
NOVEL METHODS FOR

DISTRIBUTED AND

PRIVACY-PRESERVING DATA

STREAM MINING

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTER AND INFORMATION SCIENCES

Supervisors

Associate Professor Russel Pears

Dr. Muhammad Asif Naeem

March 2019

By

Benjamin James Denham

School of Engineering, Computer and Mathematical Sciences

Abstract

The growing number of “big” datasets present many opportunities for data mining,

but also raise a variety of new challenges. Datasets may take the form of continuous

streams with constantly changing patterns, they may be too widely distributed to be

centralised for analysis at a single location, or they may contain sensitive values that

data owners are not willing to share due to privacy concerns. Much past research has

considered these issues individually, but few existing methods can address combina-

tions of these properties. Therefore, this research develops methods for distributed

and privacy-preserving data stream mining: a novel Hierarchical Distributed Stream

Miner (HDSM) that learns relationships between the features of separate streams with

minimal data transmission to central locations, and two data perturbation methods

for privacy-preserving stream mining based on the combination of random projection,

random translation, and additive noise. Experimental evaluation of HDSM demonstrates

significant improvements in classification accuracy over existing distributed stream min-

ing approaches while minimising data transmission and computational costs. HDSM’s

ability to dynamically trade-off accuracy with these costs is also demonstrated. Varia-

tions of the known input-output Maximum A Posteriori (MAP) attack are developed

to experimentally evaluate the data perturbation methods, and the proposed composite

methods are shown to achieve a better trade-off between privacy and model accuracy

than random projection alone. Finally, an approach is described for combining HDSM

with data perturbation to achieve distributed privacy-preserving stream mining.

2

Contents

Abstract 2

Attestation of Authorship 9

Publications 10

Acknowledgements 11

Glossary 12

1 Introduction 16
1.1 Data Stream Mining . 17
1.2 Distributed Data Mining . 18
1.3 Privacy-Preserving Data Mining . 18
1.4 Research Objective and Contributions 20
1.5 Thesis Structure . 21

2 Related Work in Distributed Data Mining 23
2.1 Existing Methods for Vertically Distributed Data Mining 24
2.2 Foundational Distributed Data Mining Approach 25

3 Proposed HDSM Architecture for Distributed Stream Mining 27
3.1 Trouble Site Hierarchies . 27
3.2 Protocol for Regulating Data Transmission 32
3.3 Learning Trouble Site Hierarchies . 35

3.3.1 Monitor Thresholds . 38
3.4 Alternative Aggregation Methods . 40

4 Experimental Evaluation of HDSM 41
4.1 Performance Evaluation Metrics . 42
4.2 Demonstration of Dynamic Trouble Site Hierarchy 43
4.3 HDSM Performance Evaluation and Comparison 48
4.4 Suitability of HDSM for Anytime Classification 57
4.5 HDSM Parameter Sensitivity Analysis 60
4.6 Limitations and Applicability of HDSM 61

3

5 Variations of HDSM 63
5.1 Batch Transmission . 63
5.2 Two-Phase Trouble Record Transmission 64
5.3 Alternative Confidence Threshold . 66
5.4 Alternative Trouble Record Selection 69

5.4.1 Alternative Metric for Selecting Trouble Records 72
5.4.2 Communication of Confidence Distributions 74
5.4.3 Selecting Trouble Sites . 77

5.5 Additional Variations . 78
5.6 Section Summary . 78

6 Related Work in Privacy-Preserving Data Mining 79
6.1 Existing Techniques for PPDM and PPDP 79

6.1.1 Secure Multiparty Computation 79
6.1.2 Anonymisation . 80
6.1.3 ε-Differential Privacy . 80
6.1.4 Data Perturbation . 81

6.2 Methods for Privacy-Preserving Data Perturbation 82
6.2.1 Additive Noise . 82
6.2.2 Random Rotation . 83
6.2.3 Random Projection . 84

6.3 Attacks on Random Projection . 84
6.3.1 Known Sample Attacks . 85
6.3.2 Known Projection Matrix Attacks 85
6.3.3 Known Input-Output Attacks 85

7 Proposed Perturbation Methods for Privacy-Preserving Stream Mining 87
7.1 Data Perturbation Methods . 87

7.1.1 Foundational Random Projection Model 87
7.1.2 Random Projection with Independent Noise 89
7.1.3 Random Projection with Cumulative Noise 90
7.1.4 Comparison of Independent and Cumulative Noise 91
7.1.5 Interpolating Cumulative Noise Between Known Points 93
7.1.6 Data Perturbation Efficiency . 94
7.1.7 Applying Noise to the Random Projection Matrix 95

7.2 Known Input-Output Attacks . 95
7.2.1 Notation . 96
7.2.2 Known Input-Output MAP Attack on Random Projection . . . 96
7.2.3 Extended MAP Attack for Random Translation 98
7.2.4 Extended MAP Attack for Independent Noise 99
7.2.5 Extended MAP Attack for Cumulative Noise 101
7.2.6 Numerical Optimisation . 103
7.2.7 Attacks When p ≥m . 104

4

8 Experimental Evaluation of Proposed Perturbation Methods 106
8.1 Experimental Setup . 107
8.2 Datasets . 108
8.3 Attack Type Comparison . 111

8.3.1 Attack Execution Time Comparison 113
8.4 Perturbation Method Comparison . 116
8.5 Trend Analysis for Cumulative Noise Perturbation 122

9 Integrating Data Perturbation Methods into Distributed Stream Mining 126
9.1 Secure Multiparty Data Perturbation . 127

9.1.1 Decomposing the Perturbation Process for Distributed Compu-
tation . 128

9.1.2 Secure Sum Protocol for Partial Perturbed Records 131

10 Conclusions and Future Work 135
10.1 Research Achievements . 135
10.2 Limitations . 137
10.3 Future Work in Distributed Data Stream Mining 138
10.4 Future Work in Privacy-Preserving Data Stream Mining 139

References 141

Appendices 147

A Quantile Threshold Examples and Proofs 147
A.1 Agreement Extrema . 147
A.2 Example of Agreement in the Case of Unequal Record Transmissions 148
A.3 Reduction Coefficient Extrema . 149
A.4 Two-Phase Reduction Coefficients Extrema 149
A.5 First-Phase Transmission Equality . 151
A.6 Two-Phase Transmission Limits . 151

B HDSM Data Compression 153
B.1 Key Compression . 153
B.2 Feature Compression . 155

C Omitting Unconfident Classifications in HDSM 157

5

List of Tables

4.1 Effects of HDSM’s trouble site hierarchy on performance with a concept
drifting data stream. 45

4.2 Properties of datasets used for distributed stream mining performance
evaluation. 50

4.3 Distributed stream mining accuracy comparison. 52
4.4 Distributed stream mining resource time comparison. 55
4.5 HDSM performance as a function of trouble factor. 56
4.6 Sensitivity analysis of HDSM parameters. 61
4.7 Comparison of HDSM and centralised model accuracy. 62

5.1 Example distributions of schemas in example data stream. 70
5.2 Example classification confidences assigned to example schemas at

primary sites. 70

8.1 Properties of datasets used for experimental evaluation. 108
8.2 Attack types evaluated for each perturbation method. 112
8.3 Perturbation method legend for Figures 8.3, 8.4, and 8.5. 116

6

List of Figures

3.1 Physical view of the HDSM architecture. 28
3.2 Continuous process for creating, removing, and un-blacklisting HDSM

trouble sites. 36

4.1 Timeline of accuracy and data transmission for the synthetic cross-term
dataset with concept drift points. 46

4.2 Timeline of trouble site [3,2] creation (agreement) and removal (utili-
sation and accuracy) monitors for the synthetic cross-term dataset with
concept drift points. 47

4.3 Critical difference diagram showing the statistically significant differ-
ences in accuracy between distributed stream mining algorithms. . . . 52

4.4 Accuracy and resource time ranks for HDSM Voting and DStack classi-
fiers. 57

4.5 Effect of anytime classification on HDSM accuracy and resource time. 59

5.1 Plot of expected agreement as the proportion transmitted from primary
sites to trouble sites is varied for the example data stream. 71

5.2 Plot of expected agreement as the proportion transmitted from primary
sites to trouble sites is varied for the example data stream when trouble
records are selected according to the T score. 73

7.1 Comparison of independent and cumulative noise when the total noise
of each approach is equal. 92

8.1 Comparison of MAP attacks on perturbation with RPIN and RPCN
applied to the TAXI dataset. Legend in Table 8.2. 114

8.2 Comparison of the execution time of MAP attacks on the TAXI dataset. 115
8.3 Trade-off between accuracy and privacy for different perturbation meth-

ods applied to the RBF dataset. 117
8.4 Trade-off between accuracy and privacy for different perturbation meth-

ods applied to the TAXI dataset. 118
8.5 Trade-off between accuracy and privacy for different perturbation meth-

ods applied to the ELEC dataset. 119
8.6 Critical difference diagram for the accuracy/privacy trade-off evaluation

of perturbation methods at different noise levels. 121

7

8.7 Trends of record recovery as the distance between known and unknown
records increases in a data stream perturbed with RPCN. 122

8.8 Trends of accuracy over the course of data streams perturbed with RP,
RPIN, and RPCN. 124

8.9 Trends of ARF tree depth over the course of the TAXI data stream
perturbed with RP, RPIN, and RPCN. 125

8

Attestation of Authorship

I hereby declare that this submission is my own work and
that, to the best of my knowledge and belief, it contains no
material previously published or written by another person
nor material which to a substantial extent has been accepted
for the qualification of any other degree or diploma of a
university or other institution of higher learning.

Signature of student

9

Publications

Denham, B., Pears, R., & Naeem, M. A. (2018). HDSM: A Distributed Data Mining
Approach to Classifying Vertically Distributed Data Streams. Manuscript submitted
for publication to Knowledge-Based Systems.

Denham, B., Pears, R., & Naeem, M. A. (2019). Combining Random Projection
and Additive Noise for Privacy-Preserving Data Stream Mining. Manuscript in
preparation for submission to Knowledge-Based Systems.

10

Acknowledgements

Firstly, my chief thanks is to my supervisors Associate Professor Russel Pears and Dr.
Muhammad Asif Naeem for their contributions and support in this research. I have
learned a great deal from them about research and data mining, and their insightful
feedback has challenged me to strive for deeper understanding. I would also like to
acknowledge all of my past lecturers and teachers who have equipped me with the skills
and knowledge I used in completing this thesis.
Thanks to my past and present colleagues at Catalyst and Spectrum, who have endured
my endless monologues about machine learning and Clojure. I am especially grateful to
my managers Katrina Bassett and Patrick Brennan, who have been incredibly supportive
of my postgraduate studies. Also, a special thanks to Dr Grant Paton-Simpson for his
consistently wise advice regarding work, study, and life.
Thank you to all my friends and family for their love and encouragement. Thanks
particularly to Berend and Dieuwe de Boer, my mentor and best friend, who introduced
me to and have guided me in the art of software development. My utmost thanks must
go to my mother Shona, who has been the greatest supporter of all my endeavours, and
to my father Paul, who sparked my life-long interest in computers.
Finally, I give thanks to my God, who has provided me with opportunities and strength
throughout my life, and to whose glory I have performed this research.

11

Glossary

Term Definition
ε-privacy breach An attempt to recover the original values of a perturbed

record that results in a relative error less than ε.
A-RP A type of known input-output MAP attack against the RP

data perturbation method.
A-RPCN An extension of the A-RP attack type that accounts for the

cumulative noise of the RPCN data perturbation method.
A-RPCN-1 A variation of the A-RPCN attack type that only uses

the single known input-output pair that is closest in the
stream to the unknown record that is being attacked.

A-RPIN An extension of the A-RP attack type that accounts for the
independent noise of the RPIN data perturbation method.

A-RPIN-1 A variation of the A-RPIN attack type that only uses the
single known input-output pair that is closest in the stream
to the unknown record that is being attacked.

Additive noise A data perturbation method that involves adding values
drawn from a random distribution to data values.

Agreement The proportion of trouble records transmitted to a trou-
ble site that were processed at the trouble site because
fragments were received from all source sites.

Aggregator The site in the HDSM architecture that receives classi-
fication results from all primary and trouble sites and
aggregates them to produce the final classification for
each record.

Concept drift Changes in the underlying patterns of a data stream that
can occur abruptly or gradually over time.

Confidence threshold In HDSM, record fragments classified with a confidence
below their site’s confidence threshold will be forwarded
to a trouble site as a trouble record.

Continued over page

12

13

Term Definition
Cross-term A relationship or pattern among the record features dis-

tributed across multiple sites that can only be discovered
by viewing the data from the combined perspective of
those sites.

Cumulative noise A form of additive noise that perturbs a data stream by
adding to each record the sum of a small random value
and all of the random values that were added to previous
records in the stream.

DDM Distributed Data Mining: A class of techniques for per-
forming data mining when data is distributed across mul-
tiple, geographically separate sites.

Data perturbation A method for PPDM or PPDP that involves distorting data
values to prevent the original values being discovered by
an attacker.

Distance-preserving
perturbation

A class of data perturbation methods that do not change
the magnitudes of the difference vectors between pairs
of record vectors; a property that preserves utility for
common data mining tasks.

HDSM Hierarchical Distributed Stream Miner: A novel architec-
ture proposed by this research for distributed data stream
mining that makes use of a hierarchy of trouble sites
to minimise data transmission while maximising model
accuracy.

Horizontal distribution The distribution of data records across sites such that
each site has the same set of features for a unique set of
records.

Independent noise A form of additive noise that perturbs a set or stream of
data records by adding a random value to each record.

Known I/O attack Known input-output attack: A class of privacy-breaching
attack types that attempts to recover the original values
of a record by making use of prior knowledge in the form
of a set of known input-output pairs.

Known input-output
pair

A form of prior knowledge for a privacy-breaching attack:
a known record from the original dataset and its perturbed
equivalent.

MAP attack Maximum A-Posteriori attack: A class of privacy-
breaching attack types that utilise a Bayesian model to
estimate the original values of perturbed records based on
some prior knowledge.

Continued over page

14

Term Definition
PPDM Privacy-Preserving Data Mining; A class of techniques

for performing data mining without disclosing sensitive
information from the raw data to the data miner.

PPDP Privacy-Preserving Data Publishing; A class of tech-
niques for removing sensitive information from datasets
so that they may be published for use by data miners.

Prequential evaluation An execution environment for evaluating online classi-
fication accuracy where the classifier is used to classify
and is then immediately trained on each record.

Primary site A site in the HDSM architecture that initially receives a
vertical fragment of each record, which it uses to build a
local classification model.

RP A data perturbation method based on a combination of
random projection and random translation.

RPCN An extension of the RP data perturbation method that
incorporates cumulative additive noise.

RPIN An extension of the RP data perturbation method that
incorporates independent additive noise.

Random projection An approximately distance-preserving data perturbation
method that involves performing a multiplication of each
record with a randomly generated matrix to project each
record into a different feature space that may be of a
different dimensionality.

Random translation A distance-preserving data perturbation method that in-
volves adding to each record value a fixed value that
is generated randomly for each feature, such that each
record is translated by the same fixed vector.

Record fragment A partial record consisting of only a subset of the features
for that record. More specifically known as a vertical
record fragment.

Relative error The magnitude of the Euclidean distance between a data
record vector and its estimate recovered by a privacy-
breaching attack, normalised to the magnitude of the
original record vector.

SMC Secure Multiparty Computation: A class of techniques
for performing distributed computations involving data
from multiple parties in such a way that the correct result
can be produced without any party gaining knowledge of
the raw data of any other party.

Source site A primary or trouble site that may forward trouble records
to another trouble site.

Continued over page

15

Term Definition
Trouble factor A configuration parameter for each trouble site in the

HDSM architecture that determines the proportion of the
data stream that will be transmitted to that trouble site in
the form of trouble records.

Trouble record A record fragment transmitted from a source site to a
trouble site because it was classified with low confidence.

Trouble site A site in the HDSM architecture that receives and joins
trouble records from a set of source sites, which it uses
to build a classification model to capture cross-terms be-
tween the source sites’ feature sets.

Trouble site blacklist
monitor

A monitor in the HDSM architecture that performs con-
cept drift detection to determine when to remove a trouble
site from the blacklist so that it may be re-created.

Trouble site creation
monitor

A monitor in the HDSM architecture that determines
when to create a new trouble site for a potential set of
source sites based on the level of agreement among the
source sites.

Trouble site order The depth of a trouble site in the HDSM architecture’s
site hierarchy. Each primary site can be considered to
be of order 0, and each trouble site’s order is one greater
than the maximum order among its source sites.

Trouble site removal
monitor

A monitor in the HDSM architecture that determines
when to remove and blacklist a trouble site for either low
utilisation as the final classification or low classification
accuracy.

Vertical distribution The distribution of data records across sites such that
each site has a unique set of features for the same set of
records.

Chapter 1

Introduction

The dawn of the Big Data age has presented many opportunities for applying data

mining to discover patterns across large and diverse collections of data. However,

mining these big datasets also presents a number of challenges. Typical data mining

methods often assume that a dataset:

• Is of a fixed-size and is a representative sample of a static population (i.e. there

are no continuous temporal dynamics in the dataset’s patterns).

• Is available for analysis at a single physical location.

• Can be disclosed in its entirety to data miners without concerns relating to the

privacy of individuals represented in the dataset.

However, none of these assumptions may apply for many datasets that are promising

candidates for data mining. Increasing numbers of home and personal devices can

now be considered part of the Internet of Things (IoT), and are continuously producing

streams of sensor readings. Together these IoT devices form distributed sensor networks

that can be mined to better understand environments and user behaviour. However,

producing a model from the readings of such a network requires continual adaptation

16

Chapter 1. Introduction 17

to changes in the underlying patterns over time. Furthermore, it can be impractical to

transmit all readings to a single location for centralised analysis when (1) there are

many sensors in the network, (2) sensors are widely distributed geographically, or (3)

new readings are produced too frequently. Finally, if sensor measurements are related

to the private information of one or more individuals or organisations, then sharing the

data in its raw form may result in breaches of privacy. Personal geolocation readings

present obvious privacy concerns, but there are also less obvious risks. For example, it

has been demonstrated that electricity smart meter readings can reveal daily household

routines and even the types of appliances in use (Basu, Debusschere & Bacha, 2013).

Some organisations may also wish to share their private data streams for collective

analysis, such as medical facilities sharing anonymised patient records for the purpose

of rapidly detecting international disease outbreaks (Obenshain, 2004).

In response to each of these challenges, researchers have developed the fields of

data stream mining, distributed data mining, and privacy-preserving data mining.

1.1 Data Stream Mining

Data stream mining algorithms have been developed to learn from continuous streams

of data records (Bifet & Kirkby, 2009). In order to cater for high stream velocity, such

algorithms are designed to scan and process each record only once, and therefore avoid

the storage of a large sample of records for training/learning. In the case of supervised

learning algorithms, this also means a prediction for each record can be produced as

soon as it is received, enabling near-real-time analysis. Additionally, these algorithms

are designed to adapt to changes in the underlying patterns of the data stream (so-called

concept drift).

Online classifiers are an example of data stream mining algorithms. Online classi-

fiers are supervised learners that use nominal and numeric features to assign one of a set

Chapter 1. Introduction 18

of class values to each record that is processed. As online classification is an example

of a typical stream mining problem, it is used to describe and evaluate many of the

methods developed in this research, although the methods are amenable to other stream

mining problems.

1.2 Distributed Data Mining

It is not always possible to analyse a dataset in one physical location. Some datasets are

so large that they must be distributed for efficient processing, while others are inherently

geographically distributed across autonomous sites. Even if data centralisation is

feasible, it is still wasteful of network resources to unnecessarily transmit data that can

be mined locally. Research into distributed data mining (DDM) has sought to address

these issues by devising methods of combining distributed “local” data mining models

into “global” models while minimising data transmission costs (Devi, 2014).

It is common for data streams to be mined to also be inherently distributed, such as

streams originating from mobile devices (Rehman, Liew, Wah & Khan, 2017) or the

logs of multiple web-servers that can be used to model customer behaviour and detect

anomalies in web traffic (Samuelsson, 2016).

1.3 Privacy-Preserving Data Mining

Many individuals and organisations are naturally reluctant to share their data when it

is sensitive and may compromise their privacy, thus limiting the availability of such

valuable data for mining. The consequences of inadequately considering privacy before

sharing data are apparent in the case of the Netflix Prize dataset, where it was shown

that individual users could be identified by cross-referencing their public movie ratings

on the Internet Movie Database (Narayanan & Shmatikov, 2008).

Chapter 1. Introduction 19

In order to address such concerns, the data mining community has developed

techniques for privacy-preserving data mining (PPDM) and privacy-preserving data

publishing (PPDP) (T. Wang, Zheng, Rehmani, Yao & Huo, 2018). While PPDM is

concerned with preserving privacy during the activity of data mining, the aim of PPDP

is to produce a sanitised version of a dataset that can be safely shared. Such methods

transform sensitive data into a form that preserves data privacy while ensuring that

models built from such data have minimal loss of accuracy when compared to models

built from the original data. This often results in a trade-off between accuracy and

privacy: the more privacy is guaranteed, the less utility the data will have for analytical

purposes, resulting in reduced model accuracy. However, it must be emphasised that in

sensitive data environments, privacy is paramount. Model accuracy becomes important

only if guarantees on the level of privacy can be offered. Optimising the trade-off

between privacy and data utility is a driving force behind continuing developments.

Furthermore, new attacks against proposed privacy-preservation methods are constantly

being devised (Okkalioglu, Okkalioglu, Koc & Polat, 2015).

If each source site of a distributed dataset is owned by a different individual or

organisation, then privacy-preservation may be a necessary pre-requisite for sharing

data between sites. Furthermore, when attempting to preserve the privacy of a data

stream, it must be ensured that:

1. The privacy-preserving protocol or transformation is efficient enough to cope

with the velocity of the data stream

2. If privacy is only a concern for a certain duration, then attacks that attempt to

breach the privacy of the stream must require such a level of computation so as to

render any recovered data obsolete during the time taken to execute the attack.

Chapter 1. Introduction 20

1.4 Research Objective and Contributions

While each of the fields identified above has been extensively researched (Bifet &

Kirkby, 2009; Devi, 2014; T. Wang et al., 2018), there has been relatively little research

into methods that account for datasets with multiple challenging properties. Adhikari,

Adhikari and Pedrycz (2016) considered distributed data mining methods for data

streams an open research problem. At the same time, existing approaches for privacy-

preserving data stream mining are either limited in scope to a certain class of mining

algorithms or are not applicable when combining distributed streams (as reviewed in

Chapter 6).

Therefore, the objective of this research was to develop new methods to enable

distributed and privacy-preserving data stream mining. The following contributions

have been produced by this research:

• A novel Hierarchical Distributed Stream Miner (HDSM) for distributed data

stream mining, which:

– Supports the autonomous creation of local classification models at each

source site that produces its own data stream.

– Augments local classification capability by automatically building classifiers

that learn and adapt to changes in relationships between record fragments

located at different source sites.

– Utilises a data transmission protocol that minimises data transmission vol-

ume while providing superior accuracy to previously proposed distributed

mining approaches, as demonstrated through experimentation.

– Is able to dynamically trade-off between model accuracy and CPU resource

utilisation time, as demonstrated through experimentation.

Chapter 1. Introduction 21

• Novel data perturbation methods for privacy-preserving data stream mining that

leverage random projection, random translation, and additive noise, including:

– Two novel methods for privacy-preservation based on different forms of

additive noise that are designed to operate in a data stream environment.

– Adaptations of the previously proposed known input-output Maximum A

Posteriori (MAP) attack on random projection to account for the addition of

random translation and additive noise.

– An experimental evaluation of the proposed data perturbation methods and

their respective attacks, including conducting the first experimental study of

the performance of random projection in the context of online classification

as far as could be determined from an extensive literature review.

• A description of how the distributed data stream mining and privacy-preservation

methods can be combined in practice to achieve a distributed privacy-preserving

data stream mining architecture.

1.5 Thesis Structure

The remainder of this thesis is divided into two primary sections.

The first section covers the proposed HDSM architecture for distributed data stream

mining and is comprised of Chapters 2-51. Chapter 2 discusses previous work in the

area of distributed data mining. Chapter 3 then presents the architecture of HDSM

for distributed data stream mining. The experimental results that demonstrate the

performance and benefits of HDSM are presented next in Chapter 4. To conclude the

1A paper based on the research presented in Chapters 2-4 has been submitted for publication to
Knowledge-Based Systems as “HDSM: A Distributed Data Mining Approach to Classifying Vertically
Distributed Data Streams”.

Chapter 1. Introduction 22

section, Chapter 5 describes possible variations of HDSM to improve transmission

efficiency and model accuracy under certain conditions.

The second section covers the proposed data perturbation methods for privacy-

preserving data stream mining and is comprised of Chapters 6-82. Chapter 6 reviews the

development of privacy-preservation methods and the attacks that have been proposed

to counter them. Chapter 7 describes the elements and properties of the proposed

composite data perturbation methods, as well as the proposed novel attack types for

breaching their privacy. Then, Chapter 8 presents an experimental evaluation of the

effectiveness of attacks on different perturbation methods and the accuracy that can be

achieved when performing online classification with perturbed datasets.

Finally, Chapter 9 discusses how HDSM and the data perturbation methods can be

combined in practice, and Chapter 10 summarises the achievements of the research,

including a discussion of its limitations and the opportunities it has created for future

work.

2A paper based on the research presented in Chapters 6-8 is in preparation for submission to
Knowledge-Based Systems as “Combining Random Projection and Additive Noise for Privacy-Preserving
Data Stream Mining”.

Chapter 2

Related Work in Distributed Data

Mining

Distributed data mining assumes that the target dataset is distributed across different

physical sites, and that a global model of the data must be produced with as little

data transmission from the individual sites as possible. According to Park, Ayyagari

and Kargupta (2001), data is typically distributed in one of two ways: Either each

site describes different data records according to the same set of features (known as

horizontal or homogeneous distribution), or each site describes the same records, but

according to a different set of features at each site (known as vertical or heterogeneous

distribution). With vertical distribution, each site essentially has a different view of

the same set of records, and it is generally assumed that all sites share at least one

“unique key” that can be used to join vertical fragments of records from different sites.

Classification of vertically distributed data has been the focus of much prior research,

and is also the focus in this research.

23

Chapter 2. Related Work in Distributed Data Mining 24

2.1 Existing Methods for Vertically Distributed Data

Mining

Past approaches to classifying vertically distributed streams have included merging

classifiers generated at local sites into a combined classifier (R. Chen, Sivakumar &

Kargupta, 2001) and parallelising the construction of a centralised classifier (Kourtellis,

Morales, Bifet & Murdopo, 2016). These approaches involve constructing a “centralised

classifier” at a central site by merging the outputs of local sites, which means that the

classification of a record can only occur when all of its features are available at the

location of the centralised classifier. This is appropriate for the use cases of producing

a model of relationships within the data (R. Chen et al., 2001) or distributing already

centralised data for parallel learning (Kourtellis et al., 2016), but not for performing

online classification with distributed streams. Y. Liu, Xu and Li (2018) present a method

for vertically distributed, online, and semi-supervised classification, but their method is

specific to a support vector machine classifier. A more general approach to vertically

distributed data mining is to apply ensemble learning techniques to aggregate many

local classifications, which can be produced by any kind of classifier. Because ensemble

learning only requires the centralisation of local classifications and not data features,

it can also be used for data stream classification. The key difference between various

ensemble learning techniques is in how they aggregate the local classifications.

Several types of ensemble learning approaches have been used to aggregate results

from local classifiers in the distributed (though not necessarily streaming) context.

Aggregation can be based on local classification confidence, such as selecting the clas-

sification with the maximum confidence (Park et al., 2001), selecting a classification

based on other order statistics (Tumer & Ghosh, 2000), or treating local classification

confidences as probabilities that can be used to approximate a global posterior probabil-

ity (Basak & Kothari, 2004). An approach used by Skillicorn and McConnell (2008)

Chapter 2. Related Work in Distributed Data Mining 25

is to select the classification that receives the majority vote of local sites, optionally

weighting votes by test accuracy (or in a stream mining context, the recently observed

accuracy could potentially be used instead). Alternatively, a “stacked” classifier can be

trained to predict the true classification based on local classifications. Parker, Mustafa

and Khan (2012) use a hierarchy of stacked classifiers to classify vertically distributed

data streams with the ability to learn new classes as they appear over time. However,

not all methods of ensemble aggregation are suitable for fully online stream learning.

For example, those used by Recamonde-Mendoza and Bazzan (2016) require batches

of records to be ranked according to local confidence before applying social choice

functions to merge sets of local rankings.

