
The Use of Video to Detect and Measure
Pollen on Bees Entering a Hive

Cheng (Robert) Yang

A thesis submitted to Auckland University of Technology
in fulfilment of the requirements for the degree of PhD

2017

School of Engineering,
Computer & Mathematical Sciences

Primary Supervisor: John Collins

i

Abstract
This research will measure the pollen being brought into the beehive in the bees' pollen sacs. It

will process 2-D video which is obtained from in front of the entrance to the beehive and

automatically count the number of full pollen sacs which bees bring back. This can help bee

keepers to check forage inside beehive without opening the hive manually. The technology used

in this research relates to object detection using computer vision. Many papers in the field of

object detection try to detect and track different objects, such as human beings, vehicles and

animals. However, very little research has focused on the flight of bees, and few has involved

identifying the pollen sacs. Difficulty arises from requiring high resolution video and high speed

processing because bees can fly at high speed.

The first step of the procedure for this research is to detect and track bees. The bee detection

method is to combine foreground subtraction and colour thresholding. The tracking approach

mainly uses the Kalman filter. After that, the Hough transform is to solve the problem of tracking

bees in the occlusion situation.

The second step is the pollen detection and measurement. There are two methods to complete

this mission in this research. The first method is to use image processing and statistics to analyse

individual bee images. The bee’s body is analysed to identify the main body (head and abdomen)

and other parts (wings, legs and pollen sacs). Then the pollen sacs can be detected using the

features of colour, size, blob orientation, blob ellipticity, position and blob extent. The thresholds

to distinguish pollen and non-pollen blobs are estimated using the receiver operating

characteristic (ROC). The amount of pollen is estimated by counting the bees with full pollen sacs.

The second method is to use deep learning method. 1000 individual bee images with pollen sacs

labels are collect for training a deep neural network. After the training, a network can be used to

detect pollen on individual bee images automatically. Then the individual bee images can be

identified as pollen or non-pollen images. This identification is combined with bee tracking on bee

monitoring video to count the number of pollen carrying bees.

This thesis explains the detail of the theory of the methods used in this research. In addition, it

reports the results of applying the methods in practice. The experimental results indicate the

tracking of single bees is over 99% accurate. More than 80% of bees in a merged situation are

tracked successfully. In pollen detection and measurement test, the difference (or error) between

measured number and actual number of pollen sacs is about 7%, if the deep learning method is

applied. This is a significant improvement from the image processing and statistics model, which

produces 33% error.

ii

Table of Contents

Abstract ... i

Attestation of Authorship .. x

Acknowledgements ... xi

Ethics Approval .. xii

Confidential Material .. xiii

Chapter 1 : Introduction ... 1

1.1 Introduction of this research .. 1

1.2 significance of this research .. 2

1.3 Research gaps ... 3

1.4 Outline of this thesis ... 4

1.5 The important of bees and contribution of this research .. 4

1.5.1 The important role of bees ... 5

1.5.2 Health of bees ... 6

1.5.3 Contribution of this research for bee health observation 7

1.6 Publications ... 7

Chapter 2 : Literature review ... 9

2.1 Object detection in a single frame .. 9

2.1.1 Colour feature for image segmentation ... 9

2.1.2 Other features for object detection .. 13

2.1.3 Region based segmentation .. 15

2.1.4 The Hough transform for object shape detection .. 18

2.2 Object detection with multiple frames ... 19

2.2.1 Gaussian mixture model ... 19

2.2.2 Background subtraction .. 21

2.2.3 Frame difference ... 22

2.2.4 Optical flow ... 23

2.2.5 Shadow detection and removal .. 24

2.3 Object tracking .. 25

2.3.1 Object blob analysis for tracking ... 25

2.3.2 Object tracking with a Kalman filter ... 26

2.3.3 Object tracking with a particle filter ... 29

2.3.4 Other tracking methods .. 30

2.3.5 Multiple object tracking problem ... 31

2.4 Small object tracking ... 31

2.4.1 Direct detection of small object regions ... 32

2.4.2 Segment the big object region in small parts ... 33

2.5 Deep learning for computer vision ... 34

iii

2.6 Bee and pollen sacs detection in computer vision ... 38

2.7 Approaches for this research .. 40

Chapter 3 Background of research ... 43

3.1 Motion detection using the Gaussian mixture model .. 43

3.2 Colour segmentation .. 45

3.2.1 Histogram thresholding with colour ... 45

3.2.2 Colour spaces .. 46

3.3 Hough transform detection .. 48

3.3.1 The Hough transform theory .. 49

3.3.2 An simple example of straight line detection ... 50

3.3.3 The generalized Hough transform .. 52

3.4 Morphological dilation and erosion .. 54

3.4.1 Morphological erosion .. 55

3.4.2 Morphological dilation .. 56

3.4.3 Image opening, closing and hole filling ... 57

3.5 Kalman filter for object tracking ... 59

3.5.1 Discrete Kalman filter estimation ... 59

3.5.2 Calculation of the Kalman gain ... 60

3.5.3 Correction covariance update ... 61

3.5.4 Summary of Discrete Kalman filter algorithm .. 61

3.5.5 The filter parameters and tuning .. 62

3.5.6 The Kalman filter for object tracking .. 63

3.6 Hungarian assignment method ... 64

3.6.1 The process of the Hungarian method ... 64

3.6.2 The example of the method .. 66

3.6.3 The Hungarian assignment method for multiple object tracking 69

3.7 Blob analysis with image moments on binary image ... 70

3.8 The Receiver operating characteristic .. 71

3.9 Convolutional deep neural networks .. 73

3.9.1 The architecture of CNNs .. 74

3.9.2 The VGG networks .. 76

3.9.3 Network training and learning .. 77

3.9.4 The fast region-based convolutional neural network (Fast RCNN) 79

3.9.5 The Faster RCNN ... 82

Chapter 4 : Methodology of bee detection and tracking .. 85

4.1 The research environment and equipment .. 85

4.2 Bee Detection .. 87

4.2.1 Bee detection with foreground subtraction ... 87

4.2.2 Colour segmentation for bee detection.. 88

iv

4.2.3 The combination of foreground and colour detection 93

4.2.4 Introduction to the problem of pollen detection ... 97

4.2.5 Discussion of the natural background .. 102

4.3 Bee Tracking .. 104

4.3.1 Prediction method .. 104

4.3.2 Kalman filter .. 107

4.3.3 Hough transform for improvement of merged bee tracking 115

4.3.4 Brief explanation of the Hungarian assignment method for bees tracking...... 122

Chapter 5 Methodology of pollen sacs detection and measurement 124

5.1 Pollen sacs detection and measurement with image processing and statistics 124

5.1.1 Detect main body of bee ... 124

5.1.2 Detect colour of pollen sacs .. 126

5.1.3 Pollen blob features .. 128

5.1.4 The pollen feature detection model for pollen detection 130

5.1.5 Pollen measurement on images. .. 141

5.1.6 Pollen measurement on the bee monitoring video .. 142

5.2 Deep learning for pollen sacs detection and measurement 145

5.2.1 Training and validation data ... 146

5.2.2 The training, pollen detection and pollen and non-pollen bee image
identification ... 147

5.2.3 Training repetition and learning rate choosing .. 149

5.2.4 Pollen measurement on video frame sequences ... 151

Chapter 6 : Results and discussion ... 157

6.1 Results of bee tracking .. 157

6.1.1 The preparation .. 157

6.1.2 The results and evaluation .. 160

6.1.3 Summary of tracking results ... 164

6.1.4 Mistakes analysis .. 165

6.2 Evaluation of pollen measurement ... 182

6.2.1 Test videos .. 182

6.2.2 Experimental results and comparison .. 183

6.2.3 Discussion of two methods ... 185

Chapter 7 : Conclusions and future work .. 194

7.1 The bee detection model .. 194

7.2 The bee tracking performance .. 194

7.3 The pollen detection and measurement .. 195

7.4 Future work ... 196

7.4.1 Bee detection improvement ... 196

7.4.2 Bee tracking improvement.. 196

v

7.4.3 Improvement of pollen detection and measurement 197

References .. 199

vi

List of Figures

Figure 3.1 The example of histogram of an assumed image .. 46
Figure 3.2 The HSV colour space ... 47
Figure 3.3 The (x, y) space and (a, b) space transformation ... 49
Figure 3.4 The (x, y) space and the (r, 𝜃𝜃) space transformation ... 50
Figure 3.5 The process of the Hough transform. .. 51
Figure 3.6 The transform result in Hough (r, 𝜃𝜃) space. ... 51
Figure 3.7 The 5 points at (x, y) space. 4 of them are in a same circle 52
Figure 3.8 An example of circles intersecting the green point ... 53
Figure 3.9 The Hough (𝑥𝑥0,𝑦𝑦0, 1) space result .. 53
Figure 3.10 The example of reflection and translation... 55
Figure 3.11 Examples of erosion. .. 56
Figure 3.12 Examples of dilation. .. 57
Figure 3.13 An example of hole filling. ... 58
Figure 3.14 The example of ROC space ... 73
Figure 3.15 The structure of VGG-16 network. ... 77
Figure 3.16 The architecture of Fast RCNN (Girshick, 2015) .. 80
Figure 3.17 Faster RCNN process, which consists of RPN (Ren et al., 2017). 82
Figure 3.18 The region proposal network (RPN) (Ren et al., 2015). ... 83
Figure 4.1 The camera position (a) and the camera view (b) ... 86
Figure 4.2 The result of merged situation tracking over successive video frames. 86
Figure 4.3 The Protune operation of the camera ... 87
Figure 4.4 The results of motion detection. ... 88
Figure 4.5 The Hue channel example. ... 89
Figure 4.6 Example of the Saturation channel. ... 90
Figure 4.7 The orange mask binary image after morphological calculation (MOI). 90
Figure 4.8 Example of the Value channel and black colour detection. 91
Figure 4.9 The combination of the orange and black colour (MOBI) ... 91
Figure 4.10 The Green background colour transform. ... 92
Figure 4.11 An example of the detection with same thresholds. ... 92
Figure 4.12 The results of the two combined methods. ... 93
Figure 4.13 The combination logic (model A) with binary images. .. 94
Figure 4.14 The result of different dilation and corresponding bee detection. 95
Figure 4.15 The binary images logical calculation of model B. ... 96
Figure 4.16 The detection result of model B. ... 96
Figure 4.17 The final flying bee detection. ... 97
Figure 4.18 An example of detection on the green background .. 97
Figure 4.19 Bee main body removal using the detection model C. .. 98
Figure 4.20 The bee detection result with new orange and yellow thresholds. 99
Figure 4.21 Comparison of detection using the old and new thresholds. 99
Figure 4.22 The bee detection model D with orange, black, white colour and foreground
detection. .. 100
Figure 4.23 Comparison of the bee detection. ... 101
Figure 4.24 The main body detection after bee detection of model D 101
Figure 4.25 A natural complex background for the detection model trial. 102

vii

Figure 4.26 The bee detection trial on a natural complex background. 103
Figure 4.27 The merged bees situation and solution ... 105
Figure 4.28 The tracking model of prediction method ... 106
Figure 4.29 The error distribution of measurement ... 110
Figure 4.30 The error distribution of prediction ... 111
Figure 4.31 The measurement error distribution of merged detection 111
Figure 4.32 The prediction error distribution of merged detection ... 112
Figure 4.33 The tracking model of Kalman filter .. 113
Figure 4.34 The error distribution of assumed detection error in merged situation 114
Figure 4.35 The error distribution of prediction in merged situation 115
Figure 4.36 The segmentation of bees blob. .. 115
Figure 4.37 The edge image of a single bee blob. .. 116
Figure 4.38 The edge image of the merged bee blob. .. 117
Figure 4.39 Examples of drawing the single bee blob edge on the merged blob edge image . 117
Figure 4.40 The final detection of results with different rotation of the single bee edge. 119
Figure 4.41 The peak point problem with different rotation. The fitting rotation is 10° 120
Figure 4.42 The measurement errors distribution from Hough transform 121
Figure 4.43 The prediction errors distribution with Hough transform 122
Figure 5.1 An example of blob parameters .. 125
Figure 5.2 The result of using the ellipse to separate the blob. ... 125
Figure 5.3 The example of a bee’s main body blob detection .. 126
Figure 5.4 The pollen detection process. .. 127
Figure 5.5 The comparison of the result with different bee detection. 127
Figure 5.6 Other examples of pollen detection result. ... 128
Figure 5.7 The main body ellipse showing the left and right points of the minor axis............. 129
Figure 5.8 The distribution of the 4 features .. 132
Figure 5.9 The ROC curves analysis with all of the samples. .. 134
Figure 5.10 The distribution of pollen and non-pollen blobs on two features. 135
Figure 5.11 The process of finding optimal straight line. ... 137
Figure 5.12 The optimal straight line for classifying blobs. .. 138
Figure 5.13 The ROC curves of two lines method .. 138
Figure 5.14 The optimal two lines for pollen detection from non-pollen blobs....................... 139
Figure 5.15 The pollen measurement progress .. 141
Figure 5.16 The whole model of the pollen measurement on the video 143
Figure 5.17 The ROC curve for the bee pollen carrying ratio ... 144
Figure 5.18 An example of pollen sacs labelling in pollen bee images. 147
Figure 5.19 Examples of pollen detection on images. .. 148
Figure 5.20 An example of detection with 0.005 threshold of detect score. 148
Figure 5.21 The training process for finding a good learning rate and good network model .. 149
Figure 5.22 ROC curve of three learning rate result. .. 150
Figure 5.23 ROC curves of learning rate 10-4, and two other learning rates beside. 151
Figure 5.24 The deep learning model for pollen detection in bee tracking model. 152
Figure 5.25 The whole pollen count model with deep learning pollen detection. 152
Figure 5.26 The ROC curve for the bees’ pollen carrying ratio from video 1. 154
Figure 5.27 The ROC curve for the bees’ pollen carrying ratio from video 2. 155
Figure 6.1 Example frames from three videos. ... 158

viii

Figure 6.2 The results of correct tracking of three models. ... 166
Figure 6.3 The incorrect tracking of prediction model. .. 167
Figure 6.4 The Kalman filter model tracking in the same situation as Figure 6.3..................... 167
Figure 6.5 The K+H model tracking in the same situation as Figure 6.3. 168
Figure 6.6 The correct tracking of prediction model. ... 169
Figure 6.7 The incorrect tracking of the Kalman filter model. .. 169
Figure 6.8 The correct traking of K+H model. ... 170
Figure 6.9 The correct tracking of the prediction model. ... 171
Figure 6.10 The correct tracking of Kalman filter model. ... 171
Figure 6.11 The incorrect tracking of the K+H model. .. 172
Figure 6.12 More complex merged tracking with the prediction model. 173
Figure 6.13 The more complex merged tracking with Kalman filter. 174
Figure 6.14 The more complex merged tracking with K+H model. .. 175
Figure 6.15 The first example of a boundary problem. .. 177
Figure 6.16 The second example of boundary problem. .. 177
Figure 6.17 The third example of a boundary problem. ... 178
Figure 6.18 The fourth example of a boundary problem. .. 178
Figure 6.19 The fifth example of a boundary problem. .. 179
Figure 6.20 The sixth example of a boundary problem. ... 179
Figure 6.21 An example of complex merged situation on a boundary. 180
Figure 6.22 Another example of a complicated problem on boundary. 181
Figure 6.23 An example of the shadow problem which affects single bee tracking. 182
Figure 6.24 An example of shadow problem which affect merged bee tracking. 182
Figure 6.25 The example of unclear colour pollen sacs. ... 186
Figure 6.26 Examples of small pollen sacs. ... 187
Figure 6.27 An example of a pollen sac on top of the body. .. 188
Figure 6.28 An example of wing reflection. .. 188
Figure 6.29 An example of bee blob detection problem effecting. .. 189
Figure 6.30 An example of problem due to body curling. .. 189
Figure 6.31 An example of the bee detection process with a shadow problem. 190
Figure 6.32 Two examples of shadow effects. .. 190
Figure 6.33 Examples of false positives (FP) from deep learning method pollen detection 192

ix

List of Tables

Table 3-1 The example of Hungarian method with three workers and three jobs 64
Table 3-2 The example 1: three people and three jobs hourly paid ... 66
Table 3-3 The distance between customers and taxi cars. ... 67
Table 3-4 The cost matrix, the content is the distance (pixels) between predictions and
detections. .. 69
Table 3-5 A binary classification model .. 72
Table 4-1 The summary of characteristic of 4 bee detection models 102
Table 5-1 The statistical parameters of features of pollen blobs ... 131
Table 5-2 The statistical parameters of features from non-pollen blobs in images 131
Table 5-3 Statistical titles explanation .. 133
Table 5-4 The four outcomes of the ROC model .. 135
Table 5-5 The result of one straight-line method ... 137
Table 5-6 The result of two lines method .. 139
Table 5-7 The pollen estimation result from the test ... 142
Table 5-8 The ROC result with the pollen carrying ratio threshold ... 144
Table 5-9 The detail of data collection ... 146
Table 5-10 The confidence threshold information ... 151
Table 5-11 Two videos' new frames for pollen carrying ratio ... 153
Table 5-12 The ROC point closest to perfect classifier ... 154
Table 5-13 The ROC points on ROC curve which are closed to point (0, 1) 155
Table 5-14 The thresholds in two videos having similar FN and FP. ... 156
Table 6-1 The single bee tracking results with prediction model ... 160
Table 6-2 The single bees tracking result with K+H model ... 161
Table 6-3 The evaluation of merged bee tracking with prediction model 162
Table 6-4 The merged tracking evaluation with only Kalman filter .. 162
Table 6-5 The merged bee tracking evaluation with K+H model.. 163
Table 6-6 The merged bee tracking result without considering boundary errors 164
Table 6-7 Test videos’ information ... 183
Table 6-8 The pollen bees counting results with two lines method .. 184
Table 6-9 The pollen bees counting results with the deep learning model 184

x

Attestation of Authorship
I hereby declare that this submission is my own work and that, to the best of my knowledge and

belief, it contains no material previously published or written by another person (except where

explicitly defined in the acknowledgements), nor material which to a substantial extent has been

accepted for the award of any other degree or diploma of a university or other institution of higher

learning.

Signed______________________ ___

xi

Acknowledgements
This piece of work is the result of hard work, patience, sacrifice and the unconditional support of

many people. I wish to thank everyone who has supported and helped me in completing this

research.

Firstly, I would like to acknowledge my supervisors: John Collins, Mark Beckerleg and Tek Tjing

Lie, for their support and encouragement in this thesis. I would like to thank them for the guidance

they have given me throughout this period.

I also acknowledge Darren Bainbridge for his important role providing access to beehives for this

research.

I express my honest thanks to the AUT library staff for their overall support for the entire period

of my study at AUT.

I would like to thank my friends and family for their prayers and encouragement, which motivated

me to complete this thesis successfully.

Above all, I thank the Almighty God for helping me accomplish this venture with ease.

xii

Ethics Approval
There was no ethics approval requirement for this thesis, because the research only observes

bees without any interference to their behaviour.

xiii

Confidential Material
There is no confidential material in this thesis.

1

Chapter 1

Chapter 1: Introduction
__

This research aims to use computer vision to help bee keepers to monitor the health of bees,

especially concerning foraging for food. This chapter firstly introduces the background of bee

breeding and health to show the significance of this research. Then the research gap will be

identified which is the computer vision for bees. Finally, the structure of this thesis is presented in

this chapter.

1.1 Introduction of this research
This research applies computer vision technology to detect pollen sacs (very small object) from

flying honey bees’ bodies, and also measure the number of pollen sacs being brought to beehive.

Computer vision has been applied to detect and track objects on a stream of video in different

environments. For example, it is often used for safety and security. In recent years, robust, real-

time and model-based detection and tracking techniques have been developed for rigid and non-

rigid moving objects. They enable automated monitoring and event detection. Most contributions

are using computer vision to deal with detection and tracking in an urban environment such as

cars and pedestrians. These object detections can be carried out by either stationary or moving

cameras (Aycard et al., 2006, Ikoma et al., 2014).

This research extends the application of computer vision to insect detection and tracking,

particularly for bee detection and tracking. In addition, this research uses computer vision to

detect very small pollen sacs on flying bees. In this research, the video is two dimensions with

resolution of 1920×1080. It can display the bees’ bodies clearly enough to show pollen sacs on

the back legs of bees. However, the pollen sacs are still very small, which is a challenge for

computer vision detecting them. Therefore, bees should be detected first, then pollen sacs can

be detected from individual bee images.

Bees can be detected on the video with their special orange colour. Conversely, bees’ bodies

have not only orange colour, but also black colour. In addition, motion detection can also be used

for bee detection, because only bees are flying on the video. With a simplified background (single

colour background), the colour and motion are combined to detect bees on bee monitoring video.

After bee detection, pollen sacs can be detected on the individual bee images. The bees’ images

can be analysed to find the structure of bee bodies, such as main body of head and abdomen,

wings, legs and pollen sacs. The abdomen of main body may have similar colour to pollen sacs.

2

The main body should be removed, then colours of pollen sacs (orange, yellow and white) are

used for pollen detection. Because the pollen sacs are very small objects, the result of detection

will be very noisy. To improve the result, the pollen sacs should be analysed to find other features,

such as area (number of pixels), shape and position relating to bee body. These features are

used to separate pollen sacs from image noise. This research shows how well computer vision

can perform for pollen detection and measurement.

A second method for pollen detection is deep learning algorithm. Deep learning mainly uses deep

neural network for object detection. In this research, the training data set includes about 1000

individual bee images with pollen sacs labelled. The neural network is trained by using the image

data. After the training, a network model can be used to automatically detect pollen sacs on new

individual bee images. The deep learning methods have been tested by many researches using

many image data sets. However, these image data sets have very clear objects and very high

resolution for the objects. In this research, the images are from bee monitoring videos. They

include motion blur and the resolution of pollen sacs is small (from 15×15 to 40×40). Therefore,

this is a challenge for deep learning detecting pollen sacs. This research will show how well the

deep learning can perform for pollen detection and measurement.

For the measurement of pollen sacs being brought to beehive, the tracking of bees is required to

avoid double counting. If bees can be tracked on bee monitoring video, the measurement of pollen

sacs is to count the number of pollen carrying bees appearing on the video. Bees can be tracked

by simply predicting their position on the next video frame. The prediction can be calculated from

the positions of previous frames. In addition, the predicted position can be used by some

algorithms, such as Kalman filter and particle filter. This research also uses Kalman filter to track

bees on bee monitoring video. However, if bees are flying across each other (bees’ occlusion) on

the video, the bee detection cannot detect each bee’s position. Finding bee positions in this

occlusion situation is a challenge. This research introduces a special application of Hough

transform to solve this problem. Hough transform uses bee shapes just one frame before the

occlusion to find bee positions in the occlusion situation. This research will show how well this

tracking technique performs in the experimental test.

In summary, this research creates a model for the 2-D video to automatically detect pollen sacs

on honey bees, and estimate the number of pollen sacs being taken to beehive. It uses computer

vision techniques to complete the mission.

1.2 significance of this research
The number of pollen sacs relates to bees’ forage. Forage is important for the bees’ health and

honey production. Bee health is very important in the world, because they are the main insects

for crop pollination. Reduction of the number of bees may reduce the pollination of crops, and

then food production may be reduced. More detail of the bees’ important role is introduced in

section 1.5. Honey production is also important. It is part of the income of bee keepers, and honey

is used in different food production. Especially, New Zealand produces a special manukau honey.

Therefore, bee forage is very important in New Zealand.

3

Normally, bee keepers check the forage of bees by manually opening the beehive. This is

laborious job for a farm which has hundreds or thousands of beehives. This research aims to

build a model which can automatically count pollen sacs being brought to beehive, so that bee

keepers can know the forage situation of bees without opening beehives. If this research is

successful, it will significantly reduce the human effort in bee keeping. The cultivation of bees will

become more convenient.

1.3 Research gaps
Computer vision is not commonly used for bee detection and tracking. Most research for

monitoring bees uses a camera inside the beehive. These researches have their advantages and

disadvantages. One example was to utilize a vector quantization method to detect bees (Kimura

et al., 2011). A limitation of this method is that the bee needs to fill the whole image. Another

example is to apply region homogeneity to detect bees (Knauer and Meffert, 2010). However, this

method is not precise enough for use in uncontrolled (natural) conditions outside the beehive.

Last but not least, A background model of Gaussian functions was also used to monitor bees

(Knauer et al., 2005). This method was applied inside the beehive. Then the setting of the camera

was complicated, and it might affect bee behaviour

Some papers focus on the flight of bees outside the beehive. Kimura et al tracked bees on a flat

surface (Kimura et al., 2012). However, they just tracked small bees’ bodies as black points.

Campbell et al reported motion detection for tracking flying bees (Campbell et al., 2008).

Conversely, they had a problem because shadows caused confusion. Chiron et al reported the

combination of motion detection and colour segmentation to detect flying bees on 3-D video

(Chiron et al., 2013a). This combination is able to detect bees, but the 3D video cost time and

resources.

The difficulty is that bees fly fast and bees all have very similar features, so this can affect bee

tracking. However, the information of the bees’ positions over several image frames can be used.

When tracking bees, the predicted position can be calculated for each bee and compared to the

actual position. A Kalman filter with position prediction could be used to track bees on 3-D video

(Chiron et al., 2013a). However, it is unclear whether this method can be used successfully with

2D video. Other techniques, such as blob analysis, may also be suitable for bee tracking (Lu et

al., 2005), but they have not been reported.

Pollen detection and measurement is an original feature of this research. Colour segmentation

may be useful for pollen detection because, the bee’s body is close to the pollen, the legs and

head of bee are a black colour. Although many papers have used colour segmentation, there is

quite few researches concerning the detection of pollen sacs on flying bees. One example was

to analyse bee bodies colours to identify pollen carrying bees (Babic et al., 2016). They used the

Mixture of Gaussians method to detect bees. Then, the colour variance and eccentricity were

analysed for distinguishing pollen bearing bees. However, they did not detect pollen directly, but

just find bees which were carrying pollen on each frame of a video. They also did not design a

bee tracking model to count the number of pollen sacs. Another possibility was to use the circular

shape of the pollen sac. Liew et al detected bee cells in a beehive using the Hough Transform

4

(Liew et al., 2010). However, the pollen sacs on a flying bee may be too blurry to be detected with

this method.

The main aim of this research is to analyse the 2-D video to detect pollen sacs on honey bees

and estimate the amount of pollen being taken into the hive. The following questions need to be

addressed:

• How can technology be used to detect and track bees entering the hive?

• What computer vision techniques can be used or need to be developed to detect and
measure the pollen sacs?

• How can these methods be improved and what are the limitations of these methods?

1.4 Outline of this thesis
Because bee detection and tracking and pollen detection is not common in computer vision, this

thesis will review research concerning object detection and tracking in chapter 2. In addition, it

also includes a review of research in the area of bee and pollen detection. In chapter 3, the

theories of methods which relate to this research will be explained. This includes the Gaussian

Mixture Model for motion detection, colour thresholding, Hough transform, morphological

calculations, Kalman filter, Hungarian assignment method, image moments and receiver

operating characteristic and deep convolutional neural networks.

The methodology of bee detection and tracking is introduced in chapter 4. The motion

(foreground) detection and colour thresholding will be combined for bee detection. Bees are then

tracked using a Kalman filter with Hough transform. Chapter 5 presents two methods of pollen

sacs detection and measurement. The first method is to use conventional image processing and

statistical analysis. It includes three steps. At beginning, the main body of the bee is detected and

removed. In the next step, colour thresholding is used to detect possible pollen blobs and other

blobs of the same colour. After that, pollen sacs are filtered out using various features. The

number of pollen blobs is estimated by using these features. Finally, the pollen detection result is

combined with bee tracking model to count the number of pollen carrying bees on a honey bee

monitoring video. The second method is to use deep learning algorithm to detect and measure

pollen sacs. At the first step, the deep convolutional neural network is trained and applied to detect

pollen sacs on individual bee images. The next step is to identify whether an individual bee image

includes pollen sacs or not. Finally, the identification is combined with the bee tracking model to

count the number of bees which are carrying pollen on a video.

The Chapter 6 will show the results of the bee detection, tracking and pollen detection and

measurement. It also compares the results between the conventional image processing method

and the deep learning algorithm for pollen sacs measurement on different bee monitoring videos.

Finally, conclusions and future work will be presented in chapter 7.

1.5 The important of bees and contribution of this research
This section will introduce the important of bees in the world to show more significant of this

research’s outcome. Bees have two important roles which are pollination of crops and honey

production. Therefore, bees’ health is observed by bee keepers all the time. The main point is to

5

check the forage in beehives. This research can help bee keepers to know the forage by showing

pollen measurement.

1.5.1 The important role of bees
Honey bees have two special roles in the apiary industry, which are crop pollination and honey

production. The most important contribution of honey bees is pollination services for agriculture.

More than 45% of the most commonly produced global food commodities rely on honey bee

pollination. The honey bee is the most efficient pollinator of most crops, especially for monoculture

crops (vanEngelsdorp and Meixner, 2010). Worldwide, bees and other insects contribute crop

production value for human food of about US$190 billion each year. In the United States alone,

around US$16.4 billion of agricultural production came from insect pollination in 2010, and the

value from honey bees was US$12.4 billion, about three-quarters of the total value (Johnson and

Corn, 2014). About one-third or more of food consumed in America relies on bee pollination,

including high-value fruits, vegetables, tree nuts, livestock forage, some field crops, and other

specialty crops. In Europe, the value of insect pollination was estimated at €14.2 billion (Gallai et

al., 2009). 84% of crop species cultivated in Europe need insect pollinators, especially bees

(Williams, 1994). In the United Kingdom, about £120 million to £200 million of crops, including

forage crops, is dependent on honey bee pollination every year.

Honey which is produced by bees, is an important commodity. The global production of honey

was estimated at 1.07 million metric ton in 2007, which was estimated to be worth US$1.25 billion.

Production has increased 58% since 1961. In 2006, the US average price for honey was US$1168

metric ton (vanEngelsdorp and Meixner, 2010). In New Zealand, the value of honey exports is

around $81 million. $5.1 billion of NZ’s economy comes from pollination by honey bees, domestic

honey sales and exports, beeswax and exported honey bees (Zealand, 2013). In addition,

approximately 9000 to 12000 tonnes of honey were produced every year until 2012 (Industries,

2013). In 2013, the production of honey was increased to around 18000 tonnes, almost one-third

to one-half is exported (Industries, 2013). Manuka honey is very famous and exclusive to New

Zealand. The price of manuka honey increased 10 to 20 percent from 2012 to 2013, reflecting

strong export demand (Industries, 2013).

The global population of managed honey bees has generally been increasing. The number of

managed honey bee colonies was estimated at 72.6 million in 2007, an increase of 64% since

1961. Over the last five decades, the global stocks of honey bees have increased, but not in all

parts of the world. The largest increases were recorded in Asia (426%), Africa (130%), South

America (86%), and Oceania (39%). However, the colonies of managed honey bees have been

reducing in Europe (26.5%) and North America (49.5%) (vanEngelsdorp and Meixner, 2010). In

the United States, according to the annual “winter loss” survey from USDA, bee colony winter

losses averaged 17%-20% per year between the 1990s and mid-2000s. By comparison, bee

colony winter losses were about 30% per year from 2006 to 2013 (Johnson and Corn, 2014).

Winter loss is a result of bees dying in cold weather. These bees are replaced in warmer weather,

but the increased loss indicates the bees are less healthy in some way. Especially, from 2006,

commercial beekeepers began to report sharp declines of their honey bee colonies. This

phenomenon has been named colony collapse disorder (CCD), because these colonies decline

6

in unusual circumstances (Johnson and Corn, 2014). The reasons for this phenomenon are

suburban urbanization, insecticide use, insect pests and decreasing numbers of bee farms. In

Europe, the number of colonies decreased from 21 million in 1970 to 15.5 million in 2007, but this

reduction was slow before 1990. Since 1961, colonies in Finland and Spain have increased more

than 50%, whereas Austria and Germany have seen a decline (although Germany increased

before 2000), and Sweden has dropped approximately 75% (vanEngelsdorp and Meixner, 2010).

The reduction of bees can affect not only the economy but also agricultural production. Honey

bee pollination is very important to crops. Globally, 52 of the 115 leading crop species rely on or

at least benefit from animal pollination (Klatt et al., 2014, vanEngelsdorp and Meixner, 2010). 5

of the honey bee-dependant commodities would reduce yield (including fruit size, quality, or

quantity) more than 90% without honey bees, 16 commodities would reduce yield 40-90%, 19

commodities would reduce 10-40%, and 13 commodities would reduce slightly less than 10%

(Klein et al., 2007, and vanEngelsdorp and Meixner, 2010). Agricultural production would reduce

by about 8% without pollination (vanEngelsdorp and Meixner, 2010). Many crops are not 100%

reliant on insect pollination, so some reduced production can be compensated for by increasing

cultivated acreages. An increase in the cultivated land for pollinator-dependent crops of 15% in

the developed world and 42% in the developing world would be required to offset the effects of

reduced pollination (Aizen and Harder, 2009, vanEngelsdorp and Meixner, 2010).

In the United Kingdom, the decreasing honey bee population has caused crops and forages to

lose this method of pollination. Biesmeijer et al reported there is a relationship between the

reduction of bee numbers and the declining of pollinated plants (Biesmeijer et al., 2006). If this

situation is maintained for a long time, livestock will suffer because of the lack of forage, crop

yields will be cut, and there will be massive food shortages.

The reduction of pollination also affects human health. Most of the pollination-dependent crops

provide essential nutrients for human health such as vitamins, antioxidants and fibre (Seeram,

2008, Eilers et al., 2011). Without these crops, such as fruits, human beings will suffer more

malnutrition.

1.5.2 Health of bees
The health of bees has been studied for a long time. The factors which affect bee health include

disease, nutrition, bee management issues, environment changes, pesticides and other

agricultural practices (Staveley et al., 2014). Bee disease is the most important factor, but bee

diet and nutrition factors also cause reductions in honey bee numbers. Individual bee health and

colony longevity are both impacted by nutrition, and a poor diet can affect a bee’s immune system,

making it susceptible to harm from disease and parasites. Bees need good forage and different

types of plants to support colony health (Johnson and Corn, 2014).

Well-nourished bees, which produce progeny and resist multiple stress, can guarantee the health

of a bee colony (Brodschneider and Crailsheim, 2010). Nutrition deficiency relates to the quality

of food and the lack of availability of food. Honey bees' diverse diet needs include protein,

carbohydrates, lipids, vitamins, minerals, and water for good health (Huang, 2010). Pollen is a

source of protein, minerals, lipids and vitamins (Gaboratory, 1978). Different plant species and

7

regions have pollens with different nutritional values. (Brodschneider and Crailsheim, 2010).

Because of the variable nutrients in pollen and nectar, honey bee colonies can get deficient in

one or more nutrients if they are only visiting one type of plant, such as blueberries (Staveley et

al., 2014). In addition, some farmers pollinate their crops by breeding bees. However, since

farmers often cultivate a single species of tree, honey bees may only get a single type of pollen.

In this situation, honey bees suffer malnutrition and immune deficiency. Naug reported that

nutrition deficiency can lead to a reduction of adult bee survival, such as a shorter lifespan for

worker bees, compromised brood development, and subsequent depopulation of the colony

(Naug, 2009).

In addition, nutrient deficiency affects adult bee survival indirectly. Adult bees require sufficient

food to feed larvae and rear the larvae to adulthood. The next generation of adults and the rearing

of subsequent broods can be affected by an inadequate store of pollen. Larvae which are reared

during the nutrient-deficient periods will have a reduced lifespan as adults and reduced foraging

abilities (Brodschneider and Crailsheim, 2010).

A lack of nutrients in a honey bee's diet also affects the immunity of the bee. Well-nourished

honey bees are less susceptible to the Nosema Cerane parasite than weakly nourished honey

bees. In addition, bees which feed on a multi-floral diet of mixed pollen have improved immune

functions, such as glucose oxidase activity which leads to better in-hive antiseptic protection.

Alaux et al reported that glucose oxidase activity can help bees to disinfect the colony and brood

food (Alaux et al., 2010). Therefore, there is a relationship between nutrition and the health of a

bee's immunity system.

1.5.3 Contribution of this research for bee health observation
Pollen measurement is a useful method to monitor the health of a bee colony. If inadequate pollen

goes into the beehive, lack of forage leads to a reduction of adult bees. If too much pollen is

brought back to the beehive, there may be some unhealth things going into beehive, which can

also cause health problem. If the pollen being collected can be identified and measured, it is

easier for beekeepers to supervise the health of bees.

1.6 Publications
Y. Cheng and J. Collins, "A model for honey bee tracking on 2D video," in 2015 International

Conference on Image and Vision Computing New Zealand (IVCNZ), 2015, pp. 1-6, doi:

10.1109/IVCNZ.2015.7761542.

C. Yang, J. Collins, and M. Berckerleg, "Receiver Operating Characteristic for Pollen Sacs

Measurement from Honey Bees’ Monitoring Video," International Journal of Imaging and

Robotics, vol. 17, pp. 1-14, 2017.

C. Yang and J. Collins, "Improvement of Honey Bee Tracking on 2D Video with Hough Transform

and Kalman Filter," Journal of Signal Processing Systems, vol. 90, Iss. 12, pp. 1639-1650, 2017,

doi: https://doi.org/10.1007/s11265-017-1307-x.

8

C. Yang, J. Collins, and M. Beckerleg, "A Model for Pollen Measurement Using Video Monitoring

of Honey Bees," Sensing and Imaging, vol.1, Iss. 2, 2018, doi: https://doi.org/10.1007/s11220-

017-0185-4.

C. Yang and J. Collins, " Use of deep learning algorithm for pollen sacs detection and

measurement on honey bee monitoring video," IET Computer Vision, 2018. (submitted)

9

Chapter 2

Chapter 2: Literature review
__

There has been a lot of research in the wider field of object detection and tracking. Object

detection includes two situations: single frame and multiple frames. Single frame detection aims

to detect an object in one image. In this situation, features of an object such as colour, texture

contour, etc. are used to detect object pixels. In the multiple frame situation, detection is based

on consecutive frames of a video. In addition, the deep learning has become popular and powerful

method for object detection recently. Object tracking also includes several different approaches.

One approach is to use features to track a single object. Another approach for object tracking

uses filtering. Normally, the position of an object is calculated after object detection. Then a

combination of the predicted position and detected position is used to calculate a candidate

position for the object. This review will introduce detection and tracking methods.

2.1 Object detection in a single frame
There are several methods of object detection in image processing technology for single image

detection. They have limited areas of application, so there are different methods for detecting

particular objects. The common methods use detection of features, such as colour, contour and

texture. The features come from pixel values, and pixels with similar features are clustered into

regions. If this pixel-based segmentation is not enough, then region-based segmentation can

combine regions at a higher level for object detection.

2.1.1 Colour feature for image segmentation
Colour based segmentation uses colour features to detect objects. It is a pixel-based

segmentation. Compared to other features such as texture, intensity and similar statistics, object

detection using colour is simple and obvious. Therefore, colour is widely used in different ways to

detect object regions.

Normally, the colour space for video is Red-Green-Blue (RGB). Each channel represents the

intensity for each colour. However, there are many different types of colour spaces such as LAB,

XYZ, HSV, YCbCr, YIQ and DHT that have been used for different situations and methods

(Gritzman et al., 2014, Kumar, 2014). Human skin is an example, where Kumar tried to find a

suitable colour space for face detection (Kumar, 2014). He compared the RGB, HSV and YCbCr

colour spaces. The experiment indicated that the YCbCr colour space detected face skin more

accurately. Another instance was the human lip, where Gritzman et al compared seven colour

space models for lip segmentation (Gritzman et al., 2014). They evaluated 33 different colour

10

transforms in 21 channels from the colour spaces. They also added 12 new transforms, 8 of which

were designed for lip segmentation. The 33 colour transforms were compared by using histogram

intersection and Otsu's discriminant. The results showed that Hue-based transforms using the

Hue component of HSV were the best for lip-skin segmentation; the 𝑎𝑎∗ component of LAB

achieved was best for lip-oral cavity segmentation; and the pseudo hue and the LUX transform

performed reasonably well for both lip-skin and lip-oral cavity segmentation. For a special satellite

image, Ganesan and Rajini utilized the YIQ colour space to separate objects (Ganesan and Rajini,

2014). This colour space is defined by the National Television System Committee (NTSC). The

paper reported that the advantage of the YIQ colour space was that the human eye is very

sensitive to intensity changes rather than changes of hue or saturation. This colour space

separated the luminance in the Y component from the chrominance in the I and Q components.

In the satellite image segmentation, they only performed histogram equalization on the Y channel.

Compared to the RGB colour space which needs to be performed on three channels, the YIQ

colour space was more efficient. Another example was to use the LAB colour space to perform

segmentation for satellite image segmentation (Chitade and Katiyar, 2010). The satellite image

in the paper included the three colours white, blue and pink. The LAB colour space separates

luminosity in layer ‘L’, with all of the colour information in the ‘a’ and ‘b’ layers. This was easier for

colour based segmentation. In natural image segmentation, Tse-Wei et al used the HSV colour

space for segmentation of different objects, such as animals and houses (Tse-Wei et al., 2008).

They produced a special colour histogram and a grey histogram using the HSV colour space. The

‘H’, ‘S’ and ‘V’ channels were used together to collect pixels in the colour histogram. This method

helped them to cluster pixels using K-means clustering. If one space is not enough, more than

one colour space can be useful to perform detection. An example was to use a colour

segmentation algorithm to detect traffic signs (Shadeed et al., 2003). They converted an RGB

image to the HSV and YUV colour spaces. In the HSV space, the H value determines the colour.

In the YUV space, U is positive if blue is greater than a certain percentage of green and red, and

V is positive if the red is greater than a certain percentage of green and blue. Normally, the traffic

signs had red frames with black and white colours inside. The threshold in V determined the red

colour to be considered as the red part of a sign, and the threshold in H was selected to remove

the colours which could not be removed by the V threshold, such as yellow and orange colours.

In summary, the different colour spaces are used for different types of images and algorithms.

Once pixels are segmented by colour, the pixels need to be arranged into different region groups.

There are many methods for doing this.

A common method is to perform histogram thresholding on the colour image. Histogram

thresholding has been used for monochrome image segmentation. For example, Otsu performed

histogram thresholding after grey-level image segmentation (Otsu, 1975). The aim of him was to

find an optimal threshold which could separate object regions automatically. He analysed the

grey-level histogram, and then the optimal threshold is selected by a discriminant criterion which

was discussed. In summary, the thresholding method is based on the histogram to find the

thresholds which can be used to separate different regions of the image. A colour image has

multiple colour dimensions (normally 3 channels), so the colour histograms are created for each

11

colour channel. The three channels of colour image were organised together to determine

thresholds. A summary which described recursive thresholding was in year 1980 (Ohta et al.,

1980). Initially, a picture stack was created for storing region masks. Then the whole image was

made to be a mask which is placed at the bottom of the stack. After that, histograms of colour

features were analysed to choose the thresholds. Then the thresholds were used to detect a new

region. Finally, a region mask was created for this region. This new region mask was put onto the

stack for new mask creation. Cheng et al stated that selecting thresholds based on the 3-

dimensional colour channels is computationally expensive (Cheng et al., 2001). One solution is

to develop an efficient method for storing 3-D colour information. An efficient method was

described in year 2003 (Shadeed et al., 2003). They used multiple thresholds to detect traffic

signs. They used the H channel of the HSV colour space with the U and V channels of the YUV

colour space. They found the thresholds for traffic signs were −20 < H < 20 degrees in H

channel, and V > 28 , U < 0 in the V and U channels respectively. Then they applied these

thresholds, and combined the results from the two colour spaces using the ‘and’ operation, for

traffic sign colour segmentation. Another method was to project the 3-D channels onto a lower

dimensional 2-D or 1-D space (Cheng et al., 2001). Ohta et al presented a 𝐼𝐼1𝐼𝐼2𝐼𝐼3 colour feature

from the RGB colour components for special histograms (Ohta et al., 1980). Compared to other

colour spaces (such as RGB, XYZ, and YIQ, etc.), their features were more effective. For

instance, the method could segment an image using only two features rather than using three

features. Another example was to estimate the 3-D space cluster distribution using only 1-D

histograms (Celenk, 1990). Then the clusters were projected onto a line determined by the Fisher

discriminant method for 1-D thresholding. The Fisher discriminant could minimize the clustering

error rate. This permitted the simultaneous utilization of all colour information. In addition, Siang

Tan and Mat Isa introduced another special method to improve the thresholding efficiency (Siang

Tan and Mat Isa, 2011). They applied histogram thresholding to detect possible uniform regions

in the colour image. There were three steps: peak identification, region initialization and a merging

process. The peak identification was achieved by thresholding to identify the dominant peaks in

the histogram. Then all the peaks in the three colour channels were used to obtain uniform regions

corresponding to the intensity level of dominant peaks in their respective histograms. After that,

a merging process was applied to merge these regions together to detect the object region. In

summary, histogram thresholding for colour segmentation is more complex than for the gray-level

image. However, simple colour objects, such as a pear, mouse or cup, do not require a

complicated calculation.

Another method for colour base segmentation is clustering. The common algorithms are K-means

(KM) clustering (Chitade and Katiyar, 2010) and Fuzzy C-means (FCM) clustering (Ganesan and

Rajini, 2014). KM method could be used to segment a satellite image using colour information in

the LAB colour space (Chitade and Katiyar, 2010). According to their paper, KM was used to

determine the natural spectral groupings present on an image. This could determine the number

of clusters located on the image. Each pixel in the image was then assigned to the cluster whose

mean vector was closest. The procedure continued until there was no significant change in the

location of class mean vectors between iterations of the algorithm. The method in this paper could

12

be used for mapping the changes in land use from land cover images taken over a time period.

Tse-Wei et al reported using KM for colour segmentation (Tse-Wei et al., 2008). They used

Maximin initialization to find the number of clusters K and to choose the centroid positions

automatically. In their paper, the segmentation results were close to the perception of human

vision. The number of clusters was suitable for colour representation in their test images. KM was

also used to segment an image into regions with colour information (Nirgude and Jain, 2014).

