-condition matches with the artifacts(s) and state(s) of the given cond. Therefore,

the ConstructACTModel() function is called for every such rule whose pre-condition is

a subset of cond, as in line 12. For example, the business rule R4 satisfies the condition,

where the pre-condition of this rule is a subset of cond that contains the post-condition

of rule R3. In this case, as defined in the algorithm (from line 8 to 16), for every artifact

and state of cond for instance (Order, confirmed), the next rules of R3 are traversed to

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 158

find rule R4, which contains this artifact and state in its pre-condition and the function

ConstructACTModel() is invoked for this rule.

As defined in line 17, the third condition is where the cond is a subset of the pre-

condition of a business rule, then the algorithm checks that for every artifact and state

of this pre-condition, there an artifact and state associated with an activity node in the

ACT model. If these artifacts and states are associated with different activity nodes that

belong to different branches of a gateway (XOR or AND), then all its open branches are

merged using the MergeBranches() function before adding the activities of this business

rule into the ACT model. The MergeBranches() function adds a sequence flow from

each branch (activity) node to the close gateway node. Then the recursive function is

called with this rule and its pre-condition, including the ACT model. For example, rule

R8 satisfies such a condition, where cond that holds (Product, made) from the previous

invocation is a subset of the pre-condition of rule R8. Therefore, here the algorithm

checks if the other artifacts and states of the pre-condition already exist in the ACT

model. If they exist, the algorithm checks if these are associated with different activity

nodes that belong to an open gateway. In this case, the algorithm first merges those open

branches and then calls the ConstructACTModel() function for adding the activities

of R8 in sequence with this gateway node. Otherwise, it simply calls this recursive

function with the same business rule and its pre-condition without merging the branches

of that open gateway. In this manner, Algorithm 5.1 continues until every following

rule is invoked and completed.

Algorithm 2 defines the AddActivities() function for adding the activities of each

business rule into the ACT model and also for annotating their input and output artifacts

and states. Therefore, the input to this function is a business rule of the ACP model and

the ACT model. This function is called from Algorithm 5.1, when the pre-condition of

a business rule satisfies the given data condition as described above.

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 159

Algorithm 5.2: Construction of ACT Model from the ACP Model
Input : A business rule of ACP (Π) Model and the ACT Model (ΠP)
Output : Activity-centric process model (ΠP) with new nodes

1 Function AddActivities(rule : Π, n : ΠP):
2 if ∣rule.v∣ = 1 then
3 Function AnnotateIO(v : rule):
4 n← v
5 ΠP .AddInSequence(n)
6 n.AnnotateInput(rule.α)
7 n.AnnotateOutput(rule.β)
8 if z.s ∈ v.O and the states of z are in exclusive relation then
9 ΠP .AddInSequence(XOR.GOpen)

10 foreach z.s ∈ v.O do
11 GOpen.AddBranch(branch)
12 branch.AddCondition(z.s)
13 ConstructACTModel(GetNext(rule),ΠP , z.s)
14 end
15 MergeOpenGatewayBranches(XOR.GClose)
16 end
17 End Function
18 else if ∣rule.v∣ > 1 then
19 ΠP .AddInSequence(AND.GOpen)
20 foreach v ∈ rule do
21 GOpen.AddBranch(branch)
22 call ∶ AnnotateIO(v)
23 if z.s ∈ v.O and the states of z are not in exclusive relation then
24 ConstructACTModel(GetNext(rule),ΠP , v.O)
25 end
26 end
27 MergeOpenGatewayBranches(AND.GClose)
28 end
29 Mark(rule)
30 End Function

Similar to Algorithm 5.1, Algorithm 5.2 also defines conditions (line 2 and 18) for

adding these activities. As in line 2, when a business rule contains a single activity, that

can be added directly to the ACT model in sequence with the existing node (line 4).

The AnnotateIO() function defined from line 3-17, is for annotating the activity node

with input and output artifacts and states after adding that node in the ACT model. This

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 160

function first retrieves the corresponding artifacts and states from the pre- (α) and post-

(β) conditions of the business rules and then annotates them to the activity nodes. This

function is also used to check if two states of an artifact belong to the post-condition

of a business rule and for adding the corresponding activities into the ACT model, as

described below.

As defined in line 8, when the two states of an artifact in the post-condition of an

activity are in exclusive relation, an exclusive (XOR) open gateway node is added in

sequence to this activity node in the ACT model. Then, for every artifact and state

that is logically connected using the ∨ operator, a new branch with that data (artifact

and state) condition is added to the gateway as defined in lines 8-12. For example, the

ACP model in Table 5.1 shows where the post-condition of AnalyzeOrder that belongs

to rule R3 has a logical connection between the states confirmed and rejected of its

output artifact Order. Therefore, a new XOR gateway is added in sequence to the

AnalyzeOrder activity node in the ACT model and two branches with conditions [Order,

confirmed] and [Order, rejected] are added to this gateway, which can be seen from

Figure 5.2.

Next, as defined in line 13, to add activities to the gateway branches, every next

business rule in the ACP model is traversed until all the activities associated with

pre-conditions that match branch conditions are found and added to the corresponding

branches of the gateway in the ACT model. The MergeOpenGatewayBranches() func-

tion is for merging those branches that contain no nodes, as their branch condition do

not match the pre-condition of any rule in the ACP model. For example, after adding

the XOR gateway with branch conditions as described above, the following rules are

iterated for every logically connected artifact and state using the ConstructACTModel()

function defined in Algorithm 5.1. In this case, the activities ConfirmOrder and Close-

Order of rules R4 and R11 are added to different branches of the XOR gateway, as they

satisfy the corresponding branch conditions.

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 161

Similarly, Algorithm 5.2 uses an AND gateway, as defined from line 18-27, when

a business rule has more than one activity. In this case, each activity of a business

rule is added to a different branch of the AND gateway and is annotated with the

associated artifacts and states. For example, rule R6 satisfies such a condition where

it contains PlanProduct and ScheduleProduct activities that have to be executed in

parallel. Therefore, these activities are added in parallel using an AND gateway in the

ACT model, as shown in Figure 5.2. As defined in line 23 and 24, for each of these

branch nodes the ConstructACTModel() function can be called, if the output of any

of these branch nodes contain logically connected states using the ∨ operator. This

invocation is mainly to add the activities that must be added in sequence to these branch

nodes.

As described above, the ConstructACTModel() function is recursively invoked for

each business rule until all the business rules in the given ACP model are completed.

In this manner, starting at the first rule (R1) of the ACP model presented in Table 5.1,

every next rule is traversed until the last rule (R11) of that process model is obtained

and the corresponding activities are added into the ACT model presented in Figure 5.2.

An end node is added to the ACT model, after completing all the business rules.

5.4.2 Extract Model Traces

The procedure to build the execution traces of the constructed ACT model is given in

Algorithm 5.3. The BuildTrace() function is recursively called to extract each execution

trace of this process model. As defined in the algorithm, the function starts at the start

node of the ACT model and traverses through every next sequence flow node until

it reaches the end node of that process model and adds the activity nodes with the

associated input and output artifacts that it finds on the way, to generate a process trace.

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 162

Algorithm 5.3: Extract the Activity-Centric Process Traces
Input : The ACT Model (ΠP), its Log (ΠP

L) with empty trace τ p

Output : Complete Log (ΠP
L) of ACT Model (ΠP)

1 Function BuildTrace(n : ΠP , τ p: ΠP
L):

2 if n ≠ null then
3 if n ∈ A then
4 τ p.AddInSeq(n)
5 else if n ∈ GOpen and n is not marked then
6 if n.type = AND then
7 foreach bn ∈ n do
8 if bn is not marked then
9 BuildTrace(bn, τp)

10 end
11 end
12 else if n.type =XOR then
13 foreach bn ∈ n do
14 if bn is not marked then
15 BuildTrace(bn, τnew)
16 τ p.AddInSeq(τnew)
17 (Πp

L).Add(τ p)
18 end
19 end
20 end
21 end
22 Mark(n)
23 n← GetSeqNext(n)
24 BuildTrace(n, τ p)
25 end
26 End Function

As defined in line 3 and 5, the type of each node is checked first, such as activity or

an open gateway node. In the case of activity, the node is added to the process trace.

For example, the algorithm starts with an empty trace {} from the start node of ACT

model given in Figure 5.2, and traverses to the next node InitiateOrder (A), as this node

is an activity, it is added to the empty trace {A}. Then the next nodes ReceiveOrder(B)

and AnalyzeOrder (C) are also added {ABC} in sequence to this trace.

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 163

For a gateway type, the algorithm defines two conditions, where in case of an AND

gateway, as defined in lines 6-11, for every branch of this gateway the BuildTrace()

function is called with the same process trace that is used to add all the branch nodes of

that gateway, as they must always be executed in parallel. For example, to trace through

the branch nodes PlanProduct and ScheduleProduct, the algorithm uses the existing

trace instead of creating a new one.

B C A L

B C D

G

H I J
 A

B C D E I J A

E

F

K

K

Figure 5.3: Execution Traces of Activity-Centric Process Model

For an XOR gateway node, as defined in lines 12-20, for every branch a new trace is

used to traverse through the corresponding branch nodes. After traversing a branch of

this gateway, the new trace is appended in sequence to the existing process trace, which

is then added to the process log. For example, for the XOR gateway branch that contains

a branch condition Order[rejected], a new empty trace is created and the CloseOrder (L)

node is added {L}. As there is no activity or an open gateway node following this node,

the new trace {L} is added to the existing trace {ABCL} and is added to the process

log. Then a new empty trace is created for the branch that contains Order[confirmed],

where the branch nodes ConfirmOrder (D) and CheckStock (E) are added to the new

trace {DE} and is added in sequence to the existing trace {ABCDE}. For the next XOR

gateway, a similar procedure is followed and the new traces {IJK} and {FGHIJK} are

created and added in sequence to the existing trace {ABCDE}, which results in two

other traces {ABCDEIJK} and {ABCDEFGHIJK}.

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 164

As defined in line 22, every activity node is marked as visited, once that completes

the traversal, while a gateway is marked after all its branches are traced. The extracted

traces of the ACT Model are shown in Figure 5.3, where the activities are referenced

with their labels for ease of understanding.

5.4.3 Trace-based Analysis

Algorithm 5.4 defines the ConsistencyCheck() function for the trace-based analysis of

both process logs. This function takes as input the execution traces of the ACP and ACT

process models, and a count variable that is initialized to zero and outputs the resulting

consistency of the two models.

Algorithm 5.4: Analyzing the execution traces of ACP and ACT Models
Input : ACP Process Log (ΠL), ACT Process Log (ΠP

L)
Output : Consistency (≅) of ACP and ACT Models

1 Function ConsistencyCheck(τ : ΠL, τ p : ΠP
L , count):

2 foreach τ ∈ ΠL do
3 foreach τ p ∈ ΠP

L do
4 if τ p ≅ τ then
5 count← count + 1 ▷ initialized to 0
6 end
7 end
8 end
9 if count = ∣ΠL.τ ∣ then

10 ΠL ≅ ΠP
L

11 end
12 End Function

According to the algorithm (lines 2-8), for a trace in the ACP process log, if there

is a trace that contains the same set of activities in the same execution sequence in the

ACT process log, then the value of count is incremented. After traversing all the process

traces, if the count equals the number of traces in the ACP process log (lines 9-11), then

it is clear that the constructed ACT model is consistent with the ACP model.

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 165

C ATrace 1:

Trace 2:

Trace 3:

B C L

ACP Traces Activities
1

2

3

ABCDEFGHIJK

ABCDEIJK

ABCL

 A B C D

F

G

H I J K

 A B C D E J KI

ACT Model
Traces

E

Figure 5.4: Process Traces and Analysis

Each of the recorded traces of the ACP model presented in Table 5.1 can be ana-

lyzed over the extracted execution traces of the ACT model, given in Figure 5.3 using

Algorithm 5.4 to check their consistency. As shown in Figure 5.4, every trace of the

ACP model has a matching trace in the ACT model, therefore it can be concluded that

the constructed ACT model is consistent with the given ACP model. Here, the algorithm

allows any execution order between the parallel activities.

5.5 Evaluation

In this section, a case study is demonstrated, as well as the prototype implementation

and evaluation of the proposed approach.

5.5.1 Case Study

The ACP model presented in Figure 5.5 was utilized to demonstrate the feasibility of

the proposed approach. The process model is taken from (Yongchareon et al., 2015),

which illustrates the purchasing process in the supply chain domain. As shown in

the figure, the purchasing process model is used to represent the inter-organizational

process collaboration. The purchasing process is modeled as a set of lifecycles of

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 166

artifacts, including: Quote (Q), PurchaseOrder (PO), PickingList (PL), DeliveryNote

(DN), ShippingOrder (SO), ShippingList (SL), Invoice (IV), Payment (P), and their

synchronization dependencies. In the inter-organizational setting, these artifacts are

classified into local and shared artifacts that represent the internal artifacts of an

organization and those that are commonly agreed to be shared by every organization.

As illustrated in the figure, the purchasing process is initiated with the creation of

the Quote and Purchase Order artifacts once the buyer places the order. When the Quote

is approved, the Purchase Order is confirmed and sent to the supplier for acquiring

the goods for that order. The supplier then creates the Picking List and checks for the

ordered goods. The Quote is rejected and the Purchase Order is cancelled if the goods

run out, otherwise the Purchase Order is filled, the Delivery Note is prepared, and the

Shipping Order is created and sent to the logistics. Upon receiving the Shipping Order,

the Shipping List is created and used to pickup the goods from the shipping point and

also to deliver the goods to the buyer. Then the Invoice is created and sent to the buyer

for payment. The Purchase Order is closed, once the Shipping Order is marked as

arrived and the Invoice is cleared, thus completing the purchasing process.

Due to the unavailability of ACP models for empirical research, this process model

is assumed in a single organizational setting. Therefore, the three roles, including

Buyer, Supplier and Logistics are assumed to belong to the same organization and work

together to fulfill the objectives of their organization. The ACP model of the purchasing

process described using the business rules is presented in Table 5.3. As is shown, this

model has 20 business rules and 21 activities that invoke the 8 listed artifacts. The

execution traces of this model presented in Table 5.4 are recorded by analyzing each

business rule as well as the involved activities and the pre- and post-conditions. The

ACP model presented in Table 5.3 is further used to demonstrate the feasibility of the

proposed algorithms. In order to construct the activity-centric process (ACT) model,

Algorithm 5.1 starts at rule R1 of the ACP model, as its pre-condition matches with the

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 167

Figure 5.5: Purchasing process model (Yongchareon et al., 2015)

given data condition (cond) that contains the same pre-condition upon the start of this

algorithm. Therefore, this algorithm invokes the AddActivities() function, as defined in

Algorithm 5.2, by passing R1 and the ACT model (with start node). The AddActivities()

function adds the Create activity of R1 in sequence with the start node of the ACT

model with the associated input and output artifacts Quote (Q) and Purchase Order (PO)

and their states init and created.

Algorithm 5.1 then updates the cond with the post-condition of R1 and calls the

ConstructACTModel() function for the next business rule, R2. As the pre-condition

of R2 is a subset of cond, the algorithm finds and invokes the ConstructACTModel()

function for every rule whose pre-condition contains one or more artifacts and states

of the cond. For example, there is no rule in the ACP model that contains both (Q,

created) and (PO, created) in its pre-condition, therefore the algorithm traverses rules

R3 and R2 that contain these artifact(s) and state(s) in their pre-conditions and adds the

corresponding activities SendQuote and Hold in sequence with the Create node in the

ACT model. Then the cond is updated with the post-condition of completed rule R2.