More recent approaches to classifying vertically distributed, non-streaming data

either produce a “centralised classifier” (T. Li, Li, Liu, Li & Jia, 2018; Y. Li et al., 2017;

Moghadam & Ravanmehr, 2018; Omer, Gao & Mustafa, 2017) or are privacy-preserving

methods that require multiple rounds of communication between sites (Khodaparast,

Sheikhalishahi, Haghighi & Martinelli, 2018). Therefore, these methods are not suitable

for a data stream environment. The most relevant approaches for comparison are

ensembles of local classifiers with aggregation based on maximum confidence (Park et

al., 2001), voting (Skillicorn & McConnell, 2008), and stacking (Parker et al., 2012).

The method of Park et al. (2001) that centralises a small subset of the data is also

suitable for comparison, as it forms the basis for the approach of HDSM (as described

in the following section).

2.2 Foundational Distributed Data Mining Approach

The previous work of most relevance to this research is the work of Park et al. (2001),

which forms the foundation for the architecture of HDSM presented in the next chapter.

In their approach, each local or “primary” site (p-site) constructs a classifier

Chapter 2. Related Work in Distributed Data Mining 26

from its data and identifies a subset of “trouble records” that were classified with a

confidence value below a certain “confidence threshold”. If a particular record appears

in the trouble records of all primary sites, then all fragments of the record are transmitted

to a central “trouble site” (t-site) to be used to train an additional classifier. The

trouble site’s classifier captures relationships (hereafter referred to as cross-terms) that

exist within the data: patterns that can only be discovered by viewing the data from

the combined perspective of more than one site. To classify new records, the models

at each primary site and the trouble site are applied, and the classification results are

transmitted to a central “aggregator”. The classification result that achieved the highest

confidence is then selected as the final classification. Experimentation showed that as

the confidence threshold was increased to allow more data to be sent to the trouble site,

the overall classification accuracy also increased as a result.

There are some limitations of the approach of Park et al. that are addressed by the

HDSM architecture proposed in this research. Firstly, having only a single, central,

trouble site to collect records from all primary sites may not be necessary if cross-terms

exist between the features of only a subset of primary sites. While the problem of data

stream mining was not specifically addressed by Park et al., their approach is generally

amenable for use in classifying data streams. However, it is not equipped to control

data transmission volume in a dynamic stream environment, as is demonstrated in the

following chapters.

Chapter 3

Proposed HDSM Architecture for

Distributed Stream Mining

This chapter describes the proposed HDSM architecture for performing online classifica-

tion on multiple vertically-distributed data streams without joining all record fragments

at a central location. HDSM is based on the previously described approach of Park et al.

(2001), but contains three main extensions to make it applicable to a distributed data

stream mining context, as detailed below.

3.1 Trouble Site Hierarchies

A key limitation of Park et al.’s approach is that there is only one trouble site. This may

result in a large amount of unnecessary data transmission when cross-terms only exist

between the features across some subset of primary sites. Therefore, HDSM allows for

multiple trouble sites, each of which may receive trouble records from only a subset of

two or more primary or trouble sites (a trouble site that considers only a small subset of

features may need to escalate to a higher-level trouble site that considers more features).

Figure 3.1 presents a physical view of the HDSM architecture, which is composed of

27

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 28

multiple primary sites and trouble sites, and a single classification aggregator. The

behaviours of each component are described in Algorithms 1, 2, and 3.

Figure 3.1: Physical view of the HDSM architecture.

Each primary site receives input from a different heterogeneous data stream. The

feature set of each stream may contain a different number of features, and there may

be overlap between feature sets. It is assumed that each feature set will contain a

common “key” feature that is not used for classification, but allows record fragments and

classifications to be merged at trouble sites and the classification aggregator respectively.

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 29

1 Procedure processRecord(site, record):

2 Classify record at site to get the classification;

3 foreach t-site that site may forward to do

4 if classification confidence < threshold from site to t-site then

5 forwardTroubleRecord(t-site, record);

6 end

7 end

8 notifyAggregator(site, record-key, classification,

t-site-forwarding);
Algorithm 1: Procedure for primary site behaviour.

1 Procedure forwardTroubleRecord(t-site, record-fragment):

2 if t-site has received a record-fragment from all source sites then

3 processRecord(t-site, merged-record);

4 else

5 add record-fragment to a size-limited buffer at t-site;

6 end
Algorithm 2: Procedure for trouble site behaviour.

Because each primary site only needs to process data from a single stream, it is logical

for each primary site to be physically located at the source of its data stream. Procedure

processRecord (Algorithm 1) shows how each record that arrives at a primary

site will be classified by a local stream classifier. It is possible to use any stream

classification algorithm at each site, or even different algorithms at different sites, as

long it is possible to produce a confidence value on a scale consistent with all other

sites for the purpose of determining the classification with the highest confidence at the

aggregator.

Each trouble site in the network is connected to two or more “source sites” (either

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 30

1 Procedure notifyAggregator(site, record-key, classification,

t-site-forwarding):

2 log classification as received from site for record-key;

3 foreach t-site in t-site-forwarding do

4 if site forwarded record-key to t-site AND record-key has not been

logged as unexpected from t-site then

5 log that a result for record-key may be expected from t-site;

6 else

7 log that a result for record-key is unexpected from t-site;

8 end

9 end

10 if all p-sites and expected t-sites have provided a classification then

11 aggregate all classifications for record-key into a final-classification;

12 end
Algorithm 3: Procedure for aggregator site behaviour.

primary sites or other trouble sites) that forward trouble records to the trouble site, as

shown in Figure 3.1. A trouble site can be said to be of a certain “order”, which is

one higher than the order of any of its source sites (where primary sites are of order 0).

Procedure forwardTroubleRecord (Algorithm 2) shows that if every source site

for a given trouble site “agrees” a particular record is “trouble”, then that trouble site

will apply its own stream classifier to a merged record containing all of the features

provided by its source sites. If any source site does not forward its fragment of a record

as trouble, then the trouble site does not need to process that record, as the classification

confidence was high enough at that source site to serve as a classification for the record

without additional processing. To prevent a trouble site from waiting indefinitely for

a record fragment that will never be sent, a fixed-size buffer may be used to store

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 31

incoming record fragments. If all of the fragments arrive for a particular record, then

it can be removed from the buffer and processed. However, if some fragments of a

record never arrive, then it will eventually be removed from the end of the buffer to

make space for new incoming record fragments. Furthermore, if the key values for each

record are known to arrive at primary sites in a sequential order (such as a timestamp

identifier), then a trouble site may choose to stop waiting for the fragments of records

from a particular source site if it receives a record from it with a later sequential key.

Every site (primary or trouble) within the network must forward its classification

and confidence for each record it processes to the “classification aggregator”, which

provides the final classification for all records. The simplest aggregation method, used

by Park et al., is to select the classification with the highest confidence. Procedure

notifyAggregator (Algorithm 3) shows how the aggregator keeps track of which

trouble sites a classification may be “expected” from (because at least one of its source

sites declared that it was forwarding the record to that trouble site) and which trouble

sites a classification is definitely “unexpected” from (because at least one of its source

sites declared that it was not forwarding the record to that trouble site). In this way, the

aggregator is able to produce a final classification as soon as all primary and trouble

sites that will process the record have provided their classifications.

It is assumed that each site will eventually receive the true classification label of

each record it processes, so that it may train its stream classifier with them. A trouble

site will only be trained on a particular record if there is agreement between its source

sites; it cannot be trained if it does not have the combination of features from all of its

source sites.

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 32

3.2 Protocol for Regulating Data Transmission

Park et al. used a static confidence threshold to determine which records to forward as

trouble records, which may result in vastly different volumes of data being forwarded

depending on how confident a site’s classifier is. This is acceptable when dealing

with non-streaming data, as the static threshold can be selected after evaluating the

distribution of confidence values achieved at each primary site. However, in a data

stream mining context, the confidence of site classifiers may change over time, which

could lead to overloading trouble sites with more data than they are capable of receiving.

HDSM addresses this problem: each source site forwards a fixed proportion of its

records below a “quantile threshold” that is determined by the volume of data the

trouble site can process. By finding the rank of a confidence value within a sliding

window of recent local classification confidences, a site can determine whether that

confidence value falls below the quantile threshold.

A number of different factors must be taken into account when determining the

quantile threshold. Firstly, the combined volume of data forwarded from all source sites

should be approximately equal to the volume of data that can physically be processed by

the trouble site, irrespective of the number of source sites or the size of the feature set

each provides. Secondly, the proportion of records forwarded from a particular trouble

site should not be affected by the level of “agreement” at that site (i.e. the proportion of

received record fragments that were actually processed). Finally, the number of trouble

records sent by each source site should be approximately equal, even though record

fragments from different source sites may be of different sizes. Because a trouble record

is only processed at a trouble site if fragments are received from all source sites, it is

not worthwhile sending more trouble records from one source site than from another.

Before an expression for the quantile threshold can be defined, a method for quan-

tifying the agreement at a particular trouble site must be established, which should

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 33

represent the probability that all source sites agree any received record is “trouble”. To

measure the agreement, a trouble site must maintain a sliding “agreement window” with

entries for each unique record received by the site. Each entry records the number of

source sites that forwarded their fragment of that unique record. Consider a scenario

involving three records (A, B and C) and four source sites sending record fragments

to a single trouble site. The first three source sites send fragments of records A and B

in sequence, while the fourth sends fragments of records A and C in sequence. This

transmission will result in three window entries: [4,3,1] (record A was forwarded by

all 4 source sites, B by 3 source sites, and C by only a single source site). Out of the

record fragments sent from each source site, there was agreement on only one record

(A) which accounts for 4 matches out of a total transmission of 8 fragments, and so the

level of agreement is 0.5, as illustrated by Equation (3.1).

at = s

⎛
⎜⎜⎜⎜
⎝

∣w∣

∑
i=1
I(wi = s)

∣w∣

∑
i=1
wi

⎞
⎟⎟⎟⎟
⎠

(3.1)

Equation (3.1) defines the level of agreement at at a trouble site t; s is the number of

source sites that feed data to the trouble site; I(k) is the identity function that returns 1 if

k is true and 0 otherwise, and wi is the ith entry in the “agreement window”. Therefore,

I(wi = s) equals 1 if there is agreement for the ith entry, and 0 otherwise. Applying

Equation (3.1) to the example above results in: at = 4 × 1
8 = 0.5.

To quantify the diminishing number of records transmitted between successive

trouble sites (as more features are processed, fewer records can be processed), the

concept of a reduction coefficient needs to be defined. This reduction coefficient

represents the probability that a site will both receive and process any given record.

Equation (3.2) defines an expression for computing the reduction coefficient (rs) at site

s. For primary sites, which process all records entering the system, the rs coefficient is

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 34

always equal to 1. For a trouble site, rs is the product of the trouble site’s agreement

(as) with a scaling factor (ks) that regulates the maximum number of records that can

be processed at a given trouble site. The scaling factor takes into account the processing

capacity of a trouble site; a scaling factor of ks indicates that the trouble site is capable

of processing ks times the combined volume of data available at its source sites. The

scaling factor is expressed in terms of a user-configured trouble factor (ts), which

allows the user to control the volume of data that will be processed at a trouble site

independently of the sizes of its source sites’ feature sets. A typical trouble factor would

be the maximum feature set size of any primary site, which indicates that the trouble

site is capable of receiving the same volume of data as any primary site.

ls =
ms

∑
i=1

lis ks =
ts
ls

rs =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if s is a primary site

as ×min (1, ks) otherwise

(3.2)

where ls is the size of the feature set at site s, ms is the number of features processed at

site s, and lis denotes the size of feature i at site s.

Having defined agreement and the reduction coefficient, Equation (3.3) can now be

used to compute the quantile threshold (qs⇒d)1 that determines the fraction of records

that will be forwarded from a given source site s to a destination trouble site d.

qs⇒d = min(1,
kd
rs

) (3.3)

Equation (3.3) shows that the quantile threshold is essentially the quotient of the

scaling factor that can be tolerated at the destination site d divided by the reduction

factor achieved at the source site s.

Note that when the source site s happens to be a trouble site, the quantile threshold

1Proofs and examples related to this quantile threshold and its components are given in Appendix A.

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 35

becomes inversely proportional to the agreement at s (through the definition of rs).

This means that a trouble site with low agreement may send nearly all of the records it

processes to a subsequent trouble site. Because of this and the fact that a trouble site

with low agreement will make use of far less data than it receives; trouble sites with low

agreement should be avoided in practice.

This quantile-based approach to controlling data transmission ensures that a trouble

site receives a proportion of the dataset that is within its processing capacity, and no

more. This control is exercised by the trouble factor parameter, and solves the issue of

flooding a trouble site with too many records when the confidences of its source sites’

classifiers drop.

3.3 Learning Trouble Site Hierarchies

By supporting multiple trouble sites, HDSM allows many possible trouble site hierar-

chies for a given set of primary sites. Some trouble site hierarchies may be partially

or entirely determined by physical limitations, such as introducing trouble sites for

groups of physically neighbouring primary sites. In other cases, where there is no

practical basis for a particular configuration, a hierarchy must be selected that achieves

the best classification accuracy gains with the least data transmission. The optimal

hierarchy will contain trouble sites that capture cross-terms between the features of

different primary sites. Furthermore, as the underlying patterns and cross-terms in

the data streams change over time, trouble sites may need to be added and removed

from the hierarchy to optimise performance. The following section presents an online

approach to learning and adapting the trouble site hierarchy.

To begin learning the trouble site hierarchy, the system can be initialised with a

minimal structure consisting solely of the primary sites and the required classification

aggregator, with no trouble sites. Figure 3.2 demonstrates three sets of “monitors” that

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 36

Figure 3.2: Continuous process for creating, removing, and un-blacklisting HDSM
trouble sites.

will then add or remove trouble sites based on the classification results of the system.

Firstly, the “trouble site creation monitors” watch for possible sets of source sites that

achieve agreement above a threshold for a sufficient period of time, which indicates a

new trouble site should be created. Step 1 shows the creation of a trouble site along

with a “trouble site removal monitor” to evaluate both how often it is used for the final

classification and how accurate it is when used. The trouble site will be removed (step

2) if its utilisation or accuracy drops below a threshold for a sufficient period of time,

and it will also be added to a “blacklist” of trouble sites that should not be recreated

until they are “un-blacklisted”. The “trouble site blacklist monitors” then watch for

concept drifts in the data streams that indicate a trouble site should be un-blacklisted

(step 3), which will allow a creation monitor to recreate them if and when appropriate.

To make these evaluations, each type of monitor must receive for each record: the

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 37

final classification result of the system; the identifier of the site that provided the final

classification; the individual classifications and confidences of each site; and finally, a

representation of the current structure of the hierarchy. The remainder of this section

describes the behaviour of each type of monitor in more detail.

A creation monitor will always exist for each combination of existing sites that

could be used as the source sites for a new trouble site, provided that trouble site is

not currently blacklisted. In the current implementation of HDSM, the set of potential

source site combinations is limited to prevent an explosion of monitors when there are

many potential trouble sites. Specifically, potential source sites must not already be

acting as a source site to a different trouble site, which reduces redundant transmission

of the same features to multiple trouble sites. Additionally, only pairs of source sites

are allowed, as agreement will generally drop with a greater number of source sites,

resulting in more fruitless data transmission. Each creation monitor uses the same

window-based agreement monitoring method described in the previous section, but only

considers records that were classified incorrectly by the entire HDSM classifier, as there

is no need to improve the classifications of records that are already classified correctly.

If the level of agreement in the window rises above a threshold (Ta) for a configured

“threshold-time-period” (a number of records), then the trouble site is created.

A trouble site must be removed when it ceases to provide a meaningful benefit

to the accuracy of the overall classifier, typically when there is some concept drift in

the data streams. It is also possible that a trouble site never provides a meaningful

benefit, as creation monitors must decide whether to create trouble sites based on limited

information that may not reflect the actual benefit of the trouble site to the accuracy

of the system. It is also important that a trouble site being used as a source site for

another trouble site is not monitored for removal, as the subsequent trouble site may

be providing a benefit even if the intermediary trouble site is not. A removal monitor

will use sliding windows to monitor both how often the trouble site is used as the

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 38

final classification of the overall classifier, and the accuracy it achieves when it is. If

either the utilisation or accuracy drop below their respective thresholds (Tu and Tacc)

for a configured “threshold-time-period” (a number of records), then the trouble site is

removed and blacklisted.

For each blacklisted trouble site, a blacklist monitor will be created to watch for drift

in the accuracy of the classifier at each source site. If drift is detected at any source site,

then a cross-term may have appeared in the dataset that the trouble site could capture.

As a result of this, the trouble site may now meet the criteria for creation once again.

The trouble site is therefore removed from the blacklist, which allows a new creation

monitor to be created for it. For experimental evaluation, ADWIN (Bifet & Gavalda,

2007) was used for drift detection in blacklist monitors.

3.3.1 Monitor Thresholds

The creation and removal monitors use four thresholds to determine when to trigger their

respective actions. Two of these must be configured through user-defined parameters:

both monitor types’ threshold-time-periods (set to a sufficient period of time to judge

the permanence of a pattern) and the removal monitor’s utilisation threshold (set based

on how frequently a site must be used for it to justify its real-world resource cost).

Conversely, the removal monitor’s accuracy threshold and creation monitor’s agreement

threshold can be set dynamically based on stream behaviour, as shown in Equations

(3.5) and (3.6) and described below.

A trouble site’s accuracy threshold (Tacc) must require a significant improvement

over the accuracy that would be achieved without that site. Specifically, accuracy should

be compared with the accuracy that could be achieved by aggregating the classifications

of only lower-order sites (acco−1), which prevents simultaneously monitored sites of the

same order being removed for mutually redundant accuracy improvement. Therefore,

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 39

the accuracy threshold is set to this lower-order accuracy plus an additional term that

demands a significant improvement (ε).

Similarly, the agreement threshold (Ta) must require a significant improvement over

the level of agreement that would be expected by chance (ã). ã can be calculated as the

expected proportion of overlap between the trouble record sets transmitted by source

sites (s) if trouble records were selected randomly, which is the product of the proportion

of records (p) each source site transmits. As with the accuracy threshold, the required

improvement is represented by the ε term, but it is smoothed by an additional term

(Θ). This smoothing term diminishes the required improvement as expected agreement

approaches 100%, where exceeding the expected agreement is less likely. The degree

of smoothing is determined by a manually set smoothing-factor (θ).

ã =
s

∏
i=1

pi

Θ = 1 − ãθ

ε =
√

ln(1/δ)
2n

⋅R

(3.4)

Tacc = min (1, acco−1 + ε) (3.5)

Ta = min (1, ã +Θε) (3.6)

For both dynamically set thresholds, the term to require significant improvement

(ε) is provided by the Hoeffding bound (Witten, Frank, Hall & Pal, 2016). When

computing the Hoeffding bound, the range (R) is 1 for both accuracy and agreement

(which vary from 0-100%). The number of observations n is the current size of the

window monitoring accuracy or agreement plus the threshold-time-period, as this

represents the size of the entire sample the improvement will be evaluated over. The

δ parameter of the Hoeffding bound determines the confidence level (1 − δ) for ε, and

Chapter 3. Proposed HDSM Architecture for Distributed Stream Mining 40

hence δ is set to a small value, such as 10−3. The influence of the Hoeffding bound is

also restricted to never increase either threshold above the maximum possible accuracy

and agreement value of 100%, as shown in Equations (3.5) and (3.6).

3.4 Alternative Aggregation Methods

Apart from selecting the classification with the highest confidence, it is also possible

to use other ensemble learning methods at the aggregator. However, because other

methods do not necessarily select a single site’s classification as the “winner”, they may

not be compatible with the utilisation monitoring of trouble sites by removal monitors.

For this reason, aggregation with other methods should be performed in two stages: first

using whatever alternative method was selected to aggregate primary site classifications,

and then aggregating the produced classification with those from trouble sites using the

“maximum-confidence” method. This also means that the first phase of aggregation can

be performed while trouble sites are still processing the record.

Two alternative aggregation methods considered in the following chapter’s experi-

mental evaluation are voting and stacking. Voting is based on the approach of Skillicorn

and McConnell (2008), where the class with the majority of votes from primary sites

is selected, and the confidence is the mean confidence of all primary sites. Stacking is

based on the approach of Parker et al. (2012). Primary site classifications are used as

the input records to another stream classifier (using the same or a different algorithm to

that used at primary sites and trouble sites), which produces a new classification and

confidence.

Chapter 4

Experimental Evaluation of HDSM

HDSM was implemented for experimental evaluation using Clojure and machine-

learning algorithms from the MOA data stream mining framework (Bifet, Holmes,

Kirkby & Pfahringer, 2010). The source-code (including data preparation and experi-

mentation) has been made available in a GitHub repository1. The experiments presented

below illustrate HDSM’s ability to improve classification accuracy with limited trans-

mission of data features from primary sites to trouble sites, including: a demonstration

of the behaviour of HDSM’s dynamic trouble-site hierarchy, a comparison of HDSM’s

performance with other distributed stream mining approaches on a variety of real-world

and synthetic stream datasets, and a demonstration of HDSM’s potential to dynamically

trade off between accuracy and response time.

All experiments were performed with OpenJDK 1.8.0 on a 64-bit Ubuntu 16.04

installation running on a 4x2.60GHz Intel Core i5 CPU with 8GB of memory. As all of

the data features within each experiment were of the same data-type, they were treated

as being the same size (lis = 1), meaning that a trouble factor equal to the number of

features at a primary site would represent a trouble site capable of receiving as much

data as a primary site. The list below summarises configuration parameters that were

1https://github.com/ben-denham/hdsm

41

https://github.com/ben-denham/hdsm

Chapter 4. Experimental Evaluation of HDSM 42

kept constant throughout experimentation (except where noted otherwise):

• Size-limit for all windows at sites and monitors: 1000 latest records

• Threshold-time-period for creation and removal monitors: 500 records

• δ of Hoeffding bound in agreement and accuracy thresholds: 10−3

• Smoothing factor for agreement threshold (θ): 5

• Site utilisation threshold for removal monitors (Tu): 5%

4.1 Performance Evaluation Metrics

The following section describes the metrics that were used to compare the accuracy,

volume of data transmission, and resource time for different stream mining methods. In

order to evaluate the typical running state of each method, the first 1000 records of each

experiment were considered a “warm-up” time and ignored in all metric calculations.

Accuracy was evaluated prequentially: each record was classified and then imme-

diately used for training. Each site that processed a record was only trained with the

features that were transmitted to that site.

Record feature transmission is reported in terms of TDTV (Total Data Transmission

Volume between all sites) and MDTV (Maximum Data Transmission Volume to any

single trouble site, averaged across windows of 100 records). Both transmission metrics

are reported as proportions of the total data volume contained in the dataset. TDTV may

exceed 100% in cases when record fragments are transmitted through multiple layers of

trouble sites. Transmission of site classifications to the aggregator is not reported, as

transmission of class labels and confidence values from primary sites is the same for all

evaluated methods while being a much less significant cost in comparison to feature

Chapter 4. Experimental Evaluation of HDSM 43

transmission. Because of this, all experiments that did not result in transmission of data

features to trouble sites have 0% TDTV and MDTV.

Resource time is reported in terms of MTCP (Mean Time on Critical Path) and

MTBC (Mean Time Between Completions). MTCP is the cumulative CPU time across

the longest-running sequence of classifiers used to process a record, averaged over all

records. MTBC is the mean difference between the completion times of successive

records, given each classifier can begin processing a record after its source sites have

processed it and after the site has finished processing the previous record. While MTCP

measures the classification latency (response time) for a single record on average,

MTBC measures the throughput rate for stream-processing. Resource time includes the

CPU processing time of classifiers at primary and trouble sites and stacked aggregators;

maximum confidence aggregation and voting overheads were excluded because these

costs are less significant and the underlying operations can be parallelised in practice.

To account for JVM warm-up, each set of time-evaluated experiments was performed

twice in sequence, and timing was recorded from the second run. Both MTCP and

MTBC are reported in nanoseconds.

4.2 Demonstration of Dynamic Trouble Site Hierarchy

To demonstrate the behaviour of HDSM’s dynamic trouble site hierarchy, it was tested

with a synthetic dataset that abruptly drifted between different underlying cross-terms.

A dataset of 30,000 records was generated with 6 binary features and a binary class.

Equation (4.1) defines the rule used to generate a cross-term dependent class value from

random binary features.

class = (f 1
1 ∧ f 2

1 ∧ . . . ∧ fk1) ∨ . . .

∨ (f 1
m ∧ f 2

m ∧ . . . ∧ fkm)
(4.1)

Chapter 4. Experimental Evaluation of HDSM 44

where k is the number of features in each cross-term, m is the number of cross terms,

and f ij is the i-th feature involved in the j-th cross-term.

The dataset always contained two cross-terms (m = 2) between two features (k = 2):

the first and last 10,000 records had cross-terms between feature pairs [0,1] and [2,3],

while the middle batch of 10,000 records had cross-terms between pairs [0,1] and [4,5].

The features were distributed across 6 primary sites, with each site receiving a single

feature, thus representing a high degree of data distribution. HDSM was configured

with a trouble factor of 1 so that each trouble site would receive approximately the same

volume of data as any primary site (as there is one feature per primary site).

HDSM was compared with a distributed ensemble without trouble sites where final

classifications were based solely on the maximum-confidence aggregation of primary

site classifications. To allow fast adaptation to abrupt concept drift, Hoeffding trees

(Hulten, Spencer & Domingos, 2001) were used as classifiers at primary and trouble

sites.

Table 4.1 reports the utilisation of each site in the classification process, the contribu-

tion made by each site to overall accuracy, and the data volume transmitted to each site.

Overall, Table 4.1 shows clearly that HDSM significantly outperformed the distributed

ensemble with an increase in accuracy of 27.27% with data transmission equivalent to

only 37.29% of the dataset’s total data volume. Trouble sites are represented as pairs of

source sites, so it can be seen that trouble sites were created to capture the cross-term

pairs ([0,1], [3,2], and [4,5]), and the accuracy contributions of those trouble sites

were proportional to the number of records that each cross-term was present for. A

higher-order trouble site for [[3,2],5] was also created, but was removed due to low

utilisation shortly after its creation. It can also be seen that the primary sites are used

for classification less often in the configuration with trouble sites, but their accuracy

contribution drops less significantly when compared to their drop in utilisation. This

indicates that the trouble sites are successfully processing records that the primary sites

Chapter 4. Experimental Evaluation of HDSM 45

Table 4.1: Effects of HDSM’s trouble site hierarchy on performance with a concept
drifting data stream.

Without Trouble Sites With Trouble Sites

Site Utilisation
Accuracy

Contrib. TDTV Utilisation
Accuracy

Contrib. TDTV

0 20.69% 13.10% N/A 12.41% 10.80% N/A
1 37.75% 26.76% N/A 24.96% 21.78% N/A
2 16.80% 8.92% N/A 8.62% 8.04% N/A
3 13.21% 6.70% N/A 5.83% 5.03% N/A
4 7.74% 4.91% N/A 4.60% 4.30% N/A
5 3.80% 1.68% N/A 1.87% 1.64% N/A
[0,1] 21.43% 21.35% 16.17%
[3,2] 14.17% 12.11% 12.10%
[4,5] 6.11% 4.29% 8.69%
[[3,2],5] 0.00% 0.00% 0.33%

Totals 100.00% 62.08% 0.00% 100.00% 89.35% 37.29%

found difficult to classify.

Figure 4.1 shows how trouble sites were added and removed over the course of

the HDSM experiment, and how this affected the volume of data transmitted and the

accuracy improvement over the distributed ensemble. Because the system begins with

no trouble sites, there is initially no data transmission and no difference in accuracy

between HDSM and the distributed ensemble. However, after processing approximately

1,300 records, three candidate trouble sites exceed the required agreement threshold and

are therefore added to the system. Trouble sites [0,1] and [3,2] capture the cross-terms

in the dataset and boost system accuracy at the expense of increased data transmission.

The trouble site [4,5] is quickly removed (and therefore blacklisted) because that

cross-term is not yet present, and the site’s classifications are not confident enough

to be used for the final classification. After the concept drift point at 10,000 records,

the HDSM accuracy drops closer to the distributed ensemble’s accuracy, and there

is renewed activity in altering the trouble site hierarchy. Eventually, the trouble site

Chapter 4. Experimental Evaluation of HDSM 46

Distributed ensemble HDSM

add [4, 5]

add [3, 2]

add [0, 1]

remove [4, 5]

Concept Drift

add [[3, 2], 5]

remove [[3, 2], 5]

un-blacklist [4, 5]

add [4, 5]

remove [3, 2]

Concept Drift

un-blacklist [3, 2]

add [3, 2]

remove [4, 5]

0 5,000 10,000 15,000 20,000 25,000 30,000

0.50

0.75

1.00

A
cc
u
ra
cy

Total transmission Max transmission to one trouble site

0 5,000 10,000 15,000 20,000 25,000 30,000

0.00

0.25

0.50

Records processed

D
a
ta

T
ra
n
sm

is
si
o
n

Figure 4.1: Timeline of accuracy and data transmission for the synthetic cross-term
dataset with concept drift points.