They employed the colour histogram and hill climbing technique to detect the pixels which are

peak points. The number of identified peaks was the initial number of clusters. Then KM was

performed to segment the image into regions. However, in the paper, KM was not enough to

detect an object. They merged regions and detected the object at the region level.

FCM is another cluster method. Ganesan and Rajini reported that the image pixel could belong

to more than one cluster (Ganesan and Rajini, 2014). They performed FCM on the YIQ colour

space to segment satellite images. They reported that FCM relied on the spatial information and

that it was affected by the noise pixels incorporated with the image pixels. They modified the FCM

by adding a spatial function which was defined as a weighted sum of the membership function in

the neighbourhood of each pixel under consideration. The experimental result showed the

efficiency of the method. Kumar compared different statistical methods (including Fuzzy and

Gaussian) and chose the fuzzy classification with the RGB colour space to identify human face

skin (Kumar, 2014). He finally showed that face detection using fuzzy logic was more robust and

was the optimum technique for improving accuracy in skin colour detection. The clustering

algorithm was improved to be faster and more robust, but the selection of the initial clusters and

the number of clusters can affect the results.

Another approach for colour image segmentation is the neural network. This algorithm needs

initial training of an object to calculate features from the colour information. These features are

used to detect the object in other image situations, such as with different backgrounds. An

example of using a neural network is in 1997 (Littmann and Ritter, 1997). The neural networks

were used for colour segmentation. Their approach was based on local linear maps (LLM). They

used a human hand image as an example and trained the network using 160 images of same

hand, but from different viewpoints. In their experiment, they compared the LLM and standard

statistical methods. The LLM network was more robust when the image condition was more

difficult. Hassanat et al trained artificial neural networks (ANN) using the colours of the pixel to

perform the segmentation (Hassanat et al., 2016). They applied the method to the human lip,

face, hand and finger, and to a tree leaf. The colour information was from each pixel and its

surrounding eight neighbours which were used to create feature vectors. Then the feature vectors

were classified using the ANN. The experiments showed their special colour information was

effective and fast. The ANN was also faster than other machine learning algorithms, such as K-

nearest-neighbour and its variants.

Colour information can also be used in some uncommon approaches. Some research has

combined other features with colour or in cooperation with different approaches to improve the

accuracy of detection. One example is a shadow-highlight invariance method for detecting of

traffic signs (Fleyeh, 2006). This method was based on the HSV colour space. He reported the

13

colour information was very sensitive to the variations of the light conditions such as shadows,

clouds, and sunlight. The solution was that the hue and saturation were invariant to the effects of

illumination variations which was used to develop a shadow-invariant algorithm. The hue was also

invariant to the effects of highlighting which was used to develop highlight-invariant colour

segmentation algorithms. He tested the method on hundreds of images. The results showed that

the method was robust, and successful in more than 95% of cases. Peng combined colour and

shape information to perform object detection (Peng, 2015). He used an automatic seeded region

growing method for image segmentation. The use of colour was complementary to shape. After

that, he presented a colour template which was similar to dominant orientation templates as the

next step. Then the matching scores from the two templates were combined to detect objects.

Finally, he analysed the complexity of this method to propose a speed-up strategy. Another

example was to segment an image with colour and texture features (Bhattacharya et al., 2014).

They employed Haar wavelets to decompose the red, green and blue of an input image. This

produced approximate coefficients and vertical, horizontal and diagonal detail coefficients. Then

these coefficients were used to cluster pixels using KM and FCM. The result of this wavelet-base

clustering indicated that this method not only improved the detection result, but also reduced the

execution time for each image, compared with the single clustering technique. (Ananth et al.,

2014) introduced an intermediate feature of maximum overlap wavelet transform (IMOWT) as a

pre-processing step for histogram grouping segmentation. IMOWT is an efficient transform which

uses a set of wavelet features of the same size and various levels of resolution and different local

window sizes for different levels. This method was fast, flexible and invariant to translation. After

the image input, the coefficients derived from IMOWT were subjected to 2D histogram grouping

to obtain different colour regions. The experiment showed that this method produced better results

when compared to the direct application of 2D histogram grouping.

Comparing different types of colour segmentation, histogram thresholding is the simplest and

fastest method, although it is limited in complex colour detection. It is also easy to combine with

other approaches for object detection. Apart from thresholding, the other colour based

segmentation methods are complicated. If they are combined with other approaches, the

computational cost is likely to be very high.

2.1.2 Other features for object detection
Apart from colour, there are other features that can be used for image segmentation and object

detection. These include intensity, texture and contour. These features can be combined to detect

complicated objects. The features are used in different algorithms to perform object detection.

The algorithms include clustering, thresholding, neural networks and machine learning. Some of

these methods were discussed in the previous section.

The intensity value of a pixel is the value of the pixel in a grey image. The intensify feature includes

the information of brightness and illumination. Human faces could be detected by using the

features of illumination and reflection on grayscale images (Mohapatra et al., 2014). They

reported the change in lighting conditions caused the problem of apparent changes in facial

appearance. They eliminated this problem by enhancing the reflectance while reducing the

contribution of illumination. This illuminance-reflection model was used to normalize the images.

14

Then the images were used to train support vector machines (SVM) to get the classifier. The

classifier stores the features of the faces from training images, and then filters out the features in

the following images to detect the face.

The contour feature shows the shape of an object as an edge against the background. These

edges separate an object from different regions, so edge detection can detect the shape of an

object. Normally, the contour is used with region-base detection. Arbelaez et al developed a gPb

contour detector for object detection (Arbelaez et al., 2011). They combined multiscale local

brightness, colour, and texture cues to a powerful globalization framework using spectral

clustering. They then linked this contour detector with a generic grouping algorithm. Firstly, an

Oriented Watershed Transform constructed a set of initial regions from an oriented contour signal.

Secondly, they used an agglomerative clustering procedure to form these regions into a hierarchy

which could be represented by an Ultrametric Contour Map. Finally, their hierarchical region trees

served as a natural starting point for interactive segmentation. A user could correct errors in the

automatic segmentation with minimal annotation. Another method was to integrated edge and

region information to segment lymph nodes of the thoracic region on real CT images (Yu and

Poh, 2015). The edge-based snake model is based on the edge- or gradient-driven energy

landscape for the snake to evolve. The region-based snake model separates the image into two

different regions (object and background) with maximum intensity separation. These two models

were integrated with the region-based snake with edge constraint to overcome their respective

limitations. The contour was evolved by using a region-based snake formulation on grey level CT

images while the partial edge map of the lymph node was derived using the Canny edge detector.

The contour grew freely until any segment encountered the partial edges of lymph nodes. The

result indicated that this integrating improved the segmentation significantly compared to generic

snake methods.

Texture describes visual information which is related to local variations of the image. The texture

feature cannot be described by each pixel, so it is extracted by different filters on a group of pixels.

Qi et al extracted the texture feature by using Laws’ filter for image segmentation (Qi et al., 2015).

Initially, the Laws’ texture energy measures were computed by applying small convolution kernels

to an image. Then the measures performed a nonlinear windowing operation. The two-

dimensional convolution kernels were used for texture discrimination. In the paper, they selected

5 vectors as convolution kernels, so filters of 5 × 5 matrices were used to compute the energy of

texture. After the filtering, they calculated the histogram of two-channel grey value images of

texture energy. The histogram was used to design a global threshold and select pixels from the

image whose grey values fulfilled the conditions. Finally, they segmented the image by means of

a two-dimensional pixel classification and displayed the texture region which was the desired

object region. Another special texture descriptor was a texture image segmentation with

factorization method (Yuan et al., 2015). The feature which they used was a form of texture

descriptor based on local spectral histograms. The spectral histograms captured local spatial

patterns via filtering and global impression through histograms. When the filters were selected

properly, the spectral histogram could represent an arbitrary texture appearance. This method

represented an image by an 𝑀𝑀 × 𝑁𝑁 feature matrix, which contains M-dimensional feature vectors

15

computed from N pixels. They regarded the feature at each pixel as a linear combination of

representative features, which encoded a natural criterion to identify boundaries. Therefore, the

feature matrix was expressed by representative features and their combination weights per pixel.

The combination weights indicated segment ownership for each pixel. Finally, they used singular

value decomposition and nonnegative matrix factorization to factor the feature matrix, which

generated accurate segmentation.

Features are also combined for image segmentation and object detection. The integrating method

can be better than using a single feature. One example was to segmented natural images based

on colour and texture features (Ilea and Whelan, 2005). The colour features were extracted by

using a multispace adaptive clustering algorithm. They extracted the dominant colours from the

filtered image on RGB and YIQ colour spaces and calculated the optimal number of clusters using

an unsupervised classification procedure base on the self-organizing maps (SOM). Then the

RGB-YIQ data was clustered with a 6-D K-Means algorithm to finalise the colour segmentation.

The texture features were calculated by a multichannel texture decomposition scheme which was

achieved by filtering the input texture image with a 2-D Gabor filter bank. Finally, they used the

clustering strategy of adaptive spatial K-Means clustering (ASKM) to integrate the colour and

texture features. The ASKM could minimize the errors in the assignment of the data-points into

clusters by adaptively sampling the local texture continuity and the local colour smoothness in the

image. The experimental results indicated that this method produced accurate segmentation,

even if it was applied to images with low resolution and low contrast. Another research built an

intensity-texture model for image segmentation (Min et al., 2015). In their intensity term, they

employed a global division algorithm to construct a regional based term as the intensity term,

which detected an image object with a large intensity difference or noise in the same region. In

the texture term, the algorithm of adaptive scale local variation degree (ASLVD) extracted the

amplitude and frequency components of the local intensity variation, which was used to reflect

the texture feature effectively. Finally, they combined the intensity term with the texture term which

made the evolution contour smooth by minimizing an energy function. This intensity-texture model

was mainly used to segment complicated natural images.

2.1.3 Region based segmentation
When pixels are grouped into different regions, each region can be identified from its boundary

or its constituent pixels. Region based segmentation builds homogenous regions, which satisfy a

given homogeneity criterion (Hanbury, 2007). The criterion is based on image features such as

intensity, colour, texture, shape, etc. The regions can be constituted either by grouping pixels

from regions (region growing algorithm) or by starting with a single region and successively

subdividing it (splitting and merging algorithm).

The region growing approach grows a region of a partition starting from a seed (one or more

pixels). It adds adjacent pixels to the region if they satisfy a similarity criterion (Hanbury, 2007).

The growing stops when no adjacent pixels satisfy the similarity criterion. One of the region

growing approaches was introduced in year of 1994 (Adams and Bischof, 1994). They introduced

a seeded region growing (SRG) method. SRG was controlled by choosing a small number of

pixels which are known as seeds. The seeded regions were chosen to be as homogeneous as

16

possible. Then the seeds were expanded to include all homogeneous neighbours. This procedure

was repeated until all pixels in the whole image were allocated. The problem was the selection of

initial seed regions. In their example, the SRG was applied to grey-scale images, but it could be

extended to colour or multispectral images straightforwardly. They concluded that SRG was a

rapid, robust, easy-to-use image segmentation procedure requiring neither tuning parameters nor

training sets. The region growing method was used for edge detection. In 1990, the region

growing method was used to split the image to an over-segmented result (Pavlidis and Liow,

1990). Then they eliminated the region boundaries using a uniformity criteria. After that, contour

modification replaced boundary modification for edge detection. The conclusion was that this

combination of region growing and edge detection generated better results than those of a single

method.

Region splitting begins with the whole image considered as a single region. If the homogeneity

criterion is not satisfied for this region, then it is split into four sub-regions. The homogeneity

criterion is then tested on each sub-region, and those that do not satisfy the criterion are split into

four sub-regions. This process continues until all regions satisfy the homogeneity criterion

(Hanbury, 2007). An example of the region splitting method is presented in 1978 (Ohlander et al.,

1978). The whole image is the initial seed region. Histograms of feature values were used in this

region to determine a threshold for one feature that was used to split the region into sub-regions,

which became new seed regions. This process is repeated until all sub-regions were

homogeneous. This method could be applied to many different types of images, such as natural

scenes, satellite images, aerial photographs, and radar images. They concluded the method

could be used in a larger system such as an image understanding system, or image matching

system. The disadvantage was that the resulting image segments were rectangular.

Region merging is a hierarchical approach which can be combined with region growing and region

splitting to merge similar regions for constructing homogeneous regions as large as possible. If

the union of a pair of adjacent regions satisfies the homogeneity criterion, then these regions are

merged (Hanbury, 2007). The region growing and merging method could be used to segment an

image (Tremeau and Borel, 1997). The region growing was based on criteria that took into

account both colour similarity and spatial proximity. After that, the regions were merged following

a criterion that took colour similarity into account. The approach combined both local parameters

and global parameters to generate a non-partitioned segmentation of the image being processed

in spatially disconnected regions of similar colour. They concluded this algorithm could be used

not only in the RGB colour space, but also the LAB and LUV uniform colour spaces. Another

approach was to use a splitting and merging method to propose a video-rate image segmentation

(Aneja et al., 2009). An optimal split method was used to split the image into several rectangular

regions. The initial splitting created homogenous regions. Each homogenous region was

assigned a unique label. A binary tree data structure was used to maintain a list of the regions,

so that all the regions could be accessed by scanning the binary tree. In the merging step, every

region was merged with its surrounding regions to produce larger regions which were still

homogenous enough. Then the binary tree was renewed to perform the next merging. This

merging process was repeated until no more regions could be merged. This method was suitable

17

for real-time segmentation and it could be used for fast pre-segmentation purposes for localization

or tracking.

Region merging has also been combined with some pixel-based segmentation methods. The

pixel-based algorithms split the image into regions, and then region merging is performed at a

higher level to merge regions for object detection. The region merging could be used after K-

means clustering to detect objects in an image (Nirgude and Jain, 2014). The segmentation

method used the KM with colour feature. Their merging algorithm included three stages. The first

stage was the consistency property test (SPRT) which checked whether the neighbouring regions

were homogenous or not. The second stage was the nearest neighbour graph (NNG) that

grouped the colour clusters. Similar pairs of regions were connected by analysing the region edge.

The third stage was a dynamic region merging (DRM) algorithm which was the final step to

produce merged data. In DRM, a region predicate was compared with the description of adjacent

regions. If they were same, they were merged, otherwise they were identified as different regions.

They concluded this technique was useful for medical and security purposes.

Region based segmentation has some disadvantages. Region growing has difficulties selecting

seeds and the growing range. An improvement is to try to find an effective algorithm for selecting

seed regions. Zhen et al utilized an Improved Visual Attention Model (IVAM) to select better seed

regions for region growing (Zhen et al., 2010). They used grey values and edge feature

information rather than the colour, intensity and orientations used in VAM. In addition, these

features were extracted using the Gauss-Laplace operator and Gabor filters which was different

from the traditional VAM that obtained features using a Gaussian pyramid and Gabor filters. This

improved VAM not only quickly extracted visual features, but also provided the growing range for

region growing. After that, grey feature maps and edge feature maps were obtained and they

were combined to build the saliency maps which were used to select saliency regions using

dynamic neural network methods. Finally, the region growing seed was selected from the salient

region as the starting point of growth. Pixels with the same or similar characteristics to the seed

were combined into regions until there were no pixels similar to the seed combination in the salient

area. However, this paper only segments images with a simple background and foreground.

Another problem of region based segmentation is the clustering of regions. One solution was to

take the features of colour, texture and location into a mean-shift clustering algorithm to identify

the regions (Yong-Mei et al., 2008). They first extracted colour, texture and location features from

each pixel to form a feature vector from the LAB colour space. Then these vectors were clustered

using a mean-shift clustering algorithm. In addition, a window parameter was chosen by selecting

an optimal clustering amount, so the numbers and the centres of clusters were also selected, and

each pixel was grouped and labelled. Then the regions with the same labels were segmented

again and relabelled using neighbour connection theory to describe the image regions. This

method was more precise, but it took 2 to 6 seconds to identify the seed region.

To make the region based segmentation more accurate, Gould et al combined multi-class image

segmentation with object detection (Gould et al., 2009). They proposed a hierarchical model that

included pixels, regions and objects in the image. At the region level, pixels were labelled as

18

belonging to one of a number of background classes or a single foreground class. A modular

energy function was built, which included the location of the horizon, region label preferences,

region boundary quality, object labels and contextual relationships between objects and regions.

Then the foreground class was classified, at the object level, into one of the object classes. This

method could identify the sophisticated shape and appearance features computed over candidate

object locations with precise boundaries, but it took almost 5 minutes to complete the detection.

In addition, this method requires complicated calculations. Actually, many region-based methods

have similar time consuming computational problems.

2.1.4 The Hough transform for object shape detection
The Hough transform has been used to recognise the shape of the edge on an image. The Hough

transform uses shape parameters and edges to detect regular shapes, such as the straight line,

triangle, rectangle, circle, ellipse, etc. The Hough transform was first reported in1962 (Hough,

1962). The classical example is straight line detection which comes from (Duda and Hart, 1972).

The Hough transform uses a parameterization which transforms the parameters of the straight

line formula to a 2-D parameter space, so that the line is represented as a single point. In addition,

the parameters of straight lines through a point in the image space correspond to a sinusoidal

curve in the parameter space. Therefore, points which come from the same straight line in the

image space correspond to curves through a common point in the parameter space. Points which

were on the same curve in the parameter space correspond to lines through the same point in

the picture space. With this method, they transformed all of the points from the image space into

their corresponding sinusoidal curves in the parameter space. Then they created an accumulator

matrix (from the parameter space) in which each element (point) counted the number of curves

going through that point. Thus, any high counts correspond to the parameters for straight lines in

the image space. They also extended this method to circle detection, but here the parameter

space became 3-D. Therefore, this method has computational problems for complex curve

detection. The Hough transform was generalized for detection of non-analytic curves in grey

images (Ballard, 1981). This method constructed a mapping from edge space to accumulator

space. This mapping was described as a table of edge pixel orientations relative to a reference

point. This was termed an R-table. The R-table contained the information to recognise an arbitrary

non-analytic shape.

The Hough transform is commonly utilized for detection of analytic curves, such as lines, circles,

parabolas and ellipses. Research has either reduced the computation or improved the accuracy

of the Hough transform. Chiu and Liaw proposed an efficient voting method for circle detection

which reduced the computation and the storage requirements of the Standard Hough Transform

(SHT) (Chiu and Liaw, 2005). The main idea was to select two edge points to check the third point

rather than randomly selecting all three points, which improved the efficiency of the Randomized

Hough Transform (RHT). This method caused every edge point in the image to vote only for the

most probable candidate in the parameter space. From their experiment results, this method was

more efficient than SHT and RHT. In addition, ellipses could be detected by using a method based

on the Straight Line Hough Transform (SLHT) (Nair and Saunders, 1996). The SLHT was used

to calculate the loci of lines possibly passing through ellipse centres. Then a new variant of the

19

Hough transform built maps for the loci to the locations of possible ellipse centres. A simple cluster

detecting method was used to estimate the initial ellipse centres. Next a more exact centre was

determined from the estimation and the edge image. Then all of the parameters of the ellipse

were determined and verified. This method improved the efficiency of ellipse detection. Lu and

Tan improved the Iterative Randomized Hough Transform (IRHT) for detection of incomplete

ellipses under strong noise conditions (Lu and Tan, 2008). The IRHT applied a randomized Hough

transform to a region of interest in the image space. The region of interest is updated based on

the latest estimates of parameters. The IRHT detected the target curve by iterative parameter

adjustment and iterative use of the image space and parameter space. Because of the iteration

process, noise pixels were gradually excluded from the region of interest and the estimation

became close to the target. The IRHT was tested for ellipse detection with synthesized images.

It was also applied to foetal head detection in medical ultrasound images. The results

demonstrated that the IRHT was a robust and efficient ellipse detection method.

2.2 Object detection with multiple frames
Multiple frame object detection can use object motion that is observed when more than one frame

is viewed. The most popular method is the Gaussian Mixture Model (GMM) which is a statistical

method for subtracting the image background. There are also other background subtraction

methods for motion detection. Other common methods include frame difference and optical flow.

Some methods can remove the shadows of the objects.

2.2.1 Gaussian mixture model
Moving object detection is a method to remove the background and detect the moving foreground

object. A common method is the Gaussian Mixture Model (GMM) or Mixture of Gaussians (MOG)

which can identify the background model on a video (Bouwmans et al., 2008, Lin et al., 2011).

GMM is a statistical method for background subtraction.

GMM is popular for the motion detection. This model is introduced initially in 1997 (Friedman and

Russell, 1997). This model uses video sequences to remove the background or segment the

foreground. Stauffer and Grimson generalized it for real-time video tracking (Stauffer and

Grimson, 1999). They modelled each pixel as a mixture of Gaussians. According to the

persistence and the variance of each pixel, the method can determine which pixels probably

correspond to background colours. Pixel values are considered as foreground if they do not fit the

background distribution. The method deals robustly with slow lighting changes caused by

shadows, specularity, swaying branches, computer monitors and other troublesome features. It

recovers quickly when the background reappears. The paper showed that their model could track

people and remote vehicles in indoor environments, people and cars in outdoor environments,

fish in a tank, and ants on a floor. After this method was introduced, different methods were used

to improve the GMM. Bouwmans et al introduced different methods to improve GMM to fit different

situations (Bouwmans et al., 2008). These improvements include intrinsic and extrinsic model

improvements.

The intrinsic model improvements consider the MOG directly. Davis and Sharma used the GMM

in the first step of their research to subtract the background in thermal imagery (Davis and

20

Sharma, 2004). The GMM was applied to each pixel location. The foreground identification which

was the final process of the GMM was achieved using the squared Mahalanobis distance. This

improved the normal GMM model. Another method was to use adaptive-K GMM to detect cars in

video images (Tan et al., 2006). Their AKGMM was learned by a modified Expectation Maximum

(EM) algorithm. The adaptive-K algorithm adaptively uses more Gaussian components (bigger K)

if the image pixels include a complex pattern, whereas simple pattern pixels use fewer

components. They found that the background estimation from GMM (the final step of GMM) could

not be used to remove dynamic casting of shadows, but they used a Normalized Cross-

Correlation (NCC) algorithm to solve this problem. The NCC explored the relationship between

the shadow casting and background, where the intensity of the shadowed pixel was linear to the

corresponding background, so the background model was also used in shadow detection. The

GMM design had a conflict between model robustness to background changes and model

sensitivity for detecting abnormal foreground objects (Lin et al., 2011). Efficient management of

the background model could be controlled by using an adaptive learning rate for the GMM. They

developed a Learning Rate Control Scheme with high-level feedback to resolve the conflict. In

addition, a heuristic method based on frame difference was introduced to assist the learning rate

control scheme for adaptation to fast lighting changes. The experiments showed this method

improved the GMM ability to deal with regularized background adaptation, adaptation to fast

lighting changes and adaptation to scene changes. The fast lighting changes were absorbed into

the background within one second.

The extrinsic model improvements use other segmentation methods combined with GMM to

improve object detection. MOG was reported that it may be unsuccessful in removing the dynamic

background or objects with a motion pattern (Harville, 2002). Even though adding more

Gaussians to the model could improve the accuracy, some desired foreground would also be

selected as background, such as when a person occludes the background for a long time on a

video. He used higher level primitives such as image regions, image frames or object semantics

as high-level feedback to correct the background model. He reported the feedback repaired the

background model within two seconds. A hierarchical method was presented to subtract the

background (Javed et al., 2002). The approach included three levels of pixel, region and frame.

At the pixel level, the MOG was used to model each pixel colour, and then combined with gradient

based subtraction. The region level grouped foreground pixels into regions by edge and colour.

The frame level could handle the global illumination changes which were a common problem in

the MOG background subtraction. Zeng et al introduced a Type-2 Fuzzy set to the GMM to deal

with the problem of a dynamic background or noisy data (Zeng et al., 2008). El Baf et al applied

this T2F-GMM on an infrared video (El Baf et al., 2009). Their results showed that the T2F-GMM

is more robust than the crisp GMM in the case of dynamic backgrounds, especially for waving

vegetation. However, this paper reported that it would be better to build an adaptive version of

the T2F-GMM which was able to determine dynamically the optimal number of Gaussians.

Bouwmans and El Baf also reported this method has noise in the detection result when the

background is complicated (Bouwmans and El Baf, 2009). In addition, GMM was found that it

suffered from a low rate of background learning and identification of moving shadows (Zhu, 2011).

21

He combined colour clustering based post-processing and GMM to improve object detection

results. The shadow was removed by comparing the background with lower brightness and similar

chromaticity. In addition, he introduced a method of area confidence measurement. The

experiment showed the over-segmentation of colour clustering was faster than K-means.

Moreover, the whole detection method detected people on the road successfully. The conclusion

reported it can be used for moving object tracking. Ma et al focused on improving GMM for the

problem of complex scenes, such as swinging branches (Ma et al., 2015). They reported that

GMM cannot detect slow and large vehicles accurately. When vehicles started moving from

stopped with a low velocity, the shadows appeared easily. This paper improved the algorithm to

detect vehicles, which combined frame difference and GMM. This improved GMM was tested in

sunny and rainy conditions, and in bright and dark environments. The result showed the GMM

was improved in the aspects of adaptability, accuracy and real-time operation. The moving

vehicles could also be detected correctly and effectively in situations with various complicated

factors. Another approach was to combine a differential operation method for each frame to the

GMM to improve the target detection (Wang et al., 2015b). A candidate background was obtained

from GMM. Then, they utilized a differential operation to analyse the current frame and the

background and used the “and” operation with moving targets detected by GMM after thresholding

process. The evaluation showed that the former GMM model to detect human movement was

poor because the target blob had a black hole inside it. However, their combination method

eliminated the hole. In addition, this improved method needed a shorter video sequence to

perform the detection.

2.2.2 Background subtraction
Background subtraction is another common method that recognises motion through a background

model. A background model is created as a reference to highlight differences on the current

frame. This method had been studied since the 1990s, and it was used initially to detect people,

vehicles and animals. Later, it was used for the more complex processes of intrusion detection,

tracking and counting people (Sobral and Vacavant, 2014). They also introduced different types

of background subtraction. GMM is the most popular method of background subtraction.

However, there are other methods to calculate the background model.

A non-parametric background model was presented for estimating the probability of pixel intensity

based on sampling the intensity values of individual pixels (Elgammal et al., 2000). The model

adapted quickly to changes in the background process and detected moving objects with high

sensitivity. This model could deal with a background that was not completely static, but included

small motions like moving tree branches and bushes. This paper evaluated and compared the

model to GMM. The evaluation result was that both models have similar false negative rates for

small contrast values, but the non-parametric model has a much smaller false negative rate as

the contrast increases. In addition, the non-parametric model was more sensitive in detecting

objects with low contrast, and this model was less affected by the presence of objects. Han et al

improved the non-parametric model by using an efficient density updating method (Han et al.,

2004). They reported that updating the density function required a large amount of memory to

maintain the model representation of the density. This paper introduced the modelling and

22

propagation of density modes for sequential density approximation. Once a new pixel was

classified as background, the density function was updated selectively at each time step. The

simulations in this paper showed this method was successfully applied to background modelling

and subtraction.

A median value of the first frames could be used as the background model (Lo and Velastin,

2001). This method could handle some of the inconsistencies due to lighting changes. Rakibe

and Patil also utilized the median method to initialize the background model (Rakibe and Patil,

2013). They then updated the background model by using a threshold technique. After the

background image was obtained, the background could be subtracted from the current frame. In

this paper, this method was used to detect a moving human body. Their conclusion reported this

method could extract an accurate picture of a moving human body.

Kavitha and Tejaswini introduced a method which was similar to the GMM, but they incorporated

several innovative mechanisms (Kavitha and Tejaswini, 2012). In their method, for each pixel,

values were taken from the previous frame at the same location, and then compared to the current

pixel value to determine whether the pixel belonged to the background or not. Then the method

updated the model by choosing which pixels values to substitute in the background model, from

the current static background scene. This was different from the classical idea that the oldest

values should be replaced. They also employed the colour illumination to analyse the pixel value

to detect shadow and shading in the background.

A Wallflower method could also be used for background subtraction on a video surveillance

system (Toyama et al., 1999). This method processed images at pixel, region and frame levels.

The pixel-level made probabilistic predictions which estimated expected background pixel values

for the next image by using a Wiener prediction filter. The region-level considered inter-pixel

relationships to develop the raw classification of the pixel-level. It avoided the foreground aperture

problem. The frame-level background maintenance looked for sudden changes in large parts of

the image and switched in alternate background models that explained as much of the new

background as possible. The conclusion stated this method could be used to solve many of the

common problems of background maintenance.

2.2.3 Frame difference
Frame difference is another common method for motion detection. The approach is to detect the

moving objects from the difference between the current frame and the previous (reference) frame.

Sometimes, the difference is calculated from three or more consecutive frames. This method uses

pixel-based differences to detect moving objects.

This method is also named the temporal differencing method (Lipton et al., 1998). The principle

was to take consecutive video frames and determine the absolute difference. They used this

method to detect motion. Choi et al utilized the temporal difference to detect the moving part of a

person (Choi et al., 2006). They introduced a weighted accumulation method to obtain the final

temporal difference image.

Ha and Lee reported motion segmentation and tracking in visual surveillance, typically based on

updating background images and detecting foreground objects (Ha and Lee, 2010). It required

23

many parameters. They employed an algorithm of multiple difference images which was more

robust and only required one parameter. The experimental results showed this method required

less computation time. The frame difference method was explained more in year 2014 (Singla,

2014). The method also used to detect object motion. He also introduced a method of

transforming the absolute differential image to a grey image which could easily display the

difference. The experiment indicated this method detected motion accurately inside a house, but

it was affected by the air moving in an open area environment. Frame difference is also combined

with other methods to improve object detection. Migliore et al detected a moving person using

frame difference and background subtraction (Migliore et al., 2006). They combined the difference

between the actual frame and previous frame with the difference between the actual frame and

the model of the background. The evaluation of this joint difference method was better than the

original frame difference method. Another approach was to build a frame difference energy image

(FDEI) to detect a human gait (Chen et al., 2009). A gait cycle was divided into clusters. Then,

the averaged image of each cluster was denoised to obtain a dominant energy image (DEI).

Meanwhile, the frame difference was calculated by subtracting two consecutive frames. Then, the

FDEI was constructed as the summation of its corresponding cluster’s DEI and the positive portion

of its frame difference. The positive portion of frame difference was obtained by setting the

negative pixel values of the frame difference to zero. Their result showed the method was reliable

and stable when an occluded or lost body portion appears in the gait sequences. Another example

is to use three-frame-difference as the main method to detect fishes in water (Lan et al., 2014).

To reduce the effect of water wave reflection, they also added background subtraction and a four-

neighbour topology. The results showed that the method performed detection robustly during

dynamic changes of environment, and was less sensitive to noise, and easy to implement.

2.2.4 Optical flow
Another method for motion detection is Optical Flow. This method calculates the image optical

flow field, and then clusters pixels according to the optical flow distribution characteristics of the

image. It can detect the overall movement from the background. Optical Flow was introduced in

1950 (Gibson, 1950). He also described the visual stimulus provided to animals moving through

the world. Different optical flow techniques were compared in 1994 (Barron et al., 1994), including

differential techniques, region based matching, energy based methods and phase based

techniques. They emphasized the accuracy and density of measurements. Optical Flow (OF) was

used in many different areas including motion detection and object segmentation (Beauchemin

and Barron, 1995). It can also calculate an object's speed.

The optical flow method could detect motion accurately even without knowing the background (Lu

et al., 2008). The temporal differencing technique was used to detect the coarse motion area for

the optical flow calculation. Then, the optical flow method was applied to calculate possible

movement pixels for each video frame. The Lucas-Kanade method was used to compute the

derivatives of the image in three dimensions (x, y and t) to find the optical flow field. Then the

companion matrix method was employed to simplify the calculation. After that, a 3D Sobel

operator was used as the gradient operator to estimate the gradient for the three dimensions x,

y, and t. Finally, an adaptive threshold was selected to distinguish moving pixels. The results from

24

optical flow for detecting movement still included some background noise, so they used double

background filtering with morphological processing to improve the result. Another example was

to use an absolute differential image and optical flow field for motion detection (Shuigen et al.,

2009). The difference from two consecutive frames of a grey image produced the absolute

differential image. Then the pixel differences were used to estimate the optical flow field. The

optical flow field was used to judge whether holes in a moving object belonged to the motion area

or not. The experimental results indicated that the method is suitable and effective situations

where the camera is stationary while objects are moving. Wang et al detected motion from video

which included camera motion (Wang et al., 2015a). They used homography to remove the effects

of camera motion from optical flow. In the dense trajectory features approach, points (pixels) were

tracked by median filtering in a dense optical flow. Their experiment example reported that

sometimes the homography was incorrect and the corresponding optical flow was not correctly

warped. They solved the problem by estimating the homography and warped optical flow for every

two frames independently to avoid error propagation. Optical flow estimation can help motion

detection. The optical flow field is the velocity field that represents the 3-dimensional motion of

object pixels through a 2-dimensional image (Shafie et al., 2009). However, the optical flow

limitation is the movement distance. According to the smoothness constraint, the corresponding

points in two consecutive frames should not move more than a few pixels (Lu et al., 2008). If the

object moves too fast, the pixels move a long distance between two frames, and the pixels may

not be tracked successfully.

2.2.5 Shadow detection and removal
Shadows are a common problem in moving object detection and background subtraction.

Shadows move with objects and have the same colour information as the background, although

they are darker than the original background. Campbell et al showed their method of adaptive

background subtraction can be used to detect bees in their flight and crawling, but the shadows

affected the results (Campbell et al., 2008). Many researches have attempted to remove this

effect. Horprasert et al identified the shadow in their background subtraction model by comparing

the brightness and chromaticity components between the background image and the current

image (Horprasert et al., 1999). They reported that the shadow has a similar chromaticity but

lower brightness than the same pixel in the background image. In their result, the human shadow

could be detected in the case of human detection. Another approach was to separate colour

information from lightness information to remove the shadow from the target (Elgammal et al.,

2000). The chromaticity coordinates r, g and b were 𝑟𝑟 = 𝑅𝑅
𝑅𝑅+𝐺𝐺+𝐵𝐵

, 𝑔𝑔 = 𝐺𝐺
𝑅𝑅+𝐺𝐺+𝐵𝐵

, 𝑏𝑏 = 𝐵𝐵
𝑅𝑅+𝐺𝐺+𝐵𝐵

 where r + g

+ b = 1. In this model, the shadow pixels were less sensitive to small changes in illumination.

Then they also measured lightness using s = R + G + B to detect shadows on grey backgrounds

such walls and roads. In the experiment, this method could remove shadows in indoor and

outdoor environments. Cucchiara et al detected shadows by analysing pixels in the Hue-

Saturation-Value (HSV) colour space (Cucchiara et al., 2003). This colour space separates

chromaticity and luminosity. If pixels belong to shadows, the Hue component changes compared

with the background, but within certain limits. In addition, the difference in Saturation must be an

absolute difference, but the difference in Hue is an angular difference. They concluded the

25

shadows could be detected and removed from the background update function. Another approach

was to use the features of the shadow to detect it (Tian et al., 2016). They analysed sRGB colour

matching functions (CMFs) and spectral power distribution (SPD) of illumination to obtain four

properties (as features) of shadows. Then they identified the shadow edge by using edge

extraction. Thus, the shadow region could be detected. The experiment indicated this method

was robust, but the average run time was 39.7s. The limitation was that the method failed in

overexposed regions of an outdoor image.

The shadow can also be removed without using colour information. Jacques et al removed

shadows on a grayscale image (Jacques et al., 2005). They focused on two types of shadows:

one was produced by obstruction of indirect light and the other was caused by direct blocking of

sunlight. The shadowed pixels were darker than the corresponding pixels in the background

model. The detection method was the normalized cross-correlation (NCC) which could distinguish

the darker pixels from the corresponding background pixels. Then, a refinement technique was

applied to modify shadows by using local statistics of pixel ratios between the current image of

the video sequence and the background model. In their experiment, there was some shadow

misclassification because of the dark part of the object, but they reported this was not common.

Another example was to combine contour projection analysis and shape analysis to remove the

effect of shadow (Rakibe and Patil, 2013). The horizontal and vertical projections were analysed

to get the height of the motion region after their background subtraction. This could eliminate the

shadow effectively.

Shadow detection and removal has attracted a lot of attention as part of background subtraction.

Despite this, there is no general method which is robust and fast. There are different methods

corresponding to different situations. In summary, the common method is to use the colour

information to remove the shadow.

2.3 Object tracking
The goal of object tracking on video is to identify the same object in different video frames. The

object detection process will have already identified some object features such as colour, texture

and shape. Position is also an important feature, especially when similar objects are being

tracked, such as people, cars or insects. Some other features like size and orientation are also

useful for tracking. The common tracking methods are the particle filter and Kalman filter. The

Kalman filter is effective for tracking objects with linear movement, and the particle filter is more

effective for tracking objects with non-linear movement.

2.3.1 Object blob analysis for tracking
Object detection normally generates a binary image which displays the foreground object as white

(binary one), and the background as black (binary zero). The group of white pixels is the blob of

the object. The object blob can be analysed to calculate blob features such as area (the number

of pixels in the blob region), height (length of the major axis of the blob), width (length of the minor

axis of the blob), orientation (angle between the major axis and the x-axis) and position (the

coordinates of the centre point). Commonly, blob analysis is performed by calculating geometric

moments of the binary image. A summary of the geometric moments was presented in 2005

26

(Kotoulas and Andreadis, 2005). The moments were used for aircraft identification, scene

matching, shape analysis, image normalization, character recognition, accurate position

detection, colour texture recognition, image retrieval, etc. An example is to utilize image moments

to analyse blobs for tracking a person's hands and face (Lu et al., 2005). In this approach, a colour

distribution method was used in the first step to extract the blobs of face and hands. The image

moments of these blobs were calculated to obtain the shape and motion parameters. They used

central, first and second order moments to characterise the blobs. The regions of the face and

hands were determined by the ellipse parameters such as position, angle and aspect ratio

between short and long axes. Another blob analysis method is described in 2007 (Thou-Ho et al.,

2007). They tried to tracked vehicles using blob analysis. They analysed object blobs to obtain

the features of perimeter, blob area, and bounding-box information such as height and width.

These features were used to calculate the dispersedness (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
2

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
), aspect ratio (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ
) and

area ratio (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡∗𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ

) which were used as temporal features for recognising the same object at

different times. In addition, they calculated the centroid coordinates of each object for tracking.

Blob features such as position and orientation are useful for tracking, especially the blob position,

because it can be used by the Kalman filter. Lu et al used the position and velocity to track the

hands and face (Lu et al., 2005). They employed a Kalman filter to predict the location. Then, the

predicted location was combined with the measured location to calculate the current location as

a weighted average of the predicted and measured locations. If the hand blob existed in the

current frame, the observed location was updated using the current hand blob. However, if the

hand blob disappeared, the observed location was updated from the previous hand blob location.

In addition, the orientation of the head blob was used to analyse the motion of a head gesture.

The orientation was calculated as the angle between the Y-axis and major axis of the head blob.

Another example was to apply blob analysis to track cars and pedestrians (Telagarapu et al.,

2012). Detection was based on the different characteristics of the car blobs and pedestrian blobs.

The blob analysis eliminated blobs that were of no interest, based on their spatial characteristics,

and kept only the relevant blobs for further analysis. The cars were tracked after the blob analysis,

and pedestrians could be differentiated using blob analysis concepts. Another approach was to

extract bounding-boxes and centroids for tracking by using blob analysis (Thou-Ho et al., 2007).

Then, objects in successive frames were identified as the same object, based on how close they

were and how similar their sizes were. Euclidean distance was utilized to measure the distance

between their centroids. In addition, the area of a vehicle was also used for enhanced tracking.

Objects were identified as the same by searching for the minimum distance between blobs and

similar sized blobs in two consecutive frames. This method could also count the vehicles and

calculate their velocities.

It can be seen that analysing the object blob can produce spatial features for the object. In

summary, blob analysis is an important preparation for object tracking.

2.3.2 Object tracking with a Kalman filter
The Kalman filter has been widely used in video based object tracking. It predicts the next location

of the object, then combines it with the next observed location, and allows a refined location to be

27

calculated from the prediction and the observation. The discrete Kalman filter was introduced in

2006 (Welch and Bishop, 2006). The Kalman filter includes prediction and measurement. It

provides a recursive solution of the least-squares method and allows tracking different objects

using estimations of past, present and future states. The Kalman filter can also implement non-

linear object tracking (Extended Kalman filter) by employing the Jacobian matrix of partial

derivatives of transition matrices and noise.

In object tracking, the discrete linear Kalman filter is commonly used. The Kalman filter predicts

the moving location of the object. It updates the location from the prediction and measurement.

Gao et al presented a multi-Kalman filtering approach to track a single rigid object (Gao et al.,

2005). Initially, they extract feature points of the object on the initial frame at its first-time

appearance. Then these feature points are grouped together for Kalman-based updating of

motion parameters. After the current feature extraction, the motion was updated from the feature

prediction and extraction. This approach kept track of the image feature points from the time they

appeared until they disappeared due to occlusion. This method provided a 3D motion estimation

scheme for object tracking with emphasis on solving the occlusion problem, even when the object

was rotating relative to the camera. Weng et al developed an adaptive Kalman filter for object

tracking, which was a simple and efficient method (Weng et al., 2006). They used moving object

segmentation and dominant colour features to detect the object. In the tracking procedure, a

motion model was constructed for the system state and was applied in the prediction step. The

measurement for the filter was provided by moving object detection in HSI colour space. The ratio

of moving object area in current frame to the previous frame was used as the object occlusion

ratio. The occlusion ratio was calculated and applied to adjust the prediction and measurement

errors adaptively. This method could track an object in real-time, even in the multiple tracking

situation. In addition, it successfully estimated the object’s position in some real-world situations

such as fast moving objects, partial occlusion, long-lasting occlusion, changing lighting, changing

direction and orientation of the moving object, and sudden velocity changes. Zhang et al

presented a Bayesian Kalman Filter (BKF) method for visual object tracking (Zhang et al., 2014).

They employed the Gaussian Mixture (GM) algorithm to represent the state and noise densities

and simplified the algorithm (SGM) to reduce complexity. The mean shift (MS) tracker was used

to obtain the observation vector for measurement. It was also improved (IMS) in the paper to

reduce the possibility of the MS tracker getting trapped in a local maximum point on the

background or other similar objects. The result was a more accurate measurement. This BKF-

SGM-IMS visual object tracker was proposed to handle complex scenarios with good

performance and low arithmetic complexity. Another example of using Kalman filter was to track

the motion of a segmented region (Sanchez-Garcia et al., 2014). They segmented the moving

object using the optical flow method for each pair of frames. Each object was divided into polygon

shaped regions. Then the Kalman filter was used to track the polygons through the sequence of

images. The experiment showed that this Kalman filter was a robust model for moving object

tracking.

28

The Kalman filter is a fast approach for real time object tracking. The state vector is the movement

information, including any motion features such as location, velocity and acceleration. It is a

commonly used method in computer vision.

The Kalman filter has also been used in non-linear tracking, such as movement of human eyes,

hands and head, especially for poses and gestures. One way to solve the non-linear problem is

linearization of the non-linear function. The Kalman filter could be used to track human eyes

moving on a video (Xangdong et al., 1995). In this approach, the centre of the iris was chosen as

the tracking parameter vector, because the iris provided a visual assessment of eye movements.

The grey level centroid of the eye region was chosen as the measurement vector. Then the model

related the measurement to the tracking parameters. The nonlinear measurement equations were

linearized to reduce the computation. The Kalman filter was employed to track the eye feature.

The Kalman filter was chosen in this paper because it was an efficient recursive procedure

requiring a minimum amount of storage for the past samples, it embodied the information about

the system and measurement noise in its model, it effectively dealt with time varying signals, the

result of the previous step was used to predict the current states, and the accuracy of the

estimation was assessed by monitoring the error covariance. The experimental results showed

that the method could be successfully applied to smooth eye movements. This approach was

suitable for real-time applications, although the initialization procedure took a long time.

Another technique is the non-linear Kalman filter, such as the Extended Kalman filter (Welch and

Bishop, 2006) or the Unscented Kalman filter. The unscented Kalman filter could be used to track

the human hand and estimate the pose of a 3D hand model (Stenger et al., 2001). The 3D hand

model was built from quadrics which represented the anatomy of a human hand. They used a

hierarchical model with 27 degrees of freedom (DOF) which was constructed from 37 truncated

quadrics. Each clipped quadric of the hand model was projected individually generating a list of

clipped conics. The unscented Kalman filter was a filter for nonlinear tracking which fitted the

hand pose tracking. The state vector included the hand pose and hand motion (such as velocity

and acceleration) and had 27n dimensions, where n-1 was the order of the dynamic model. The

observation vector was obtained from edges in the neighbourhood of the projected hand model.

The filter minimised the geometric error between the projection of the hand pose model and the

edges detected in the image. The results demonstrated the efficiency of the method. Another

example of utilizing Unscented Kalman filter was to track human hand gestures (Li et al., 2004).

The measurement model of the contour of the hand was non-linear, but the unscented transform

could predict the mean and covariance precisely up to the second order and did not require

linearization of the nonlinear function, such as derivation of Jacobians or Hessians. During each

time step, the tracking model made multiple measurements in terms of the set of appropriately

chosen sample points. Therefore, it could obtain the best observation according to the

measurement probability function. They also applied the method to head tracking with a

nonstationary background. The results indicated that it was more accurate and robust than normal

Kalman filter tracking. However, if the background contained heavy clutter, the state density will

be multi-modal. The unscented Kalman filter could not work well on the multi-modal distribution.

29

2.3.3 Object tracking with a particle filter
The principle of the particle filter is to sample the object pixels in the first frame, and then resample

pixels around the object in the next frame, and try to find similar features in the pixels. A classical

application of the particle filter for object detection was presented in 2006 (Dearden et al., 2006).

