
Extracting Winning Strategies In Update Games

Imran Khaliq1, Bakhadyr Khoussainov1, and Jiamou Liu2

1 Department of Computer Science, University of Auckland, New Zealand
2 School of Computing and Mathematical Sciences
Auckland University of Technology, New Zealand

ikha020@aucklanduni.ac.nz, bmk@cs.auckland.ac.nz

jiamou.liu@aut.ac.nz

Abstract. This paper investigates algorithms for extracting winning
strategies in two-player games played on finite graphs. We focus on a
special class of games called update games. We present a procedure for
extracting winning strategies in update games by constructing strategies
explicitly. This is based on an algorithm that solves update games in
quadratic time. We also show that solving update games with a bounded
number of nonkdeterministic nodes takes linear time.
Keywords: Games, update networks, finite state strategies

1 Introduction

Games played on finite graphs have received increasing interest over the last few
years. These games are natural models for reactive systems [7], concurrent and
communication networks [10], and have close interactions with model checking,
verification, automata and logic [5, 4, 6, 13]. Such a game is played between two
players, Player 0 and Player 1, over a finite directed graph. The players play
the game by moving a token along the edges of the graph. We assume that
both players have perfect information, the game is turn-based and each move is
deterministic.

There are two interrelated algorithmic problems in the investigation of games
played on finite graphs. The first is concerned with finding algorithms that de-
termine the winner of the game. The second is concerned with extracting a
winning strategy for the winner. These two problems have been investigated for
games with Muller winning conditions. We refer to these games as McNaughton
games as McNaughton was the first who studied algorithmic properties of these
games [8]. In his paper [8] McNaughton provided an algorithm that detects the
winners of these games. Nerode, Remmel and Yakhnis analyzed and improved
McNaughton’s algorithm in [9]. A. Dawar and P. Hunter showed that detecting
the winners in McNaughton games is PSPACE complete problem [11]. In addi-
tion, McNaughton in [8] proves that the winners possess winning strategies that
can be simulated by finite state automata. The upper bound for the number of
states of the automata is n!, where n is the number of nodes in the game graph.
Dziembowski, Jurdzinski and Walukiewicz showed that n! bound is sharp [3].

A natural question arises to single out special classes of McNaughton games
for which there are efficient algorithms that (1) find the winners of the games,
and (2) extract finite state winning strategies. In [2], Dinneen and Khoussainov
investigated a subclass of McNaughton games called update games. They proved
that the winner of a given update game can be found in quadratic time on the size
of the input game. Various generalizations of update games have been studied
in [1], all these generalizations are solved in polynomial time. We also point out
that, using straightforward transformations, Büchi and reachability games can
be turned into McNaughton games. It is a well known fact that these games can
be solved in linear and quadratic time, respectively, and that the winners have
memoryless winning strategies [5].

In this paper we investigate update games. In these games Player 0 aims to
visit every node of the game graph infinitely often. Update games can be viewed
as models of various types of networks in which a message needs to be passed
among all members of the network. We pursue several goals: In Section 4 we
provide a procedure that generates all the update games in which Player 0 is the
winner (Theorem 2). This will be based on structural properties of the underlying
game graphs. In Section 5, we present a procedure that, given an update game,
explicitly constructs a winning strategy for the winner (Theorem 3). We will
provide such an algorithm that runs in quadratic time in the worst case. The
algorithm is based on the contraction operator first introduced in [2]. Finally,
in the last section we describe an algorithm that detects the winner of update
games in linear time given that the number of nondeterministic nodes of Player 1
is bounded by a constant (Theorem 4). We note this requires a new technique
since the algorithm based on the contraction operator does not make use of
non-deterministic nodes of Player 1.

2 Preliminaries

The games under study are of the form (V0, V1, E,Ω) where (V0 ∪ V1, E) is
a finite directed bipartite graph, V0 and V1 partition the set V = V0 ∪ V1,
E ⊆ V0×V1∪V1×V0, and Ω ⊆ 2V is a set of winning positions. For each v ∈ V ,
let vE denote the set {v′ ∈ V0 ∪ V1 | (v, v′) ∈ E}, the successors of v. For this
paper we stipulate that vE 6= ∅ for all v ∈ V . For σ ∈ {0, 1}, we call nodes in
Vσ Player σ’s nodes.