[4,5] is un-blacklisted (triggered by the concept drift) and the trouble site is recreated,

improving accuracy by capturing that introduced cross-term. The trouble site [3,2] is

removed because its utilisation has dropped due to the fact that cross-term is no longer

present in the data stream. Finally, after the second drift point at 20,000 records, trouble

site [3,2] is re-created and trouble site [4,5] is removed, reflecting the shift back to

the original cross-terms. Trouble site [0,1] is never removed because that cross-term

is always present and the site is consistently used to improve classification accuracy.

While the level of total transmission fluctuates depending on the number of trouble

sites, the maximum transmission to any trouble site remains relatively stable near the

proportion determined by the trouble factor (in this case, ∼ 16.67% of the dataset).

Chapter 4. Experimental Evaluation of HDSM 47

Monitor signal Monitor threshold Time threshold progress (%)

add [3, 2]

Concept Drift

remove [3, 2]

Concept Drift

un-blacklist [3, 2]

add [3, 2]

0 5,000 10,000 15,000 20,000 25,000 30,000

0.0

0.5

1.0

C
re
a
ti
o
n
-
A
g
re
e
m
e
n
t

0 5,000 10,000 15,000 20,000 25,000 30,000

0.0

0.5

1.0

R
e
m
o
va
l
-
U
ti
lis
a
ti
o
n

0 5,000 10,000 15,000 20,000 25,000 30,000

0.0

0.5

1.0

Records processed

R
e
m
o
va
l-

A
cc
u
ra
cy

Figure 4.2: Timeline of trouble site [3,2] creation (agreement) and removal (utilisation
and accuracy) monitors for the synthetic cross-term dataset with concept drift points.

Figure 4.2 demonstrates the behaviour of the monitors for trouble site [3,2] over

the course of the experiment. When the measured agreement exceeds its threshold,

progress against the creation-time threshold increases until it reaches 100%, triggering

the creation of the trouble site. Because agreement monitors are only updated based

on incorrectly classified records, progress against the time threshold is not perfectly

linear. The creation monitor is inactive while the trouble site exists and while it is still

blacklisted after removal. The removal monitors become active after the trouble site is

created, and they observe a high degree of accuracy and utilisation while the cross-term

between the two source sites is present in the dataset. After the concept drift at 10,000

records, the accuracy and utilisation decrease until they drop below their respective

Chapter 4. Experimental Evaluation of HDSM 48

thresholds. The time threshold for utilisation is exceeded first, triggering the removal

of the site. It can also be seen that while the utilisation threshold for removal remains

constant over time, the agreement threshold varies as site communication affects the

expected agreement, and the accuracy threshold varies with the combined accuracy of

lower-order sites for records where the monitored site is used for the final classification.

Finally, a short period can be observed around the 11,000 record point where the monitor

values for utilisation and accuracy do not change. This is because another trouble site

([[3,2],5]) is created that depends on [3,2], suspending its removal monitors until site

[[3,2],5] is removed.

4.3 HDSM Performance Evaluation and Comparison

The following experiments compare the performance of HDSM with four previously

proposed distributed data stream mining algorithms. Three of these algorithms can be

referred to as distributed ensemble methods, as they use local classifiers at primary sites

and transmit local classifications to a central site for aggregation. The three methods

differ in the rule that is used to aggregate classifications. DMaxConf selects the local

classification with the highest confidence, which is the same aggregation rule used

by Park et al. (2001). DVote selects the classification with the majority vote, as used

by Skillicorn and McConnell (2008). DStack trains a stacked classifier on the local

classifications, which is the basis of the approach proposed by Parker et al. (2012).

HDSM was also tested using all three of these aggregation rules to aggregate primary

site classifications, as described in Section 3.4. The fourth algorithm compared to

HDSM is the original approach of Park et al. with a minor modification to make it

suitable for streaming data: the single, fixed trouble site that uses all primary sites as

source sites was configured with the same dynamic confidence quantile threshold as

HDSM. Without this modification, a static threshold would need to have been set, which

Chapter 4. Experimental Evaluation of HDSM 49

would not have adequately controlled the trouble record transmission rate.

For these experiments, Naive Bayes classifiers were used at primary sites because

the algorithm is lightweight enough to run at sensor network edge nodes, and because it

almost always produces varying confidence values which distinguish trouble records

(unlike Hoeffding trees, which return constant confidence values when there is not

enough information to perform splits). Adaptive Random Forest (ARF) classifiers

(Gomes et al., 2017) were used at trouble sites and for stacking, as they were found to

effectively learn from cross-terms.

A combination of real-world and synthetic stream datasets were used in these

experiments. The real-world datasets were selected because they represent data streams

that could be vertically-distributed in practice and because they exhibit cross-terms

between distributed feature-sets. The seven real-world datasets were EEG Eye State

(EEG) (T. Wang, Guan, Man & Ting, 2014), Gas Sensor Array Drift (GAS) (Vergara et

al., 2012), HIGGS (HIG) (Baldi, Sadowski & Whiteson, 2014), NASA FLTz (FLT) (Oza,

2011), Occupancy Detection (OCC) (Candanedo & Feldheim, 2016), Sensorless Drive

Diagnosis (SDD) (Paschke et al., 2013), and Wall-Following Robot Navigation (WFR)

(Freire, Barreto, Veloso & Varela, 2009). Additionally, four synthetic stream datasets

that had previously been used in evaluating the Adaptive Random Forest classifier

(Gomes et al., 2017) were selected to evaluate performance under known concept drift

conditions, which were: incremental, abrupt, and gradual drift. These four datasets

were based on the Radial Basis Function generator (RBF; Bifet and Kirkby (2009)) and

SEA generator (Street & Kim, 2001). Table 4.2 lists the properties of these datasets,

which represent a range of feature counts, degrees of distribution, and class counts.

Some datasets required shuffling for meaningful evaluation, as they consisted of

long periods where only a single class value was present. Because the SDD dataset

is composed of several streams (one for each class), the streams were interleaved to

Chapter 4. Experimental Evaluation of HDSM 50

Table 4.2: Properties of datasets used for distributed stream mining performance evalua-
tion.

Dataset
Feature
Count Features per Site

P-Site
Count

Class
Count

Record
Count Stream?

EEG 14 1 (site/sensor) 14 2 14,980 Shuffled
GAS 128 8 (site/sensor) 16 6 13,910 Stream
HIG 19 3-4 (see text) 5 2 10,000 Stream
FLT 20 1-3 (see text) 9 2 25,034 Shuffled
OCC 3 1 (site/sensor) 3 2 20,560 Shuffled
SDD 48 4 (site/logical set) 12 11 58,509 Interleaved
WFR 24 4 (sensors groups) 6 4 10,913 Stream
RBF-F 10 1 10 5 50,000 Fast drift
RBF-M 10 1 10 5 50,000 Moderate drift
SEA-A 3 1 3 2 100,000 Abrupt drift
SEA-G 3 1 3 2 100,000 Gradual drift

preserve time-series progression within each stream. Interleaving was performed by

continuously making a random selection of which stream to draw the next record from

(drawing records in order from each stream), until all records had been drawn from

all streams. Only the temperature, humidity, and CO2 features were used from the

OCC dataset as the light level was highly predictive on its own and the humidity-ratio

was derivable from humidity and temperature. Only the raw features were used for

the HIG dataset, of which each jet’s features were assigned to a different primary site

(3 jets, with 4 features each) and the 3 lepton features were assigned to their own

primary site. Furthermore, the original HIG dataset was restricted to the first 10,000

records. Due to the small number of records in the WFR dataset, its record set was

repeated once to have an adequate number of records for stream learning. The FLT

dataset was constructed from a series of test flights, where each class value represented

whether the moving average of the forward velocity variable over a window size of

10 records had been rising or falling. Primary sites were created for the velocity and

acceleration features (along each of the lateral and vertical axes), for the reading, rate,

and acceleration features (for each of pitch, yaw, and roll), and also for the readings

Chapter 4. Experimental Evaluation of HDSM 51

from each group of aileron, flap, and rudder features. Except for the FLT dataset, all

real-world datasets were retrieved from the UCI Machine Learning Repository (Dheeru

& Karra Taniskidou, 2017). As far as could be determined from an extensive literature

review, this is the first assembled set of real-world datasets for evaluating vertically-

distributed data stream mining, and could therefore be used as a standard set for future

research. The synthetic RBF and SEA datasets were generated with MOA (Bifet et

al., 2010). The RBF generator was configured to generate 5 possible classes with

50 incrementally drifting centroids, and two datasets were generated to simulate fast

incremental drift (RBF-F, with a speed-of-change of 0.001) and moderate incremental

drift (RBF-M, with a speed-of-change of 0.0001). The SEA generator was configured

with 3 concept drift points (at the 25,000, 50,000, and 75,000 record points), and two

datasets were generated to simulate abrupt drift (SEA-A, with a drift-width of 1) and

gradual drift (SEA-G, with a drift-width of 10,000).

For experiments with each dataset, HDSM was configured with a trouble factor

equal to the maximum number of features taken across the set of primary sites. Because

low accuracy was observed for Park’s approach (due to low agreement, as discussed

later), the reported results are for a trouble factor twice that used with HDSM to give it

the best chance of achieving a high accuracy (though there is little difference to results

achieved with lower trouble factors). Tables 4.3 and 4.4 report the performance of each

algorithm on each dataset.

Table 4.3 gives the classification accuracy and the standard deviation for each

classifier configuration. The standard deviation was computed by dividing the stream

into segments of 100 records each and then sampling over these segments2. Table 4.3

shows that for 10 out of 11 datasets, variations of HDSM outperform all other classifiers.

For reference, the most accurate result (breaking ties by lowest standard deviation) for

each dataset is bolded in Tables 4.3 and 4.4.
2The last segment was not taken into consideration if it contained fewer than 50 records.

Chapter 4. Experimental Evaluation of HDSM 52

Table 4.3: Distributed stream mining accuracy comparison.

Distributed Ensembles Park (TF 2×) HDSM (TF 1×)
DMaxConf DVote DStack MaxConf MaxConf Voting Stacking

Dataset Acc% (SD) Acc% (SD) Acc% (SD) Acc% (SD) Acc% (SD) Acc% (SD) Acc% (SD)
EEG 48.20 6.82 54.36 4.95 57.72 6.12 48.20 6.82 49.36 6.82 61.04 4.57 61.65 5.20
GAS 47.54 29.39 47.28 27.84 91.80 9.32 47.54 29.39 69.47 23.19 78.16 17.41 91.94 9.11
HIG 53.18 4.96 53.04 5.33 51.34 5.68 53.40 4.92 53.57 5.08 53.57 5.51 51.28 5.23
FLT 67.85 4.49 55.66 4.99 70.82 4.92 67.85 4.49 79.65 5.34 81.78 7.02 80.94 5.54
OCC 78.98 4.08 82.04 3.98 81.86 3.96 81.86 3.89 87.24 4.28 90.18 4.21 89.36 4.12
SDD 49.72 16.32 55.72 14.02 91.47 5.83 49.72 16.32 86.66 8.53 91.04 6.86 97.17 4.29
WFR 56.69 16.15 57.12 14.01 73.88 10.31 56.77 16.10 69.36 12.98 75.75 11.55 80.77 8.57
RBF-F 30.06 4.75 29.96 4.64 35.34 7.60 30.06 4.75 34.79 6.08 34.59 5.82 37.47 6.44
RBF-M 32.61 5.58 30.36 4.75 58.32 6.64 32.61 5.58 44.08 6.24 43.74 5.13 56.02 5.92
SEA-A 75.37 7.66 70.65 7.82 74.65 5.74 79.30 6.69 82.96 5.48 79.97 5.76 78.02 6.32
SEA-G 75.42 6.86 70.63 7.03 73.80 5.43 79.29 6.06 79.25 7.28 79.36 5.44 76.30 6.35

In order to evaluate the statistical significance of the accuracy differences between

the different algorithms across the datasets, a Friedman test and an accompanying

Nemenyi post-hoc analysis were performed (as recommended by Demšar (2006) for

such cases when comparing multiple algorithms over multiple datasets). The null-

hypothesis that “all seven algorithms produce equivalent accuracies” was rejected by

the Friedman test at the 95% confidence level. The proceeding Nemenyi test produced

a critical difference of 2.72, revealing which algorithms were statistically significantly

different to each other, as plotted in Figure 4.3. Figure 4.3 shows that while all HDSM

Figure 4.3: Critical difference diagram showing the statistically significant differences
in accuracy between distributed stream mining algorithms.

Chapter 4. Experimental Evaluation of HDSM 53

variations were ranked higher than other algorithms, each was significantly different to

a different subset. Of particular note is that HDSM with voting was significantly more

accurate than all other non-HDSM algorithms other than DStack.

The accuracy study revealed the following trends:

• Park’s approach outperformed DMaxConf by more than 1% in only three of

the datasets, despite using trouble records to learn cross-term relationships. Its

performance was hampered by the use of a single trouble site. A major limitation

of using a single trouble site is that there is agreement on only a small fraction of

the trouble records transmitted by all primary sites. The implication of a low level

of agreement is that the trouble site is used to classify very few records, and the

training set size is also low, leading to model underfitting and loss of precision.

The three datasets where Park’s approach did show improvement (OCC, SEA-A,

and SEA-G) all have very few primary sites, and therefore suffer less from this

problem.

• The distributed ensembles are clearly inadequate and only emerged the winner

in one dataset (RBF-M). This under-performance was due to the absence of any

mechanism to learn cross-term relationships between distributed features.

• The use of meta-learning significantly improved the performance of both HDSM

and distributed ensemble approaches. Meta-learning methods such as voting

and stacking provide opportunities for learning cross-term relationships. The

accuracy of the distributed ensemble in particular was boosted significantly by

stacking. However, it is is interesting to note that a substantial gap in accuracy

still exists between HDSM with stacking and DStack for most datasets. This can

be explained by the fact that HDSM learns cross-term relationships by training

on actual data features while DStack learns them from class labels which do not

embody as much information as the original data itself.

Chapter 4. Experimental Evaluation of HDSM 54

Table 4.4 presents the resource time cost of each classifier, with the most accurate

result from Table 4.3 bolded for ease of reference. DStack is orders of magnitude slower

than the other distributed ensembles because the additional ARF stacked classifier is

much more computationally expensive than the Naive Bayes classifiers at primary sites.

The single trouble site in Park’s approach typically has little effect on resource time

because the low agreement means few records are actually processed at the trouble site.

In terms of MTCP, HDSM is the slowest classifier because of its multiple layers of

trouble site ARF classifiers that often process more features than even stacked classifiers

(though this point of difference is diminished in cases where there are many primary

sites with few features). On the other hand, HDSM is competitive to DStack in terms of

the MTBC metric. In general, there is a much greater gap between MTCP and MTBC

for HDSM when compared to the other approaches. This is due to two reasons. Firstly,

lower-order trouble sites begin processing new records before higher-order trouble sites

have finished processing older records. Secondly, trouble sites of the same order can

process different records in parallel, as only a subset of trouble sites will be involved in

processing any given record.

Table 4.5 shows the impact of increasing trouble factors with the two most promising

variations of HDSM: voting and stacking (results with maximum confidence HDSM

demonstrated similar trends, and are excluded for brevity). Trouble factors equal to

1, 1.5, and 2 times the maximum number of features taken across the set of primary

sites were used. It can be seen that higher trouble factors generally result in improved

accuracy as greater proportions of the less confident set of records are sent to trouble

sites for learning and classification. Such records are more likely to be associated with

cross-terms and models trained on data record fragments from multiple source sites will

thus be more precise than those learned at the primary sites. However, this improved

accuracy comes at the expense of increased resource time and data transmission. On the

Chapter 4. Experimental Evaluation of HDSM 55

Ta
bl

e
4.

4:
D

is
tr

ib
ut

ed
st

re
am

m
in

in
g

re
so

ur
ce

tim
e

co
m

pa
ri

so
n.

D
is

tr
ib

ut
ed

E
ns

em
bl

es
Pa

rk
(T

F
2×

)
H

D
SM

(T
F
1×

)

D
M

ax
C

on
f

D
Vo

te
D

St
ac

k
M

ax
C

on
f

M
ax

C
on

f
Vo

tin
g

St
ac

ki
ng

D
at

as
et

M
T

C
P

M
T

B
C

M
T

C
P

M
T

B
C

M
T

C
P

M
T

B
C

M
T

C
P

M
T

B
C

M
T

C
P

M
T

B
C

M
T

C
P

M
T

B
C

M
T

C
P

M
T

B
C

E
E

G
6.

59
E

3
5.

78
E

3
6.

73
E

3
5.

95
E

3
1.

17
E

5
1.

10
E

5
8.

88
E

3
7.

80
E

3
2.

46
E

5
3.

52
E

4
3.

47
E

5
1.

30
E

5
3.

54
E

5
1.

43
E

5

G
A

S
1.

04
E

4
9.

08
E

3
1.

03
E

4
9.

13
E

3
1.

36
E

5
1.

25
E

5
1.

68
E

4
1.

60
E

4
2.

08
E

5
3.

28
E

4
2.

55
E

5
8.

28
E

4
2.

17
E

5
1.

50
E

5

H
IG

6.
24

E
3

5.
88

E
3

6.
42

E
3

6.
10

E
3

8.
08

E
4

7.
45

E
4

7.
99

E
3

7.
03

E
3

1.
39

E
5

6.
87

E
4

1.
50

E
5

8.
21

E
4

1.
91

E
5

9.
90

E
4

FL
T

6.
31

E
3

5.
78

E
3

6.
31

E
3

5.
83

E
3

9.
76

E
4

9.
13

E
4

8.
26

E
3

7.
52

E
3

2.
29

E
5

9.
34

E
4

2.
70

E
5

1.
16

E
5

2.
90

E
5

1.
25

E
5

O
C

C
5.

96
E

3
5.

77
E

3
5.

90
E

3
5.

74
E

3
1.

28
E

5
1.

22
E

5
1.

00
E

4
6.

81
E

3
7.

77
E

4
6.

77
E

4
7.

46
E

4
6.

56
E

4
1.

81
E

5
1.

40
E

5

SD
D

9.
61

E
3

8.
57

E
3

9.
70

E
3

8.
68

E
3

1.
69

E
5

1.
59

E
5

1.
35

E
4

1.
17

E
4

1.
75

E
5

8.
42

E
4

1.
71

E
5

8.
53

E
4

2.
54

E
5

1.
85

E
5

W
FR

7.
45

E
3

7.
04

E
3

7.
51

E
3

7.
09

E
3

1.
32

E
5

1.
25

E
5

9.
57

E
3

8.
65

E
3

1.
61

E
5

5.
68

E
4

1.
49

E
5

5.
66

E
4

2.
67

E
5

1.
74

E
5

R
B

F-
F

8.
34

E
3

7.
31

E
3

7.
99

E
3

7.
14

E
3

1.
10

E
5

1.
02

E
5

1.
28

E
4

1.
05

E
4

2.
95

E
5

6.
91

E
4

2.
97

E
5

6.
73

E
4

3.
50

E
5

1.
46

E
5

R
B

F-
M

8.
45

E
3

7.
44

E
3

8.
76

E
3

7.
91

E
3

1.
47

E
5

1.
39

E
5

1.
25

E
4

1.
05

E
4

3.
16

E
5

9.
51

E
4

3.
18

E
5

9.
04

E
4

3.
31

E
5

1.
65

E
5

SE
A

-A
7.

17
E

3
6.

83
E

3
7.

33
E

3
7.

05
E

3
1.

68
E

5
1.

61
E

5
1.

21
E

4
8.

69
E

3
8.

32
E

4
7.

21
E

4
8.

15
E

4
7.

04
E

4
3.

06
E

5
2.

69
E

5

SE
A

-G
6.

77
E

3
6.

37
E

3
7.

26
E

3
6.

92
E

3
1.

83
E

5
1.

75
E

5
1.

35
E

4
9.

30
E

3
7.

07
E

4
4.

51
E

4
9.

21
E

4
8.

03
E

4
3.

51
E

5
3.

08
E

5

Chapter 4. Experimental Evaluation of HDSM 56

Table 4.5: HDSM performance as a function of trouble factor.

HDSM Voting HDSM Stacking
Dataset TF Acc% (SD) MTCP MTBC TDTV MDTV Acc% (SD) MTCP MTBC TDTV MDTV
EEG 1× 61.04 4.57 3.47E5 1.30E5 58.72 10.55 61.65 5.20 3.54E5 1.43E5 56.22 10.28

1.5× 64.78 5.23 5.13E5 2.66E5 91.27 13.88 63.65 5.09 4.87E5 2.63E5 84.36 13.94
2× 66.14 4.58 5.73E5 3.25E5 104.65 14.34 66.99 5.23 5.25E5 2.99E5 95.92 15.03

GAS 1× 78.16 17.41 2.55E5 8.28E4 38.81 9.18 91.94 9.11 2.17E5 1.50E5 12.41 3.26
1.5× 85.41 13.15 3.00E5 1.24E5 48.94 11.50 93.63 7.96 2.37E5 1.51E5 18.23 4.48
2× 89.05 10.98 2.83E5 1.60E5 49.09 12.52 94.00 7.43 2.55E5 1.49E5 25.39 5.04

HIG 1× 53.57 5.51 1.50E5 8.21E4 54.94 23.41 51.28 5.23 1.91E5 9.90E4 43.52 21.29
1.5× 52.76 5.12 2.44E5 1.21E5 77.95 31.23 52.91 5.67 2.95E5 1.62E5 85.10 33.83
2× 53.11 4.81 3.95E5 2.25E5 125.21 43.24 52.92 5.23 3.62E5 1.25E5 94.03 38.45

FLT 1× 81.78 7.02 2.70E5 1.16E5 64.31 16.66 80.94 5.54 2.90E5 1.25E5 55.80 16.46
1.5× 89.02 6.04 3.69E5 2.03E5 90.56 22.55 88.80 5.87 3.78E5 2.01E5 91.13 22.26
2× 89.37 5.91 4.36E5 1.93E5 114.72 27.90 88.78 5.79 4.13E5 1.94E5 93.18 27.35

OCC 1× 90.18 4.21 7.46E4 6.56E4 31.17 30.12 89.36 4.12 1.81E5 1.40E5 31.34 30.29
1.5× 89.47 4.32 1.25E5 9.56E4 69.67 45.83 90.18 3.97 2.02E5 1.44E5 48.48 45.74
2× 89.24 6.04 1.70E5 1.24E5 77.34 51.64 87.24 5.73 1.99E5 1.36E5 56.36 42.37

SDD 1× 91.04 6.86 1.71E5 8.53E4 23.26 8.78 97.17 4.29 2.54E5 1.85E5 24.05 8.21
1.5× 97.94 5.12 2.04E5 1.28E5 37.13 12.29 97.90 3.85 2.51E5 1.86E5 17.12 11.44
2× 98.61 4.87 2.12E5 1.60E5 29.61 14.85 97.85 4.07 2.71E5 1.85E5 23.51 12.22

WFR 1× 75.75 11.55 1.49E5 5.66E4 51.10 20.30 80.77 8.57 2.67E5 1.74E5 47.69 18.82
1.5× 86.23 10.82 2.90E5 1.42E5 79.86 28.57 85.32 8.46 3.45E5 1.69E5 72.46 26.92
2× 90.32 7.69 4.00E5 2.42E5 102.13 32.93 89.07 8.60 4.16E5 2.15E5 93.64 30.04

RBF-F 1× 34.59 5.82 2.97E5 6.73E4 51.78 11.24 37.47 6.44 3.50E5 1.46E5 51.24 11.36
1.5× 37.05 6.27 4.56E5 1.05E5 87.06 16.53 39.36 5.98 4.77E5 1.44E5 82.59 16.48
2× 37.56 6.50 5.33E5 1.97E5 116.98 20.66 40.99 6.98 5.53E5 2.23E5 111.52 20.79

RBF-M 1× 43.74 5.13 3.18E5 9.04E4 51.72 11.11 56.02 5.92 3.31E5 1.65E5 42.22 10.92
1.5× 45.72 5.65 4.80E5 2.17E5 81.71 16.34 54.15 6.43 4.31E5 1.63E5 62.36 16.08
2× 52.25 5.20 5.63E5 3.63E5 107.61 20.18 55.04 6.93 4.47E5 1.61E5 71.58 18.05

SEA-A 1× 79.97 5.76 8.15E4 7.04E4 33.42 33.07 78.02 6.32 3.06E5 2.69E5 33.15 32.56
1.5× 86.97 4.21 1.85E5 1.67E5 57.17 49.72 77.59 6.34 3.38E5 2.88E5 27.40 26.25
2× 79.27 10.96 1.74E5 1.53E5 39.61 34.57 82.58 6.96 3.98E5 3.27E5 40.99 35.14

SEA-G 1× 79.36 5.44 9.21E4 8.03E4 33.66 33.07 76.30 6.35 3.51E5 3.08E5 33.44 30.68
1.5× 85.78 4.35 2.02E5 1.85E5 54.56 49.69 79.52 6.97 3.78E5 3.18E5 40.18 38.61
2× 78.73 10.38 1.74E5 1.56E5 36.62 35.00 86.71 4.27 5.15E5 3.89E5 74.24 66.37

other hand, the effective data transmission cost (captured by the MDTV metric) rarely

exceeds 50%. This means that the data transmission cost (as measured by the data

volume transmitted across the critical path on the trouble site hierarchy) rarely exceeded

more than half of the dataset. It should also be noted that the total data transmission

cost as measured by the TDTV metric rarely exceeded 100%. However, this metric

does not take into account concurrent streaming of data across different pipelines of the

trouble site hierarchy and is thus not a true indicator of transmission cost. Nevertheless,

Chapter 4. Experimental Evaluation of HDSM 57

it does reflect the bandwidth requirements of the data transmission network.

For a final comparison, Figure 4.4 presents the relative ranks in accuracy and re-

source time of DStack (being the most accurate distributed ensemble) and HDSM voting

(having the best trade-off between accuracy and performance for HDSM) averaged

across the eleven datasets. While the more accurate HDSM configurations are slower,

HDSM voting (TF=1×) is often able to achieve better accuracy than DStack with better

MTBC. Additionally, DStack is further away from the origin point than HDSM voting

(TF=1×) in both charts, showing that it does not represent as good a trade-off between

accuracy and resource time. Another crucial point is that HDSM’s trouble factor can be

varied to achieve an ideal trade-off between accuracy and resource time, whereas the

performance of DStack is fixed.

DStack HDSM Voting (TF 1×)

HDSM Voting (TF 1.5×) HDSM Voting (TF 2×)

1 2 3 4
1

2

3

4

Mean Accuracy Rank

M
e
a
n
M
T
C
P
R
a
n
k

1 2 3 4
1

2

3

4

Mean Accuracy Rank

M
e
a
n
M
T
B
C
R
a
n
k

Figure 4.4: Accuracy and resource time ranks for HDSM Voting and DStack classifiers.

4.4 Suitability of HDSM for Anytime Classification

Given that HDSM outperformed other approaches, an important question that arises is

whether it could be tuned to obtain better performance in terms of the key performance

metrics of MTCP and MTBC. One distinguishing characteristic of HDSM is the dis-

tributed and layered nature of its classification model. In this context, the distribution of

Chapter 4. Experimental Evaluation of HDSM 58

HDSM accuracy over its layers is investigated with a view to determining the effective-

ness of an early exit in the classification process. Experiments were performed with the

FLT, WFR and GAS datasets, as well as a synthetic dataset (Synthetic Cross-Term, or

SCT) that was generated with known cross-term relationships to assess the effect of lay-

ering on accuracy. The GAS dataset was configured with only four features per primary

site and a trouble factor equal to the total number of features (the maximum reasonable

value), which provided an extreme case with a higher degree of data distribution and

transmission to trouble sites. Equation (4.2) defines the rule used for generating the

SCT dataset with 32 binary features (distributed sequentially across 8 primary sites)

and a binary class. This rule was devised to create complex cross-terms across many

primary sites while ensuring a reasonable class balance. The results for other datasets

followed the same broad trends, so were omitted in the interests of brevity. Voting was

used as the aggregation method for all datasets.

class = ((f1 ∧ f5) ∨ (f9 ∧ f13) ∨

(f17 ∧ f21) ∨ (f25 ∧ f29)) ∧

((f2 ∧ f18) ∨ (f6 ∧ f26) ∨

(f10 ∧ f22) ∨ (f14 ∧ f30))

(4.2)

Figure 4.5 shows how the accuracy and resource time vary with the maximum

trouble site order used for classification. MTCP and MTBC are normalised by dividing

their values with the corresponding values produced when using the primary sites only

(order 0). Order 3 results are not shown for WFR because it never produced sites of this

order.