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 168

Table 5.3: ACP Model of Purchasing Process

Artifacts: Quote (Q), PurchaseOrder (PO), PickingList (PL), DeliveryNote (DN),

ShippingOrder (SO), ShippingList (SL), Invoice (IV), Payment (P)

Activities: Create (T1), SendQuote (T2), Hold (T3), Analyse (T4), Accept (T5), Acquire (T6),

Check (T7), Prepare (T8), FillOrder (T9), PrepareShipping (T10), CreateShipping (T11),

ScheduleShipping (T12), Pick (T13), DispatchGoods (T14), IssueInvoice (T15), Transmit

(T16), SendInvoice (T17), CreatePayment (T18), ApprovePayment (T19), ClearInvoice (T20),

CompleteOrder (T21)

Business Rules: R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16,

R17, R18, R19, R20

R1: Buyer approves Quote Q to confirm PurchaseOrder PO for a selected supplier

Pre-condition: λ (Q, init) ∧ λ (PO, init)

Activities: Create (PO, Q)

Post-condition: λ (Q, created) ∧ λ (PO,created)

R2: Supplier accepts PurchaseOrder PO
Pre-condition: λ (PO, created)

Activities: Hold (PO)

Post-condition: λ (PO, on hold)

R3: Send Quote Q for approval
Pre-condition: λ (Q, created)

Activities: SendQuote(Q)

Post-condition: λ (Q, approving)

R4: Analyse the Quote Q and the PurchaseOrder PO

Pre-condition: λ (Q, approving) ∧ λ (PO, on hold)

Activities: Analyse (Q, PO)

Post-condition: λ ((Q, approved) ∧ (PO, confirmed) ∧ (PL, init)) ∨ λ ((Q, rejected) ∧ (PO,

cancelled))

R5: Accept the PurchaseOrder PO and Check the PickingList PL

Pre-condition: λ (PO, confirmed) ∧ λ (PL, init)

Activities: Accept (PO, PL)

Post-condition: λ (PO, accepted) ∧ λ (PL, checking)

R6: Acquire the PurchaseOrder PO
Pre-condition: λ (PO, accepted)

Activities: Acquire(PO)

Post-condition: λ (PO, acquiring)

R7: Check the PickingList PL for PurchaseOrder PO

Pre-condition: λ (PO, acquiring) ∧ λ (PL, checking)

Activities: Check(PO, PL)

Post-condition: λ ((PL, out of stock) ∧ (PO, cancelled)) ∨ λ (PL, in stock)

R8: Prepare the PickingList PO for filling the order
Pre-condition: λ (PL, in stock)

Activities: Prepare(PL)

Post-condition: λ (PL, ready to fill)

R9: Fill the PicklingList PL and PurchaseOrder PO

Pre-condition: λ (PL, ready to fill) ∧ λ (PO, acquiring)

Activities: FillOrder (PL, PO)

Post-condition: λ (PL, Filled Order) ∧ λ (PO, filled) ∧ λ (DN, init)

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 169

R10: Prepare the DeliveryNote DN for shipping the PurchaseOrder PO

Pre-condition: λ (PO, filled) ∧ λ (DN, init)

Activities: PrepareShipping(PO, DN)

Post-condition: λ (PO, ready to ship) ∧ λ (DN, prepared) ∧ λ (SO, init)

R11: Supplier creates ShippingOrder SO from DeliveryNote DN

Pre-condition: λ (DN, prepared) ∧ λ (SO, init)

Activities: CreateShipping (DN, SO)

Post-condition: λ (DN, transferring) ∧ λ (SO, created) ∧ λ (SL, init)

R12: Schedule the ShippingOrder SO and place the ShippingList SL in queue

Pre-condition: λ (SO, created) ∧ λ (SL, init)

Activities: ScheduleShipping (SO, SL)

Post-condition: λ (SO, scheduled) ∧ λ (SL, queued) ∧ λ (IV, init)

R13: Pick up the ShippingList SL from the queue
Pre-condition: λ (SL, queued)

Activities: Pick(SL)

Post-condition: λ (SL, picked)

R14: Supplier dispatches goods for PurchaseOrder PO that to be shipped by

ShippingOrder SO, and simultaneously issues Invoice iv to the Buyer

Pre-condition: λ (PO, ready to ship) ∧ λ (DN, transferring) ∧ λ (SO, scheduled) ∧ λ (SL,

picked) ∧ λ (IV, init)

Activities: DispatchGoods(PO, DN, SO, SL) IssueInvoice(po, iv)

Post-condition: λ ((PO, delivering) ∧ (DN, dispatched) ∧ (SO, In transit) ∧ (SL, completed)) ∧

λ (IV, issued)

R15: Send ShippingOrder SO to Logistics

Pre-condition: λ (SO, in transit)

Activities: Transmit (SO)

Post-condition: λ (SO, arrived)

R16: Send invoice for PurchaseOrder PO

Pre-condition: λ (PO, delivering) ∧ λ (IV, issued)

Activities: SendInvoice(PO, IV)

Post-condition: λ (PO, billing) ∧ λ(IV, sent) ∧ λ (P, init)

R17: Create Payment P for the Invoice IV

Pre-condition: λ (IV, sent) ∧ λ (P, init)

Activities: CreatePayment (IV, P)

Post-condition: λ (IV, unpaid) ∧ λ (P, created)

R18: Approve the Payment P
Pre-condition: λ (P, created)

Activities: ApprovePayment (P)

Post-condition: λ (P, approving)

R19: Send Payment P and clear the Invoice IV

Pre-condition: λ (P, approving) ∧ λ (IV, unpaid)

Activities: ClearInvoice (P, IV)

Post-condition: λ (P, sent) ∧ λ (IV, clearing)

R20: Clear the Invoice I and close the PurchaseOrder PO

Pre-condition: λ (IV, clearing) ∧ λ (PO, billing)

Activities: CompleteOrder (PO, IV)

Post-condition: λ (IV, cleared) ∧ λ (PO, closed)

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 170

Table 5.4: Execution Log of Purchasing Process Model

Traces Business Rules Activities

1 R1R3R2R4R5R6R7 T1T2T3T4T6T7

2 R1R3R2R4R5R8R9R10
R11R12R13R14R15R16R17
R18R19R20

T1T2T3T4T6T7T8T9T10
T11T12T13T14T15T16T17
T18T19T20T21

3 R1R3R2R5 T1T2T3T4

As defined in Algorithm 5.2, every rule (R1, R2, R3) is marked as completed after

adding all the activities of that rule into the ACT model. Then, the next the rule R4

is obtained by Algorithm 5.1, as this rule satisfies the third condition that is cond is a

subset of the pre-condition of R4. The algorithm checks if the artifact(s) and state(s)

of this pre-condition already exist in the ACT model as input or output of the activity

nodes. If they exist, then the activity Analyze of rule R4 is added in sequence to the Hold

activity node of ACT model. In this manner, Algorithm 5.1 finds the rules that contain

these post artifacts and states in their pre-conditions and retrieves the corresponding

activities and adds them into the ACT model. The ACT model of purchasing process

model constructed using Algorithm 5.1 is presented in Figure 5.6. Due to the space

limitation, the artifacts and states are not shown in this figure, however the complete

process model can be found from the Appendix, in Figure A.6.

Create

(T1)

Send

Quote

(T2)

Hold

(T3)

Accept

(T5)

Acquire

(T6)

Check

(T7)

Prepare

(T8)

Fill

Order

(T9)

Prepare

Shipping

(T10)

Schedule

Shipping

(T12)

Dispatch Goods

(T14)

Issue

Invoice (T15)

Transmit

(T16)
Send

Invoice

(T17)

Create

Payment

(T18)

Approve

Payment

(T19)

Clear

Invoice

(T20)

Complete

Order

(T21)

Pick

(T13)

Quote
[rejected]

Purchase
Order

[cancelled]

Purchase
Order

[confirmed]

Quote
[approved]

Picking List
[out of stock]

Picking List
[in stock]

Purchase Order
[cancelled]

Analyse

(T4)

Create

Shipping

(T11)

Figure 5.6: An Abstracted Activity-Centric Model of Purchasing Process

Algorithm 5.3 is used to extract the execution traces of the ACT model in order to

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 171

check their consistency with the recorded traces of the ACP model. As described in the

previous section, this algorithm starts with an empty trace from the start node of ACT

model given in Figure 5.6 and traverses every sequence flow node and adds the activity

nodes that found on the path to generate a process trace. As explained above, for every

branch of the XOR gateway, a new trace is created and is used to add all the activity

nodes flowing on that branch. These new traces are appended to the existing traces to

create a complete process trace. As shown in Figure 5.6, there are three alternative paths

for the process model, therefore Algorithm 5.3 generates three traces for this process

model.

 T1 T2 T3 T4

 T1 T2 T3 T5 T6 T7T4

 T1 T2 T3 T5 T6 T7 T8 T9 T10

T12

T15

T16

T17 T18 T19 T20 T21T13

T4

T11

T14

ACP Traces Activities

1

2

3

T1T2T3T4T5T6T7

T1T2T3T4T5T6T7T8T9T10T11T12
T13T14T15T16T17 T18T19T20T21

T1T2T3T4

Figure 5.7: The constructed Activity-Centric Model of Purchasing Process

The extracted traces of the purchasing process model can be observed in Figure

5.7, where the three execution traces represent the three possible paths that the process

model takes to complete its execution. According to trace 1, after creating the Quote

and PurchaseOrder, the Quote is sent for approval, where it is analyzed and either

approved or rejected based on that the PurchaseOrder is either confirmed or cancelled.

The process is terminated if the Quote and PurchaseOrder artifacts are put in the states

rejected and cancelled. According to trace 2, when the Quote and PurchaseOrder

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 172

artifacts are put in the states approved and confirmed, and the PickingList artifact is

created (init state). In this case, the PurchaseOrder is accepted and the PickingList

is checked for acquiring the ordered goods. The PurchaseOrder is cancelled, if the

PickingList is out of stock and the process is closed. According to trace 3, when

the PickingList is in stock then the PurchaseOrder is filled, and the ShippingOrder,

ShippingList, DeliveryNote and Invoice are prepared and sent for shipping the ordered

goods. The Payment is then created and is approved to clear the invoice and complete

the purchasing process.

Each of the recorded traces of the purchasing process (ACP) model can be analyzed

over the extracted execution traces of the constructed ACT model using Algorithm 5.4

to check their consistency. As shown in Figure 5.7, every trace of the ACP model has a

matching trace in the ACT model, therefore it is clear that the constructed ACT model

is consistent with the ACP model of the given purchasing process.

5.5.2 Implementation

A prototype tool was developed based on the proposed algorithms. The tool takes an

XML specification of the ACP model as input. The ACP model specification is based

on the extension of RuleML (Harold Boley, 2014), a standard for defining business

rules. The structure of the ACP model in an XML format is shown in Figure 5.8. The

prototype tool parses this specification and constructs the XML specification of the ACT

model by following the construction procedure. Then, the tool extracts the execution

traces of the ACT model, which are matched with the execution traces of the ACP

model. For each trace of the ACP model, the tool iterates over the extracted traces of

the ACT model until it finds a matching trace. When a match occurs, the corresponding

trace in the activity-centric process log is marked as completed, so that the trace will

not be considered in the following iteration. Here, trace matching not only includes the

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 173

ACPModel

*Business Rules

*Rule

Pre-condition

Instate
*[artifacts,

states]

Defined
*[artifacts,
attributes]

Pre-condition

Instate
*[artifacts,

states]

Defined
*[artifacts,
attributes]

1 ..* Activities

{name, id}

{name, value}

{name, value}

{name, value}

{name, value}

{name}

Figure 5.8: XML Format of ACP Model

matching of activities and their input and output artifacts, but also the artifact states

and attributes. The prototype also presents information on the unmatched traces, for

example when a trace of the ACP model is not found in the extracted traces, a message

showing the missing trace in the constructed ACT model is displayed.

5.5.3 Experimental Discussion and Analysis

To evaluate the applicability and feasibility of the proposed approach, experiments

have been conducted on the developed prototype by utilizing the above two motivating

process models. For these test inputs, the prototype generated correct ACT models,

with all traces matching the traces of the input ACP models. Based on the experiments,

it is expected that the construction algorithms produce all the traces in the ACT model,

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 174

if every rule of the ACP model falls in one of the defined conditions. Therefore, when a

trace of the ACP model is not found in the constructed ACT model, rewriting the original

ACP model according to the specified requirements or to manually adding/updating

the traces of ACT model can be useful to reconstruct the missing traces of the original

process model in the resulting process model.

There are many ways to check the consistency between process models. Some of

the well-known notions include the strong bi-simulation, weak bi-simulation and trace

equivalence (Baier & Katoen, 2008), which can be used to compare the equivalence

between process models. The proposed consistency checking method is based on the

notion of trace equivalence that defines a way to draw the similarity between two models

by checking if they are trace equivalent. According to this notion, two process models

exhibit the trace equivalence if they can successfully perform the same set of actions in

the same sequence.

Trace equivalence has two problems, in that the set of traces may be infinite and that

it does not capture the moment of choice when used directly on the process models that

have no similar execution semantics to check their consistency. These problems can

be resolved (van der Aalst, De Medeiros & Weijters, 2006) when the behaviour of the

two process models is observed from their execution logs and those behavioural traces

are used to compare the two process models. Therefore, by following this notion, the

proposed trace-based method aims to check the consistency between the two process

models from the recorded execution traces of process models rather than directly using

the process models.

5.6 Discussion and Related Work

The activity-centric and artifact-centric approaches provide different views of a business

process. Activity-centric process models are used to capture the allowed execution

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 175

sequence of activities, where a flow that is not specified in such model is not allowed

(De Giacomo et al., 2015). On the other hand, artifact-centric process models give

freedom to execute activities as long as they meet the specified business conditions.

However, these process models are less comprehensible due to their unstructured sets

of business rules that often impede their adoption (Haisjackl & Zugal, 2014; Caron &

Vanthienen, 2016). Therefore, this chapter proposes an approach to transform artifact-

centric process models into activity-centric process models (Kunchala et al., 2020).

As discussed in Chapter 2, there are some approaches to the proposed transformation.

However, most of those approaches use synchronized/unsynchronized artifact lifecycles

to generate the activity-centric process models (Küster et al., 2007; Redding et al., 2008;

Meyer & Weske, 2013) rather than the artifact-centric process models that contain

business rules. Although there exist a few approaches to transform declarative models

to imperative (activity-centric) models, they pose some limitations. For example, the

approach proposed in (Prescher et al., 2014), produces duplicate tasks that lead to an

increased number of execution alternatives for the resulting process models. Similarly,

the approach proposed in (De Giacomo et al., 2015), does not consider the parallel

states of objects.

In comparison with the above existing works, the approach presented in this chapter

enables a direct transformation. Therefore, the proposed approach is useful to transform

artifact-centric process models that contain business rules into activity-centric process

models and also to address the aforementioned limitations.

5.7 Summary

In this chapter, the third research question (RQ3) is addressed by presenting an approach

that aims to transform artifact-centric process models into activity-centric process

models. In this regard, the proposed approach presents algorithms to construct an

Chapter 5. Constructing Activity-Centric Process Models from ACP Models 176

activity-centric process model from the artifact-centric process model, and to extract

the execution traces of the constructed process model in order to check the consistency

of the constructed model with the base model. A case study using a purchasing process

model from the supply chain domain is used to demonstrate the feasibility of the

proposed approach. The prototype implementation and evaluation of the proposed

algorithms is also discussed.

Chapter 6

Conclusion and Future Directions

This chapter concludes the thesis by summarizing the contributions of the research

and outlining some issues for future research. Section 6.1 provides a discussion on

the contributions of this thesis. Section 6.2 discusses the limitations and possible

improvements of proposed research. Section 6.3 presents an overview of the future

research.

6.1 Thesis Contributions

The research emphasized three challenges in supporting the transformation between the

activity-centric and the artifact-centric modeling paradigms. These challenges include:

i) the transformation of traditional activity-centric process models into artifact-centric

process models; ii) the merging of the collaborating processes of an Inter-Organizational

Business Process (IOBP) model; and iii) the construction of activity-centric process

models from artifact-centric process models. In this thesis, novel approaches to address

each of the aforementioned research questions are proposed. The proposed solutions

are also evaluated to reveal the degree to which they can resolve the proposed problems.

The main contributions of this thesis are summarized below.

177

Chapter 6. Conclusion and Future Directions 178

6.1.1 The Synthesis Approach

Modeling business processes using artifacts and their interacting lifecycles is the core

objective of the artifact-centric paradigm. In recent years, the transformation of tradi-

tional activity-centric process models into artifact-centric process models has become

one of the major research interests of the business and research community. This has led

to the emergence of several transformation approaches that support the semi-automatic

synthesis of unsynchronized/synchronized artifact lifecycles. While a fully automated

approach can facilitate the defined transformation, an automated approach is proposed

and evaluated to demonstrate its feasibility and applicability.

Chapter 3 presented and discussed the synthesis approach that aims to generate

synchronized artifact lifecycles from the standalone activity-centric process models,

which are annotated with artifacts and states. The proposed approach is comprised of

three phases: building a hierarchical tree representation of the activity-centric process

model, using the process tree to generate the lifecycles of artifacts, then to refine and

synchronize the generated artifact lifecycles. The thesis presented algorithms for each

phase of the proposed approach. A moderately complex business case was used to

demonstrate the feasibility of the proposed approach and the proposed algorithms were

implemented and evaluated using a process model collection to validate the applicability

and efficiency of proposed approach in the real world.