Intuitively, the players play the game by moving a token along the edges of
the graph. The token is initially placed on a node v0 ∈ V . The play proceeds
in rounds. At any round of the play, if the token is placed on a Player σ’s
node v, then Player σ chooses u ∈ vE, moves the token to u and the play
continues on to the next round. Formally, a play (starting from v0) is a sequence
ρ = v0, v1, v2, . . . such that vi+1 ∈ viE for all i ∈ N. We set Inf(ρ) = {v ∈ V |
∀i∃j > i : vi = v}. Thus, any play is infinite and Inf(ρ) 6= ∅. We say Player 0
wins the play ρ if Inf(ρ) ∈ Ω; otherwise, Player 1 wins the play. These games are
called McNaughton games or games with Muller winning conditions. We simply
refer to them as games.

2

A strategy for Player σ is a function that takes as input initial segments of
plays v0, v1, . . . vk where vk ∈ Vσ and outputs some vk+1 such that vk+1 ∈ vkE.
We will concentrate on finite state strategies, which is realized by a finite I/O
(Mealy) automaton S = (Q, q0, δ) where Q is the finite set of states, q0 ∈ Q
is the initial state, and δ : Q × Vσ → Q × V1−σ is the transition function. The
strategy S is a k-state strategy if |Q| = k. One state strategies are also called
memoryless strategies. Thus, a memoryless strategy for Player σ is simply a
function S : Vσ → V1−σ. A play ρ = v0, v1, v2, . . . is consistent with S if there
exists a sequence of states q0, q1, q2, . . . such that for all i ∈ N we have the
following: If vi ∈ Vσ, then δ(qi, vi) = (qi+1, vi+1); If vi ∈ V1−σ, then qi+1 = qi.
Thus, the strategy does not change its state when Player (1− σ) makes moves.
A strategy for Player σ is winning from node v0 if assuming Player σ always acts
according to the strategy, all plays starting from v0 generated by the players are
winning for Player σ. A game Γ is determined if one of the players has a winning
strategy starting at any given node v of the game. To solve a game means to
find all positions from which a given player wins.

3 Update games and their basic properties

A game (V0, V1, E,Ω) is an update game if Ω = {V }. An update network is an
update game where Player 0 wins the game from some node. we denote the
update game by (V0, V1, E). Dinneen and Khoussainov in [2] discussed basic
properties of these games. Our focus will be to give a refined analysis of the
winning strategies in update games.

Let Γ be a game. The 0-attractor set of X, denoted Attr0(X), is the set of
all nodes v ∈ V that satisfy the following: Player 0 has a memoryless strategy
S such that every play consistent with S that begins from v eventually reach
some node in X. It is well-known that the set Attr0(X) for any X ⊆ V can be
computed in time O(|V |+ |E|) [9].

Proposition 1. A game Γ is an update network if and only if Attr0({v}) = V
for all v ∈ V .

Proof. Let V = {v1, v2, . . . , vn}. If Attr0({vi}) = V for all v ∈ {1, . . . , n}, then
Player 0 wins as follows: When vi is visited, Player 0 applies the memoryless
“attractor” strategy to visit vi+1 (here we let n+ 1 = 1). ut

It is clear that the winning strategy described in the above proof requires |V |
states. Proposition 1 gives us a simple algorithm that solves update games:

Corollary 1. There exists an algorithm that solves update games Γ = (V0, V1, E)
in time O(|V | · (|V |+ |E|)). Furthermore, if Γ is an update network, then Play-
er 0 wins with an |V |-state strategy. Otherwise, Player 1 wins with a memoryless
strategy. ut

A t-star network is a game where |V0| = 1, |V1 = t and the only node in V0
is linked to every node in V1 via an edge.

3

Lemma 1. A game Γ where |V0| = 1 is an update network if and only if it is a
t-star network for some t. ut

Let Γ be an update game. By Corollary 1, if Γ is an update network then Player 0
has an n-state winning strategy. Our goal is to build more sophisticated finite
state wining strategies for update games. To do this we recast some of the results
from [2]. One of the important concepts in the analysis is the notion of a forced
cycle defined below.

Definition 1. Let Γ be an update game.

1. For a Player 0’s node v define the set Forced(v) = {u | v ∈ uE, |uE| = 1}.
We say that Player 1 is forced to move from u to v if u ∈ Forced(v).

2. A forced cycle is a sequence of pairwise distinct nodes x1, y1, x2, y2, . . . , xk, yk
such that xi ∈ V0, yi ∈ Forced(xi+1) and yk ∈ Forced(x1) for all i = 1, 2,
. . . , k. A forced cycle of length 2 is called a spike. If x, y form a spike we
denote it by x↔ y.