The first chart in Figure 4.5 shows that higher-order sites have little or no impact

on accuracy; only SCT’s accuracy increases because it has relationships across many

sites. This suggests that cross-terms generally involved small groups of sites. There

Chapter 4. Experimental Evaluation of HDSM 59

FLT (TF 2×) WFR (TF 2×) GAS (Max TF) SCT (Max TF)

1 2 3

0.7

0.8

0.9

A
cc
u
ra
cy

1 2 3

20

30

40

50

×
O
rd
e
r
0
M
T
C
P

1 2 3
10.0

12.5

15.0

17.5

20.0

Order

×
O
rd
e
r
0
M
T
B
C

Figure 4.5: Effect of anytime classification on HDSM accuracy and resource time.

is however a significant resource time cost associated with higher-order sites. MTCP

increases for all datasets when using higher-order sites, though it tails off for GAS

and WFR because few records are transmitted to order 3 sites. On the other hand,

MTBC generally does not increase with higher-order sites because few records are

transmitted to these sites or because there is parallelism between sites at the same layer.

The exception to this is SCT, where many records are transmitted to higher-order sites

with little parallelism: all features (for some records) are combined at a single order

3 site. These results show clearly that an early exit generally has a minimal effect on

Chapter 4. Experimental Evaluation of HDSM 60

accuracy whilst substantially boosting MTCP and leaving MTBC either unchanged or

improved in value.

The implication is that HDSM can be considered to be an “anytime” classifier in the

sense that it can provide a fast and accurate classification from its lower-order trouble

sites (typically order 1) without the need for using its entire hierarchy for classification.

This short-circuiting process is a direct contributory factor to lowering overheads and

reducing the MTCP metric value. This anytime classification property of HDSM makes

it even more attractive when compared to approaches such as DStack that require input

from every classifier before a final classification outcome can be determined. In effect,

HDSM is now able to compete even more favourably to DStack as it maintains its

accuracy advantage whilst lowering its computational overheads.

4.5 HDSM Parameter Sensitivity Analysis

In addition to the experiments with different trouble factors, the sensitivity of HDSM

to its other parameters was also evaluated. Table 4.6 presents the results achieved

with different parameter values for HDSM with voting on the WFR dataset. While

varying each parameter, all other parameters were fixed to their default values (the same

values used in the previous experiments). The trouble factor was fixed to the number of

features per primary site.

The results in Table 4.6 show that the effects of varying these parameters are

generally minor. Varying the window size limit has a small impact on accuracy, as this

affects exactly which records are selected as trouble records when comparing confidence

values to those in the recent window. Decreasing the threshold-time-period slightly

improves accuracy at the cost of extra transmission, as this causes the initial trouble

sites to be created slightly sooner. If the site utilisation threshold is increased, trouble

Chapter 4. Experimental Evaluation of HDSM 61

Table 4.6: Sensitivity analysis of HDSM parameters.

Parameter Value Acc% (SD) MTCP MTBC TDTV MDTV

Window size limit 500 75.96 11.43 1.79E5 7.39E4 53.39 20.80
1000 75.75 11.55 1.81E5 6.85E4 51.10 20.30
2000 77.19 10.51 1.98E5 7.70E4 51.31 20.82

Threshold-time-period 100 77.89 10.38 1.94E5 7.46E4 52.69 21.29
500 75.75 11.55 1.80E5 6.91E4 51.10 20.30
1000 73.00 14.13 1.54E5 5.64E4 43.64 17.32

Site utilisation threshold (Tu) 0.01 75.79 11.51 1.88E5 6.96E4 57.67 20.44
0.05 75.75 11.55 1.79E5 6.77E4 51.10 20.30
0.15 69.57 12.58 1.38E5 3.66E4 35.22 17.82

Hoeffding bound δ 1.00E-09 75.76 11.60 1.77E5 6.72E4 50.12 20.15
1.00E-03 75.75 11.55 1.80E5 6.72E4 51.10 20.30
1.00E-01 75.76 11.57 1.82E5 6.92E4 51.05 20.34

Smoothing Factor (θ) 1 75.75 11.55 1.80E5 6.78E4 51.10 20.30
5 75.75 11.55 1.77E5 6.61E4 51.10 20.30
10 75.75 11.55 1.78E5 6.75E4 51.10 20.30

sites are removed more aggressively when they are infrequently used in classification,

resulting in a notable drop in both accuracy and transmission. Finally, the changes in

the smoothing factor (θ) and the δ of the Hoeffding bounds demonstrate virtually no

impact on the behaviour of HDSM, as the δ has a small impact on the thresholds for

trouble site creation and removal, and the smoothing factor will only impact the creation

of trouble sites with very high proportions of records.

4.6 Limitations and Applicability of HDSM

It is worth highlighting the current limitations of HDSM, and the situations where it

may not be applicable. It can be seen in Table 4.7 that for some datasets (such as EEG

and RBF), even the most accurate variation of HDSM (of all aggregation method and

trouble factor combinations) was not able to achieve accuracy comparable to that of

an ARF classifier trained on a copy of the dataset containing all features (as if the data

had been centralised, though this is not plausible in real circumstances). The complex

relationships in these datasets require a greater degree of data centralisation for effective

Chapter 4. Experimental Evaluation of HDSM 62

learning. Additionally, if a primary site does not have enough information to reasonably

classify the proportion of records that will not be forwarded as trouble, then those

records will be classified poorly. The extreme case of this is when a primary site cannot

learn any kind of model, and all records are classified with the same low confidence. In

this case, the selection of trouble records based on confidence will be arbitrary. One

way to combat these extreme cases is to perform complete centralisation of all records

at low order trouble sites before selecting subsets of trouble records for higher-order

trouble sites. Full centralisation at low order trouble sites can be achieved by using a

high trouble factor (e.g. at least twice the number of features at each primary site).

Table 4.7: Comparison of HDSM and centralised model accuracy.

Dataset Best HDSM Centralised ARF

EEG 66.99 82.07
GAS 94.00 95.95
HIG 53.57 53.57
FLT 89.37 89.74
OCC 90.18 95.65
SDD 98.61 99.52
WFR 90.32 92.82
RBF-F 40.99 68.54
RBF-M 56.02 80.71
SEA-A 86.97 88.61
SEA-G 86.71 87.26

Chapter 5

Variations of HDSM

This chapter describes a collection of variations to the HDSM architecture that could be

used to improve accuracy or reduce data transmission under particular circumstances.

5.1 Batch Transmission

Thus far, the transmission of trouble records and classification results has only been

discussed in terms of individual records. However, it is possible to buffer the data for

multiple records, and then transmit the buffer as a single batch from one site to another.

Doing so has no impact on the classification behaviour of HDSM, as exactly the same

data will be transmitted in the batches. On the other hand, batching the transmissions

between sites reduces the constant overhead inherent in each separate transmission with

the utilised communication protocol (such as TCP/IP).

However, there are several trade-offs to consider when transmitting record and

classification data in batches. A larger batch size will increase the average latency from

records arriving at a primary site to being finally classified by the aggregator. Records

that are placed at the beginning of a batch will need to wait for the batch’s buffer to fill

with other records before they are transmitted, resulting in a delay in processing those

63

Chapter 5. Variations of HDSM 64

records. Transmitting the posterior true classes in batches also creates a delay before

trouble site classifiers are able to learn from those classes. Therefore, a larger batch size

will make the overall classifier less responsive to concept changes in the data streams.

Finally, if batches are too large, aggregators or trouble sites may be idle while waiting

for data from the next batch to arrive. Furthermore, they may then be overwhelmed

with too many records at once when the batch does arrive, leading to processing delays.

Given these delays to classification and learning that can occur with larger batch

sizes, a batch size must be selected that is large enough to significantly reduce trans-

mission overhead while not unacceptably (1) increasing system latency, (2) decreasing

concept drift responsiveness, or (3) overloading sites with periodic surges of records.

5.2 Two-Phase Trouble Record Transmission

The previously proposed method for transmitting trouble records to a trouble site can

be described as “single-phase”: the key (used to join record fragments from different

source sites) and features for each record identified as “trouble” at a source site are

transmitted to the trouble site, and the trouble site discards any records that all source

sites do not “agree” are trouble. This results in much of the transmitted data being

discarded by the trouble site in cases where the agreement between source sites is low.

With the introduction of batch transmission, a two-phase transmission protocol

could be used instead to reduce this wasteful transmission. In this two-phase protocol,

each source site first transmits to the trouble site the key for each record it identified

as trouble (the first transmission phase). The trouble site then finds the intersection of

the sets of keys provided by its source sites, which represents the subset of records that

the source sites “agree” on. The trouble site then sends this subset of keys back to the

source sites, which then respond with the record fragments containing the features of

those records (the second transmission phase). Note that the second-phase transmission

Chapter 5. Variations of HDSM 65

does not need to include the record keys, as record features can be transmitted in the

same order as the received subset of record keys.

While it may be more efficient for a pair of source sites to find the intersection

without involving the trouble site (i.e. the first source site sends its trouble record keys

to the second source site, which computes and responds with the intersection of trouble

record keys), using the trouble site to compute the intersection reduces computational

load on source sites and is scalable to greater numbers of source sites.

The relative costs of single-phase and two-phase transmission can be compared,

given:

f = size of a record’s feature set in one source site’s fragment

g = size of a record’s key

n = number of record fragments considered trouble at source sites

p = number of record fragments processed at trouble site

a (agreement) = p
n

(5.1)

Then the total cost of single-phase transmission is the cost of transmitting the key

and features for all trouble record fragments from the source sites to the trouble site:

n(g + f). The cost of two-phase transmission is the sum of the cost of transmitting all

trouble record keys from source sites to the trouble site in the first phase (ng) with the

cost of the transmitting the subset of keys back to all source sites (pg) and the cost of

transmitting the fragments of features for that same subset from the source sites to the

trouble site in the second phase (pf). Therefore, the cost of two-phase transmission is

less than single-phase transmission when:

Chapter 5. Variations of HDSM 66

ng + pg + pf < n(g + f)

ng + ang + anf < n(g + f)

g + ag + af < g + f

ag < f − af

g < f(1

a
− 1)

(5.2)

In general, two-phase transmission is a better choice when the size of record keys is

substantially less than the size of record fragments containing features, and when the

level of agreement is sufficiently low. It would even be possible to use both single-phase

and two-phase transmission simultaneously for different trouble sites, with each trouble

site dictating to their source sites which protocol to use based on the observed level of

agreement in relation to record fragment sizes.

Another drawback that must be considered before utilising two-phase transmission

is the latency introduced by the two additional transmission steps. In addition to the

source sites transmitting the trouble record keys, the trouble site must respond with the

intersection of the key sets, and the source sites must then transmit the feature values for

that subset of records. These two additional steps approximately triple the time required

to transmit trouble records to each trouble site.

5.3 Alternative Confidence Threshold

In the previous definition of the confidence quantile threshold (see Equations (3.2)

and (3.3)), the level of agreement at a trouble site is only taken into consideration to

increase the proportion of data transmitted to a subsequent trouble site, which offsets

the reduction in records available to transmit due to the disagreement. Even though high

disagreement at a trouble site leads to fewer received record fragments being processed

Chapter 5. Variations of HDSM 67

at that trouble site, the level of agreement is not used to counteract this by increasing

the proportion of data transmitted from source sites. This correction is not performed

because, with single-phase transmission, it would result in many more record fragments

being transmitted to the trouble site, potentially overloading the transmission channel.

However, with two-phase transmission, the trouble site will receive all trouble record

keys from its source sites (in the first phase), but only receive fragments containing

features for records where agreement between source sites has already been established

(in the second phase). Therefore, it is reasonable to control the level of transmission in

each phase by means of separate trouble factors: t(1) and t(2). These trouble factors can

be used to reformulate the quantile threshold qs⇒d1:

r
(1)
x =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if primary site

1

∣Sx∣
∑
s∈Sx

(r(2)s × qs⇒x) else if trouble site

r
(2)
x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if primary site

ax × r(1)x else if trouble site

qs⇒d = min
⎛
⎝

1,
t
(1)
d

ld × r(2)s
,

t
(2)
d

ld × r(2)s × ad

⎞
⎠

(5.3)

where Sx is the set of source sites for a trouble site x, and reduction coefficients r(1)x

and r(2)x represent the proportions of the total number of records (n) entering the system

that are transmitted to site x during the first and second phases respectively. As they

are proportions, they will always lie within the interval [0,1] (Proofs: Section A.4). It

can be seen that r(1)x = r(2)x = 1 for all primary sites x, as they receive and classify all

records they receive. The value of r(1)d for a trouble site d is the mean2 over all source

1Various proofs related to this alternative quantile threshold are provided in Appendix A.
2Even though source sites may transmit unequal numbers of record fragments in certain cases,

representing r(1)d as a mean is reasonable given Equation (3.1) computes agreement in terms of the mean
number of record fragments transmitted by each source site, as demonstrated in Section A.2.

Chapter 5. Variations of HDSM 68

sites (s ∈ Sd) of the proportion of all records (n) that are available for transmission

from the source site (r(2)s) multiplied by the proportion of those records that will be

transmitted (qs⇒d)3. The value of r(2)d for a trouble site d is the proportion of records

received in phase 1 (r(1)d) reduced according to the level of agreement at the trouble site

(ad). The quantile threshold itself (qs⇒d) then determines the proportion of all records

to be transmitted from source site s to trouble site d according to the specified trouble

factors. As in the previous quantile threshold definition, trouble factors are set based

on the processing capacity of the trouble site relative to the feature set size l, as it is

guaranteed that r(1)x ≤ t
(1)
x

lx
and r(2)x ≤ t

(2)
x

lx
(Proofs: Section A.6). Therefore, t(1)x should

always be configured with a larger value than t(2)x , representing the fact that a trouble

site can receive more trouble records in the first phase (when only record keys are

transmitted), than in the second phase (when feature values are transmitted, and records

must be processed for classification and training).

Using the new formulation of the threshold will incur a small amount of additional

communication between sites. All source sites (Sd) for a trouble site d must regularly

transmit their value of r(2)s to the trouble site for it to be able to compute qs⇒d as part

of the definition of r(1)d . Additionally, in order for source sites to compute qs⇒d, the

trouble site must regularly provide the latest value of ad. Each agreement monitor must

also receive r(2) from the potential source sites it is monitoring in order to compute the

quantile threshold that is used when measuring the agreement of the potential trouble

site. The cost of this additional communication would be negligible in practice, as all of

these values could be provided periodically along with other batch transmissions.

One potential issue of this new threshold definition is that it introduces a feedback

loop between the agreement and quantile threshold: a change in the threshold changes

3Also note that r(2)a × qa⇒d = r
(2)
b × qb⇒d∀a, b ∈ Sd when there are enough records available at

the source sites (Proof: Section A.5), still ensuring that an equal number of records will be transmitted
from each source site (as long as there are enough records available at the source site). This maximises
potential agreement.

Chapter 5. Variations of HDSM 69

the proportion of records transmitted, which may impact the level of agreement, which

in turn is used to determine the threshold. Instability in this relationship could cause

problems for the agreement monitors, which decide to create trouble sites based on

stable levels of acceptable agreement. However, any instability may be manageable

through sufficiently large agreement windows that will change slowly, or by averaging

the measured agreement over a period of time. Future experimentation is required to

better understand the dynamics of this relationship in practice for different datasets.

It must be noted that if ad = 0 (when there is no agreement between the source sites

of trouble site d), then r(2)d = 0, and computing qs⇒d will require a division by zero.

In this case, the results of the divisions can be taken as +∞, and a value of 1 will be

taken as the quantile threshold, as determined by Equation (5.3). This will not flood

the trouble site, as this situation is equivalent to transmitting 100% of 0 records. Note

that this is an exceptional case that will be short-lived even if it occurs, as an agreement

level of zero will result in no records being classified at the site, eventually triggering

its removal.

5.4 Alternative Trouble Record Selection

Currently, trouble records are selected at each source site based on local classification

confidence. However, this may not produce the optimal set of trouble records in all

circumstances. Consider an example with two primary sites (a and b) acting as source

sites for a trouble site t. Each primary site has a single binary feature, meaning each full

record is made up of two binary features. Table 5.1 provides one possible distribution

of different feature value combinations (hereafter referred to as schemas) in the data

stream. Note that some combinations of schemas representing full records never appear

(probability of 0%), but there is still an equal probability of receiving either possible

fragment schema at the primary sites. Table 5.2 provides a possible set of confidences

Chapter 5. Variations of HDSM 70

Schema Proportion
Full Records (0, 0) 0%

(0, 1) 50%
(1, 0) 50%
(1, 1) 0%

Site a fragments (0, _) 50%
(1, _) 50%

Site b fragments (_, 0) 50%
(_, 1) 50%

Table 5.1: Example distributions of schemas in example data stream.

Schema Confidence
Primary site a (0, _) 70%

(1, _) 50%
Primary site b (_, 0) 90%

(_, 1) 70%

Table 5.2: Example classification confidences assigned to example schemas at primary
sites.

with which each schema could be classified.

If the trouble site required each primary site to forward 50% of its records as

“trouble” (qa⇒t = qb⇒t = 0.5), then site a would forward all of its (1,_) fragments and

site b would forward all of its (_,1) fragments, as these schema are classified with

the lowest confidences locally (see Table 5.2). However, Table 5.1 states that (1,1)

records never appear in the stream, so agreement at the trouble site will be 0%. Figure

5.1 further illustrates the problem by plotting the expected level of agreement at the

trouble site in this example as the proportion of records transmitted (q) varies. Note that

agreement will always approach 100% as the proportion transmitted approaches 100%

(if all records are transmitted, then there must be full agreement), but the ideal situation

is to have the line track as close to 100% agreement as possible for any value of q.

While the separate trouble thresholds for two-phase transmission described in

Chapter 5. Variations of HDSM 71

Figure 5.1: Plot of expected agreement as the proportion transmitted from primary sites
to trouble sites is varied for the example data stream.

Section 5.3 can partially address this problem by increasing transmission in the presence

of low agreement, it would be preferable to prioritise choosing trouble records that are

more likely to achieve agreement. In the scenario described above, it would have been

better for site a to transmit (0,_) fragments. This would have resulted in (0,1) records

arriving at the trouble site, which are classified with the lowest mean confidence across

the two primary sites. Unfortunately, it is not possible for each source site to know the

confidence of another source site without additional transmission between these sites

for every record. However, it may be possible to periodically provide a smaller amount

of data to each source site that will allow it to estimate the confidence of the other

source sites for each record. Therefore, this section proposes an alternative method for

source sites to select trouble records based on local confidence and a probabilistic view

of confidences at other source sites.

Chapter 5. Variations of HDSM 72

5.4.1 Alternative Metric for Selecting Trouble Records

This subsection will define a function T (x) of record x that can be used to prioritise

records for transmission to a trouble site based on a probabilistic view of source site

confidences. Firstly, let Cx
i represent the confidence for the classification of record x

at source site i. While each source site knows its own confidence, it does not know

the confidence at the other source sites. However, a source site j could estimate the

expected confidence at another site i based on the schema of its local record fragment

(xj), represented as: E(Cx
i ∣xj). One way of estimating this confidence value is to

take the weighted mean of confidence values for each possible record schema at site i

weighted by the observed probability of each schema appearing alongside xj in the full

schema (P (vi ∧ xj)):

E(Cx
i ∣xj) =

∑vi∈Vi (Cv
i × P (vi ∧ xj))

∑vi∈Vi P (vi ∧ xj)

=
∑vi∈Vi (Cv

i × P (vi ∧ xj))
P (xj)

= ∑
vi∈Vi

(Cv
i × P (vi∣xj))

(5.4)

where Vi represents the set of possible local record schemas at site i, and Cv
i represents

the classification confidence at site i for vi (a particular local schema at site i). The

equation is simplified by recognising that ∑vi∈Vi P (vi ∧ xj) = P (xj) and P (vi∧xj)

P (xj)
=

P (vi∣xj).

Each source site s of a trouble site t (s ∈ St) can then use its own local confidence

and estimates of confidences at other source sites to compute T (x):

T (x) = ∑
s∈St

(Cx
s)2 (5.5)

Records with a lower T score should be prioritised for selection as trouble records

according to the existing quantile threshold mechanism. A sum-of-squares approach is

Chapter 5. Variations of HDSM 73

used to penalise higher confidence values because a confident classification from even

one site indicates that the record does not need to be considered “trouble”.

Applying this method of determining trouble records to the record distributions

and confidences of the example data stream described previously results in Figure

5.2. In this plot, expected agreement linearly approaches full agreement at 50% data

transmission because the source sites send (0,_) and (_,1) fragments respectively.

These fragments achieve agreement, except for random disagreement when the trouble

proportion is less than 50%, which is caused by the selection of random subsets of

records with these schema for transmission. Agreement dips after 50% as the remaining

(1,_) and (_,0) records are transmitted, which also achieve agreement, though once

again with a degree of mismatch from random selection.

Variations of the definition of T are also possible. The contribution of each source

site’s confidence could be weighted so that confidence estimations with higher variance

Figure 5.2: Plot of expected agreement as the proportion transmitted from primary sites
to trouble sites is varied for the example data stream when trouble records are selected
according to the T score.

Chapter 5. Variations of HDSM 74

have less weight. Another possible approach is to define T as the maximum confidence

at any source site (max(Cx
s)∀s ∈ St), as agreement will not be achieved when even one

of the confidences is high.

If it is not possible for different sites to produce confidence values on a consistent

scale, then the quantiles of confidence values could be used as a measure of confidence

instead.

One disadvantage of basing trouble record selection on T is that the computational

cost of computing it grows with the number of possible record schemas. Because of this

curse of dimensionality, using T is likely infeasible for data streams with many features,

high feature cardinalities, or numeric features. An exception to this is if a classification

model produces fewer unique confidence values than there are unique schemas, such as

in decision trees that have a unique confidence value for each leaf node. In this case,

the cost of computing T would scale with the number of leaves.

5.4.2 Communication of Confidence Distributions

One challenge of implementing the T metric defined above lies in how to estimate the

source site confidences for each schema (E(Cx
s ∣xv)∀s, v ∈ Sd, V) and transmit them to

all other source sites. Two possible solutions are presented below.

Centralised Random Sample

The first approach involves centralising a random sample of record fragments and their

associated confidences from all source sites to a new distribution monitor site associated

with each trouble site. With a sample of merged records, the confidence values can be

estimated by:

E(Cx
i ∣xj) =

1

∣N(xj)∣
∑

n∈N(xj)

Cn
i (5.6)

Chapter 5. Variations of HDSM 75

where N(xj) is the subset of sampled records that contain schema fragment xj . This

can be computed for all source sites (Sd) and all possible schemas at other sites (xj)

with a single pass over the sample of records (N) with complexity O(∣N ∣∣Sd∣2), as

demonstrated in Algorithm 4.

The estimates should be continuously updated as more samples are transmitted to

the distribution monitor, and a method like exponential down-weighting could be used

in updateMean to give greater weight to recent confidence values. The proportion of

records sampled should be large enough to provide a significant sample of each unique

schema, though this means the sample size will need to increase with the dimensionality

and cardinality of the data stream.

A method is also required to ensure that the fragments sampled from each source site

are for the same records. One possibility is to use a deterministic method of selecting

records based on their keys. For example, if keys are monotonically increasing, records

where key mod p = 0 could be sampled to select a proportion of 1
p records (provided

the periodicity does not bias the selection of certain schemas over others). Alternatively,

records could be sampled randomly at each source site, and a two-phase transmission

scheme (similar to that in Section 5.2) could be used to only transmit features and

confidence values from the intersection of records. The statistical predictability of

agreement in the case of random selection (as described in Section 3.3.1) could be used

to choose the size of the random sample that will result in a second phase transmission

with the desired quantity of records.

Aggregating Confidences at the Aggregator Site

The second approach to sharing confidences takes advantage of the confidence values

already collected at the aggregator site. Specifically, the aggregator can use the definition

in Equation (5.5) to compute T scores for each trouble site for every record based on

the classification confidences from the source sites of each trouble site. The aggregator

Chapter 5. Variations of HDSM 76

Result: Confidence estimates for each source site given each schema fragment at

other source sites

Input: sourceSites ← Sd, N ← sample of full records,

siteConfidences ← confidences from each source

site for each record

/* Populate default estimates for missing schemas */

1 foreach j in sourceSites do

2 foreach xj in getSiteSchemas(j) do

3 foreach i in sourceSites do

4 estimates[i, xj] ← 0.5

5 end

6 end

7 end

/* Update estimates based on each sampled record */

8 foreach x in N do

9 foreach j in sourceSites do

10 xj ← getSiteSchema(x, j)

11 foreach i in sourceSites do

12 if i ≠ j then

13 updateMean(estimates[i, xj], siteConfidences[i, x])

14 end

15 end

16 end

17 end
Algorithm 4: Compute confidence estimates.

Chapter 5. Variations of HDSM 77

can then transmit the trouble site’s T scores for all records back to each of the source

sites, where they can be grouped by the local schema associated with each record and

averaged to produce an estimate of the T score for each local schema:

E(T (x)∣xj) =
1

∣N(xj)∣
∑

n∈N(xj)

T (n) (5.7)

where N(xj) is the set of records with the local schema xj , and T (n) represents the T

score provided by the aggregator for record n.

This approach may even improve agreement further than the approach above, as the

same historical T scores will be used by each source site when estimating the T score

for a new record.

However, this approach would introduce transmission from the aggregator back to

each group of source sites, and would also require the source sites to continuously update

their estimates of T for each local schema (ideally using exponential down-weighting

to bias the effect of recent records).

5.4.3 Selecting Trouble Sites

Given trouble site selection is based on agreement (as measured by the agreement

monitors), changing the way trouble records are selected requires a new way of choosing

which pairs (or larger groups) of sites are good candidates to be the source sites for a

new trouble site.

One approach could be to calculate the T score for all records and all possible

groups of source sites. Groups that achieved a lower mean4 T score would be more

likely to classify the same records with low confidence, and therefore be more promising

candidates. In practice, the mean T score should only include records with a T score

below the estimated quantile threshold for the prospective trouble site, as these are the

4This could be averaged over a sliding windowing or via exponential down-weighting.

Chapter 5. Variations of HDSM 78

records that are the targets for transmission to the trouble site.

5.5 Additional Variations

Additional variations to the HDSM architecture are provided in appendices. Appendix

B describes methods that can be used to compress the size of trouble record batches,

improving transmission efficiency. Appendix C explores the possibility of omitting the

transmission of unconfident local classifications to the aggregator, including its impacts

on classification accuracy and transmission protocols.

5.6 Section Summary

The previous chapters have described the novel HDSM architecture for distributed data

stream mining. However, HDSM as described does nothing to protect the privacy of

individuals represented by the trouble records that are transmitted to trouble sites. The

following chapters propose novel data perturbation methods for privacy-preserving data

stream mining, and discuss how these methods can be combined with HDSM to perform

distributed privacy-preserving data stream mining.

Chapter 6

Related Work in Privacy-Preserving

Data Mining

6.1 Existing Techniques for PPDM and PPDP

Many different approaches to privacy-preserving data mining (PPDM) and privacy-

preserving data publishing (PPDP) have been proposed previously, often based on

different models of how privacy is interpreted in practice. The most prominent models

are reviewed below, with a focus on their relevance to data stream mining.

6.1.1 Secure Multiparty Computation

One approach to privacy-preservation is to develop methods that allow models to

be produced without sharing any record-level data. For example, secure multiparty

computation (SMC) methods provide strict cryptographic limits to the information

gained by parties involved in the mining process. However, SMC often requires

many rounds of communication between parties, which makes it too computationally

expensive for use in online learning (Mendes & Vilela, 2017). The usefulness of

79

Chapter 6. Related Work in Privacy-Preserving Data Mining 80

other, similar methods that can operate on streams is restricted by the fact they were

specifically devised for particular types of data mining algorithms (J. Wang, Liu, Fu,

Luo & Li, 2019).

6.1.2 Anonymisation

A different privacy-preserving approach is to perform anonymisation that ensures any

individual’s record in a dataset is indistinguishable from a group of similar individuals.

This form of guarantee is often modelled with the k-anonymity framework and its

derivatives: l-diversity, t-closeness, etc. (Aggarwal & Philip, 2008). While this approach

has been applied in the context of data streams (Abdelhameed, Moussa & Khalifa, 2019;

Otgonbayar, Pervez, Dahal & Eager, 2018; Sakpere & Kayem, 2014; J. Wang, Deng &

Li, 2018), achieving k-anonymity when joining partial records from multiple datasets

(e.g. merging an individual’s financial history with their medical history, which may

be owned by different parties) still requires many rounds of communication between

parties (Jiang & Clifton, 2006; K. Wang, Fung & Dong, 2005).