They tracked one soccer player on a pitch. They created a system that enabled players to be

automatically tracked from a single, moving camera. The background of the pitch was a green

colour. They segmented the player region using histogram thresholding in HSV space, and the

pixels were grouped into regions. Then a binary image was created of non-pitch colours within

the pitch region showing possible player positions. They used the sample importance resampling

(SIR) particle filter to perform the tracking. The particle filter estimated and maintained the position

of the tracked player. The non-linear and non-Gaussian nature of a particle filter could track

players in spite of occlusions by other players. Another application of particle filter was to track

multiple soccer players (Vermaak et al., 2003). They found the general particle filter was

unsuccessful at consistently maintaining the multi-modality in the target distribution, because of

insufficient measurements, or clutter, or measurements from multiple objects producing ambiguity

in the tracking. To solve this problem, they introduced a strategy to model the target distribution

as a non-parametric mixture of filtering distributions. The mixture of filtering distributions was

computed recursively in two steps: a prediction step followed by an update step when the new

data became available. The Monte Carlo implementation of the general recursion led to a mixture

of particle filters that interacted only in the computation of the mixture weights. This mixture

particle filter maintained the multi-modality inherent in multi-tracking problems.

The particle filter is widely used in object tracking systems. Much research focuses on improving

the computational problem. Changjiang et al mentioned the trade-off of using the particle filter:

the more samples and richer the target representation, the better chance that the tracking

algorithm succeeds in cluttered and noisy environments, but the more computational load is

required by the filter (Changjiang et al., 2005). Their solution was to simplify the features that they

used. The features tracked were the colour histogram and edge orientation. The computation of

the colour histogram was expensive if the tracked region and the number of samples were large.

They employed Harr-like rectangle features which could be efficiently evaluated by several table

lookup operations on an “integral” image. The “integral” image is an image in which each pixel’s

value is the sum of all pixels above and to the left of the current position (Viola and Jones, 2004).

To overcome the problem of illumination changes, they used an edge orientation histogram (EOH)

which also discriminated against a background with confusing colours. In addition, they improved

the convergence of the Monte Carlo integration in the particle filter by using a quasi-random

generator to generate the sample points. They concluded that their improvements made the

tracing algorithm efficient and robust against clutter, illumination changes and short period time

occlusions. The particle filter could be improved by using Rao-Blackwellization (Zia et al., 2004).

They used subspace representations as the measurement model of the particle filter. They

employed Rao-Blackwellization to integrate out the appearance subspace coefficients of the state

vector, leaving only the original target state. Fewer samples were needed since part of the

posterior over the state was analytically calculated, rather than being approximated using a more

30

expensive sample representation. After that, the integral could be computed analytically by using

probabilistic principal component analysis (PPCA). They concluded this method reduced the

number of particles needed and the filter increased tracking performance and decreased the

number of tracking failures. The advantage of the particle filter is that it tracks objects effectively

during non-linear movement. The particle filter was more efficient and robust than the EKF in the

nonlinear and non-Gaussian situation (Arulampalam et al., 2002). In addition, Iqbal et al compared

three motion object tracking methods: mean-shift, Kalman filter and particle filter (Iqbal et al.,

2014). Their test environment was indoors, and the tracked objects were a ball moving linearly

and a woman moving non-linearly. The three methods were all effective for the linear tracking.

However, the mean-shift and Kalman filter were less effective than the particle filter for non-linear

tracking. The mean-shift is based on a histogram and rapid change disturbed the tracking, and

the Kalman filter depends upon the previous state of the object to estimate the current state.

Conversely, in the particle filter, the tracked object is being represented by a possible location

denoted by a set of weighted particles.

2.3.4 Other tracking methods
The Kalman filter and particle filter are well-known tracking algorithms. There are other tracking

methods which are not so commonly used, but they have different advantages.

The mean-shift algorithm used a colour based statistical model to estimate of next position of the

target (Iqbal et al., 2014). The main features of the mean shift algorithm are mode seeking,

clustering density estimation and tracking. The mean-shift algorithm iteratively shifts data points

in its neighbourhood and locates the new position of the target using density estimation and the

colour histogram.

The adaptive local movement model (ALMM) was used to track a single object (Zhang et al.,

2015). The basic idea is that the distribution of the movements of the local patches were easier

to model instead of the whole object motion. In this method, the local patch centres were related

to the centre of gravity of the whole tracked object. They first tracked the local patches to calculate

the position and the validity of each image patch. In the second step, the locations of patches

were further corrected by using an outlier detection process based on GMM that pruned the

patches which diverged from the current statistics. Finally, they assigned a weight to each patch,

with the patch tracking, to decide whether a patch should be kept or discarded in computing the

centre of gravity. The experiment results showed that this method was robust for the problems of

occlusion, fast motion and texture variations.

A two dimensional hashing algorithm could be used to represent objects (Ma and Liu, 2015). The

hashing method could improve the speed of similarity measurement which could be utilized to

track an object. To overcome the time-consuming hash function training, they proposed a two

dimensional hashing method which reduced the dimensionality of the covariance matrices, and

then the speed of training the hash function was improved. During the tracking, samples and

templates were hashed to binary matrices, and the Hamming distance was used to measure a

confidence of candidate samples. The sample with highest confidence was chosen as object in

the current frame. Then hash functions were updated by an incremental learning model to adapt

31

to changing situations. Through these innovations, this tracker obtained improved performance

in accuracy and efficiency. The authors conclude this method could also be implemented and

applied to many other applications in computer vision.

2.3.5 Multiple object tracking problem
The main tracking problem is to identify the same object in the frame flow of a video. If only one

object is visible on the video, it is easy to track. However, the identification of multiple similar

objects requires mathematical calculation. The simplest idea is to track using the distances

between objects on successive frames, but this is unreliable if the objects move very fast. Filtered

tracking produces predicted positions for the tracking, and then using the distances between

predicted and detected positions improves the tracking accuracy. However, assignment of

predictions to detections is still often a problem.

The Hungarian method can be used for this problem. Nandashri and Smitha used the Hungarian

method for multiple tracking (Nandashri and Smitha, 2015a). Initially, they employed GMM to

extract the moving object, and then the Kalman filter was utilized to predict the next detection in

the following frame, and to correct the locations from these predictions and object detections. The

Hungarian method was finally used to assign detections to predictions in the process of tracking

the multiple objects. This process also determined which objects had disappeared from the video

and which detections should begin a new tracking process. They showed the final result by

tracking two people walking in opposite directions. Their model also solved the problem of

occlusion that occurred between the individual objects being tracked. Tashita et al proposed a

tracking method for time-lapse macrophages based on the Hungarian algorithm (Tashita et al.,

2015). The method was applied to mouse brain magnetic resonance (MR) images. They utilized

a temporal background subtraction method to detect macrophages. After that, they performed

tracking in each frame image using the Hungarian method. They minimized the movement

distances of macrophages between frames. The result showed that the method successfully

tracked the macrophages. They also reported the method can be enhanced to 3-D processing by

detecting macrophage candidates and tracking in 3-D space.

The Hungarian algorithm is also useful for multiple object tracking in computer vision. It can also

help to identify the appearance of objects new to the video frame flow and the disappearance of

objects from the frame flow. In this research, it is used with the Kalman filter in the tracking

process.

2.4 Small object tracking
The aim of this research is to detect and recognise pollen sacs on the bodies of flying bees.

Although high resolution video is used, the pollen sacs are still small objects on the video. The

definition of small object detection is to detect a special small region on a much larger image,

such as a ping pong ball, a logo on a T-shirt or part of the human body. Although the object area

may be too small to capture directly, some papers have reported detecting small object regions

using various methods.

32

2.4.1 Direct detection of small object regions
Some papers have reported the detection of small objects on large images. One example was to

combine wavelet based detection and gradient based detection for small object detection (Desai

et al., 2005). Both of the two methods estimated the motion. In addition, they also tracked the

small targets with a multiple filter bank which included two filters of constant acceleration and

Signers’ manoeuvre model. They applied the method to track cricket and ping pong balls in sports

videos. Furthermore, the method could also track airborne targets in an IR image sequence.

Moreover, it also detected point targets. The experimental results showed that it could detect

objects on low contrast and negligible texture backgrounds. Another approach to detect small

objects in a low contrast video sequence was presented in 2006 (Hsieh et al., 2006). The frame

differencing technique was first utilized on two consecutive image frames to generate candidate

objects. However, the low signal to noise ratio (SNR) was a serious problem for the detection of

small objects with low contrast image sequences. To solve this problem, they developed a noise

removal algorithm by encoding every pixel and its neighbours according to the noise distribution.

Then, they located the regions of interest (ROI) by thresholding the de-noised image. After that,

a segmentation algorithm and region matching technique were used on the ROI to extract the

object contour. A watershed based algorithm was devised on the ROI to extract the final object

contour. In addition, they performed a watershed transformation with a lower value of the

drowning threshold to detect low contrast objects. Baojun et al detected small maritime object on

IR images (Baojun et al., 2011). They used wavelet transforms to generate local minimum

patterns (LMP). The LMP estimated the background and produced a saliency map. Then the

regions of candidate objects were segmented using an adaptive threshold based on the histogram

of the saliency map. The regions of small objects were finally detected using a fast clustering

algorithm. The experiment indicated that the method could detect multiple objects of various

scales and objects in highly noisy images. An active contour model was presented to detect small

objects from cluttered and textured backgrounds in 2012 (Vard et al., 2012). The objects were as

small as lighting points. Image features were obtained using the normalized accumulated short-

term autocorrelations (NASTA) function. The features were exploited to define an energy function

of the contour model which could detect the small objects. The NASTA was calculated from the

image pixels to represent region information. The values of NASTA were exploited instead of

intensity as a feature to characterize the pixels in the model. They gave examples to show that

the NASTA values were better than the intensity values for detecting small objects in a cluttered

background. Qi et al reported small surface object detection from depth-aware analysis of image

features using the atmospheric scattering model on video of maritime scenes (Qi et al., 2011).

The suspicious small surface objects were located with the dark channel image. The small surface

objects, only a few pixels wide, could be enhanced in the dark channel image. After that, they

detected the horizon using dyadic cubic spline wavelet transforms and estimated the scaled depth

map of the sea surface base on the theory of perspective projection. They identified the final small

surface objects by obtaining spatial-variant thresholds using the atmospheric scattering model

and the estimated depth map. This algorithm had a more than 90% positive rate. However, it

could not work if objects were similar to atmospheric light, because of the invalidation of the dark

channel prior. Wei detected objects of small size and fast motion in Infra-Red (IR) sequences,

33

referred to as targets of primary interest (TPIs) (Wei, 2013). Initially, he employed a 2D band stop

filter in the spectral domain of each frame to reduce system noise. The next step was to apply the

pixel process algorithm to detect the small size and fast motion of TPIs. The candidate TPIs were

further refined after spatial post-processing on each frame, using size filtering and component

labelling. Finally, TPIs were declared after a consistency check across adjacent IR frames by use

of the adaptive Hough transform.

In all of the small object detection papers, the small object was obvious on the background. Both

(Wei, 2013) and (Baojun et al., 2011) show their results using infrared images, where the object

was a white point on the background before the detection. The small points in (Vard et al., 2012)

were also light points which were obvious against the dark background around them. The

backgrounds in (Desai et al., 2005), (Qi et al., 2011) and (Hsieh et al., 2006) were simply sky or

ocean, and it was easy to detect airplanes or ships in those situations.

2.4.2 Segment the big object region in small parts
Another method of small object detection is to detect a bigger object region, then detect the small

object inside the bigger region. Crandall et al detected different parts of an object using a special

statistic model (Crandall et al., 2005). They used edge maps obtained using the Canny method

to calculate the foreground and background probability of pixels. Then they introduced a K-fans

method based on a full joint Gaussian model and a tree-structured model to analyse spatial priors.

They trained for different objects such as motorbikes, airplanes and faces, and collected the

spatial structures of them. The spatial structure of the image produced the final part detection and

localization. Wang et al segmented semantic objects to understand the detail of the object (Wang

et al., 2015c). They proposed a joint solution that tackled object and part segmentation

simultaneously, in which a higher level object context was provided to guide the part

segmentation. In addition, they utilized a more detailed part-level localization to refine the object

segmentation. Firstly, they introduced semantic compositional parts (SCP) in which similar

semantic parts were grouped and shared among different objects. A two-stream fully

convolutional network (FCN) was then trained to provide the SCP and object potentials. Moreover,

a compact set of segments was also obtained from the SCP predictions of the network at the

same time. Finally, they constructed a fully connected conditional random field (FCRF) to jointly

predict the final object and part labels. The evaluation showed that this method could mutually

enhance the performance of object and part segmentation.

Some research detects parts for bigger object detection. The parts in these researches can share

their region with other parts which belong to same object. Wu and Nevatia reported using part

base detection to detect human body parts (Wu and Nevatia, 2007). The part detectors learned

from a set of silhouette oriented features which they called edgelet features. These features were

suitable for human detection as they were relatively invariant to clothing differences. The detected

human body parts included head-shoulder, torso and legs. The aim of the paper was to detect

and track a person walking on the road. The whole human body detection combined the various

part detectors. They defined a joint image likelihood function for multiple, inter-occluded humans.

The tracking method was also based on tracking parts of the human body. The advantage of part

detectors was that it could track partially occluded humans. Fulkerson et al detected superpixels

34

on the pixel level (Fulkerson et al., 2009). The superpixels were the regions of parts of the object.

They performed quick shift using a five-dimensional vector composed of the LUV colour space

representation of each pixel and its location in the image. Then, they built a superpixel classifier

into a conditional random field (CRF) to perform the whole object segmentation. It could recognise

the neighbourhood of two objects, such as a human riding a horse, a dog and a cat together, and

table and chairs together. A training method for detecting parts of an object was presented in

2016 (Kuang et al., 2016). They applied k-means clustering to generate a “seed” for training the

initial detectors. The whitened histograms of oriented gradient (HOG) features were clustered for

the regions of parts on the image. They sampled densely to get all possible part images and

collected hundreds of thousands of parts. These were the mid-level part detectors. They finally

selected the parts using the max-pooling technique to detect the whole object.

2.5 Deep learning for computer vision
Deep learning is a class of machine learning algorithm, which has become very powerful and

popular for computer vision research recently. It creates computational models that are composed

of multiple processing layers to learn representations of data with multiple levels of abstraction

(LeCun et al., 2015). Deep neural network (DNN) is one of the deep learning architectures, which

is an artificial neural network with multiple layers between the input and output layers (Bengio,

2009, and Schmidhuber, 2015). The DNN is trained to find the correct mathematical

manipulations to turn the inputs into the outputs. After training, the network is tested with new

inputs to calculate the probability of each output. Then, the user can review the results and select

which probabilities the network should display (for an example: probability above a certain

threshold) and return the proposed result. A complex DNN has many layers, hence the name

“deep” networks.

For computer vision, the most common DNN is convolutional neural networks (CNNs) (Lecun et

al., 1998). CNNs are designed to process data that come in the form of multiple arrays, for

example a colour image composed of three 2D arrays containing pixel intensities in the three

colour channels. There are four features behind CNNs: local connections, shared weights, pooling

and the use of many layers (LeCun et al., 2015). The architecture of a CNN is structured as a

series of stages. The first few stages are composed of two types of layers: convolutional layers

and pooling layers. Units in a convolutional layer are organized in feature maps, within which each

unit is connected to local patches in the feature maps of the previous layer through a set of weights

called a filter bank. The result of this local weighted sum is then passed through a non-linearity

such as a rectified linear unit (ReLU) method (Nair and Hinton, 2010). All units in a feature map

share the same filter bank. Different feature maps in a layer use different filter banks. A pooling

layer then merges semantically similar features into one. A typical pooling unit computes the

maximum of a local patch of units in a feature map. Neighbouring pooling units take input from

patches that are shifted by more than one row or column, thereby reducing the dimension of the

representation and creating an invariance to small shifts and distortions. Two or three stages of

convolution, non-linearity and pooling are stacked, followed by more convolutional and fully-

connected layers. Backpropagation gradients (Rezende et al., 2014) through a CNN are as simple

as through a regular deep network, allowing all the weights in all the filter banks to be trained.

35

In the 1990s, CNNs were developed for object detection in natural images, including faces and

hands (Vaillant et al., 1994, Lawrence et al., 1997). Since the 2000s, CNNs have been applied

with great success to the detection, segmentation and recognition of objects and regions in

images. These were all tasks in which labelled data was relatively abundant, such as traffic sign

recognition (Cireşan et al., 2012), the segmentation of biological images (Feng et al., 2005) and

the detection of faces , text, pedestrians and human bodies (Sermanet et al., 2013b, Garcia and

Delakis, 2004, Osadchy et al., 2007, Tompson et al., 2015). Despite these success, CNNs were

largely forsaken by the mainstream computer-vision and machine-learning communities until the

ImageNet competition in 2012 (Russakovsky et al., 2015). Since then, many trained CNNs have

been created for image classification, such as Alex network, VGG, GoogLeNet and ResNet, etc.

The Alex network was introduced in year 2012 (Krizhevsky et al., 2012). It includes 60 million

parameters and 650000 neurons, consists of eight layers: five convolutional and three fully-

connected layers. Some of the convolutional layers are followed by max-pooling layers. The

output of the last fully-connected layer is fed to a 1000-way softmax method which produces a

distribution over the 1000 class labels. The data augmentation and dropout method in the network

are significant innovations to prevent overfitting. The network won the ImageNet large scale visual

recognition challenge in 2012. The VGG network is similar to the Alex network in structure, but it

includes more layers (Simonyan and Zisserman, 2014). This network increases depth using an

architecture with very small (3x3) convolution filters. The depth can be built to 16-19 weight layers.

The experiment result in ImageNet Challenge 2014 was much better than the Alex network. It

demonstrates that the representation depth is beneficial for the classification accuracy, and better

results on the ImageNet challenge dataset can be achieved using CNN architecture with

substantially increased depth.

GoogLeNet was presented in 2015 (Szegedy et al., 2015). It introduced an inception architecture

in the network, which allowed increasing not only depth (the number of network levels), but also

width (the number of units at each level) without getting into too much computational difficulty.

The network was 22 layers deep when counting layers with parameters. In the network’s structure,

two convolutional layers followed the input layer, and then inception modules were created and

located in following layers. This could handle the image scaling. After the inception layers, the

fully connected layers (in the VGG network) were replaced by an average pooling layer, which

improved the accuracy. This network won the ImageNet Challenge 2014 in the experiment test,

performing even better than the VGG network. ResNet includes the residual learning framework

in the network, which solves the problem of deeper neural network training (He et al., 2016).

Adding more layers to a suitably deep model leads to higher training error (He and Sun, 2015,

Srivastava et al., 2015). ResNet was managed to overcome the optimization difficulty and

demonstrated accuracy gains when the depth increases. It increased layers from 18 to 152. The

152 layers produced the best result in the experimental results. This network won the 1st place

not only on the ImageNet Challenge 2015, but also on the task of COCO detection and COCO

segmentation (Lin et al., 2014). In summary, when deep convolutional networks were applied to

a data set of about a million images from the web that contained 1000 different classes, they

36

achieved spectacular results, almost halving the error rates of the best competing approaches

(Krizhevsky et al., 2012).

Apart from CNNs becoming successful in image classification, more and more researches also

focused on object detection and image segmentation. Particularly, multiple object detection has

become a popular research topic since 2014, when the Region-Based CNN (RCNN) was created.

For applying CNN in object detection, some researchers built object region proposals for the

object detection network. One example was the method of Regions with CNN features (RCNN)

which separated the detection problem into two stages (Girshick et al., 2014). The first stage was

to utilize low-level cues such as colour and texture in order to generate object location proposals

in a category-agnostic fashion. The second stage was to use a CNN classifier to identify object

categories at those locations. Such two stage approaches leveraged the accuracy of bounding

box segmentation with low-level cues, as well as the highly powerful classification power of state-

of-the-art CNNs. The experimental results indicated that this detection algorithm achieved more

than 20% mAP (the mean average precision) compared with their previous method, which was

standard HOG-based DPM (Girshick et al., 2012).

The Fast RCNN was built on RCNN, but is more efficient than RCNN (Girshick, 2015). It takes an

entire image and a set of object proposals as input. Then, the network processes the whole image

with convolutional layers to produce a convolutional feature map. At this stage, the network

trained the very deep VGG-16 network for higher detection quality. After that, for each object

proposal, a region of interest (ROI) pooling layer extracts a feature vector from the feature map.

Each feature vector finally produced probabilities estimating different object classes as well as a

“background” class. It also outputted bounding box positions for each of the object classes.

Compared to the RCNN, the Fast RCNN improved training and testing speed while also

increasing detection accuracy.

Faster RCNN was the next version of Fast RCNN(Ren et al., 2015). In this network, a region

proposal network (RPN) was created, which shared full-image convolutional features with a

detection network (such as Faster RCNN). The RPN was a fully-convolutional network (FCN)

(Long et al., 2015) which predicted object bounds and object-ness scores at each position. This

network was trained end-to-end to generate high-quality region proposals, which was used by

Fast RCNN for detection. With a simple alternating optimization, RPC and Fast RCNN could be

trained to share convolutional features. The conclusion was that the RPN was an efficient and

accurate region proposal generation network. By sharing convolutional features with the down-

stream detection network, the region proposal step was nearly cost-free. The RPN improved

region proposal quality, so that the overall object detection accuracy was also increased.

Mask RCNN is the latest version of the RCNN network (He et al., 2017). This network has two

stage procedures, which is similar to Faster RCNN. The first stage is the RPN network. In the

second stage, the approach followed the spirit of Fast RCNN that applied bounding-box

classification and regression in parallel. This turned out to largely simplify the multi-stage pipeline

of the previous RCNN method. The Mask RCNN also outputted a binary mask for each region of

interest (ROI). The mask encoded an input object’s spatial layout. Thus, unlike class labels or box

37

offsets that were inevitably collapsed into short output vectors by fully-connected layers,

extracting the spatial structure of masks could be addressed naturally by the pixel-to-pixel

correspondence provided by convolutions. The Mask RCNN was faster than Faster RCNN and

improved the object detection results.

In summary, the different types of RCNN networks include two stages: object region proposal and

object detection. Faster RCNN and Mask RCNN include two networks for object detection: the

RPN for generating object proposals and an object detection network (such as Fast RCNN).

Some researchers have tried to use a single deep neural network for object detection. One deep

learning method was single shot multi-box detector (SSD) (Liu et al., 2016). It discretized the

output space of bounding boxes into a set of default boxes with different aspect ratios, and scales

per feature map location. In prediction, the network generated scores for each object category in

each default box and produced adjustments to the box to better match the object shape. The

network also combined predictions from multiple convolutional feature maps with different

resolutions to handle objects of various sizes. The SSD eliminated proposal generation and

subsequent pixel or feature resampling stages, so that all computation is in a single network. The

test results showed that the SSD was outperformed the Faster RCNN in terms of accuracy as

well as detection speed.

Another single deep learning network for object detection on images is YOLO (Redmon et al.,

2016). YOLO (You Only Look Once) was designed as a model which separated the input image

into a grid (SxS grid for an example). If the centre of an object was in a grid cell, that grid cell was

responsible for detecting that object. Each grid cell predicted a number of bounding boxes and

confidence scores for those boxes. These confidence scores reflect how confident the model was

that the box contained an object and also how accurate it thought the box was that it predicted.

The confidence score related to the intersection over union (IOU) between the predicted box and

the ground truth. If no object existed in that cell, the confidence score was zero. Each bounding

box consisted of 5 predictions: x, y, w, h and confidence. The (x, y) coordinates represented the

centre of the box relative to the bounds of the grid cell. The w and h represented the width and

height of the bounding box respectively. This model was implemented in a convolutional neural

network. The initial convolutional layers extracted features from the image, while the fully

connected layers predicted the output confidence and coordinates. This network was also much

faster than Faster RCNN, and it did not lose accuracy. The latest version of YOLO v3 (Redmon

and Farhadi, 2018) had better results for the small object detection and is much faster than

previous versions.

In summary, the single network can perform very fast object detection, because they do not have

the object proposal before detection. The detection can be real time on the 30 frame rate video.

Deep learning has become very a powerful method for computer vision since year of 2012. The

CNN was becoming more and more deep from 2012 to 2016, while the image classification was

more and more accurate. Especially, the structure of ResNet (He et al., 2016) included more than

100 convolutional layers. Object detection on entire images was also growing fast from 2015 to

current year (2018). From the combination of object proposal and object detection network (Faster

38

RCNN) to single network object detection (SSD and YOLO), object detection became faster and

faster with accuracy increasing. There are many other networks created for object detection such

as Deformable Parts Models (DPM) (Felzenszwalb et al., 2010), SPPnet (He et al., 2014), Deep

Multibox (Erhan et al., 2014) and Over Feat (Sermanet et al., 2013a). Deep learning is more and

more popular in computer vision field. In this thesis, the deep learning method is applied pollen

sac detection and measurement. It is also compared to the traditional image processing method.

2.6 Bee and pollen sacs detection in computer vision
In this research, computer vision technology is applied to a video that is monitoring bees. There

are papers reporting detection and tracking of honey bees. Some papers focus on surveillance

inside the beehive. A method of vector quantization (VQ) for identifying and tracking bees in the

hive was introduced in year 2011 (Kimura et al., 2011). VQ separated honeybee bodies from one

another in time series photographs without any preconditions. A honeybee-code image was

extracted from the whole hive image. The average body size and shape was used to separate

regions of single and multiple honeybees from the honeybee-code image. After that, honeybee

movement was tracked from temporal contextual information in the sequential image data. This

method analysed a large number of frames quickly and correctly tracked more than 72% of the

individual bees in the hive. In addition, it was able to partly resolve the problem of overlapping

honeybees. Another approach was to use the region homogeneity feature to detect bees in the

hive (Knauer and Meffert, 2010). The brood cells appeared as homogeneous image regions, while

the regions which were covered by a crowd of bees appeared as non-homogeneous. They

improved the region homogeneity algorithm efficiency and speed by applying the concept of

integral image. They also segmented regions which were not covered by bees with an adaptive

thresholding method. However, this method falsely detected homogeneous regions in the outdoor

situation, such as a street surface. Knauer et al reported an adaptive background model to monitor

bees in the hive (Knauer et al., 2005). In the first step, an adaptive background model based on

the GMM was used to detect uncapped cells on the honey comb crowded with bees. Then canny

edge detection was applied to detect the contour of the open cell. The contour was then analysed

to identify the uncapped cells. Once the cells were known, the bees were easy to detect and track.

A behaviour model was presented to track bees and to recognise specific behaviour in year 2008

(Veeraraghavan et al., 2008). This model used the factors of position, orientation and current

behaviour to perform the tracking automatically. The bee body was modelled as three ellipses in

a shape model. The position and orientation of each part was calculated. Then a behaviour model

was created using a three-tier hierarchical motion model. The first tier built a local motion model

for the vocabulary of behaviour. The second tier built a Markov model on top of the local motion

vocabulary. The final tier modelled the switching between behaviours based on the Markov model.

This method could be extended to the behaviours of other insects and to human activities.

Hendriks et al used tags which were glued on the bees’ bodies to assist tracking (Hendriks et al.,

2012). The tags were designed for image processing. The tags had white dots for the detection

system and included symbols showing the direction of the head of the bee. However, an

inconvenience in the experiment was that the tags could only be stuck on bees manually. Knauer

and Meffert compared and combined five classifiers for monitoring honeybees (Knauer and

39

Meffert, 2009). The five methods included: edge detection and classification of contours, rapid

detection of Haar-like features using AdaBoost, detection of clusters of interest points, the Hough

transform, and template matching. They evaluated the five methods using the Receiver Operating

Characteristic (ROC) and Precision and Recall (PR) techniques. Contour detection produced the

best results for both ROC and PR. Then they combined the methods based on the complementary

information. They selected the best performing method (contour detection) as the main method.

Then, they looked for high precision methods which can detect some additional objects and were

also reliable in doing this. For example, the Interest Point Density Detector compensated for some

errors in the contour detection. Conversely, the Hough transform was discarded because the

results reduced the precision.

Several papers focus on monitoring the flight of bees outside the beehive. Motion models could

be used to detect and track the flight of bees in the uncontrolled outdoor environment of an apiary

(Campbell et al., 2008). An adaptive background subtraction method was utilized to detect motion

regions. Then, a motion template was built for the bee’s different behaviours. Crawling and flying

bees were modelled by a Gaussian distribution. Loitering was detected with a small distance

threshold. After this, tracking was performed by using a method of maximum weighted bipartite

graph matching to assign bees from frame to frame. This approach was applied to measure the

flight activity of honey bee colonies. Kimura et al reported a method to detect and track bees on

a flat surface (Kimura et al., 2012). It employed the background subtraction method to detect

candidate bee regions. Then they identified individual bees using a combination of two methods:

the overlapping information in temporal changes of position, and the prediction of the candidate

regions based on the bee’s movement. Then, the locations and trajectories of the bees’

movements were identified. However, because the movement was only a few pixels, if the bee

moved fast, the tracking failed. 3D stereo vision systems have also been used to detect and track

bees (Chiron et al., 2013a, and Chiron et al., 2013b). The 3D camera recorded video from two

viewpoints. One view was an intensity video which was used detect the bees' flights with

background subtraction. The other view was in colour and the colour histogram method was

utilized to detect bees on this frame. Bees were detected from a combination of both views. In

addition, they tracked bees using a Kalman filter.

Pollen detection and measurement has been reported in very few researches. One research has

been found for detection of pollen bearing bees (Babic et al., 2016). In their research, a special

hardware platform which consisted of a wooden box (sensing box) with a Raspberry Pi camera

module inside, was mounted on the front side of a standard hive, above the hive entrance. The

sensing box was closed on all sides except for a 2 cm high opening at the bottom of the front

side, which was intended for honey bees to enter and leave the hive. This meant bees in the field

of view of the camera could not fly, so this reduced the bees’ movement speeds and removed the

shadows of flying honey bees. This also overcame the uncontrolled environment conditions which

affect the quality of the video. In addition, the paper used background subtraction based on

Mixture of Gaussians (MOG) for the honey bee detection. Then, the colour variance and

eccentricity features were analysed for distinguishing pollen bearing honey bees from non-pollen

bees. In the experiment, the approach correctly classified 88.7% of honey bees on the test video

40

frames. However, the paper did not state whether the hardware setup affected the bees’ life. Bees

may build cells in the sensing box. The paper did not recommend any idea to avoid this. In

addition, the pollen bearing honey bees could be distinguished from non-pollen bees, but the

pollen sacs were not detected from bees’ bodies. Furthermore, pollen bearing bees were only

counted on each video frame. There was no bee tracking to help count the bees going through a

sequence of video frames.

In the research of this thesis, the camera was setup on the front of the beehive in the uncontrolled

environment, similar to the situation of the research (Campbell et al., 2008). This research faces

the difficulties of fast bee speed, motion blur and flying bees’ shadows. In addition, the pollen

sacs were planned to be detected from the individual flying bees’ bodies in this research. The

next section will introduce the approaches for this research.

2.7 Approaches for this research
The situation of this research is that the video is recorded monitoring bees outside the beehive,

so that the pollen sacs on the flight of honeybees can be detected and measured. This leads to

some difficulties. Firstly, it is an uncontrolled outdoor environment. The light level changes with

the time of the day and weather. Shadows are cast by the camera enclosure, moving bees and

moving vegetation. Secondly, the speed of flight is fast, so flying bees can move a significant

distance between frames. Moreover, when bees are flying, there is motion blur on the image.

Finally, the scene is often cluttered. Bees can group or occlude each other which challenges

simple segmentation and tracking methods. Considering these factors, the approach below was

utilized for this work.

Motion detection is the common method for object detection with multiple frames. The background

of the video is simplified by using a single coloured background board in this research. In this

situation, the moving objects are bees and their shadows. As a result, background subtraction is

more robust than frame difference for this research. The background model is more reliable than

the difference between two continuous frames. Optical flow is based on the geometrical distance

calculation. However, if bees change speed, the calculation can match the wrong pixel from the

previous frame. Background subtraction creates a background model from some consecutive

frames. GMM builds more than one background model for the comparison of each frame. It works

for any bee speed and detects foreground moving pixels. GMM is sensitive to any movement, but

bees’ shadows are also detected. This problem cannot be solved using only motion detection.

The colour feature is the most obvious information on a single frame image of the video. The

video includes a particular single colour background. Whether the background colour is white or

green, the orange and black bee colours are different from the background. The colour histogram

and thresholding algorithm is the main method for single frame bee detection. Apart from the

colour feature, other features may not be suitable for bee detection. Although a bee's body

includes a striped orange and black pattern, the texture information may not be clear on the video

because of motion blur. Contour feature detection separates regions according to edges, but

region location and reconstruction is a complicated calculation. Moreover, if the pollen colour is

similar to bee body colour, it is difficult to detect the shape of a pollen sac. Therefore, this research

41

utilizes the colour thresholding method rather than texture and contour to detect bees and pollen

sacs. In addition, combined with motion detection, it can remove the bees’ shadows.

The aim of object tracking is to identify the same objects in consecutive frames of the video. A

common method is to predict the movement of the object and then combine the prediction with

the detection to get a better estimate of the position of the object. The particle filter samples the

pixels of the object and then predicts the motion of each sample pixel. It tracks the object based

on the pixels, so it can be a large computational problem. In addition, bees normally fly quickly,

so the re-sampling region needs be chosen big enough to include the object region on the next

frame. Bees can fly anywhere on the video, so tracking can easily fail with this method.

Conversely, blob analysis produces the bees’ positions after the bees’ detections. Positions from

previous frames can be used to predict the bees’ next positions, so the Kalman filter can be

employed to perform the tracking. The Kalman filter predicts the position based on the position of

bees’ blobs (coordinates of the blob centre) rather than the pixels of the bees. This reduces the

computational requirements. The predicted and detected positions are assigned using the

Hungarian method (Nandashri and Smitha, 2015b) which minimizes the sum of the distances

between these positions. However, because the video is two dimensional, occlusion can be occur

when bees appear to fly across each other (merge) in the video frame. In this case, the detected

blob is the large merged blob rather than individual bee blobs. The position of the detection is the

centre coordinates of the merged blob, which has a large error relative to the individual bees’

positions. This affects the next prediction so the tracking can fail. The solution is to detect

individual bees in the merged blob using the shape information from the detection of the previous

frame when the bees have not merged yet. The shape information is recorded and the individual

bee location is found using the Hough transform. In summary, bee tracking is performed using

the Kalman filter and Hungarian algorithm with the Hough transform for the merging problem.

Pollen detection and measurement is the final aim of this research. It is impossible to detect pollen

directly, because pollen sacs are too small. Therefore, the method of small object detection

cannot be employed in this research. However, in the part based recognition model, each part is

generally represented by a small template, and then the spatial relationships between parts are

represented by statistical models between pairs of parts (Crandall et al., 2005). This method can

be applied for the pollen. The approach is to detect individual bees on the whole video frame, and

then detect pollen sacs on the smaller individual bee images. Initially, bee blobs are analysed to

remove main body of bees. Then, pollen sacs can be detected separately from the other parts of

bee (legs, wings, etc.) by using colour thresholding. After that, the detection is not perfect,

because the colour detection may leave noisy blobs which are not pollen. The blob of the pollen

may not be similar to the actual pollen sac’s shape and area. Therefore, after the colour detection,

the output includes not only pollen blobs, but also non-pollen blobs. These blobs are found four

regular features which can be used for distinguishing pollen and non-pollen blobs. The features

are analysed by receiver operating characteristic (ROC) and the statistical methods.

Another suitable pollen detection and measurement approach is machine learning. This method

can mine the data of pollen sacs on images and find pollen sacs. The latest machine learning

method is deep learning which uses deep neural networks to detect objects. The most popular

42

deep learning neural network for computer vision is CNN. Different CNNs approach for object

detection have been built in recent years. Very popular approaches include SSD, YOLO, Faster

RCNN and Mask RCNN. Faster RCNN includes an object proposal network before the detection.

This is a benefit for small object detection (Liu et al., 2016). SSD and YOLO include only one

network, which can increase the detection speed, but it is harder for small object detection (Liu et

al., 2016, Redmon et al., 2016). The latest methods of YOLO v3 (Redmon and Farhadi, 2018)

and Mask RCNN (He et al., 2017) have better performance on smaller object detection, but they

are not convenient to use with the hardware limitations in this research. The Faster RCNN is

chosen for pollen detection and measurement in this research, because the pollen sac is very

small compared to the size of the bee body. In addition, it has been built in the MATLAB (2018a)

neural network tool box, which is easy to apply for the pollen detection and measurement. Thus,

the pollen detection model can be combined with the bee tracking model to measure pollen

carrying bees.

43

Chapter 3

Chapter 3 Background of research
__

This research is implemented using the following areas of computer/machine vision. Image

segmentation is used to detect the bees by motion detection and colour thresholding. This

research also includes morphological dilation and erosion. Bee tracking is implemented using the

Kalman filter and the Hungarian method. Blob analysis is used to detect the small pollen sacs on

the bees’ legs. This section will explore these methods to give some background to the research.

3.1 Motion detection using the Gaussian mixture model
Tracking the motion of bees flying with their pollen sacs to the entrance of the hive is a feature of

this research. The video recording frame pixels can be separated into two groups: one group of

pixels represents the foreground movement and the other group is the stationary background.

This is based on the Gaussian mixture model (GMM) (Stauffer and Grimson, 1999).

The GMM estimates a probability density distribution (pdf) from a sequence of intensities [𝐼𝐼0,𝑥𝑥,

𝐼𝐼1,𝑥𝑥, . . ., 𝐼𝐼𝑡𝑡,𝑥𝑥] for a pixel at a position x. A mixture model consisting of K Gaussian distributions at

time instant t can be denoted by

𝑃𝑃�𝐼𝐼𝑡𝑡,𝑥𝑥� = ∑ 𝜔𝜔𝑡𝑡−1,𝑥𝑥,𝑘𝑘ℵ(𝐼𝐼𝑡𝑡,𝑥𝑥; 𝜇𝜇𝑡𝑡−1,𝑥𝑥,𝑘𝑘 ,𝜎𝜎𝑡𝑡−1,𝑥𝑥,𝑘𝑘
2)𝐾𝐾

𝑘𝑘=1 3-1

where ℵ symbolizes a Gaussian probability density function (pdf):

ℵ(𝐼𝐼; 𝜇𝜇,𝜎𝜎2) = 1
�2𝜋𝜋𝜎𝜎2

𝑒𝑒𝑒𝑒𝑒𝑒 (− (𝐼𝐼− 𝜇𝜇)2

2𝜎𝜎2
) 3-2

In equation (3-1), the 𝜇𝜇𝑡𝑡−1,𝑥𝑥,𝑘𝑘 and 𝜎𝜎𝑡𝑡−1,𝑥𝑥,𝑘𝑘
2 are the Gaussian mean and variance parameters of the

k-th single distribution. 𝜔𝜔𝑡𝑡−1,𝑥𝑥,𝑘𝑘 is the mixture weight for maintaining this mixture model. K is

normally 3 to 5 for the object detection on the video.

The GMM uses Gaussian pdfs to characterize the features of each pixel in an image. The mixture

model is updated whenever a new image frame is obtained. Each pixel in the current image is

tested as a match with the Gaussian mixture model. A match is defined as a pixel value within

2.5 standard deviations of a distribution. The matched pixel is assumed to belong to the

background, otherwise it is a foreground (or moving object) pixel (Stauffer and Grimson, 1999).

After that, the Gaussian mixture model is updated.

In the new image frame, if none of the K distributions match the new pixel value, the least probable

single distribution is replaced by a new single distribution with the new pixel value as its mean

44

value, and an initially high variance, and low prior weight. The prior weights (of the k-th single

distribution at time t in pixel x) are adjusted as follows:

𝜔𝜔𝑡𝑡,𝑥𝑥,𝑘𝑘 = (1 − 𝛾𝛾)𝜔𝜔𝑡𝑡−1,𝑥𝑥,𝑘𝑘 + 𝛾𝛾𝑀𝑀𝑡𝑡,𝑥𝑥,𝑘𝑘 3-3

where γ is a learning rate and the 𝑀𝑀𝑡𝑡,𝑥𝑥,𝑘𝑘 is 1 for the single distribution which matched, and 0 for

the remaining distributions. After this approximation, the weights are renormalized. The 1/γ

defines the time constant which determines the speed at which the distribution’s parameters

change. The 𝜔𝜔𝑡𝑡,𝑥𝑥,𝑘𝑘 is a causal low-pass filtered average of the (thresholded) posterior probability

that pixel values have matched model k given observations from time 1 through t . This is

equivalent to the expectation of this value with an exponential window on the past values (Stauffer

and Grimson, 1999).

The parameters 𝜇𝜇 and 𝜎𝜎 for unmatched distributions remain the same. The parameter of the

distribution which matches the new observation are updated as below:

𝜇𝜇𝑡𝑡,𝑥𝑥,𝑘𝑘 = (1 − 𝛼𝛼)𝜇𝜇𝑡𝑡−1,𝑥𝑥,𝑘𝑘 + 𝛼𝛼𝐼𝐼𝑡𝑡,𝑥𝑥 3-4

 𝜎𝜎𝑡𝑡,𝑥𝑥,𝑘𝑘
2 = (1 − 𝛼𝛼)𝜎𝜎𝑡𝑡−1,𝑥𝑥,𝑘𝑘

2 + 𝛼𝛼(𝐼𝐼𝑡𝑡,𝑥𝑥,𝑘𝑘 − 𝜇𝜇𝑡𝑡−1,𝑥𝑥,𝑘𝑘)𝑇𝑇(𝐼𝐼𝑡𝑡,𝑥𝑥,𝑘𝑘 − 𝜇𝜇𝑡𝑡−1,𝑥𝑥,𝑘𝑘) 3-5

where α is the second learning rate:

𝛼𝛼 = 𝛾𝛾ℵ(𝐼𝐼𝑡𝑡,𝑥𝑥; 𝜇𝜇𝑡𝑡−1,𝑥𝑥,𝑘𝑘 ,𝜎𝜎𝑡𝑡−1,𝑥𝑥,𝑘𝑘
2) 3-6

The α controls how fast the estimate 𝜇𝜇 converges to new observations. In updating the Gaussian

parameters 𝜇𝜇 and 𝜎𝜎2, their values should reflect the up-to-date statistics of a scene as accurately

as possible. It is preferable to set the learning rates to large values to quickly derive Gaussian

distributions that fit new observations. A higher learning rate for 𝜇𝜇 and 𝜎𝜎2 improves model

convergence and accuracy and brings few side effects in model stability (Lin et al., 2011).

One of the advantages of this method is that when an object is allowed to become part of the

background, it does not destroy the existing model. The original background colour remains in

the mixture until it becomes the k-th most probable and a new colour is observed. Conversely, if

an object is stationary just long enough to become part of the background and then it moves, the

distribution describing the previous background still exists with the same µ and 𝜎𝜎2, but a lower ω.

It will be quickly re-incorporated into the background.

As the parameters of each pixel update, it is necessary to determine which of the Gaussians of

the mixture are most likely produced by the background processes. Heuristically, it should be the

Gaussian distributions which have the most supporting evidence and the least variance. This is

the background model estimation.

When a new object occludes the background, it will not match one of the existing distributions,

but it will either create a new distribution or increase the variance of an existing distribution. In

addition, the variance for this distribution is expected to remain larger than a background pixel

until the moving object stops. Considering this, it is necessary to decide what portion of the

mixture model best represents background processes.

45

The Gaussians are ordered by the value of ω/σ. This value increases both as a distribution gains

more evidence and as the variance decreases. After re-estimating the parameters of the mixture,

it is sorted from the matched (less probable) distribution towards to the most probable background

distribution. This orders the list of distributions, where the most likely background distributions

remain on top and the less probable background distributions move to the bottom and are

eventually replaced by new distributions. The first B distributions are chosen as the background

model so that:

𝐵𝐵 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏(∑ 𝜔𝜔𝑡𝑡,𝑥𝑥,𝑘𝑘
𝑏𝑏
𝑘𝑘=1 > 𝑇𝑇). 3-7

𝑇𝑇 is a measure of the minimum portion of the data that should be accounted for by the

background. If a small value of 𝑇𝑇 is chosen, the background model is usually unimodal. In this

case, only the most probable distribution is used. If 𝑇𝑇 is higher, a multi-modal distribution caused

by a repetitive background motion, such as leaves, a flag in the wind or river surface, can result

in more than one colour being included in the background. This allows the background to accept

two or more different colours.

The first B background Gaussian distributions are used to model the background. The pixels are

determined as foreground points if there is no match with a background Gaussian distribution,

otherwise, they are determined as background points. Actually, the foreground pixels belong to

the moving object. If the background object also moves, it is hard to separate it from the

foreground.

3.2 Colour segmentation
Colour segmentation means using colour to segment images. This is the natural method to start

object detection. It is widely used in different ways to detect objects. In the frame flow, each frame

is checked for the desired object with this method being repeated for each frame image on the

video. If an object has only one colour, it can be detected. However, if the object has multiple

colours, it requires a more complicated calculation.

3.2.1 Histogram thresholding with colour
In colour base segmentation, a simple method is to perform histogram thresholding on the colour

image. Histogram thresholding is normally used for monochrome image segmentation (Littmann

and Ritter, 1997). For example, an image 𝑓𝑓(𝑥𝑥,𝑦𝑦) may be composed of two light objects on a dark

background.

46

0 255

Intensity

Nu
m

be
r o

f p
ix

el
s

Total pixels

1T 2T

Figure 3.1 The example of histogram of an assumed image

Thus, the pixels would have intensity values grouped into three dominant modes, as indicated in

Figure 3.1. The obvious way to extract the second light object from the background and the other

lighter object is to select the thresholds of 𝑇𝑇1 and 𝑇𝑇2 for separating these modes. Then, any point

(𝑥𝑥,𝑦𝑦) in the image at 𝑇𝑇1 < 𝑓𝑓(𝑥𝑥,𝑦𝑦) < 𝑇𝑇2 is an object point, otherwise the point does not belong to

this object. In other words, the segmented image g(x, y) is:

𝑔𝑔(𝑥𝑥, 𝑦𝑦) = �
1, 𝑇𝑇1 < 𝑓𝑓(𝑥𝑥,𝑦𝑦) < 𝑇𝑇2

0, 𝑓𝑓(𝑥𝑥,𝑦𝑦) < 𝑇𝑇1, 𝑜𝑜𝑜𝑜 𝑓𝑓(𝑥𝑥,𝑦𝑦) > 𝑇𝑇2
 3-8

𝑔𝑔(𝑥𝑥, 𝑦𝑦) is a binary image which displays the blob of the second light object. This is a simple

example of multiple thresholding. It can be seen that if the object includes different intensity

values, it needs more than two thresholds, resulting in the calculation being complicated. It can

be seen that single intensity object detection is faster than texture and pattern detection.