6.1.2 The Merge Approach

Artifact-centric counterparts, such as synchronized artifact lifecycles are particularly

useful in the inter-organizational setting to ensure the correct execution of underlying

business processes that span multiple organizations to achieve a common business goal

by sharing their data resources. However, generating such artifact-centric counterparts

from activity centric IOBP models is challenging compared to standalone process

Chapter 6. Conclusion and Future Directions 179

models, as the behaviour of artifacts may be affected while capturing their states into

the lifecycles. Therefore, this thesis proposed an approach to support the synthesis of

artifact lifecycles from IOBPs and to demonstrate the feasibility and applicability of the

proposed approach. The proposed approach is based on the notion of process merging

that aims to combine two or more process models to generate an integrated process

model by preserving the structure and behaviour of the base processes.

Chapter 4 presented and discussed an automated approach to merge the interacting

processes of an activity-centric IOBP model that contains a flow of artifacts and states.

The proposed approach is based on the synchronous and asynchronous interactions

between the collaborating processes. Specifically, rules were proposed that define ways

to combine the nodes of two or more collaborating processes. Algorithms were also

presented based on these rules to support automatic process merging. The algorithms

were implemented and evaluated to show their feasibility and applicability using a subset

of process models from different business domains. This approach complimented the

synthesis approach by extending support for the inter-organizational business process

models.

6.1.3 The Construction Approach

The artifact-centric approach is useful to achieve higher flexibility due to its declarative

nature. However, the drawback of declarative modelling is that it is difficult to under-

stand the structure and flow of these process models compared to activity-centric process

models, which also allow a natural mapping onto the executable models to achieve

higher efficiency. Therefore, this thesis proposed an approach that uses artifact-centric

process models to construct activity-centric process models.

Chapter 5 presented and discussed an automated approach to construct activity-

centric process models from artifact-centric process models. The proposed approach

Chapter 6. Conclusion and Future Directions 180

consists of algorithms to support the construction of activity-centric process models and

to determine their consistency with the base models. A trace-based method is a part of

these algorithms that extracts the execution traces of constructed models and analyzes

them over the execution traces of the base model to check the consistency between both

the models. The feasibility of the proposed approach was demonstrated using a process

model from the supply chain domain. The proposed algorithms were implemented and

evaluated using two motivating business scenarios.

6.2 Limitations and Possible Improvements

Although the above described solutions can efficiently solve the three research questions

proposed in this thesis, there are some aspects to be addressed in the future. This section

mainly discusses some of the possible improvements for future studies on the proposed

solutions, as there are some limitations concerning their scope and applicability in the

real business environment.

Firstly, the synthesis approach provides a generalized solution that can be applicable

to other types of process models, such as UML activity diagrams, requiring that these

models are represented with similar constructs. However, for the proposed synthesis,

all the involved artifacts and states must be made explicit in the business process model,

which is not always possible in a real scenario. For example, in BPMN, the data stores

are used as repositories to store and retrieve data objects. Therefore, in future the

proposed synthesis approach can be extended to deal with process models that have

other modeling elements specific to the underlying modeling notation. It is worth

mentioning that, extending the proposed synthesis approach to the process models that

contain nested loops or subroutines is also one of the future research direction.

Secondly, the proposed merge is useful in two directions, one for the synthesis

of artifact lifecycles from IOBPs and for merging the interacting processes of one or

Chapter 6. Conclusion and Future Directions 181

more organizations during their business restructuring. However, this approach has

a limitation, in that only the one-to-one interaction is allowed between the process

nodes. In addition, the dataset used to evaluate the merge approach may be acceptable

to demonstrate the feasibility and applicability of this approach. However, this may not

be sufficient to draw conclusions on the efficiency of the proposed solution. Therefore,

in future, this approach can be extended to consider more complex interactions between

the processes, and it can be tested with a large dataset for evaluating the efficiency of

this approach in a real scenario.

Lastly, due to the unavailability of real ACP models, a process model from the

existing literature was utilized to evaluate the proposed construction approach. Although

this process model is appropriate concerning the required aspects and makes a good fit

for evaluating the proposed approach, it may not be sufficient to evaluate the efficiency

of the proposed solution. Therefore, further tests can be proposed in future to reveal

the efficiency of this solution. In addition, the proposed approach can be extended to

artifact-centric IOBP models that contain a set of roles representing different participates

of the collaborating business entities.

As discussed above, scope of the transformation approaches presented in this thesis

is limited to structured (and semi-structured) process models that contain the most

commonly used modeling constructs. Thus, these approaches can be further extended

to transform process models that include other modeling constructs such as event-based

gateways and loops.

6.3 Future Research Directions

This section elaborates on some of the challenges and opportunities for future research

in BPM.

Chapter 6. Conclusion and Future Directions 182

6.3.1 Internet-of-Things (IoT)

In the past few years, the Internet-of-Things (IoT) has emerged as the new techno-

logical evolution by equipping physical objects with sensing hardware and software,

which turn them into smart objects (Meroni et al., 2018). The objective of the IoT

is to facilitate the development of new applications and the improvement of existing

applications (Dijkman, Sprenkels, Peeters & Janssen, 2015). Recently, numerous

IoT applications have been developed and extended into major areas, including: in-

telligent transportation (Sheng-nan, Pei-pei, Jian-li & Xiao-he, 2015; Sathiyaraj &

Balamurugan, 2018), healthcare (Sivagami, Revathy & Nithyabharathi, 2016; Manoj,

Hussain & Teja, 2019), inventory (Caro & Sadr, 2019), security and surveillance (Abu,

Nordin, Suboh, Yid & Ramli, 2018; Panchatcharam & Vivekanandan, 2019), smart

environments (Hamdan, Shanableh, Zaki, Al-Ali & Shanableh, 2019) and for waste

management (Badadhe Komal & Dahiwal Shital, 2019) to list a few. Many businesses

have already implemented IoT technology, mainly in their manufacturing, retailing

and transportation processes to gain some of its benefits in terms of cost reduction

and improved productivity (Pundir et al., 2019). The major IoT-based applications are

used in domains such as transportation and logistics to support businesses with remote

monitoring and controlling of their goods throughout the supply chain process (Da Xu,

He & Li, 2014; Y. Lu, Papagiannidis & Alamanos, 2018).

Janiesch et al. (2017) highlighted the mutual benefits and several research challenges

in bridging the gap between the IoT and BPM. Some of these challenges are to manage

the linking between the IoT data and business processes; to detect new processes from

IoT data and to bridge the gap between event-based and process-based systems; and to

improve conformance checking and the monitoring and execution of business processes.

To resolve some of these challenges, the authors state that data-centric paradigms offer

promising perspectives in linking the IoT data and processes, provide more flexibility,

Chapter 6. Conclusion and Future Directions 183

and support process execution and monitoring.

Recently, Meroni et al. (2017, 2018) proposed to use the artifact-centric approach

for monitoring the compliant execution of IOBPs. Based on the artifacts, a decentralized

solution that enables the physical objects participating in the collaboration to monitor

their own business conditions and activities that invoke them. However, the privacy

and security aspects of organizations participating in the collaboration still need to be

resolved in future.

6.3.2 Block Chain

Block Chain is an emerging technology that is expanding its applications to diverse

fields, including: finance (Nofer, Gomber, Hinz & Schiereck, 2017), food safety (Tian,

2017), trade logistics (Hackius & Petersen, 2017), healthcare (Mettler, 2016), education

(Grech & Camilleri, 2017; Turkanović, Hölbl, Košič, Heričko & Kamišalić, 2018) and

agriculture (Staples et al., 2017) to support a broad range of business domains and

individuals. Shared ledger is a commonly known block chain technology that enables

collaboration among diverse stakeholders situated across multiple organizations. In this

regard, smart contracts, i.e., programs that are event-driven and data-centric, are used to

guide such collaboration.

Recently, Hull et.al (2016; 2017) investigated the suitability of the artifact-centric

paradigm and the notion of artifact-centric services interoperation (ACSI) hubs (Hull et

al., 2009) for a shared ledger business process collaboration. The authors demonstrated

the potential advantages of the artifact-centric paradigm in providing a robust basis for

shared ledger business collaboration and highlighted several challenges to adopting this

paradigm in block chain technology. These challenges include: Model abstractions

to design a coherent business collaboration language that supports a more procedural

Chapter 6. Conclusion and Future Directions 184

and declarative style to cover the use cases from different industry sectors; View-

based intuitive meta-models to specify access rights to ensure the privacy of data and

processing steps in a business collaboration and interfaces for supporting the interaction

between smart contracts; Transformation approaches that support the conversion from

existing legacy collaborating business processes into block chain-enabled processes;

Extending existing automatic artifact-centric verification techniques to the block chain

context; Realization methods to implement block chain based business collaboration,

and the tools that support the discovery of smart contracts based on artifacts for checking

the compatibility and for reasoning and testing their behaviours resulting from their

interactions.

Mendling et al. (2018) also proposed several new challenges and opportunities for

future research in block chain technology for BPM. These challenges include: The

development of new execution and monitoring systems and to devise new analysis

and engineering methods for business processes based on block chain technology; To

redesign the business processes to leverage the opportunities of block chains and to

define appropriate methods for their evolution and adaptation; Developing techniques

for the identification, discovery and analysis of relevant business processes for the

adoption of block chain technology; Understanding the impact of block chains in

the business innovation; Investigating culture changes towards the management and

execution of business processes with the introduction of block chains and how far this

technology has come in comparison to the adoption of other technologies.

In summary, this thesis aimed to facilitate the transformation between artifact-centric

and activity-centric process models. In this regard, automatic approaches were proposed

to address the aforementioned research questions. The feasibility and applicability

of these approaches were also demonstrated using a set of process models from the

BPMAI process model repository and existing literature. This thesis also established

the sufficient conditions under which the proposed transformation is possible. Although

Chapter 6. Conclusion and Future Directions 185

a comprehensive evaluation is presented in this thesis, in the future an evaluation using

a large set of real process models can be useful to reveal the efficiency of proposed

approaches in practice.

References

Abiteboul, S., Benjelloun, O. & Milo, T. (2008). The active xml project: an overview.
The VLDB Journal—The International Journal on Very Large Data Bases, 17(5),
1019–1040.

Abiteboul, S., Bourhis, P., Galland, A. & Marinoiu, B. (2009). The axml artifact model.
In 2009 16th international symposium on temporal representation and reasoning
(pp. 11–17).

Abiteboul, S., Bourhis, P., Marinoiu, B. & Galland, A. (2010). Axart: enabling
collaborative work with axml artifacts. Proceedings of the VLDB Endowment,
3(1-2), 1553–1556.

Abiteboul, S., Segoufin, L. & Vianu, V. (2009a). Modeling and verifying active xml
artifacts. IEEE Data Eng. Bull..

Abiteboul, S., Segoufin, L. & Vianu, V. (2009b). Static analysis of active xml systems.
ACM Transactions on Database Systems (TODS), 34(4), 23.

Abu, M. A., Nordin, S. F., Suboh, M. Z., Yid, M. S. M. & Ramli, A. F. (2018).
Design and development of home security systems based on internet of things via
favoriot platform. International Journal of Applied Engineering Research, 13(2),
1253–1260.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., . . . others
(2003). Business process execution language for web services. version.

Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., . . . Yiu, A. (2005).
Web services business process execution language version 2.0. Working Draft.
WS-BPEL TC OASIS.

Assy, N., Chan, N. N. & Gaaloul, W. (2013). Assisting business process design with
configurable process fragments. In 2013 ieee international conference on services
computing (pp. 535–542).

Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Naur, P., . . . others (1960).
Report on the algorithmic language algol 60. Numerische Mathematik., 2(1),
106–136.

Badadhe Komal, R. & Dahiwal Shital, S. (2019). Iot based intelligent system for
wastemanagement. Waste management.

Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A. & Montali, M. (2013).
Verification of relational data-centric dynamic systems with external services. In
Proceedings of the 32nd acm sigmod-sigact-sigai symposium on principles of
database systems (pp. 163–174).

186

References 187

Baier, C. & Katoen, J.-P. (2008). Principles of model checking. MIT press.
Barcelona, M., García-Borgoñón, L., Escalona, M. & Ramos, I. (2018). Cbg-framework:

A bottom-up model-based approach for collaborative business process manage-
ment. Computers in Industry, 102, 1–13.

Barker, A., Walton, C. D. & Robertson, D. (2009). Choreographing web services. IEEE
Transactions on Services Computing, 2(2), 152–166.

Belardinelli, F., Lomuscio, A. & Patrizi, F. (2011). Verification of deployed artifact
systems via data abstraction. In International conference on service-oriented
computing (pp. 142–156).

Belardinelli, F., Lomuscio, A. & Patrizi, F. (2012a). An abstraction technique for the
verification of artifact-centric systems. In Thirteenth international conference on
the principles of knowledge representation and reasoning.

Belardinelli, F., Lomuscio, A. & Patrizi, F. (2012b). Verification of gsm-based artifact-
centric systems through finite abstraction. In International conference on service-
oriented computing (pp. 17–31).

Bhattacharya, K., Caswell, N. S., Kumaran, S., Nigam, A. & Wu, F. Y. (2007).
Artifact-centered operational modeling: Lessons from customer engagements.
IBM Systems Journal, 46(4), 703–721.

Bhattacharya, K., Gerede, C., Hull, R., Liu, R. & Su, J. (2007). Towards formal
analysis of artifact-centric business process models. In International conference
on business process management (pp. 288–304).

Bhattacharya, K., Hull, R. & Su, J. (2009). A data-centric design methodology for
business processes. In Handbook of research on business process modeling (pp.
503–531). IGI Global.

Boaz, D., Heath, T., Gupta, M., Limonad, L., Sun, Y., Hull, R. & Vaculin, R. (2014).
The acsi hub: A data-centric environment for service interoperation. In Bpm
(demos) (p. 11).

Bouchbout, K. & Alimazighi, Z. (2011). Inter-organizational business processes
modelling framework. In Adbis (2) (pp. 45–54).

Bulanov, P., Lazovik, A. & Aiello, M. (2011). Business process customization using
process merging techniques. In Service-oriented computing and applications
(soca), 2011 ieee international conference on (pp. 1–4).

Cabanillas, C., Resinas, M., Ruiz-Cortés, A. & Awad, A. (2011). Automatic generation
of a data-centered view of business processes. In (pp. 352–366). London, UK:
Springer.

Cangialosi, P., De Giacomo, G., De Masellis, R. & Rosati, R. (2010). Conjunct-
ive artifact-centric services. In International conference on service-oriented
computing (pp. 318–333).

Cardoso, J. (2005). Control-flow complexity measurement of processes and weyuker’s
properties. In 6th international enformatika conference (Vol. 8, pp. 213–218).

Caro, F. & Sadr, R. (2019). The internet of things (iot) in retail: Bridging supply and
demand. Business Horizons, 62(1), 47–54.

Caron, F. & Vanthienen, J. (2016). Exploring business process modelling paradigms
and design-time to run-time transitions. Enterprise Information Systems, 10(7),

References 188

790–813.
Chao, T., Cohn, D., Flatgard, A., Hahn, S., Linehan, M., Nandi, P., . . . Wu, F. (2009).

Artifact-based transformation of ibm global financing. In (pp. 261–277). Ulm,
Germany: Springer.

Chebbi, I., Dustdar, S. & Tata, S. (2006). The view-based approach to dynamic inter-
organizational workflow cooperation. Data & Knowledge Engineering, 56(2),
139–173.

Chinnici, R., Haas, H., Lewis, A. A., Moreau, J.-J., Orchard, D. & Weerawarana, S.
(2007). Web services description language (wsdl) version 2.0 part 2: Adjuncts.
W3C Recommendation, 6.

Chinosi, M. & Trombetta, A. (2012). Bpmn: An introduction to the standard. Computer
Standards & Interfaces., 34(1), 124–134.

Chiu, D. K., Cheung, S.-C., Till, S., Karlapalem, K., Li, Q. & Kafeza, E. (2004).
Workflow view driven cross-organizational interoperability in a web service
environment. Information Technology and Management, 5(3-4), 221–250.