6.1.3 ε-Differential Privacy

Another popular privacy model is that of ε-differential privacy, which guarantees that

adding or removing one individual’s data from a dataset results in a maximal change

relative to ε in any released information (Dwork, 2008). This ensures that the presence

or absence of a particular individual in the dataset has a limited impact on the released

information, thereby protecting each individual’s privacy. While this model has been

applied in the context of data streams (Cao & Yoshikawa, 2016; Dwork, Naor, Pitassi &

Rothblum, 2010; Kellaris, Papadopoulos, Xiao & Papadias, 2014; Q. Wang et al., 2018),

these methods control the privacy of particular analytical results (such as summary

statistics), and therefore cannot be used to facilitate the sharing of record-level data for

Chapter 6. Related Work in Privacy-Preserving Data Mining 81

general data mining.

6.1.4 Data Perturbation

Finally, data perturbation methods alter the values of dataset records to prevent the

recovery of their original values while still retaining desirable properties of the dataset.

Methods such as rank-swapping (Nin, Herranz & Torra, 2008), condensation (Aggarwal

& Philip, 2004), randomised response (Huang & Du, 2008), and additive noise (Agrawal

& Srikant, 2000) retain dataset-wide properties (such as summary statistics), but at

the expense of the properties of individual records. Other methods such as geometric

perturbation (K. Chen, Sun & Liu, 2007) and random projection (K. Liu, Kargupta

& Ryan, 2006) preserve (or approximately preserve) the pairwise distances between

records in the dataset. This makes them more useful for performing data mining tasks

that make predictions about particular records, such as classification and regression.

While these transformations are typically targeted at numeric data, many real-world

data streams involve numeric data (such as IoT sensors). Furthermore, these techniques

typically involve straightforward transformations of records, making them efficient to

continuously apply to data streams.

Relatively little research has been performed on data perturbation for preserving

privacy in the context of data streams. F. Li, Sun, Papadimitriou, Mihaila and Stanoi

(2007) proposed an additive noise approach that accounts for the correlation and auto-

correlation of streams. They demonstrated the method’s resistance to additive noise

attacks that take advantage of correlation, but their study did not include an evaluation

of the impact on the accuracy of data mining algorithms. Rodríguez, Nin and Nuñez-

del Prado (2017) evaluated the impact of additive noise perturbation and other non-

perturbative methods on stream mining algorithms, but their privacy evaluation model

was based on anonymisation rather than value recovery. Finally, a method combining

Chapter 6. Related Work in Privacy-Preserving Data Mining 82

both random rotation and condensation (generating synthetic records with similar

statistical properties to the original dataset) was proposed by Chamikara, Bertok, Liu,

Camtepe and Khalil (2018), but it was not evaluated with stream mining algorithms.

Furthermore, as the synthetic records produced by condensation do not represent

particular records in the original stream, it is not a viable approach for producing

predictions about the individual records in the original data stream.

6.2 Methods for Privacy-Preserving Data Perturbation

Given its potential to be applied to data streams, the data perturbation model is used as

the basis for the methods proposed in the next Chapter. In this section, the development

of data perturbation methods used for PPDM and PPDP is reviewed.

6.2.1 Additive Noise

Additive noise is one of the earliest examples of privacy-preserving data perturbation

(Agrawal & Srikant, 2000). This method distorts numeric values by adding random

values which are drawn from a standard distribution (such as a uniform or normal

distribution) with mean zero. The greater the variance of the noise distribution, the

more the values are distorted, resulting in greater privacy and lower data utility for

analysis. However, it has been shown that additive noise is susceptible to a variety

of privacy-breaking attacks, including spectral filtering (Kargupta, Datta, Wang &

Sivakumar, 2003), Eigen-analysis, Maximum A Posteriori (MAP) estimation, and

distribution analysis (K. Liu, Giannella & Kargupta, 2008). Furthermore, because the

noise is generated separately for each record, the relationships between records can be

unacceptably distorted (K. Liu, Kargupta & Ryan, 2006).

Chapter 6. Related Work in Privacy-Preserving Data Mining 83

6.2.2 Random Rotation

Random rotation was later proposed as a means of preserving privacy while also

retaining the relationships between records in a dataset (K. Liu, Kargupta & Ryan,

2006). By performing a matrix multiplication between a dataset with m features and a

random m ×m orthogonal matrix, a perturbed dataset can be produced with the same

number of records and features. Privacy is preserved through the generation of the

new set of features, each of which is a linear combination of the full set of original

features. Because the transformation is orthogonal, the distance between each pair

of records is equal before and after the perturbation, which means many data mining

algorithms will perform identically on the original and perturbed datasets (Giannella,

Liu & Kargupta, 2013). However, several attacks have been proposed to approximately

reverse the rotation, including ICA-based attacks that require no prior knowledge

(K. Liu, Kargupta & Ryan, 2006), PCA-based attacks that require a sample of data

drawn from the same distribution as the original dataset (K. Liu, Giannella & Kargupta,

2006), and known input-output attacks that require pairs of original records matched

with their perturbed versions. It has been shown that as few as m known input-outputs

can perfectly reverse the rotation (K. Liu, Giannella & Kargupta, 2006). Carefully

choosing the orthogonal matrix and augmenting the transformation with a random

translation (adding an additional constant value to each value relative to the range of the

feature) and additive noise can help resist some of these attacks (K. Chen et al., 2007),

but attacks have been developed for combinations of random rotation with translation

(Giannella et al., 2013) and random rotation with additive noise (L. Liu, Wang & Zhang,

2008).

Chapter 6. Related Work in Privacy-Preserving Data Mining 84

6.2.3 Random Projection

Random projection has been proposed as a way to address the vulnerabilities of random

rotation while still preserving distances between records as much as possible (K. Liu,

Kargupta & Ryan, 2006). Random projection replaces the distance-preserving orthogo-

nal matrix with one that is only approximately distance-preserving (such as a matrix

of values drawn from a normal distribution with mean zero), and also reduces the di-

mensionality of the matrix to produce a projected dataset. The dataset can be projected

column-wise (to preserve the number of records and the distances between them) or

row-wise (to preserve the number of features and the distances between them). However,

only the former is applicable in the context of a data stream, as the latter requires all

records to be known before the transformation is applied. Random projection resists the

ICA-based attacks used against random rotation because the reduced dimensionality

results in an under-determined system of linear equations (K. Liu et al., 2008). Like the

other perturbation methods discussed above, random projection is designed for numeric

data. Application to discrete data is possible, though it has been noted this is much

more susceptible to privacy breaches in cases where the attacker has prior knowledge of

the original data schema (K. Liu, Kargupta & Ryan, 2006).

6.3 Attacks on Random Projection

As random projection forms the foundation for the data perturbation methods proposed

in the next chapter, the primary attacks against it are reviewed in more detail. These

methods have also been covered in previous surveys of attacks on data perturbation

(K. Liu et al., 2008; Okkalioglu et al., 2015). All of these attacks assume some level of

prior knowledge on the part of the attacker.

Chapter 6. Related Work in Privacy-Preserving Data Mining 85

6.3.1 Known Sample Attacks

While the PCA-based known sample attack on random rotation is not effective against

random projection (K. Liu, 2007), other known sample attacks have been devised

based on under-determined ICA (Sang, Shen & Tian, 2012) and MAP estimation

with approximated covariances and means (Sang et al., 2012). However, the number

of known sample records required to produce an accurate estimate of the dataset

distribution makes this an unlikely avenue of attack

6.3.2 Known Projection Matrix Attacks

It has been shown that if an attacker knows at least as many matching pairs of original

and perturbed records (input-output pairs) as there are features in the original dataset

(m), then they will be able to perfectly recover the matrix that was used to perturb

the dataset (K. Liu, 2007). The l1-recovery attack makes use of a known projection

matrix as prior knowledge, but it is specifically targeted at sparse datasets (Zhao, Yang

& Zhang, 2014).

6.3.3 Known Input-Output Attacks

If fewer than m input-output pairs are known1, then a known input-output MAP attack

may be made against random projection (K. Liu, 2007). Sang et al. (2012) note

that knowledge of input-output pairs can be combated by shuffling records before

publication, but this may not be possible when publishing a continuous data stream.

Furthermore, Giannella et al. (2013) have proposed a way to match input records to

perturbed records without other prior knowledge in the case of a random rotation, and

it may be possible to adapt this technique for use against random projection in an

approximate fashion.

1The case when at least m input-output pairs are known is discussed in Section 7.2.7.

Chapter 6. Related Work in Privacy-Preserving Data Mining 86

A combination of random projection with a non-linear repeated Gompertz function

has recently been proposed to resist MAP attacks while retaining enough data utility

for clustering tasks (Lyu, Bezdek, Law, He & Palaniswami, 2018). However, the

extreme nature of the non-linear transformation may make this approach infeasible for

other tasks, such as classification, where decision boundaries can become unacceptably

distorted.

It is highly plausible for an attacker to have the few known input records required for

a known input-output attack. For example, if each record is associated with a particular

individual, a small group of malicious individuals could collude and make use of their

own private data to breach the privacy of other individuals in the dataset. For this reason,

the known input-output MAP attack type can be considered the most plausible attack on

random projection, and therefore it is used as the basis for the attacks used to evaluate

the privacy-preserving capabilities of the proposed data perturbation methods.

Chapter 7

Proposed Perturbation Methods for

Privacy-Preserving Stream Mining

7.1 Data Perturbation Methods

This section defines the foundational data perturbation method based on random projec-

tion and translation, and the two proposed methods that make use of independent and

cumulative additive noise respectively.

In all models, the convention is adopted of representing the original dataset as an

m × n matrix X where columns represent data records and rows represent data features.

Each perturbation method will transform X to produce a perturbed dataset represented

by a k × n matrix Y , where k ≤ m. Note that the number of records does not differ

between X and Y , though the number of features may be reduced.

7.1.1 Foundational Random Projection Model

The random projection perturbation method can be represented by the matrix multi-

plication Y = 1
√

kσr
RX , where R is a k ×m random matrix, each element of which is

87

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 88

i.i.d. and drawn from a Gaussian distribution with mean zero and variance σ2
r (K. Liu,

Kargupta & Ryan, 2006, Lemma 5.3). Multiplying the projection by 1
√

kσr
ensures

that the column-wise inner-product is preserved when merging horizontally-distributed

datasets (datasets that represent different sets of records with the same set of features)

perturbed with the same R. This is not strictly necessary when working with only one

dataset, as changing the scale of the dataset as a whole will have little or no impact on

many data mining tasks.

The basis of the random projection method is the Johnson-Lindenstrauss lemma

(Johnson & Lindenstrauss, 1984), which proves that a dataset of s records can be

reduced to O(log s
ε2) dimensions while still retaining the pairwise distances within a

small margin of error ε (K. Liu, Kargupta & Ryan, 2006, Lemma 5.1). Therefore,

random projection can be considered an approximately distance-preserving perturbation.

K. Liu, Kargupta and Ryan (2006, Lemma 5.6) show that as k is reduced, the pairwise

distance error increases exponentially, but there is also a corresponding increase in

resistance to privacy-breaching attacks (K. Liu, 2007).

Resisting Rotation Centre Attacks with Random Translation

K. Chen et al. (2007) show that one deficiency of distance-preserving perturbations is

that records near the rotation centre (i.e. origin) are perturbed less than records further

away (i.e. record vectors having greater magnitude). This means that perturbed records

with low magnitude may be adequate estimates of their original counterparts, without

the need for any sophisticated attack methods.

While this vulnerability may be somewhat mitigated by the dimensionality reduction

of random projection, the vulnerability can be completely countered by performing a

random translation as part of the perturbation (K. Chen et al., 2007). This extends the

perturbation method to Y = 1
√

kσr
RX +Ψ, where each column in Ψ is identical (so the

same translation is applied to each record) and the element in each row is a randomly

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 89

positive or negative value drawn from a uniform distribution. The uniform distribution

ranges from a minimum translation equal to the range of the corresponding feature (F)

and a maximum translation of twice the range:

Ψ∗,i = Ψ∗j,1 ≤ i < j ≤ n

ψi,j = B(−1,1) × U(R(Fi),2R(Fi))
(7.1)

whereR(Fi) is the range of the feature in row i, B(a, b) is a binary random distribution

with equal probabilities of producing either a or b, and U(a, b) is a uniform distribution

ranging from a to b.

Applying such a constant translation to all records has no effect on many common

data mining tasks, but a later section will demonstrate that an attacker must sacrifice

one known input-output pair in order to account for it.

This foundational perturbation method involving random projection and random

translation will hereafter be referred to as RP.

7.1.2 Random Projection with Independent Noise

To add an additional degree of control over the accuracy/privacy trade-off, two different

forms of additive noise are proposed to extend the RP method. The first of these is to

add i.i.d. Gaussian noise to every value in the perturbed dataset. This extension of the

foundational perturbation method to include “independent” noise will be referred to as

RPIN. The variance of the noise should be proportional to the range of each feature:

Y = 1√
kσr

RX +Ψ +∆

δi,j = N(0, σ2
δ ⋅ R(Fi))

(7.2)

The motivation for this additive noise is to add a degree of uncertainty to any

recovery attempts made with attacks that attempt to reverse the random projection on

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 90

the basis of its approximately distance-preserving properties. However, this distortion

comes at a proportional cost to data mining tasks that are dependent on pairwise

distances. This accuracy/privacy trade-off is controlled through the σδ parameter.

While this form of additive noise has previously been combined with random rotation

(K. Chen et al., 2007), it has not been combined with random projection as far as could

be determined from an extensive literature review.

7.1.3 Random Projection with Cumulative Noise

The second proposed additive noise extension to RP is an entirely novel method specif-

ically designed for a data stream mining context. This extension of the foundational

perturbation method to include “cumulative” noise will be referred to as RPCN. As

with RPIN, i.i.d. Gaussian values are added to each record, but each random value is

also added to every subsequent record in the stream, such that the noise accumulates:

Y = 1√
kσr

RX +Ψ + Γ

γi,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N(0, σ2
γ ⋅ R(Fi)) j = 1

N(0, σ2
γ ⋅ R(Fi)) + γi,j−1 j > 1

(7.3)

where i, j are the feature and record indexes respectively.

Because the sum of n i.i.d. variables drawn from a Gaussian distribution is itself

a Gaussian distribution with the same mean and a variance of nσ2, the difference

in Γ noise between two records in a stream is proportional to the number of records

separating them. In essence, the successive values along each row of Γ can be considered

a Gaussian random walk. This property is particularly useful for resisting known input-

output attacks, where an attacker will face increasing levels of noise when attempting

to recover records further away from known records. It also means that using a small

σγ can result in the same equivalent noise as independent noise with a much larger σδ,

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 91

as explained in the next section. By using a small σγ , the effect on pairwise distances

among nearby records in the stream is also minimised, allowing for more accurate data

mining. The gradual motion of the random walk over time can then be considered a

form of concept drift, which many stream mining algorithms are designed to adapt to as

they learn (Bifet & Kirkby, 2009). Therefore, RPCN is designed to achieve a similar

privacy benefit to that of RPIN, but with less impact on the accuracy of data stream

mining algorithms.

7.1.4 Comparison of Independent and Cumulative Noise

In order to perform a fair comparison between independent and cumulative noise,

the relationship between the σδ and σγ parameters that will result in an equivalent

total amount of noise must be established. To simplify the equations involved in

the comparison, dataset features are assumed to be min-max normalised such that

R(Fi) = 1. This allows the Gaussian distributions in the definitions of δi,j and γi,j to be

simplified to N(0, σ2
δ) and N(0, σ2

γ) respectively.

Finding the total independent noise over a stream of n records is then straightforward,

as the amount of noise added to each record is i.i.d. The amount of noise added to each

feature Fi can be considered to be the absolute difference between each record and its

original value, which is modelled by the half-normal distribution ∣N (0, σ2
δ)∣ (the mean

of which is σδ ⋅
√

2
π). Therefore, the expected value of the independent noise Eδ added

over a stream of n records is:

Eδ =
n

∑
i=1

(σδ ⋅
√

2

π
)

= n ⋅ σδ ⋅
√

2

π

(7.4)

Finding the total cumulative noise (Eγ) over a stream of n records can be found

similarly, but the fact that the variance of the accumulated noise added to each record

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 92

increases linearly for subsequent records must be accounted for:

Eγ =
n

∑
i=1

(
√
i ⋅ σ2

γ ⋅
√

2

π
)

=
n

∑
i=1

(
√
i ⋅ σγ ⋅

√
2

π
)

= σγ ⋅
√

2

π
⋅
n

∑
i=1

√
i

(7.5)

Given the above expressions for Eδ and Eγ , the equivalence point γy can be found

from:

Eδ = Eγ

n ⋅ σδ ⋅
√

2

π
= σγ ⋅

√
2

π
⋅
i≤n

∑
i=1

√
i

n ⋅ σδ = σγ ⋅
n

∑
i=1

√
i

σγ = σδ ⋅
n

∑ni=1

√
i

(7.6)

Figure 7.1 demonstrates this relationship by plotting the amount of noise expected

to be added to each of 1000 records when σδ = 0.1 and the total cumulative noise is

equivalent (σγ ≈ 0.0047).

Figure 7.1: Comparison of independent and cumulative noise when the total noise of
each approach is equal.

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 93

One drawback to cumulative noise that is apparent in Figure 7.1 is that the difference

in noise between records that are nearby in the data stream is much less than that

achieved with equivalent independent noise. The impact of this depends on the real-

world context in which the masking is applied. For some data streams, an attacker with

some set of known input-output records may already have some knowledge of other

nearby records. For example, an individual may publicly share their location at some

times, but wish for it to remain private at other times. The attacker’s goal will therefore

be to attack records distant from the ones they already know. However, as the noise

accumulates over a period of time, this may be a much more difficult attack to perform

than one on independent noise.

7.1.5 Interpolating Cumulative Noise Between Known Points

It is worth noting that if the cumulative noise added to two records (γa and γc) is known,

then the cumulative noise added to a record between them in the stream (γb, a < b < c)

can be estimated by modelling the joint probability distribution P (γb∣γa ∧ γc) as a

product of the two Gaussian probability distributions P (γb∣γa) and P (γb∣γc) (Smith,

2011) 1:
1https://ccrma.stanford.edu/~jos/sasp/Product_Two_Gaussian_PDFs

.html

https://ccrma.stanford.edu/~jos/sasp/Product_Two_Gaussian_PDFs.html
https://ccrma.stanford.edu/~jos/sasp/Product_Two_Gaussian_PDFs.html

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 94

P (γb∣γa) = N(γa, (b − a)σ2
γ)

P (γb∣γc) = N(γc, (c − b)σ2
γ)

P (γb∣γa ∧ γc) = N(µ,σ2)

µ =
γa(c − b)σ2

γ + γc(b − a)σ2
γ

(c − b)σ2
γ + (b − a)σ2

γ

= γa(c − b) + γc(b − a)
c − a

σ2 =
(b − a)σ2

γ(c − b)σ2
γ

(b − a)σ2
γ + (c − b)σ2

γ

=
(b − a)(c − b)σ2

γ

c − a

(7.7)

Note that the effective variance decreases as b comes closer to either a or c because

(b − a)(c − b) is maximised when b = c−a
2 . While knowing noise values on either side

of an unknown record reduces the variance of the effective cumulative noise of the

unknown record, it is unlikely to occur in practice. Assuming the pairwise distance

is perfectly preserved so that ∣xc − xa∣ = ∣yc − ya∣ (which it is on expectation, because

random projection preserves pairwise distance approximately), then the magnitude of

the difference between γc and γa can be found: ∣γc − γa∣ = ∣yc − ya∣ − ∣xc − xa∣. However,

it is still not possible to determine the difference vector γc − γa because it is in the

transformed feature space produced by the random projection.

7.1.6 Data Perturbation Efficiency

As the computational complexity of the matrix multiplication involved in the random

projection of each record is determined by the number of features in the original and

projected datasets (O(km), k ≤m), the additional operations required for the random

translation and additive noise do not significantly affect performance. In the case of

RPIN, the translation and generated noise must be added to each of the k features of

the projected record, resulting in a total complexity still proportional to O(km). For

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 95

RPCN, the generated noise can simply be added to the translation before it is added to

the projected record, resulting in the same overall complexity as independent noise. By

adding the noise to the random translation stored in memory, it will also be applied to

all subsequent records. The only other performance consideration for additive noise

is the requirement of an entropy source from which the noise for each record can be

efficiently drawn.

7.1.7 Applying Noise to the Random Projection Matrix

While applying additive noise to the random projection matrix itself was considered,

this avenue was not pursued because it would result in smaller changes to records with

low magnitude (closer to the origin). Applying additive noise to the projected records

instead ensures the degree of perturbation is independent of the record’s magnitude.

7.2 Known Input-Output Attacks

This section describes the proposed known input-output attacks that are designed to

breach the privacy of the data perturbation methods described in the previous section.

The basis for any known input-output attack is that the attacker has prior knowledge of

a small subset of input records and the perturbed records they correspond to. This can

commonly occur when each record of a data stream represents an individual, in which

case one or more individuals may share their private records with each other in order to

breach the privacy of other individuals represented within the data stream.

More formally, it is assumed the attacker knows p columns of the input stream X

(represented asXp) and their corresponding columns in the output stream Y (represented

as Yp). The attacker will then use this prior knowledge to attack other output columns

(yi ∈ Y ∖ Yp) in order to produce a recovered estimate (x̂i) of the original input column

(xi). Following existing convention (K. Liu et al., 2008), it is also assumed that the

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 96

attacker knows the perturbation method that was applied to X, and that they know any

variances involved (σ2
r , σ2

δ , and σ2
γ). This information may be leaked, or may need to

be shared by multiple organisations following the same perturbation procedure before

sharing and merging data. As in the previous section, dataset features are assumed to be

min-max normalised (R(Fi) = 1) in order to simplify the expressions involved in each

attack.

7.2.1 Notation

Throughout the rest of this section, the following notation is adopted:

• [A,a] represents the matrix produced by inserting vector a as a new column in

matrix A. When the columns are related to records in a data stream, it is assumed

the columns are sorted in the relative order they appear in the data stream (i.e.

sorted by stream-index).

• A represents the matrix produced by concatenating the columns of m × n matrix

A to form a single column vector of length mn.

• δi and γi represent the vectors of independent or cumulative noise (respectively)

that are components of the perturbed record yi.

• a l.i. A indicates vector a is linearly independent to the columns of matrix A.

7.2.2 Known Input-Output MAP Attack on Random Projection

The Maximum A Posteriori (MAP) attack has previously been proposed as a way

to breach the privacy of randomly projected datasets given known input-output pairs

(K. Liu, 2007; K. Liu et al., 2008). This attack requires that all columns in Xp are

linearly independent (i.e. Xp has full column rank), and that the target xi is linearly

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 97

independent to all columns in Xp. This implies that p must be less than m, as the

number of rows in X limits the maximum rank of [Xp, xi] to m. Attacks for the case

when p ≥m are discussed in Section 7.2.7.

The basic premise of the attack is to estimate x̂i as x̂ such that the probability of

[Yp, yi] being the result of a random projection of [Xp, x̂] is maximised:

x̂i = arg sup
x̂
φr([Yp, yi]) (7.8)

where x̂ ∈ Rm l.i. Xp and φr is the probability density function for the output of

the random projection:

[Yp, yi] =
1√
kσr

R[Xp, x̂] (7.9)

The distribution of φr is a multi-variate Gaussian (of (p + 1)k dimensions) with a

zero mean vector and a block-diagonal covariance matrix (K. Liu, 2007):

Σφr = Ik ⊗
1

k
[Xp, x̂]T [Xp, x̂] (7.10)

While finding an analytic solution to the maximisation problem in Equation (7.8)

is infeasible, it is possible to find approximate solutions numerically via optimisation

(K. Liu, 2007). The computational complexity of performing such an attack is dominated

by the O(m(p + 1)) matrix multiplication of XTX , and the O((k(p + 1))3) Cholesky

decomposition and matrix inversion operations performed in serial to compute the

probability density of φr. As these operations must be performed once for each of i

iterations of a numeric optimisation algorithm, the combined computational complexity

of the attack can be simplified to O(i(m(p + 1) + (k(p + 1))3)).

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 98

7.2.3 Extended MAP Attack for Random Translation

The above attack on random projection does not account for the additional random

translation used in the RP perturbation method, which extends the attack’s target

perturbation model from Equation (7.9) to become:

[Yp, yi] =
1√
kσr

R[Xp, x̂] +Ψ (7.11)

However, the translation can be accounted for by translating both [Yp, yi] and

[Xp, x̂] so that one pair of corresponding input and output records are aligned at the

origin (which is the zero vector: 0). Because any projection of a zero vector is itself the

zero vector (1
√

kσr
R0 = 0), such a pair must represent the result of a random projection

without any additional translation component. Such a reversing translation can be

performed on the inputs ([Xp, x̂]) and outputs ([Yp, yi]) by subtracting the first column

of each matrix from all other columns in that matrix. However, because the zero vector

is linearly dependent to all other vectors, this pair can no longer be used as part of the

attack on random projection, and therefore the first column of each matrix (now zero

vectors) must be removed. This entire alignment operation is defined as the function α:

α
⎛
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 . . . a1,n

.

am,1 am,2 . . . am,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,2 − a1,1 . . . a1,n − a1,1

.

am,2 − am,1 . . . am,n − am,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.12)

such that α(A) = α(A +Ψ) for any matrix A and translation Ψ with corresponding

dimensions.

α can be used to update the MAP attack formulae in Equations (7.8) and (7.10) to

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 99

account for the translation introduced in Equation (7.11):

x̂i = arg sup
x̂
φr(α([Yp, yi]))

Σφr = Ik ⊗
1

k
α([Xp, x̂])Tα([Xp, x̂])

(7.13)

This extended attack that accounts for both the random projection and random

translation of the RP perturbation method will hereafter be referred to as A-RP. Re-

moving one of the known input-output pairs reduces the number of inputs used to

build the covariance matrix of φr such that the computational complexity of A-RP is

O(i(mp + (kp)3)).

7.2.4 Extended MAP Attack for Independent Noise

This subsection describes an attack named A-RPIN, which is an extension of A-RP that

accounts for the independent noise of the RPIN perturbation method:

[Yp, yi] =
1√
kσr

R[Xp, x̂] +Ψ + [∆p, δi] (7.14)

A-RPIN involves two stages with separate optimisation problems.2

The first stage produces an estimate (∆̂p) of the independent noise added to each of

the known records. The optimisation problem balances the probabilities of the estimated

noise values and the probability that the estimated known output records without noise

(α(Yp − ∆̂p)) resulted from a random projection of the known inputs:

∆̂p = arg sup
∆̂p

1

kp + 1

⎛
⎜⎜
⎝

φr(α(Yp − ∆̂p))

+∑φδ(∆̂p)

⎞
⎟⎟
⎠

(7.15)

where ∆̂p ∈ Rk,p and φδ is the probability density function for an independent noise value

2An approach based on a single optimisation problem was initially experimented with, but it was
found to be marginally less accurate than the two-stage method.

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 100

(N(0, σ2
δ)). The entire expression is divided by kp + 1 to produce a mean probability

density that is comparable to the outputs of the other attack types (such as A-RP).

Also, because there is no estimate for x̂ in this problem, the covariance matrix for φr is

simplified to:

Σφr = Ik ⊗
1

k
α(Xp)Tα(Xp) (7.16)

The second stage of A-RPIN simultaneously optimises for the estimated record

x̂i, and the independent noise that was applied to it (δ̂i). This optimisation problem

utilises the ∆̂p estimated in the first stage, and balances the probability of generating the

noise vector δ̂ with the probability that the estimated outputs without noise (α([Yp, yi]−

[∆̂p, δ̂])) resulted from a random projection of the inputs:

x̂i, δ̂i = arg sup
x̂,δ̂

1

2

⎛
⎜⎜
⎝

φr(α([Yp, yi] − [∆̂p, δ̂]))

+ 1
k ∑φδ(δ̂)

⎞
⎟⎟
⎠

(7.17)

where x̂ ∈ Rm l.i. Xp and δ̂ ∈ Rk. Once again, the probability densities are reduced to a

mean density, but here the density of φr is given equal weight to the combined mean of

all φδ. Initial experimentation found that balancing the densities in this way improved

the accuracy of the attack.

A special consideration must be made when p = 1, because this will cause α(Xp) in

Equation (7.15) to be an empty matrix. In this case, the first stage of the attack is skipped

and ∆̂p is estimated as a zero vector. However, this will result in the independent noise

still being present on the single known record during the second stage. To compensate

for this, the variance of the distribution φδ(δ̂) can be doubled to 2σ2
δ , which will account

for the independent noise added to both the unknown and single known record.

As A-RPIN involves two numeric optimisation problems that are dominated by the

same operations as A-RP, its computational complexity can be expressed as O(i1(pm +

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 101

(kp)3)+ i2(pm+(kp)3)), where i1 and i2 are the number of iterations for each numeric

optimisation.