In the case of a colour image, because it has multiple colour dimensions (Cheng et al., 2001), the

thresholding is applied in the three dimensions of the colour channels. For example, the normal

colour video has three channels of red, green and blue, which is the RGB colour space. The

colour object is detected with histogram thresholding on the three image channels. There are

some ways of simplifying the calculation, which are discussed in the next section

3.2.2 Colour spaces
For an RGB image, thresholding could be used for each component of the colour space (Siang

Tan and Mat Isa, 2011), but this is computationally expensive. One way to solve this problem is

to develop efficient methods for storing and processing the information of the 3-D colour space

image (Cheng et al., 2001). Another way is to project the 3-D colour space onto a lower

dimensional space (Cheng et al., 2001).

One more way for object detection is to consider other colour spaces rather than RGB. Many

different types of colour space have been developed for different purposes. Traditionally there

have been various colour spaces for image segmentation, such as LAB, XYZ, HSV, YCbCr, YIQ

and DHT (Gritzman et al., 2014, Kumar, 2014). In the LAB colour space, L is the lightness, and

A and B are measures of the colour opponents green-red and blue-yellow. The XYZ space is

defined as luminance (Y) and chromaticity information (X and Z). Z is quasi-equal to blue

47

stimulation; and X is a mix (a linear combination) of human cone response curves chosen to be

nonnegative. The YCbCr is a family of colour spaces used as a part of the colour image pipeline

in video and digital photography systems. ‘Y’ is the luma component, and ‘Cb’ and ‘Cr’ are the

blue-difference and red-difference chroma components. YIQ is used by the NTSC colour TV

system. The ‘Y’ component represents the luma information, and is the only component used by

the black-and-white television receiver. ‘I’ and ‘Q’ represent the other chrominance information

differently from ‘X’ and ‘Y’.

The HSV colour space is used for this research. It has the Hue-Saturation-Value (HSV) colour

channels, as shown in Figure 3.2. In the HSV image, the Hue component contains information

about the colour. Hue defines the dominant ‘colour’, as degrees in a circle going from 0° around

to 360°. Red occurs at 0° (and also 360°), green is at 120° and blue is at 240°. The Saturation

represents the magnitude of the dominant colour (R, G or B). A higher value of Saturation gives

a deeper colour. The Value presents the brightness of the pixel. In this channel, a higher pixel

value relates to white and lightness. The HSV colour space and conversion between RGB and

HSV were described by (Cardani, 2001). The colour segmentation was used to detect traffic signs

(Fleyeh, 2006).

Hue

Saturation

Value 0

255

(Black)

(White)

0 (Light)255 255(deep)
(Red)(cyan)

Hue

Red

YellowGreen

cyan

Blue Purple

360
0180

Figure 3.2 The HSV colour space

Assume that R, G and B are the values of the three channels in a pixel in an RGB image and that

H, S and V are the values in HSV image. The RGB is converted to HSV as follows:

𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅,𝐺𝐺,𝐵𝐵) 3-9
𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑅𝑅,𝐺𝐺,𝐵𝐵) 3-10
𝐶𝐶 = 𝑀𝑀 −𝑚𝑚 (𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 3-11

and then:

48

𝐻𝐻′ =

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, 𝑖𝑖𝑖𝑖 𝐶𝐶 = 0 (𝑅𝑅 = 𝐺𝐺 = 𝐵𝐵)

𝐺𝐺−𝐵𝐵
𝐶𝐶

 , 𝑖𝑖𝑖𝑖 𝑀𝑀 = 𝑅𝑅(𝑅𝑅 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺 ≥ 𝐵𝐵
𝐺𝐺−𝐵𝐵
𝐶𝐶

+ 6 , 𝑖𝑖𝑖𝑖 𝑀𝑀 = 𝑅𝑅(𝑅𝑅 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺 < 𝐵𝐵
𝐵𝐵−𝑅𝑅
𝐶𝐶

+ 2 , 𝑖𝑖𝑖𝑖 𝑀𝑀 = 𝐺𝐺(𝐺𝐺 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
𝑅𝑅−𝐺𝐺
𝐶𝐶

+ 4 , 𝑖𝑖𝑖𝑖 𝑀𝑀 = 𝐵𝐵(𝐵𝐵 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

 3-12

Then H = 60 ∗ 𝐻𝐻′. When ‘C’ equals zero, ‘H’ is typically assigned to zero as well, and then:

𝑉𝑉 = 𝑀𝑀 3-13
𝑆𝑆 = 𝐶𝐶/𝑉𝑉 3-14

where ‘V’ and ‘S’ are both in the range 0 to 1.

When histogram thresholding detection is applied on the RGB colour space, the colour space

needs 3-D histogram thresholding to detect an object because this colour space has three colour

channels. Conversely, the HSV colour space can reduce the number of dimensions to detect

colours. Therefore, thresholding can be reduced from 3-D to 2-D (Hue and Saturation).

However, colour thresholding can only detect an object with a particular colour, and does not work

for multiply coloured objects. All colour spaces have some disadvantages. For example, in an

HSV image, an intensity that is too low or too high and saturation that is too low can affect the

stability of the Hue (Vitabile et al., 2001). In addition, according to the equations for colour

conversion, the white and black colours are not stable in the conversion. For example, although

R = 255, G = 254 and B = 253 appears as white to human vision, the conversion becomes H′ =

0.5. Therefore, if a pixel is on a too light or too dark object, it may be lost or detected as the wrong

colour.

3.3 Hough transform detection
The Hough transform is a feature extraction technique used in image analysis, computer vision,

and digital image processing. The purpose of the technique is to find imperfect instances of

objects within a certain class of shapes by a voting procedure. This voting procedure is carried

out in a parameter space, from which object candidates are obtained as local maxima in a so-

called accumulator space that is explicitly constructed by the algorithm for computing the Hough

transform.

The classical Hough transform was utilized to identify straight lines in an image, but it has been

extended to identify the positions of arbitrary shapes such as circles and ellipses.

Sometimes, edge detection can be used as a pre-processing stage to obtain image pixels that

are on the desired curve in the image space. In contrast, because of imperfections in either the

image data or the edge detector, there may be missing points or pixels on the desired curves as

well as spatial deviations between the ideal shapes and the noisy edge points as they are

obtained from the edge detector. For these reasons, it is often necessary to group the extracted

edge features to an appropriate set of lines, circles or ellipses. The aim of the Hough transform is

to address this problem by making it possible to perform groupings of edge points into object

candidates by performing an explicit voting procedure over a set of parameterized image objects.

49

3.3.1 The Hough transform theory
The simplest example of the Hough transform is detecting straight lines (Illingworth and Kittler,

1988). The line’s equation is written as:

𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 3-15

where x and y are the horizontal and vertical coordinates of the line, a is the slope of the line, and

b is the y-intercept. According to equation (3-15), the line is a set of parameters (a, b). The

equation can be rewritten as:

𝑏𝑏 = 𝑦𝑦 − 𝑥𝑥𝑥𝑥 3-16

If it is considered that x and y are parameters, and a and b are variables, this is a new line in the

(a, b) space which is parameterized by x and y. Therefore, a point in (x, y) space is a line in (a, b)

space. Another point (x, y) will be another line in (a, b) space.

Figure 3.3 shows the space transform. In (x, y) space there are two points (0, 1) and (1, 2) on the

same line (y = x+1). In the other (a, b) space, these two points are transformed into two lines (b

= 0a + 1) and (b = a + 2) which are crossing at point (1, 1), which is the line (y = x + 1) in (x, y)

space. With this method, in order to detect a line in (x, y) space, all the edge points are

transformed to (a, b) space. Then it is obvious to see some lines concentrate to a single

intersection point in (a, b) space. This point in (a, b) space represents a line in (x, y) space on

which many of the edge points are located. However, a vertical line in (x, y) space has unlimited

slope and no y-intercept, so its parameters a and b are infinite. Therefore, the vertical line cannot

be detected by this means.

1 2

1

2

x

y

y=x+1

1 2

1

2

a

b

(1,2)

(0,1)

(1,1)

b=a+2

b=0a+1

(x,y) space (a,b) space

Figure 3.3 The (x, y) space and (a, b) space transformation

There is another method to detect a straight line from (Duda and Hart, 1972). In the (x, y) space,

a straight line is defined as the equation:

𝑟𝑟 = 𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 3-17

where r is the distance from the origin to the closest point on the straight line. 𝜃𝜃 is the angle

between the x-axis and the line linking the origin with that closest point. Each line in the (x, y)

space can be transformed to a point in the (r, 𝜃𝜃) space (or (r, 𝜃𝜃) plane). The (r, 𝜃𝜃) plane is also

referred to as Hough space for the set of straight lines in two dimensions. For a single point in the

(x, y) plane, all straight lines going through that point are on a sinusoidal curve in the (r, 𝜃𝜃) plane,

50

which is unique to that point. Two or more points on a straight line in the (x, y) plane produce

sinusoids which intersect at the point (r, 𝜃𝜃) for the line. Therefore, the problem of detecting

collinear points is converted to the problem of finding concurrent curves.

x

y

(x,y) space

(𝑥𝑥1,𝑦𝑦1)

(𝑥𝑥2,𝑦𝑦2)

r

space
𝜃𝜃

(r,𝜃𝜃)

𝜃𝜃 = 𝜃𝜃′

r = r′

r′

𝜃𝜃′

r = 𝑥𝑥1 cos𝜃𝜃 + 𝑦𝑦1 sin 𝜃𝜃

r = 𝑥𝑥2 cos𝜃𝜃 + 𝑦𝑦2 sin 𝜃𝜃

Figure 3.4 The (x, y) space and the (r, 𝜃𝜃) space transformation

Figure 3.4 shows an example of the relationship between (x, y) space and (r, 𝜃𝜃) space. The two

curves in the (r, 𝜃𝜃) space represent the families of lines that pass through the two particular points

(𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2) in the (x, y) space. The intersection point (𝑟𝑟′,𝜃𝜃′) of the two curves

corresponds to the straight line that goes through the two points (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2) in the (x, y)

space. Using this method, a horizontal line has 𝜃𝜃 = 0 and r equal to the intercept with the y-axis,

and a vertical line has 𝜃𝜃 = 90 and r equal to the intercept with the x-axis.

The Hough transform algorithm uses a 2-dimensional array, which is an accumulator (or voting

map), to detect a line as specified in equation (3-17). The dimension of the accumulator depends

on the number of unknown parameters, i.e. two dimensional for the parameters r and 𝜃𝜃 in the pair

(r, 𝜃𝜃). For each pixel at (x, y) and its neighbours, the Hough transform determines whether or not

there is enough evidence of a straight line at the pixel. If so, it calculates the parameters (r, 𝜃𝜃) of

the line, and increments the value of the appropriate accumulator bin. The bins with the highest

values, especially those at local maxima in the accumulator space, are the most likely lines to be

extracted. The simplest way of finding these highest value peaks is by applying some form of

threshold, but other techniques may yield better results in different circumstances – determining

which lines are found as well as how many. After that, it is necessary to find which lines match

which parts of the image, because the detected lines do not contain length information. Moreover,

the edge detection before the Hough transform is imperfect, so there can be errors in the

accumulator space, which means it may find inappropriate peaks, and thus inappropriate lines.

Finally, the result of the Hough transform is a two dimensional matrix similar to the accumulator

– the (r, 𝜃𝜃) axis. Each element of the matrix is the number of points (or pixels) which are located

on the line represented by quantized parameters (r, 𝜃𝜃). Therefore, the element with the highest

value represents the most likely straight line in the input image.

3.3.2 An simple example of straight line detection
Assume there are three points corresponding to a line on an image as shown in Figure 3.5:

51

x

y (𝑥𝑥1,𝑦𝑦1)

(𝑥𝑥2,𝑦𝑦2)

(𝑥𝑥3,𝑦𝑦3)

30°

Angle Distance

0 4.00

30 6.95

60 8.13

90 7.00

120 4.05

x

y

(𝑥𝑥1,𝑦𝑦1) (𝑥𝑥2,𝑦𝑦2)

(𝑥𝑥3,𝑦𝑦3)

30°

Angle Distance

0 5.75

30 7.96

60 8.07

90 6.00

120 2.35

x

y
(𝑥𝑥1,𝑦𝑦1)

(𝑥𝑥2,𝑦𝑦2)
(𝑥𝑥3,𝑦𝑦3)

30°

Angle Distance

0 7.45

30 8.95

60 8.05

90 5.00

120 0.60

Figure 3.5 The process of the Hough transform.
Note: the green line is the one that crosses three points.

In Figure 3.5, each point has five lines going through it at different angles. These are displayed

as solid lines with different colours. For each line, the shortest distance to the origin is shown as

a dashed line. The distance to the origin and the angle of each dashed line are listed in the tables.

These parameters can be used to create the Hough transform (r, 𝜃𝜃) space:

r

𝜃𝜃 0

10

8

6

4

2

30 60 90 120

5.00

6.00

7.00

r = 𝑥𝑥1 cos𝜃𝜃 + 𝑦𝑦1 sin 𝜃𝜃

r = 𝑥𝑥2 cos𝜃𝜃 + 𝑦𝑦2 sin 𝜃𝜃

r = 𝑥𝑥3 cos𝜃𝜃 + 𝑦𝑦3 sin𝜃𝜃

Figure 3.6 The transform result in Hough (r, 𝜃𝜃) space.

The Hough transform (r, 𝜃𝜃) space from the three points above is indicated by Figure 3.6. The

accumulator matrix is built in the same (r, 𝜃𝜃) space as Figure 3.6. Each point (or pixel) is the bin

for counting matching curve points. From Figure 3.6, except for the green point, the point bins

shown on the curves have a value of 1. The green point bin has a value of 3, because it matches

three curves. All other point bins have the value 0. In other words, the point where the curves

intersect most often gives the distance and angle of the most likely straight line, which intersects

the points being tested. The diagram shows that the curves intersect at the green point, and this

52

corresponds to the solid green line in the (x, y) space above, which passes through all three

points.

3.3.3 The generalized Hough transform
The transform described above applies only to finding straight lines. A similar transform can be

generalized for finding any other shape that can be represented by parameters. For example, a

circle can be transformed into a set of three parameters, the centre coordinates and radius, so

the Hough space becomes three dimensional. Ellipses and other curves can also be detected in

this way.

However, the computational complexity increases rapidly as the space dimensionality increases.

In this situation, it is necessary to find some way to reduce the number of dimensions to simplify

the computing. Take circle detection as an example. The equation of a circle can be written as:

(𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2 − 𝑅𝑅2 = 0 3-18

where (𝑥𝑥0,𝑦𝑦0) is the centre of the circle and R is its radius. In this case, the Hough transform is a

transformation from the (x, y) space to the (𝑥𝑥0,𝑦𝑦0 ,𝑅𝑅) space (this is a 3-dimensional space). The

(𝑥𝑥0,𝑦𝑦0 ,𝑅𝑅) space is also the accumulator space which includes bins for each pixel. If the radius of

the circle is known before detection, the accumulator is reduced to 2-dimensions. As a simple

case, for example, in Figure 3.7 there are five discrete points. If it is assumed that a circle with

radius R = 1 intersects four of the points, then because the radius is known, the dimension of the

accumulator space is reduced to two.

1 3 5

3

2

1

x

y (x,y) space

4

5

2 4

x y
2 1
3 2
2 3
1 2
4 3

Figure 3.7 The 5 points at (x, y) space. 4 of them are in a same circle

For any fixed point (x, y), all possible circles with radius R = 1 passing through the point will

contribute to the accumulator matrix. Figure 3.8 displays an example of a green point with four

circles (with R = 1) passing through it.

53

1 3 5

3

2

1

x

y (x,y) space

4

5

2 4

Figure 3.8 An example of circles intersecting the green point

At some distinct point (𝑥𝑥0,𝑦𝑦0, 1) in the accumulator matrix, a point has the highest number of

circles (in the parameter (𝑥𝑥0,𝑦𝑦0 , 1) space) passing through it. This is the probable candidate

location of the circle.

1 3 5

3

2

1

space

4

5

2 4

(𝑥𝑥0,𝑦𝑦0, 1)

𝑥𝑥0

𝑦𝑦0

Figure 3.9 The Hough (𝑥𝑥0,𝑦𝑦0, 1) space result

Figure 3.9 shows the Hough (𝑥𝑥0,𝑦𝑦0, 1) space. On these axes, the five points are treated as circle

centres. These circles have the same radius as the circle in (x, y) space. The black point (2, 2)

matches 4 circles. This point is the centre of the circle in the (x, y) space of image.

The circle detection example above is a special situation with a known radius. If the radius of the

circle is unknown, it is necessary to use a 3-dimensional accumulator space to search for circles

with an arbitrary radius. This is more computationally expensive. This method can also detect

circles which are partially outside the accumulator space, as long as enough of the circle’s area

is still present within the space.

In summary, the Hough transform algorithm uses the parameters from a shape's curves or

equations. For example, straight lines, circles and ellipses have equations. The variables in the

equations are the parameters which are utilized to create the Hough space. The number of

parameters determines the dimension of the Hough space. The Hough space can be used as the

accumulator matrix. Each element of this accumulator is a bin that counts the number of curves

54

drawn in the Hough space that intersect the corresponding pixel. The bin which has highest value

is the candidate value of the desired shape equation. Therefore, if the shape is only partly in the

image, it still can be detected, even if appears only as a broken line, half circle or incomplete

ellipse.

However, the dimension of the Hough space depends on the number of parameters. Therefore,

if the shape has a complicated equation or curve, it increases the computational requirement. The

computational problem can be reduced by decreasing the dimension of the Hough space, by

selecting values for some of the parameters beforehand, as in the circle detection example above.

Moreover, another way to reduce the computing is to decrease the accumulation sample space.

For instance, in Figure 3.5, each point can be given three lines instead of five lines, and it is still

possible to detect the line that intersects the three points.

In addition, if a shape is non-analytical, there is no certain equation for it, so it is important to find

an approach to detect the shape. Once the approach is found, the next step is the accumulator

matrix creation. This research applies the Hough transform to detect bees when they fly across

each other. The bees' shapes are somewhat similar in successive frames, so the shapes in the

previous frame are used for the bee detection in the next frame.

3.4 Morphological dilation and erosion
Mathematical morphology in image processing is based on set theory (Gonzalez and Woods,

2011). Sets in mathematical morphology represent objects in an image. For example, the set of

all white pixels in a binary image is a complete morphological description of the image. In binary

images, the set members come from a 2-D integer space (𝑍𝑍2), where each element of the set is

a 2-D vector whose coordinates are the (𝑥𝑥,𝑦𝑦) coordinates of a white pixel in the image. The most

commonly used morphological algorithms are dilation and erosion. These are used to smooth

objects in an image. This research utilises these two operations for bee detection. This section

introduces these algorithms. Before explaining the main operations, this section describes some

basic concepts of set reflection and translation in morphology.

The concepts of set reflection and translation are used extensively in morphology. If B is the set

of pixels representing an object in an image, then:

𝐵𝐵� = {𝜇𝜇|𝜇𝜇 = −𝑏𝑏, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏 ∈ 𝐵𝐵} 3-19

where 𝐵𝐵� is defined as the reflection of set B, which is the set of points in B whose (𝑥𝑥, 𝑦𝑦)

coordinates have been replaced by (−𝑥𝑥,−𝑦𝑦). Figure 3.10 (a) and (b) show a simple set and its

reflection. The shaded triangle is constructed of pixels which are members of the set under

consideration. In a binary image, the sets of interest are pixels corresponding to objects. These

are shown in white, and all other pixels in black. The terms foreground and background are often

used to denote the sets of pixels in an image defined to be objects and non-objects respectively.

55

B

B̂ u

v

(a) (b) (c)

zB)(

Figure 3.10 The example of reflection and translation.
Note: (a) A set B. (b) Its reflection. (c) Its translation by z(u,v).

The translation of a set B by point z(𝑢𝑢, 𝑣𝑣), denoted (B)𝑧𝑧, is defined as:

(𝐵𝐵)𝑧𝑧 = {𝑐𝑐|𝑐𝑐 = 𝑏𝑏 + 𝑧𝑧, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏 ∈ 𝐵𝐵} 3-20

If B is the set of pixels representing an object in an image, then (B)𝑧𝑧 is the set of points in B

whose (𝑥𝑥, 𝑦𝑦) coordinates have been replaced by (𝑥𝑥 + 𝑢𝑢, 𝑦𝑦 + 𝑣𝑣). Figure 3.10(c) illustrates this

concept from the set B from Figure 3.10(a).

3.4.1 Morphological erosion
With A and B as sets in 𝑍𝑍2, the erosion of A by B, denoted A ⊖ B, is defined as:

𝐴𝐴⊖ 𝐵𝐵 = {𝑧𝑧|(𝐵𝐵)𝑧𝑧 ⊆ 𝐴𝐴} 3-21

In words, this equation indicates that the erosion of A by B is the set of all points z such that B,

translated by z, is contained in A. In the following discussion, set B is assumed to be a structuring

element. Because the statement that B has to be contained in A is equivalent to B not sharing

any common elements with the background, the erosion can be expressed in the following

equivalent form:

𝐴𝐴⊖ 𝐵𝐵 = {𝑧𝑧|(𝐵𝐵)𝑧𝑧⋂𝐴𝐴𝑐𝑐 = ∅} 3-22

Where 𝐴𝐴𝑐𝑐 is the complement of A and ∅ is the empty set.

Figure 3.11 shows examples of erosion. The elements of A and B are shown shaded and the

background is white. The solid boundary in Figure 3.11(c) is the limit beyond which further

displacements of the origin of B would lead to the structuring element to cease being completely

contained in A. Thus, the points within and including this boundary, constitute the erosion of A by

B. The erosion is shaded in Figure 3.11(c). In addition, the erosion is simply the set of values of

z that satisfy equation (3-21) and (3-22). The boundary of set A is shown dashed in Figure 3.11

(c) and (e) only for reference, because it is not part of the erosion operation. Figure 3.11(d) shows

an elongated structuring element, and Figure 3.11(e) shows the erosion of A by this element. The

original set has been eroded to a rectangle.

56

d

d

A(a) (b)

4/d
4/d

B
BAΘ

4/3d8/d 8/d
(c)

4/d

(d)

B
4/3d

4/d8/3d 8/3d

4/3d

8/d

8/d

8/d
BAΘ

(e)

Figure 3.11 Examples of erosion.
Note: (a) The set A. (b) Square structuring element B. (c) Erosion
of A by B, shown shaded. (d) Elongated structuring element. (e)
Erosion of A using this element. The dotted border in (c) and (e)
is the boundary of set A, shown for reference.

3.4.2 Morphological dilation
With A and B as sets in 𝑍𝑍2, the dilation of A by B, denoted 𝐴𝐴⨁𝐵𝐵, is defined as:

𝐴𝐴⨁𝐵𝐵 = �𝑧𝑧�(𝐵𝐵�)𝑧𝑧⋂𝐴𝐴 ≠ ∅� 3-23

This equation is based on reflecting B about its origin, and shifting this reflection by 𝑧𝑧 (see Figure

3.10). The dilation of A by B is the set of all displacements, 𝑧𝑧, such that 𝐵𝐵� and A overlap by at

least one element.

It is assumed that B is the structuring element (SE) and A is the set (image objects) to be dilated.

B can be various different shapes, such as a square, diamond, circle or disk. The dilation of set

A by B is different for different SE shapes.

The dilation “grows” and “thickens” objects in a binary image. The specific manner and extent of

this thickening is controlled by the shape of the structuring element used. Figure 3.12 shows an

example of dilation. The set A is shown shaded in Figure 3.12 (a) and Figure 3.12 (b) shows a

structuring element (in this case B = 𝐵𝐵� because the SE is symmetric about its origin). The dashed

line in Figure 3.12 (c) shows the original set A for reference, and the solid line shows the limit

beyond which any further displacements of the origin of 𝐵𝐵� by z would cause the intersection of 𝐵𝐵�

and A to be empty. Therefore, all points on and inside this boundary constitute the dilation of A

by B. Figure 3.12 (d) shows a structuring element designed to achieve more dilation vertically

than horizontally, and Figure 3.12 (e) indicates the dilation achieved with this element.

57

d

d

A
(a) (b)

4/d
4/d

B

BA⊕

8/d
(c)

4/d

(d)

BB ˆ=

4/3d

8/3d

8/d

8/d

8/d

(e)

d

d

8/3dd

BA⊕

Figure 3.12 Examples of dilation.
Note: (a) The set A. (b) Square structuring element B. (c) Dilation of A by
B, which is shown shaded. (d) Elongated structuring element. (e) Dilation
of A by B using this element. The dotted border in (c) and (e) is the
boundary of set A, shown for reference.

3.4.3 Image opening, closing and hole filling
3.4.3.1 Image opening and closing
Dilation expands the components of an image, while erosion shrinks them. Two other important

morphological operations are opening and closing. Opening generally smooths the contour of an

object, breaking narrow isthmuses, and eliminating thin protrusions. Closing on the other hand,

while it tends to smooth sections of contours, is the opposite of opening in that it generally fuses

narrow breaks and long thin gulfs, eliminating small holes, and filling gaps in the contour.

The opening of set A by structuring element B, denoted 𝐴𝐴 ∘ 𝐵𝐵, is defined as:

𝐴𝐴 ∘ 𝐵𝐵 = (𝐴𝐴⊝ 𝐵𝐵) ⊕𝐵𝐵 3-24

Thus, opening A by B is the erosion of A by B, followed by a dilation of the result by B.

The closing of set A by structuring element B, denoted 𝐴𝐴 • 𝐵𝐵, is defined as:

𝐴𝐴 • 𝐵𝐵 = (𝐴𝐴⊕ 𝐵𝐵) ⊝𝐵𝐵 3-25

This indicates that the closing of A by B is the dilation of A by B, followed by the erosion of the

result by B.

58

3.4.3.2 Filling holes
A hole is defined as a background region surrounded by a connected border of foreground pixels.

In an image, filling holes is an algorithm based on set dilation, complementation, and intersection.

It is assumed A is a set whose elements are 8-direction-connected boundaries, each boundary

enclosing a background region (a hole). Each hole pixel is a point, the aim is to fill all of the hole

points with 1s.

An array (𝑋𝑋0) of 0s is formed, (the same size as the array containing A), except at the locations

in 𝑋𝑋0 corresponding to the points of holes, which are set to 1. Then, the procedure of filling all the

holes with 1s is:

𝑋𝑋𝑛𝑛 = (𝑋𝑋𝑛𝑛−1 ⊕ 𝐵𝐵)⋂𝐴𝐴𝑐𝑐 𝑛𝑛 = 1, 2, 3, … 3-26

where B is the symmetric structuring element in Figure 3.13 (c). The algorithm terminates at

iteration step 𝑛𝑛 if 𝑋𝑋𝑛𝑛 = 𝑋𝑋𝑛𝑛−1. The final set 𝑋𝑋𝑛𝑛 contains all the filled holes. The set union of 𝑋𝑋𝑛𝑛 and

A contains all the filled holes and their boundaries.

A BcA

0X 1X 2X

3X 5X


AX 5

Figure 3.13 An example of hole filling.
Note: (a) Set A is shown shaded. (b) Complement of A. (c)
Structuring element B. (d) Initial point inside the boundary. (e)-(h)
Various steps of the algorithm. (i) Final result of union of (a) and (h).

The dilation in equation (3-26) fills the entire area if left unchecked. However, the intersection at

each step with 𝐴𝐴𝑐𝑐 limits the result to inside the region of interest. The Figure 3.13 (d)-(h) indicates

further the mechanics of equation (3-26). Although this example only has one hole, the concept

59

clearly applies to any finite number of holes, assuming that a point is given inside each hole

region.

Image opening, closing and filling holes are common operations used in image processing after

image segmentation. Normally, the binary image blob that is the result of object detection is

operated on using image opening to smooth the blob edge.

3.5 Kalman filter for object tracking
The Kalman filter has been used successfully in engineering for many years. It is described by a

system state model and a measurement model (Weng et al., 2006):

• System state model:

𝑠𝑠(𝑡𝑡 + 1) = 𝐴𝐴(𝑡𝑡)𝑠𝑠(𝑡𝑡) + 𝜇𝜇(𝑡𝑡) 3-27

• Measurement model:

𝑧𝑧(𝑡𝑡) = 𝐻𝐻(𝑡𝑡)𝑠𝑠(𝑡𝑡) + 𝜔𝜔(𝑡𝑡) 3-28

A(𝑡𝑡) and H(t) are the state transition matrix and measurement matrix, respectively. 𝜇𝜇(𝑡𝑡) and ω(t)

are white Gaussian noise with zero mean. The state vector s(t) at the current time t is predicted

from the previous estimate and the new measurement z(t). The procedure of the Kalman filter

has two steps: prediction and correction. The prediction step is to calculate forward from the

current state, to obtain an a priori estimate of the next state. The correction step combines the

prediction and the new measurement to produce an optimal estimate of the state. The prediction-

correction cycle is repeated for an optimal tracking result.

3.5.1 Discrete Kalman filter estimation
In digital computing, the Kalman filter has been the subject of extensive research and application,

such as optimal control, assisted navigation and object tracking. This section introduces the

theory of discrete Kalman filter. It is assumed that the state s ∈ 𝑅𝑅𝑛𝑛 is a discrete-time prediction

that is governed by the linear stochastic difference equation (Welch and Bishop, 2006):

𝑠𝑠𝑘𝑘+1 = 𝐴𝐴𝑘𝑘𝑠𝑠𝑘𝑘 + 𝜇𝜇𝑘𝑘 3-29

and the measurement z ∈ 𝑅𝑅𝑛𝑛 is:

𝑧𝑧𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑠𝑠𝑘𝑘 + 𝜔𝜔𝑘𝑘 3-30

The random variables 𝜇𝜇𝑘𝑘 and ω𝑘𝑘 represent the prediction and measurement noises respectively.

They are assumed to be independent of each other, and with normal probability distributions:

𝑝𝑝(𝜇𝜇) ∼ 𝑁𝑁(0,𝑄𝑄) 3-31

𝑝𝑝(𝜔𝜔) ∼ 𝑁𝑁(0,𝑅𝑅), 3-32

where 𝑄𝑄 is the co-variance matrix of the prediction noise (µk), and the 𝑅𝑅 is the co-variance matrix

of measurement noise (ωk). The 𝑛𝑛 × 𝑛𝑛 matrix 𝐴𝐴𝑘𝑘 in the difference equation (3-29) relates the state

at time step k to the state at step k+1. The 𝑚𝑚 × 𝑛𝑛 matrix 𝐻𝐻𝑘𝑘 in the measurement equation (3-30)

relates the state of sk to the measurement 𝑧𝑧𝑘𝑘.

60

𝑠̂𝑠𝑘𝑘− ∈ 𝑅𝑅𝑛𝑛 is defined as the a priori state estimate at step k for the prediction. 𝑠̂𝑠𝑘𝑘 ∈ 𝑅𝑅𝑛𝑛 is defined as

the a posteriori state estimate at step k for measurement 𝑧𝑧𝑘𝑘. The a priori and a posteriori
estimate errors are defined as:

𝑒𝑒𝑘𝑘− ≡ 𝑠𝑠𝑘𝑘 − 𝑠̂𝑠𝑘𝑘− 3-33

𝑒𝑒𝑘𝑘 ≡ 𝑠𝑠𝑘𝑘 − 𝑠̂𝑠𝑘𝑘 3-34

The a priori estimate error covariance is then

𝑃𝑃𝑘𝑘− = 𝐸𝐸[𝑒𝑒𝑘𝑘−𝑒𝑒𝑘𝑘−𝑇𝑇] 3-35

and the a posteriori estimate error covariance is

𝑃𝑃𝑘𝑘 = 𝐸𝐸[𝑒𝑒𝑘𝑘𝑒𝑒𝑘𝑘𝑇𝑇] 3-36

In deriving the equations for the Kalman filter, an equation has to be found that computes an a

posteriori state estimate 𝑠̂𝑠𝑘𝑘 as a linear combination of an priori estimate 𝑠̂𝑠𝑘𝑘− and a weighted

difference between an actual measurement 𝑧𝑧𝑘𝑘 and a measurement prediction (𝐻𝐻𝑘𝑘𝑠̂𝑠𝑘𝑘−) as shown

in (3-37).

𝑠̂𝑠𝑘𝑘 = 𝑠̂𝑠𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑠̂𝑠𝑘𝑘−) 3-37

The difference (𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑠̂𝑠𝑘𝑘−) in (3-37) is known as the measurement residual. The residual reflects

the discrepancy between the predicted measurement 𝐻𝐻𝑘𝑘𝑠̂𝑠𝑘𝑘− and the actual measurement 𝑧𝑧𝑘𝑘. A

residual of zero means that the two are in complete agreement.

The 𝑚𝑚 × 𝑛𝑛 matrix 𝐾𝐾𝑘𝑘 in (3-37) is the Kalman gain that minimizes the a posteriori error covariance

(3-36). This minimization is accomplished by first substituting (3-37) into the above definition for

𝑒𝑒𝑘𝑘, substituting that into (3-36), performing the indicated expectations, taking the derivative of the

trace of the result with respect to K, setting that result equal to zero, and then solving for K.

3.5.2 Calculation of the Kalman gain
The derivation of the Kalman gain is shown below.

From (3-36):

𝑃𝑃𝑘𝑘 = 𝐸𝐸[(𝑠𝑠𝑘𝑘 − 𝑠̂𝑠𝑘𝑘)(𝑠𝑠𝑘𝑘 − 𝑠̂𝑠𝑘𝑘)𝑇𝑇] 3-38

Substituting from (3-37):

𝑃𝑃𝑘𝑘 = 𝐸𝐸{[(𝑠𝑠𝑘𝑘 − 𝑠̂𝑠𝑘𝑘−) − 𝐾𝐾𝑘𝑘(𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑠̂𝑠𝑘𝑘−)][(𝑠𝑠𝑘𝑘 − 𝑠̂𝑠𝑘𝑘−) − 𝐾𝐾𝑘𝑘(𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑠̂𝑠𝑘𝑘−)]} 3-39

Substituting from (3-30):

𝑃𝑃𝑘𝑘 = 𝐸𝐸{[(𝑠𝑠𝑘𝑘 − 𝑠̂𝑠𝑘𝑘−) − 𝐾𝐾𝑘𝑘(𝐻𝐻𝑘𝑘𝑠𝑠𝑘𝑘 + 𝜔𝜔𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑠̂𝑠𝑘𝑘−)][(𝑠𝑠𝑘𝑘 − 𝑠̂𝑠𝑘𝑘−) − 𝐾𝐾𝑘𝑘(𝐻𝐻𝑘𝑘𝑠𝑠𝑘𝑘 + 𝜔𝜔𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑠̂𝑠𝑘𝑘−)]} 3-40

Because (sk − s�k−) is uncorrelated with ωk:

𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑇𝑇 + 𝐾𝐾𝑘𝑘𝑅𝑅𝑘𝑘𝐾𝐾𝑘𝑘𝑇𝑇 3-41

The optimum Kk value will minimise the sum of the terms along the diagonal of Pk. From the

mathematics:

𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴)
𝑑𝑑𝑑𝑑

= 𝐵𝐵𝑇𝑇 3-42

61

and
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇)

𝑑𝑑𝑑𝑑
= 2𝐴𝐴𝐴𝐴 3-43

Expanding 𝑃𝑃𝑘𝑘 from above:

𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑘𝑘− − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘− − 𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇𝐾𝐾𝑘𝑘𝑇𝑇 + 𝐾𝐾𝑘𝑘(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)𝐾𝐾𝑘𝑘𝑇𝑇 3-44

The trace of 𝑃𝑃𝑘𝑘 needs to be minimised bacause that is the sum of the diagonal elements which

should be minimised, so:

𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑃𝑃𝑘𝑘)
𝑑𝑑𝐾𝐾𝑘𝑘

= 0 3-45

where:

−2(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−)𝑇𝑇 + 2𝐾𝐾𝑘𝑘(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)𝑇𝑇 = 0 3-46

Solving for the optimum gain gives:

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 = 𝑃𝑃𝑘𝑘
−𝐻𝐻𝑘𝑘

𝑇𝑇

𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘
−𝐻𝐻𝑘𝑘

𝑇𝑇+𝑅𝑅𝑘𝑘
 3-47

which is the Kalman gain. According to the equation above, as the measurement error covariance

𝑅𝑅k approaches zero, the gain Kk weights the residual more heavily:

𝑙𝑙𝑙𝑙𝑙𝑙
𝑅𝑅→0

𝐾𝐾𝑘𝑘 = 𝐻𝐻𝑘𝑘−1 3-48

On the other hand, as the priori estimate error covariance 𝑃𝑃𝑘𝑘− approaches zero, the gain Kk

weights the residual less heavily:

𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃𝑘𝑘
−→0

𝐾𝐾𝑘𝑘 = 0 3-49

Another way to understand the weighting of Kk is that as the measurement error covariance 𝑅𝑅k

approaches zero, the actual measurement zk is “trusted” more, while the predicted measurement

𝐻𝐻𝑘𝑘𝑠̂𝑠𝑘𝑘− is trusted less. On the other hand, as the priori estimate error covariance 𝑃𝑃𝑘𝑘− approaches

zero, the actual measurement zk is trusted less, while the predicted measurement 𝐻𝐻𝑘𝑘𝑠̂𝑠𝑘𝑘− is trusted

more.

3.5.3 Correction covariance update
Substituting the Kalman gain expression (3-47) into the covariance update (3-41):

𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑘𝑘− − 𝑃𝑃𝑘𝑘𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘− 3-50

or:

𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑘𝑘− − 𝐾𝐾𝑘𝑘(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1𝐾𝐾𝑘𝑘𝑇𝑇 3-51

or even:

𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘− 3-52

3.5.4 Summary of Discrete Kalman filter algorithm
The Kalman filter estimates a process by using a loop: the filter estimates the prediction state and

then obtains feedback of noisy measurements (Welch and Bishop, 2006). The equations for the

Kalman filter fall into two groups: time update (or prediction) and measurement update (or

correction). The prediction equations are responsible for projecting forward the current state and

62

error covariance estimates to obtain the a priori estimates for the next time step. The correction

equations are responsible for the feedback for incorporating a new measurement into the a priori

estimate to obtain an improved a posteriori estimate. As a summary, the estimation algorithm

resembles that of prediction-correction algorithm for solving numerical problems.

The prediction equations are as follows:

𝑠𝑠𝑘𝑘+1 = 𝐴𝐴𝑘𝑘𝑠𝑠𝑘𝑘 3-53

𝑃𝑃𝑘𝑘+1− = 𝐴𝐴𝑘𝑘𝑃𝑃𝑘𝑘𝐴𝐴𝑘𝑘𝑇𝑇 + 𝑄𝑄𝑘𝑘 3-54

The prediction equations project the state and covariance estimates from time step k to step k+1.

Ak is from (3-29), while 𝑄𝑄𝑘𝑘 is from (3-31) which is the initial condition for the filter.

The correction equations are:

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 3-55

𝑠̂𝑠𝑘𝑘 = 𝑠̂𝑠𝑘𝑘− + 𝐾𝐾(𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑠̂𝑠𝑘𝑘−) 3-56

𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘− 3-57

The first equation in the correction computes the Kalman gain Kk. Here, the equation given as

(3-55) is the same as (3-47). The next step is to measure the process to obtain zk, and then to

generate the a posteriori state estimate by incorporating the measurement as in (3-56) which is a

restatement of (3-37) for completeness. The final equation is to obtain the a posteriori error

covariance estimate via (3-57). After each time interval, the Kalman filter process is repeated with

the previous a posteriori estimates used to project or predict the new a priori estimates.

3.5.5 The filter parameters and tuning
In the actual implementation of the filter, the measurement error covariance matrix 𝑅𝑅k and the

prediction noise 𝑄𝑄𝑘𝑘 are measured prior to the operation of the filter. In the case of the

measurement error covariance 𝑅𝑅k, it is necessary to take some off-line sample measurements in

order to determine the variance of the measurement error.

𝑄𝑄𝑘𝑘 is often chosen less deterministically. For example, this noise source is often used to represent

the uncertainty in the predicted model (3-29). Sometimes a very poor model can be used simply

by “injecting” enough uncertainty via the selection of 𝑄𝑄𝑘𝑘. Certainly in this case, the measurement

of the prediction is hoped to be reliable.

In this case, whether the chosen parameters optimal or not, often superior filter performance can

be obtained by “tuning” the filter parameters 𝑄𝑄𝑘𝑘 and 𝑅𝑅k. This tuning is usually performed off-line,

frequently with the help of another distinct Kalman filter.

In particular, under the conditions in which 𝑄𝑄𝑘𝑘 and 𝑅𝑅k are constant, both the estimation error

covariance 𝑃𝑃𝑘𝑘 and the Kalman gain Kk will stabilize quickly and then remain constant. In this case,

these parameters can be pre-computed by either running the filter off-line, or solving (3-54) for

the steady-state value of 𝑃𝑃𝑘𝑘 by defining Pk− ≡ 𝑃𝑃𝑘𝑘 and solving for 𝑃𝑃𝑘𝑘.

It is frequently the case however that the measurement error does not remain constant. In

addition, the prediction noise 𝑄𝑄𝑘𝑘 sometimes changes dynamically during filter operation in order

63

to adjust to different dynamics. For example, in the case of tracking the head of a person in a 3D

virtual environment, the 𝑄𝑄𝑘𝑘 may be reduced if the person seems to be moving slowly, and

increase if the dynamics start changing rapidly. In such a case, 𝑄𝑄𝑘𝑘 can be used to model not only

the uncertainty in the model, but also the uncertainty of the person’s intentions.

3.5.6 The Kalman filter for object tracking
When applied to movement tracking in a series of video images, the system state model is the

moving model. The movement distance within a frame interval is the feature to be estimated and

predicted. This distance can be calculated from the position in the previous frames. Therefore the

Kalman filter can use the positions to track objects. The Kalman filter process is shown below.

The state of an object includes its position (𝑥𝑥𝑘𝑘 , 𝑦𝑦𝑘𝑘) and velocity (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) in the image, where 𝑘𝑘 is

the frame number on the video recording. The motion (prediction) model in each frame interval

is:

𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘−1 + 𝑢𝑢𝑘𝑘−1 3-58
𝑦𝑦𝑘𝑘 = 𝑦𝑦𝑘𝑘−1 + 𝑣𝑣𝑘𝑘−1 3-59

The model assumes the velocity is constant in successive frames:

𝑢𝑢𝑘𝑘 = 𝑢𝑢𝑘𝑘−1 3-60
𝑣𝑣𝑘𝑘 = 𝑣𝑣𝑘𝑘−1 3-61

The state vector in frame 𝑘𝑘 is:

𝑠𝑠𝑘𝑘 = [𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘,𝑦𝑦𝑘𝑘 , 𝑣𝑣𝑘𝑘]𝑇𝑇 3-62

The state vector in frame 𝑘𝑘 − 1 is:

𝑠𝑠𝑘𝑘−1 = [𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1,𝑦𝑦𝑘𝑘−1, 𝑣𝑣𝑘𝑘−1]𝑇𝑇 3-63

The state-space model of the Kalman filter is:

𝑠𝑠𝑘𝑘 = 𝐴𝐴𝑘𝑘−1𝑠𝑠𝑘𝑘−1 3-64

where the transition matrix is defined as:

𝐴𝐴𝑘𝑘−1 = �

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

� 3-65

The measurement vector in frame k is:

𝑚𝑚𝑘𝑘 = [𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘]𝑇𝑇 3-66

The measurement model of the Kalman filter is:

𝑚𝑚𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑠𝑠𝑘𝑘 3-67

where the measurement transition matrix is:

𝐻𝐻𝑘𝑘 = �1 0
0 0 0 0

1 0� 3-68

It is assumed the prediction noise 𝑄𝑄𝑘𝑘 and measurement error covariance R are constant in the

object tracking, because normally the movement object for the Kalman filter has a slow speed

compared to the video with a 30-60Hz frame rate. For example, Kalman filter was utilized to track

64

human movement (Weng et al., 2006). The person’s movement was treated at constant velocity.

However, if the velocity changed quickly, tracking was affected. Another example was that road

vehicles could be tracked by using a Kalman filter (Shantaiya et al., 2015). However, they

mentioned that the tracking was somewhat difficult if the object changed velocity.

Another way to describe the Kalman filter for object tracking comes from (Weng et al., 2006). The

predicted position in frame k is set as:

𝑑𝑑(𝑘𝑘) = 𝑑𝑑(𝑘𝑘 − 1) + (𝑑𝑑(𝑘𝑘 − 1) − 𝑑𝑑(𝑘𝑘 − 2)), 3-69

where 𝑑𝑑(𝑘𝑘 − 1) and 𝑑𝑑(𝑘𝑘 − 2) are the actual positions in frame (𝑘𝑘 − 1) and (𝑘𝑘 − 2), respectively.

The system state model of Kalman filter can be described as

𝑠𝑠(𝑘𝑘) = 𝐴𝐴(𝑘𝑘 − 1)𝑠𝑠(𝑘𝑘 − 1) + 𝜇𝜇(𝑘𝑘) = �2 −1
1 0 � �𝑑𝑑(𝑘𝑘 − 1)

𝑑𝑑(𝑘𝑘 − 2)� + �𝜇𝜇(𝑘𝑘)
0

�, 3-70

where 𝑠𝑠(𝑘𝑘) = � 𝑑𝑑(𝑘𝑘)
𝑑𝑑(𝑘𝑘 − 1)�, 𝑠𝑠(𝑘𝑘 − 1) = �𝑑𝑑(𝑘𝑘 − 1)

𝑑𝑑(𝑘𝑘 − 2)� and 𝐴𝐴(𝑘𝑘) = �2 −1
1 0 �.

Although the transition matrix 𝐴𝐴𝑘𝑘−1 is different from (3-65), the principle is the same. This research

uses this technique to apply the Kalman filter.