We would sometimes abuse the notation by referring to a forced cycle as a set of
nodes. We now state several properties (without proofs) of an update network
Γ with |V0| > 1.

Lemma 2. 1. For all v ∈ V0, Forced(v) 6= ∅.
2. For every v ∈ V0, there exists w ∈ Forced(v) and u ∈ V0 such that (u,w) ∈ E

and u 6= v.
3. The game Γ contains a forced cycle which is not a spike. ut

Thus, every update game without forced cycles can not be an update network.
Note that existence of forced cycles does not guarantee that the game is an
update network.

4 Contraction and unfolding operators

Our goal is to introduce an operator that reduces the sizes of update games. This
will be important for building finite state winning strategies in update games.
Our definition follows [2].

Definition 2. Let Γ = (V0 ∪ V1, E) be an update game and C be a forced cycle
in Γ . The contraction operator, when applied to Γ and C, produces a new update
game Γ (C) as follows (See Fig. 1 for an example):

1. Contract all nodes in C ∩ V0 (resp. C ∩ V1) to a new node x(resp. y) of
Player 0 (resp 1).

2. Put directed edges between x and y.
3. Replace all edges (u, v), where u ∈ V \ C and v ∈ C, by the edges (u, x) if

v ∈ V0, otherwise replace the edge (u, v) with (u, y).
4. Replace all edges (u, v), where u ∈ C and v ∈ V \C, by the edge (x, v) (Note

that u ∈ V0 as C is a forced cycle).

4

Update Game Γ

Update Game Γ(C)

Contraction

Operator

y1

y2

y3

y4

x1

x2

x3

x4

y x

y4 x4

Fig. 1. In the update game Γ the forced cycle C is {x1, y1, x2, y2, x3, y3}. In the figure
circles represent Player 0’s nodes and squares represent Player 1’s nodes.

5. Keep all other nodes and edges in V \ C intact.

Lemma 3. Let Γ be an update game with a forced cycle C. Then Γ is an update
network if and only if Γ (C) is an update network.

Proof. Assume Player 0 wins the game Γ (C) with winning strategy S. In the
following, we intuitively describe a winning strategy for Player 0 in Γ : Player 0
plays the game Γ by simulating a play π that is consistent with S in Γ (C). If
the play π visits nodes other than x and y, then Player 0 copies the movements
of π in Γ . Once π moves from a node v /∈ {x, y} to x or y, then Player 0 in Γ
moves to any node in C ∩ vE. Then Player 0 first force the play to go around
the cycle C and then when π leaves {x, y} to some node u, Player 0 will move
to a node w ∈ V0 ∩ C such that u ∈ wE and move to u. Since S is a winning
strategy, it is easy to see that Player 0 also wins in the game Γ .

Conversely, assume Player 0 wins the game Γ with winning strategy S ′. Then
Player 0 also wins Γ (C) by simulating a play in Γ that is consistent with S ′. ut

Suppose Γ = (V0, V1, E) is an update game. By iteratively applying the contrac-
tion operator on forced cycles that are not spikes, we obtain a sequence of games
Γ0, Γ1, . . . , Γk where Γ0 = Γ , and Γi+1 = Γi(Ci) for all i ∈ {0, . . . , k− 1}, where
Ci is a non-spike forced cycle in Γi. The last game Γk does not have a non-spike
forced cycle. We call this sequence a maximal contraction sequence of Γ . Given
Γ , finding a non-spike forced cycle C (or detecting such forced cycle does not
exist), and constructing Γ (C) take time O(|V |+ |E|). Therefore a maximal con-
traction sequence can be built in time O(k · (|V |+ |E|)). Combining Lemma 1,
Lemma 2 and Lemma 3, we have:

Theorem 1 (Deciding Update Games). There exists an algorithm that giv-
en an update game Γ constructs a maximal contraction sequence in time O(k ·
(|V |+ |E|)), where k ≤ |V |. Moreover, Γ is an update network if and only if the
last game in the sequence is a star network. ut

5

Our next goal is to extract a finite state winning strategies for update networks
Γ using Theorem 1. For this we define an operator that, in some sense, inverses
the contraction operator:

Definition 3. Let Γ be an update game and x ↔ y be a spike in Γ . Let C be
any non-spike forced cycle that is disjoint from the graph of Γ . The unfolding
operator, applied to Γ, x↔ y and C, proceeds in two steps as follows:

1. Replacement: Replace the spike x↔ y with a new forced cycle C of length
at least 4.

2. Enrichment: First, associate edges of the forms (v, y) and (v, x) in Γ , where
v 6∈ {x, y}, with sets M1

v ⊂ C and M0
v ⊂ C of Player 1 and Player 0 nodes,

respectively. In addition, associate with each edge of the form (x, v), where
v ∈ V1, a set Mv ⊂ C of Player 0 nodes. Now the enrichment operation
proceeds as follows:

(a) Replace each edge (v, y) as above with the edges (v, u), where u ∈M1
v .