7.2.5 Extended MAP Attack for Cumulative Noise

This subsection adapts A-RPIN to produce A-RPCN, which is a MAP attack that can

account for the perturbation model of RPCN:

[Yp, yi] =
1√
kσr

R[Xp, x̂] +Ψ + [Γp, γi] (7.18)

To facilitate the description of A-RPCN, a new matrix Ωp is defined that represents

the differences in cumulative noise between successive columns in Yp. Therefore, each

column in Γp can be reconstructed by summing the corresponding column in Ωp and all

columns prior to it:

Γp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1,1 ∑i≤2
i=1 ω1,i . . . ∑i≤pi=1 ω1,i

.

ωk,1 ∑i≤2
i=1 ωk,i . . . ∑i≤pi=1 ωk,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.19)

As with A-RPIN, A-RPCN is split into two stages. In the first stage, the cumulative

noise (Γp) is estimated similarly to the independent noise:

Ω̂p = arg sup
Ω̂p

1

kp + 1

⎛
⎜⎜
⎝

φr(α(Yp − Γ̂p))

+∑φω(Ω̂p)

⎞
⎟⎟
⎠

(7.20)

where Ω̂p ∈ Rk,p. The key difference is in the use of the probability density function for

the distribution of cumulative noise differences between known records:

φω ∼ N(0, (i − h)σ2
γ) (7.21)

where i is the stream-index of the record the noise is being estimated for, and h is

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 102

the stream-index of the previous record in Xp. Note that the stream-indexes represent

the positions of records within the entire stream, not within Xp. When i is the first

column in Xp (i.e. h is not defined), the noise is always fixed to a zero vector with a

probability of 1. This is done because the cumulative noise on the first known record

can be considered a part of the random translation, which is already accounted for by

the α transformation. This also avoids the need for special handling of the case when

p = 1, as was required for A-RPIN.

Γ̂p can then be derived from Ω̂p (using Equation (7.19)) for use in the second stage

of the attack, which simultaneously optimises x̂i and γ̂i:

x̂i, γ̂i = arg sup
x̂,γ̂

1

2

⎛
⎜⎜
⎝

φr(α([Yp, yi] − [Γ̂p, γ̂]))

+ 1
k ∑φγ(γ̂)

⎞
⎟⎟
⎠

(7.22)

where x̂ ∈ Rm l.i. Xp and γ̂ ∈ Rk. Equation (7.7) can be used to derive the probability

density function (φγ) for the distribution of γ̂i given the cumulative noise estimates for

the known records (Γ̂p):

φγ ∼ N(µ,σ2)

µ =
γ̂h(j − i) + γ̂j(i − h)

j − h

σ2 =
(i − h)(j − i)σ2

γ

j − h

(7.23)

where h and j are the stream-indices of the prior and subsequent records (respectively)

relative to i in Xp. If i is earlier in the stream than all records in Xp, then φγ ∼

N(γ̂j, (j − i)σ2
γ). Similarly, if i is later in the stream than all records in Xp, then

φγ ∼ N(γ̂h, (i − h)σ2
γ).

As the complexity of A-RPCN is dominated by the same matrix operations as A-

RPIN, its computational complexity can also be expressed asO(i1(pm+(kp)3)+i2(pm+

(kp)3)), where i1 and i2 are the number of iterations for each numeric optimisation.

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 103

7.2.6 Numerical Optimisation

As mentioned previously, numerical optimisation can be used to find approximate

solutions for Equations (7.8), (7.13), (7.15), (7.17), (7.20), and (7.22). The Nelder-

Mead method was used for this purpose (Nelder & Mead, 1965), as it is a nonlinear,

unconstrained, optimisation algorithm that has been used previously for known input-

output MAP attacks on random projection (K. Liu, 2007).

The Nelder-Mead method requires seeds for all variables to be optimised. For δ̂, ω̂,

and γ̂ variables, random Gaussian values are generated according to the distributions of

φδ, φω, and φγ respectively. Initial values for x̂ are randomly generated from a uniform

distribution with a range equal to that of each feature centred around the median of each

feature (where the range and median are estimated from the known inputs Xp). Except

where noted, experiments in Chapter 8 perform optimisation runs with three different

random seeds for each attack, and the result that produced the highest probability density

is taken as the overall winner.

The implementations of the optimisation problems as objective functions used

for experimentation return probability densities in logarithmic space, which prevents

underflow issues when working with with very small probabilities. Furthermore, ev-

ery individual log-probability-density produced during the evaluation of an objective

function is limited to a maximum value of 10,000, which prevents any single value

from overly skewing the optimisation (such as in cases where a density is computed as

positive infinity). The maximum number of iterations was set to 200 times the number

of variables to optimise, and the relative score threshold for ending the optimisation

early was set to 0.00013. No absolute score threshold was set, as probability densities

were produced at different orders of magnitude depending on the number of variables

3Both of these are the same configuration values used in the default configuration of SciPy’s Nelder-
Mead optimisation implementation: https://docs.scipy.org/doc/scipy/reference/
optimize.minimize-neldermead.html.

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 104

to optimise.

It is possible that the optimisation process may produce a matrix of inputs

(α([Xp, x̂])) that does not fulfil the constraint that all columns be linearly independent

(i.e. the matrix does not have full column rank). These variable combinations were

penalised by causing the optimisation objective function to return negative infinity as

the log-probability-density.

7.2.7 Attacks When p ≥m

As previously mentioned, all of the above attacks require that [Xp, xi] has full column

rank, so they cannot be used with more known records than there are features in the

original data stream (p ≥m). This raises the question, what attacks are possible when

this is the case?

K. Liu et al. (2008) show that when at least m input-output pairs are known for

a randomly projected dataset, any other record xi must be linearly dependent on Xp,

and therefore can be perfectly recovered via a linear combination of Xp. They also

claim that an attacker can know when xi is linearly dependent on Xp, because yi will

be linearly dependent on Yp. However, this is not always true. Consider the case when

[Xp, xi] has full column rank. If k < p, then it is not possible for [Yp, yi] to also have

full column rank. This shows that even though yi will be linearly dependent on Yp

when xi is linearly dependent on Xp, the opposite is not always true. Therefore, an

attacker cannot be certain xi is linearly dependent on Xp on the basis of their known

input-output pairs.

On the other hand, K. Liu (2007) shows that it is possible to recover the random

projection matrix R when p ≥ m. Even though this does not allow any value in

the original matrix to be perfectly recovered, Lyu et al. (2018) present an alternative

formulation of the MAP optimisation problem that makes use of prior knowledge of R.

Chapter 7. Proposed Perturbation Methods for Privacy-Preserving Stream Mining 105

However, in either of the above cases, independent and cumulative noise will distort

the relationship between the column ranks of [Xp, xi] and [Yp, yi], confounding attempts

to perfectly recover records via a linear combination or to recover the projection matrix

R. On this basis, more sophisticated attacks against RPIN and RPCN in cases when

p ≥m can be considered an area for further research.

Chapter 8

Experimental Evaluation of Proposed

Perturbation Methods

The following section details experimental evaluations of the proposed known input-

output attacks and the three perturbation methods they apply to: random projection with

random translation (RP), and the two extensions with independent noise (RPIN) and

cumulative noise (RPCN) respectively. The effect cumulative noise has on accuracy and

privacy over the lifetime of a data stream is also analysed. The implementations used in

the experiments were implemented with Clojure and made use of the MOA framework

(Bifet et al., 2010) for stream mining algorithms and Apache Commons Math 3.6.1

1 for Nelder-Mead optimisation. The source-code (including data preparation and

experimentation) has been made available in a GitHub repository2. All experiments

were performed with OpenJDK 1.8.0 on a 64-bit Ubuntu 16.04 installation running on

a 4x2.60GHz Intel Core i5 CPU with 8GB of memory.

1http://commons.apache.org/proper/commons-math/
2http://github.com/ben-denham/ppdsp

106

http://commons.apache.org/proper/commons-math/
http://github.com/ben-denham/ppdsp

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 107

8.1 Experimental Setup

Online classification is used as the setting for evaluating the impact of data perturbation

on data utility; specifically, how it impacts classification accuracy. Accuracy is measured

by applying the adaptive random forest (ARF) classifier (Gomes et al., 2017) in the

setting of prequential evaluation (Bifet & Kirkby, 2009). The implementation of ARF

provided by the MOA data mining framework is used (Bifet et al., 2010).

The measures of relative error and ε-privacy (K. Liu, 2007) are used to evaluate

the efficacy of privacy-preservation methods. Relative error represents the degree of

success achieved by a record recovery attempt. It is defined as the magnitude of the

difference vector between the original record (xi) and its recovered counterpart (x̂i),

normalised by the magnitude of the original record vector: ∣∣xi−x̂i∣∣
∣∣xi∣∣

. An “ε-privacy

breach” of a record occurs if the relative error of the recovered record is less than a

specified ε. The probability of an ε-privacy breach with a known input-output attack

under certain conditions is measured by performing a series of attacks using different

sets of randomly selected “known” records to attempt to recover randomly selected

“unknown” records. The proportion of attacks that resulted in an ε-privacy breach is

then taken as the probability of such a breach.

Attack duration is measured in terms of CPU execution time. In order to account for

JVM warm-up, all experiments where duration is measured were repeated immediately

within the same process, with the duration of the second set of experiments being

recorded.

As all three perturbation methods under evaluation are based on random projection,

the random projection parameters are kept constant throughout all experiments. Specifi-

cally, data dimensionality is not reduced (k =m), and σr is set to 1. Furthermore, as all

known input-output attack types are able to perfectly remove the random translation

component of the perturbation methods, the effect of random translation does not need

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 108

to be experimentally evaluated. The key comparison is of the effects of adding inde-

pendent or cumulative noise to random projection. Therefore, no translation is applied

during the experimentation in order to reduce the impact of numerical imprecision

resulting from the additional floating point arithmetic operations.

8.2 Datasets

A variety of datasets that can be considered streams and/or containing sensitive data

were selected for the experimental evaluation. Table 8.1 describes the properties of each

of these twelve datasets. To ensure all tested levels of noise represented comparable

amounts of distortion across datasets, all dataset features were min-max normalised to a

range of [0,1].

Table 8.1: Properties of datasets used for experimental evaluation.

Dataset
Feature
Count

Class
Count

Record
Count Real-world? Stream? Private?

SEA 3 2 100,000 No Yes No
RBF 10 5 50,000 No Yes No
ELEC 8 2 45,312 Yes Yes No
WFR 4 4 5,456 Yes Yes No
AREM 6 32 35,999 Yes Interleaved One Individual
TAXI 7 3 50,000 Yes Yes Many Individuals
POWUSG 10 3 19,735 Yes Yes One Individual
P2PLNS 10 2 12,682 Yes Yes Many Individuals
PREG 5 2 4,082 Yes Yes Many Individuals
BRCNCR 9 2 10,000 Yes No Many Individuals
ADULT 6 2 32,561 Yes No Many Individuals
HTRU2 8 2 17,898 Yes No No

Eight of the datasets represent real-world examples of data streams: Electricity

(ELEC; Gama, Medas, Castillo and Rodrigues (2004)), Wall-Following Robot Navi-

gation (WFR; Freire et al. (2009)), Activity Recognition system based on Multisensor

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 109

data fusion (AREM; Palumbo, Gallicchio, Pucci and Micheli (2016)), New York City

Taxi Trip Duration (TAXI; Kaggle (2017)), Individual Household Electric Power Con-

sumption (POWUSG; Hebrail (2012)), Prosper Peer-to-Peer Loans (P2PLNS; Prosper

Marketplace, Inc. (2014))3, and 2002 Pregnancy survey data (PREG; Centers for Dis-

ease Control and Prevention (2005)). These datasets are considered streams because

their records can be ordered according to the time they were produced, though the

presence or nature of concept drift within these datasets is unknown. Feature sets were

reduced to a subset of numeric features for the TAXI, POWUSG4, P2PLNS, and PREG

datasets. Two datasets also required the creation of a classification target by apply-

ing equal-frequency binning to a target feature: TAXI (trip duration) and POWUSG

(power usage amount). Two datasets were sub-sampled without replacement to achieve

balance between classes, which allowed classification accuracy to be used as a valid

performance measure: P2PLNS (completed vs. defaulted and charged-off loans) and

PREG (live-birth vs. still-birth and miscarriage). For testing efficiency, only the first

50,000 records of the TAXI dataset were used. Finally, all values of the “parity” feature

in the PREG dataset were decremented by 1 to remove knowledge of the outcome of

the pregnancy represented by each record.

The SEA (Street & Kim, 2001) and radial basis function (RBF; Bifet and Kirkby

(2009)) synthetic stream generators were selected as they have known concept drift

properties and were used in the original experimental evaluation of the ARF classifier

(Gomes et al., 2017). The SEA stream was generated with three drift points at 25,000

record intervals and an abrupt rate of drift (drift-width = 1). The RBF stream was

generated with 5 classes and 50 centroids drifting at a fast rate (speed-of-change =

0.001). The MOA implementations of SEA and RBF were utilised (Bifet et al., 2010).

Testing was also performed with static (non-streaming) datasets: Breast Cancer

3Accessing the original Prosper loan data is described at: https://prosper.zendesk.com/
hc/en-us/articles/210013083-Where-can-I-download-Prosper-loan-data-.

4Only temperature values were used.

https://prosper.zendesk.com/hc/en-us/articles/210013083-Where-can-I-download-Prosper-loan-data-
https://prosper.zendesk.com/hc/en-us/articles/210013083-Where-can-I-download-Prosper-loan-data-

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 110

Wisconsin (BRCNCR; Mangasarian, Street and Wolberg (1995)), ADULT (Kohavi,

1996), and HTRU2 (R. Lyon, 2017; R. J. Lyon, Stappers, Cooper, Brooke & Knowles,

2016)). ADULT and HTRU2 have been used in previous studies on data perturbation

(Lyu et al., 2018; Okkalioglu et al., 2015). The ADULT dataset was limited to its

six numeric features, as has previously been performed for studying numeric data

perturbation (Guo, Wu & Li, 2008), and BRCNCR was increased from 699 to 10,000

records via the Synthetic Minority Over-sampling Technique (SMOTE; Chawla, Bowyer,

Hall and Kegelmeyer (2002)) in order to produce enough records for mining in an online

setting.

WFR, AREM, POWUSG, BRCNCR, ADULT, and HTRU2 were retrieved from the

UCI Machine Learning Repository (Dheeru & Karra Taniskidou, 2017).

Many of the datasets described above represent potentially sensitive data, either

because each record within the dataset represents personal information relating to an

individual (TAXI, P2PLNS, PREG, BRCNCR, ADULT), or because the stream may

come from a sensor monitoring an individual or group of individuals (AREM and

POWUSG). For example, consider the case of the TAXI data stream, where each record

represents a single taxi trip. Each record includes the start time and the coordinates

of the origin and destination of the trip. For each individual who took a taxi trip, the

record may reveal private information, particularly if the origin is their home address

and the destination is sensitive (such as a medical surgery). Furthermore, this data

stream would be considered private by the taxi company that collected it, as it reveals

the operational behaviours of their taxi service. Obtaining such data could provide

a competitive advantage to a rival company. However, taxi companies may wish to

share such data streams with each other in order to improve their respective models

for predicting trip duration, providing mutual benefit for both companies. This makes

the taxi trip data stream environment a prime candidate for privacy-preserving data

sharing. However, a known input-output attack is highly likely, as an individual or group

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 111

of individuals may attempt to use their knowledge of their own taxi trips to recover

knowledge of the trips of other individuals.

8.3 Attack Type Comparison

Before the three perturbation methods (RP, RPIN, and RPCN) can be compared, the

attack type that will achieve the best record recovery against each method must be

established. The best attack types can then be used as benchmarks when comparing the

privacy achieved by each perturbation method.

For the RP perturbation method based on random projection and translation, the

A-RP known input-output attack described in Section 7.2.3 is the only applicable known

input-output attack, and a comparison of attack types for this perturbation method

is not necessary. However, when the independent noise (RPIN) or cumulative noise

(RPCN) methods are used, there are several possible attack types. One option is to use

the respective attacks that account for independent noise (Section 7.2.4; A-RPIN) or

cumulative noise (Section 7.2.5; A-RPCN). Alternatively, as the expected mean value

is zero for either form of additive noise in the absence of additional prior knowledge,

A-RP may still be a viable approach when additive noise is present. Furthermore, initial

experimentation showed that the relative error of records recovered by A-RPIN and

A-RPCN tends to increase with the number of known input-output pairs. This may be

due to the rapidly increasing numbers of variables in the optimisation problems of the

first stage in each attack, which grow with O(kp). Therefore, variations of A-RPIN and

A-RPCN that only use one known input-output pair were also tested (A-RPIN-1 and

A-RPCN-1). When more than one pair is available in an experiment, the closest record

in the stream to the unknown record is used. Finally, as initial experimentation showed

that A-RP and the attack types that take noise into consideration outperform each other

under different conditions (e.g. depending on the amount of additive noise or the number

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 112

of known input-output pairs), the performance of combinations of A-RP with the other

attack types was also evaluated. These combinations are represented as MAX(A-RP, A-

RPIN), MAX(A-RP, A-RPIN-1), MAX(A-RP, A-RPCN), and MAX(A-RP, A-RPCN-1)

respectively. To combine two attack types, each attack is applied separately, and the

attack that achieves the highest objective function score is taken as the overall winner. If

an attack type involves multiple stages, the score of the final stage’s objective function

is compared. The scores produced by different objective functions are comparable as

they are all normalised to represent a mean probability density. Table 8.2 summarises

the full list of attack types to be compared for perturbation methods RPIN and RPCN.

Table 8.2: Attack types evaluated for each perturbation method.

Attack Types
Perturbation
RPIN A-RP A-RPIN A-RPIN-1 MAX(A-RP,

A-RPIN)
MAX(A-RP,

A-RPIN-1)
RPCN A-RP A-RPCN A-RPCN-1 MAX(A-RP,

A-RPCN)
MAX(A-RP,
A-RPCN-1)

The attack types were compared according to their effectiveness in recovering the

original records from perturbed versions of the TAXI dataset (experiments with other

datasets presented similar trends, and are therefore omitted for brevity). For each

perturbation method, three perturbed datasets were produced with different levels of

noise. For independent noise, the three levels of noise were achieved by setting σδ

to: 0.05, 0.1, and 0.25. The cumulative noise levels were achieved by setting σγ to

values that would achieve equivalent levels of noise according to Equation (7.6) (given

the number of records in the TAXI stream): ∼ 3.4E − 4, ∼ 6.7E − 4, and ∼ 1.7E − 3.

Additionally, experiments were performed with different numbers of known input-

output pairs (p): 1, 4 (⌈m2 ⌉), and 6 (m−1). 500 attacks were simulated with each attack

type for each combination of noise level and p, and these attack simulations were used

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 113

to estimate the probability of an ε-privacy breach (ε = 0.2).

Figure 8.1 shows the results of the experiments with different attack types on

RPIN and RPCN perturbation methods. Note that all attack types on both RPIN and

RPCN other than A-RP achieve identical or nearly identical performance when p = 1

(these points overlap in the charts). This is due to the fact that the known record limit

of A-RPIN-1 and A-RPCN-1 makes no difference when only one record is known.

Furthermore, when p = 1, the combined attack types rely solely on the attacks that

account for additive noise because A-RP produces lower probability density scores. It

can be seen that as p increases, the effectiveness of each attack increases initially, but

may decrease slightly at the maximum value of p. This is likely due to the increased

difficulty in optimising the objective functions that involve many more variables. For

both RPIN and RPCN perturbation, A-RP is the most effective attack type at lower noise

levels. However, the combined attack types MAX(A-RP, A-RPIN-1) and MAX(A-RP,

A-RPCN-1) are generally found to be the second most effective attack types for their

respective perturbation methods, and they improve in performance with increasing noise

levels such that they are the most effective attacks at the highest noise levels. Because

high noise levels represent the most challenging scenarios to attack, MAX(A-RP, A-

RPIN-1) and MAX(A-RP, A-RPCN-1) were selected as the best attack types to use for

privacy evaluation in subsequent experiments.

8.3.1 Attack Execution Time Comparison

As the established computational complexity of each attack type is dependent on the

number of iterations performed during one or two numeric optimisations, the execution

time of each attack type (excluding combined types) was also evaluated experimentally.

A total of 500 attacks on randomly selected records were made against the TAXI dataset

at the highest noise level, with a single set of initial optimisation variables. Figure 8.2

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 114

RPIN RPCN

N
oi

se
le

ve
l1

1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Known record count

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch
;
ε=

0
.2

1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Known record count
P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch
;
ε=

0
.2

N
oi

se
le

ve
l2

1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Known record count

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch
;
ε=

0
.2

1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Known record count

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch
;
ε=

0
.2

N
oi

se
le

ve
l3

1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Known record count

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch
;
ε=

0
.2

1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Known record count

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch
;
ε=

0
.2

Figure 8.1: Comparison of MAP attacks on perturbation with RPIN and RPCN applied
to the TAXI dataset. Legend in Table 8.2.

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 115

A-RP

A-RPIN/A-RPCN

A-RPIN-1/A-RPCN-1

1 2 3 4 5 6

15.50

15.75

16.00

16.25

16.50

16.75

17.00

17.25

17.50

17.75

18.00

Known records
M
e
a
n
C
P
U
ti
m
e
(l
o
g
-n
a
n
o
se
co
n
d
s)

(a) Attacks on RP

1 2 3 4 5 6

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

Known records

M
e
a
n
C
P
U
ti
m
e
(l
o
g
-n
a
n
o
se
co
n
d
s)

(b) Attacks on RPIN

1 2 3 4 5 6

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

Known records

M
e
a
n
C
P
U
ti
m
e
(l
o
g
-n
a
n
o
se
co
n
d
s)

(c) Attacks on RPCN

Figure 8.2: Comparison of the execution time of MAP attacks on the TAXI dataset.

(where the y-axis is a log scale) shows that the mean time (taken over 500 attacks)

required for all attack types appears to increase either polynomially or exponentially

with p (with the exception of A-RPIN-1 and A-RPCN-1, which only ever use a single

known input-output pair; p = 1). Therefore, even if an attacker has more known input-

output pairs, they may not be able to improve the effectiveness of their attacks if they

are attempting to breach the privacy of a stream in real-time.

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 116

8.4 Perturbation Method Comparison

After establishing the benchmark privacy attacks, the three perturbation methods (RP,

RPIN, and RPCN) were compared across all twelve datasets. Experiments were per-

formed with combinations of three noise levels and three values of p (the number of

known input-output pairs). The three independent noise levels used σδ values equal to

0.05, 0.1, and 0.25, and the cumulative noise levels used the corresponding σγ to achieve

equivalent levels of noise according to Equation (7.6) (given the number of records in

each dataset). Tests were performed with 1, ⌈m2 ⌉, and m − 1 known input-output pairs

(where m is the number of features in each dataset).

To evaluate privacy, attacks were performed on 500 randomly chosen records

for each perturbed dataset using the corresponding benchmark attack: A-RP for RP,

MAX(A-RP, A-RPIN-1) for RPIN, and MAX(A-RP, A-RPCN-1) for RPCN. The

probability of an ε-privacy breach was evaluated for ε values of 0.2 (representing a

recovery of a broad estimate of the original value) and 0.1 (representing an accurate

recovery of the original value). Accuracy was measured by attempting to perform online

classification on each perturbed data stream with an ARF classifier using Naive Bayes

leaf prediction in a prequential classify-then-train context.

Figures 8.3, 8.4, and 8.5 present the trade-off of the resistance of each perturbation

method to privacy-breaching attacks against the accuracy that can be achieved when

learning from the perturbed data (legend in Table 8.3).

Table 8.3: Perturbation method legend for Figures 8.3, 8.4, and 8.5.

Noise RP RPIN RPCN

None
Level 1
Level 2
Level 3

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 117

p
=

1

0.50 0.75

0.00

0.05

0.10

0.15

0.20

0.25

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.1

0.50 0.75

0.1

0.2

0.3

0.4

0.5

0.6

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.2

p
=

5

0.50 0.75

0.00

0.05

0.10

0.15

0.20

0.25

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.1

0.50 0.75

0.1

0.2

0.3

0.4

0.5

0.6

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.2

p
=

9

0.50 0.75

0.00

0.05

0.10

0.15

0.20

0.25

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.1

0.50 0.75

0.1

0.2

0.3

0.4

0.5

0.6

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.2

Figure 8.3: Trade-off between accuracy and privacy for different perturbation methods
applied to the RBF dataset.

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 118

p
=

1

0.5 0.6 0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.1

0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.2

p
=

4

0.5 0.6 0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.1

0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.2

p
=

6

0.5 0.6 0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.1

0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.2

Figure 8.4: Trade-off between accuracy and privacy for different perturbation methods
applied to the TAXI dataset.

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 119

p
=

1

0.2 0.3 0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.1

0.2 0.3 0.4

0.00

0.25

0.50

0.75

1.00

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.2

p
=

4

0.2 0.3 0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.1

0.2 0.3 0.4

0.00

0.25

0.50

0.75

1.00

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.2

p
=

7

0.2 0.3 0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.1

0.2 0.3 0.4

0.00

0.25

0.50

0.75

1.00

Classification Error

P
ro
b
.
o
f
ε-
p
ri
v
a
cy

b
re
a
ch

;
ε=

0
.2

Figure 8.5: Trade-off between accuracy and privacy for different perturbation methods
applied to the ELEC dataset.

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 120

Points closer to the origin represent perturbation methods that achieve better ac-

curacy and privacy, so it can be seen that as the level of either type of additive noise

increases, the privacy generally improves at the expense of accuracy. A consistent

trend that is observed across all three datasets is that RP performs poorly in compar-

ison to both perturbation methods that use additive noise (RPIN and RPCN) when

the number of known input-output pairs is greater than 1. These are the scenarios of

greatest interest in practice, as they challenge the robustness of the data perturbation

mechanism. Furthermore, this decrease in privacy when only one input-output pair is

known (shown in the top bands of Figures 8.3-8.5) is much smaller than the privacy gain

when more pairs are known. Another important and consistent trend observed across

Figures 8.3-8.5 is the clear superiority of RPCN over RPIN as it achieves a far better

privacy/accuracy trade-off (as its points are much closer to the origin). The advantage

of RPCN over RPIN is its higher accuracy at any given level of privacy, as shown most

clearly in the bottom bands of Figures 8.3-8.5. RPCN is able to maintain higher levels

of accuracy because its noise injection is gradual, unlike RPIN. This gradual injection

of noise enables ARF to adapt its model over time to mitigate against noise and thereby

return higher levels of accuracy than RPIN. The trends presented in these figures are

representative of the trends observed in other datasets, which have been omitted for

brevity. Also note that these trends are consistent for both tested values of ε.

In order to identify statistically significant differences in the performance of the

tested perturbation methods with varying noise levels, a Friedman test and Nemenyi post-

hoc analysis were performed in a manner similar to that recommended for comparing

classifier performance (Demšar, 2006). To evaluate the trade-off between privacy and

accuracy, a comparison was made based on the sum of the squares of classification error

and the probability of an ε-privacy breach, defined as the Privacy-Accuracy Magnitude

(PAM):

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 121

PAM = (error)2 + P (ε-privacy breach)2 (8.1)

Performing a sum-of-squares favours methods that balance both privacy and accu-

racy over methods that achieve one at the expense of the other. Attacks were evaluated

for ε = 0.2 and p =m−1 (the highest number of known pairs, which is the most difficult

scenario for preserving privacy of those tested). The null-hypothesis that “all seven

perturbation methods achieve equivalent PAM” was rejected at the 99% confidence level.

The Nemenyi post-hoc analysis was then applied to find the statistically significant

differences between different perturbation methods. A critical difference of ∼ 2.60 was

found, producing the critical difference diagram in Figure 8.6 (where noise levels are

appended to the names of perturbation methods). This analysis demonstrates that RP

represents the worst trade-off between privacy and accuracy. RPCN-2 provided the

best trade-off, although it was not significantly better than RPCN-3 and RPIN-1. This

demonstrates that RPCN is the most effective method overall for balancing privacy and

accuracy.

Figure 8.6: Critical difference diagram for the accuracy/privacy trade-off evaluation of
perturbation methods at different noise levels.

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 122

8.5 Trend Analysis for Cumulative Noise Perturbation

Given that the cumulative noise of the RPCN perturbation method continues to grow

over time, it is important to understand the trends of how privacy and accuracy are

expected to be affected over the lifetime of a stream. Figures 8.7 and 8.8 visualise these

trends for the RBF, TAXI, and ELEC datasets, which are representative of the trends in

other datasets (omitted for brevity).