Chiu, D. K., Karlapalem, K., Li, Q. & Kafeza, E. (2002). Workflow view based
e-contracts in a cross-organizational e-services environment. Distributed and
parallel databases, 12(2-3), 193–216.

Clarke, E. M. (1999). Model checking.
Clarke, E. M. & Emerson, E. A. (1981). Design and synthesis of synchronization

skeletons using branching time temporal logic. In Workshop on logic of programs
(pp. 52–71).

Cohn, D., Dhoolia, P., Heath, F., Pinel, F. & Vergo, J. (2008). Siena: From powerpoint to
web app in 5 minutes. In International conference on service-oriented computing
(pp. 722–723).

Cohn, D. & Hull, R. (2009). Business artifacts: A data-centric approach to modeling
business operations and processes. IEEE Data Eng. Bull., 32(3), 3–9.

Damaggio, E., Deutsch, A., Hull, R. & Vianu, V. (2011). Automatic verification of
data-centric business processes. In International conference on business process
management (pp. 3–16).

Damaggio, E., Hull, R. & VaculíN, R. (2013). On the equivalence of incremental and
fixpoint semantics for business artifacts with guard–stage–milestone lifecycles.
Information Systems, 38(4), 561–584.

Davidson, J. D. & Mordani, R. (2000). Java api for xml processing.
Da Xu, L., He, W. & Li, S. (2014). Internet of things in industries: A survey. IEEE

Transactions on industrial informatics, 10(4), 2233–2243.
Decker, G. & Barros, A. (2007). Interaction modeling using bpmn. In International

conference on business process management (pp. 208–219).
Decker, G., Kopp, O., Leymann, F. & Weske, M. (2007). Bpel4chor: Extending bpel

for modeling choreographies. In Ieee international conference on web services
(icws 2007) (pp. 296–303).

Decker, G. & Weske, M. (2007). Local enforceability in interaction petri nets. In
International conference on business process management (pp. 305–319).

References 189

Decker, G. & Weske, M. (2011). Interaction-centric modeling of process choreographies.
Information Systems, 36(2), 292–312.

De Giacomo, G., De Masellis, R. & Rosati, R. (2012). Verification of conjunct-
ive artifact-centric services. International Journal of Cooperative Information
Systems, 21(02), 111–139.

De Giacomo, G., Dumas, M., Maggi, F. M. & Montali, M. (2015). Declarative process
modeling in bpmn. In International conference on advanced information systems
engineering (pp. 84–100).

de Leoni, M., Maggi, F. M. & van der Aalst, W. M. (2015). An alignment-based frame-
work to check the conformance of declarative process models and to preprocess
event-log data. Information Systems, 47, 258–277.

Derguech, W. & Bhiri, S. (2011). An automation support for creating configurable pro-
cess models. In International conference on web information systems engineering
(pp. 199–212).

Derguech, W., Bhiri, S. & Curry, E. (2017). Designing business capability-aware
configurable process models. Information Systems, 72, 77–94.

Deutsch, A., Hull, R., Li, Y. & Vianu, V. (2018). Automatic verification of database-
centric systems. ACM SIGLOG News, 5(2), 37–56.

Deutsch, A., Hull, R., Patrizi, F. & Vianu, V. (2009). Automatic verification of data-
centric business processes. In Proceedings of the 12th international conference
on database theory (pp. 252–267).

Deutsch, A., Hull, R. & Vianu, V. (2014). Automatic verification of database-centric
systems. ACM SIGMOD Record, 43(3), 5–17.

Deutsch, A., Li, Y. & Vianu, V. (2016). Verification of hierarchical artifact systems.
In Proceedings of the 35th acm sigmod-sigact-sigai symposium on principles of
database systems (pp. 179–194).

Dijkman, R. M., Dumas, M. & Ouyang, C. (2008). Semantics and analysis of business
process models in bpmn. Information and Software technology, 50(12), 1281–
1294.

Dijkman, R. M., Sprenkels, B., Peeters, T. & Janssen, A. (2015). Business models for
the internet of things. International Journal of Information Management, 35(6),
672–678.

Dumas, M. (2011). On the convergence of data and process engineering. In East
european conference on advances in databases and information systems (pp.
19–26).

Dumas, M. & Ter Hofstede, A. H. (2001). Uml activity diagrams as a workflow
specification language. In International conference on the unified modeling
language (pp. 76–90).

Emerson, E. A. (1997). Model checking and the mu-calculus. DIMACS series in
discrete mathematics, 31, 185–214.

Eshuis, R. (2006). Symbolic model checking of uml activity diagrams. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 15(1), 1–38.

Eshuis, R. & Grefen, P. (2008). Constructing customized process views. Data &
Knowledge Engineering, 64(2), 419–438.

References 190

Eshuis, R. & Van Gorp, P. (2012). Synthesizing object life cycles from business process
models. In International conference on conceptual modeling (pp. 307–320).

Eshuis, R. & Van Gorp, P. (2016). Synthesizing object life cycles from business process
models. Software & Systems Modeling, 15(1), 281–302.

Eshuis, R., Vonk, J. & Grefen, P. (2011). Transactional process views. In Otm
confederated international conferences" on the move to meaningful internet
systems" (pp. 119–136).

Fagin, R., Kolaitis, P. G., Miller, R. J. & Popa, L. (2005). Data exchange: semantics
and query answering. Theoretical Computer Science, 336(1), 89–124.

Fan, B., Li, Y., Liu, S. & Zhang, Y. (2015). Run jta in jtang: Modeling in artifact-centric
model and running in activity-centric environment. In Asia-pacific conference on
business process management (pp. 83–97).

Ferguson, D. (2001). Ibm web services: Technical and product architecture and
roadmap. IBM Whitepaper, May.

Friedow, C., Völker, M. & Hewelt, M. (2018). Integrating iot devices into business pro-
cesses. In International conference on advanced information systems engineering
(pp. 265–277).

Fritz, C., Hull, R. & Su, J. (2009). Automatic construction of simple artifact-based
business processes. In Proceedings of the 12th international conference on
database theory (pp. 225–238).

Gerede, C. E., Bhattacharya, K. & Su, J. (2007). Static analysis of business artifact-
centric operational models. In Ieee international conference on service-oriented
computing and applications (soca’07) (pp. 133–140).

Gerede, C. E. & Su, J. (2007). Specification and verification of artifact behaviors
in business process models. In International conference on service-oriented
computing (pp. 181–192).

Goedertier, S., Vanthienen, J. & Caron, F. (2015). Declarative business process
modelling: principles and modelling languages. Enterprise Information Systems,
9(2), 161–185.

Gonzalez, P., Griesmayer, A. & Lomuscio, A. (2012). Verifying gsm-based business
artifacts. In 2012 ieee 19th international conference on web services (pp. 25–32).

Gonzalez, P., Griesmayer, A. & Lomuscio, A. (2013). Model checking gsm-based
multi-agent systems. In International conference on service-oriented computing
(pp. 54–68).

Gottschalk, F., van der Aalst, W. M. & Jansen-Vullers, M. H. (2008). Merging event-
driven process chains. In Otm confederated international conferences" on the
move to meaningful internet systems" (pp. 418–426).

Goyal, V. & Jain, A. (2011). Service-oriented architecture & its concept unleashed.
Advances in Modeling, Optimization and Computing, 967.

Grech, A. & Camilleri, A. F. (2017). Blockchain in education. Luxembourg: Publica-
tions Office of the European Union.

Hackius, N. & Petersen, M. (2017). Blockchain in logistics and supply chain: trick or
treat? In Proceedings of the hamburg international conference of logistics (hicl)
(pp. 3–18).

References 191

Haisjackl, C. & Zugal, S. (2014). Investigating differences between graphical and
textual declarative process models. In International conference on advanced
information systems engineering (pp. 194–206).

Hamdan, O., Shanableh, H., Zaki, I., Al-Ali, A. & Shanableh, T. (2019). Iot-based inter-
active dual mode smart home automation. In 2019 ieee international conference
on consumer electronics (icce) (pp. 1–2).

Hariri, B. B., Calvanese, D., De Giacomo, G., De Masellis, R. & Felli, P. (2011).
Foundations of relational artifacts verification. In International conference on
business process management (pp. 379–395).

Hariri, B. B., Calvanese, D., Montali, M., Santoso, A. & Solomakhin, D. (2013). Veri-
fication of semantically-enhanced artifact systems. In International conference
on service-oriented computing (pp. 600–607).

Harold Boley, A. P. S. T. B. G. N. B. G. G. F. O. D. H., Tara Athan. (2014). Specification
of deliberation ruleml 1.0. Retrieved from http://ruleml.org/1.0/

Heath, F. T., Boaz, D., Gupta, M., Vaculín, R., Sun, Y., Hull, R. & Limonad, L. (2013).
Barcelona: A design and runtime environment for declarative artifact-centric bpm.
In International conference on service-oriented computing (pp. 705–709).

Huang, Y., Li, W., Liang, Z., Xue, Y. & Wang, X. (2018). Efficient business process
consolidation: combining topic features with structure matching. Soft Computing,
22(2), 645–657.

Hull, R. (2008). Artifact-centric business process models: Brief survey of research
results and challenges. On the Move to Meaningful Internet Systems (OTM).,
1152–1163.

Hull, R. (2011). Towards flexible service interoperation using business artifacts. In
2011 ieee 15th international enterprise distributed object computing conference
(pp. 20–21).

Hull, R. (2017). Blockchain: Distributed event-based processing in a data-centric
world. In Proceedings of the 11th acm international conference on distributed
and event-based systems (pp. 2–4).

Hull, R., Batra, V. S., Chen, Y.-M., Deutsch, A., Heath III, F. F. T. & Vianu, V.
(2016). Towards a shared ledger business collaboration language based on data-
aware processes. In International conference on service-oriented computing (pp.
18–36).

Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath III, F. T., . . .
others (2011). Business artifacts with guard-stage-milestone lifecycles: managing
artifact interactions with conditions and events. In Proceedings of the 5th acm
international conference on distributed event-based system (pp. 51–62).

Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F. T., Hobson, S., . . . others
(2010). Introducing the guard-stage-milestone approach for specifying business
entity lifecycles. In International workshop on web services and formal methods
(pp. 1–24).

Hull, R., Narendra, N. C. & Nigam, A. (2009). Facilitating workflow interoperation
using artifact-centric hubs. In Service-oriented computing (pp. 1–18). Springer.

Janiesch, C., Koschmider, A., Mecella, M., Weber, B., Burattin, A., Di Ciccio, C.,

http://ruleml.org/1.0/

References 192

. . . others (2017). The internet-of-things meets business process management:
mutual benefits and challenges. arXiv preprint arXiv:1709.03628.

Jard, C. & Jeron, T. (1989). On-line model-checking for finite linear temporal logic
specifications. In International conference on computer aided verification (pp.
189–196).

Jensen, K. & Kristensen, L. M. (2009). Coloured petri nets: modelling and validation
of concurrent systems. Springer Science & Business Media.

Jiang, P., Shao, X., Gao, L., Qiu, H. & Li, P. (2010). A process-view approach for
cross-organizational workflows management. Advanced Engineering Informatics,
24(2), 229–240.

Johnson, R., Pearson, D. & Pingali, K. (June, 1994). The program structure tree:
Computing control regions in linear time. In (pp. 171–185). Florida, USA:
ACM.

Jonnavithula, L., Antunes, P., Cranefield, J. & Pino, J. A. (2015). Organisational issues
in modelling business processes: An activity-based inventory and directions for
research. In Pacis (p. 184).

Kakas, A. C., Kowalski, R. A. & Toni, F. (1992). Abductive logic programming.
Journal of logic and computation, 2(6), 719–770.

Kang, G., Yang, L. & Zhang, L. (2019). Verification of behavioral soundness for
artifact-centric business process model with synchronizations. Future Generation
Computer Systems.

Kavantzas, N., Burdett, D., Ritzinger, G. & Lafon, Y. (2005). Web services choreography
description language version 1.0, w3c candidate recommendation (Tech. Rep.).
Technical report, November 2005. http://www. w3. org/TR/ws-cdl-10.

Keller, G., Scheer, A.-W. & Nüttgens, M. (1992). Semantische prozeßmodellierung auf
der grundlage" ereignisgesteuerter prozeßketten (epk)". Inst. für Wirtschaftsin-
formatik.

Kiepuszewski, B., Ter Hofstede, A. H. M. & Bussler, C. J. (2000). On structured work-
flow modelling. In International conference on advanced information systems
engineering (pp. 431–445).

Kindler, E. (2004). On the semantics of epcs: A framework for resolving the vicious
circle. In International conference on business process management (pp. 82–97).

Kökörčenỳ, M. & Kovář, V. (2015). Building enterprise applications using unicorn
universe services. In Service-oriented computing-icsoc 2014 workshops (pp.
3–5).

Koutsos, A. & Vianu, V. (2017). Process-centric views of data-driven business artifacts.
Journal of Computer and System Sciences, 86, 82–107.

Kovář, V., Beránek, M. & Feuerlicht, G. (2017). Modelling enterprise applications
using business artifacts. In Iceis 2017-proceedings of the 19th international
conference on enterprise information systems.

Kucukoguz, E. & Su, J. (2010). On lifecycle constraints of artifact-centric workflows.
In International workshop on web services and formal methods (pp. 71–85).

Kumaran, S., Liu, R. & Wu, F. Y. (2008). On the duality of information-centric and
activity-centric models of business processes. In International conference on

References 193

advanced information systems engineering (pp. 32–47).
Kumaran, S., Nandi, P., Heath, T., Bhaskaran, K. & Das, R. (2003). Adoc-oriented

programming. In 2003 symposium on applications and the internet, 2003. pro-
ceedings. (pp. 334–341).

Kumaran, S. B., Liu, R. & Wu, F. Y.-F. (2012, December 25). Automatic generation
of executable components from business process models. Google Patents. (US
Patent 8,340,999)

Kunchala, J., Yu, J., Sheng, Q. Z., Han, Y. & Yongchareon, S. (2015). Synthesis of
artifact lifecycles from activity-centric process models. In Enterprise distributed
object computing conference (edoc), 2015 ieee 19th international (pp. 29–37).

Kunchala, J., Yu, J. & Yongchareon, S. (2014). A survey on approaches to mod-
eling artifact-centric business processes. In International conference on web
information systems engineering (pp. 117–132).

Kunchala, J., Yu, J., Yongchareon, S. & Han, Y. (2017). Towards merging collaborating
processes for artifact lifecycle synthesis. In Proceedings of the australasian
computer science week multiconference (p. 50).

Kunchala, J., Yu, J., Yongchareon, S. & Liu, C. (2019). An approach to merge
collaborating processes of an inter-organizational business process for artifact
lifecycle synthesis. Computing, 1–26.

Kunchala, J., Yu, J., Yongchareon, S. & Wang, G. (2020). Trace-based approach
for consistent construction of activity-centric process models from data-centric
process models. In Australasian database conference (pp. 42–54).

Kunze, M., Berger, P., Weske, M., Lohmann, N. & Moser, S. (2012). Bpm academic
initiative-fostering empirical research. In (pp. 1–5). Tallinn, Estonia: CEUR-
WS.org.

Künzle, V. & Reichert, M. (2011). Philharmonicflows: towards a framework for object-
aware process management. Journal of Software Maintenance and Evolution:
Research and Practice, 23(4), 205–244.

Küster, J. M., Gerth, C., Förster, A. & Engels, G. (2008). Detecting and resolving
process model differences in the absence of a change log. In (pp. 244–260).
Milan, Italy: Springer.

Küster, J. M., Ryndina, K. & Gall, H. C. (2007). Generation of business process models
for object life cycle compliance. In (pp. 165–181). Brisbane, Australia: Springer.

La Rosa, M., Dumas, M., Uba, R. & Dijkman, R. (2010). Merging business pro-
cess models. In Otm confederated international conferences" on the move to
meaningful internet systems" (pp. 96–113).

La Rosa, M., Dumas, M., Uba, R. & Dijkman, R. (2013). Business process model
merging: An approach to business process consolidation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 22(2), 11.

Lei, J., Bai, R., Guo, L. & Zhang, L. (2016). Towards a scalable framework for artifact-
centric business process management systems. In International conference on
web information systems engineering (pp. 309–323).

Leymann, F. et al. (2001). Web services flow language (wsfl 1.0).
Li, D. & Wu, Q. (2011). Translating artifact-based business process model to bpel. In

References 194

International conference on computer science, environment, ecoinformatics, and
education (pp. 482–489).