(b) Replace each edge (v, x) as above with the edges (v, u), where u ∈M0
v .

(c) Replace each edge (x, v) as above with the edges (u, v), where u ∈Mv.

This resulting game is not uniquely determined and depends on the sets M0
v , M1

v ,
Mv. For notational convenience we suppress the parameters C, M0

v , M1
v and Mv

and denote the resulting game by Γ (x↔ y). We call it an unfolded game of Γ .

The proof of the following lemma follows from the definitions:

Lemma 4. Let x ↔ y be a spike in Γ (C) obtained from contracting C. Then
the following hold:

1. The unfolding operator applied to the update game Γ (C), the spike x ↔ y,
and forced cycle C produces the original game Γ , that is Γ = Γ (C)(x↔ y).

2. Γ is an update network if and only if Γ (C)(x↔ y) is an update network. ut

Theorem 1 and Lemma 4 allow us to construct update networks. Namely, start
with a star network and consecutively apply the unfolding operation. All update
games obtained in this way are update networks. Conversely, for every update
network Γ there exists a sequence of unfolded games that starts from a star
network such that the sequence produces Γ . We single out this observation as
the following theorem:

Theorem 2 (Building Update Networks). All update networks can be ob-
tained by consecutively applying the unfolding operation to star-networks. ut

5 Extracting winning strategies

Let Γ be an update game and let Γ0, . . . , Γk be a maximal contraction sequence
of Γ . By Lemma 4, each Γi+1 is an unfolding of Γi through a spike xi ↔ yi in the
game Γi. Assume that the game Γk is a t-star network. Our goal is to explicitly
construct a finite state winning strategy for Player 0 by using this sequence.

6

Let S = (Q, q0, δ) be a finite state strategy in game Γ . We say that the spike
x ↔ y is used by S if for all state q ∈ Q we have δ(q, x) = (q′, y) for some
q′ ∈ Q. Otherwise, we say that the spike is unused by S. For instance, when Γ
is a t-star network, Player 0 has an obvious t-state winning strategy that visits
all the Player 1 nodes in cyclic order. Every spike in Γ is used by the strategy.
When the strategy S is clear, we drop the reference to S and simply say the
spike is used or unused.

Lemma 5. Assume that Player 0 has a t-state winning strategy S in the update
game Γ . If the spike x ↔ y is used by S then Player 0 has a t-state winning
strategy in Γ (x↔ y). Otherwise Player 0 has a (t+ 1)-state winning strategy in
Γ (x↔ y).

Proof. We prove the lemma by explicitly constructing the strategy for Player 0
in Γ (x↔ y). The formal construction of the strategy is quite technical, thus we
only provide a rough outline. Intuitively, Player 0 plays the game Γ (x ↔ y) by
simulating a play π in game Γ that is consistent with the strategy S. Suppose
the spike x↔ y is used by S. When the play π visits x and S indicates Player 0
to visit y, Player 0 will visit a node u0 ∈ C and start to go around the cycle C
while remaining in the same state. Upon returning to u0, Player 0 changes its
state and resume the simulation of π from the point where π has gone from x
to y and back to x. This strategy of Player 0 still has t states as no new state
is created for it to go around the cycle C. Suppose the spike x ↔ y is not used
by S. Then the winning strategy of Player 0 in Γ (x ↔ y) is defined similarly.
However, we need an extra state so that once π visits x, Player 0 can “branch-
off” the play in Γ (x↔ y) to go around the cycle C. Hence the strategy has t+1
states ut

Consider the maximal contraction sequence Γ0 . . . , Γk on Γ . Assume that the
last game Γk is not a star-network. Our goal is to build a winning strategy for
Player 1 in the original game. The strategy we construct will be memoryless as
one would expect from Corollary 1.

Lemma 6. Let Γ be an update game.

1. If there exists a node v ∈ V1 without incoming edges then any memoryless
strategy for Player 1 in Γ and in all unfolded games of Γ is a winning
strategy.