3.6 Hungarian assignment method
The Hungarian method is a combinatorial optimization algorithm that solves the assignment

problem in polynomial time (Kuhn, 2005). Consider a simple example for explanation. There are

three workers: Tom, Stephen and Allan. One of them has to clean the bathroom, another sweep

the floors, and the third wash the windows, but they each demand different pay for the various

tasks. The problem is to find the lowest-cost way to assign the jobs. The problem can be

represented in a matrix of the costs of the workers doing the jobs:

Table 3-1 The example of Hungarian method with three workers and three jobs

 Clean bathroom Sweep floors Wash windows

Tom $2 $3 $3

Stephen $3 $2 $3

Allan $3 $3 $2

If the Hungarian method is applied to the above table, it gives the minimum cost as $6, achieved

by having Tom clean the bathroom, Stephen sweep the floors, and Allan wash the windows.

This is a simple example of Hungarian method application. The 3 × 3 matrix has 6 assignment

trials to get the minimum cost. However, if there are ten workers and ten jobs, there have to be

many trials to calculate the lowest cost. In summary, there are 𝐧𝐧! ways of assigning n resources

to n tasks.

3.6.1 The process of the Hungarian method
The process of the Hungarian method is described in (Dutta and Pal, 2015). This section will

introduce the process. There is a non-negative n × n cost matrix, from which is to be found in an

optimal assignment.

65

Assuming n = 4, the cost matrix can be:

�

𝑐𝑐11 𝑐𝑐12
𝑐𝑐21 𝑐𝑐22

𝑐𝑐13 𝑐𝑐14
𝑐𝑐23 𝑐𝑐24

𝑐𝑐31 𝑐𝑐32
𝑐𝑐41 𝑐𝑐42

𝑐𝑐33 𝑐𝑐34
𝑐𝑐43 𝑐𝑐44

�

where the rows are the workers and the columns are jobs respectively. The entries of the matrix

are 𝑐𝑐𝑖𝑖𝑖𝑖. The matrix is square, so each worker can perform only one task.

Step 1:

Subtract the smallest entry in each row from all the entries of its row. This will lead to at least one

zero in each row. If there are two equal lowest entries in a row, the result is multiple zeros in that

row. Then, each worker can be assigned only one job as shown by the zero. This is shown below:

⎣
⎢
⎢
⎡

0 𝑐𝑐12′
𝑐𝑐21′ 𝑐𝑐22′

𝑐𝑐13′ 𝑐𝑐14′
𝑐𝑐23′ 0

𝑐𝑐31′ 0
𝑐𝑐41′ 𝑐𝑐42′

𝑐𝑐33′ 𝑐𝑐34′
0 𝑐𝑐44′ ⎦

⎥
⎥
⎤

Step 2:

Subtract the smallest entry in each column from all the entries of its column. This is necessary

because sometimes it may turn out that the matrix after step 1 cannot be used for assigning as

seen in the matrix below:

⎣
⎢
⎢
⎡

0 𝑐𝑐12′
𝑐𝑐21′ 𝑐𝑐22′

𝑐𝑐13′ 𝑐𝑐14′
𝑐𝑐23′ 0

0 𝑐𝑐32′
𝑐𝑐41′ 𝑐𝑐42′

𝑐𝑐33′ 𝑐𝑐34′
0 𝑐𝑐44′ ⎦

⎥
⎥
⎤

In the above case, no assignment can be made. The job 1 is done with a lowest cost by both

workers 1 and 3. They cannot both be assigned the same job. In addition, no one does job 2 with

the lowest cost. This step is used to solve this problem. Then it can be checked if an assignment

is possible. In most situations, this will give the desired result, but if this is still not possible, then

the next step should be taken.

Step 3:

Draw lines through appropriate rows and columns so that all the zero entries of the cost matrix

are covered and the minimum number of such lines is used. this is described as one way below:

⎣
⎢
⎢
⎡

0 𝑐𝑐12′
𝑐𝑐21′ 𝑐𝑐22′

𝑐𝑐13′ 𝑐𝑐14′
𝑐𝑐23′ 0

0 𝑐𝑐32′
𝑐𝑐41′ 0

𝑐𝑐33′ 𝑐𝑐34′
0 𝑐𝑐44′ ⎦

⎥
⎥
⎤

Take the matrix above as an example. Firstly, assign as many jobs as possible.

• Row 1: has one zero, assigned for worker 1 and job 1. The 0 in row 3 is crossed out

because it is in the same column.

• Row 2: has one zero, for worker 2 and job 4.

• Row 3: the only zero has been crossed out, so nothing is assigned.

66

• Row 4: has two uncrossed zeros. Either one can be assigned (both jobs 2 and 3 are

optimal for worker 4), and the other zero would be crossed out. By the way, the 0 in row

3 may be assigned for worker 3 and job 1, in which case the 0 in row 1 is crossed out.

⎣
⎢
⎢
⎢
⎡ ×

0 𝑐𝑐12′
𝑐𝑐21′ 𝑐𝑐22′

𝑐𝑐13′ 𝑐𝑐14′
𝑐𝑐23′ 0

×

0 𝑐𝑐32′
𝑐𝑐41′ 0

𝑐𝑐33′ 𝑐𝑐34′
0 𝑐𝑐44′

×
⎦
⎥
⎥
⎥
⎤

Second, mark the matrix and draw lines.

• Mark all rows having no assignments (row 3).

• Mark all (unmarked) columns having zeros in newly marked row (column 1).

• Mark all rows having assignments in newly marked columns (row 1).

• Repeat for all non-assigned rows.

• Draw lines through all marked columns and unmarked rows.

The details above provide just one way of drawing the minimum number of lines needed to

eliminate all the 0s. Other methods also work as well.

Step 4:

Test for optimality: if the minimum number of lines is n, an optimal assignment of zeros is possible

and the assignment can be finished. If the minimum number of lines is less than n, it is not enough

to find an optimal assignment.

Step 5:

Determine the smallest entry not crossed out by any line. Subtract this entry from each row that

is not crossed out, and then add it to each crossed out column. Then, return to the Step3.

3.6.2 The example of the method
Example 1:

Assuming there are three people and three jobs, the hourly paid is shown below:

Table 3-2 The example 1: three people and three jobs hourly paid

 Job 1 ($) Job 2 ($) Job 3 ($)

Person 1 25 40 35

Person 2 40 60 35

Person 3 20 40 25

⎣
⎢
⎢
⎡ 0 𝑐𝑐12′

𝑐𝑐21′ 𝑐𝑐22′
𝑐𝑐13′ 𝑐𝑐14′

𝑐𝑐23′ 0
0 𝑐𝑐32′

𝑐𝑐41′ 0
𝑐𝑐33′ 𝑐𝑐34′

0 𝑐𝑐44′ ⎦
⎥
⎥
⎤

67

Step 1: Subtract 25 from row 1, 35 from row 2, and 20 from row3.

Step 2: subtract 0 from column 1, 15 from column 2, and 0 from column 3.

�
0 15 10
5 25 0
0 20 5

�~ �
0 0 10
5 10 0
0 5 5

�

Step 3: draw all the zeros of the matrix with the minimum number of horizontal or vertical lines.

Step 4: since the minimal number of lines is 3, an optimal assignment of zeros is possible and the

task is completed.

Because the total cost for this assignment is 0, it must be an optimal assignment:

�
0 0 10
5 10 0
0 5 5

�

Here is the same assignment using the original cost matrix.

�
25 40 35
40 60 35
20 40 25

�

Example 2:

A taxi company organises four customers to be picked up by four taxis. The distance in kilometres

between the customers and the taxi cars are given below.

Table 3-3 The distance between customers and taxi cars.

Customers \ Cars A B C D

1 8.8 7.5 7.5 8

2 3.5 8.2 5.5 6.5

3 12.5 9.5 9 10.5

4 4.5 10.8 9.5 11.2

The company needs to organise the taxis picking up the customers in order to minimize the total

distance travelled.

Step 1: subtract 7.5 from row 1, 3.5 from row 2, 9 from row3, and 4.5 from row 4.

�
8.8 7.5
3.5 8.2

7.5 8
5.5 6.5

12.5 9.5
4.5 10.8

9 10.5
9.5 11.2

�~ �
1.3 0
0 4.7

0 0.5
2 3

3.5 0.5
0 6.3

0 1.5
5 6.7

�

�
0 0 10
5 10 0
0 5 5

�

�
25 40 35
40 60 35
20 40 25

�~ �
0 15 10
5 25 0
0 20 5

�

68

Step 2: subtract 0 from column 1, 0 from column 2, 0 from column 3, and 0.5 column 4.

�
1.3 0
0 4.7

0 0.5
2 3

3.5 0.5
0 6.3

0 1.5
5 6.7

�~ �
1.3 0
0 4.7

0 0
2 2.5

3.5 0.5
0 6.3

0 1
5 6.2

�

Step 3: draw all the zeros of the matrix with the minimum number of horizontal or vertical lines.

Step 4: since the minimal number of lines is less than 4, it is necessary to proceed to step 5.

Step 5: 0.5 is the smallest entry which is not covered by any line. Subtract 0.5 from each row not

covered by a line.

�
1.3 0
0 4.7

0 0
2 2.5

3.5 0.5
0 6.3

0 1
5 6.2

�~ �
1.3 0
−0.5 4.2

0 0
1.5 2

3 0
−0.5 5.8

−0.5 0.5
4.5 5.7

�

Then add 0.5 to each covered column.

�
1.3 0
−0.5 4.2

0 0
1.5 2

3 0
−0.5 5.8

−0.5 0.5
 4.5 5.7

�~ �
1.8 0
0 4.2

0.5 0
2 2

3.5 0
0 5.8

0 0.5
5 5.7

�

Then return to step 3. Draw all the zeros of the matrix with the minimum number of horizontal or

vertical lines.

�
1.8 0
0 4.2

0.5 0
2 2

3.5 0
0 5.8

0 0.5
5 5.7

�

Step 4: again, since the minimal number of lines is less than 4, go to step 5.

Step 5: 2 is the smallest entry which is not covered by a line. Subtract 2 from each row without a

line.

�
1.8 0
0 4.2

0.5 0
2 2

3.5 0
0 5.8

0 0.5
5 5.7

�~ �
1.8 0
−2 2.2

0.5 0
0 0

3.5 0
−2 3.8

0 0.5
3 3.7

�

Then add 2 to each covered column.

�
1.8 0
−2 2.2

0.5 0
0 0

3.5 0
−2 3.8

0 0.5
3 3.7

�~ �
3.8 0
0 2.2

0.5 0
0 0

5.5 0
0 3.8

0 0.5
3 3.7

�

Now return to step 3. Draw all the zeros of the matrix with the minimum number of horizontal or

vertical lines.

�
1.3 0
0 4.7

0 0
2 2.5

3.5 0.5
0 6.3

0 1
5 6.2

�

69

�
3.8 0
0 2.2

0.5 0
0 0

5.5 0
0 3.8

0 0.5
3 3.7

�

Step 4: since the minimal number of lines is 4, an optimal assignment of zeros is possible; the

assignment is then finished. Since the total cost for this assignment is 0, it must be an optimal

assignment.

�
3.8 0
0 2.2

0.5 0
0 0

5.5 0
0 3.8

0 0.5
3 3.7

�

Here is the same assignment using the original cost matrix.

�
8.8 7.5
3.5 8.2

7.5 8
5.5 6.5

12.5 9.5
4.5 10.8

9 10.5
9.5 11.2

�

Therefore, the customer 1 is assigned to car D, customer 2 to car C, customer 3 to car B, and

customer 4 to car A.

3.6.3 The Hungarian assignment method for multiple object tracking
Normally, multiple object tracking uses the prediction model to identify the same objects in

successive image frames. In a frame, there are predictions of objects from previous tracking, and

detections are from the current frame. It is usual for the shortest distance between a prediction

and a detection to be the same. In such an instance, the Hungarian method is used to allocate

the predictions and detections with optimal assignment.

The cost matrix for the Hungarian method contains the distances between predictions and

detections. Table 3-4 is the example of the cost matrix.

Table 3-4 The cost matrix, the content is the distance (pixels) between predictions and
detections.

Distances Detection 1 Detection 2 … … Detection n

Prediction 1 𝑐𝑐11 𝑐𝑐12 … … 𝑐𝑐1𝑛𝑛

Prediction 2 𝑐𝑐21 𝑐𝑐22 … … 𝑐𝑐2𝑛𝑛

… … … … … … … … … …

Prediction n 𝑐𝑐𝑛𝑛1 𝑐𝑐𝑛𝑛2 … … 𝑐𝑐𝑛𝑛𝑛𝑛

The cost matrix is used to find the optimal assignment. However, sometimes the number of

predictions is greater than the number of detections, because some objects disappear on the

video. Alternatively, the number of detections may be greater than predictions, because some

new objects have just appeared. Another situation is that one object disappears at the same time

that another object makes its first appearance. Although the number of predictions and detections

are the same, the optimal assignment may not identify the situation correctly.

The solution is to set a maximum pixel distance for assigning a prediction to a detection. If all of

the distances of a prediction from the detections are greater than the maximum limit, this

70

prediction cannot be assigned, so it is not put into the cost matrix for the Hungarian method.

Similarly, a detection that is more than the maximum distance from all predictions cannot be

assigned and this detection is not put into the cost matrix.

The Hungarian method can be used with the cost matrix to assign other predictions and detections

to get the optimal assignment. These assignments identify the same object in the neighbouring

image frames.

3.7 Blob analysis with image moments on binary image
Image segmentation includes many methods for object detection, but it can be unsuccessful if the

object is too small. The final aim of this research is to detect pollen. The pollen sacs is too small

to be detected directly on the whole video frame. Therefore, it is necessary to detect pollen on

the bee’s detection image, because the bee detection image is much smaller than the video

frame. The bee detection result produces the bee’s blob as a binary image. The smaller binary

image is analysed to detect the pollen.

The analysis method is blob analysis using image moments. The image moment is a particular

weighted average of the image pixel’s intensities. It is used to calculate blob parameters after

segmentation. The properties of a blob which are found from image moments include the blob

area, centroid and orientation. For a 2-D continuous function 𝑓𝑓(𝑥𝑥,𝑦𝑦), the moment is calculated

as:

𝑀𝑀𝑖𝑖,𝑗𝑗 = ∫ ∫ 𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∞
−∞

∞
−∞ 3-71

where 𝑥𝑥 and 𝑦𝑦 are the coordinates of each pixel. For an image, the 𝑥𝑥 and 𝑦𝑦 values are discrete.

Adapting this to a greyscale image with pixel intensities 𝐼𝐼(𝑥𝑥,𝑦𝑦), the raw image moments are

calculated by:

𝑀𝑀𝑝𝑝𝑝𝑝 = ∑ ∑ 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞𝐼𝐼(𝑥𝑥, 𝑦𝑦)𝑦𝑦𝑥𝑥 3-72

If 𝑓𝑓(𝑥𝑥,𝑦𝑦) is a digital image, the moments are the following properties of the blob:

Area of the blob:

𝑀𝑀00 = ∑ 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑥𝑥,𝑦𝑦 3-73

Centroid of the blob region:

{𝑥̅𝑥,𝑦𝑦�} = �𝑀𝑀10
𝑀𝑀00

,𝑀𝑀01
𝑀𝑀00

� 3-74

The central moments are defined as:

𝜔𝜔𝑝𝑝𝑝𝑝 = ∑ ∑ (𝑥𝑥 − 𝑥̅𝑥)𝑝𝑝(𝑦𝑦 − 𝑦𝑦�)𝑞𝑞𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑦𝑦𝑥𝑥 3-75

According to (Dey et al., 2002), the central moments of order up to 2 are:

𝜔𝜔00 = 𝑀𝑀00 3-76
𝜔𝜔01 = 0 3-77
𝜔𝜔10 = 0 3-78
𝜔𝜔11 = 𝑀𝑀11 −

𝑀𝑀10𝑀𝑀01
𝑀𝑀00

 3-79

𝜔𝜔20 = 𝑀𝑀20 −
𝑀𝑀10

2

𝑀𝑀00
 3-80

71

𝜔𝜔02 = 𝑀𝑀02 −
𝑀𝑀01

2

𝑀𝑀00
 3-81

The central moments are translational invariant. The image orientation can be derived from the

second order central moments and a covariance matrix.

𝜔𝜔20
′ = 𝜔𝜔20

𝜔𝜔00
= 𝑀𝑀20

𝑀𝑀00
− 𝑥̅𝑥2 3-82

𝜔𝜔02
′ = 𝜔𝜔02

𝜔𝜔00
= 𝑀𝑀02

𝑀𝑀00
− 𝑦𝑦�2 3-83

𝜔𝜔11′ = 𝜔𝜔11
𝜔𝜔00

= 𝑀𝑀11
𝑀𝑀00

− 𝑥̅𝑥𝑦𝑦� 3-84

The covariance matrix of the image 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is:

𝑐𝑐𝑐𝑐𝑐𝑐[𝑓𝑓(𝑥𝑥,𝑦𝑦)] = �𝜔𝜔20
′ 𝜔𝜔11′

𝜔𝜔11′ 𝜔𝜔02
′ � 3-85

From the covariance matrix, the eigenvectors of the matrix correspond to the major and minor

axes of the image intensity, so the orientation can be extracted from the angle of the eigenvector

associated with the largest eigenvalue towards the axis closest to this eigenvector. This angle θ

is:

𝜃𝜃 = 1
2
𝑡𝑡𝑡𝑡𝑡𝑡−1(2𝜔𝜔11

′

𝜔𝜔20
′ −𝜔𝜔02

′) 3-86

The eigenvalues of the covariance matrix are:

𝜆𝜆𝑖𝑖 = 𝜔𝜔20
′ +𝜔𝜔02

′

2
±

�4𝜔𝜔11
′2+(𝜔𝜔20

′ −𝜔𝜔02
′)2

2
 3-87

The relative difference in magnitude of the eigenvalues are thus an indication of the eccentricity

of the image. The eccentricity is:

�1 − 𝜆𝜆2
𝜆𝜆1

 3-88

If the image 𝑓𝑓(𝑥𝑥,𝑦𝑦) is a binary image, the properties of major axis, minor axis and orientation are

the 2-D blob information. It can be seen that these simple properties produce the standard ellipse.

The major and minor axis of the blob are the major and minor axis of the ellipse, respectively. The

orientation of the blob is the rotation angle of the ellipse. The eccentricity of the image is the

ellipse’s eccentricity. The ellipse is used to detect the main body of the blob, which is discussed

in the next chapter.

3.8 The Receiver operating characteristic
The principle of the receiver operating characteristic (ROC) is based on a binary classification

model, which is introduced by (Fawcett, 2006). Table 3-5 shows the classification model. The

binary classifier outcomes are labelled either as positive or negative. The “Predicted condition” is

from a test or a system decision. The true decision is positive and the false is negative. The “True

condition” is the actual situation of the instance. If the actual situation is true, it is positive,

otherwise it is negative. For example, in a diagnostic test, if a person is tested as having a certain

72

disease, this is a positive result of the test, otherwise it is a negative result (Zhu et al., 2010). In

the true condition, if the person actually has the disease, it is positive, otherwise it is negative.

Table 3-5 A binary classification model

 Predicted condition
Condition positive Condition negative

Actual condition Condition positive True positive (TP) False negative (FN)
Condition negative False positive (FP) True negative (TN)

There are four possible outcomes, when the predicted condition and the true condition are

combined. If the outcome from a prediction is positive and the true value is also positive, then it

is a true positive (TP). However, if the true value is negative, then the outcome is a false positive

(FP). Conversely, a true negative (TN) occurs when both the prediction outcome and the true

value are negative, and a false negative (FN) is when the prediction outcome is negative while

the true value is positive. With these four outcomes, Table 3-5 is also called contingency table or

confusion matrix (Fawcett, 2006).

These four outcomes are used to calculate various standard terms that are used in this research:

Sensitivity (SNS) or true positive rate (TPR) is:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 3-89

Specificity (SPC) or true negative rate (TNR) is:

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

 3-90

Precision or positive predictive value (PPV) is:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 3-91

False positive rate (FPR) or 1-SPC is:

(1 − 𝑆𝑆𝑆𝑆𝑆𝑆) = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

 3-92

In binary classification, the class prediction for each instance is often made based on a continuous

random variable (𝑋𝑋). Given a threshold parameter (𝑇𝑇), the instance is classified as “positive” if

𝑋𝑋 > 𝑇𝑇, and “negative” otherwise. Suppose 𝑋𝑋 has the probability density function (pdf) 𝑓𝑓1(𝑥𝑥) if the

instance actually belongs to class “positive”, and otherwise 𝑋𝑋 has the pdf 𝑓𝑓0(𝑥𝑥). Therefore, the

true positive rate when the threshold is 𝑇𝑇 is given by

𝑇𝑇𝑇𝑇𝑇𝑇 (𝑇𝑇) = ∫ 𝑓𝑓1(𝑥𝑥)𝑑𝑑𝑑𝑑∞
𝑇𝑇 3-93

and the false positive rate is given by

𝐹𝐹𝐹𝐹𝐹𝐹 (𝑇𝑇) = ∫ 𝑓𝑓0(𝑥𝑥)𝑑𝑑𝑑𝑑∞
𝑇𝑇 3-94

The choice of T requires a tradeoff between TPR and FPR. Ideally, the desired result is TPR =

100% and FPR = 0%, but increasing T decreases both TPR and FPR. The receiver operating

characteristic (ROC) provides a way of estimating the optimum T value by making this tradeoff

visible.

73

The ROC graph (space) parametrically plots TPR (𝑇𝑇) versus FPR (𝑇𝑇) with threshold T as the

varying parameter. The ROC space plots FPR on the x axis and TPR on the y axis, to create a

2D space as in Figure 3.14. The best possible prediction method would yield a point in the upper

left corner or coordinate (0,1) of the ROC space, representing 100% sensitivity (TPR = 100%)

and 100% specificity (FPR = 0%). This point corresponds to a perfect classification. For a

completely random classifier, changing the threshold T from minimum to maximum, would

produce a diagonal line (the line of no-discrimination) from the left bottom corner to the top right

corner (the blue dashed line in Figure 3.14). The diagonal divides the ROC space into two parts.

Points above the diagonal represent good classification results (better than random); points below

the line represent poor results (worse than random).

Figure 3.14 The example of ROC space

Changing threshold T on a classifier traces a curve on the ROC space. The curve above the

diagonal represents a good classifier; the curve under the diagonal represents a bad classifier.

For a good classifier, the best threshold value is the point on the curve which is closest to the

perfect classification point. This point maximises TPR–FPR which is the same as maximising

SNS+SPC.

This binary classification is used in this research to evaluate the results of bee tracking and pollen

counting. In addition, the ROC curve is used in this research to calculate optimal thresholds for

pollen detection.

3.9 Convolutional deep neural networks
Deep learning is a class of machine learning algorithms that use a cascade of multiple layers of

nonlinear processing units for feature extraction and transformation. Deep learning architectures

are based on an artificial neural network. The convolutional deep neural network (CNN) is one of

74

the deep learning architectures which is commonly used in computer vision. This network is used

in this research for pollen sac detection. This CNN is inspired from the biological structure of a

visual cortex, which contains arrangements of simple and complex cells. These cells are found to

activate based on the subregions of a visual field. In CNN, the neurons in a convolutional layer

connect to the subregions of the layers before that layer instead of being fully-connected as in

other types of neural network (van Gerven and Bohte, 2018). The neurons are unresponsive to

the areas outside of these subregions in the image. These subregions might overlap, hence the

neurons of a CNN produce spatially-correlated outcomes. A CNN consists of multiple layers, such

as convolutional layers, max-pooling or average-pooling layers, and fully-connected layers.

3.9.1 The architecture of CNNs
There are a variety of architectures of CNNs. The main layers include: input layer, convolutional

layer, ReLU layer, Max and Average-Pooling layer, fully connected layer and output layer.

Image input layer. This layer defines the size of the input images of a convolutional neural

network and contains the raw pixel values of the images. The size of an input image corresponds

to the height, width, and the number of colour channels of the image. For example, for a grayscale

image, the number of channels is 1; and for a colour image, it is 3.

Convolutional (conv.) layer. A convolutional layer consists of neurons that connect to

subregions of the input images or the outputs of the layer before it (Murphy, 2012). A convolutional

layer learns the features localized by these regions while scanning through an image. For each

region, a dot product of the weights and bias are added. A set of weights that are applied to a

region in the image is called a filter. The filter moves along the input image vertically and

horizontally, repeating the same computation for each region. That is the convolution operation.

The convolution operation is defined as follows: given 𝐻𝐻 = (ℎ𝑖𝑖,𝑗𝑗
(𝑘𝑘))𝑚𝑚×𝑚𝑚 at level k, and g(•) is a

nonlinear function, a convolution operation is:

ℎ𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) = 𝑔𝑔(𝑎𝑎(𝑘𝑘) × ℎ𝑖𝑖,𝑗𝑗

(𝑘𝑘) + 𝑏𝑏(𝑘𝑘) × ℎ𝑖𝑖+1,𝑗𝑗
(𝑘𝑘) + 𝑐𝑐(𝑘𝑘) × ℎ𝑖𝑖,𝑗𝑗+1

(𝑘𝑘) + 𝑑𝑑(𝑘𝑘) × ℎ𝑖𝑖+1,𝑗𝑗+1
(𝑘𝑘)) 3-95

where the 𝑎𝑎, b, c and d are the weights of a 2×2 filter. In the CNNs, the filter size can be 3×3, 5×5

and 7×7, etc. In deep learning, the convolution operation ‘⋆’ is also denoted as:

𝑠𝑠(𝑡𝑡) = (𝑥𝑥 ⋆ 𝜔𝜔)(𝑡𝑡) = ∑ 𝑥𝑥(𝑎𝑎)∞
𝑎𝑎=−∞ 𝜔𝜔(𝑡𝑡 − 𝑎𝑎) 3-96

where the function x(𝑎𝑎) is input, 𝜔𝜔(𝑡𝑡) is a filter, and the output 𝑠𝑠(𝑡𝑡) represents a feature map. For

an image 𝐼𝐼, the convolution operation is:

𝑆𝑆(𝑖𝑖, 𝑗𝑗) = (𝐼𝐼 ⋆ 𝐾𝐾)(𝑖𝑖, 𝑗𝑗) = ∑ ∑ 𝐼𝐼(𝑚𝑚,𝑛𝑛)𝐾𝐾(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)𝑛𝑛𝑚𝑚 3-97

where the 𝐾𝐾 is the 2-dimensional filter. The number of weights used for a filter is ℎ × 𝑤𝑤 × 𝑐𝑐, where

ℎ is the height, and 𝑤𝑤 is the width of the filter size, and 𝑐𝑐 is the number of channels in the input.

The number of filters determines the number of channels in the output of a convolutional layer.

As a filter moves along the input, it uses the same set of weights and bias for the convolution,

forming a feature map. Hence, the number of feature maps a convolutional layer has is equal to

the number of filters (number of channels). Each feature map has a different set of weights and a

bias. Therefore, the total number of parameters in a convolutional layer is ((ℎ × 𝑤𝑤 × 𝑐𝑐 +

75

1) × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), where 1 is for the bias. Zero padding can be applied to input image

borders vertically and horizontally. The padding is basically adding rows or columns of zeros to

the border of an image input, which can help to control the output size of the layer.

A convolutional neural network consists of one or more convolutional layers. The number of

convolutional layers depends on the amount and complexity of the data.

ReLU layer. A convolutional layer is usually followed by a nonlinear activation function such as a

rectified linear unit (ReLU) (Nair and Hinton, 2010), specified by a ReLU layer. A ReLU layer

performs a threshold operation to each element, where any input value less than zero is set to

zero, that is:

𝑓𝑓(𝑥𝑥) = �𝑥𝑥, 𝑥𝑥 ≥ 0
0, 𝑥𝑥 < 0 3-98

The ReLU layer does not change the size of its input. There are extensions of the standard ReLU

layer that perform slightly different operations and can improve performance for some

applications. A leaky ReLU layer performs a threshold operation, where any input values less

than zero is multiplied by a fixed scalar, allowing these values to “leak” into the output (Maas et

al., 2013). A clipped ReLU layer sets negative inputs to zero, but also sets input values above a

clipping ceiling equal to that clipping ceiling (Hannun et al., 2014).

pooling layer. pooling layer follows the convolutional layers for down-sampling, hence reducing

the number of connections to the following layers (usually a fully connected layer). They do not

perform any learning themselves, but reduce the number of parameters to be learned in the

following layers. They also help reduce overfitting. A pooling layer can be max-pooling layer or

average-pooling layer.

A max-pooling layer returns the maximum values of rectangular regions of its input (Nagi et al.,

2011). If the rectangle is 2×2, then the layer returns the maximum value in regions of height 2 and

width 2. Taking the feature map of 𝑆𝑆(𝑖𝑖, 𝑗𝑗) from (3-97) as an input example, the output of the max-

pooling layer is:

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆(𝑖𝑖, 𝑗𝑗), 𝑆𝑆(𝑖𝑖 + 1, 𝑗𝑗), 𝑆𝑆(𝑖𝑖, 𝑗𝑗 + 1), 𝑆𝑆(𝑖𝑖 + 1, 𝑗𝑗 + 1)) 3-99

Similarly, the average-pooling layer outputs the average values of rectangular regions of input. If

the rectangular is 2×2, then the layer returns the average value of regions of height 2 and width

2. Using the same input example, the output of the average-pooling layer is:

𝑆𝑆̅ = 1
4

 (𝑆𝑆(𝑖𝑖, 𝑗𝑗) + 𝑆𝑆(𝑖𝑖 + 1, 𝑗𝑗) + 𝑆𝑆(𝑖𝑖, 𝑗𝑗 + 1) + 𝑆𝑆(𝑖𝑖 + 1, 𝑗𝑗 + 1)) 3-100

If the input to the pooling layer is n-by-n, and the pooling region size is h-by-h, then the pooling

layer down-samples the region by h. In the other words, the output of a max- or average-pooling

layer for one channel of a convolutional layer is n/h-by-n/h.

Fully connected layer (FC). The convolutional and down-sampling layers are followed by one or

more fully connected layers. All neurons in a fully connected layer connect to all the neurons in

the previous layer. This layer combines all of the features learned by the previous layers across

the image to identify larger patterns. For image classification problems, the last fully connected

76

layer combines the features to classify the images. Therefore, the outputs of the last fully

connected layer of the network are the classes of the data set (or images).

Output layer. The output layer includes soft-max and classification layers. For image

classification problems, a soft-max layer and then a classification layer must follow the final fully

connected layer. The output unit activation function is the soft-max function (Tang, 2013):

𝑦𝑦𝑟𝑟(𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎𝑟𝑟(𝑥𝑥))
∑ 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎𝑗𝑗(𝑥𝑥))𝑘𝑘
𝑗𝑗=1

 3-101

Where 0 ≤ 𝑦𝑦𝑟𝑟 ≤ 1 and ∑ 𝑦𝑦𝑗𝑗𝑘𝑘
𝑗𝑗=1 = 1.

The soft-max function is the output unit activation function after the last fully connected layer for

multi-class classification problems.

A classification output layer must follow the soft-max layer. The classification output layer takes

the values from the soft-max function and assigns each input to one of the m mutually exclusive

classes using the cross entropy function for a 1-of-m coding scheme (Bishop, 2012).

In summary, the layers introduced above are the main structures of the CNN. There are other

layers which have different aims. For example, a cross channel normalization layer following

ReLU layer replaces each element with a normalized value it obtains using the elements from a

certain number of neighbouring channels (elements in the normalization window). A dropout
layer randomly sets the layer’s input elements to zero with a given probability, which can help

prevent overfitting. In next section, an example of VGG network is introduced for more explanation

of CNN’s architecture.

3.9.2 The VGG networks
The VGG networks are convolutional deep networks, which include from 13 to 19 layers

(Simonyan and Zisserman, 2014). These networks are especially designed for image

classification, which can recognise 1000 objects (classes). This section introduces the

architecture of the VGG network.

The input image to the VGG network is a fixed-size 224×224 RGB image. The image is passed

through a stack of convolutional layers, where the VGG network uses filters with small size of

3×3. All these convolutional layers (or hidden layers) are equipped with the ReLU layer. Spatial

pooling is carried out by five max-pooling layers, which follow some of the convolutional layers

(not all the convolutional layers are followed by max-pooling). Max-pooling is performed over a

2×2 pixel window. The stack of convolutional layers is followed by three fully connected (FC)

layers: the first two have 4096 channels each; the third performs 1000-way classification and thus

contains 1000 channels (one for each class). The final layer is the soft-max layer.

A structure of VGG network is shown in Figure 3.15. This is a VGG-16 network, which includes

13 convolutional (conv.) layers and 3 fully connected (FC) layers. The number of 16 means 16

weight layers.

77

VGG-16
image

3×3 conv, 64

3×3 conv, 64

Pool, /2

3×3 conv, 128

3×3 conv, 128

Pool, /2

3×3 conv, 256

3×3 conv, 256

3×3 conv, 256

Pool, /2

3×3 conv, 512

3×3 conv, 512

3×3 conv, 512

Pool, /2

3×3 conv, 512

3×3 conv, 512

3×3 conv, 512

Pool, /2

fc 4096

fc 4096

fc 1000

Soft-max

Output
size:224

Output
size:112

Output
size:56

Output
size:28

Output
size:14

Output
size:7

Output
size:1

Figure 3.15 The structure of VGG-16 network.

In Figure 3.15, the width of conv. layers (the number of channels) is rather small, starting from 64

in the first conv. layer and then increasing by a factor of 2 after each max-pooling layer, until it

reaches 512. The number of parameters in this network is about 138 million.

3.9.3 Network training and learning
Commonly, the neural network training is to find the optimal values of parameters (weights) for

prediction of the image classes. In image classification, a large data set of images is collected,

each image labelled with its category (or class), such as house, car, person and pet. During

training, the network is shown an image and produces an output in the form of a vector of scores,

one for each class. The desired class should have the highest score of all classes, but this is

unlikely to happen before training. An objective function (or loss function) is computed to measure

78

the error between the output scores and the desired class scores. The network then modifies its

weights to reduce error. In a deep learning system, there may be hundreds of millions of these

weights, and hundreds of millions of labelled examples with which to train the network.

To properly adjust these weights (the weight vector), the learning algorithm computes a gradient

vector that, for each weight, indicates by what amount the error would increase or decrease if the

weight were increased by a tiny amount. The weight vector is then adjusted in the opposite

direction to the gradient vector.

The gradient vector (or gradients) in multiple layers of a neural network are propagated by the

backpropagation algorithm (LeCun et al., 2015). This algorithm uses the chain rule of derivatives

for the gradients propagating. If vector 𝒚𝒚 = 𝑔𝑔(𝒙𝒙) (where x is the input vector), and 𝑧𝑧 = 𝑓𝑓(𝒚𝒚) then,

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦𝑗𝑗

𝜕𝜕𝑦𝑦𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

 3-102

where 𝑥𝑥𝑖𝑖 (𝑖𝑖 = 1,···, 𝑚𝑚) and 𝑦𝑦𝑗𝑗 (𝑗𝑗 = 1,···, 𝑛𝑛) are the elements of vector x and y, respectively.

In neural network training, the backpropagation algorithm can be applied repeatedly to propagate

gradients through all layers, starting from the output at the top (where the network produces its

prediction) all the way to the bottom (input). Once these gradients have been computed, it is

straightforward to compute the gradients with respect to the weights of each layer.

The weight adjustment method is gradient descent (GD). This algorithm updates the network

weights to minimize the loss function by taking small steps in the direction of the negative gradient

of the loss. If the loss function is

𝐽𝐽(𝜽𝜽) = 𝐿𝐿(𝑓𝑓𝜽𝜽(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖) 3-103

where (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) are inputs and outputs (𝑖𝑖 = 1, ···, 𝑚𝑚) of a network, and 𝜽𝜽 is the weight vector. The

GD is defined as:

𝜽𝜽ℓ+1 ≔ 𝜃𝜃ℓ − 𝛼𝛼 ∙ 𝜕𝜕
𝜕𝜕𝜽𝜽ℓ

𝐽𝐽(𝜽𝜽ℓ) 3-104

where ℓ is the iteration number, 𝛼𝛼 > 0 is the learning rate. The ∂
∂𝛉𝛉ℓ

𝐽𝐽(𝛉𝛉ℓ) (or ∇ 𝐽𝐽(𝛉𝛉)) is the gradient

of the loss function which is evaluated using he entire training set. The standard gradient descent

algorithm uses the entire data set at once. Another weight adjustment approach is called

stochastic gradient descent (SGD) (Bottou, 2010). This is the most common method for weight

adjustment in CNN network training. This algorithm evaluates the gradient and updates

parameters using a subset of the training set. The subset is called a mini-batch. Each evaluation

of the gradient using the mini-batch is an iteration. At each iteration, the algorithm takes one step

towards minimizing the loss function. The full pass of the training algorithm over the entire training

set using mini-batches is an epoch.

The training algorithm and procedure are introduced above. It can be seen that the training is a

complicated procedure which uses hundreds of millions of training data to adjust hundreds of

millions of weights. Therefore, the training includes different policies and operations. These

policies can be controlled by some parameters. Some of the main learning parameters are

introduced below.

79

Mini-batch. As mentioned above, the SGD updates the network weights by taking small steps in

the direction of the negative gradient of the loss function. It updates the weights using a subset

of the data each step. This subset is called a mini-batch. Each update is called an iteration. The

entire data set for deep learning is very large, and if it is all given to a neural network for training

at the same time, the training will be very slow. To overcome this problem, the entire data is

divided to smaller mini-batches which are given to the network one by one. This procedure

updates the weights of the neural network at the end of every step.

Epoch. An iteration is one step taken in the gradient descent algorithm towards minimizing the

loss function using a mini-batch. An epoch is the full pass of the training algorithm over the entire

training set. As the number of epochs increases, the weights are updated in the neural network

and the weights become a better fit to the training data. However too many epochs may cause

overfitting to the training data.

Learning rate. Learning rate was mentioned in equation (3-104). This is a hyper-parameter that

controls how much the weights are adjusted with respect of the loss gradient. The lower the value,

the slower the loss function travels along the downward slope. However, using a lower learning

rate can make sure that the loss function dose not miss any local minima, although it takes a long

time to converge. If the learning rate is too large, the training may not converge, or even diverge.

The weight update can be so big that the optimizer overshoots the minimum and makes the loss

function increase. Using different learning rates from large value decreasing to the low value,

there will be a point where the loss function stops decreasing and starts to increase (Smith, 2017).

This point is the optimal learning rate for training.

The main learning parameters are mentioned above. These parameters affect training speed and

convergence. Therefore, the training parameters must be trialled with a variety of values and

schedules to find the best way to train the network.

Another training concept is transfer learning (Pan and Yang, 2010). In transfer learning, a pre-

trained network is used as a starting point for re-training the network rather than using random

initial values of weights as starting points. For example, knowledge gained while learning to

recognize cars could apply when trying to recognize trucks. Transfer learning saves a lot of

training time and reduces the amount of training data require, because the training starts from

patterns that have been learned from solving a related task. In this research, the pre-trained model

of VGG-16 network is given additional training to detect pollen sacs on individual bee images.

The VGG-16 network in MATLAB was pre-trained by ImageNet (Russakovsky et al., 2015) data

set, which consists of 1000 different objects.

3.9.4 The fast region-based convolutional neural network (Fast RCNN)
The convolutional deep neural networks (CNNs) are designed for image classification. The

region-based convolutional neural network (RCNN) is designed to detect objects on an entire

image (Girshick et al., 2014). Based on the concept of RCNN, a Fast RCNN is built and modified

for more accurate object detection.

The Fast RCNN network takes as inputs an entire image and a set of object proposals (Girshick,

2015). The network first processes the whole image with several convolutional (conv.) and max-

80

pooling layers to produce a conv feature map. Then, for each object proposal a region of interest

(ROI) pooling layer extracts a fixed-length feature vector from the feature map. Each feature

vector is fed into a sequence of fully connected (fc) layers that finally branch into two different

output layers: a soft-max layer and a bounding box (bbox) regressor layer. The soft-max layer

produces probability estimates over multiple object classes plus a catch-all “background” class.

The bounding box regressor layer outputs four real-valued numbers, which include bounding box

position information for each of the multiple object classes. The architecture is shown in Figure

3.16.

Figure 3.16 The architecture of Fast RCNN (Girshick, 2015)

In Figure 3.16, the deep convolutional network (Deep ConvNet) and the object proposal (ROI

projection) are similar to RCNN (Girshick et al., 2014). After the feature map produced by the

convolution, there is a ROI pooling layer. This layer uses max pooling to convert the features

inside any valid ROI into a small feature map with a fixed spatial extent of 𝐻𝐻 × 𝑊𝑊 (e.g., 7×7 for

VGG-16), where 𝐻𝐻 and 𝑊𝑊 are layer hyper-parameters which are independent of any particular

ROI. For instance, a ROI is a rectangular window into a convolutional feature map. Each ROI is

defined by a four-tuple (𝑟𝑟, 𝑐𝑐, ℎ,𝑤𝑤) that specifies the top-left corner (𝑟𝑟, 𝑐𝑐) and the height and width

(ℎ,𝑤𝑤).

ROI max pooling works by dividing the ℎ × 𝑤𝑤 ROI window into a 𝐻𝐻 × 𝑊𝑊 grid of sub-window of

approximate size ℎ
𝐻𝐻

× 𝑤𝑤
𝑊𝑊

 and then max-pooling the values in each sub-window into the

corresponding output grid cell. Pooling is applied independently to each feature map channel, as

in standard max pooling.

According to the architecture of the Fast RCNN, it has a special training policy. In the Fast RCNN

training, stochastic gradient descent (SGD) mini-batches are sampled hierarchically, first by

sampling images (for example N images) and then by sampling ROIs (for example R/N ROIs)

from each image. Critically, ROIs from the same image share computation and memory in the

forward and backward passes. In addition, Fast RCNN uses a streamlined training process with

one fine-tuning (Girshick et al., 2014) stage that jointly optimizes a soft-max classifier and

bounding box regressors. The components of the detail procedure (such as loss function, mini-

batch sampling strategy, back-propagation through ROI pooling layers) are described below.

81

Multi-task loss. The Fast RCNN network has two sibling output layers. The soft-max layer

outputs a discrete probability distribution (per ROI), 𝑝𝑝 = (𝑝𝑝0, … , 𝑝𝑝𝐾𝐾), over 𝐾𝐾 + 1 categories. The

probability 𝑝𝑝 is computed by a soft-max over the 𝐾𝐾 + 1 outputs of a fully connected layer. The

bbox regressor layer outputs bounding box regression offsets, 𝑏𝑏𝑘𝑘 = (𝑏𝑏x𝑘𝑘, 𝑏𝑏y𝑘𝑘, 𝑏𝑏w𝑘𝑘 , 𝑏𝑏h𝑘𝑘), for each of

the 𝐾𝐾 object classes, indexed by 𝑘𝑘. The 𝑏𝑏𝑘𝑘 specifies a scale-invariant translation and log-space

height/width shift relative to an object proposal.

Each training ROI is labelled with a ground-truth class 𝑢𝑢 and a ground-truth bounding box

regression target 𝑣𝑣. The network training uses a multi-task loss 𝐿𝐿 on each labelled ROI to jointly

train for classification and bounding box regression:

𝐿𝐿(𝑝𝑝,𝑢𝑢, 𝑏𝑏𝑢𝑢, 𝑣𝑣) = 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝,𝑢𝑢) + 𝛿𝛿[𝑢𝑢 ≥ 1]𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙(𝑏𝑏𝑢𝑢,𝑣𝑣), 3-105

in which 𝐿𝐿cls(𝑝𝑝,𝑢𝑢) = − log 𝑝𝑝𝑢𝑢 is log loss for true class 𝑢𝑢. The second term’s loss (𝐿𝐿loc) is defined

over a tuple of true bounding box regression targets for class 𝑢𝑢 , 𝑣𝑣 = (𝑣𝑣x, 𝑣𝑣y, 𝑣𝑣w, 𝑣𝑣h) , and a

predicted tuple 𝑏𝑏𝑢𝑢 = (𝑏𝑏x𝑢𝑢, 𝑏𝑏y𝑢𝑢, 𝑏𝑏w𝑢𝑢 , 𝑏𝑏h𝑢𝑢), for class 𝑢𝑢. The Iverson bracket indicator function [𝑢𝑢 ≥ 1]

evaluates to 1 when 𝑢𝑢 ≥ 1 and 0 otherwise. By convolution the catch-all “background” class is

labelled 𝑢𝑢 = 0. For background ROIs there is no concept of a ground-truth bounding box, so the

loss 𝐿𝐿loc is ignored. For bounding box regression, the loss 𝐿𝐿loc is defined below.

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙(𝑏𝑏𝑢𝑢,𝑣𝑣) = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝐿𝐿1(𝑏𝑏𝑡𝑡𝑢𝑢 − 𝑣𝑣𝑡𝑡)𝑡𝑡∈{𝑥𝑥,𝑦𝑦,𝑤𝑤,ℎ} , 3-106

in which,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝐿𝐿1(𝑥𝑥) = �0.5𝑥𝑥2 𝑖𝑖𝑖𝑖|𝑥𝑥| < 1
|𝑥𝑥| − 0.5 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 3-107

The hyper-parameter 𝛿𝛿 in equation (3-105) controls the balance between the two task losses. The

ground-truth regression targets 𝑣𝑣𝑡𝑡 are normalized to have zero mean and unit variance. All the

training can use 𝛿𝛿 = 1.

Mini-batch sampling. During the training, the Fast RCNN uses fine-tuning method (Girshick et

al., 2014). Each SGD mini-batch is constructed from N = 2 images, chosen uniformly at random

(commonly, the training can iterate over permutations of the dataset). If using mini-batches of size

R = 128, the training is sampling 64 ROIs from each image. The training takes 25% of the ROIs

from object proposals which have intersection over union (IOU) overlap with a ground-truth

bounding box of at least 0.5 (Girshick et al., 2014). These ROIs comprise the examples labelled

with a foreground object class, i.e. 𝑢𝑢 ≥ 1. The remaining ROIs are sampled from object proposals

which have a maximum IOU with ground truth in the interval [0.1, 0.5) (Girshick et al., 2014).

These are the background examples and are labelled with 𝑢𝑢 = 0. The lower threshold of 0.1

appears to act as a heuristic for hard example mining (Felzenszwalb et al., 2010).