Li, G., de Carvalho, R. M. & van der Aalst, W. M. (2017). Automatic discovery
of object-centric behavioral constraint models. In International conference on
business information systems (pp. 43–58).

Li, Y., Deutsch, A. & Vianu, V. (2017a). Spinart: A spin-based verifier for artifact
systems. arXiv preprint arXiv:1705.09427.

Li, Y., Deutsch, A. & Vianu, V. (2017b). A spin-based verifier for artifact systems.
arXiv preprint arXiv:1705.09427.

Limonad, L., Boaz, D., Hull, R., Vaculin, R. & Heath, F. (2012). A generic business
artifacts based authorization framework for cross-enterprise collaboration. In
2012 annual srii global conference (pp. 70–79).

Lin, D. (2007). Compatibility analysis of local process views in interorganizational-
workflow. In The 9th ieee international conference on e-commerce technology
and the 4th ieee international conference on enterprise computing, e-commerce
and e-services (cec-eee 2007) (pp. 149–156).

Liu, D. R. & Shen, M. (2003). Workflow modeling for virtual processes: an order-
preserving process-view approach. Information Systems, 28(6), 505–532.

Liu, D. R. & Shen, M. (2004). Business-to-business workflow interoperation based on
process-views. Decision Support Systems, 38(3), 399–419.

Liu, G., Liu, X., Qin, H., Su, J., Yan, Z. & Zhang, L. (2009). Automated realization of
business workflow specification. In Service-oriented computing. icsoc/service-
wave 2009 workshops (pp. 96–108).

Liu, R., Bhattacharya, K. & Wu, F. Y. (2007). Modeling business contexture and
behavior using business artifacts. In International conference on advanced
information systems engineering (pp. 324–339).

Liu, R., Wu, F. Y. & Kumaran, S. (2010). Transforming activity-centric business
process models into information-centric models for soa solutions. Journal of
Database Management (JDM), 21(4), 14–34.

Lohmann, N. & Nyolt, M. (2011). Artifact-centric modeling using bpmn. In Interna-
tional conference on service-oriented computing (pp. 54–65).

Lohmann, N. & Wolf, K. (2010). Artifact-centric choreographies. In International
conference on service-oriented computing (pp. 32–46).

Ltd, V. P. I. (2002). Visual paradigm. Retrieved from https://www.visual
-paradigm.com

Lu, X., Nagelkerke, M., van de Wiel, D. & Fahland, D. (2015). Discovering interacting
artifacts from erp systems. IEEE Transactions on Services Computing, 8(6),
861–873.

Lu, Y., Papagiannidis, S. & Alamanos, E. (2018). Internet of things: A systematic
review of the business literature from the user and organisational perspectives.
Technological Forecasting and Social Change, 136, 285–297.

Luckham, D. C., Park, D. M. R. & Paterson, M. S. (1970). On formalised computer
programs. Journal of Computer and System Sciences, 4(3), 220–249.

https://www.visual-paradigm.com
https://www.visual-paradigm.com

References 195

Maamar, Z., Badr, Y. & Narendra, N. C. (2010). Business artifacts discovery and
modeling. In Service-oriented computing - 8th international conference, ICSOC
2010, san francisco, ca, usa, december 7-10, 2010. proceedings (pp. 542–550).

MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., Metz, R. & Hamilton, B. A.
(2006). Reference model for service oriented architecture 1.0. OASIS standard,
12, 18.

Manoj, A. S., Hussain, M. A. & Teja, P. S. (2019). Patient health monitoring using iot.
In Mobile health applications for quality healthcare delivery (pp. 30–45). IGI
Global.

Marrella, A., Mecella, M., Russo, A., Steinau, S., Andrews, K. & Reichert, M. (2015).
Data in business process models, a preliminary empirical study (short paper).
In 2015 ieee 8th international conference on service-oriented computing and
applications (soca) (pp. 116–122).

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., . . . others
(2004). Owl-s: Semantic markup for web services. W3C member submission,
22(4).

Mendling, J. & Hafner, M. (2008). From ws-cdl choreography to bpel process orches-
tration. Journal of Enterprise Information Management, 21(5), 525–542.

Mendling, J. & Simon, C. (2006). Business process design by view integration. In
International conference on business process management (pp. 55–64).

Mendling, J., Weber, I., Aalst, W. V. D., Brocke, J. V., Cabanillas, C., Daniel, F., . . .
others (2018). Blockchains for business process management-challenges and
opportunities. ACM Transactions on Management Information Systems (TMIS),
9(1), 4.

Meroni, G., Baresi, L., Montali, M. & Plebani, P. (2018). Multi-party business process
compliance monitoring through iot-enabled artifacts. Information Systems., 73,
61–78.

Meroni, G., Di Ciccio, C., Mendling, J. et al. (2017). Artifact-driven process monitoring:
dynamically binding real-world objects to running processes. In Caise 2017 forum
(pp. 105–112).

Mettler, M. (2016). Blockchain technology in healthcare: The revolution starts here.
In 2016 ieee 18th international conference on e-health networking, applications
and services (healthcom) (pp. 1–3).

Meyer, A., Smirnov, S. & Weske, M. (2011). Data in business processes (No. 50).
Universitätsverlag Potsdam.

Meyer, A. & Weske, M. (2013). Activity-centric and artifact-centric process model
roundtrip. In (pp. 167–181). Springer.

Meyer, A. & Weske, M. (September, 2013). Extracting data objects and their states
from process models. In (pp. 27–36). Vancouver, Canada: IEEE.

Mikk, E., Lakhnechi, Y. & Siegel, M. (December, 1997). Hierarchical automata as
model for statecharts. In (pp. 181–196). Kathmandu, Nepal: Springer.

Milner, R. (1999). Communicating and mobile systems: the pi calculus. Cambridge
university press.

References 196

Milner, R., Parrow, J. & Walker, D. (1992). A calculus of mobile processes, i. Informa-
tion and computation, 100(1), 1–40.

Montali, M., Pesic, M., van der Aalst, W. M., Chesani, F., Mello, P. & Storari, S.
(2010). Declarative specification and verification of service choreographiess.
ACM Transactions on the Web (TWEB), 4(1), 3.

Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. et al. (2009). Owl 2
web ontology language profiles. W3C recommendation, 27, 61.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4), 541–580.

Nandi, P. & Kumaran, S. (2005). Adaptive business objects-a new component model
for business integration. In Iceis (3) (pp. 179–188).

Natschläger, C. (August, 2011). Deontic bpmn. In (pp. 264–278). Toulouse, France:
Springer.

Ngamakeur, K., Yongchareon, S. & Liu, C. (2012). A framework for realizing artifact-
centric business processes in service-oriented architecture. In International
conference on database systems for advanced applications (pp. 63–78).

Nigam, A. & Caswell, N. S. (2003). Business artifacts: An approach to operational
specification. IBM Systems Journal, 42(3), 428–445.

Nofer, M., Gomber, P., Hinz, O. & Schiereck, D. (2017). Blockchain. Business &
Information Systems Engineering, 59(3), 183–187.

Nooijen, E. H., van Dongen, B. F. & Fahland, D. (2012). Automatic discovery of data-
centric and artifact-centric processes. In International conference on business
process management (pp. 316–327).

Norta, A., Grefen, P. & Narendra, N. C. (2014). A reference architecture for managing
dynamic inter-organizational business processes. Data & Knowledge Engineering,
91, 52–89.

OMG, B. P. M. N. (2006). Version 1.0. OMG Final Adopted Specification, Object
Management Group, 190.

OMG, O. (2007). Unified modeling language. Superstructure..
Orlowska, W. S. M. E. (1997). On correctness issues in conceptual modeling of

workflows. In Proceedings of the 5th european conference on information systems
[c].

Ouyang, C., Dumas, M., Breutel, S. & ter Hofstede, A. (2006). Translating standard
process models to bpel. In International conference on advanced information
systems engineering (pp. 417–432).

Ouyang, C., Dumas, M., Ter Hofstede, A. H. & Van der Aalst, W. M. (2006). From
bpmn process models to bpel web services. In 2006 ieee international conference
on web services (icws’06) (pp. 285–292).

Ouyang, C., van der Aalst, W. M., Dumas, M. & Ter Hofstede, A. H. (2006). Translating
bpmn to bpel.

Ouyang, C., Verbeek, E., Van Der Aalst, W. M., Breutel, S., Dumas, M. & Ter Hofstede,
A. H. (2007). Formal semantics and analysis of control flow in ws-bpel. Science
of computer programming, 67(2-3), 162–198.

References 197

Panchatcharam, P. & Vivekanandan, S. (2019). Internet of things (iot) in healthcare–
smart health and surveillance, architectures, security analysis and data transfer: A
review. International Journal of Software Innovation (IJSI), 7(2), 21–40.

Peltz, C. (2003). Web services orchestration and choreography. Computer(10), 46–52.
Pesic, M., Schonenberg, H. & Van der Aalst, W. M. (2007). Declare: Full support for

loosely-structured processes. In 11th ieee international enterprise distributed
object computing conference (edoc 2007) (pp. 287–287).

Petrasch, R. & Hentschke, R. (2015). Towards an internet-of-things-aware process
modeling method. In 2nd manag. innov. technol. int. conf. towar (pp. 168–172).

Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J. & Reijers, H. A. (2011).
Imperative versus declarative process modeling languages: An empirical in-
vestigation. In International conference on business process management (pp.
383–394).

Polyvyanyy, A., García-Bañuelos, L. & Dumas, M. (2010). Structuring acyclic process
models. In (pp. 276–293). New Jersey, USA: Springer.

Polyvyanyy, A., García-Bañuelos, L. & Dumas, M. (2012). Structuring acyclic process
models. Information Systems, 37(6), 518–538.

Polyvyanyy, A., Smirnov, S. & Weske, M. (2009). On application of structural decom-
position for process model abstraction. In (pp. 110–122). Leipzig, Germany:
GI.

Popova, V. & Dumas, M. (2012). From petri nets to guard-stage-milestone models. In
International conference on business process management (pp. 340–351).

Popova, V. & Dumas, M. (2013). Discovering unbounded synchronization conditions in
artifact-centric process models. In International conference on business process
management (pp. 28–40).

Popova, V., Fahland, D. & Dumas, M. (2013). Artifact lifecycle discovery. CoRR,
abs/1303.2554.

Popova, V., Fahland, D. & Dumas, M. (2015). Artifact lifecycle discovery. International
Journal of Cooperative Information Systems, 24(01), 1550001.

Prescher, J., Di Ciccio, C. & Mendling, J. (2014). From declarative processes to
imperative models. SIMPDA, 14, 162–173.

Pundir, A. K., Jagannath, J. D. & Ganapathy, L. (2019). Improving supply chain
visibility using iot-internet of things. In 2019 ieee 9th annual computing and
communication workshop and conference (ccwc) (pp. 0156–0162).

Redding, G., Dumas, M., Hofstede, A. H. t. & Iordachescu, A. (2008). Generating
business process models from object behavior models. Information Systems
Management, 25(4), 319–331.

Redding, G., Dumas, M., ter Hofstede, A. H. & Iordachescu, A. (2010). A flex-
ible, object-centric approach for business process modelling. Service Oriented
Computing and Applications, 4(3), 191–201.

Reypens, C., Lievens, A. & Blazevic, V. (2016). Leveraging value in multi-stakeholder
innovation networks: A process framework for value co-creation and capture.
Industrial Marketing Management, 56, 40–50.

References 198

Russo, A., Mecella, M., Patrizi, F. & Montali, M. (2013). Implementing and running
data-centric dynamic systems. In 2013 ieee 6th international conference on
service-oriented computing and applications (pp. 225–232).

Ryndina, K., Küster, J. M. & Gall, H. C. (2006). Consistency of business process
models and object life cycles. In (Vol. 4364, pp. 80–90). Genoa, Italy: Springer.

Sathiyaraj, R. & Balamurugan, B. (2018). Iot based intelligent transportation system
(iot-its) for global perspective: A case study. Internet of Things and Big Data
Analytics for Smart Generation, 154, 279.

Schönig, S., Ackermann, L., Jablonski, S. & Ermer, A. (2018). An integrated archi-
tecture for iot-aware business process execution. In Enterprise, business-process
and information systems modeling (pp. 19–34). Springer.

Schuldt, H., Alonso, G., Beeri, C. & Schek, H.-J. (2002). Atomicity and isolation for
transactional processes. ACM Transactions on Database Systems (TODS), 27(1),
63–116.

Schulz, K. A. & Orlowska, M. E. (2004). Facilitating cross-organisational workflows
with a workflow view approach. Data & Knowledge Engineering, 51(1), 109–
147.

Schunselaar, D. M., Leopold, H., Verbeek, H., van der Aalst, W. M. & Reijers, H. A.
(2014). Configuring configurable process models made easier: an automated
approach. In International conference on business process management (pp.
105–117).

Sheng-nan, L., Pei-pei, D., Jian-li, F. & Xiao-he, L. (2015). The implementation of
intelligent transportation system based on the internet of things. J. Chem. Pharm.
Res, 7(3), 1074–1077.

Siadat, S. H., Shokohyar, S. & Shafahi, S. (2019). SOA adoption factors in e-banking:
An empirical analysis from the practical perspective. IJISSS, 11(1), 25–39.

Sivagami, S., Revathy, D. & Nithyabharathi, L. (2016). Smart health care system
implemented using iot. International Journal of Contemporary Research in
Computer Science and Technology, 2(3).

Solomakhin, D., Montali, M., Tessaris, S. & De Masellis, R. (2013). Verification
of artifact-centric systems: Decidability and modeling issues. In International
conference on service-oriented computing (pp. 252–266).

Staples, M., Chen, S., Falamaki, S., Ponomarev, A., Rimba, P., Tran, A., . . . Zhu, J.
(2017). Risks and opportunities for systems using blockchain and smart contracts.
data61. CSIRO), Sydney.

Strosnider, J. K., Nandi, P., Kumaran, S., Ghosh, S. & Arsnajani, A. (2008). Model-
driven synthesis of soa solutions. IBM Systems Journal, 47(3), 415–432.

Sukaviriya, N., Mani, S. & Sinha, V. (2009). Reflection of a year long model-driven
business and ui modeling development project. In Ifip conference on human-
computer interaction (pp. 749–762).

Sun, S., Kumar, A. & Yen, J. (2006). Merging workflows: A new perspective on
connecting business processes. Decision Support Systems, 42(2), 844–858.

Sun, Y., Xu, W. & Su, J. (2012). Declarative choreographies for artifacts. In Interna-
tional conference on service-oriented computing (pp. 420–434).

References 199

Tian, F. (2017). A supply chain traceability system for food safety based on haccp,
blockchain & internet of things. In 2017 international conference on service
systems and service management (pp. 1–6).

Turkanović, M., Hölbl, M., Košič, K., Heričko, M. & Kamišalić, A. (2018). Eductx: A
blockchain-based higher education credit platform. IEEE access, 6, 5112–5127.

Van Der Aalst, W., Van Hee, K. M. & van Hee, K. (2004). Workflow management:
models, methods, and systems. MIT press.

Van der Aalst, W. M. (1998). The application of petri nets to workflow management.
Journal of circuits, systems, and computers, 8(01), 21–66.

Van der Aalst, W. M. (2013). Business process management: a comprehensive survey.
ISRN Software Engineering, 2013.

Van Der Aalst, W. M. & Basten, T. (2002). Inheritance of workflows: an approach to
tackling problems related to change. Theoretical Computer Science, 270(1-2),
125–203.

van der Aalst, W. M., De Medeiros, A. A. & Weijters, A. (2006). Process equivalence:
Comparing two process models based on observed behavior. In International
conference on business process management (pp. 129–144).

Van Der Aalst, W. M., Lohmann, N., Massuthe, P., Stahl, C. & Wolf, K. (2010).
Multiparty contracts: Agreeing and implementing interorganizational processes.
The Computer Journal, 53(1), 90–106.

Van Der Aalst, W. M. & Pesic, M. (2006). Decserflow: Towards a truly declarative
service flow language. In International workshop on web services and formal
methods (pp. 1–23).

van Der Aalst, W. M., Pesic, M. & Schonenberg, H. (2009). Declarative workflows:
Balancing between flexibility and support. Computer Science-Research and
Development, 23(2), 99–113.

Van Der Aalst, W. M. & Ter Hofstede, A. H. (2005). Yawl: yet another workflow
language. Information systems, 30(4), 245–275.