2. Suppose that there exists a node v ∈ V0 such that Forced(v) = ∅. Player 1
has a memoryless winning strategy in Γ and all unfolded games of Γ .

3. Suppose that |V0| > 1 and there exists a node v ∈ V0 such that for all
w ∈ Forced(v) no u 6= v with (u,w) ∈ E exists. Player 1 has a memoryless
winning strategy in Γ and all unfolded games of Γ . ut

The two lemmas above and Theorem 1 give us the following theorem.

Theorem 3 (Extracting Winning Strategies). Suppose that we are given
a maximal contraction sequence Γ0, . . . , Γk of an update game Γ .

7

1. Assume that Γk is a t-star network for some t ∈ N. Player 0 has a (t+m)-
state winning strategy in game Γ , where m is the total number of unused
spikes that are unfolded in the sequence Γ0, . . . , Γk. Moreover, the strategy
can be built in time proportional to m.

2. Assume that Γk is not a t-star network for any t ∈ N. Player 1 has a mem-
oryless winning strategy in game Γ . Moreover, the strategy can be built in
time proportional to k. ut
Note that the winning strategies extracted by the procedure above depend

on the number of contractions of forced cycles, and the number of states in
this strategy may not be minimal. We remark that the problem of computing
the minimal state winning strategies in update networks is NP-complete. For
instance the Hamiltonian cycle problem can be reduced to finding a memoryless
winning strategy problem in update networks. Indeed, given a directed graph
G, subdivide every edge (u, v) into two edges (u, x) and (x, v) where x is a new
node. This new graph is now the underlying graph for an update game Γ (G). In
Γ (G), Player 0’s nodes are the original nodes in G and Player 1’s nodes are the
new nodes. Clearly, the graph G has a Hamiltonian cycle if and only if Player 0
has a one-state winning strategy in the game Γ (G).

6 Update games with a fixed number of nondeterministic
nodes

A natural question arises if there exists a better algorithm that solves update
games than the algorithm described in Theorem 1. For instance, one would like
to know if it is possible to solve update games in linear time on the size of the
graph. In a game Γ , we say a node u is nondeterministic if |uE| > 1. In this
section we provide a linear-time algorithm to solve update games where there
are at most k nondeterministic nodes of Player 1, where k ≥ 1 is fixed. We
denote the class of all such games by Uk. Our algorithm takes a game Γ from
the class Uk, and reduces the game to an equivalent game from the class Uk−1.
The process may eventually produce a game from the class U0. The following is
an obvious lemma that characterizes all the update networks from the class U0.

Lemma 7. Let Γ be an update game from the class U0. Then Γ is an update
network if and only if the underlying graph G of Γ is strongly connected. ut
Let Γ be an update game from the class Uk, and let b0, b1, . . . , bk−1 be all nonde-
terministic nodes of Player 1 in Γ . Consider the graph H obtained by removing
all these nondeterministic nodes from the underlying graph G. Let C0, . . . , Ct−1
be all the strongly connected components of H each of cardinality at least 2. We
define a new update game Γ ′ called the derivative of Γ :

Definition 4. For every strongly connected component Ci, collapse all Player 0
nodes in Ci into one node denoted by xi, collapse all Player 1 nodes in Ci into
one node denoted by yi. Keep the other nodes of G intact. Note that some of the
edges of G might collapse into one edge. The resulting graph is the underlying
graph of the derivative game Γ ′.(See Figure 2 for an example)

8

Update game Γ

Derivative of Γ

b1

b2

b3

b1

b2

b3

x1

x2

y1

y2

y3 x3

v0 v1

v2

v3 v4

v5

v6

v7

u1

u2

u3

u4 u5

u6

u0

u7

u8

u9

u9

Fig. 2. Transformation of update game Γ to its derivative.

It is obvious that for each component Ci in the game Γ , Player 0 has a strategy
fi such that Player 0 using this strategy can stay in Ci forever and visit all the
nodes of Ci infinitely often. We prove the next lemma using these strategies and
a similar argument as the proof of Lemma 3.

Lemma 8. The game Γ is an update network if and only if Γ ′ is an update
network. ut

The next lemma gives us a sufficient condition for Player 1 to win the update
game Γ .

Lemma 9. If Γ is an update network then at least one of the nondeterministic
nodes b0, . . ., bk−1 becomes deterministic in the derivative game Γ ′.