R
B

F

0 10,000 20,000
0.0

0.1

0.2

0.3

0.4

0.5

Gap Between Unknown and Known

R
e
la
ti
v
e
E
rr
o
r

TA
X

I

0 10,000 20,000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Gap Between Unknown and Known

R
e
la
ti
v
e
E
rr
o
r

E
L

E
C

0 5,000 10,000 15,000 20,000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Gap Between Unknown and Known

R
e
la
ti
v
e
E
rr
o
r

Figure 8.7: Trends of record recovery as the distance between known and unknown
records increases in a data stream perturbed with RPCN.

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 123

Figure 8.7 plots the results of 500 MAX(A-RP, A-RPCN-1) attacks5 with m − 1

random known input-output pairs to recover a randomly selected unknown record

from a data stream perturbed with RPCN at the highest noise level of 3. Note that as

the distance in the stream between the unknown record and the closest known record

increases, the minimum relative error of recovery attempts also tends to increase. This

shows that known input-output pairs will become less useful for attacking new records

as the stream progresses over time, i.e. RPCN’s privacy level increases with time.

Figure 8.8 plots the accuracy of the online ARF classifier over time for the three

perturbation methods (with RPIN and RPCN at the highest noise level of 3). As expected

from the trade-off plots, RP generally produces the most accurate models, followed

by cumulative noise and finally independent noise. Importantly, the accuracy in the

presence of cumulative noise is stable over time: it is not continuously degrading as

more noise is added. Of particular note is that this behaviour is observed for the RBF

dataset, which has a known pattern of continuous drift. This demonstrates that the ARF

classifier is able to adapt to concept drift as well as the injected noise.

Figure 8.9 provides some insight into how the accuracy is maintained by plotting

a line that tracks the depth of each tree in the ARF ensemble over the course of the

TAXI data stream when it has been perturbed by each of the three methods (once again,

using the highest noise level of 3 for RPIN and RPCN). The mean tree depth was taken

over intervals of 100 records, and a tree size dropping to zero indicates the removal and

replacement of a tree (triggered by concept drift). It can be seen that RPCN results in

the highest rate of tree removal, demonstrating that ARF is successfully replacing trees

in response to the accumulating noise, allowing it to maintain a stable level of accuracy.

This trend analysis shows that cumulative noise is able to improve privacy over the

lifetime of the stream while still perturbing data slowly enough that online classifiers

may continuously adapt to maintain a stable level of accuracy.

5Attacks with relative error greater than 0.6 are omitted to highlight trends in minimum relative error.

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 124

RP RPIN RPCN
R

B
F

0 10,000 20,000 30,000 40,000 50,000

0.3

0.4

0.5

0.6

0.7

Records

A
cc
u
ra
cy

TA
X

I

0 10,000 20,000 30,000 40,000 50,000

0.35

0.40

0.45

0.50

0.55

0.60

Records

A
cc
u
ra
cy

E
L

E
C

0 10,000 20,000 30,000 40,000

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Records

A
cc
u
ra
cy

Figure 8.8: Trends of accuracy over the course of data streams perturbed with RP, RPIN,
and RPCN.

Chapter 8. Experimental Evaluation of Proposed Perturbation Methods 125

R
P

0 10,000 20,000 30,000 40,000 50,000
0

5

10

15

20

Records

T
re
e
D
e
p
th

R
PI

N

0 10,000 20,000 30,000 40,000 50,000
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Records

T
re
e
D
e
p
th

R
PC

N

0 10,000 20,000 30,000 40,000 50,000
0

5

10

15

20

25

Records

T
re
e
D
e
p
th

Figure 8.9: Trends of ARF tree depth over the course of the TAXI data stream perturbed
with RP, RPIN, and RPCN.

Chapter 9

Integrating Data Perturbation

Methods into Distributed Stream

Mining

This chapter considers the case where data streams must be mined while taking into

account the aspects of both distribution and privacy-preservation. Using the terminology

of the HDSM architecture, this can occur when each primary site provides data from

a different individual or organisation, or when trouble sites that merge data from

primary sites are operated by a third-party, such as a data mining service provider. If

the distributed streams contain sensitive data, then the individuals or organisations

controlling them may not wish to share such data in their raw form.

While HDSM minimises the number of records that are transmitted from primary

sites to trouble sites, it still involves the transmission of records in their original form.

However, in principle it is possible to apply any of the perturbation methods from

Chapter 7 to these records before they are transmitted from their primary site. This is

made possible by the fact that the data perturbation methods preserve the identity of

each record (even if the number and meaning of its features are altered), thus allowing

126

Chapter 9. Integrating Data Perturbation Methods into Distributed Stream Mining 127

fragments from different primary sites to be merged at trouble sites. While the perturbed

records will in general result in less accurate models at trouble sites, the records can

still be mined in their original form at the primary sites to ensure the maximum possible

accuracy of local models. It should also be noted that once a record has been perturbed

at a primary site before transmission to a trouble site, it does not need to be perturbed

again before transmission to higher-order trouble sites.

9.1 Secure Multiparty Data Perturbation

However, in the case of vertically-distributed datasets, it is possible for each primary

site to only provide a small number of features. Perturbations applied to such small

feature sets will be less privacy-preserving than those applied to larger feature sets,

considering:

• Gaining as many known input-output pairs as there are features (p ≥ m) will

become easier, potentially enabling attackers to perform more sophisticated

attacks based on recovery of the random projection matrix (as described in

Section 7.2.7).

• Each feature in a projected record will be based on a linear combination of fewer

features. In the extreme case, if a primary site has a single feature, then the

projected record (for k =m = 1) would simply be a scalar multiplication of the

original feature.

• Having a larger initial feature set allows the dimensionality to be reduced to a

greater degree by random projection, thus leading to stronger privacy (K. Liu,

2007).

Instead of perturbing the vertical partition of each primary site individually, this

section describes a novel approach that allows a single perturbation to be applied across

Chapter 9. Integrating Data Perturbation Methods into Distributed Stream Mining 128

the partitions of multiple primary sites. This approach is based on two steps. Firstly, the

perturbation is decomposed so that primary sites can produce partial perturbed records

that when summed produce the same result as a centralised perturbation. Secondly, a

secure multiparty computation protocol is used to allow the partial perturbed records

to be summed at the trouble site without any site gaining knowledge of the partial

perturbed record of any other individual site.

9.1.1 Decomposing the Perturbation Process for Distributed Com-

putation

This subsection will demonstrate how data perturbation can be decomposed and dis-

tributed across a set of o primary sites such that the sum of individually computed

partial perturbed records results in the same perturbed record that would have been

produced had the entire dataset been centralised before perturbation. More formally,

each primary site (i) has a sub vector containing li of the m features of record x. Each

primary site must be able to produce a partial perturbed record (yi) such that the sum of

partial perturbed records is the fully perturbed record y with k features:

y =
o

∑
i=1

yi (9.1)

A perturbation based on random projection, random translation, and cumulative

noise (RPCN) will be demonstrated, but the same method is applicable in the case

of independent noise (RPIN) by replacing all γ terms with δ terms, or by ignoring

γ terms in the absence of any additive noise (RP). Recall that for RPCN, perturbed

record column-vector y is produced from record column-vector x by the following

perturbation:

Chapter 9. Integrating Data Perturbation Methods into Distributed Stream Mining 129

y = 1√
kσr

Rx + ψ + γ (9.2)

Let R be the column-wise concatenation of two sub matrices A and B such that

R∗,j = A∗,j whenever 1 ≤ j ≤ la and R∗,j = B∗,j−la when la + 1 ≤ j ≤ la + lb. The sub

matrices A and B are randomly generated at two source sites that transmit their record

fragments to a given trouble site. Now consider the composite data vector x ∈ Rm at the

trouble site as being composed of two sub vectors v ∈ Rla and w ∈ Rlb corresponding

to the record fragments supplied by the pair of source sites. The composite vector x is

then given by xj = vj whenever 1 ≤ j ≤ la and xj = wj−la when la + 1 ≤ j ≤ la + lb.

Now it is easy to see that the multiplication Rx at the trouble site is distributive

across the source sites:

Chapter 9. Integrating Data Perturbation Methods into Distributed Stream Mining 130

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 . . . a1,la

.

ak,1 . . . ak,la

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,1 . . . b1,lb

.

bk,1 . . . bk,lb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 . . . a1,la b1,1 . . . b1,lb

.

ak,1 . . . ak,la bk,1 . . . bk,lb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

. . .

vla

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

. . .

wlb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

. . .

vla

w1

. . .

wlb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1v1 + ⋅ ⋅ ⋅ + a1,lavla + b1,1w1 + ⋅ ⋅ ⋅ + b1,lbwlb

. . .

ak,1v1 + ⋅ ⋅ ⋅ + ak,lavla + bk,1w1 + ⋅ ⋅ ⋅ + bk,lbwlb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1v1 + ⋅ ⋅ ⋅ + a1,lavla

. . .

ak,1v1 + ⋅ ⋅ ⋅ + ak,lavla

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,1w1 + ⋅ ⋅ ⋅ + b1,lbwlb

. . .

bk,1w1 + ⋅ ⋅ ⋅ + bk,lbwlb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Av +Bw

(9.3)

Therefore, Equation (9.2) can be decomposed as follows:

y =
o

∑
i=1

yi

yi =
1√
kσr

Rix + ψi + γi
(9.4)

In Equation (9.4), Ri is a k × li matrix with random elements generated in the same

Chapter 9. Integrating Data Perturbation Methods into Distributed Stream Mining 131

way as the R matrix, essentially representing a slice of li columns of the original R. The

vector ψi can be generated in exactly the same way as the original random translation

ψ, using Equation (7.1). Using multiple translations drawn from the same distribution

simply changes the magnitude of the translation, which has no effect on the behaviour

of common data mining operations (such as classification) to be performed with the

perturbed dataset. Finally, γi can be generated using the definition in Equation (7.3)

(the same as γ), but σ2
γ must be replaced with σ2

γ

o to account for the fact that the summed

multiple γi values will have a variance equal to the sum of the variances used to generate

the γi values.

Another desirable property of this decomposition is that each primary site can

autonomously generate its own Ri, ψi, and γi without needing to disclose these values

to any other primary or trouble sites.

9.1.2 Secure Sum Protocol for Partial Perturbed Records

Producing a partial perturbed record at each primary site does not enable privacy-

preserving distributed stream mining on its own. This is because transmitting a partial

perturbed record in its present form may still be insecure, due to the fact that it is

primarily the result of a projection to a higher dimensional feature space, which could

lead to attacks that treat the projection as a complete system of linear equations (K. Liu,

2007). Therefore, this subsection describes a protocol that allows a trouble site to

receive the sum of all partial perturbed records from its source sites without it or any

primary site gaining any knowledge of the partial perturbed record (yi) of any other

primary site.

To simplify the protocol, all features must be normalised such that they have a

minimum value of 0, and so that a value θ can be found that is known to be greater than

the maximum possible value of any feature. If all features are min-max normalised,

Chapter 9. Integrating Data Perturbation Methods into Distributed Stream Mining 132

then θ = 1.

The protocol is based on the secure sum protocol of Clifton, Kantarcioglu, Vaidya,

Lin and Zhu (2002), but accounts for the fact that the trouble site must receive the final

sum without it providing any of the addends, rather than the sum being produced at an

arbitrary party. Consider the case where two primary sites (a and b) are acting as source

sites to a trouble site. The protocol can be performed as follows:

1. Site a produces values za and ζa according to:

za = (ya + ζa) mod θ

ζa,i = U(0, θ)
(9.5)

where U(a, b) is a uniform distribution ranging from a to b.

The addition of ya and ζa with a modulus of θ essentially hides ya uniformly in

the range [0, θ], preventing anyone with access to za from gaining any knowledge

of ya if they do not know ζa.

2. Site a transmits za to primary site b, and ζa to the trouble site.

3. Site b transmits za + yb to the trouble site.

4. The trouble site uses za + yb and ζa to recover y as follows:

(za + yb − ζa + θ) mod θ = ya + yb = y (9.6)

The addition of θ before the modulo operation accounts for the case when za − ζa

is negative because of the earlier modulo operation when producing za.

Note there is no need for primary site b to produce zb for transmission to the trouble

site as it would also need to transmit ζb to the trouble site at the same time.

Chapter 9. Integrating Data Perturbation Methods into Distributed Stream Mining 133

Note also that this protocol requires one more stage of communication than is

normally required in HDSM: the communication from primary site a to primary site b.

However, this extra communication cost can be partially offset by the fact that primary

site b can filter out trouble records that sites a and b did not both agree on, meaning that

only agreed upon trouble records will be transmitted to the trouble site (similar to the

two-phase transmission protocol described in Section 5.2).

When there are more than two source sites (which may be required to produce

a feature set large enough for privacy-preservation if each site only has a very small

number of features), then the most computationally efficient way to implement the

protocol is for it to be performed between pairs of sites. If there is an odd number of

source sites, then one group of three source sites (a, b, and c) must perform the protocol

as follows:

1. Primary site a transmits za to primary site b and ζa to the trouble site.

2. Primary site b transmits za + zb to primary site c and ζb to the trouble site.

3. Primary site c transmits za + zb + yc to the trouble site.

4. The trouble site recovers ya + yb + yc as:

(za + zb + yc − ζa − ζb + θ) mod θ (9.7)

Note that this variation of the protocol for three source sites requires one more

round of communication than required for a pair of source sites: the transmission from

primary site b to primary site c.

However, performing the secure sum protocol with pairs of source sites will result

in the trouble site learning the partial sum of each pair of source sites, which may still

not acceptably preserve privacy if the projection in the partial sum forms a complete

Chapter 9. Integrating Data Perturbation Methods into Distributed Stream Mining 134

system of linear equations. Furthermore, there is a risk of collusion between the trouble

site and any of the primary sites. This collusion problem exists for any protocol where

the aim is for the trouble site to learn the sum: y = ∑oi=1 yi. If primary sites a and b

perform the protocol such that the trouble site learns ya + yb, then the primary site a

could collude with the trouble site by also transmitting ya to the trouble site, which

would allow it to recover yb (and vice-versa for collusion with primary site b). Involving

more parties in the secure computation (i.e. extending the protocol for three source

sites to include even more source sites) would reduce the completeness of the system

of linear equations and necessitate collusion between the trouble site and a greater

number of primary sites to achieve a privacy breach. For example, recovering ya from

ya + yb + yc requires collusion between the trouble site and both sites b and c. However,

as the number of communication rounds involved in the secure computation increases

linearly with the number of source sites involved, extending the secure computation to

include a large number of sites would likely be infeasible in the context of data stream

mining. In practice, the number of source sites involved in each instance of the protocol

would need to be selected to trade-off privacy and efficiency.

Chapter 10

Conclusions and Future Work

10.1 Research Achievements

This research has made several novel contributions.

Firstly, a novel Hierarchical Distributed Stream Miner (HDSM) for mining vertically-

distributed data streams has been proposed. Experimentation showed that HDSM was

able to achieve significant accuracy improvements with minimal data transmission to

trouble sites while remaining competitive in terms of resource time with other distributed

stream mining approaches. The experiments also demonstrated that HDSM is robust

to the presence of concept drift as it adapts to changing cross-terms that manifest in

the streams. It has also been shown that HDSM can be used for anytime classification

to improve classification response time with minimal impact on accuracy, and that

architecture variations based on batch record transmission and a probabilistic global

view of site confidence can be used to further improve efficiency and accuracy.

Secondly, two novel data perturbation methods for privacy-preserving data stream

mining and publishing have been proposed. The methods are based on a combination

of random projection, random translation, and additive noise that is either generated

completely independently for each record (RPIN), or accumulated over the course of the

135

Chapter 10. Conclusions and Future Work 136

stream (RPCN). Variations of the known input-output MAP attack were also developed

for use against the proposed perturbation methods.

It was expected that the injection of additive noise would help to significantly

boost the level of data privacy over the combination of random projection and random

translation alone (RP). The cumulative noise addition scheme of RPCN was inspired by

the notion of concept drift that is commonly present in data streams. It was hypothesised

that the injection of an external signal that parallels natural concept drift would be

recognisable by the classifier, hence triggering model adaptation periodically. This in

turn would help to stabilise accuracy over time, and the overall expected outcome was

the production of a better trade-off between data privacy and accuracy.

Experimentation showed that the perturbation methods involving additive noise

achieved better trade-offs between data privacy and accuracy (as measured by the

PAM metric) than their RP counterpart. Comparative tests between RPCN and RPIN

also revealed a clear difference in accuracy between the two, with cumulative noise

(RPCN) achieving an overall better trade-off between data privacy and accuracy over

the independent noise (RPIN) scheme. The advantage of RPCN is that it injects noise

gradually over time, while RPIN must distort each record by a much greater amount in

order to achieve an equivalent level of noise. Both perturbation methods offered similar

levels of data privacy, but the gradual drift of the cumulative noise allowed the classifier

to adapt to the injected noise signal and maintain a higher accuracy, resulting in a better

overall privacy/accuracy trade-off with RPCN.

It has also been shown that the best type of known input-output MAP attack against

RPCN involved a combination of two attacks that did and did not account for the

cumulative noise, where the attack accounting for cumulative noise was limited to a

single known input-output pair. Importantly, this attack (MAX(A-RP, A-RPCN-1)) was

shown to be less effective against records that are further away from the known records

in the stream, demonstrating the data privacy of RPCN increases over time.

Chapter 10. Conclusions and Future Work 137

Finally, an approach has been described that integrates HDSM and data perturbation

to achieve the goal of privacy in distributed data stream mining environments. This

includes an algorithm for secure, multiparty, distributed data perturbation.

10.2 Limitations

There are a number of limitations to this research that should be recognised.

Firstly, the algorithm descriptions and experimental evaluations have focused on

online classification in a prequential evaluation setting. However, the proposed methods

are amenable to other machine learning problems. The prediction of any supervised

learning problem can be used in place of the classification in HDSM. Likewise, a

perturbed dataset can be used for a variety of data mining tasks, other than classification.

Further experimentation in the context of other machine learning problems is an area

for future work.

For the data perturbation methods, only attacks based on known input-output prior

knowledge have been experimentally evaluated. The development and evaluation of

different attack types based on different forms of prior knowledge is an important area

for future research. Other forms of prior knowledge could include a sample of records

drawn from the same distribution, feature means and covariances, and the random

projection matrix R.

Experimental evaluation has also been limited in terms of the datasets used. In some

cases, finding datasets that represented specific problems was not possible; publicly

available (and therefore reproducible) datasets seldom have truly sensitive values that

provide a realistic context for evaluating privacy-preservation. Additionally, all datasets

have been relatively well balanced in the distribution of records among target classes.

This was an intentional choice to remove the confounding factor of imbalanced learning

while attempting to compare algorithm accuracy.

Chapter 10. Conclusions and Future Work 138

Finally, all distributed algorithms were tested with simplified implementations

designed to run on a single machine. The development and evaluation of truly distributed

implementations can be seen as an area for future work. Such an implementation of

HDSM could also include the variations that take advantage of the batch communication

protocol proposed in Chapter 5, and the approach for distributed privacy-preserving

stream mining described in Chapter 9.

10.3 Future Work in Distributed Data Stream Mining

There are still many opportunities to improve the accuracy and efficiency of HDSM,

such as those described in Chapter 5 and Appendices B and C. Other classification

result aggregation methods could potentially boost accuracy, including weighting votes

by site accuracy (as measured by sliding windows). Accuracy could also be improved

with alternative rules for triggering trouble site creation and removal, such as taking into

account the degree to which the agreement threshold is exceeded when deciding between

different candidate trouble sites involving a particular source site. The mechanism

proposed in Section 5.4 may also improve trouble record selection by considering a

probabilistic view of global site confidence. Improved trouble site creation rules could

reduce the inefficient churn that can occur if many trouble sites are created and then

removed soon after for lack of utility. To avoid the overhead of re-learning patterns in

the case of recurrent concepts, models of removed trouble sites could be retained for

later re-use, as in the work of Sakthithasan, Pears, Bifet and Pfahringer (2015).

Chapter 10. Conclusions and Future Work 139

10.4 Future Work in Privacy-Preserving Data Stream

Mining

The research on privacy-preserving stream mining also presents opportunities for future

research. While the proposed data perturbation methods can be applied to nominal data

by treating them as ordinal integer values, the privacy guarantees are relatively weaker

when an attacker knows that the original attribute is nominal (K. Liu, Kargupta & Ryan,

2006). Improvements to the methods that will provide stronger privacy guarantees for

nominal attributes are still required. In general, future research on privacy-preservation

methods that take advantage of the streaming nature of many datasets appears to be a

promising direction.

While this research has shown the online ARF classifier is able to maintain stable

accuracy in the presence of cumulative noise for the datasets tested, this may not be

the case for less adaptive algorithms that may be more computationally efficient (and

therefore more suitable for use in resource-constrained situations). To handle these cases,

a drift detector could be used to monitor accuracy relative to the amount of cumulative

noise. When the drift detector encounters a statistically significant difference in the ratio

of the probability of privacy breach to accuracy over two contiguous sub-windows of a

fixed-length window, a method of resetting the cumulative noise (i.e. to a zero vector)

could be executed. Such a method could involve replacing the learned model with a new

model based on a stream with a fresh cumulative noise generator. A transition period

would be necessary to train the new model before using it for predictions. Ensuring that

publishing two perturbed versions of the same stream in parallel does not leak additional

information to an attacker would be a challenge of implementing this approach.

As previously mentioned, another particularly important area for future research

lies in exploring different attack vectors to verify the privacy guarantees of the proposed

perturbation methods. This includes the development of a known input-output attack

Chapter 10. Conclusions and Future Work 140

for the case when there are more known records than there are features in the original

dataset (p ≥ m). Additionally, an attack method that makes use of spectral filtering

(which has previously been used against additive noise) may be possible. The method of

Giannella et al. (2013) to match known records with their perturbed versions could also

be adapted for use against the perturbation methods proposed, which would provide

understanding of the privacy achieved when the correspondence between input and

output records is not known a priori by an attacker.

References

Abdelhameed, S. A., Moussa, S. M. & Khalifa, M. E. (2019). Restricted sensi-
tive attributes-based sequential anonymization (RSA-SA) approach for privacy-
preserving data stream publishing. Knowledge-Based Systems, 164, 1–20.

Adhikari, A., Adhikari, J. & Pedrycz, W. (2016). Data analysis and pattern recognition
in multiple databases. Springer.

Aggarwal, C. C. & Philip, S. Y. (2004). A condensation approach to privacy preserving
data mining. In International Conference on Extending Database Technology (pp.
183–199).

Aggarwal, C. C. & Philip, S. Y. (2008). Privacy-preserving data mining: a survey. In
Handbook of Database Security (pp. 431–460). Springer.

Agrawal, R. & Srikant, R. (2000). Privacy-preserving data mining. In ACM Sigmod
Record (Vol. 29, pp. 439–450).

Baldi, P., Sadowski, P. & Whiteson, D. (2014). Searching for exotic particles in
high-energy physics with deep learning. Nature Communications, 5, 4308.

Basak, J. & Kothari, R. (2004). A classification paradigm for distributed vertically
partitioned data. Neural Computation, 16(7), 1525–1544.

Basu, K., Debusschere, V. & Bacha, S. (2013). Residential appliance identification and
future usage prediction from smart meter. In 39th Annual Conference of the IEEE
Industrial Electronics Society, IECON 2013 (pp. 4994–4999).

Bifet, A. & Gavalda, R. (2007). Learning from time-changing data with adaptive
windowing. In Proceedings of the 2007 SIAM International Conference on Data
Mining (pp. 443–448).

Bifet, A., Holmes, G., Kirkby, R. & Pfahringer, B. (2010). MOA: massive online
analysis. Journal of Machine Learning Research, 11, 1601–1604. Retrieved from
http://portal.acm.org/citation.cfm?id=1859903

Bifet, A. & Kirkby, R. (2009). Data stream mining a practical approach.
Candanedo, L. M. & Feldheim, V. (2016). Accurate occupancy detection of an office

room from light, temperature, humidity and co2 measurements using statistical
learning models. Energy and Buildings, 112, 28–39.

Cao, Y. & Yoshikawa, M. (2016). Differentially private real-time data publishing over
infinite trajectory streams. IEICE TRANSACTIONS on Information and Systems,
99(1), 163–175.

Centers for Disease Control and Prevention. (2005, February). National sur-
vey of family growth data. Retrieved February 12, 2019, from http://

141

http://portal.acm.org/citation.cfm?id=1859903
http://www.greenteapress.com/thinkstats/nsfg.html
http://www.greenteapress.com/thinkstats/nsfg.html

REFERENCES 142

www.greenteapress.com/thinkstats/nsfg.html
Chamikara, M., Bertok, P., Liu, D., Camtepe, S. & Khalil, I. (2018). Efficient data

perturbation for privacy preserving and accurate data stream mining. Pervasive
and Mobile Computing, 48, 1–19.

Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. (2002). SMOTE:
synthetic minority over-sampling technique. Journal of Artificial Intelligence
Research, 16, 321–357.

Chen, K., Sun, G. & Liu, L. (2007). Towards attack-resilient geometric data perturbation.
In Proceedings of the 2007 SIAM International Conference on Data Mining (pp.
78–89).

Chen, R., Sivakumar, K. & Kargupta, H. (2001). An approach to online Bayesian
learning from multiple data streams. In Proceedings of Workshop on Mobile and
Distributed Data Mining, PKDD (Vol. 1, pp. 31–45).

Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X. & Zhu, M. Y. (2002). Tools for privacy
preserving distributed data mining. ACM SIGKDD Explorations Newsletter, 4(2),
28–34.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7(Jan), 1–30.

Devi, S. (2014). A survey on distributed data mining and its trends. International
Journal of Research in Engineering & Technology (IMPACT: IJRET), 2(3), 107–
120.

Dheeru, D. & Karra Taniskidou, E. (2017). UCI machine learning repository. Re-
trieved from http://archive.ics.uci.edu/ml (University of Califor-
nia, Irvine, School of Information and Computer Sciences)

Dwork, C. (2008). Differential privacy: A survey of results. In International Conference
on Theory and Applications of Models of Computation (pp. 1–19).

Dwork, C., Naor, M., Pitassi, T. & Rothblum, G. N. (2010). Differential privacy under
continual observation. In Proceedings of the Forty-Second ACM Symposium on
Theory of Computing (pp. 715–724).

Freire, A. L., Barreto, G. A., Veloso, M. & Varela, A. T. (2009). Short-term memory
mechanisms in neural network learning of robot navigation tasks: A case study.
In 6th Latin American Robotics Symposium (LARS), 2009 (pp. 1–6).

Gama, J., Medas, P., Castillo, G. & Rodrigues, P. (2004). Learning with drift detection.
In Brazilian Symposium on Artificial Intelligence (pp. 286–295).

Giannella, C. R., Liu, K. & Kargupta, H. (2013). Breaching Euclidean distance-
preserving data perturbation using few known inputs. Data & Knowledge Engi-
neering, 83, 93–110.

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B., . . .
Abdessalem, T. (2017). Adaptive random forests for evolving data stream
classification. Machine Learning, 106(9-10), 1469–1495.

Guo, S., Wu, X. & Li, Y. (2008). Determining error bounds for spectral filtering
based reconstruction methods in privacy preserving data mining. Knowledge and
Information Systems, 17(2), 217–240.

Hebrail, G. (2012). Individual household electric power consumption data

http://www.greenteapress.com/thinkstats/nsfg.html
http://www.greenteapress.com/thinkstats/nsfg.html
http://archive.ics.uci.edu/ml

REFERENCES 143

set. Retrieved from https://archive.ics.uci.edu/ml/datasets/
individual+household+electric+power+consumption

Huang, Z. & Du, W. (2008). OptRR: Optimizing randomized response schemes for
privacy-preserving data mining. In Proceedings of the IEEE 24th International
Conference on Data Engineering, 2008 (pp. 705–714).

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9), 1098–1101.

Hulten, G., Spencer, L. & Domingos, P. (2001). Mining time-changing data streams. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (pp. 97–106).

Jiang, W. & Clifton, C. (2006). A secure distributed framework for achieving k-
anonymity. The VLDB Journal—The International Journal on Very Large Data
Bases, 15(4), 316–333.

Johnson, W. B. & Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a
Hilbert space. Contemporary Mathematics, 26(189-206), 1.

Kaggle. (2017, September). New york city taxi trip duration. Retrieved Febru-
ary 12, 2019, from https://www.kaggle.com/c/nyc-taxi-trip
-duration/data

Kargupta, H., Datta, S., Wang, Q. & Sivakumar, K. (2003). On the privacy preserving
properties of random data perturbation techniques. In Proceedings of the Third
IEEE International Conference on Data Mining, 2003. ICDM 2003. (pp. 99–106).

Kellaris, G., Papadopoulos, S., Xiao, X. & Papadias, D. (2014). Differentially private
event sequences over infinite streams. Proceedings of the VLDB Endowment,
7(12), 1155–1166.