Van der Aalst, W. M., van Dongen, B. F., Günther, C. W., Rozinat, A., Verbeek, E. &
Weijters, T. (2009). Prom: The process mining toolkit. BPM (Demos), 489(31),
2.

van der Aalst, W. M. & Weske, M. (2001). The p2p approach to interorganizational
workflows. In International conference on advanced information systems engin-
eering (pp. 140–156).

Van der Aalst, W. M., Weske, M. & Grünbauer, D. (2005). Case handling: a new
paradigm for business process support. Data & Knowledge Engineering, 53(2),
129–162.

van Eck, M. L., Sidorova, N. & van der Aalst, W. M. (2017). Guided interaction
exploration in artifact-centric process models. In 2017 ieee 19th conference on
business informatics (cbi) (Vol. 1, pp. 109–118).

Vanhatalo, J., Völzer, H. & Koehler, J. (2009). The refined process structure tree. Data
& Knowledge Engineering., 68(9), 793–818.

Vanhatalo, J., Völzer, H. & Leymann, F. (2007). Faster and more focused control-flow
analysis for business process models through sese decomposition. In (pp. 43–55).

References 200

Vienna, Austria: Springer.
W3C. (2005). Web services choreography description language version 1.0. Retrieved

from https://www.w3.org/TR/ws-cdl-10/
Wang, J. & Kumar, A. (2005). A framework for document-driven workflow systems.

In International conference on business process management (pp. 285–301).
White, S. A. (2004). Introduction to bpmn. Ibm Cooperation, 2(0), 0.
Wieczorek, S., Roth, A., Stefanescu, A., Kozyura, V., Charfi, A., Kraft, F. M. &

Schieferdecker, I. (2009). Viewpoints for modeling choreographies in service-
oriented architectures. In 2009 joint working ieee/ifip conference on software
architecture & european conference on software architecture (pp. 11–20).

Xu, W., Su, J., Yan, Z., Yang, J. & Zhang, L. (2011). An artifact-centric approach to
dynamic modification of workflow execution. In Otm confederated international
conferences" on the move to meaningful internet systems" (pp. 256–273).

Ye, C., Cheung, S.-C., Chan, W. K. & Xu, C. (2009). Atomicity analysis of service
composition across organizations. IEEE Transactions on Software Engineering,
35(1), 2–28.

Yongchareon, S. & Liu, C. (2010). A process view framework for artifact-centric
business processes. In Otm confederated international conferences" on the move
to meaningful internet systems" (pp. 26–43).

Yongchareon, S., Liu, C. & Zhao, X. (2011). An artifact-centric view-based approach
to modeling inter-organizational business processes. In International conference
on web information systems engineering (pp. 273–281).

Yongchareon, S., Liu, C., Zhao, X. & Xu, J. (2010). An artifact-centric approach to
generating web-based business process driven user interfaces. In International
conference on web information systems engineering (pp. 419–427).

Yongchareon, S., Liu, C., Zhao, X., Yu, J., Ngamakeur, K. & Xu, J. (2018). Deriving
user interface flow models for artifact-centric business processes. Computers in
Industry, 96, 66–85.

Yongchareon, S., Ngamakeur, K., Liu, C., Chaisiri, S. & Yu, J. (2014). A workflow
execution platform for collaborative artifact-centric business processes. In Otm
confederated international conferences" on the move to meaningful internet
systems" (pp. 639–643).

Yongchareon, S., Yu, J., Zhao, X. et al. (2015). A view framework for modeling
and change validation of artifact-centric inter-organizational business processes.
Information systems., 47, 51–81.

Zafar, I., Azam, F., Anwar, M. W., Butt, W. H., Maqbool, B. & Nazir, A. K. (2018).
Business process models to web services generation: A systematic literature
review. In 2018 ieee 9th annual information technology, electronics and mobile
communication conference (iemcon) (pp. 789–794).

Zaha, J. M., Barros, A., Dumas, M. & ter Hofstede, A. (2006). Let’s dance: A language
for service behavior modeling. In Otm confederated international conferences"
on the move to meaningful internet systems" (pp. 145–162).

Zemni, M. A., Mammar, A. & Hadj-Alouane, N. B. (2016). An automated approach
for merging business process fragments. Computers in Industry, 82, 104–118.

https://www.w3.org/TR/ws-cdl-10/

References 201

Zhao, D., Liu, G., Jiang, Y., Gao, F. & Wang, Y. (2011). The execution and detection
of artifact-centric business process. In 2011 ieee international conference on
computer science and automation engineering (Vol. 4, pp. 491–495).

Zhao, D., Liu, G., Wang, Y., Gao, F., Li, H. & Zhang, D. (2011). A-stein: A prototype
for artifact-centric business process management systems. In 2011 international
conference on business management and electronic information (Vol. 1, pp. 247–
250).

Zhao, X. & Liu, C. (2006). Tracking over collaborative business processes. In
International conference on business process management (pp. 33–48).

Zhao, X., Liu, C., Sadiq, W. & Kowalkiewicz, M. (2008). Process view derivation
and composition in a dynamic collaboration environment. In Otm confederated
international conferences" on the move to meaningful internet systems" (pp.
82–99).

Zhao, X., Liu, C., Sadiq, W., Kowalkiewicz, M. & Yongchareon, S. (2009). Ws-bpel
business process abstraction and concretisation. In International conference on
database systems for advanced applications (pp. 555–569).

Zhao, X., Liu, C., Sadiq, W., Kowalkiewicz, M. & Yongchareon, S. (2011). Imple-
menting process views in the web service environment. World Wide Web, 14(1),
27–52.

Zhao, X., Liu, C. & Yang, Y. (2005). An organisational perspective on collaborative
business processes. In International conference on business process management
(pp. 17–31).

Zhao, X., Su, J., Yang, H. & Qiu, Z. (2009). Enforcing constraints on life cycles of
business artifacts. In 2009 third ieee international symposium on theoretical
aspects of software engineering (pp. 111–118).

Appendix A

Appendix

This section presents the complete recruitment process model, a fragment of its process
tree, the lifecycle of position artifact of this process model and the XML specification
of BPMN process model related to Chapter 3. The complete AirTravel process model
related to Chapter 4, and the constructed BPMN model of the ACP purchasing process
model related to Chapter 5 are also presented.

202

Appendix A. Appendix 203

R
e
cr

u
it

m
e
n

t

M
an

a
g
e
r

id
en

ti
fy

 a

p
o
si

ti
o

n

R
M

 c
o

n
fi

rm

w
it

h

cl
ie

n
t

m
an

ag
er

R
e
v
ie

w

p
o
si

ti
o

n
 p

ro
fi

le

w
it

h
 H

R

re
p
re

se
n
ta

ti
v

e

an
d

 c
li

e
n

t
en

d

P
as

s
p

o
si

ti
o
n

p
ro

fi
le

 t
o

 c
li

e
n

t

en
d

 m
an

ag
er

R
e
ce

iv
e

P
o

si
ti

o
n

d
es

c
ri

p
ti

o
n

S
o

m
e
ti

m
e
s

fo
ll

o
w

u
p

 w
it

h

cl
ie

n
t-

u
p

m
an

ag
em

en
t

R
M

 c
o

n
su

lt

w
it

h
 n

ex
t

le
v
e
l

m
an

g
e
r

o
r

cl
ie

n
t

H
R

se
rv

ic
es

R
e
v
ie

w
e
d

te
rm

s
an

d

co
n

d
it

io
n

s

A
ss

em
b

le
 a

se
le

c
ti

o
n

 p
an

el

ap
p

ro
v
e
 b

y

n
ex

t
le

v
e
l

m
an

ag
er

R
M

 c
o

m
p

le
te

d
o
c
u
m

e
n
ta

ti
o

n

C
o

n
fi

rm
 a

v
ai

la
b
il

it
y

o
f

re
cr

u
it

m
e
n

t
p
a
n

el
co

m
p
le

te
 a

n
d
 c

re
at

e
 o

r

ch
a
n
g

e
p
o

st
io

n
 f

o
rm

 f
o
r

ap
p

ro
v
a
l

w
it

h
 c

li
en

t'
s

H
R

re
p
re

se
n
ta

ti
v

e

S
u

b
m

it

b
u
si

n
e
ss

 c
a
se

 t
o

cl
ie

n
t'
s

H
R

se
rv

ic
es

 a
n
d

m
an

ag
em

en
t

S
et

u
p

 v
ac

an
cy

 i
n

G
o

v
S

o
u

rc
e

b
y

 T
S

H
R

co
o
rd

in
at

o
r

T
S

 H
rc

o
o

rd
in

at
o

r
c
re

a
te

th
e

a
d

v
e
rt

is
em

en
t

n
ee

d
 a

p
p
ro

v
ed

 f
ro

m
 n

ex
t

le
v

e
l

m
a
n

ag
er

 f
ro

m
 c

li
en

t-

en
d

N
o

ti
fy

 c
o
n

tr
ac

te
d

re
cr

u
it

m
e
n
t

ag
e
n
c
y

G
ra

n
te

d

ag
e
n
c
y
 a

n

ac
ce

ss
 t

o
 t

h
e

sp
ec

if
ie

d
 j

o
b

in
 G

o
v

S
o
u

rc
e

R
e
ce

iv
e

ap
p

li
ca

ti
o

n
s

C
h

ec
k

co
m

p
le

te
n

es
s

re
ta

in
 a

 c
o

p
y

fo
r

th
em

se
lf S
en

d
 s

ig
n

ed

ch
a
ir

p
e
rs

o
n

ch
e
ck

li
st

se
n
d

 O
ri

g
in

a
l

ap
p

li
ca

ti
o

n
s

to
 T

S

H
R

co
o
rd

in
at

o
r

R
M

 r
ec

ei
v

e
th

e

ap
p

li
ca

ti
o

n
s

R
M

 d
is

tr
ib

u
te

 t
h

e

ap
p

li
ca

ti
o

n
s

to
 t

h
e

re
cr

u
it

m
e
n
t

p
a
n
e
l

R
M

 r
eq

u
es

t
th

e

p
a
n
el

 g
o

 t
h
ro

u
g
h

ap
p
li

c
at

io
n
s

p
ri

o
r

m
ee

ti
n

g

R
e
ce

iv
e
 f

il
le

d

ev
a
lu

a
ti

o
n

sh
ee

t

R
M

co
n

so
li

d
a
te

ra
n
k

in
g

 s
h
e
et

R
M

 d
is

tr
ib

u
te

co
n

so
li

d
at

ed

ra
n

k
in

g
 s

h
ee

t
to

p
an

el
 l

is
t

P
a
n
el

li
st

 d
is

cu
ss

 t
h
e

ra
n
k
in

g
 w

it
h
 t

h
e

R
M

 a
n
d

 c
li

en
t
H

R

re
p
re

se
n
ta

ti
v
e

A
d

m
in

 a
ss

is
ta

n
t

co
ll

ec
t

th
e

re
fe

re
e

re
p

o
rt

s

S
en

d
 a

 r
ef

e
re

e

re
p
o

rt
 t

o
 c

o
m

p
le

te

S
en

d
 s

h
o

rt
li

st
in

g

in
fo

rm
a
ti

o
n

 t
o

cl
ie

n
t

H
R

se
rv

ic
e

S
en

d

ap
p

o
in

tm
en

t

ap
p

ro
v
a
l

to
 c

li
e
n
t

H
R

 s
e
rv

ic
e

S
en

d
 a

ll

in
te

rv
ie

w
 n

o
te

s

S
en

d
 2

re
fe

re
n
c
ec

h
e
ck

s

C
o

m
p

le
te

b
u
si

n
e
ss

 c
a
se

 a
n

d

at
ta

ch
ed

 t
o

ap
p

o
in

tm
en

t

ap
p

ro
v
a
l

A
 c

o
p

y
 s

to
re

 i
n

 G
o
v

S
o

u
rc

e
sy

st
em

H
R

co
o

rd
in

a
to

r

ar
ra

n
g
e
s

fo
r

m
ed

ic
a
l

as
se

ss
m

en
t

re
tu

rn
 s

ig
n

ed

ap
p

o
in

tm
en

t
le

tt
e
r

a
n
d

co
m

m
e
n
c
em

en
t

to
 H

R

se
rv

ic
eb

y
 c

an
d
id

at
e

se
le

c
t

an
o

th
e
r

ca
n

d
id

at
e

ar
ra

n
g
e
 a

 m
ed

ic
a
l

te
st

ap
p
ro

v
ed

b
y

cl
ie

n
t-

en
d

m
an

ag
er

T
S

 H
rc

o
o

rd
in

at
o

r

p
u
b

li
sh

 t
h

e

ad
v

er
ti

se
m

en
t

A
d

v
er

ti
se

 b
y

cl
ie

n
t

H
R

se
rv

ic
e
s

R
M

 a
w

a
it

s
to

re
ce

iv
e
 t

h
e

ap
p

li
ca

ti
o

n
s

T
S

 H
rc

o
o

rd
in

at
o

r

an
d

 t
h

ei
r

te
am

s

p
ac

k
a
g
e

ap
p

li
ca

ti
o

n

fo
rw

a
rd

 i
t

to
 R

M

p
ri

n
t

d
ig

it
al

co
p

ie
s

A
d

m
in

 a
n

d
 c

le
ri

ca
l

st
af

f
C

h
ec

k

co
m

p
le

te
n

es
s

m
ak

e
co

p
ie

s
fo

r

re
cr

u
it

m
e
n
t

p
a
n
e
l

m
em

b
e
rs

m
ak

e
a

c
o
p

y
 f

o
r

R
M

m
ak

e
a

c
o
p

y
 f

o
r

T
S

 H
R

 a
rc

h
iv

es

ro
o
m

h
an

d
 d

e
li

v
e
re

d

ap
p

li
ca

ti
o

n
s

 t
o

 R
M

C
o

u
ri

er

ap
p

li
ca

ti
o

n
s

to
 R

M

R
M

 s
en

d

re
fe

re
e

re
p

o
rt

s

to
 p

an
el

m
em

b
e
rs

A
rc

h
ie

v
e

R
e
p
o

rt
s

P
ro

v
id

e
P

an
el

 l
is

t

ev
a
lu

a
ti

o
n

 s
h

e
et

to
 r

a
n
k

 c
an

d
id

a
te

s

b
as

e
d

 o
n
 r

ef
e
re

e

re
p
o

rt
s

R
M

 r
eq

u
e
st

 a

co
p

y
 o

f

ap
p

li
ca

ti
o

n
s

fr
o
m

p
an

el
 l

is
t

A
 c

a
su

al
 a

d
m

in

as
si

st
a
n
t

se
n

d
s

co
p

ie
s

R
M

 c
o

n
ta

ct
e
d
 p

ri
o

r

R
o

u
n
d

 1
 a

n
d

 2
 w

it
h

q
u
e
ri

es
 a

b
o

u
t

ev
a
lu

a
ti

o
n

 s
h

e
et

d
o
 s

am
e
 s

te
p
s

o
f

ro
u
n

d
1

 t
o

 r
a
n
k

ca
n

d
id

at
e
 b

as
ed

 o
n

re
fe

re
e

sh
e
et

S
el

e
ct

 5
-8

ca
n

d
id

at
e
s

at
ro

u
n
d

 2

p
an

el
 m

e
et

in
g

C
h

ec
k

ap
p

li
ca

n
t

lo
ca

ti
o

n

A
rr

an
g
e
 i

n
te

rv
ie

w

lo
g
is

ti
c
s

b
y

 R
M

 a
n

d

ca
su

al
 a

d
m

in

as
si

st
a
n
t

P
ro

v
id

e
p
a
n
e
ls

a
st

ru
ct

u
re

d

in
te

rv
ie

w

te
m

p
la

te

u
n
d

er
g
o

 a

p
sy

ch
o
m

et
ri

c

te
st

R
M

 a
d

v
ic

e

ca
n

d
id

at
e
s

v
e
rb

a
ll

y

th
at

 t
h

ei
r

ap
p

li
c
at

io
n

h
as

 b
e
en

u
n
su

c
ce

ss
fu

l

R
M

 p
ro

ce
ed

s
to

d
ec

id
e
 t

h
e

te
rm

s
a
n
d

co
n

d
it

io
n

s
o

f
th

e

o
ff

er
 t

o
 t

h
e
 c

an
d
id

at
e

R
M

 d
is

c
u

ss
 c

er
ta

in

as
p
e
ct

s
o

f
th

e

p
o
si

ti
o

n
 w

it
h

ca
n

d
id

at
e
 -

n
o
t

fo
rm

a
l

in
v
e
st

ig
at

e
th

e
 d

et
a
il

s

an
d

 d
is

c
lo

se
d

 i
n
fo

 t
o

cl
ie

n
t

m
a
n
a
g

er
 a

n
d

H
R

 r
e
p
re

se
n
ta

ti
v

e

R
M

 s
en

d
 t

h
e

ap
p

o
in

tm
en

t

ap
p

ro
v
a
l

to
 n

ex
t

le
v

e
l

m
a
n

ag
er

If
 e

x
te

rn
al

,
m

an
ag

er

m
u
st

 a
rr

an
g
e
 f

o
r

n
ex

t

le
v

e
l

m
a
n

ag
er

 w
h

o
 i

s

p
er

m
an

en
t

e
m

p
lo

y
e
e

A
 c

o
p

y
 o

f
co

m
p

le
te

d
 f

o
rm

sc
an

n
ed

 a
n
d

 r
e
co

rd
ed

 i
n

G
o

v
 S

o
u
rs

e
sy

st
em

co
n

ta
c
t

n
ex

t

ca
n

d
id

at
e
 o

r

n
ew

 a
d

v

T
S

 H
r

co
o

rd
in

a
to

r

in
fo

rm
 R

M

R
M

 l
ia

is
e
s

H
rr

ep
re

se
n

ta
ti

v
e

to

d
et

e
rm

in
e

w
h

en

m
ad

e
o
ff

e
r

to

ca
n

d
id

at
e

R
M

 m
a
k
e

fo
rm

a
l

v
er

b
a
l

o
ff

er

R
M

 n
o

ti
fy

 h
is

/h
er

te
a
m

 a
n

d
 c

li
e
n
t

H
R

se
rv

ic
e

o
f

h
e

o
u
tc

o
m

e

H
R

re
p
re

se
n
ta

ti
v

e

m
ak

es
 a

 f
o
rm

a
l

w
ri

tt
e
n
 o

ff
er

if
 s

u
c
ce

ed
 ,

m
ad

e
a

fo
rm

a
l

v
er

b
a
l

o
ff

er

se
n
d

 a
 l

e
tt

e
r

o
f

ap
p

o
in

tm
en

t

w
it

h
 a

co
m

m
e
n
c
em

en
t

p
ac

k

cl
o

se

v
ac

an
cy

R
M

 c
h

ec
k

ap
p

o
in

tm
en

t

ap
p

ro
v
a
l

P
os

it
io

n

[n
o

t
va

ca
n

t]