Back-propagation through ROI pooling layers. Through the ROI pooling layer, the back

propagation routes derivative in the training of Fast RCNN (Girshick, 2015). For example, if there

is only one image per mini-batch, then N = 1. The extension to N > 1 is straightforward because

the forward pass treats all images independently.

82

When the activation inputs go into the ROI pooling layer, the layer max pools outputs on objects’

ROIs. A single input may be assigned to several different outputs.

In back-propagation, the partial derivative of the loss function is computed with respect to each

input variable through the ROI pooling layer (Girshick, 2015). Then the back-propagation

calculates partial derivatives through other layers which are before the ROI pooling layer. The

partial derivatives are used by the SGD approach to change the parameters of the network to

minimize the loss function. This is the training of the Fast RCNN network.

3.9.5 The Faster RCNN
The Faster RCNN is created from Fast RCNN. Faster RCNN consists of a region proposal

network (RPN) (Ren et al., 2015) which shares full-image convolutional features with the detection

network (Fast RCNN for example), enabling nearly cost-free region proposals. The RPN is trained

end-to-end to generate high-quality region proposals, which are used by Fast RCNN for detection.

The RPN takes an image with any size as input and outputs a set of rectangular object proposals.

It is built within a fully-convolutional network. The ultimate goal is to share computation with the

Fast RCNN object detection network. Therefore, the RPN and Fast RCNN share a common set

of convolutional layers. For example, if the Fast RCNN core network uses VGG-16, then so does

the RPN core network. The entire system is a single, unified network for object detection, which

is shown in Figure 3.17. The RPN tells the Fast RCNN where to look (Ren et al., 2017).

Figure 3.17 Faster RCNN process, which consists of RPN (Ren et al., 2017).

To generate region proposals, a mini-network (VGG-16 for an example) slides over the

convolutional feature map output by the last shared convolutional layer. This network is fully

connected to an 𝑛𝑛 × 𝑛𝑛 spatial window of the input convolutional feature map. Each sliding window

is mapped to a lower-dimensional vector (512-d for VGG) as an intermediate layer. This layer is

83

fed into two sibling fully-connected layers: a box regression layer (reg) and a box classification

layer (cls) as shown in Figure 3.18.

512-d

2r scores 4r coordinates r anchor boxes

Figure 3.18 The region proposal network (RPN) (Ren et al., 2015).

Using 𝑛𝑛 = 3 as an example, the effective receptive field on the input image is large (228 pixels

for VGG). This mini-network is illustrated at a single position in Figure 3.18. Because the mini-

network operates in a sliding-window, the fully-connected layers are shared across all spatial

locations. This architecture is naturally implemented with an 𝑛𝑛 × 𝑛𝑛 convolutional layer followed by

two sliding 1×1 convolutional layers (for reg and cls, respectively). ReLUs are applied to the output

of the 𝑛𝑛 × 𝑛𝑛 convolutional layer.

At each sliding-window location, if the network simultaneously predicts 𝑟𝑟 region proposals, so the

reg layer has 4𝑟𝑟 outputs encoding the coordinates of 𝑟𝑟 boxes. The cls layer outputs 2𝑟𝑟 scores

that estimate the probability of object (or not object) for each proposal. The cls layer is

implemented as a two-class soft-max layer. Alternatively, one may use logistic regression to

produce 𝑟𝑟 scores. The 𝑟𝑟 proposals are parameterized relative to 𝑟𝑟 reference boxes, called

anchors. Each anchor is centred at the sliding window in question and is associated with a scale

and aspect ratio. The network uses 3 scales and 3 aspect ratios, yielding 𝑟𝑟 = 9 anchors at each

sliding position. For a convolutional feature map of a size 𝐻𝐻 × 𝑊𝑊 (typically about 2400), there are

𝐻𝐻 × 𝑊𝑊 × 𝑟𝑟 anchors in total. An important characteristic of this model is translation invariant, both

in terms of the anchors and the functions which compute proposals relative to the anchors.

In the training of RPN, a binary class label is assigned to each anchor. The positive label is

assigned to two kinds of anchors: the anchor (or anchors) with the highest IOU overlap with a

ground-truth box; or an anchor that has an IOU overlap higher than 0.7 with any ground-truth box.

A negative label is assigned to a non-positive anchor if its IOU ratio is lower than 0.3 for all ground-

truth boxes. Anchors that are neither positive nor negative do not contribute to the training

objective. With these definitions, the training minimizes an objective function following the multi-

task loss in Fast RCNN. The loss function for an image is defined as:

𝐿𝐿({𝑝𝑝𝛼𝛼}, {𝑏𝑏𝛼𝛼}) = 1
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

∑ 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝛼𝛼 , 𝑝𝑝𝛼𝛼∗)𝛼𝛼 + 𝛿𝛿 1
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟

∑ 𝑝𝑝𝛼𝛼∗𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑏𝑏𝛼𝛼 , 𝑏𝑏𝛼𝛼∗)𝛼𝛼 3-108

84

In equation (3-108), 𝛼𝛼 is the index of an anchor in a mini-batch and 𝑝𝑝𝛼𝛼 is the predicted probability

of anchor 𝛼𝛼 being an object. The ground-truth label 𝑝𝑝𝛼𝛼∗ is 1 if the anchor is positive and is 0 if the

anchor is negative. 𝑏𝑏𝛼𝛼 is a vector representing the 4 parameterized coordinates of the predicted

bounding box, and 𝑏𝑏𝛼𝛼∗ is the ground-truth box associated with a positive anchor. The classification

loss 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 is log loss over two classes (object, or not object). The regression loss is defined as:

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑏𝑏𝛼𝛼 , 𝑏𝑏𝛼𝛼∗) = 𝑅𝑅(𝑏𝑏𝛼𝛼 − 𝑏𝑏𝛼𝛼∗) 3-109

Where 𝑅𝑅 is the robust loss function (smooth 𝐿𝐿1) defined in equation (3-107). The term 𝑝𝑝𝛼𝛼∗𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟

means the regression loss is activated only for positive anchors (𝑝𝑝𝛼𝛼∗ = 1) and is disabled otherwise

(𝑝𝑝𝛼𝛼∗ = 0). The outputs of the cls and reg layers consist of {𝑝𝑝𝛼𝛼} and {𝑏𝑏𝛼𝛼} respectively. The two terms

are normalized with 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟, and balancing weight 𝛿𝛿. For regression, the parameterizations

of the 4 coordinates are:

𝑏𝑏𝑥𝑥 =
�𝑥𝑥−𝑥𝑥𝛽𝛽�

𝑤𝑤𝛽𝛽
, 𝑏𝑏𝑦𝑦 =

(𝑦𝑦−𝑦𝑦𝛽𝛽)

ℎ𝛽𝛽
, 𝑏𝑏𝑤𝑤 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑤𝑤

𝑤𝑤𝛽𝛽
) , 𝑏𝑏ℎ = 𝑙𝑙𝑙𝑙𝑙𝑙(ℎ

ℎ𝛽𝛽
), 3-110

𝑏𝑏𝑥𝑥∗ =
�𝑥𝑥∗−𝑥𝑥𝛽𝛽�

𝑤𝑤𝛽𝛽
, 𝑏𝑏𝑦𝑦∗ =

(𝑦𝑦∗−𝑦𝑦𝛽𝛽)

ℎ𝛽𝛽
, 𝑏𝑏𝑤𝑤∗ = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑤𝑤

∗

𝑤𝑤𝛽𝛽
) , 𝑏𝑏ℎ∗ = 𝑙𝑙𝑙𝑙𝑙𝑙(ℎ

∗

ℎ𝛽𝛽
), 3-111

where 𝑥𝑥, 𝑦𝑦,𝑤𝑤 and ℎ denote the two coordinates of the box centre, width, and height (Girshick et

al., 2014). Variables (𝑥𝑥,𝑦𝑦,𝑤𝑤, ℎ) are for the predicted box; (𝑥𝑥𝛽𝛽 ,𝑦𝑦𝛽𝛽 ,𝑤𝑤𝛽𝛽 , ℎ𝛽𝛽) are for anchor box; and

(𝑥𝑥∗,𝑦𝑦∗,𝑤𝑤∗, ℎ∗) are for ground-truth box. This is the bounding-box regression from an anchor box

to a nearby ground-truth box.

The RPN can be trained end-to-end by back-propagation and stochastic gradient descent (SGD).

Each mini-batch arises from a single image that contains many positive and negative anchors.

This is the “image centric” sampling strategy (Girshick, 2015).

In the training of the entire Faster RCNN, both RPN and Fast RCNN trained independently. They

modify their convolutional layers in different ways. There are 4 steps for training algorithm sharing

convolutional features between the two networks. In the first step, the RPN is trained. The network

is trained end-to-end for the region proposal task. In the second step, a separate detection

network is trained by Fast RCNN using the proposal generated by the last step of RPN. In this

case, the two networks do not share convolutional layers. In the third step, the Fast RCNN training

from the second step is used to initialize RPN training. Then the training fixes the shared

convolution layers and only fine-tune the layers unique to RPN. Now the two networks share

convolutional layers. In the final step, the training keeps the shared convolutional layer fixed, and

the fc layers of the Fast RCNN are fine-tuned. In this case, both networks share the same

convolutional layers and form the unified Faster RCNN network.

85

Chapter 4

Chapter 4: Methodology of bee detection and tracking
__

This chapter introduces the equipment and the methods for bee detection and tracking on the

honey bee monitoring video. The environment of data collection is first introduced. Then the bee

detection approach using image analysis is presented. The main point is the combination of colour

thresholding and the foreground (motion) detection. Then the bee tracking method is explained.

There are two tracking models: the prediction model and the Kalman filter. In addition, the Hough

transform is used to detect bees in a merged situation in the video image.

4.1 The research environment and equipment
The species of bee in this experiment is the European bee. These bees’ bodies include orange

and black stripes. When a bee brings full pollen sacs to the hive, its back legs obviously have

sacs. Figure 4.1 (a) shows the beehive and the camera set up situation. The camera is attached

to the front wall of the beehive, facing down about 30cm above the entrance. Because the aim of

the research is to detect pollen sacs on bee’s legs, it needs a high resolution video to record small

objects. The video is 1920*1080 resolution at a rate of 50 frames per second (fps). The higher

frame rate is better for bee tracking, but the 100 or 200 fps high speed camera is more costly. In

addition, a camera with a 30 or 50 frame rate is common, easy to obtain and operate.

The operation of the camera should be convenient, so that the video data is easy to collect. One

of the aims of this research is try to detect pollen at most times of the day. Because of the variable

climate of the environment, the image of the video includes different situations. Therefore, it has

to record the video at different times of the day. One way is to record the video throughout the

whole day. However, it is hard to find a big enough battery for the camera to keep operating for

more than 10 hours. Even if the camera can be continuously recharged, the video becomes too

long to store in the camera memory. It is better to operate the camera on and off at regulated

times. Therefore, the camera is programmed to turn on every half hour. Once it is on, the camera

records the video for 2 minutes, and then turns itself off automatically. After the next half hour, it

repeats the operation. In this way, video is recorded at different times of the day, in different

situations.

A single white (or green) colour board was placed on the ground in front of the entrance of

beehive, to simplify the image background. This is necessary, because the natural background

includes withered grass with a similar colour to the bees and this interferes with the image

86

segmentation. The video processing is implemented using MATLAB with the computer vision

toolbox.

 (a) (b)

Figure 4.1 The camera position (a) and the camera view (b)

A Matlab function performs the blob analysis. It not only calculates the blob information, but also

outputs bounding boxes around each bee blob. The bee tracking is shown by adding indexes to

each bounding box and curves marking each bee’s trajectory with different colours in the video.

A tracking boundary is set up just in front of the hive entrance, which is shown by the horizontal

red line near the bottom of Figure 4.1 (b), so that the system only tracks bees over the white

background area. This is because the area below the boundary line has complex colour

information which affects the bee detection. Figure 4.1 (b) shows an example of tracking output

over 48 frames (around 1 second later) from beginning of the video. The blue and red bounding

boxes mark the detected and predicted bee positions respectively.

The model implementing tracking in the merged bee situation is shown in Figure 4.2. The green

outline shapes show the detections produced by the Hough transform when the bees are merged.

The blue bounding boxes show the detection of merged blobs. The images (a) to (d) are

successive frames. These examples demonstrate successful tracking.

The camera takes video recordings automatically at different times of the day. When the light

changes, the video may not be colourful enough for detection. The camera has a Protune

operation which can make the video more vivid. Figure 4.3 indicates this operation. This operation

can be performed both in hardware and software. The hardware operation charges the camera

battery, so that it is unable to record the video throughout the whole day. Therefore, the software

(a) (b) (c) (d)

Figure 4.2 The result of merged situation tracking over successive video frames.

87

operations are performed offline on a PC, after recording the video. All of the video recordings

are enhanced by the Protune operation. This helps to make the colour detection easier.

4.2 Bee Detection
The detection of bees is implemented by foreground subtraction and colour base segmentation.

Foreground subtraction detects flying bees and ignores the unchanging background. However,

this also detects the bees’ shadows and the movement of vegetation, which affects the result.

The colour segmentation, based on global colour thresholding in the Hue-Saturation-Value (HSV)

colour space (Alaux et al., 2010), detects the colours of bees, but it also detects other objects

with the same colour as the bees, especially the withered grass. Therefore, combination of the

two methods can remove shadows and moving vegetation. Thus, the blob analysis estimates the

positions of bees and creates a bounding box around each bee blob.

In addition, after each phase of the object detection, such as colour segmentation and foreground

subtraction, the morphological image calculation (or filter) is performed to smooth and de-noise

the binary images. These phases are mentioned as a summary after each step of detection. The

detail of this method is given in section 3.4.

4.2.1 Bee detection with foreground subtraction
The foreground subtraction detects movement objects using the Gaussian Mixture Model (GMM)

(Wang et al., 2015b) with the video. In this situation, the Gaussian model has 5 distributions and

40 training frames. Because the model is expected to be a stable Gaussian distribution, a smaller

learning rate works well. The initial learning rate is 0.001.

This model is implemented using the Matlab foreground detector function. The colour video has

three channels of RGB. The motion is not affected by the colour, so this process converts the

image to a grey scale image. After foreground pixel detection in a frame, the model outputs a

binary image which displays the foreground pixels as white and the background as black. The

foreground (white) pixels display the blobs of moving objects. Most of them are bee blobs. After

the morphological opening, closing and filling holes (section 3.4), the binary image is smoothed

and most noise is removed.

(a)Video without Portune (b)Video with Portune

Figure 4.3 The Protune operation of the camera

88

Figure 4.4 displays an example of the foreground segmentation. It can be seen that the shape of

the blobs (Figure 4.4b) is not smooth, and it has some dust. After the morphological calculation

(image opening, closing and filling holes) which is shown in Figure 4.4(c), the blobs are smoother;

and the noise is removed. The white pixels are the blobs of moving bees and the bee shadows.

This morphological filter is also applied in colour detection.

From Figure 4.4, it can be seen that this model detects not only bee blobs but also bee shadows.

This because the shadows are also moved. These shadows are independent of the bees, so

another method is needed to remove the shadow blobs. In Figure 4.4(a), the shadows are dark,

but the bees have an orange colour. Therefore, the solution is to use the colour information to

remove the shadows.

4.2.2 Colour segmentation for bee detection
The bees have orange and black colours, with the head being black and the abdomen orange

and black. The video is RGB colour images. If this colour space is used to detect colour, all three

channels have to be used in the calculation. Moreover, the colour is affected by the brightness of

the video. However, if it is transformed to the HSV colour space, the calculation is simpler. The

Hue and the Saturation channels are calculated in proportion to chroma, and are not affected by

the brightness.

Figure 4.5(b) shows the Hue channel of image Figure 4.5(a) with the full resolution of 1080x1920.

In Figure 4.5(b), it can be seen that the Hue channel is too noisy to detect bees. However, bee

regions in the image are all dark, which means the Hue value is low. In addition, in this hue

channel, the background pixels of the image mostly have a high value. Therefore, the Hue value

is still useful.

(a)

(b) (c)

Figure 4.4 The results of motion detection.
Note: (a) The original video. (b) The result of motion detection. (c) The result after the
morphological calculation.

89

The MATLAB function is used to transform from the RGB colour space to the HSV space. It

outputs all three channels (H, S and V) with values ranging from 0 to 1. If the Hue channel pixel

is h(x , y), the orange coloured pixel has a Hue value in the range 0.02 < h(x , y) < 0.15. These

two threshold values were determined experimentally. Figure 4.5(c) shows the Hue detection of

orange coloured pixels. It can be seen that the method did not detect bees correctly. The board

is white and the bees have a black colour. These two colours are not stable for the Hue

transformation from the RGB colour. Therefore, after the colour detection, the results include

some noise, which is indicated by the white dots. In addition, bees sometimes drop their pollen

on the board. These pollen drops are also detected. The saturation channel can help to correct

the detection.

After the HSV colour conversion, the white and black colours have a lower value of saturation,

but the orange colour has a higher value of saturation. Figure 4.6(a) shows the saturation channel

as an intensity image. It can be seen that the bee bodies include higher and lower saturation

values. The orange part has a higher value, while the head and black parts of the body have a

lower value. After testing 20 video images, the threshold for bee detection using the Saturation

pixel s(x , y) was chosen as s(x , y) > 0.12. Figure 4.6 (b) indicates the blobs from saturation

detection. The result includes some shadow regions because their values are the same as the

bee’s head saturation

(a) (b)

(c)

Figure 4.5 The Hue channel example.
Note: (a) The original image. (b) The Hue channel shown as an intensity image. (c) The
bee region detection with Hue channel.

90

The combination of the two channels produces the logical “and” calculation on each of the

corresponding pixels. If the Hue detected image is HD(x , y), and the saturation detected image

is SD(x , y), the combination is:

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐻𝐻𝐻𝐻(𝑥𝑥 ,𝑦𝑦) ∧ 𝑆𝑆𝑆𝑆(𝑥𝑥 ,𝑦𝑦) 4-1

where MOI is the binary image known as the Mask Orange Image. The “∧” is the logical and

operation applied to the binary pixels of two detected images. After morphological filtering by

image opening and filling holes for the MOI, Figure 4.7 is the final result of the orange colour

detection. The shadows on the saturation detection are removed and the bee shapes are clearer.

However, this method still loses some of the bees' heads. The orange dust of the pollen on the

board can still be detected. While the bee’s body has orange and black colours, only the orange

colour is used to detect part of the bees’ bodies. The black colour is the other feature of bees’

bodies, but this colour is not stable in the Hue and Saturation channels. Therefore, black is only

detected from the Value channel. If the Value pixel is v(x , y), the black pixels have v(x , y) < 0.5

from the experiment.

Figure 4.8(a) is the value channel which looks similar to a grey scale image. Figure 4.8(b) displays

the Value detected result image (Mask of the Black Image, MBI). It can be seen that the black

detection detects the bee heads correctly, although it also detects shadows. If the orange colour

and the black colour detection is combined, the bee detection is better. The orange and black

colour mask image is MOBI, calculated by

Figure 4.7 The orange mask binary image after morphological calculation (MOI).

(a) (b)

Figure 4.6 Example of the Saturation channel.
Note: (a) The Saturation channel shown as an intensity image. (b) The bee region
detection using the Saturation channel.

91

𝑀𝑀𝑀𝑀𝐵𝐵𝐼𝐼 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∨ 𝑀𝑀𝑀𝑀𝑀𝑀 4-2

where the “∨” is the logical or calculation applied to each binary pixel. The final bee colour

detection image (MOBI) is shown in Figure 4.9 which has smoothed edges after image opening

and filling holes. The bee blobs are clear and intact. However, the colour segmentation only

detects the colour, so the shadows and other orange dust are also detected as bees. Therefore,

this method of detection is not sufficient. The colour segmentation should be combined with

foreground detection to remove other dust blobs.

All the example images above show the detection with a white colour background. However, the

final aim of this research is to detect the pollen sac. Some bees bring white coloured pollen, which

cannot be detected when there is a white background. Therefore, a colour background that is

different from all of the pollen colours is required. The grass has a green colour, so green will not

affect the bee’s action and green coloured pollen has not been found in the experiment. The green

coloured background with its HSV colour transform is shown in Figure 4.10. The Hue value of

background is near constant in Figure 4.10 (b) because of the green background, whereas the

Hue in Figure 4.5 (b) was not constant because of the white colour. Bee regions in this Hue

channel are still dark, especially the orange coloured parts, but they are more obvious in Figure

4.10 (b) than in Figure 4.5 (b). The Saturation channel in Figure 4.10 (c) is much different from

Figure 4.6 (a). The background has a higher saturation value, which is similar to that of bee

bodies. Therefore, this channel may not detect a bee's body accurately. In addition, the black

colour regions also have a higher level of saturation, such as in the shadows and bee’s heads.

Conversely, the wings reflection has a lower value because of the white colour. The Value channel

(a) (b)

Figure 4.8 Example of the Value channel and black colour detection.
Note: (a) The Value channel displayed as intensity image. (b) The black colour detection
binary image (MBI) after the morphological filter.

Figure 4.9 The combination of the orange and black colour (MOBI)

Note: this is the result after the morphological filter.

92

in Figure 4.10(c) looks similar to Figure 4.8(a). This channel is still useful for the black colour

detection.

The thresholds for the range and black colour were initially set the same as for the white

background.

(a) (b)

(c) (d)

Figure 4.10 The Green background colour transform.
Note: (a) The original image. (b) The Hue channel shown as intensity. (c) The Saturation
channel shown as intensity. (d) The Value channel shown as intensity.

(a) 0.02 < h(x , y) < 0.15 (b) s(x , y) > 0.12

(c) VD(x , y) < 0.5 (d)
Figure 4.11 An example of the detection with same thresholds.

Note: (a) The Hue thresholding for orange colour. (b) The Saturation thresholding for
orange colour. (c) The Value thresholding for black colour. (d) The final colour detection

93

• Orange colour: 0.02 < h(x , y) < 0.15, s(x , y) > 0.12.

• Black colour: v(x , y) < 0.5

An example result is displayed in Figure 4.11. It can be seen that the saturation threshold almost

covers the whole image. It is therefore necessary to judge another threshold. As a result of

detection, it can be seen there is no threshold which can separate bee regions from the

background, because the main regions of bee bodies are similar to the background in the

Saturation channel. In addition, the thresholds need to be chosen to fit most of the different videos.

If the saturation difference between the background and the bee body is small, the detection is

not reliable. Therefore, the Saturation channel is not employed for orange detection on the green

background.

A typical result for the final detection with green background is shown in Figure 4.11(d). For each

bee, most of the body is in the binary blob, but some of the tail parts are not. However, all the

shadows are still detected as binary blobs. The green background cannot remove the shadows,

because the black colour region can be part of a bee or a shadow.

4.2.3 The combination of foreground and colour detection
The foreground subtraction method (from section 4.2.1) outputs a binary image which masks the

foreground pixels. This is the mask of the foreground image (MFgI). In addition, the colour

segmentation detects objects with an orange colour. It produces another binary image which

masks the orange colour (MOI). The black colour includes the shadows which has the same

problem as in foreground detection, so initially it is not combined with the orange. At the beginning,

the combination method uses the binary images which come from the two methods of foreground

and orange colour detection. There are two further methods of combining these two binary

images: logical "and" (∧) and logical "or" (∨).

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∧ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 4-3

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∨ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 4-4

Example results of these two methods are shown in Figure 4.12. Combine1 removes the shadows

and orange noise of the background pollen, but only parts of the bee bodies are detected. Most

of the bee heads are lost in the result. Combine2 covers the whole bee bodies, but the shadows

(a) Combine1 (b) Combine2

Figure 4.12 The results of the two combined methods.
Note: (a) The result of the logical “and” of mask images of MOI and MFgI. (b) The result of
the logical “or” of the mask images of MOI and MFgI.

94

and orange background noise are also detected. The aim of the detection is to detect the whole

bee bodies and remove the shadows and noise.

4.2.3.1 Bee detection model A
With this idea, a new method was created to solve the problem. The method is shown below and

displayed in Figure 4.13:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐷𝐷𝐷𝐷) = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑀𝑀𝑀𝑀𝑀𝑀 ∧ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) 4-5

𝑀𝑀𝑂𝑂𝑂𝑂𝐼𝐼 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∨ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 4-6

𝑀𝑀𝑀𝑀𝐵𝐵𝐼𝐼 = 𝐷𝐷𝐷𝐷 ∧ 𝑀𝑀𝑂𝑂𝑂𝑂𝐼𝐼 4-7

The equations (4-5)–(4-7) above are referred to as detection model A, in which the logical

calculations of “∧” and “∨” are applied to corresponding binary pixels of two mask images. The

morphological dilation in equation (4-5) produces a dilated image (DI) which is used to find the

approximate position and area of the bee. Moreover, the DI can remove the shadows and orange

background which are independent of the bee bodies. A "good" dilation makes the DI image cover

whole bee bodies. The dilation operation causes the blobs to expand. This depends on the size

of the original blobs on Figure 4.12(a). However, the image shows some bee blobs are big enough

to be detected, while some blobs are too small, in particular, some blobs do not cover the bee

heads. Experimentally, for detection model A, the dilation operation was chosen as a disk-shaped

structuring element with a radius of 35 pixels.

The MOI and MFgI were combined to obtain the mask object image (MOjI in (4-6)) which is the

same as Combine2. The final result was the mask bee blob image (MBBI) obtained from the

combination of DI and MOjI. Moreover, all of the results of the equations were smoothed by image

opening. The MBBI was smoothed by image opening and filling holes.

Mask_Orange_
Image(MOI)

Mask_Foreg
round_Imag

e(MFgI)

Mask_Object
_Image(MOjI)

Dilated_Image
(DI)

Mask_Bee_
Blob_Image

(MBBI)
DI ^ MOjI

FMgI V MOI

Dilate
(MOI ^ MFgI)

Figure 4.13 The combination logic (model A) with binary images.
Note: the MBBI is the final binary image.

Using to the above approach, the DI image and the MOjI image determine the region of bee

bodies. The dilation radius was determined experimentally. A small dilation did not cover the

whole bee body (especially the heads of bees), so the bee heads might be lost. Therefore, a large

radius (35 pixels in this research) was chosen to detect more of the bee body regions, although

it also detected shadows or orange background near the bee bodies. Figure 4.14 shows examples

for two dilation radii (16 and 35 pixels) and the resulting binary bee blob images (MBBI). The

advantage of this method is that it detected most of the bee bodies and removed individual

shadows and the orange background. If the dilation radius was 16 pixels (in Figure 4.14(a)), the

95

result of the MBBI as shown in Figure 4.14(b) could be the loss of part of the head and tail. This

shows that this method of detection is not reliable. This might have a worse result if employed in

different videos. Figure 4.14(c) indicates the dilation image (DI) with a 35 pixel dilation radius.

These blobs appear to be big, but this is useful in detecting the whole body and other details of

bees (result in Figure 4.14(d)), especially parts of their wings and antennae.

However, the disadvantage is shown in the two bees on the right side of the image. In Figure

4.14(b), these two bees were detected as two individual bees, but in Figure 4.14 (d) these two

bees were detected as one blob (known as a merged blob), because the two regions linked to

each other. This can generate a problem for bee tracking, which is discussed in section 4.3.3.

Black colour detection can be used to handle the disadvantage of 35 pixels dilation. According to

MOBI in Figure 4.9, the colour detection almost covers the whole of the bee bodies and the two

bees on the right side are detected as individual blobs. Therefore, if the equation (4-1) is changed

to equation (4-2), the merged blob problem is removed. Moreover, the MBI in equation (4-2) can

replace MFgI in equation (4-6). The MFgI is the foreground detection which is not necessary for

the calculation of equation (4-6). In addition, the detection of the moving wings of MFgI may

generate a similar problem to the disadvantage of the 35 pixels dilation.

4.2.3.2 Bee detection model B
The model has been rebuilt as shown below. This is the model B:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐷𝐷𝐷𝐷) = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑀𝑀𝑀𝑀𝑀𝑀 ∧ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) 4-8

𝑀𝑀𝑂𝑂𝑂𝑂𝐼𝐼 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∨ 𝑀𝑀𝐵𝐵𝐼𝐼 4-9

(a) (b)

(c) (d)

Figure 4.14 The result of different dilation and corresponding bee detection.
Note: (a) The DI image with dilation radius of 16 pixels. (b) The binary image of (MBBI) from
(a). (c) The DI image with dilation radius of 35 pixels. (d) The final detection result with DI
image of (c).

96

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐷𝐷𝐷𝐷 ∧ 𝑀𝑀𝑂𝑂𝑂𝑂𝐼𝐼 4-10

In this model (B), equation (4-8) is the same as equation (4-5). Equation (4-9) is derived from

equation (4-2). The final result is the mask bee blob image (MBBI) obtained from the combination

of DI and MOBI. Black colour detection (MBI) cannot be employed in the DI image in equation

(4-8). For example, if the calculation is Dilate(MOI ∧ MFgI ∧ MBI), the orange and black colour

does not share the same regions, so that the original blobs for dilation are too small. If the

calculation is Dilate(MOI ∧ MFgI ∨ MBI), the DI image includes shadows, so that the equation

(4-10) may not remove shadows.

Figure 4.15 displays this approach as a diagram. As previously, all of the binary images (DI and

MOBI) are smoothed by image opening, and the MBBI is smoothed by image opening and filling

holes.

Mask_Orange_
Image(MOI)

Mask_Foreground_
Image(MFgI)

Dilate(MOI ^ MFgI)

Mask_Orange_Black_
Image(MOBI)

MBI V MOI

Dilated_Image(DI)

DI ^ MOBI

Mask_Bee_Blobs_Image
(MBBI)

Mask_Black_I
mage(MBI)

Figure 4.15 The binary images logical calculation of model B.
Note: the MBBI is the final binary image.

Figure 4.16 displays an example. Figure 4.16(a) shows the dilated image (DI). It can be seen that

the dust blobs are removed. Figure 4.16(b) is the final result of bee detection.

Compared with Figure 4.9, it removes the shadows and orange background. Moreover, compared

with Figure 4.14(d), this binary image shows the main body shape more clearly. In particular, the

(a) (b)

Figure 4.16 The detection result of model B.
Note: (a) The dilated image (DI). (b) The binary image of (MBBI) after morphological filter.

97

two bees on the right side of the image are detected individually rather than as one merged blob

in Figure 4.14(d). This is useful for the bee tracking.

The blobs on the bottom of the binary image pose a difficulty. As can be seen in the original colour

image in Figure 4.5(a), this part is close to the entrance, which includes the beehive wall, bees

and coloured boxes. Bees in this area cannot be detected precisely. The blobs in this part of the

video are removed, as shown in Figure 4.17. This is the final flying bee detection.

Figure 4.17 The final flying bee detection.

The detection result on the green background is similar to that on the white background. In the

model B result shown in Figure 4.18, it can be seen that this latter model detects most of the bees

and removes shadows. However, one bee is not detected (in the top left corner). In addition, the

bee blobs in Figure 4.18(b) lose some detail, especially in their tails. After checking the colour

detection of Figure 4.11, the main reason for this is due to the colour detection. The orange colour

detection (Figure 4.11(a)) cannot detect the lost bee, because the bee is too dark. As a result, the

DI image does not show this bee. Moreover, the two colour detection of MOBI loses some detail

of the bee bodies in Figure 4.11(d). To solve this problem, it may be necessary to find new colour

thresholds or incorporate the foreground detection of MFgI in the equation (4-8). This will be

discussed in the next section dealing with pollen detection problems.

4.2.4 Introduction to the problem of pollen detection
If the research is limited only to bee detection, the model B is good enough. However, the final

aim is the detection of the pollen sacs on the bee’s legs in flight. The pollen detection method is

described in section 4.4, where the pollen detection relies on knowing the main body shapes of

the bees. Moreover, the merged tracking investigated in section 4.3.3 also requires a clear main

body shape. Therefore, it is important to detect more accurately the main body shape from the

(a) (b)

Figure 4.18 An example of detection on the green background

98

blobs in Figure 4.18(b). Because the bees can have red, yellow or white coloured pollen sacs, a

green rather than a white background is used for models C and D.

4.2.4.1 Bee detection model C
There are two ways to improve on the detection of bee shapes. The first approach to improve on

the detection process of model B is to incorporate foreground detection into equation (4-8). This

was introduced in section 4.2.3.2. Therefore, the equation now becomes:

𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂𝐼𝐼 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∨ 𝑀𝑀𝐵𝐵𝐼𝐼 ∨ 𝑀𝑀𝐹𝐹𝐹𝐹𝐼𝐼 4-11

As a result, model C is:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐷𝐷𝐷𝐷) = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑀𝑀𝑀𝑀𝑀𝑀 ∧ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) 4-12

𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂𝐼𝐼 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∨ 𝑀𝑀𝐵𝐵𝐼𝐼 ∨ 𝑀𝑀𝐹𝐹𝐹𝐹𝐼𝐼 4-13

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐷𝐷𝐷𝐷 ∧ 𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂𝐼𝐼 4-14

With this change, model C replaces model B. Because the foreground subtraction now covers

the movement part of the whole bee body, and the DI image can remove the shadows, the

outcome is the detection of a bigger blob. However, this experiment leads to another problem. As

the foreground subtraction is sensitive to wing movement, the blob is too fat for the detection of

the pollen sac. An example is shown in Figure 4.19, where image (b) shows the detection result,

with the blob covering a large part of the wings. Figure 4.19 (c) shows the main body which was

masked in blob (b). The main body detection will be presented in section 5.1.1. It can be seen in

Figure 4.19(c) that the main body is too fat, and the pollen sac is masked. This problem is solved

in section 4.2.4.2.

4.2.4.2 Bee detection model D
The second approach to improve on the detection process of model B is to change to new colour

thresholds. The threshold range for orange colour detection on a green background is 0.02 <

h(x , y) < 0.15. It can be seen that orange detection loses some regions in Figure 4.11 (a),

especially in some bees with a dark body. In addition, some pollen sacs have a yellow or white

colour. Therefore, these two colours should be considered alongside orange, so that the detection

of the bee shape will include both main body and pollen sacs.

As the yellow colour, with a hue range of 0.15 < h(x , y) < 0.19, is near to the orange colour

detection in the Hue channel, these two colours can be combined readily within one threshold

range, which now becomes 0.02 < h(x , y) < 0.19.

(a) (b) (c)

Figure 4.19 Bee main body removal using the detection

99

A bee detection result with these colour thresholds is shown at Figure 4.20. The orange and

yellow detection in Figure 4.20(a) covers more of the bee bodies. In particular, in the case of the

bee in the top left corner, part of its body is now detected, whereas no detection was possible

using model B. In the final detection result, as shown in Figure 4.20(b), the whole body is now

detected.

Another result that is related to pollen detection is shown in Figure 4.21. This figure shows one

single bee detection with the old thresholds (only orange colour) and new thresholds (orange and

yellow). Figure 4.21(b) shows the old colour detection, and image (c) illustrates the final result of

bee detection with only orange detection. Both results were obtained using the thresholds of

model B. Figure 4.21(e) and (f) show the new threshold detection results (with orange and yellow).

(a) (b)

Figure 4.20 The bee detection result with new orange and yellow thresholds.
Note: (a) The orange and yellow colour detection result. (b) The final bee detection result.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.21 Comparison of detection using the old and new thresholds.
Note: (a) The original image. (b) The old threshold with only orange colour detection. (c)
The final bee detection with old threshold. (d) The main body masking from blob (c). (e)
The new threshold with orange and yellow colour detection. (f) The final bee detection
with new thresholds. (g) The main body masking from blob (f).

100

Image (e) detects more pollen and more of the bee head, compared with image (b). The blob

shape on image (e) is more similar to the bee shape than image (c). Figure 4.21(d) and (g) show

the main body mask from blobs (c) and (f) respectively. From the overall result, it can be seen

that the image (g) detects the main body closer to its actual shape.

The white colour has a lower value of Saturation and a higher value of the Value channel. Because

the background colour is green, white pollen sometimes reflects the green colour. In addition,

white pollen can reflect the orange colour from the bee body. Therefore, a range encompassing

orange and green is chosen in the Hue channel to detect the white colour of pollen.

Experimentally, the white colour thresholds were chosen to be:

(v(x , y) > 0.5, s(x, y) < 0.4, h(x, y) < 0.23).

The threshold for the Hue channel filters out the transparent part of bee wings. The new model D

resulting from the addition of the white colour is:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∨ 𝑀𝑀𝑊𝑊𝐼𝐼 4-15
𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑀𝑀𝑀𝑀𝑊𝑊𝐼𝐼 ∧ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) 4-16
𝑀𝑀𝐵𝐵𝐵𝐵𝐼𝐼 = 𝑀𝑀𝑂𝑂𝑂𝑂𝐼𝐼 ∨ 𝑀𝑀𝐵𝐵𝐼𝐼 4-17
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐷𝐷𝐷𝐷 ∧ 𝑀𝑀𝐵𝐵𝐵𝐵𝐼𝐼 4-18

In the equation of (4-15), MWI is the mask white colour image. This image is combined with image

MOI to produce the mask orange and white image (MOWI). The dilation image (DI) comes from

the orange and white colours and foreground. The mask bee colour image (MBCI) in equation

(4-17) includes orange, white and black colours. The final outcome of the model D is the MBBI

image. The diagram of model D is shown in Figure 4.22.

Mask_Orange_
Image(MOI)

Mask_Foreground_
Image(MFgI)

Dilate(MOWI ^ MFgI)

Mask_Bee_Colour_
Image(MBCI)MWI V MOI V MBI

Dilated_Image(DI)

DI ^ MBCI Mask_Bee_Blobs_Image
(MBBI)

Mask_Black_I
mage(MBI)

Mask_White_I
mage(MWI)

MWI V MOI Mask_Orange_White
_Image(MOWI)

Figure 4.22 The bee detection model D with orange, black, white colour and foreground
detection.

Figure 4.22 shows the final bee detection model. The mask image of MFgI comes from the

foreground subtraction. The changing pixels have value “1”, the unchanging pixels have value

“0”. The mask image of MOI is from the orange colour detection, where each pixel (𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥,𝑦𝑦)) is

calculated as follows:

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥, 𝑦𝑦) = �1 , 0.02 < ℎ(𝑥𝑥 ,𝑦𝑦) < 0.19
0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 4-19

101

The mask image of MWI comes from the white colour detection, where each pixel (𝑝𝑝MWI(𝑥𝑥,𝑦𝑦))

value is:

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥, 𝑦𝑦) = �1 , 𝑣𝑣(𝑥𝑥 ,𝑦𝑦) > 0.5 ∩ 𝑠𝑠(𝑥𝑥, 𝑦𝑦) < 0.4 ∩ ℎ(𝑥𝑥, 𝑦𝑦) < 0.23
0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 4-20

The mask image of black colour (MBI) is from the black colour detection, and the pixel (𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥, 𝑦𝑦))

value is calculated using:

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥, 𝑦𝑦) = �1 , 𝑣𝑣(𝑥𝑥 ,𝑦𝑦) < 0.5
0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 4-21

All of the four binary images are combined following the model D in Figure 4.22. Figure 4.23

illustrates the improvement of the bee detection. Figure 4.23(b) shows the model B result. It can

be seen that the blob excludes most of the white pollen. Conversely, the model D result (shown

in Figure 4.23(d)) includes most of the pollen sac. Figure 4.23(b) and (d) also used morphological

image closing, morphological image opening and filling holes.

Figure 4.24 displays the detection result from model D. Compared with Figure 4.19, Figure 4.24(b)

gives a clear main body shape. Figure 4.24 (c) indicates the main body detection fitting the actual

shape of the bee, with the pollen being shown next to the bee body.

So far, there are four bee detection models, which are labelled A, B, C and D. Table 4-1

summaries the characteristics of these four models. Models A and B are good enough for bee

detection. Model B is better for detecting bees’ heads than model A. However, considering the

next step of pollen sac detection requiring bigger bee blob and clearer bee shape detection,

models C and D have been created. Model C produces a bigger bee blob, but the blob is too big

to help with pollen sac detection. Model D is more suitable for improving pollen sac detection,

although model D can only be applied on the green background. The different of pollen sac

(a) (b) (c) (d)

Figure 4.23 Comparison of the bee detection.
Note: (a) Bee image from the old model. (b) The
result blob image of model B. (c) Bee image from
the new model. (d) The result blob image of new
model.

(a) (b) (c)

Figure 4.24 The main body detection after bee
detection of model D

102

detection between model B and model D will be shown in section 5.1.2. Bee detection model D

is finally chosen to be used for bee detection.

Table 4-1 The summary of characteristic of 4 bee detection models

Bee detection models Summary of characteristic

Model A Combining orange colour detection and foreground detection. The
logic is in section 4.2.3.1.

Model B Adding black colour detection into model A. This model detects bees’
heads clearly. The logic is shown in section 4.2.3.2.

Model C

Changing of the logic to put foreground detection with logic “or” into
orange and black colour detection. The logic is shown in section
4.2.4.1. This model is built for considering the next step of pollen sac
detection requiring bigger bee blob. However, this model produces
bee blob too big to help pollen sac detection.

Model D

Base on model B, adding white and yellow colour for bee detection.
The logic is shown in this section. Model B lost some pollen sacs
which have white and light-yellow colour. This model adds these
colours, which can help to improve pollen sac detection, although it
is only suitable for the green background, but not white background.

4.2.5 Discussion of the natural background
The natural background is more complicated than the single colour background. The natural

background is dependent on the environment of the beehive. In this section, the detection method

is attempted on a complex background. One example of the use of a complex background is

shown in Figure 4.25. In this figure, the background colour includes green (grass), yellow

(withered grass) black (earth) and white (stone). Using the detection model D which was

introduced in the previous section does not work well in this situation. This is because if a bee

flies past the orange, white and black background colours, the detection cannot produce a clear

bee shape. Therefore, white and black colours cannot be used for bee detection in this

background. The best model for this situation is model A which only uses the orange colour and

foreground (motion) detection.

Figure 4.25 A natural complex background for the detection model trial.

103

Figure 4.26 illustrates the detection progress for model A. Figure 4.26 (a) shows the orange colour

detection. Because the withered grass colour is similar to that of the bee body, most of the bees

are not detected clearly. However, the foreground detection (Figure 4.26 (b)) is better than colour

detection in the case of withered grass, because while most of the withered grass is still, the bees

in contrast are active. However, bee detection is limited in the case of some of the green grass

and their shadows moving in the wind, because the bees are also moving. Figure 4.26 (c), being

the result of the logic “and” calculation, does not detect many bee bodies. On the other hand, the

dilation image (Figure 4.26 (d)) does give correct bee positions and regions, although there is

some confusion because it also detects small blobs coming from the moving of some of the

withered grass or moving shadows on the yellow background. Figure 4.26 (e) is the result of MOjI

image. Although some bee shapes can be found on this image, it is hard to detect the bees flying

in the area of the withered grass. The final detection result is shown in Figure 4.26 (f). Here, most

of bees are detected, but three out of the six bees lose their shapes. The model also detects an

additional six blobs which are not bees. These results show that, when compared with the bee

detection on a single colour background which detects all the bees, the natural background

outcome detects only half of the bees and some non-bee blobs are also detected.

(a) (b)

(c) (d)

(e) (f)

Figure 4.26 The bee detection trial on a natural complex background.
Note: (a) The orange colour detection. (b) The foreground detection. (c) The result from
𝑀𝑀𝑀𝑀𝑀𝑀 ∧ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. (d) The result of equation (4-16). (e) The result of equation (4-17). (f) The
result of MBBI which is from equation (4-18).

104

This natural background investigation indicates that the bee detection model needs a single colour

background or a background which does not include the bees’ colour. The natural background

always changes with the environment of the beehive, which leads to the bee detection being

unreliable. Therefore, the single colour background is necessary for the bee detection. In this

research, the single green background is chosen as the best method to simplify the background.

After bee detection, the next step is to analyse the binary image bee blobs. The blob analysis

uses image moments to calculate blob parameters, such as position, length, width and orientation.

In addition, it draws a bounding box around each bee blob to mark the detection. Blob analysis

was introduced in section 3.7. The blob position is the candidate position of the bee, which is very

close to the actual position of the bee. It can be used to track bees on the video. However, merged

blobs caused by bees crossing each other in the video frames is a problem, which will be

discussed in the next section. The blob length, width and orientation are used to detect the pollen

and to improve the tracking of bees in merged blobs.

4.3 Bee Tracking
The video has a 50Hz frame rate and the camera is positioned to provide a close up view of the

bees. There are two difficulties in tracking the bees: (1) the bees can fly anywhere in the video

and (2) most of the bees have the same features. Because of this, the only way to track individual

bees is from their previous positions. Initially, it was assumed that the shortest distance between

blobs in successive frames indicated the same bee, but when bees fly close to each other, this

method fails. It is therefore necessary to calculate a predicted position for each bee to correct

this.

In addition, the bee detection may detect one merged blob rather than individual blobs. Although

the merged blob detection can be reduced by using a more accurate detection method (as

outlined in section 4.2.3, merged blobs still occur when the bees are very close to each other or

are flying over each other in the video image.

4.3.1 Prediction method
In the prediction tracking model, it is assumed that each bee’s velocity is constant over three

successive frames. The bee position in the third frame can be predicted from its position in the

two previous frames. If k is the frame number in the frame flow of the video, the detected bee

position in frame k is 𝐷𝐷𝑘𝑘 = [𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘], where (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘) is the centre of the bee blob and the bounding

box. The tracking model is:

𝑃𝑃𝑘𝑘 = 𝐴𝐴 ∗ [𝐷𝐷𝑘𝑘−1,𝐷𝐷𝑘𝑘−2]𝑇𝑇 4-22

Where:

𝐴𝐴 = �2 0
0 2

−1 0
0 −1� 4-23

Here, 𝑃𝑃𝑘𝑘 = �𝑥𝑥𝑝𝑝𝑝𝑝,𝑦𝑦𝑝𝑝𝑝𝑝�
𝑇𝑇 is the predicted position of the bee in frame k and [𝐷𝐷𝑘𝑘−1,𝐷𝐷𝑘𝑘−2]𝑇𝑇 is the

detected positions within the two previous frames.