Khodaparast, F., Sheikhalishahi, M., Haghighi, H. & Martinelli, F. (2018). Privacy
preserving random decision tree classification over horizontally and vertically
partitioned data. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and
Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing,
4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress (DASC/PiCom/DataCom/CyberSciTech) (pp. 600–607).

Kohavi, R. (1996). Scaling up the accuracy of naive-Bayes classifiers: a decision-tree
hybrid. In KDD (Vol. 96, pp. 202–207).

Kourtellis, N., Morales, G. D. F., Bifet, A. & Murdopo, A. (2016). VHT: Vertical
hoeffding tree. In IEEE International Conference on Big Data (Big Data), 2016
(pp. 915–922).

Li, F., Sun, J., Papadimitriou, S., Mihaila, G. A. & Stanoi, I. (2007). Hiding in the
crowd: Privacy preservation on evolving streams through correlation tracking. In
Proceedings of the IEEE 23rd International Conference on Data Engineering,
2007 (pp. 686–695).

Li, T., Li, J., Liu, Z., Li, P. & Jia, C. (2018). Differentially private naive Bayes learning
over multiple data sources. Information Sciences, 444, 89–104.

Li, Y., Jiang, Z. L., Yao, L., Wang, X., Yiu, S. & Huang, Z. (2017). Outsourced
privacy-preserving C4.5 decision tree algorithm over horizontally and vertically
partitioned dataset among multiple parties. Cluster Computing, 1–13.

https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://www.kaggle.com/c/nyc-taxi-trip-duration/data
https://www.kaggle.com/c/nyc-taxi-trip-duration/data

REFERENCES 144

Liu, K. (2007). Multiplicative data perturbation for privacy preserving data mining
(Unpublished doctoral dissertation). University of Maryland, Baltimore County.

Liu, K., Giannella, C. & Kargupta, H. (2006). An attacker’s view of distance preserving
maps for privacy preserving data mining. In European Conference on Principles
of Data Mining and Knowledge Discovery (pp. 297–308).

Liu, K., Giannella, C. & Kargupta, H. (2008). A survey of attack techniques on
privacy-preserving data perturbation methods. In Privacy-preserving data mining
(pp. 359–381). Springer.

Liu, K., Kargupta, H. & Ryan, J. (2006). Random projection-based multiplicative data
perturbation for privacy preserving distributed data mining. IEEE Transactions
on Knowledge and Data Engineering, 18(1), 92–106.

Liu, L., Wang, J. & Zhang, J. (2008). Privacy vulnerabilities with background
information in data perturbation (Tech. Rep.). Davis Marksbury Building, 329
Rose Street, Lexington, KY 40506-0633, USA: Technical report. Department of
Computer Science, University of Kentucky.

Liu, Y., Xu, Z. & Li, C. (2018). Distributed online semi-supervised support vector
machine. Information Sciences, 466, 236–257.

Lyon, R. (2017). HTRU2. UCI Machine Learning Repository.
Lyon, R. J., Stappers, B., Cooper, S., Brooke, J. & Knowles, J. (2016). Fifty years

of pulsar candidate selection: from simple filters to a new principled real-time
classification approach. Monthly Notices of the Royal Astronomical Society,
459(1), 1104–1123.

Lyu, L., Bezdek, J. C., Law, Y. W., He, X. & Palaniswami, M. (2018). Privacy-
preserving collaborative fuzzy clustering. Data & Knowledge Engineering, 116,
21–41.

Mangasarian, O. L., Street, W. N. & Wolberg, W. H. (1995). Breast cancer diagnosis
and prognosis via linear programming. Operations Research, 43(4), 570–577.

Mendes, R. & Vilela, J. P. (2017). Privacy-preserving data mining: methods, metrics,
and applications. IEEE Access, 5, 10562–10582.

Moghadam, A. N. & Ravanmehr, R. (2018). Multi-agent distributed data mining
approach for classifying meteorology data: case study on Iran’s synoptic weather
stations. International Journal of Environmental Science and Technology, 15(1),
149–158.

Narayanan, A. & Shmatikov, V. (2008). Robust de-anonymization of large sparse
datasets. In IEEE Symposium on Security and Privacy, 2008. SP 2008. (pp.
111–125).

Nelder, J. A. & Mead, R. (1965). A simplex method for function minimization. The
Computer Journal, 7(4), 308–313.

Nin, J., Herranz, J. & Torra, V. (2008). Rethinking rank swapping to decrease disclosure
risk. Data & Knowledge Engineering, 64(1), 346–364.

Obenshain, M. K. (2004). Application of data mining techniques to healthcare data.
Infection Control & Hospital Epidemiology, 25(8), 690–695.

Okkalioglu, B. D., Okkalioglu, M., Koc, M. & Polat, H. (2015). A survey: deriving
private information from perturbed data. Artificial Intelligence Review, 44(4),

REFERENCES 145

547–569.
Omer, M. Z., Gao, H. & Mustafa, N. (2017). Privacy-preserving of SVM over vertically

partitioned with imputing missing data. Distributed and Parallel Databases,
35(3-4), 363–382.

Otgonbayar, A., Pervez, Z., Dahal, K. & Eager, S. (2018). K-VARP: K-anonymity for
varied data streams via partitioning. Information Sciences, 467, 238–255.

Oza, N. (2011). FLTz flight simulator. Retrieved from https://c3.nasa.gov/
dashlink/resources/294/

Palumbo, F., Gallicchio, C., Pucci, R. & Micheli, A. (2016). Human activity recognition
using multisensor data fusion based on reservoir computing. Journal of Ambient
Intelligence and Smart Environments, 8(2), 87–107.

Park, B.-H., Ayyagari, R. & Kargupta, H. (2001). A Fourier analysis based approach to
learning decision trees in a distributed environment. In Proceedings of the 2001
SIAM International Conference on Data Mining (pp. 1–22).

Parker, B., Mustafa, A. M. & Khan, L. (2012). Novel class detection and feature
via a tiered ensemble approach for stream mining. In IEEE 24th International
Conference on Tools with Artificial Intelligence (ICTAI), 2012 (Vol. 1, pp. 1171–
1178).

Paschke, F., Bayer, C., Bator, M., Mönks, U., Dicks, A., Enge-Rosenblatt, O. & Lohweg,
V. (2013). Sensorlose zustandsüberwachung an synchronmotoren. In Proceedings.
23. Workshop Computational Intelligence, Dortmund, 5 (p. 211).

Prosper Marketplace, Inc. (2014, November). Loan data from prosper. Retrieved
February 12, 2019, from https://docs.google.com/document/d/
1qEcwltBMlRYZT-l699-71TzInWfk4W9q5rTCSvDVMpc/pub

Recamonde-Mendoza, M. & Bazzan, A. L. (2016). Social choice in distributed
classification tasks: Dealing with vertically partitioned data. Information Sciences,
332, 56–71.

Rehman, M. H., Liew, C. S., Wah, T. Y. & Khan, M. K. (2017). Towards next-generation
heterogeneous mobile data stream mining applications: Opportunities, challenges,
and future research directions. Journal of Network and Computer Applications,
79, 1 - 24.

Rodríguez, D. M., Nin, J. & Nuñez-del Prado, M. (2017). Towards the adaptation of
SDC methods to stream mining. Computers & Security, 70, 702–722.

Sakpere, A. B. & Kayem, A. V. (2014). A state-of-the-art review of data stream
anonymization schemes. In Information Security in Diverse Computing Environ-
ments (pp. 24–50). IGI Global.

Sakthithasan, S., Pears, R., Bifet, A. & Pfahringer, B. (2015). Use of ensembles of
Fourier spectra in capturing recurrent concepts in data streams. In International
Joint Conference on Neural Networks (IJCNN), 2015 (pp. 1–8).

Samuelsson, J. (2016). Anomaly detection in consolelogs (No. 16012). (Degree Project,
Uppsala University, Department of Information Technology)

Sang, Y., Shen, H. & Tian, H. (2012). Effective reconstruction of data perturbed by
random projections. IEEE Transactions on Computers, 61(1), 101–117.

Skillicorn, D. B. & McConnell, S. M. (2008). Distributed prediction from vertically

https://c3.nasa.gov/dashlink/resources/294/
https://c3.nasa.gov/dashlink/resources/294/
https://docs.google.com/document/d/1qEcwltBMlRYZT-l699-71TzInWfk4W9q5rTCSvDVMpc/pub
https://docs.google.com/document/d/1qEcwltBMlRYZT-l699-71TzInWfk4W9q5rTCSvDVMpc/pub

REFERENCES 146

partitioned data. Journal of Parallel and Distributed computing, 68(1), 16–36.
Smith, J. O. (2011). Spectral audio signal processing. http://-

ccrma.stanford.edu/˜jos/sasp/. (online book, 2011 edition)
Street, W. N. & Kim, Y. (2001). A streaming ensemble algorithm (SEA) for large-

scale classification. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 377–382).

Tumer, K. & Ghosh, J. (2000). Robust order statistics based ensemble for distributed
data mining. In Advances in Distributed and Parallel Knowledge Discovery (pp.
185–210). AAAI/ MIT Press.

Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer, M. L. & Huerta, R. (2012).
Chemical gas sensor drift compensation using classifier ensembles. Sensors and
Actuators B: Chemical, 166, 320–329.

Wang, J., Deng, C. & Li, X. (2018). Two privacy-preserving approaches for publishing
transactional data streams. IEEE Access, 6, 23648–23658.

Wang, J., Liu, C., Fu, X., Luo, X. & Li, X. (2019). A three-phase approach to
differentially private crucial patterns mining over data streams. Computers &
Security, 82, 30–48.

Wang, K., Fung, B. C. & Dong, G. (2005). Integrating private databases for data
analysis. In International Conference on Intelligence and Security Informatics
(pp. 171–182).

Wang, Q., Zhang, Y., Lu, X., Wang, Z., Qin, Z. & Ren, K. (2018). Real-time and spatio-
temporal crowd-sourced social network data publishing with differential privacy.
IEEE Transactions on Dependable and Secure Computing, 15(4), 591–606.

Wang, T., Guan, S.-U., Man, K. L. & Ting, T. (2014). EEG eye state identification
using incremental attribute learning with time-series classification. Mathematical
Problems in Engineering, 2014.

Wang, T., Zheng, Z., Rehmani, M. H., Yao, S. & Huo, Z. (2018). Privacy preservation in
big data from the communication perspective—a survey. IEEE Communications
Surveys & Tutorials, 1–1. (Early Access)

Witten, I. H., Frank, E., Hall, M. A. & Pal, C. J. (2016). Moving on: applications
and beyond. In Data mining: practical machine learning tools and techniques.
(p. 510-511). Cambridge, MA : Morgan Kaufmann Publisher, [2016].

Zhao, J., Yang, J. & Zhang, J. (2014). Privacy properties of random projection pertur-
bation when random matrix is leaking. Journal of Computational Information
Systems, 10(8), 3465–3472.

http://ccrma.stanford.edu/~jos/sasp/

Appendix A

Quantile Threshold Examples and

Proofs

This appendix provides examples and proofs for a number of the claimed properties of

the terms used in calculating quantile thresholds for trouble record transmission.

A.1 Agreement Extrema

This section provides proofs that 0 ≤ at ≤ 1 for the definition of at in Equation (3.1)

where t is a trouble site.

Firstly, note that the sum of the agreement window’s contents (∑∣w∣i=1wi) represents

the total number of record fragments received, and can therefore also be expressed as the

product of the number of source sites (s) and the mean number of record fragments sent

by each site (µr). Also note that ∑∣w∣i=1 I(wi = s) counts the number of unique records

received that achieved full agreement. The maximum possible value for this expression

is therefore µr, as the highest number of agreeing records is achieved when all source

sites send fragments for exactly the same set of records. Therefore, it follows:

147

Appendix A. Quantile Threshold Examples and Proofs 148

maxat = max s
⎛
⎝
∑∣w∣i=1 I(wi = s)
∑∣w∣i=1wi

⎞
⎠

= max s
⎛
⎝
∑∣w∣i=1 I(wi = s)

sµr

⎞
⎠

=
max∑∣w∣i=1 I(wi = s)

µr

= µr
µr

= 1

(A.1)

Furthermore, as the minimum agreement occurs when every record transmits differ-

ent trouble records (min∑∣w∣i=1 I(wi = s) = 0) and s ≥ 2:

minat = min s
⎛
⎝
∑∣w∣i=1 I(wi = s)
∑∣w∣i=1wi

⎞
⎠

= min s
⎛
⎝

min∑∣w∣i=1 I(wi = s)
∑∣w∣i=1wi

⎞
⎠

= min s
⎛
⎝

0

∑∣w∣i=1wi

⎞
⎠
= 0

(A.2)

A.2 Example of Agreement in the Case of Unequal

Record Transmissions

This section demonstrates that when source sites transmit different numbers of records,

the agreement is computed as a proportion of the mean number of records transmitted

by each site.

Consider the case where two source sites transmit 4 and 8 records respectively, and

there is agreement on as many records as possible (4). The agreement window will

contain [2, 2, 2, 2, 1, 1, 1, 1], and the agreement will be computed as 4 agreeing records

out of a mean number of 6 transmitted records, according to the definition of agreement

in Equation (3.1):

Appendix A. Quantile Threshold Examples and Proofs 149

a = s

⎛
⎜⎜⎜⎜
⎝

∣w∣

∑
i=1
I(wi = s)

∣w∣

∑
i=1
wi

⎞
⎟⎟⎟⎟
⎠

= 2

⎛
⎜⎜⎜
⎝

8

∑
i=1
I(wi = 2)

8

∑
i=1
wi

⎞
⎟⎟⎟
⎠
= 2(4

12
) = 4

6
(A.3)

A.3 Reduction Coefficient Extrema

This section provides proofs that 0 ≤ rs ≤ 1 for the definition of rs in Equation (3.2)

when s is a trouble site (rs = 1 by definition when s is a primary site). Given 0 ≤ as ≤ 1:

min rs = min (as ×min (1, ks))

= 0 ×min (1, ks) = 0

(A.4)

max rs = max (as ×min (1, ks))

= 1 × 1 = 1

(A.5)

A.4 Two-Phase Reduction Coefficients Extrema

This section provides proofs that 0 <= r(1)x <= 1 and 0 <= r(2)x <= 1 for any trouble site

x given the definitions of r(1)x and r(2)x for trouble sites in Equation (5.3). Given as ≥ 0:

Appendix A. Quantile Threshold Examples and Proofs 150

min(r(2)x) = min(ax × r(1)x)

= minax ×min r
(1)
x

= 0 ×min r
(1)
x = 0

min(r(1)x) = min
1

∣Sx∣
∑
s∈Sx

(r(2)s × qs⇒x)

= min
1

∣Sx∣
∑
s∈Sx

(min r
(2)
s ×min qs⇒x)

= min
1

∣Sx∣
∑
s∈Sx

(0 ×min qs⇒x)

= min
1

∣Sx∣
∑
s∈Sx

0

= min
1

∣Sx∣
0 = 0

(A.6)

The proofs for the maximum values of r(1)x and r(2)x are first given for the base case

where the source sites (Sx) are all primary sites, and therefore r(2)s = 1∀s ∈ Sx. Then,

given qs⇒x ≤ 1∀s ∈ Sx and 0 ≤ as ≤ 1:

max r
(1)
x = max

1

∣Sx∣
∑
s∈Sx

(r(2)s × qs⇒x)

= max
1

∣Sx∣
∑
s∈Sx

(max(r(2)s) ×max(qs⇒x))

= max
1

∣Sx∣
∑
s∈Sx

(1 × 1)

= max
1

∣Sx∣
∣Sx∣ = 1

max r
(2)
x = max(ax × r(1)x)

= maxax ×max r
(1)
x

= 1 × 1 = 1

(A.7)

Because r(1)x and r(2)x have maximum values of 1 for the base case when Sx only

contains primary sites, the above equations can be also be applied inductively to show

Appendix A. Quantile Threshold Examples and Proofs 151

this condition also holds for all higher-order trouble sites because max(r(2)s) will always

be 1.

A.5 First-Phase Transmission Equality

This section provides a proof that the number of records transmitted for r(2)s × qs⇒d is

equal for all source sites (s) of a trouble site dwhen there are enough records available to

be transmitted from each source site. More formally, r(2)a × qa⇒d = r(2)b × qb⇒d∀a, b ∈ Sd

given r(2)a and r(2)b are sufficiently large:

r
(2)
s × qs⇒d = r(2)s ×min

⎛
⎝

1,
t
(1)
d

ld × r(2)s
,

t
(2)
d

ld × r(2)s × ad

⎞
⎠

= min
⎛
⎝
r
(2)
s ,

t
(1)
d

ld
,
t
(2)
d

ld × ad
⎞
⎠

(A.8)

Note that the second two terms of the min operation are independent of s, and will

therefore be the same for all source sites. The first term (r(2)s) represents the extreme

case when all records are transmitted from a trouble site. Therefore, the condition will

only hold if r(2)s is large enough for it to not become the limiting factor in the above

equation, i.e. when the source site is able to supply a quantity of records equal to that of

all other source sites.

A.6 Two-Phase Transmission Limits

This section provides proofs that the phase-specific reduction coefficients r(1)d and r(2)d at

a trouble site d never exceed the ratio of the configured trouble factor for the respective

phase (t(1)d or t(2)d) and the size of the feature set at the trouble site (ld). More formally,

r
(1)
d ≤ t

(1)
d

ld
and r(2)d ≤ t

(2)
d

ld
:

Appendix A. Quantile Threshold Examples and Proofs 152

r
(1)
d = 1

∣Sd∣
∑
s∈Sd

(r(2)s × qs⇒d)

Assuming the t(1)d term is limiting qs⇒d

≤ 1

∣Sd∣
∑
s∈Sd

(r(2)s ×
t
(1)
d

ld × r(2)s
)

≤ 1

∣Sd∣
∑
s∈Sd

(
t
(1)
d

ld
)

≤ 1

∣Sd∣
× ∣Sd∣ ×

t
(1)
d

ld

≤
t
(1)
d

ld

r
(2)
d = ad × r(1)d

= ad ×
1

∣Sd∣
∑
s∈Sd

(r(2)s × qs⇒d)

Assume the t(2)d term is limiting qs⇒d

≤ ad ×
1

∣Sd∣
∑
s∈Sd

(r(2)s ×
t
(2)
d

ld × r(2)s × ad
)

≤ ad ×
1

∣Sd∣
∑
s∈Sd

(
t
(2)
d

ld × ad
)

≤ ad ×
1

∣Sd∣
× ∣Sd∣ ×

t
(2)
d

ld × ad

≤
t
(2)
d

ld

(A.9)

Appendix B

HDSM Data Compression

Another method to reduce the cost of data transmission in HDSM is to use a lossless

compression scheme to reduce the size of data transmitted to trouble sites and the

aggregator.

B.1 Key Compression

Because record keys must be unique, the number of bits required to represent a different

value for each record can become a significant communication overhead. In these cases,

techniques to reduce the size of the key can be used.

One way to reduce key sizes is to relax the uniqueness constraint: the key only needs

to be unique with regards to all other records being processed by the system at the same

time (i.e. records with which there may be confusion in the case of a duplicate key). If

the original unique keys are monotonically increasing integers (e.g. timestamps), then

they can be compressed to a smaller representation by applying the modulo operator.

The divisor (d) should represent the maximum distance (number of records) that could

feasibly exist between two records being processed simultaneously by the system. For

example, if a record fragment may arrive out of order by x seconds in either direction

153

Appendix B. HDSM Data Compression 154

(i.e. arrive x seconds earlier or later than the mean arrival time for other fragments of

the same record, resulting in a maximum distance of 2x records between fragments

for the same record), and the HDSM system processes y records per second, then

the minimum required divisor (d) can be expressed as: d = 2xy. The number of bits

required for the new key (size(i)) can then be computed from d: size(i) = ⌈log2 d⌉.

This key compression method is robust both to records failing to arrive at one or more

sites and records arriving out of order by up to d records.

If two-phase and batch transmission are in use, then a compressed representation

can also be used for the subset of “agreed” keys transmitted back from the trouble site

to the source sites. Instead of the globally unique keys, the positional indices from each

batch can be used to identify the subset of trouble records in that batch. As batches of

trouble record keys may be ordered differently by different source sites, the positional

indices to return must be determined separately for each source site. This would reduce

the data transmission with the two-phase approach to: ng + pb + pf (where b is the size

of the positional index, and the other terms are defined in Equation (5.1)). The size

(in bits) of the positional index b can be computed from the size of the batch (m) such

that there can be one unique b value for each position in the batch: size(b) = ⌈log2m⌉.

These new definitions can be used to update the inequality in Equation (5.2):

ng + pb + pf < n(g + f)

ng + anb + anf < n(g + f)

g + ab + af < g + f

ab < f − af

b < f(1

a
− 1)

⌈log2m⌉ < f(1

a
− 1)

(B.1)

Appendix B. HDSM Data Compression 155

Therefore, the size of the batch now impacts the decision of whether to use single-

phase or two-phase transmission rather than the size of the globally unique key. This

provides more flexibility for the user, as the size of the batch is a configurable parameter.

B.2 Feature Compression

When transmitting a batch of record features, there will be redundancy when multiple

records have the same feature values. This is a typical case when features are nominal

or ordinal. This redundancy can be reduced by representing the batch as a mapping of

each unique combination of feature values to the keys of records they represent, for

example:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

key features

key(a) ↦ (0,0,1)

key(b) ↦ (0,1,0)

key(c) ↦ (0,0,1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

features list of keys

(0,0,1) ↦ {key(a), key(c)}

(0,1,0) ↦ {key(b)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B.2)

For single-phase transmission, using the inverted representation will always reduce

the data size proportionally to the number of duplicate feature combinations. For

two-phase transmission, the inverted representation is only useful for the second phase

(when feature values are transmitted), though it may not be more efficient as it would

require keys to be added to the second phase transmission. The original transmission

cost for a second-phase batch is the product of the number of records in the batch (m)

and the size of the feature values for a record fragment (f): mf . When the inverted

representation is used, the cost also includes a key for each record in the batch (where

the key size can represent each record in the batch uniquely: b = ⌈log2m⌉), but feature

values only need to be transmitted for the number of unique feature combinations within

Appendix B. HDSM Data Compression 156

the batch (u): mb+uf . An inequality between these two costs can be used to find when

the inverted representation is more efficient:

mb + uf <mf

b + uf
m

< f

b

f
+ u

m
< 1

(B.3)

Therefore, the inverted representation will be more efficient when the ratio of batch

key size to feature set size (bf) and the ratio of unique records to the total number of

records (um) are both sufficiently small. It is worth noting that ratio u
m is expected

to increase as the number of possible feature combinations increases, meaning that

the inverted representation will be more efficient for nominal features with small

cardinalities. Conversely, the ratio should decrease as m increases, given a larger batch

size leads to a greater probability of duplicate feature values within the same batch.

Even greater compression could be possible by representing each batch using a tree

structure similar to that formed by Huffman coding (Huffman, 1952), where branches

represent different feature values (with branches nearer the root based on more common

feature values) and leaves specify the keys of the records having the feature values

along the path to the leaf.

Appendix C

Omitting Unconfident Classifications

in HDSM

In the current architecture of HDSM, all classification results are transmitted from every

primary and trouble site to the aggregator. This includes unconfident classifications

that resulted in the site forwarding the record to a trouble site. It may be possible to

omit transmitting these unconfident classifications to the aggregator and still achieve

comparable accuracy.

Omitting these classifications still guarantees that at least one classification arrives

at the aggregator for each record. In the extreme case where all primary sites forward

a particular record as trouble (so none of them will forward their classification to the

aggregator), then trouble sites will achieve full agreement for the record and be able to

provide their own classifications. Even if multiple layers of trouble sites forward the

record on as trouble, there must always be a final layer of trouble sites that will provide

one or more classifications to the aggregator.

Initial experimentation with max-confidence aggregation indicated that omitting

these classifications does not drastically impact overall accuracy, as they are very rarely

selected as the final classification by the aggregator due to their low confidence. In cases

157

Appendix C. Omitting Unconfident Classifications in HDSM 158

where they were selected, they more frequently resulted in an incorrect classification

instead of correcting the next-most-confident classification.

However, the aggregator currently requires classification transmissions from all sites

in order to determine which sites to not expect classifications from (as per Algorithm

3), and this requirement is not fulfilled with the omission of unconfident classifications.

This could potentially be resolved by altering HDSM’s behaviour in one of the following

ways:

1. A source site could still notify the aggregator of the trouble sites it has forwarded

to, even when it does not need to send a classification. Given the classifica-

tion result is relatively small (it only contains the assigned class value and its

confidence), this would not represent a significant saving in data transmission

cost.

2. If a trouble site receives a trouble fragment from a source site but never processes

it (e.g. it is dropped from the input buffer because all source site fragments didn’t

arrive for the record), then the trouble site could notify the aggregator that the

source sites had finished processing the record. If a trouble site has more than two

source sites, then this could be slightly more efficient than sending notifications

from source sites individually, but a large amount of latency would be introduced

due to waiting for an unprocessed record to drop off the trouble site’s input buffer

before it could be classified.

3. The aggregator could assume all classifiers are finished after a certain timeout

period. This completely removes the need for communication in the case of

unconfident results, but the timeout would add a degree of latency. If batch

transmission is used for classification results, the timeout could be set as a

number of batches to check from each site after a unique record is first seen at the

Appendix C. Omitting Unconfident Classifications in HDSM 159

aggregator. If only a single batch is checked, then the latency would be no more

than that already introduced by batch transmission.

	Abstract
	Attestation of Authorship
	Publications
	Acknowledgements
	Glossary
	Introduction
	Data Stream Mining
	Distributed Data Mining
	Privacy-Preserving Data Mining
	Research Objective and Contributions
	Thesis Structure

	Related Work in Distributed Data Mining
	Existing Methods for Vertically Distributed Data Mining
	Foundational Distributed Data Mining Approach

	Proposed HDSM Architecture for Distributed Stream Mining
	Trouble Site Hierarchies
	Protocol for Regulating Data Transmission
	Learning Trouble Site Hierarchies
	Monitor Thresholds

	Alternative Aggregation Methods

	Experimental Evaluation of HDSM
	Performance Evaluation Metrics
	Demonstration of Dynamic Trouble Site Hierarchy
	HDSM Performance Evaluation and Comparison
	Suitability of HDSM for Anytime Classification
	HDSM Parameter Sensitivity Analysis
	Limitations and Applicability of HDSM

	Variations of HDSM
	Batch Transmission
	Two-Phase Trouble Record Transmission
	Alternative Confidence Threshold
	Alternative Trouble Record Selection
	Alternative Metric for Selecting Trouble Records
	Communication of Confidence Distributions
	Selecting Trouble Sites

	Additional Variations
	Section Summary

	Related Work in Privacy-Preserving Data Mining
	Existing Techniques for PPDM and PPDP
	Secure Multiparty Computation
	Anonymisation
	Epsilon-Differential Privacy
	Data Perturbation

	Methods for Privacy-Preserving Data Perturbation
	Additive Noise
	Random Rotation
	Random Projection

	Attacks on Random Projection
	Known Sample Attacks
	Known Projection Matrix Attacks
	Known Input-Output Attacks

	Proposed Perturbation Methods for Privacy-Preserving Stream Mining
	Data Perturbation Methods
	Foundational Random Projection Model
	Random Projection with Independent Noise
	Random Projection with Cumulative Noise
	Comparison of Independent and Cumulative Noise
	Interpolating Cumulative Noise Between Known Points
	Data Perturbation Efficiency
	Applying Noise to the Random Projection Matrix

	Known Input-Output Attacks
	Notation
	Known Input-Output MAP Attack on Random Projection
	Extended MAP Attack for Random Translation
	Extended MAP Attack for Independent Noise
	Extended MAP Attack for Cumulative Noise
	Numerical Optimisation
	Attacks When p m

	Experimental Evaluation of Proposed Perturbation Methods
	Experimental Setup
	Datasets
	Attack Type Comparison
	Attack Execution Time Comparison

	Perturbation Method Comparison
	Trend Analysis for Cumulative Noise Perturbation

	Integrating Data Perturbation Methods into Distributed Stream Mining
	Secure Multiparty Data Perturbation
	Decomposing the Perturbation Process for Distributed Computation
	Secure Sum Protocol for Partial Perturbed Records

	Conclusions and Future Work
	Research Achievements
	Limitations
	Future Work in Distributed Data Stream Mining
	Future Work in Privacy-Preserving Data Stream Mining

	References
	Appendices
	Quantile Threshold Examples and Proofs
	Agreement Extrema
	Example of Agreement in the Case of Unequal Record Transmissions
	Reduction Coefficient Extrema
	Two-Phase Reduction Coefficients Extrema
	First-Phase Transmission Equality
	Two-Phase Transmission Limits

	HDSM Data Compression
	Key Compression
	Feature Compression

	Omitting Unconfident Classifications in HDSM