Proof. Suppose no bi where i ∈ {0, . . . , k − 1} is deterministic in Γ ′. We show
that Player 1 has a memoryless winning strategy in Γ ′. Consider the natural
partial order ≤ defined on the spikes x1 ↔ y1, . . ., xt−1 ↔ yt−1 as follows. Say
that xi ↔ yi ≤ xj ↔ yj if and only if there exists a path from Cj to Ci such
that the path does not use the nondeterministic nodes b0, b1, . . . , bk−1.

We now define a strategy for Player 1 in Γ ′ as follows. Let x↔ y be a maximal
spike in Γ ′. Note that for any Player 1’s node w with (w, x) there exists wx 6= x
such that (w,wx) ∈ E′. Define the strategy gx so that gx(w) = wx. At all other
nodes u 6= w, the strategy gx is defined arbitrarily. This strategy is clearly a
winning strategy for Player 1. ut

Now consider the sequence of update games obtained by taking derivatives:

Γ0 = Γ, Γ1 = Γ ′0, Γ2 = Γ ′1, . . .

This process stops at stage s if either Γs has no nondeterministic nodes or Γs
has the same number of nondeterministic nodes as Γs−1. We call the sequence
Γ0, Γ1, . . . , Γs the maximal derivative sequence of Γ . From the three lemmas

9

above we have that Γ is an update network if and only if Γs ∈ U0 and the
underlying graph Gs of Γs is strongly connected. Constructing Γi+1 from Γi
takes time proportional to |V |+ |E|. This can be done using Tarjan’s algorithm
that computes strongly connected components[12]. Thus, we have the following
theorem.

Theorem 4 (Deciding Update Games). There exists an algorithm that giv-
en an update game Γ constructs the maximal derivative sequence in time O(k ·
(|V |+ |E|)), where k is the number of nondeterministic nodes of Player 1 in Γ .
Moreover, the game Γ is an update network if and only if Γs ∈ U0 and Gs is a
strongly connected component. ut

The following is an obvious corollary:

Corollary 2. There is a linear time algorithm that solves update games from
the class Uk. ut

References

1. Bodlaender, H.L., Dinneen, M.J., Khoussainov, B.: On Game-Theoretic Model of Network-

s. In: Proceedings of the 12th International Symposium on Algorithms and Computation.

Eades, P., and Takaoka, T. (eds.) LNCS, vol. 2223, pp. 550-561. Springer, Heidelberg
(2001)

2. Dinneen, M.J., Khoussainov, B.: Update Games and Update Networks. Journal of Discrete

Algorithms. vol.1, issue 1. (2003)

3. Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How Much Memory is Needed to Win

Infinite Games. In: Proceedings of 12th Annual IEEE Symposium on Logic in Computer

Science. pp. 99-110 Warsaw Poland (1997)

4. Emerson, E.A., Jutla. C.S., Sistla, A.P.: On Model Checking for Fragments of µ-calculus.

In: Proceedings of the 5th International Conference on Computer Aided Verification. L-

NCS 697, pp. 385-396 (1993)

5. Grädel, E., Thomas, W., Wilke, T.: Automata, logics, and infinite games: A Guide to

Current Research. LNCS 2500, Springer, Heidelberg. (2002)

6. Ishihara, H., Khoussainov, B.: Complexity of Some Infinite Games Played on Finite Graph-

s. In: Proceedings of the 28th International Workshop on Graph-theoretic Methods in

Computer Science. WG 2002

7. Mang, Y.C.: Games in open systems verification and synthesis. PhD Thesis, University of

California at Berkeley (2002)

8. McNaughton, R.: Infinite Games Played on Finite Graphs. Annals of Pure and Applied
Logic. 65 149–184 (1993)

9. Nerode, A., Remmel, J., Yakhnis., A.: McNaughton Games and Extracting Strategies for

Concurrent Programs. Annals of Pure and Applied Logic. 78 203-242 (1996)

10. Nerode, A., Yakhnis, A., Yakhnis, V.: Distributed Concurrent Programs as Strategies in

Games. Logical Methods. 624-653 (1992)

11. Hunter, P., Dawar, A.: Complexity Bounds for Regular Games. In: Proceedings of the 30th
International Symposium on Mathematical Fondations of Computer Science (MFCS’05).

LNCS 3618, Springer-Verlag. pp. 495–506 (2005)

12. Tarjan, R.: Depth-first Search and Linear Graph Algorithms. SIAM Journal on Computing.

vol. 1, pp. 146–160 (1972)

13. Thomas, W.: Infinite games and verification. In: Proceedings of CAV 2002, LNCS 2404,
pp. 58–64, Springer (2002)

10