When a bee first appears in the video, there is no previous position to work from, so the predicted

position for the next frame is taken to be the current frame detection position. In the following

105

frame, bees are tracked using the Hungarian assignment method (Aizen and Harder, 2009). This

method assigns predictions to detections in an optimal way, to minimize the sum of the distances

between the assigned predictions and detections. As a constraint, a prediction will not be

assigned to a detection when the distance is more than 80 pixels. This will usually result in some

unassigned predictions and detections. When a detection is unassigned, it is probably a bee

appearing for the first time. In addition, unassigned predictions can be caused by a bee

disappearing or bees moving across each other in the video.

Because it is 2D video, when two bees pass across each other in the image, the detection process

only finds one big merged blob rather than two separate bee blobs. In this case, there are two

predicted positions and one detected position. One prediction is assigned to the detection, but

then there is an unassigned prediction as well. If the unassigned prediction bounding box overlaps

a detected bounding box, this is taken to be a merged situation. Figure 4.27 (a) displays the

merged situation. One prediction is assigned with this merged detection and the other prediction

is unassigned, but the unassigned prediction bounding box overlaps the detected merged

bounding box.

Once the merging has been identified, the next step is to find the merged bees positions. In Figure

4.27 (a), it can be seen that if the prediction bounding box centre is used to calculate the next

prediction, it is not accurate, because the actual positions of the bees are not at the centre of the

prediction bounding box. However, in the image, if the prediction bounding boxes are adjusted to

align with the boundary of the merged detected bounding box, the adjusted bounding boxes cover

the bees more accurately. Then, the centre of the prediction bounding boxes are close to the

actual bees’ positions. The assumed detections in Figure 4.27 (b) are the result of using the

adjusted bounding boxes. The centres of the assumed detection bounding boxes are the positions

calculated from this type of detection. Following this, these two assumed detections are used to

calculate the next predictions. This method is used until the two bees separate.

(a) (b)

Figure 4.27 The merged bees situation and solution

106

Predictions of bees Detecctions of bees

Assign the
predictions and

detections

Assigned predictions
and detections

Unassigned
predictions

Unassigned
detections

Merged
situation

Calculate the
assumed detections

Y

Delete the
tracking

N

Collect the previous
detections

Create the mode for
tracking a new bee

Assumed the
prediction same as

the detection

Calculate the
predictions for next

tracking

Figure 4.28 The tracking model of prediction method

Figure 4.28 shows the whole tracking model process. When a bee appears for the first time, there

is an unassigned detection for it. As a result, a tracking model is built for tracking the bee. It is

assumed that the predicted position for the second appearance will be the same as the first

detection. Therefore, this prediction may not be accurate, but the next prediction based on the

two previous detections should be more accurate. When a bee disappears from the video, there

is an unassigned prediction, but it is not a merged situation. In this case, the tracking model is

deleted, because this bee cannot be tracked any more.

However, this model has disadvantages. If bees stay merged for a long time, they may change

their flight direction, so the predictions become less accurate. Furthermore, there could be more

than two bees merging, making it more difficult to track them correctly using this method. Finally,

the model assumes that the bee’s velocity is constant over three successive frames, but the bee

velocity often changes. Therefore, the model may lose the bee when the bee velocity changes

quickly.

107

4.3.2 Kalman filter
4.3.2.1 Principle of Kalman filter
The video has a 50Hz frame rate and its view is very close to the bees. Therefore, a difficulty is

that the bees can quickly fly anywhere from one frame to the next. In this case, the Kalman filter

for object tracking (Shantaiya et al., 2015) may not work well, because the bees are changing

positions and velocities. There is no steady variable (velocity or acceleration) for the Kalman filter.

However, taking another view, the Kalman filter can combine the prediction and measurement to

produce a correction for the prediction of the next frame. If the position of a bee is the state of the

Kalman filter, in this research, the measurement of bee detection is more reliable than the

prediction when tracking a single bee, so the actual position is close to the detected position

(measurement). The corrected position should be close to the detected position of the bee.

Conversely, in the merged bee situation, the detection is not as reliable as single bee tracking, so

the corrected position calculation is more complicated. This method requires the estimation of the

covariance matrices of the measurement and the prediction.

To apply the Kalman filter formulae, the state of a bee is its position (𝑥𝑥, 𝑦𝑦), and the prediction of

the Kalman filter tracking model in frame k is:

𝑥𝑥𝑘𝑘− = 2𝑥𝑥𝑘𝑘−1+ − 𝑥𝑥𝑘𝑘−2+ 4-24

𝑦𝑦𝑘𝑘− = 2𝑦𝑦𝑘𝑘−1+ − 𝑦𝑦𝑘𝑘−2+ 4-25

If the prediction of the Kalman filter is:

𝑠𝑠𝑘𝑘− = 𝐴𝐴[𝑠𝑠𝑘𝑘−1
+ 𝑇𝑇, 𝑠𝑠𝑘𝑘−2

+ 𝑇𝑇]
𝑇𝑇
 4-26

then the predicted state vector is:

𝑠𝑠𝑘𝑘− = [𝑥𝑥𝑘𝑘−, 𝑦𝑦𝑘𝑘
−]𝑇𝑇 4-27

The corrected state vector in the frame k is:

𝑠𝑠𝑘𝑘+ = [𝑥𝑥𝑘𝑘+,𝑦𝑦𝑘𝑘+]𝑇𝑇 4-28

The transition matrix is defined as:

𝐴𝐴 = �2 0
0 2 −1 0

0 −1� 4-29

The measurement model of the Kalman filter is:

𝑚𝑚𝑘𝑘 = 𝐻𝐻𝑠𝑠𝑘𝑘 4-30

The actual state vector is:

𝑠𝑠𝑘𝑘 = [𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘]𝑇𝑇 4-31

The measurement vector is:

𝑚𝑚𝑘𝑘 = [𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘]𝑇𝑇 4-32

The measurement transition matrix is:

𝐻𝐻 = �1 0
0 1� 4-33

108

Apart from the states, the Kalman filter also includes the Kalman gain 𝐾𝐾𝑘𝑘 for the Kalman correction

calculation. The Kalman gain is calculated from the prediction covariance matrix 𝑃𝑃𝑘𝑘 and the

measurement covariance matrix 𝑅𝑅𝑘𝑘. 𝑃𝑃𝑘𝑘 is calculated from the transition matrix A, a covariance

matrix 𝐶𝐶0 and the correction covariance matrices from the two previous frames k-1 and k-2, which

are combined to form the matrix Ok−1.

𝑂𝑂𝑘𝑘−1 = �
𝑄𝑄𝑘𝑘−1 𝟎𝟎
𝟎𝟎 𝑄𝑄𝑘𝑘−2

� 4-34

In the beginning, this Ok−1 is the zero matrix. The covariance matrix of the correction Qk is

calculated from the Kalman gain 𝐾𝐾𝑘𝑘 and prediction covariance matrix 𝑃𝑃𝑘𝑘. Each element of 𝑄𝑄𝑘𝑘 is

shown below:

𝑄𝑄𝑘𝑘 = �
𝑞𝑞11𝑘𝑘 0

0 𝑞𝑞22𝑘𝑘
� 4-35

In summary, at frame number k, the discrete Kalman filter estimation for object tracking is:

Prediction:

𝑠𝑠𝑘𝑘− = 𝐴𝐴[𝑠𝑠𝑘𝑘−1
+ 𝑇𝑇 , 𝑠𝑠𝑘𝑘−2+ 𝑇𝑇]𝑇𝑇 4-36

𝑃𝑃𝑘𝑘 = 𝐴𝐴𝑂𝑂𝑘𝑘−1𝐴𝐴𝑇𝑇 + 𝐶𝐶0 4-37

Measurement:

𝑚𝑚𝑘𝑘 = 𝐻𝐻𝑠𝑠𝑘𝑘 4-38

Correction:
𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘(𝑃𝑃𝑘𝑘 + 𝑅𝑅𝑘𝑘)−1 4-39

𝑠𝑠𝑘𝑘+ = 𝑠𝑠𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝑚𝑚𝑘𝑘 − 𝑠𝑠𝑘𝑘−) 4-40

𝑄𝑄𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘)𝑃𝑃𝑘𝑘 4-41

The detailed algorithm of the Kalman filter equations was introduced in section 3.5. Equations

(4-36) and (4-37) represent the prediction. 𝑠𝑠𝑘𝑘− is the predicted state and 𝑃𝑃𝑘𝑘 is the covariance

matrix of the prediction 𝑠𝑠𝑘𝑘−. Equation (4-38) is the measurement calculation. 𝑠𝑠𝑘𝑘 is the actual state

that the detection is measuring (the x and y coordinates of the bee). The matrix 𝐻𝐻 is the

measurement model matrix, which is the identity matrix in this case. 𝑚𝑚𝑘𝑘 is the measurement

result. Equations (4-39) to (4-41) show the correction calculation. s𝑘𝑘+ is the corrected state after

combining the 𝑚𝑚𝑘𝑘 with 𝑠𝑠𝑘𝑘− . 𝑅𝑅𝑘𝑘 is the covariance matrix of the measurement 𝑚𝑚𝑘𝑘 . Qk is the

covariance matrix of the corrected state s𝑘𝑘+. The correction is controlled by the Kalman gain 𝐾𝐾𝑘𝑘.

In this paper, for individual bees, the measurement (𝑚𝑚𝑘𝑘) (bee detection) is more reliable than the

prediction (𝑠𝑠𝑘𝑘−), so the covariance 𝑃𝑃𝑘𝑘 is greater than 𝑅𝑅𝑘𝑘. Then the estimated state s𝑘𝑘+ is closer to

the measurement than to the prediction.

In this research, 𝐶𝐶0 is the variance due to the fact that the bee velocity is not constant. It adds to

the noise of the prediction. 𝐶𝐶0 is not only added once at the beginning of tracking, it is added in

each Kalman filter calculation.

109

The covariance matrices of 𝐶𝐶0 and 𝑅𝑅𝑘𝑘 need to be calculated, but this depends on the Kalman filter

application. The matrices are calculated from the tracking noise which comes from two main

sources.

First is the bee movement. Bees change velocity between frames, so the prediction is different

from the actual position. This error is treated as tracking noise, so that the Kalman filter can allow

for changes in the bee velocity.

Second is the detection error. The detection is based on motion detection and colour

segmentation. This does not detect the bee positions perfectly. As the position of the bee's wings

and body is constantly changing, this will affect the detection. In addition, the merged detection

situation can only detect the large blob of the merged bees. The centre of the merged blob is not

the actual location of these bees. All of these detection errors are treated as noise, so that the

Kalman filter can incorporate them to calculate the covariance matrix of the measurement.

A Kalman filter is used to track each bee appearing in the frame, but the merged situation is

different. The detection only produces one bee position, which is the centre of the merged blob,

but there is more than one prediction associated with the blob. Taking two bees merging as an

example, the detected position is given by two Kalman filters, one for each bee, but this position

is not necessarilly as close to the actual positions of the two bees, as for the measured position

of a single bee. The two predicted positions of two bees are calculated from two previous frames

of the video. In the next (second) merged frame, the predicted positions may be even further from

the actual positions of two bees. Therefore, the merged situation has greater error than single

bee tracking.

Considering the tracking noise, the covariance values are estimated from the differences (errors)

between the system calculation of the bee positions in the model, and the actual bee positions

calculated manually. The measurement error is calculated as:

𝑒𝑒𝑚𝑚 = [𝑒𝑒𝑚𝑚𝑚𝑚 , 𝑒𝑒𝑚𝑚𝑚𝑚] = [𝑥𝑥𝑑𝑑 − 𝑥𝑥𝑎𝑎 ,𝑦𝑦𝑑𝑑 − 𝑦𝑦𝑎𝑎] 4-42

where 𝑒𝑒𝑚𝑚 is the measurement error, [𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑] is the detected position and [𝑥𝑥𝑎𝑎,𝑦𝑦𝑎𝑎] is the actual

position. In a similar way, the prediction error is calculated from the difference between the system

prediction and the actual position.

𝑒𝑒𝑝𝑝 = [𝑒𝑒𝑝𝑝𝑝𝑝, 𝑒𝑒𝑝𝑝𝑝𝑝] = �𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑎𝑎 ,𝑦𝑦𝑝𝑝 − 𝑦𝑦𝑎𝑎� 4-43

where 𝑒𝑒𝑝𝑝 is the prediction error and [𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑝𝑝] is the predicted position.

It is assumed the x and y values are independent of each other, so both the covariance matrices

are diagonal. If the expected value of the measurement error is 0, the variance of the

measurement is:

𝑣𝑣𝑚𝑚 = [𝑣𝑣𝑚𝑚𝑚𝑚 , 𝑣𝑣𝑚𝑚𝑚𝑚] = 𝐸𝐸[(𝑒𝑒𝑚𝑚 − 𝐸𝐸(𝑒𝑒𝑚𝑚))2] = 𝐸𝐸[𝑒𝑒𝑚𝑚2] = [𝐸𝐸[𝑒𝑒𝑚𝑚𝑥𝑥
2],𝐸𝐸[𝑒𝑒𝑚𝑚𝑚𝑚2]] 4-44

Similarly, the variance of the prediction is:

𝑣𝑣𝑝𝑝 = [𝑣𝑣𝑝𝑝𝑝𝑝 , 𝑣𝑣𝑝𝑝𝑝𝑝] = 𝐸𝐸[(𝑒𝑒𝑝𝑝 − 𝐸𝐸(𝑒𝑒𝑝𝑝))2] = 𝐸𝐸[𝑒𝑒𝑝𝑝2] = [𝐸𝐸[𝑒𝑒𝑝𝑝𝑝𝑝
2],𝐸𝐸[𝑒𝑒𝑝𝑝𝑝𝑝2]] 4-45

The covariance matrix of measurement is:

110

𝑅𝑅𝑘𝑘 = �
𝑟𝑟𝑥𝑥𝑥𝑥 0
0 𝑟𝑟𝑦𝑦𝑦𝑦

�, 4-46

where 𝑟𝑟𝑥𝑥𝑥𝑥 and 𝑟𝑟𝑦𝑦𝑦𝑦 are the measurement error variances for the x and y coordinates.

The covariance matrix of the prediction is:

𝐶𝐶0 = �𝑐𝑐1 0
0 𝑐𝑐2

�, 4-47

where 𝑐𝑐1 and 𝑐𝑐2 are the prediction error variances for the x and y coordinates.

For single bee tracking, 42 video frames have been used to estimate the measurement errors

and calculate the variance. There were a total of 199 position samples from individual bees on

these frames. The actual positions of bees were estimated manually. The measurement positions

come from the bee detection process. The measurement errors and variances are calculated by

using equations (4-42) and (4-44) respectively. The error distribution is shown in Figure 4.29. It

can be seen that the errors are close to 0, with most of the errors concentrated near x = -1.2 and

y = 0 pixels. The bee position detection is reliable and the single bee images are satisfactory for

calculating the measurement variance.

Figure 4.29 The error distribution of measurement

The covariance matrix of the measurement is:

𝑅𝑅𝑘𝑘 = �10 0
0 10� 4-48

42 video frames have been used to estimate prediction errors and calculate their variance. There

are a total of 142 position samples from individual bees on these frames. In the first and second

frames, the tracking for each bee does not have a predicted position. The actual positions of bees

are estimated manually. The predicted positions come from the Kalman filter prediction. The

prediction errors and variances are calculated using equations (4-43) and (4-45) respectively. The

error distribution is shown in Figure 4.30. The sample of distribution is approximately symmetrical

around the origin (0, 0).

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-6 -5 -4 -3 -2 -1 0 1 2 3 4

Er
ro

rs
 o

f y

Errors of x

111

Figure 4.30 The error distribution of prediction

The covariance matrix of the prediction is approximately:

𝐶𝐶0 = �158 0
0 151� 4-49

The off diagonal elements are small enough to ignore.

Figure 4.31 The measurement error distribution of merged detection

The two covariance matrices are expected to be constant during single bee tracking. However,

when bees merge in the frame images, the covariance matrices of prediction and measurement

in the merged tracking are different from the single tracking case. 48 video frames (which included

merged situations) were utilised to estimate the measurement errors and calculate the variance.

There were a total of 91 position samples of merged bees in these frames. The actual positions

of the bees were calculated manually. The detected (measurement) positions are the merged

blobs' positions (centre coordinates). The measurement errors and variance are calculated using

equations (4-42) and (4-44) respectively. The distribution of these measurement errors is

displayed in Figure 4.31.

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

-40.0 -20.0 0.0 20.0 40.0

Er
ro

rs
 o

f y

Errors of x

-3.80, -
9.33

-80

-60

-40

-20

0

20

40

60

80

100

120

140

-100 -50 0 50 100

Er
ro

rs
 o

f y

Errors of x

112

The measurement covariance matrix for merged bee tracking is:

𝑅𝑅𝑘𝑘 = �1009 0
0 932� 4-50

48 video frames were used to estimate the prediction errors and calculate the variance for merged

bee tracking. There were a total of 91 position samples of merged bees in these frames. The

actual positions of bees were estimated manually. The predicted positions are from the Kalman

filter prediction of merged bee tracking. The prediction errors are calculated using equation (4-43).

The error distribution is shown in Figure 4.32.

Figure 4.32 The prediction error distribution of merged detection

The prediction covariance matrix for merged bee tracking is:

𝐶𝐶0 = �503 0
0 578� 4-51

In the merged tracking, 𝑅𝑅𝑘𝑘 is greater than 𝐶𝐶0. From equations (4-37) to (4-41), when merging

occurs, the Kalman filter tends towards the prediction rather than the detection. These two

covariance matrices are also assumed to be constant for merged bee tracking.

4.3.2.2 The tracking model of the Kalman filter
The Kalman filter tracking model is introduced in this section. In the first frame of a bee appearing,

there is no previous Kalman filter tracking, so the predicted position for the next frame is the same

as the detected position in the first frame. From the second frame, bees are tracked using the

Hungarian assignment method (Nandashri and Smitha, 2015c). This produces some unassigned

predictions and detections. When a detection is unassigned, it is usually a bee appearing for the

first time. In addition, unassigned predictions can be caused by a bee disappearing or bees

merging in the video.

Figure 4.33 shows the whole tracking model of the Kalman filter. When a bee just appears for the

first time, a Kalman filter model is created for tracking it. The prediction is the same as the

detection. After the creation of the Kalman filter, predictions and detections are assigned for the

Kalman filter tracking. The correction produces the next prediction using the prediction equation

(4-36). If a prediction is unassigned, it has to be decided whether it is in a merged situation or not.

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50 100

Er
ro

r o
f y

Error of x

113

The merged situation can be identified by the prediction bounding box overlapping the merged

detected bounding box. The detail is introduced in Figure 4.27 (a) in section 4.3.1.

Predictions of bees Detecctions of bees

Assign the
predictions and

detections

Assigned predictions
and detections

Unassigned
predictions

Unassigned
detections

Merged
situation

Model for merging
detection

Y

Delete the
tracking

N

Calculate the
corrections

Create a Kalman
filter for tracking the

new bee

Assumed the
prediction same as

the detection

Calculate the
predictions for next

tracking

Figure 4.33 The tracking model of Kalman filter

If it is not merged, this tracking of the bee is deleted, because it has probably disappeared. If it is

in the merged situation, the model for merging detection in Figure 4.33 produces the

measurement of each bee’s tracking. The method can:

• Use the merged blob centre as the measurement (section 4.3.2.1).

• Use the assumed detection as the measurement (Figure 4.27 (b) in section 4.3.1).

• Use the Hough transform for bees tracking (section 4.3.3).

From the above results, the covariance matrices of measurement and prediction are different for

single bee tracking and merged bee tracking. The result is the best balance for the Kalman gain

to calculate correction. In Figure 4.33, the correction is used to calculate the prediction for the

next tracking.

114

4.3.2.3 Kalman filter model with assumed detection
In section 4.3.2.1 for the merged situation, a large error can be occur between the actual position

and the measurement, because the measurement comes from the centre coordinates of the

merged bee blob. Therefore, the covariance matrix of the measurement in merged bee tracking

has a large value. The assumed detection from section 4.3.1 can reduce the error. This detection

is based on the predicted position and the bounding boxes for the predictions and the merged

detection. When merging takes place, the assumed detection position is used as the

measurement for the Kalman filter of all bees in the merged blob, as in the model for merging

detection in Figure 4.33. The distribution of the assumed detection error is shown in Figure 4.34

from the analysis of 23 video frames which include merged situations. There were 54 sample

positions in these frames. The actual positions are estimated manually.

Figure 4.34 The error distribution of assumed detection error in merged situation

In this case, the assumed detection produces the following covariance matrix for the

measurement:

𝑅𝑅𝑘𝑘 = �206 0
0 379� 4-52

23 video frames were used to estimate the prediction errors and calculate the variance for merged

bee tracking. There were a total of 54 position samples of merged bees in these frames. The

actual positions of the bees were estimated manually. The predicted positions are from the

Kalman filter prediction using merged bee tracking. The prediction errors are calculated using

equation (4-43). The error distribution is shown in Figure 4.35.

-100

-80

-60

-40

-20

0

20

40

60

-50 0 50

Er
ro

r o
f y

Errors of x

115

Figure 4.35 The error distribution of prediction in merged situation

The prediction covariance matrix for merged bee tracking is:

𝐶𝐶0 = �502 0
0 410� 4-53

It can be seen that the variance of the measurement in equation (4-52) is less than in equation

(4-50), but the variance of the prediction in equation (4-53) is similar to equation (4-51). The 𝑅𝑅𝑘𝑘 is

slightly smaller than 𝐶𝐶0 . When merging occurs, according to equations (4-37) to (4-41), the

Kalman filter correction is closer to the measurement than prediction. However, because the

assumed detection relies on the prediction before the merging, if the bee changes direction during

the merging, the detection will lose the bee. Therefore, an improved mathematical approach is

necessary to calculate the measurement of the Kalman filter in the merged situation.

4.3.3 Hough transform for improvement of merged bee tracking
Because bees have the same colour and texture, it is impossible to use colour or texture to detect

bees in the merged situation. The Hough transform is a mathematical model for object detection

that depends on the shape of the object being detected. In this research, the shape parameters

of the individual bees are produced from the frame just before merging. Then these parameters

are utilized to detect individual bees in the merged situation.

After merging has been identified, as discussed for Figure 4.27 (a) in section 4.3.1, the next step

is to detect bees in the merged blob. Figure 4.36 displays the situation. Figure 4.36 (b) shows the

segmentation of two bee blobs. For the next frame, Figure 4.36 (d) gives the result of

-60

-40

-20

0

20

40

60

-100 -50 0 50 100

Er
ro

rs
 o

f y

Errors of x

(a) (b) (c) (d)

Figure 4.36 The segmentation of bees blob.
Note: (a) The first frame of two bees (b) The blob segmentation of (a). (c) The next
frame of the two bees. (d) The merged blob segmentation of (c).

116

segmentation of the merged blob. The solution is to use the two individual bee shapes in Figure

4.36 (b), to detect each bee in the merged blob in Figure 4.36 (d).

Although the bee shapes appear different in the merged detection, the single bee shapes in the

Figure 4.36 (b) frame can be partly seen in the merged shape of the Figure 4.36 (d) frame.

Therefore, the shape parameters from the Figure 4.36 (b) frame can be used to detect the

individual bees in the merged frame of Figure 4.36 (d). However, this method can only find an

approximate area of pixels for each bee’s position, because of changes in the shapes.

4.3.3.1 Definition of images
In Figure 4.36 (b), the blob of each single bee can be cropped out. This blob image can be used

to produce the edge image using Canny method which is applied by a MATLAB function. Using

the bee blob near the bottom right corner in Figure 4.36 (b) as an example, Figure 4.37 shows

the edge of this blob which is obtained using Canny method. It is assumed that the edge image

(𝐼𝐼𝑠𝑠) has width I and height J. The image pixel at 𝑖𝑖, 𝑗𝑗 has the value:

𝐼𝐼𝑠𝑠(𝑖𝑖, 𝑗𝑗) = �1 , 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
0 ,𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 4-54

where 1 ≤ 𝑖𝑖 ≤ 𝐼𝐼 and 1 ≤ 𝑗𝑗 ≤ 𝐽𝐽. This is the boundary image that shows the edge of the bee blob.

i

j

0

cc jifs

ns

Figure 4.37 The edge image of a single bee blob.

The centre of the image is at (𝑖𝑖𝑐𝑐 , 𝑗𝑗𝑐𝑐). The pixels with value “1” define the edge curve on the image

𝐼𝐼𝑠𝑠. The set of pixels (S) on the edge of the single bee blob is:

𝑆𝑆 = {(𝑖𝑖, 𝑗𝑗)|𝐼𝐼𝑠𝑠(𝑖𝑖, 𝑗𝑗) = 1} 4-55

It is assumed that the set of edge pixels has N members. Each member of the set S is denoted

by 𝑠𝑠𝑛𝑛 = (𝑖𝑖𝑛𝑛 , 𝑗𝑗𝑛𝑛) representing the coordinates of edge pixel number 𝑛𝑛 ∈ [1,𝑁𝑁].

In the edge image, the origin is at the top left corner. To detect a single bee in the merged blob,

it is convenient to shift the origin to the centre of the edge image. The transformation is:

𝑐𝑐𝑛𝑛 = [𝑢𝑢𝑛𝑛, 𝑣𝑣𝑛𝑛] = [𝑖𝑖𝑛𝑛 − 𝑖𝑖𝑐𝑐, 𝑗𝑗𝑛𝑛 − 𝑗𝑗𝑐𝑐] 4-56

so that the transformed edge pixel set (C) is:

𝐶𝐶 = {𝑐𝑐𝑛𝑛|𝑛𝑛 𝜖𝜖 [1,𝑁𝑁]} 4-57

117

x

y

0

km

xyfm

Figure 4.38 The edge image of the merged bee blob.

Figure 4.38 shows the merged blob edge of the two bees in Fig. 2 (c). This blob can also be

cropped. The edge image of the merged blob (𝐼𝐼𝑚𝑚) has width X and height Y, and its pixels are:

𝐼𝐼𝑚𝑚(𝑥𝑥, 𝑦𝑦) = � 1 , 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
0 ,𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 4-58

where 1 ≤ 𝑥𝑥 ≤ 𝑋𝑋 and 1 ≤ 𝑦𝑦 ≤ 𝑌𝑌. The pixels with value “1” are on the edge of the blob on the

image 𝐼𝐼𝑚𝑚. The set of pixels (M) on the edge of the merged blob is:

𝑀𝑀 = {(𝑥𝑥,𝑦𝑦)|𝐼𝐼𝑚𝑚(𝑥𝑥, 𝑦𝑦) = 1} 4-59

This set of pixels has K members. Each member is denoted by 𝑚𝑚𝑘𝑘 = (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘) representing the

coordinates of pixel number 𝑘𝑘 ∈ [1,𝐾𝐾].

4.3.3.2 The Hough transform
In the Hough transform technique, the edge pixels of the single bee blob are drawn on the merged

blob edge image, with the centre of the single bee blob positioned on each pixel on the edge of

the merged blob. Therefore, if the merged blob edge has K pixels, the single blob edge is drawn

K times on the merged blob edge image. The coordinates of the resulting pixels drawn on the

image are

𝑡𝑡𝑛𝑛𝑛𝑛 = [𝑢𝑢𝑛𝑛 + 𝑥𝑥𝑘𝑘 ,𝑣𝑣𝑛𝑛 + 𝑦𝑦𝑘𝑘] 4-60

This transform set is known as T, where:

𝑇𝑇 = {𝑡𝑡𝑛𝑛𝑛𝑛|𝑛𝑛 𝜖𝜖 [1,𝑁𝑁],𝑘𝑘 𝜖𝜖 [1,𝐾𝐾]} 4-61

x

y

0

1st edge
center

2nd edge
center

3rd edge
center

4th edge
center

nkt

Figure 4.39 Examples of drawing the single bee blob edge on the merged blob edge image

118

These are the Hough Transform pixels. Some of the pixels 𝑡𝑡𝑛𝑛𝑛𝑛 are in the same position as each

other. Figure 4.39 is an example of the single bee blob edge drawn four times on the merged blob

edge image, with each drawing shown as a different colour. The centre of each drawing is at a

different position on the edge of the merged blob. All of the pixels on these single bee edge

drawings belong to T.

4.3.3.3 The voting map
Each pixel in the merged blob edge image (𝐼𝐼𝑚𝑚) may match none, one or several of the Hough

Transform pixels (T). This creates a voting map (𝑉𝑉(x, y)), whose size is the same as the size of

merged blob edge image. Each element of the voting map array corresponds to a pixel of the

merged edge image. These elements are bins that record the number of Hough Transform pixels

located at position (x, y).

For (x, y) inside the merged blob, 𝑉𝑉(x, y) is the number of 𝑡𝑡𝑛𝑛𝑛𝑛 values equal to (x, y). These points

are 𝑥𝑥 𝜖𝜖 [1,𝑋𝑋], 𝑦𝑦 𝜖𝜖 [1,𝑌𝑌]. 𝑉𝑉(x, y) is also called the voting value.

The voting map shows the possible positions of the single bee on the merged image. If the single

bee blob edge fits part of the merged blob edge, there is expected to be a corresponding element

of voting map that has a peak value. This peak point is a candidate for the single bee’s position

in the merged blob.

4.3.3.4 The rotation of the bee
However, it has been found the motion of the bee can change its orientation by up to ±10°

between successive video frames. If the bee changes orientation, the voting map may produce a

lower valued peak point. By using several fitting orientations for each merged blob edge pixel, the

voting map can also estimate the chnaged orientation of the bee. The rotation of the bee’s blob

is described as:

𝛼𝛼 = {𝛼𝛼𝑙𝑙|(𝑙𝑙 𝜖𝜖 1,2, … , 𝐿𝐿)} 4-62

Where the L=21 and the

[𝛼𝛼1, … 𝛼𝛼21] = [−10°,−9°, … ,0°, … ,9°, … ,10°] 4-63

are the angles which are used to rotate the single bee blob edge from its original orientation. The

plus sign indicates an anticlockwise rotation, and the minus sign indicates a clockwise rotation. If

the single bee blob edge is rotated to 𝛼𝛼𝑙𝑙, the edge pixel coordinates relative to the centre of the

single bee blob are:

𝑐𝑐𝑛𝑛𝛼𝛼𝑙𝑙 = [𝑢𝑢𝑛𝑛 × 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑙𝑙 + 𝑣𝑣𝑛𝑛 × 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑙𝑙, 𝑣𝑣𝑛𝑛 × 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑙𝑙 − 𝑢𝑢𝑛𝑛 × 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑙𝑙] 4-64

Each rotated single bee blob edge curve can be drawn on the merged edge image to generate

the voting map for an 𝛼𝛼𝑙𝑙 rotation. In this case, there are 21 different voting maps corresponding

to the 21 different rotations. The different voting maps display different valued peak points. If a

rotation makes the single bee edge fit the merged edge, a peak point in the voting map is high

and sharp, with other peak points being much lower. If the rotation does not fit the merged edge,

there may be two or three peak points with a similar, but lower, value.

119

Figure 4.40 shows an example. In this figure, the X and Y values are the coordinates of the peak

point, and the Z value is the voting value of the point. The rotation of 0 degrees means no change

in the orientation of the single bee blob edge (Figure 4.40 (a-c)). In this case, there are three peak

points having the same value. The rotation of 10 degrees in Figure 4.40 (d-f), does not fit the

merged edge. The three peak points have similar values of 35, 36 and 37. Figure 4.40 (g-i) is the

fitting rotation in which the voting map has the sharp peak point with a value of 53, while the

second highest peak value is only 39. It can be seen that the fitting rotation produces the correct

detection and this usually has the highest peak value.

In summary, the 21 voting maps produce 21 candidate positions: since each voting map produces

exactly one candidate position, corresponding to its peak value. However, the fitting rotation may

not be the highest peak value. This is because the single bee shape sometimes fits another part

of the merged shape rather than the correct part, so that the wrong position also includes the high

peak point. If the peak point is near the correct position, the region around this point includes

many higher voting value points. This is described as the correct region. Conversely, the region

(a) 0° rotation (d) 10° rotation (g)−10° rotation (fitting)

x

y

x

y

x

y

(b) 0° rotation (e) 10° rotation (h)−10° rotation (fitting)

y

Vo
tin

g
le

ve
l

 y

Vo
tin

g
le

ve
l

Vo
tin

g
le

ve
l

(c) 0° rotation (f) 10° rotation (i)−10° rotation (fitting)

Figure 4.40 The final detection of results with different rotation of the single bee edge.
Notes: The −10° rotation fit the detection, and voting map have top peak point.

120

around the wrong position has some low value points, and this is known as the incorrect region,

so that this peak point is sharp and isolated.

Figure 4.41 shows the situation. It can be seen that the top point of the wrong rotation (Figure

4.41 (a-b)) has a similar value (94) to the top point of the fitting rotation (value 95 in Figure 4.41

(c-d)). However, it is difficult to choose the position of the bee from the similar top points in Figure

4.41. The problem is solved by using the sum of the region values around the top points. In each

of the 21 voting maps, all the values at voting points within ±5 pixels of the top point are added

together. It is assumed the top point in the voting map for orientation index 𝒍𝒍 is 𝑉𝑉𝑙𝑙(𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝), and the

total value of the region around this top point is:

𝑟𝑟𝑙𝑙 = ∑ ∑ 𝑉𝑉𝑙𝑙(𝑥𝑥, 𝑦𝑦)𝑦𝑦𝑝𝑝+5
𝑦𝑦=𝑦𝑦𝑝𝑝−5

𝑥𝑥𝑝𝑝+5
𝑥𝑥=𝑥𝑥𝑝𝑝−5

 4-65

Where 𝑙𝑙 ∈ [1,21]. The top value of the 21 region total values produces the correct region which

includes the actual position of the bee. In addition, 𝑙𝑙 gives the orientation of the bee. Figure 4.41

shows an example. After the calculation, the region around the top point of Figure 4.41 (b) has a

value of 3950; but the value of the region around the top point of Figure 4.41 (d) is 5501.

Therefore, the correct region is determined from Figure 4.41 (c-d) in which the fitting rotation is

10°.

The top point in the correct region might be expected to be the candidate position. However, this

point is only near the actual position, because of the shape noise. The shape noise comes from

the segmentation. It is difficult to get accurate shape detail when performing segmentation, but

(a) 3° rotation (c) 10° rotation

(b) 3° rotation (d) 10° rotation

Figure 4.41 The peak point problem with different rotation. The fitting rotation is 10°

121

the detection can be improved by a weighted average calculation near the correct region. The

correct region itself is too small to be used to modify the position calculation. The correct region

is extended to an area of ±20 pixels from the peak point, and a weighted average of the voting

map is calculated as below:

𝑤𝑤𝑥𝑥 =
∑ ∑ 𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦)

𝑦𝑦𝑝𝑝+20
𝑦𝑦=𝑦𝑦𝑝𝑝−20

𝑥𝑥𝑝𝑝+20
𝑥𝑥=𝑥𝑥𝑝𝑝−20

∑ ∑ 𝑉𝑉(𝑥𝑥,𝑦𝑦)
𝑦𝑦𝑝𝑝+20
𝑦𝑦=𝑦𝑦𝑝𝑝−20

𝑥𝑥𝑝𝑝+20
𝑥𝑥=𝑥𝑥𝑝𝑝−20

 4-66

𝑤𝑤𝑦𝑦 =
∑ ∑ 𝑦𝑦𝑦𝑦(𝑥𝑥,𝑦𝑦)

𝑦𝑦𝑝𝑝+20
𝑦𝑦=𝑦𝑦𝑝𝑝−20

𝑥𝑥𝑝𝑝+20
𝑥𝑥=𝑥𝑥𝑝𝑝−20

∑ ∑ 𝑉𝑉(𝑥𝑥,𝑦𝑦)
𝑦𝑦𝑝𝑝+20
𝑦𝑦=𝑦𝑦𝑝𝑝−20

𝑥𝑥𝑝𝑝+20
𝑥𝑥=𝑥𝑥𝑝𝑝−20

 4-67

In the formula above, the point at (𝑤𝑤𝑥𝑥, 𝑤𝑤𝑦𝑦) replaces the peak point as the candidate position of

the bee.

This is the final detection position of the bee on the merged image. The other merged bee is

detected in the same way.

In the next merged frame, the fitting rotation still uses the original orientation, and the single bee

detection obtained just before the first merged frame is still used to detect the merged bee. This

method operates until the two bees separate.

4.3.3.5 The covariance matrix of the Kalman filter
The covariance matrices were estimated in section 4.3.2.1 for single bee tracking. However,

because the Hough transform is utilized for merged bee tracking, the prediction and measurement

covariance matrices should be re-estimated. 82 video frames (including 184 position samples)

were used to calculate the measurement and prediction covariance matrices.

Figure 4.42 The measurement errors distribution from Hough transform

For the measurement error, the actual positions of bees are calculated manually. The

measurement positions are calculated using the Hough transform. The measurement errors are

calculated by using equation (4-42). The distribution of these measurement errors is displayed in

Figure 4.42. Some errors are large, because the Hough transform can be unsuccessful for

calculating the bee position.

The measurement covariance matrix from the Hough transform for merged bee detection is:

-100

-50

0

50

100

150

200

-200 -150 -100 -50 0 50 100 150

Er
ro

rs
 o

f y

Errors of x

122

𝑅𝑅𝑘𝑘 = �419 0
0 717� 4-68

For the prediction error, the actual positions of bees were estimated manually. The predicted

positions are from the Kalman filter prediction of merged bee tracking. The prediction errors are

calculated by using equation (4-43). The error distribution is shown in Figure 4.43.

Figure 4.43 The prediction errors distribution with Hough transform

The prediction covariance matrix for merged bee tracking becomes:

𝐶𝐶0 = �435 0
0 825�

These two covariance matrices above are also assumed to be constant during merged bee

tracking. The Hough transform model is the model for merged detection in Figure 4.33. However,

the Hough detection can sometimes be wrong. The wrong detection detects another part of the

merged blob rather than the actual position of the bee, so the error can be high. This can be seen

from Figure 4.42 and can lead to incorrect tracking.

4.3.4 Brief explanation of the Hungarian assignment method for bees
tracking

In this research, the Hungarian assignment method is applied by a Matlab function

(assignDetectionsToTracks). For bee tracking, the predicted positions (prediction) and detected

positions (detection) are the pixel coordinates. A matrix records distances between each

prediction and detection. The Hungarian assignment method uses this matrix to assign

predictions and detections. The maximum distance is 80 pixels, which means that if a prediction

(or detection) is more than 80 pixels from any detection (or prediction), this prediction (or

detection) is unassigned.

If the numbers of predictions and detections are the same, they are assigned by the Hungarian

assignment method. The optimal assignment is that the sum of all of the distances is the smallest

-100

-50

0

50

100

150

200

-150 -100 -50 0 50 100

Er
ro

rs
 o

f y

Errors of x

123

possible. If the number of predictions (or detections) is greater than the number of detections (or

predictions), the remaining detections (or predictions) are unassigned.

124

Chapter 5

Chapter 5 Methodology of pollen sacs detection and
measurement

__

This chapter describes the pollen detection and measurement using two methods. The first

method is to use image processing and statistics. For this, bee blob analysis is used to remove

the main body of the bee. The other parts of the body which have different colours from pollen

are removed by colour thresholding. The pollen sacs are finally discriminated from noise blobs by

using various feature thresholds. The pollen and non-pollen blobs are measured by using an

estimation model and a ROC curve. The second method is to utilize a deep learning algorithm.

The Faster RCNN and VGG-16 network is used for detecting pollen sacs on individual bee

images. Then, individual bee images can be identified as pollen or non-pollen images, depending

on whether the pollen detection network finds pollen sacs on the images or not. Both methods

are finally applied on the honey bee monitoring video. A concept of pollen carrying ratio is created

to identify whether a bee is carrying pollen or not on the video. After that, the number of pollen

carrying bees can be measured.

5.1 Pollen sacs detection and measurement with image
processing and statistics

Single bee images are cropped from the whole image frames, and the binary image of the single

bee blobs are also cropped from the whole binary images. The initial idea is to analyse the bee’s

body shape by calculating image moments of the blob. Then, the main (centre) body of the bee

is detected and separated. After that, possible pollen is distinguished from the other separated

parts of the bee, such as legs and wings. Then pollen features are calculated for identification of

pollen sacs.

5.1.1 Detect main body of bee
A bee has a main body (including head and tail) which is similar to a standard ellipse. The bee’s

blob on the binary image is analysed by calculating geometric image moments. As shown in

section 3.7, this produces the following bee blob parameters: centre position (𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐), orientation

(θ), height (h), width (w), major axis (2a) and minor axis (2b). Figure 5.1 shows an example of the

parameters. The white colour is the bee blob. The green ellipse (in the middle) is calculated from

the moments of the blob. The ellipse formula is:

𝐸𝐸(𝑥𝑥, 𝑦𝑦) = ((𝑥𝑥−𝑥𝑥𝑐𝑐) 𝑐𝑐𝑐𝑐𝑐𝑐 θ+(𝑦𝑦−𝑦𝑦𝑐𝑐) 𝑠𝑠𝑠𝑠𝑠𝑠 θ

𝑎𝑎
)2 + ((𝑥𝑥−𝑥𝑥𝑐𝑐) 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃−(𝑦𝑦−𝑦𝑦𝑐𝑐) 𝑐𝑐𝑐𝑐𝑐𝑐 θ

𝑏𝑏
)2 = 1 5-1

125

y

x

θ

He
ig

ht

Width

Figure 5.1 An example of blob parameters

The ellipse shown in Figure 5.1 is the candidate main body of a bee.

If a pixel (𝑥𝑥,𝑦𝑦) is inside the ellipse, it will satisfy the inequality 𝐸𝐸(𝑥𝑥,𝑦𝑦) < 1. This is used to display

the set of ellipse pixels (blob), as displayed in Figure 5.2 (b). Using Figure 5.2 (a) as an example,

the bee’s blob image can then be separated into three parts, when compared with the ellipse of

𝐸𝐸(𝑥𝑥, 𝑦𝑦). The first part is the pixels which belong to the bee blob (body of the bee) and are inside

the boundary of the ellipse: (𝐼𝐼(𝑥𝑥, 𝑦𝑦) = 1 and 𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≤ 1) (Figure 5.2 (c)). The second part is the

pixels which belong to the body of the bee, but are outside the boundary of the ellipse. This

comprises the protruding parts: (𝐼𝐼(𝑥𝑥,𝑦𝑦) = 1 and 𝐸𝐸(𝑥𝑥,𝑦𝑦) > 1) (Figure 5.2 (d)). The last group of

pixels is inside the boundary of ellipse, but the pixels are not part of the body: (𝐼𝐼(𝑥𝑥,𝑦𝑦) = 0 and

𝐸𝐸(𝑥𝑥, 𝑦𝑦) ≤ 1) (Figure 5.2 (e)).

The candidate main body blob is obtained by the following steps, as illustrated in Figure 5.3:

1) Calculate the fitting ellipse for the bee blob as Figure 5.3 (b).

(a) (b) (c) (d) (e)

Figure 5.2 The result of using the ellipse to separate the blob.
Note: (a) The original blob of the honey bee. (b) The ellipse which is calculated from
the blob moments. (c) The pixels belonging to the bee’s body and inside the boundary
of ellipse. (d) The pixels belonging to the bee’s body and outside the ellipse boundary.
(e) The pixels inside the boundary of ellipse, but not belonging to the body.

126

2) The fitting ellipse is used to remove the protruding parts (the second part pixels in Figure
5.3 (d)) and the first part is kept as a new blob (Figure 5.3 (c)). The new blob is smaller
than the original blob, but it is also closer to the main body of the actual bee.

3) The image moments and ellipse calculation can be performed again on the new blob, to
obtain a new ellipse with parameters.

4) These new parameters are used to give another smaller ellipse to remove protruding
parts again.

The procedure is repeated until all protruding parts have been removed. This results in a smaller

elliptical blob that is a better estimate of the main body of the bee (Figure 5.3 (f)).

5.1.2 Detect colour of pollen sacs
Once the main body has been detected, the other parts of the bee can be identified, such as the

wings, legs and pollen sacs. The main body is removed from the colour image, and the remaining

parts and the background are segmented. Normally, the pollen has orange, yellow and white

colours, so the colour histogram thresholding produces the final blobs from the background on

the single bee image. The method is shown in Figure 5.4.

Figure 5.4 (a-f) shows the detection of the pollen sacs. The bee image (a) is detected and cropped

from the whole frame. The blob image (b) is cropped from the whole binary image. Then this blob

is approximated by an ellipse (c) that corresponds to the main body of the bee, and the main body

ellipse is then eliminated from the bee image. The result is displayed in (d), which only includes

the peripheral parts of the bee, such as parts of its tail and wings, and the pollen sacs. Normally,

the pollen sacs have orange, yellow or white colours, with the colour segmentation being utilised

to detect the pollen blob shown in image (e). The orange and yellow colour are close to each

other in the Hue channel, so they can be detected together. White colour can be detected from

the Saturation and Value channels in HSV colour space. The colour detection model generates

two binary images which are the mask pollen orange and yellow image (MpOYI) and the mask

pollen white image (MpWI). The final pollen colour detection model is:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∨ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 5-2

Figure 5.3 The example of a bee’s main body blob detection

Blob
analysis

separate
protruding

Blob
analysis

separate
projections

repeat
until

Compare
to

(a) (b) (c) (d)

(e) (f) (g)

127

where MPCI is the mask pollen colour image which is shown in Figure 5.4 (e). This is a binary

image that shows blobs which have pollen’s colour. The MpOYI binary image masks the orange

and yellow colours. Each pixel (𝑝𝑝MpOYI(x, y)) value is calculated from the hue channel using:

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥, 𝑦𝑦) = �1 , 0.02 < ℎ(𝑥𝑥 ,𝑦𝑦) < 0.15
0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 5-3

The MpWI image masks the white colour of pollen sacs. Each pixel (𝑝𝑝MpBI(x, y)) value is

calculated from the value and saturation channels using:

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥, 𝑦𝑦) = �1 , 𝑣𝑣(𝑥𝑥 , 𝑦𝑦) > 0.7 ∩ 𝑠𝑠(𝑥𝑥,𝑦𝑦) < 0.4
0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 5-4

A problem is that the pollen may not be visible after the bee’s main body detection, so that the

pollen colour detection can not detect the pollen. This commonly happens when using the bee

detection model B that was discussed in section 4.2.4. An example was shown in Figure 4.23.