P
os

it
io

n
 [

va
ca

n
t]

P
o

si
ti

o
n

[v

ac
an

t]

P
o

si
ti

o
n

 [
n

o
t

va
ca

n
t]

P
os

it
io

n

[c
o

n
fi

rm
ed

]

P
os

it
io

n

[c
o

n
si

st
en

t
w

it
h

 r
u

le
]

P
o

si
ti

o
n

[i

nc
on

si
st

en
t

w
it

h
 r

u
le

]

P
o

si
ti

o
n

 [
co

n
si

st
en

t
w

it
h

 r
u

le
]

P
o

si
ti

o
n

 [
in

co
n

si
st

en
t

w
it

h
 r

u
le

]

P
os

it
io

n
p

ro
fi

le
 [

p
as

se
d]

Po
si

ti
on

de
s-

cr
ip

ti
o

n

[r
ec

ei
ve

d
]

P
os

it
io

n

[d
em

an
d

fo

r
ro

le
]

P
o

si
ti

o
n

[n

o

d
em

an
d

]
P

o
si

ti
o

n

[n
o

 d
em

an
d

]

P
o

si
ti

o
n

[d

em
an

d

fo
r

ro
le

]

P
os

it
io

n

[n
ew

 o
r

ch
an

ge
 e

xi
st

in
g]

P
os

it
io

n
-

fo
rm

[c
o

m
pl

et
e

d]

Te
rm

sa
n

d
-

C
o

n
di

ti
o

n
s

R
ev

ie
w

ed
]

Te
rm

sa
nd

-
C

o
n

d
it

io
n

s
R

ev
ie

w
ed

]

Te
rm

sa
n

d
-

C
o

n
d

it
io

n
s

R
ev

ie
w

ed
]

Se
le

ct
io

n

p
an

el
[a

ss
em

b
le

d
]

A
va

ila
bi

lit
y

[c
o

n
fi

rm
ed

]

P
o

si
ti

o
n

[C
LA

5
 a

n
d

u

p
w

ar
d

s]

P
o

si
ti

o
n

[<
C

LA
5

]

P
o

si
ti

o
n

[<
C

LA
5

]

P
o

si
ti

o
n

[C
LA

5
 a

n
d

u

p
w

ar
d

s]

P
o

si
ti

o
n

[a
pp

ro
ve

d
]

D
o

cu
m

en
ta

ti
o

n
[c

o
m

p
le

te
d

]

B
u

si
ne

ss
ca

se
[s

u
b

m
it

te
d

]

va
ca

n
cy

[s
e

tu
p]

A
d

ve
rt

is
em

en
t

[c
re

at
ed

]

A
d

ve
rt

is
em

en
t

[a
p

p
ro

ve
d

]

A
d

ve
rt

is
em

en
t

[a
p

p
ro

ve
d

]

A
d

ve
rt

is
em

en
t

[a
pp

ro
ve

d
]

A
d

ve
rt

is
em

en
t

[a
p

p
ro

ve
d

]

A
d

ve
rt

is
-

em
en

t
[n

o
ti

fi
ed

] A
d

ve
rt

is
e-

m
en

t
[p

u
bl

is
he

d
]

A
d

ve
rt

is
e-

m
en

t
[a

d
ve

rt
is

ed
]

A
p

p
lic

at
io

n
s

[r
ec

ei
ve

d
]

A
p

p
lic

at
io

n
s

[p
ac

ka
ge

d
]

A
p

p
lic

at
io

n
s

[f
o

rw
ar

d
ed

]
A

p
p

lic
at

io
n

s
[p

ri
nt

ed
]

A
d

ve
rt

is
-

em
en

t
[a

cc
es

s
gr

an
te

d]
A

p
p

lic
at

io
n

s
[r

ec
ei

ve
d

]
A

p
p

lic
at

io
n

s
[c

h
ec

ke
d

]

A
p

p
lic

at
io

n
s

[c
op

y
re

ta
in

ed
]

A
p

pl
ic

at
io

n
s

[s
e

nt
]

A
p

p
lic

at
io

n
s

[n
o

 m
is

si
n

g]

A
p

p
lic

at
io

n
s

[i
n

fo
rm

at
io

n

m
is

si
n

g]

A
p

pl
ic

at
io

n
s

[n
o

 m
is

si
n

g]

A
p

p
lic

at
io

n
s

[i
n

fo
rm

at
io

n
 m

is
si

n
g]

A
p

pl
ic

at
io

n
s

[c
o

p
ie

s
m

ad
e]

R
M

[i

f
sa

m
e

lo

ca
ti

o
n

]

R
M

 [
if

 n
o

t
sa

m
e

lo
ca

ti
o

n
]

R
M

 [
if

 n
o

t
sa

m
e

lo
ca

ti
o

n
]

R
M

 [
if

 s
am

e
lo

ca
ti

o
n

]

A
p

p
lic

at
io

n
s

[c
o

u
ri

er
ed

]

A
p

pl
ic

at
io

n
s

[h
an

de
d]

A
p

pl
ic

at
io

n
s

[r
ec

ei
ve

d
]

A
p

pl
ic

at
io

n
s

[d
is

tr
ib

u
te

d]

P
ro

v
id

e

e
v
a
lu

at
io

n
 s

h
e
et

to
 p

a
n

e
l

li
st

 t
o

ra
n

k
 a

p
p

li
ca

ti
o
n

s

Se
t

p
an

el
 m

ee
ti

n
g

se
ss

io
n

 t
o

se
le

ct
 t

o
p

20

 c
an

di
at

es
 o

f
ro

u
n

d
 1

A
p

pl
ic

at
io

n
s

[e
xa

m
in

e
d]

Ev
al

u
at

io
n

-
Sh

e
et

 [
fi

lle
d

]

Ev
al

u
at

io
n

-
Sh

e
et

 [
re

ce
iv

ed
]

R
an

ki
ng

-
Sh

e
et

 [
co

n
so

lid
at

e
d]

R
an

ki
ng

-
Sh

e
et

[d

is
tr

ib
u

te
d]

P
an

e
lM

ee
ti

n
g

 [
se

t]

R
an

ki
ng

 [
d

is
cu

ss
ed

]

R
ep

o
rt

s
[c

o
lle

ct
ed

]

R
ep

or
ts

[a
rr

iv
ed

 o
n

ti

m
e]

R
ep

o
rt

s
[n

o
t

ar
ri

ve
d

 o
n

ti

m
e]

R
ep

o
rt

s
[s

e
nt

]
Ev

al
u

at
io

n
sh

ee
t

[p
ro

vi
d

ed
]

A
p

p
lic

at
io

n
-

co
p

ie
s

[r
eq

u
es

te
d

]

A
p

p
lic

at
io

n
-

co
p

ie
s

[s
en

t]

R
ou

nd
 1

 a
nd

 2
[c

o
n

ta
ct

ed
]

ca
n

d
id

at
e

s
[r

a
n

ke
d

]
ca

n
d

id
at

e
s

[s
e

le
ct

ed
]

A
p

p
li

ca
n
t

lo
ca

ti
o

n
[c

h
ec

ke
d

]

In
te

rv
ie

w
[a

rr
an

ge
d

]

In
te

rv
ie

w

te
m

p
la

te
[p

ro
vi

d
ed

]

p
o
si

ti
o

n
[d

et
er

m
in

ed

b
y

R
M

]

p
o
si

ti
o

n
[n

o
t

d
et

er
m

in
ed

b

y
R

M
]

p
sy

ch
o
m

e

tr
ic

te
st

[u
n

d
er

go
n

e
]

ca
n

d
id

at
e
s

[a
d

vi
ce

d
]

te
rm

s
an

d

co
n

d
it

io
n

s
[d

ec
id

ed
]

V
o

lu
n
ta

ry
-

re
d
u

n
d
a
n
c
y

[r
ec

ei
ve

d
]

d
et

a
il

s
[i

n
ve

st
ig

at
ed

]

V
o

lu
n
ta

ry
-

re
d
u

n
d
a
n
c
y

[n
o

t
re

ce
iv

ed
]

d
et

a
il

s
[f

or
w

ar
de

d
 t

o

ex
te

rn
al

]

d
et

a
il

s
[f

o
rw

ar
d

ed
 t

o

in
te

rn
al

]

d
et

a
il

s
[f

o
rw

ar
d

ed
 t

o

in
te

rn
al

]

d
et

a
il

s
[f

o
rw

ar
d

ed
 t

o

ex
te

rn
al

]

A
p

p
o

in
tm

e-
n

ta
p

p
ro

va
l

[s
en

t]

m
an

a
ge

r
[a

rr
an

ge
d

]

A
p

p
o

in
tm

e-
n

ta
p

p
ro

va
l

[c
h

ec
ke

d
]

A
p

p
o

in
tm

en
t-

ap
pr

ov
al

[c

h
ec

ke
d

]

A
p

p
o

in
tm

en
t-

ap
p

ro
va

l
[c

he
ck

ed
]

A
p

p
o

in
tm

en
t-

ap
p

ro
va

l
[c

he
ck

ed
]

A
p

p
o

in
tm

en
t-

ap
p

ro
va

l
[c

h
ec

ke
d

]

A
p

p
o

in
tm

en
t-

ap
pr

ov
al

[c

h
ec

ke
d

]

C
h

ec
kl

is
t

[s
en

t]

Sh
o

rt
lis

t
[s

en
t]

A
p

p
o

in
tm

e-
n

ta
p

p
ro

va
l

[s
en

t]

In
te

rv
ie

w
-

n
o

te
s

[s
e

nt
]

R
ef

er
en

ce
ch

ec
k

[s
en

t]

C
o

m
p

le
te

d
fo

rm
[v

ar
ia

ti
on

]

C
o

m
p

le
te

d
fo

rm
[n

o

va
ri

at
io

n
]

B
u

si
n

es
sc

as
e

[c
o

m
p

le
te

d
]

C
o

p
y

[s
to

re
d

]

as
se

ss
m

en
t

[a
p

p
li

c
ab

le
]

 a
ss

es
sm

en
t

[n
o

t

ap
p

li
ca

b
le

]

as
se

ss
m

en
t

[n
o
t

ap
p

li
ca

b
le

]

 a
ss

e
ss

m
en

t

[a
p

p
li

ca
b
le

]
C

o
m

p
le

te
d

fo
rm

[v
ar

ia
ti

o
n

]

C
o

m
p

le
te

d
fo

rm
[n

o
 v

ar
ia

ti
o

n
]

C
a
n
d

id
at

e
/

ad
v

[c
o

n
ta

c
te

d
]

as
se

ss
m

en
t

[n
o
t

sa
ti

sf
ac

to
ry

]

as
se

ss
m

en
t

[n
o

t
sa

ti
sf

ac
to

ry
]

A
ss

es
sm

e
n
t

[
sa

ti
sf

a
ct

o
ry

]

as
se

ss
m

en
t

[s
at

is
fa

ct
o

ry
]

R
M

[i
n

fo
rm

e
d
]

O
ff

er
[d

et
e

rm
in

ed
]

V
er

b
al

o
ff

er
[m

ad
e]

O
u

tc
o

m
e

[n
o

ti
fi

ed
]

re
n

e
go

ti
at

io
n

[n
o

t
su

cc
e

ed
]O
ff

e
r

[n
o

t
ac

ce
p

te
d

]

re
n

eg
o

ti
at

io
n

[n
o

t
su

cc
ee

d
]

O
ff

er
[n

o
t

ac
ce

p
te

d
]

ca
n

d
id

at
e

[s
e

le
ct

ed
]

M
e

d
ic

al
te

st
[a

rr
an

ge
d

]

O
ff

e
r

[m
ad

e
]

va
ca

n
cy

[c
lo

se
d]

A
p

p
o

in
tm

en
tl

et
te

r
[r

et
u

rn
ed

]

A
p

po
in

tm
en

tl
et

te
r

[s
e

nt
]

W
ri

tt
en

o
ff

e
r

[m
ad

e]

P
h

i

P
o

si
ti

o
n

[n

o
t

va
ca

n
t]

P
h

i

P
o

si
ti

o
n

[i

n
co

n
si

st
en

t
w

it
h

 r
ul

e
]

P
h

i

P
o

si
ti

o
n

[n

o

d
em

an
d

]

P
h

i

A
p

p
lic

at
io

n
s

[i
n

fo
rm

at
io

n

m
is

si
n

g]

P
h

i

V
o

lu
n
ta

ry
-

re
d
u

n
d
a
n
c
y

[n
o

t
re

ce
iv

ed
]

P
h

i

p
o
si

ti
o

n
[d

et
er

m
in

ed

by
 R

M
]

p
o
si

ti
o

n
[n

o
t

d
et

er
m

in
ed

 b
y

R
M

]
p

o
si

ti
o

n
[n

o
t

d
et

er
m

in
ed

b

y
R

M
]

P
h

i

C
o

m
p

le
te

d
fo

rm
[n

o

va
ri

at
io

n
]

P
h

i

 a
ss

e
ss

m
en

t

[n
o
t

ap
p

li
ca

b
le

]

R
ep

o
rt

s
[a

rc
h

ie
ve

d
]

Fi
gu

re
A

.1
:C

om
pl

et
e

R
ec

ru
itm

en
tp

ro
ce

ss
m

od
el

Appendix A. Appendix 204

Recruitment
Manger identify a

position

SEQ

RM confirm
with client

manger

Pass position
profile to client
end manager

SEQ SEQ

RM consult with
next level manager
or client HR services

Complete and create or
change position form for
approval with client s HR

representative

Position
[vacant]

Position
[confirmed]

Position
[demand
for role]

Position
[new or
change

existing]

SEQSEQ

Position
[CLA5 and
upwards]

Review position
profile with HR

representative and
client end

Position
[inconsiste

nt with
rule]

Phi

Position
[consistent
with rule]

Position
[no

demand]

Phi

Approve by
next level
manger

SEQ

Position
[<CLA5]

Phi

SEQ

RM complete
documentation

Position
[approved]

SEQ

SEQ

Position
[not

 vacant]

Phi

SEQ

Position
[vacant]

Position
[not

 vacant]

Position
[confirmed] Position

[consistent
with rule]

Position
[inconsiste

nt with
rule]

Position
[inconsist
ent with

rule]

Position
[no

demand]

Sometimes followup
with client-up
management

Position
[no

demand]

Position
[demand
for role]

Position
[new or
change

existing]

approved by
client-end
manager

Position
[CLA5 and
upwards]Position

[<CLA5]

Position
[approved]

SEQ

Position
[not

 vacant]

Position
[<CLA5]

SEQSEQ

Position
[not

determine
d by RM]

Provide panels a

structured interview

template

Position
[determined

by RM]

Figure A.2: Process tree fragment of Recruitment process model

Vacant

Not Vacant

Consistent
with rule

Not
Consistent
with rule

Demand
for Role

No
Demand

CLA5 and
upwards

<CLA5

New or
Existing

Not
determined

 by RM

Determined
by RM

Confirmed

Approved

Approved

Figure A.3: Lifecycle of Position artifact

Appendix A. Appendix 205

Figure A.4: XML Specification of BPMN Process Model

Appendix A. Appendix 206
Airline Check-in OperatorPassenger

Airline Departure-

control system

Airline Service-desk

Personnel
Airport Service-desk Personnel

P
ro

v
id

e
O

P
C

P
ro

v
id

e
se

c
u
ri

ty

im
m

ig
ra

ti
o
n

in
st

ru
ct

io
n

D
e
te

rm
in

e
 w

h
ic

h
 a

ir
li

n
e

p
a
ss

en
g
er

 i
s

u
si

n
g

A
c
q
u
ir

e
ex

c
es

s

p
a
y
m

e
n
t

P
ro

v
id

e

b
o

ar
d

in
g
 p

a
ss

A
c
q
u
ir

e
ex

c
es

s

p
a
y
m

e
n
t

P
ro

v
id

e
ex

c
es

s

re
ce

ip
t

R
e
g
is

te
r

fi
n

al
is

at
io

n

N
o

ti
fy

 o
f

co
m

p
le

te
d

ch
ec

k
-i

n
 s

ta
tu

s

P
ro

v
id

e
O

P
C

in
st

ru
ct

io
n

F
in

al
is

e

ch
ec

k
-i

n

C
h

ec
k

 i
f

e
x
ce

ss

b
a
g
g
a
g
e

ex
is

t

In
st

ru
ct

 p
as

se
n
g

er
 t

o

p
ro

ce
e
d
 t

o

ap
p
ro

p
ri

a
te

 c
o
u

n
te

r

F
a
ci

li
ta

te

d
e
p
o
si

t
o
f

ex
ce

ss
 b

ag
g

ag
e

A
c
q
u
ir

e

ex
ce

ss

p
a
y
m

e
n
t

P
ro

v
id

e

b
o

ar
d

in
g
 p

a
ss

A
c
q
u
ir

e
ex

c
es

s

re
ce

ip
t

S
e
n
d

b
o

ar
d

in
g

p
a
ss

A
c
q
u
ir

e
se

c
u
ri

ty

im
m

ig
ra

ti
o
n

in
st

ru
ct

io
n
 (

S
II

)

A
c
q
u
ir

e
O

P
C

in
st

ru
ct

io
n

R
e
ce

iv
e

O
u

tg
o
in

g

P
a
ss

en
g
er

 C
ar

d

(O
P

C
)

P
ro

v
id

e

B
a
g
g
a
g
e

C
o

ll
ec

t
b
o
a
rd

in
g

p
a
ss

R
e
ce

iv
e

in
st

ru
ct

io
n

G
o
 t

o
 a

ir
p
o
rt

se
rv

ic
e

d
es

k

G
o

 t
o
 A

ir
li

n
e

se
rv

ic
e

d
es

k

G
o

 t
o
 p

re
m

iu
m

ai
rl

in
e
 c

o
u
n

te
r

E
x
p
la

in
 n

ee
d
 t

o

p
ay

 f
o

r
ex

ce
ss

b
ag

g
ag

e

E
x

p
la

in
 n

ee
d
 t

o

p
a
y
 f

o
r

ex
ce

ss

b
a
g
g
a
g
e

E
x

p
la

in
 n

ee
d
 t

o

p
a
y
 f

o
r

ex
ce

ss

b
a
g
g
a
g
e

P
ay

 e
x
ce

ss

fe
e

A
c
q
u
ir

e

b
o

ar
d

in
g
 p

a
ss

P
a
y
 e

x
c
es

s

fe
e

A
c
q
u
ir

e

ex
ce

ss

re
ce

ip
t

D
e
p
o
si

t
ex

c
es

s

b
a
g
g
a
g
e

P
a
y
 e

x
c
es

s

fe
e

G
o

 t
o
 a

ir
p

o
rt

se
rv

ic
e

d
es

k

G
o

 t
o
 c

h
e
ck

 i
n

co
u
n
te

r

P
ro

v
id

e
ex

c
es

s

re
ce

ip
t

P
ro

v
id

e
ex

c
es

s

re
ce

ip
t

A
c
q
u
ir

e

b
o

ar
d

in
g
 p

a
ss

A
c
q
u
ir

e

b
o

ar
d

in
g
 p

a
ss

A
c
q
u
ir

e

b
o

ar
d

in
g
 p

a
ss

P
ro

v
id

e

b
o

ar
d

in
g
 p

a
ss

B
ag

g
es

[e
x
ce

ed
s]

B
ag

g
ag

e
[n

o
t

ex
ce

ed
s]

B
o

ar
d

in
g

P
as

s

[p
ro

v
id

ed
]

B
ag

g
es

[d
ep

o
si

te
d

]

B
o

ar
d

in
g

P
as

s

[p
ro

v
id

ed
]

O
P

C

[p
ro

v
id

ed
]

O
P

C

[i
n
st

ru
c
ti
o
n

p
ro

v
id

ed
]

S
II

[a
cq

u
ir

ed
] B
ag

g
ag

e

[p
ro

v
id

ed
]

B
o

ar
d

in
g

P
as

s

[c
o
ll

ec
te

d

C
h

ec
k
-i

n

[n
o

ti
fi

ed
]

C
h

ec
k
-i

n

[r
eg

is
te

re
d

]

C
h

ec
k
-i

n

[f
in

al
is

at
io

n
]

A
ir

li
n
e

[A
2

]

A
ir

li
n

e

[A
1

]

P
ay

m
e
n

t

[a
cq

u
ir

ed
]

B
o

ar
d

in
g

P

as
s

[p
ro

v
id

ed
]

A
ir

li
n
e

[A
2

]

A
ir

li
n

e

[A
1

]

P
ay

m
e

n
t

[a
cq

u
ir

ed
]

P
ay

m
e
n

t

[a
cq

u
ir

ed
]

A
c
q
u
ir

e

N
o

ti
fi

ca
ti

o
n

S
ta

tu
s

O
P

C

[p
ro

v
id

ed
]

F
li

g
h

t

[b
o

o
k

ed
]

B
o

ar
d

in
g

P
as

s

[s
en

d
]

P
ay

m
e
n

t

[a
cq

u
ir

ed
]

P
ay

m
e
n

t

[p
ro

v
id

ed
]

P
ay

m
e
n

t

[a
cq

u
ir

ed
]

B
o
ar

d
in

g

P
as

s

[a
cq

u
ir

ed
]

B
ag

g
ag

e

[a
ss

es
se

d
]

B
ag

g
ag

e

[i
n

v
o

ic
ed

]

P
ay

m
e
n

t

[r
eq

u
e
st

ed
]

B
o
ar

d
in

g
P

as
s

[a
cq

u
ir

ed
]

P
ay

m
e
n

t

[n
o

t

ac
q

u
ir

ed
]

P
ay

m
e
n
t

[a
cq

u
ir

ed
]

P
ay

m
e
n

t

[n
o

t

ac
q

u
ir

ed
]

P
ay

m
e
n

t

[p
ro

ce
ss

ed
]

B
ag

g
ag

e

[n
o

t
e
x

ce
ed

in
g

]

B
ag

g
ag

e

[e
x
ce

ed
in

g
]

F
li

g
h
t

[d
es

t1
]

F
li

g
h

t

[d
es

t3
]

F
li

g
h
t

[d
es

t2
]

P
ay

m
e
n
t

[r
ec

o
rd

ed
]

B
ag

g
ag

e

[c
h
ec

k
ed

]

F
li

g
h

t

[i
n

st
ru

c
ti

o
n

]

Fi
gu

re
A

.5
:A

ir
Tr

av
el

Pr
oc

es
s

M
od

el

Appendix A. Appendix 207

C
re

at
e

S
en

d

Q
u

o
te

H
o

ld
A

n
al

y
se

Q
u

o
te

A
cc

ep
t

A
cq

u
ir

e
C

h
ec

k

P
re

p
ar

e
F

il
l

O
rd

er

P
re

p
ar

e

S
h
ip

p
in

g

C
re

at
e

S
h
ip

p
in

g

S
ch

ed
u

le

S
h
ip

p
in

g

D
is

p
at

ch

G
o

o
d
s

Is
su

e
In

v
o
ic

e

T
ra

n
sm

it

S
en

d

In
v

o
ic

e

C
re

at
e

P
ay

m
en

t

A
p

p
ro

v
e

P
ay

m
en

t

C
le

ar

In
v

o
ic

e

C
o
m

p
le

te

O
rd

er

Q
u

o
te

[i

n
it

]

P
u

rc
h

as
e

O

rd
er

[i

n
it

]

Q
u

o
te

[c

re
at

e
d

]P
u

rc
h

as
e

O

rd
er

[c

re
at

e
d

]
P

u
rc

h
as

e

O
rd

er
 [

o
n

h

o
ld

]
Q

u
o

te

[a
p

p
ro

vi
n

g]

Q
u

o
te

[a

p
p

ro
ve

d
]

Q
u

o
te

[r

ej
ec

te
d

]

P
u

rc
h

as
e

O
rd

er

[c
an

ce
lle

d
]

P
ic

ki
n

g
 L

is
t

[i
n

it
]

P
u

rc
h

as
e

O

rd
er

[c

o
n

fi
rm

e
d

]

P
u

rc
h

as
e

O

rd
er

[a

cc
e

p
te

d
]

P
ic

ki
n

g
Li

st

[c
h

e
ck

in
g]

P
u

rc
h

as
e

O

rd
er

[a

cq
u

ir
in

g]

P
u

rc
h

as
e

O

rd
er

[c

an
ce

lle
d

]

P
ic

ki
n

g
Li

st

[o
u

t
o

f
st

o
ck

]

P
ic

ki
n

g
Li

st

[i
n

 s
to

ck
]

P
ic

ki
n

g
Li

st

[r
e

ad
y

to

fi
ll]

P
ic

ki
n

g
Li

st

[F
ill

e
d

O

rd
er

]

P
u

rc
h

as
e

O

rd
er

[f

ill
e

d
]

D
e

liv
e

ry

N
o

te

[i
n

it
]

P
u

rc
h

as
e

O

rd
er

[r

e
ad

y
to

 s
h

ip
]

D
e

liv
e

ry

N
o

te

[p
re

p
a

re
d

]

Sh
ip

p
in

g
O

rd
er

[i

n
it

]

Sh
ip

p
in

g
O

rd
er

[c

re
at

e
d

]

D
e

liv
e

ry

N
o

te

[t
ra

n
sf

er
ri

n
g

]

Sh
ip

p
in

g
Li

st

[i
n

it
]

P
ic

k

Sh
ip

p
in

g
Li

st

[q
u

e
u

e
d

]

Sh
ip

p
in

g
O

rd
er

[s
ch

ed
u

le
d

]

In
vo

ic
e

[i
n

it
]

Sh
ip

p
in

g
Li

st

[p
ic

ke
d

]

In
vo

ic
e

[i
ss

u
ed

]

P
u

rc
h

as
e

O

rd
er

[d

e
liv

e
ri

n
g

]
D

e
liv

e
ry

 N
o

te

[d
is

p
at

ch
e

d
]

Sh
ip

p
in

g
O

rd
er

[i
n

 t
ra

n
si

t]

Sh
ip

p
in

g
 L

is
t

[c
o

m
p

le
te

d
]

Sh
ip

p
in

g
O

rd
er

[a
rr

iv
ed

]

P
u

rc
h

as
e

O

rd
er

[b

ill
in

g]
In

vo
ic

e

[s
e

n
t]

P
ay

m
e

n
t

[i
n

it
]

In
vo

ic
e

[u

n
p

ai
d

]

P
ay

m
e

n
t

[c
re

at
e

d
]

P
ay

m
e

n
t

[a
p

p
ro

vi
n

g]

P
ay

m
e

n
t

[s
e

n
t]

In
vo

ic
e

[c

le
ar

in
g]

In
vo

ic
e

[c

le
ar

e
d

]

P
u

rc
h

as
e

O

rd
er

[c

lo
se

d
]

Q
u

o
te

[r
e

je
ct

e
d

]

P
u

rc
h

as
e

 O
rd

er

[c
an

ce
lle

d
]

P
u

rc
h

as
e

 O
rd

er

[c
o

n
fi

rm
e

d
]

Q
u

o
te

[a

p
p

ro
ve

d
]

P
ic

ki
n

g
Li

st

[o
u

t
o

f
st

o
ck

]

P
ic

ki
n

g
Li

st

[i
n

 s
to

ck
]

P
u

rc
h

as
e

 O
rd

er

[c
an

ce
lle

d
]

Fi
gu

re
A

.6
:T

he
co

ns
tr

uc
te

d
A

ct
iv

ity
-C

en
tr

ic
M

od
el

of
Pu

rc
ha

si
ng

Pr
oc

es
s

	Abstract
	Attestation of Authorship
	Publications
	Acknowledgements
	Dedication
	Introduction
	Activity-Centric and Artifact-Centric Modeling
	Activity-Centric Business Process Modeling
	Artifact-Centric Business Process Modeling

	Research Questions
	Research Objectives
	Synthesizing Artifact Lifecycles from Activity-Centric Process Models
	Merging Collaborating Processes of Inter-Organizational Business Process (IOBP) Models
	Constructing Activity-Centric Process Models from Artifact-Centric Process Models

	Thesis Contributions
	An Approach to Synthesize Artifact Lifecycles from Activity-Centric Process Models
	An Approach to Merge Collaborating Processes of Activity-Centric IOBP Models
	An Approach to Construct Activity-Centric Process Models from Artifact-Centric Process Models

	Thesis Outline

	Literature Review
	Activity-centric business process modeling
	Process Modeling
	Process Realization
	Inter-Organizational Business Process Modeling

	Artifact-centric business process modeling
	Process Design Methodology
	Process Discovery and Construction
	Process Specification and Verification
	Inter-Organizational Business Process Modeling
	Process Realization

	Process Model Transformation
	Process Tree Generation
	Artifact Lifecycle Synthesis

	Process Model Merging
	Process Model Construction
	Summary

	Synthesizing Artifact Lifecycles from Activity-Centric Process Models
	Motivating Example
	Problem Statement and Definitions
	The Synthesis Approach
	Algorithms
	Building a Process Tree
	Generating Artifact Lifecycles
	Refining and Synchronizing Artifact Lifecycles

	Evaluation
	Case Study
	Implementation
	Experimental Discussion
	Performance Analysis

	Discussion and Related Work
	Summary

	Merging the Collaborating Processes of Activity-Centric Inter- Organizational Business Process Models
	Motivating Example
	Problem Statement and Definitions
	The Merge Approach
	Process Interaction Patterns
	Merge Overview
	Types of Merge

	Algorithms
	Parallel Merge: Merging Non-Synchronous Nodes
	Interactive Merge: Merging Synchronous and Asynchronous Nodes

	Evaluation
	Case Study
	Implementation
	Experimental Discussion
	Performance Analysis

	Discussion and Related Work
	Summary

	Constructing Activity-Centric Process Models from Artifact-Centric Process Models
	Motivating Example
	Problem Statement and Definitions
	Approach Overview
	Algorithms
	Model Construction
	Extract Model Traces
	Trace-based Analysis

	Evaluation
	Case Study
	Implementation
	Experimental Discussion and Analysis

	Discussion and Related Work
	Summary

	Conclusion and Future Directions
	Thesis Contributions
	The Synthesis Approach
	The Merge Approach
	The Construction Approach

	Limitations and Possible Improvements
	Future Research Directions
	Internet-of-Things (IoT)
	Block Chain

	References
	Appendices
	Appendix