The image in Figure 4.23(b) comes from this bee detection model. The blob does not include the

pollen sac, so that the peripheral parts of the bee body shown in Figure 5.5(a) do not include the

pollen sac. The pollen detection result (Figure 5.5(b)) only detects a small blob that is hard to

identify as a pollen sac. Conversely, Figure 4.23(d) displays the result of bee detection using

model D, which adds white colour detection to the bee detection. The different characteristics of

models B and D are shown in Table 4-1 in section 4.2.4.2. The advantage of model D is shown

in Figure 5.5(c), where the bee body’s peripheral parts detection includes the pollen sac. Thus

the final pollen detection (Figure 5.5(d) detects a blob that can be identified as a pollen sac. In

this way, the bee detection model D helps to improve pollen detection.

Another problem is shown in Figure 5.4 (e), in which the pollen image includes not only the pollen

blob but also other noise blobs. This is because the bee detection is sometimes not precise

 (a) (b) (c) (d) (e) (f)

Figure 5.4 The pollen detection process.
Note: (a) The original image of the bee cropped from the whole colour frame. (b) The binary
blob of image (a). This is cropped from the whole binary image. (c) The main body blob.
(d) The image of parts other than the main body. (e) The pollen sacs with other dust blobs.
(f) The pollen colour detection shown on a colour image.

(a) (b) (c) (d)

Figure 5.5 The comparison of the result with different bee detection.
Note: (a) The result of bee detection from model B. (b) The result of
pollen detection from (a). (c) The result of bee detection from model
D. (d) The pollen detection result from (c).

128

enough. Figure 5.4 shows a particular example, in that there may be some colour misdetection.

The noise blobs affect the pollen detection. If this method is applied to a bee without pollen, the

noise blobs may be misinterpreted as pollen. Therefore, to make sure all of the detected blobs

include any pollen blobs, the blob features need to be analysed.

Other noisy examples are shown in Figure 5.6. In image (b) and (d), it can be seen that the pollen

detection model also detects other parts of the bee as pollen. It is necessary to identify pollen

more accurately using other features of the pollen sacs.

5.1.3 Pollen blob features
It is necessary to identify the features of pollen blobs that are different from other blobs, so that

the pollen sacs can be recognised by the system. There are five features automatically produced

by the blob detection process that could be useful. These are the blob area, orientation, size ratio,

extent and position.

The first feature is the area of the pollen region, which is the number of pixels inside the blob.

However, a larger bee blob leads to the pollen blob also being larger. Therefore, simply using the

pollen blob area will not be accurate. The solution is to calculate the area ratio (𝑅𝑅𝐴𝐴) between

pollen blob and the bee main body (ellipse) blob:

𝑅𝑅𝐴𝐴 = 𝐴𝐴𝑝𝑝
𝐴𝐴𝑚𝑚

 5-5

𝐴𝐴𝑝𝑝 is the pollen blob area, and 𝐴𝐴𝑚𝑚 is the single bee main body blob area.

The second feature is the orientation of the pollen blob. Because the pollen sac has an elliptical

shape, its orientation is similar to the orientation of the flying bee. The difference between the

orientations of the pollen blob and the bee blob (𝐷𝐷𝑜𝑜) is:

𝐷𝐷𝑜𝑜 = |𝑜𝑜𝑝𝑝 − 𝑜𝑜𝑏𝑏| 5-6

𝑜𝑜𝑝𝑝 is the orientation of pollen blob, and the 𝑜𝑜𝑏𝑏 is the orientation of main body (the main part of

the body) of bee. However, the results later show that the orientation is not reliable for pollen

detection.

The third feature is the ratio of the minor and major axes (shape ratio) of the pollen blob ellipse.

If 𝑏𝑏𝑝𝑝 is the minor axis of the pollen blob, and a𝑝𝑝 is the major axis, the size ratio is:

(a) (b) (c) (d)

Figure 5.6 Other examples of pollen detection result.

129

𝑅𝑅𝑆𝑆 = 𝑏𝑏𝑝𝑝
𝑎𝑎𝑝𝑝

 5-7

As the pollen sac has an elliptical shape the size ratio is different from some noise blobs which

look more like straight lines.

The fourth feature is the blob extent. The blob analysis draws a bounding box around the pollen

blob. The blob extent (E) is defined as the area of the pollen blob relative to its bounding box area:

𝐸𝐸 = 𝐴𝐴𝑝𝑝
𝐴𝐴𝑏𝑏

 5-8

𝐴𝐴𝑏𝑏 is the area of the bounding box, calculated in pixels. This feature can be used to eliminate arc-

shaped noise. The pollen blob has a higher value of blob extent than these noise blobs.

The last feature is the location of the pollen blob (position distance ratio). The pollen is beside

the bee’s body. The positions of the pollen sacs should be to the left and/or the right side of the

bee’s main body. The ends of the minor axis of the main body ellipse represent the left and right

side of the main body.

b

x

y

b

0

𝑅𝑅𝑝𝑝(𝑥𝑥𝑟𝑟𝑟𝑟 ,𝑦𝑦𝑟𝑟𝑟𝑟)

𝐿𝐿𝑝𝑝(𝑥𝑥𝑙𝑙𝑙𝑙 ,𝑦𝑦𝑙𝑙𝑙𝑙)

Figure 5.7 The main body ellipse showing the left and right points of the minor axis.

Figure 5.7 shows the main body ellipse. It is assumed the head of the bee points in the direction

of the positive x-axis. The orientation of the ellipse (𝜃𝜃 ∈ (−90𝑜𝑜, 90𝑜𝑜)) is the angle between major

axis of the ellipse and the positive x-axis. 𝜃𝜃 is less than zero in the situation shown in Figure 5.7.

The point 𝐿𝐿𝑝𝑝 is on the left side of the bee, which is at the top end of minor axis of the ellipse in the

figure, and the point 𝑅𝑅𝑝𝑝 is on the right side of the bee, which is at the bottom end of the minor

axis of the ellipse in the figure. In Figure 5.7, the point positions are:

𝑅𝑅𝑝𝑝�𝑥𝑥𝑟𝑟𝑟𝑟,𝑦𝑦𝑟𝑟𝑟𝑟� = (𝑥𝑥 + 𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 , 𝑦𝑦 + 𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃) 5-9

𝐿𝐿𝑝𝑝�𝑥𝑥𝑙𝑙𝑙𝑙 ,𝑦𝑦𝑙𝑙𝑙𝑙� = (𝑥𝑥 − 𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 , 𝑦𝑦 − 𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃) 5-10

x and y are the centre position coordinates of the main body, b is the half minor axis. The pollen

sac blobs should be near the left point or right point. The distances between the left/right points

and the pollen blob centre position (𝑃𝑃𝑏𝑏) are calculated as:

𝐷𝐷𝑝𝑝𝑝𝑝 = �|𝑅𝑅𝑝𝑝 − 𝑃𝑃𝑏𝑏|2 = �(𝑥𝑥𝑟𝑟𝑟𝑟 − 𝑝𝑝𝑏𝑏𝑏𝑏)2 + (𝑦𝑦𝑟𝑟𝑟𝑟 − 𝑝𝑝𝑏𝑏𝑏𝑏)2 5-11

𝐷𝐷𝑝𝑝𝑝𝑝 = �|𝐿𝐿𝑝𝑝 − 𝑃𝑃𝑏𝑏|2 = �(𝑥𝑥𝑙𝑙𝑙𝑙 − 𝑝𝑝𝑏𝑏𝑏𝑏)2 + (𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑝𝑝𝑏𝑏𝑏𝑏)2 5-12

130

𝐷𝐷𝑝𝑝𝑝𝑝 and 𝐷𝐷𝑝𝑝𝑝𝑝 are the distances to the blob position. 𝑝𝑝𝑏𝑏𝑏𝑏 and 𝑝𝑝𝑏𝑏𝑏𝑏 are the x and y coordinates of the

blob position. However, the distances will depend on the size of the bee’s main body. Therefore,

they need to be calculated as q𝑅𝑅𝑅𝑅 and q𝐿𝐿𝐿𝐿, relative to the minor axis of the main body ellipse.

𝑞𝑞𝑅𝑅𝑅𝑅 = 𝐷𝐷𝑝𝑝𝑝𝑝
2𝑏𝑏

 5-13

𝑞𝑞𝐿𝐿𝐿𝐿 = 𝐷𝐷𝑝𝑝𝑝𝑝
2𝑏𝑏

 5-14

𝑏𝑏 is the half minor axis of the main body of the bee. The minimum value of 𝑞𝑞𝑅𝑅𝑅𝑅 and 𝑞𝑞𝐿𝐿𝐿𝐿 (𝑄𝑄𝑝𝑝 =

min {q𝑅𝑅𝑅𝑅 , q𝐿𝐿𝐿𝐿}) is the final value that can be used for pollen detection. This is called the pollen

position distance ratio.

5.1.4 The pollen feature detection model for pollen detection
The previous section defined five features of a pollen sac blob that may be useful to distinguish

pollen blobs from other similar blobs (non-pollen blobs). However, some features may not be

useful. For example, the orientation feature is not useful. Some pollen blobs have an orientation

that is different from the main body of the bee, as can be seen in Figure 5.6 (b), for example. In

addition, some pollen blobs are detected as a circle by the pollen colour detection. Figure 5.4 (f)

shows this type of pollen blob. Therefore, the feature of orientation of the pollen blob is not useful.

The other four features cannot be checked as simply as the orientation. They need further

analysis to calculate suitable thresholds for pollen blob detection.

5.1.4.1 Statistics analysis for the blob features
To choose the useful features and their corresponding thresholds, it is necessary to collect

samples of pollen blobs and non-pollen blobs. However, pollen blob sample collection is more

difficult than for non-pollen blobs. On the videos, only a small number of bees bring pollen back,

with the maximum ratio being only about one-tenth of the bees. Only individual bee images can

be used to detect pollen. The merged bee image is too complicated to be useful. A clear video

was chosen to collect individual bee images, which included images that have pollen (pollen

images) and images that have no pollen (non-pollen images). This video was recorded in the

morning of a day. It clearly displays the pollen sacs.

The individual bee images that include pollen sacs (pollen bee images), were collected from the

first 400 frames of the video. In these frames, 276 pollen bee images were cropped from the

colour image and the corresponding 276 binary image blobs were cropped from the binary frames

after bee detection. These images included 11 individual bees that were carrying pollen. The non-

pollen bee images were also collected from the first 400 frames of the video. 1320 non-pollen bee

images were cropped from these colour frames. In addition, the 1320 corresponding binary image

blobs were cropped from the 400 binary frames. These images included 99 different bees that

were not carrying pollen.

In the 276 pollen bee images, the pollen colour detection method detected 273 blobs that were

pollen sacs (pollen blobs), and 732 blobs that were not pollen sacs (non-pollen blobs). For the

pollen blobs, the mean, standard deviation, minimum and maximum values of the four features

(not including orientation) were calculated. These values are shown in Table 5-1 below.

131

Table 5-1 The statistical parameters of features of pollen blobs

Features Mean Standard
deviation Minimum Maximum

Area ratio 0.0358 0.0234 0.0012 0.1228
Shape ratio 0.4312 0.1937 0.1039 0.9426

Extent 0.5136 0.1639 0.1424 1.0000
Position Distance 0.2452 0.1908 0.0327 1.9482

For the Area ratio, the mean value is 0.0358 and the standard deviation is 0.0234. This shows

the pollen blobs have a wide Area ratio distribution around the mean value. Sometimes, the pollen

detection method only detects parts of the pollen sacs. Therefore, some of these detected blobs

are very small which causes the minimum value of Area ratio to be only 0.0012. The maximum

value of the Area ratio is 0.1228, which is almost 4 standard deviations from the mean. In some

cases, these pollen blobs include other parts of the bee as well as the pollen sac itself.

The Shape ratio of the pollen blobs has a mean of 0.4312, a minimum of 0.1039, and a maximum

of 0.9426. It can be seen that some pollen sacs are detected as being very thin, and some of

them closely resemble a circle.

The blob Extent shows that the area of the pollen blobs relative to the corresponding bounding

box has a mean value of 0.5136. It has a minimum value of 0.1424. When the blob Extent is

small, the blob is very thin or arc-shaped. Some pollen blobs have the maximum value of 1.0000,

because they are very small (about 12~18 pixels). Also, sometimes, the pollen sac is partly hidden

behind the bee's body.

The Position Distance mean value is 0.2452, with a minimum of 0.0327 and a maximum of 1.9482.

When the Position Distance value is large, the pollen blob is far away from the main body.

The pollen sac detection method is not perfect. 47 pollen sacs were not detected from the pollen

images. These pollen sacs are not in the statistics, because it was not possible to obtain feature

measurements from these pollen blobs.

In addition, 3250 non-pollen blobs were detected from the 1320 non-pollen images. These blobs

are combined together with the 732 non-pollen blobs that were detected from the pollen images.

In total, 3982 non-pollen blobs were detected and collected for the statistics. The statistics

calculation of these blobs are displayed in Table 5-2 below.

Table 5-2 The statistical parameters of features from non-pollen blobs in images

Features Mean Standard
deviation Minimum Maximum

Area ratio 0.0158 0.0325 0.0002 1.0887
Shape ratio 0.3060 0.1605 0.0417 1.0000

Extent 0.4437 0.1990 0.0828 1.0000
Position Distance 0.7077 0.3837 0.0103 1.9888

From Table 5-2, the mean value of the Area ratio is 0.0158, which is smaller than the pollen blob

Area ratio. The standard deviation of the Area ratio is 0.0325, where the pollen blob has a

132

standard deviation 0.0234. It can be seen that the Area ratio of the non-pollen blob is generally

smaller than the pollen blob.

The mean value of the Shape ratio is 0.3060, and the standard deviation is 0.1605. The minimum

and maximum values are 0.0417 and 1.0000 respectively. The Shape ratio of the non-pollen blobs

is usually slightly smaller than for the pollen blobs.

The blob Extent for non-pollen blobs has a mean value of 0.4437. The standard deviation is

0.1990. The blob Extent has minimum value of 0.0828 and maximum value of 1.0000. This feature

of non-pollen blobs is similar to the pollen blobs, so this feature may not be useful.

The Position Distance feature has a mean value 0.7077 and a standard deviation of 0.3837. The

minimum value is 0.0103 and the maximum value is 1.9888. The Position Distance of the non-

pollen blob is generally larger than for the pollen blob.

The distributions of the four features are shown in Figure 5.8. It can be seen that the pollen and

non-pollen blobs have different distributions for the Area ratio and Position Distance. In Image

(a), most of the non-pollen blobs have a very small value of the Area ratio with the value ranging

from 0 to 0.05. The Area ratio range from 0.02 to 0.06 covers most of the pollen blobs.

(a) (b)

(c) (d)

Figure 5.8 The distribution of the 4 features

0

2

4

6

8

10

12

-0.01 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15

Pr
op

or
tio

n
of

 N
um

be
rs

 o
f T

ot
al

 (%
)

Area Ratio

Distribtion of Area Ratio

Pollen blobs
Non-Pollen Blobs

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1 1.2

Pr
op

or
tio

n
of

 N
um

be
rs

 o
f T

ot
al

 (%
)

Shape Ratio

Distribtion of Size Ratio
Pollen Blobs
Non-Pollen Blobs

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2

Pr
op

or
tio

n
of

 N
um

be
rs

 o
f T

ot
al

 (%
)

Blob Extent

Distribtion of Blob Extent
Pollen Blobs
Non-Pollen Blobs

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5

Pr
op

or
tio

n
of

 N
um

be
rs

 o
f T

ot
al

 (%
)

Postion Distance Ratio

Distribtion of Position Distance

Pollen Blobs

Non-Pollen Blobs

133

In Image (d), most of the pollen blobs have a value of Position Distance from 0.1 to 0.25. The

non-pollen blobs are distributed over a wider range than pollen blobs, with values up to 1.5 for

the Position Distance ratio.

Image (b) shows that the distribution curves for pollen and non-pollen blobs cross at about 0.3 for

the Shape ratio. They share about two-thirds of their distributions. This feature cannot be used to

separate pollen and non-pollen blobs.

The blob Extent distribution is displayed in image (c). The distribution curves coincide, which

means the pollen and non-pollen blobs have similar values of blob Extent. This feature may not

be suitable for distinguishing the blobs.

The statistics analysis shows the distribution of the four features for the pollen and non-pollen

blobs. In addition, the analysis indicates the character of the pollen and non-pollen blobs. The

pollen blobs generally have a bigger Area ratio than the non-pollen blobs, but most of the pollen

blobs have a smaller Position Distance ratio than the non-pollen blobs. Therefore, the features of

Area ratio and Position Distance can be used to distinguish pollen blobs from non-pollen blobs.

However, these distributions are not suitable for finding the optimal threshold for this process. In

Figure 5.8 (a), the threshold for the Area ratio appears to be value of about 0.015, but this

threshold value categorises some pollen blobs as non-pollen blobs. The threshold for Position

Distance appears to be a value of about 0.25, which is shown in Figure 5.8 (d). However, many

non-pollen blobs also have a value less than 0.25. To find the optimal threshold, these blob

statistics need further analysis.

5.1.4.2 The receiver operating characteristic (ROC) analysis
The statistics distributions do not clearly show suitable thresholds for pollen detection using these

features. The optimal thresholds must not only detect more pollen sacs, but also reduce incorrect

detections from bees not carrying pollen. The receiver operating characteristic (ROC) method can

be used to choose the threshold values. The theory of the ROC method is explained in section

3.8. In different situations, the four outcomes from the ROC have different meanings. For this

research, the meanings are listed in Table 5-3.

Table 5-3 Statistical titles explanation

 System condition
Pollen Non-pollen

Actual condition Pollen blob True positive (TP) False negative (FN)
Non-pollen blob False positive (FP) True negative (TN)

The thresholds for each feature can be set up with different values to show the four outcomes in

Table 5-3. In Table 5-3, there are two actual conditions: bee with pollen and bee without pollen.

There are also two system conditions: detecting a pollen blob and detecting a non-pollen blob.

Among these four conditions, the four outcomes are shown below.

• True positive (TP): system detects pollen for a pollen blob, using the thresholds.

• False positive (FP): system detects pollen for a non-pollen blob, using the thresholds.

• False negative (FN): system detects non-pollen for a pollen blob, using the thresholds.

• True negative (TN): system detects non-pollen for a non-pollen blob, using the thresholds.

134

To produce the ROC curves, for each feature, 100 threshold points were chosen from a value of

zero to the maximum value of the samples. Each threshold point is used to perform pollen

detection to get the four outcomes from Table 5-3. As a result, for each feature, the sensitivity

and specificity were calculated for 100 different threshold values. Then these sensitivities and

specificities were plotted in the ROC space to construct the ROC curve of each feature. (Note

that the ROC x-axis is 1 – specificity, not specificity).

For the Area ratio distribution, the threshold (𝑇𝑇𝐴𝐴) for the Area ratio is the lower limit for pollen

detection. The positive result is RA > 𝑇𝑇𝐴𝐴, otherwise the result is negative. The Shape ratio also

has a threshold that is the lower limit for a positive result. The positive is RS > 𝑇𝑇𝑆𝑆. For the blob

Extent, the positive result is also E > 𝑇𝑇𝐸𝐸 . However, the Position Distance ratio has a threshold

(𝑇𝑇𝑄𝑄), where the positive is defined as 𝑄𝑄𝑝𝑝 < 𝑇𝑇𝑄𝑄.

The 3982 non-pollen blobs and 273 pollen blobs were used to calculate the ROC curves. Figure

5.9 shows the ROC analysis of all of the blobs. From this figure, the blob Extent is the worst ROC

curve, so this feature is not useful, which is the result expected from the earlier examination of

the statistics. The Area ratio, Shape ratio and Position Distance all have some points that are

maximum sensitivity values for a given specificity value. They are the ROC convex hull (Fawcett,

2006). The convex hull can be used to generate a classifier that can help find the optimal

threshold. This classifier is a straight line (shown as a dashed line in Figure 5.9) linking the two

peak points in the curves of Area ratio and Position Distance. Considering this classifier (dashed

line) and the Position Distance curve, the ROC point that is closest to the perfect classification (1,

0) is on the curve of Position Distance.

Figure 5.9 The ROC curves analysis with all of the samples.

0.206, 0.886

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Se
ns

iti
vi

ty

1-Specificity

ROC Analysis: Samples from first 400 frames

Area Ratio

Shape Ratio

Blob Extent

Position Distance

135

In the theory of (Fawcett, 2006), the point (0.206,0.886) is the closest point to the best

classification of (0,1). This is the optimal threshold for the Position Distance value. The threshold

value is 0.36, and positive results are obtained for position distances below this threshold. The x

coordinate is one minus specificity, so the specificity is 1 − 0.206 = 0.794. The y coordinate of

this point is the sensitivity, which is 0.886.

Based on this ROC model analysis, the feature of Position Distance with a threshold of 0.36

should be used to detect pollen blobs. This method produces the four outcomes that are shown

in Table 5-4.

Table 5-4 The four outcomes of the ROC model

Pollen blobs Non-pollen blobs Threshold TP FN FP TN
273 3982 0.36 242 31 821 3161

Using this threshold, the number of true positives (TP) is 242, and the number of false negatives

(FN) is 31. The number of false positives (FP) is 821, which is much smaller than the number of

true negatives of 3161. However, the detection has 242 true positives (TP), and 821 false positive

(FP). The proportion of true positives in the total number of positive outcomes is only 22.8%. The

number of positive outcomes is the estimate of the number of pollen blobs in all of the blobs. This

low precision (precision is defined in section 3.8) indicates the measurement is not accurate

enough to be useful. It is necessary to improve the estimation.

5.1.4.3 Blob feature combination
The ROC method shows each feature’s ROC curve on the ROC space independently. This shows

Position Distance is the best single feature for pollen detection. However, in Figure 5.9, the ROC

curve of the Area ratio shows that this feature could also be useful. The two features of Position

distance and Area ratio can be combined to detect pollen blobs. The result of the combination

cannot be shown with a single ROC curve, but the ROC space can still be used to evaluate the

combined result. The two features can be combined, using a range of thresholds for each feature,

to calculate the number of pollen and non-pollen blobs from the blob samples. Then the sensitivity

and specificity can be calculated for each combination of threshold values.

(a) (b)

Figure 5.10 The distribution of pollen and non-pollen blobs on two features.
Notes: (a) The whole distribution. (b) The zoomed distribution.

136

Before using the combination procedure, the pollen and non-pollen bobs were plotted on a 2-D

distribution with axes being “Position distance” and “Area ratio”. The distribution is shown in Figure

5.10. The x-axis is the “Position distance” (d-axis), and the y-axis is the “Area ratio” (a-axis). In

this figure, image (a) displays all the points, but the detail is mostly in the range [0, 0.12] of the a-

axis. Several non-pollen blobs have a large value of “Area ratio”, so image (a) does not focus on

the main part of the distribution. Image (b) zooms the y-axis to [0, 0.12]. The distribution of the

two types of blobs is shown more clearly than in image (a). From image (b), pollen blobs are

mainly distributed in range 0 to 0.4 for “Position distance" and 0.01 to 0.08 for “Area ratio”. The

non-pollen blobs are concentrated in the range 0 to 0.02 for “Area ratio” and 0 to 1.5 for “Position

distance”. The pollen and non-pollen blobs overlap on part of the distribution, but most of the non-

pollen blobs can be separated from the pollen blobs.

A straight line can be drawn on the sample map of Figure 5.10 to distinguish pollen blobs from

most of the non-pollen blobs. The two variables of this line are a (“Area ratio”) and d” (“Position

distance”). The straight line is defined below.

𝑎𝑎 = 𝑚𝑚 × 𝑑𝑑 + 𝑐𝑐 5-15

Where m is the slope of the line and the 𝑐𝑐 is the intercept on the a-axis. For each blob sample

𝑠𝑠𝑛𝑛(𝑑𝑑𝑛𝑛, 𝑎𝑎𝑛𝑛) (𝑛𝑛 ∈ [1,4255], for 273 pollen blobs plus 3982 non-pollen blobs) in Figure 5.10, it is

possible to calculate:

𝐿𝐿 = 𝑎𝑎𝑛𝑛 − (𝑚𝑚 × 𝑑𝑑𝑛𝑛 + 𝑐𝑐) 5-16

For each sample, 𝐿𝐿 indicates the side of the line where the sample is located. Using the line as a

classifier, 𝐿𝐿 indicates whether the sample is positive or negative, using the concept of ROC. If 𝐿𝐿 ≥

0, the sample point is positive, and if 𝐿𝐿 < 0, it is negative. The pollen blobs should be in the

positive region and the non-pollen blobs should be in the negative region. This should produce

higher sensitivity and specificity values than using the single threshold in the previous section.

For the straight line (equation 5-15), slope values m from 0.0 to 0.5 and intercept values c from -

0.15 to 0.02 were tested. An optimal line was searched for in the range of 𝑚𝑚 ∈ [0.0, 0.5] and 𝑐𝑐 ∈

[−0.15, 0.02]. Each test line produces a point in the ROC space. ROC curves were produced for

each different c value, with each point on the curve being a different m value. The optimal values

of these two parameters produce a point that is the nearest to the perfect classifier (0, 1) on the

ROC space. The experiment uses 501 different values for both m and c to get 251001 (501×501)

ROC points. The ROC curves are shown in Figure 5.11 (a).

In Figure 5.11 (a), there are 501 ROC curves. Each curve corresponds to a different value of

intercept c. Each curve includes 501 ROC points which correspond to 501 different slope m

values. These curves had one point in the ROC space which was the shortest distance to the

perfect classifier (0,1). There are 251001 points in the ROC space corresponding to 251001

different lines that have different values of slopes m and integers 𝑐𝑐. These points in the ROC

space have different distances to the perfect classifier (0, 1). These distances are displayed in

Figure 5.11 (b) as a contour map. The axes on this map are the intercept c and slope m. From

the contour map, it can be seen that the shortest distance is less than 0.2.

137

Table 5-5 The result of one straight-line method

SES 1-SPC Distance Intercept (c) Slope (m) TP FN FP TN
0.9011 0.1253 0.1596 -0.0205 0.1310 246 27 499 3483

Table 5-5 displays the result of this one straight-line method. The ROC point which has the

shortest distance is the (0.1253, 0.9011). The distance to the perfect classifier (0, 1) is 0.1596.

The optimal straight line is 𝐿𝐿𝑜𝑜𝑜𝑜 = a − (0.1310 × d − 0.0205). This line is drawn on the (a-d) space

in Figure 5.12. The blue line in this figure is the optimal line. Points to the top-left of the line are

positive results and points to the bottom-right of the line are negative results. This line separates

most of the pollen blobs from many of the non-pollen blobs. In addition, comparing to Figure 5.9,

this straight line increases sensitivity from 0.886 to 0.9011 and improves specificity from 0.794 to

0.8747. It can be seen that this method is better than using only distance as a classifier.

Table 5-5 also shows the four ROC outcomes of the one straight-line method. The FP number is

499. Compared to Table 5-4 with FP of 821, this method almost halves the number of false

positives (FP), while slightly increasing the number of true positives. This result shows that the

straight-line method is better than using only position distance as a single classifier.

However, Figure 5.12 shows a limitation of the one straight-line method. The positive region still

includes many non-pollen blobs that are concentrated near the bottom-left corner of the figure,

close to the origin. These non-pollen blobs can be excluded using another straight-line that has a

slope less than zero. This line can cross the first line on the d-axis. This crossing point on the d-

axis will be denoted as 𝑑𝑑𝑐𝑐. Both lines cross this point. Therefore, these two lines can be defined

using the intercept 𝑑𝑑𝑐𝑐 and the reciprocals of their slopes.

𝐿𝐿1 = 𝑎𝑎𝑛𝑛 −
𝑑𝑑𝑛𝑛−𝑑𝑑𝑐𝑐
𝑚𝑚1

 (𝑚𝑚1 > 0,𝑑𝑑𝑛𝑛 ≥ 𝑑𝑑𝑐𝑐) 5-17

𝐿𝐿2 = 𝑎𝑎𝑛𝑛 −
𝑑𝑑𝑛𝑛−𝑑𝑑𝑐𝑐
𝑚𝑚2

 (𝑚𝑚2 < 0,𝑑𝑑𝑛𝑛 < 𝑑𝑑𝑐𝑐) 5-18

(a) (b)

Figure 5.11 The process of finding optimal straight line.
Notes: (a) The ROC curves from different slopes and intercepts. (b) The contour map of

distance between sample point and perfect classifier (0, 1) in ROC space.

138

Here 1/𝑚𝑚1 and 1/𝑚𝑚2 are the slopes of the two lines. The positive region has 𝐿𝐿1 ≥ 0 and 𝐿𝐿2 ≥ 0

on the plane of the 2-D distribution. The rest of the plane is the negative region. This is known as

the “two lines method” that is used to calculate ROC outcomes for pollen and non-pollen blobs.

Figure 5.12 The optimal straight line for classifying blobs.

Figure 5.13 The ROC curves of two lines method

From Figure 5.12, the ranges of the three parameters can be: dc ∈ [0, 0.4], m1 ∈ [0.01, 11] and

m2 ∈ [−20,−0.01]. For each parameter, 51 thresholds were used, ranging from between these

minimum and maximum values. The ROC curves are shown in Figure 5.13. There are 2601

curves in the ROC space corresponding to different values of m1 and m2. Each curve includes 51

ROC points corresponding to the 51 different values of dc. It was found that one point had the

shortest distance to the perfect classifier (0, 1).

Because the two lines method used three parameters, it is not possible to show the contour plot

of the distance from the perfect classifier. The experiment calculated the shortest distance point

in the ROC space as (0.1185, 0.9121). The results are shown in Table 5-6.

139

Table 5-6 The result of two lines method

SES 1-SPC Distance m1 m2 dc TP FN FP TN
0.9121 0.1185 0.1476 6.8238 -16.002 0.208 249 24 472 3510

From Table 5-6, the shortest distance between the optimum point and the perfect classifier (0, 1)

is 0.1476, which is shorter than the result in Table 5-5. In addition, the sensitivity and specificity

have slightly improved. The two optimal line formulas are shown below.

𝐿𝐿1𝑜𝑜𝑜𝑜 = 𝑎𝑎𝑛𝑛 −
𝑑𝑑𝑛𝑛−0.208
6.8238

 (𝑑𝑑𝑛𝑛 ≥ 0.208) 5-19

𝐿𝐿2𝑜𝑜𝑜𝑜 = 𝑎𝑎𝑛𝑛 −
𝑑𝑑𝑛𝑛−0.208
−16.002

 (𝑑𝑑𝑛𝑛 < 0.208) 5-20

The two lines are drawn on the a-d distribution plot in Figure 5.14 using blue and green colours

respectively. The two lines cross the d-axis at 0.208. The positive region is shaded in the figure.

It can be seen that the positive region covers most of the pollen blobs, and the negative region

includes most non-pollen blobs and few pollen blobs.

Figure 5.14 The optimal two lines for pollen detection from non-pollen blobs.

Table 5-6 also displays the four outcomes using this classifier. The number of true positives (TP)

is 249, which slightly increases from Table 5-5. In addition, the false positives are 472, which is

less than in Table 5-5. The two lines method is better than the one straight-line method,

although the improvement is not significant.

5.1.4.4 The estimation for decreasing false positive (FP)
From the last section, the two lines method uses the “Area ratio” and “Position distance” to

detect pollen blobs. This method produces the four outcomes as shown in Table 5-6. According

to the table, the sensitivity and specificity are both high. However, the detection has 249 true

positives (TP), but also has 472 false positives (FP). The TP in the total number of positive

outcomes is only 35%. The sum of positive outcomes is the measurement of pollen blobs in all of

the blobs. This low precision (precision is defined in section 3.8) indicates the measurement is

not accurate enough. It is necessary to improve this estimation.

140

After applying the two lines method, the two results are the measured positive (𝑀𝑀𝑃𝑃) and

measured negative (𝑀𝑀𝑁𝑁) values.

𝑀𝑀𝑃𝑃 = 𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 5-21

𝑀𝑀𝑁𝑁 = 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁 5-22

Where 𝑇𝑇𝑃𝑃, 𝐹𝐹𝑃𝑃 , 𝑇𝑇𝑁𝑁 and 𝐹𝐹𝑁𝑁 are the four outcomes of true positive (TP), false positive (FP), true

negative (TN) and false negative (FN) respectively. These four values are still unknown after the

measurement. However, if the sensitivity (𝑆𝑆𝑁𝑁) and the specificity (𝑆𝑆𝑃𝑃) were known, then TP, FP,

TN and FN could be calculated.

Sensitivity and specificity are defined as:

𝑆𝑆𝑁𝑁 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁

 5-23

𝑆𝑆𝑃𝑃 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑃𝑃

 5-24

The four outcomes can be calculated back by using the four formulas above. From equation

(5-23):

𝑆𝑆𝑁𝑁𝐹𝐹𝑁𝑁 = (1 − 𝑆𝑆𝑁𝑁) 𝑇𝑇𝑃𝑃 5-25

And from equation (5-24):

𝑆𝑆𝑃𝑃𝐹𝐹𝑃𝑃 = (1 − 𝑆𝑆𝑃𝑃) 𝑇𝑇𝑁𝑁 5-26

Multiplying equation (5-21) by 𝑆𝑆𝑃𝑃 and equation (5-22) by 𝑆𝑆𝑁𝑁 these become:

𝑀𝑀𝑃𝑃𝑆𝑆𝑃𝑃 = 𝑇𝑇𝑃𝑃𝑆𝑆𝑃𝑃 + 𝐹𝐹𝑃𝑃𝑆𝑆𝑃𝑃 5-27

𝑀𝑀𝑁𝑁𝑆𝑆𝑁𝑁 = 𝑇𝑇𝑁𝑁𝑆𝑆𝑁𝑁 + 𝐹𝐹𝑁𝑁𝑆𝑆𝑁𝑁 5-28

Substituting equation (5-26) into equation (5-27):

𝑀𝑀𝑃𝑃𝑆𝑆𝑃𝑃 = 𝑇𝑇𝑃𝑃𝑆𝑆𝑃𝑃 + (1 − 𝑆𝑆𝑃𝑃) 𝑇𝑇𝑁𝑁 5-29

Substituting equation (5-25) into equation (5-28):

𝑀𝑀𝑁𝑁𝑆𝑆𝑁𝑁 = 𝑇𝑇𝑁𝑁𝑆𝑆𝑁𝑁 + (1 − 𝑆𝑆𝑁𝑁) 𝑇𝑇𝑃𝑃 5-30

After solving equations (5-29) and (5-30), the four outcomes can be estimated as:

𝑇𝑇𝑃𝑃 = 𝑆𝑆𝑁𝑁𝑆𝑆𝑃𝑃𝑀𝑀𝑃𝑃−(1−𝑆𝑆𝑃𝑃)𝑀𝑀𝑁𝑁𝑆𝑆𝑁𝑁
𝑆𝑆𝑁𝑁𝑆𝑆𝑃𝑃−(1−𝑆𝑆𝑃𝑃)(1−𝑆𝑆𝑁𝑁)

 5-31

𝑇𝑇𝑁𝑁 = 𝑆𝑆𝑁𝑁𝑆𝑆𝑃𝑃𝑀𝑀𝑁𝑁−(1−𝑆𝑆𝑁𝑁)𝑀𝑀𝑃𝑃𝑆𝑆𝑃𝑃
𝑆𝑆𝑁𝑁𝑆𝑆𝑃𝑃−(1−𝑆𝑆𝑃𝑃)(1−𝑆𝑆𝑁𝑁)

 5-32

𝐹𝐹𝑃𝑃 = (1−𝑆𝑆𝑃𝑃) 𝑇𝑇𝑁𝑁
𝑆𝑆𝑃𝑃

 5-33

𝐹𝐹𝑁𝑁 = (1−𝑆𝑆𝑁𝑁) 𝑇𝑇𝑃𝑃
𝑆𝑆𝑁𝑁

 5-34

The above equations from (5-31) to (5-34) are the estimated four outcomes. The final estimated

number is equal to:

𝑃𝑃𝐸𝐸 = 𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁 5-35

𝑁𝑁𝐸𝐸 = 𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁 5-36

141

where PE and 𝑁𝑁𝐸𝐸 are the estimated numbers of positives and negatives respectively. This method

could give a better estimate of the number of positives. For the two lines method, the sensitivity

and specificity are obtained from the ROC analysis of the samples. To calculate the number of

pollen blobs in a new sample of blobs, firstly, the two lines method is used to measure the

positive and negative values. After that, these measured positive and negative values are used

with the sensitivity and specificity from the original sample to calculate better estimates of the

actual numbers of positives and negatives. If the sensitivity and specificity are similar in both

samples, the estimated positive and negative numbers should be similar to the actual numbers in

the second sample.

5.1.5 Pollen measurement on images.
The whole pollen measurement method is shown in Figure 5.15. The individual bee images are

cropped from the video frames, and then they are analysed using image moments to detect the

main bodies of the bees. The main body is the elliptical shaped central body of the bee. It mainly

includes the head and abdomen. The main body ellipse is then removed from the bee image. The

background is removed from the individual bee image by using the individual bee blob from the

binary image. Next, the pollen colour (orange and white) is detected. As a result, many small

blobs are detected on the image. These blobs include pollen and non-pollen blobs. The two lines

method uses the features of “Area ratio” and “Position distance” to measure the number of pollen

and non-pollen blobs. The measured result and the expected sensitivity and specificity are used

to estimate a more accurate number of pollen blobs.

Main body
detection/

remove

Background
remove

Pollen
colour

detecion

Two lines
method

Estimation/ Final
measurement

Individual
bee images

Pollen and
non-pollen

blobs

Figure 5.15 The pollen measurement progress

The estimation step is based on the sensitivity (0.9121) and specificity (0.8815) produced by the

two lines method. This sensitivity and specificity were calculated from a sample of individual bee

images from 400 video frames.

Another 100 frames were used to test the estimation. These are from the same video as the

sample collection. There are 64 pollen images from 5 bees and 350 non-pollen images from 28

bees in these 100 frames. The main bodies of these bees are detected and removed from these

individual bee images. Thus, the other parts of the bees’ bodies are left. The pollen colour

detection then detects many blobs by using the colour of pollen sacs. As a result of this method,

1293 blobs are detected. There are actually 73 pollen blobs and 1220 non-pollen blobs. The two
lines method is used to distinguish the pollen and non-pollen blobs and to measure the number

of them. Finally, the estimation method uses the sensitivity of 0.9121 and specificity of 0.8815 to

estimate the final value of the number of pollen blobs. This result is shown in Table 5-7.

142

Table 5-7 The pollen estimation result from the test

Actual condition Measured condition Final result
Pollen
blobs

Non-pollen
blobs

Measured
positive

Measured
negative

Estimated
positive

Estimated
negative

73 1220 201 1092 60 1233

In Table 5-7, the actual number of pollen and non-pollen blobs are 73 and 1220 respectively. The

“Measured condition” is the result after applying the two lines method. The “Measured positive”

number is 201 which is much greater than the actual number. The “Measured negative” number

is 1092, which is smaller than the actual number of non-pollen blobs. The estimation produces

the final result. The “Estimated positive” is the final estimated number of pollen blobs. The number

is 60, which is closed to number of actual pollen blobs (73). The “Estimated negative” is the final

estimated result of non-pollen blobs, which is 1233.

The estimated positive and negative numbers are both similar to the “Actual condition” pollen and

non-pollen blob numbers. This is the final result of the test. This result shows the whole method

for pollen measurement on the pollen and non-pollen blobs is reliable on the same video of

different continuous frames.

However, the estimation has a limitation. Therefore, this method relays on the sensitivity and

specificity keeping similar between analysis and test. The sensitivity (0.9121) and specificity

(0.8815) are calculated from the sample of blobs in section 5.1.4.3. To apply this on the video is

a problem, because the situation of measuring pollen on the video is different from the sample of

blobs. It is to count number of pollen carrying bees rather than number of pollen and non-pollen

blobs. The sensitivity and specificity of pollen measurement on the video may be different from

the sample blobs. In addition, in different videos, the sensitivity and specificity may also differ, in

which case the estimation will be incorrect. Therefore, this estimation is not used for the next step.

With the possible exception of the “Estimation” step, the pollen measurement process from “Main

body detection” to “Two lines method” can be applied for pollen carrying bee counting on bee

monitoring video.

5.1.6 Pollen measurement on the bee monitoring video
The previous section showed the model for pollen measurement. Except for the “Estimation” step,

other processes in the model can be applied on the video to count pollen. On the video, the

purpose of the pollen counting is to estimate the number of pollen carrying bees.

143

Predictions of bees Detections of bees

Assign the
predictions and

detections

Assigned predictions
and detections

Unassigned
predictions

Unassigned
detections

Merged
situation

Hough transform for
merging detection

Y

Delete the
tracking

N

Calculate the
corrections

Create a Kalman
filter for tracking the

new bee

Assumed the
prediction same as

the detection

Calculate the
predictions for next

tracking

N

Y

Single tracking
count >2

N

Y

Take the pollen-
carrying ratio

Pollen
count + 1

Single tracking count + 1

Detect
pollen

Figure 5.16 The whole model of the pollen measurement on the video

Figure 5.16 shows the model for pollen counting on the video. The main structure is based on the

bee-tracking model. If a bee is tracked, the model records the number of frames in which the bee

individually appears on the video. This is the single tracking count. The bee tracking avoids

multiple counting of pollen sacs, because the pollen sacs are detected on the individual bee

images on each frame of the video. During tracking, the model identifies individual bee images

and detects the pollen they are carrying. As the pollen detection model cannot find the pollen in

the merged situation, these images are not processed for pollen counting. In each frame of the

video, once a bee’s individual image is detected including pollen, the model increases the count

of pollen detection on that individual bee. Because the bee is tracked on the video, the pollen
count can be incremented each time pollen is detected on that bee in a frame. When the bee

disappears from the video, the model calculates the ratio of the pollen count to the single
tracking count. This pollen carrying ratio estimates the probability of the bee having pollen.

However, if an individual bee fully appears on only one or two frames, the ratio is not meaningful.

Therefore, pollen is not counted on a bee appearing in fewer than three frames.

144

This pollen carrying ratio can be used to decide whether the bee has pollen and also helps to

measure pollen on the video. The threshold of the ratio is chosen by the ROC curve. In the first

500 frames of the sample video, 16 bees are carrying pollen sacs and 85 bees do not have pollen.

All of these bees appear individually on more than two frames. The pollen-carrying ratio from each

of these bees is used to draw a ROC curve with 20 thresholds from 0 (0%) to 1 (100%), to find

the optimum threshold percentage to identify a bee as pollen-carrying. The ROC curve is shown

in Figure 5.17.

Figure 5.17 The ROC curve for the bee pollen carrying ratio

In Figure 5.17, the point in the ROC space which is closest to the perfect classifier (0,1) has a

value of 1-SPC equal to 0.059 and a sensitivity of 0.875. The distance between the point (0.059,

0.875) and perfect classifier (0,1) is 0.1381. The optimal threshold is 0.65. Therefore, a bee that

has a pollen carrying ratio greater 0.65 is counted as carrying pollen sacs.

The results for the 16 pollen-carrying bees and 85 non-pollen bees are shown in Table 5-8.

Table 5-8 The ROC result with the pollen carrying ratio threshold

Threshold Sensitivity Specificity Pollen
bees

Non-pollen
bees TP FN FP TN

0.65 0.875 0.941 16 85 14 2 5 80

From Table 5-8, the number of positive results is 19 (14+5). This means that the model measured

19 bees carrying pollen sacs during the first 10 seconds (500 frames) of the video. The actual

number of pollen carrying bees was 16. The measured result is close to the actual number.

Following this measured result, more video frames were used to test the pollen counting model.

This will be shown in the next chapter.

145

In summary, when a bee appears on the video, the pollen-measurement model checks whether

the bee appears in more than 2 frames on the video. After that, the model checks the pollen
carrying ratio. If the ratio is greater than 0.65 (65%), the bee is identified as carrying pollen sacs.

The model measures the number of bees carrying pollen on the video with this process. However,

the sample simulation above has not considered the tracking problem. The failure of bee tracking

may affect the result of pollen measurement on the video. In section 6.1.2, the first minute (first

3000 frames) of the sample video is used to test the pollen measurement model on monitoring

video.

Furthermore, bees that are carrying pollen and going into the beehive are counted when they

cross the tracking boundary. The tracking boundary was introduced in Figure 4.1 in section 4.1.

This approach may not be perfect. Bees may not go into the hive after crossing the boundary. In

addition, bees may fly back from the boundary. However, these two situations are probably

infrequent, because the tracking boundary is close to the actual entrance of the beehive. If a bee

crosses the tracking boundary and disappears from the tracking model, the pollen-measurement

model calculates the pollen-carrying ratio of this bee. If the ratio is high enough (more than

65%), the pollen is counted as going into the beehive. The test of this is also shown in section

6.1.2.

5.2 Deep learning for pollen sacs detection and measurement
This section will introduce deep learning methods to detect and count pollen sacs. There are

several deep networks which can be used for multiple object detection on a single image, which

including region-based convolutional neural network (RCNN) (Girshick et al., 2014), fast region-

based convolutional neural network (Fast RCNN) (Girshick, 2015), Faster-RCNN (Ren et al.,

2015), Mask RCNN (He et al., 2017), you only look once (YOLO) (Redmon et al., 2016) and single

shot MultiBox detector (SSD) (Liu et al., 2016). The pollen sacs on the video are very small on

the back legs of flying bees. The old version of YOLO is not suitable for this small object detection

(Redmon et al., 2016). The new version (YOLOv3) (Redmon and Farhadi, 2018) has improved

smaller object detection, and it has been applied in Linux computer, but it has a software conflict

in windows. SSD and Mask RCNN have been applied well on CAFFE and TensorFlow, but

MATLAB application is not stable. The bee tracking model in this research is built with MATLAB,

so it is better to find a method which is easy to apply on MATLAB, so that the pollen detection

model can be combined into the bee tracking model for a final test. RCNN and FRCNN and Faster

RCNN have been built into MATLAB. Faster RCNN is the latest version among these three

methods. It is also easier to apply in MATLAB. In this research, faster region-based convolutional

neural network (Faster RCNN) is utilized for pollen detection. The software tool is MATLAB with

neural network tool box, using MATLAB version 2018a. MATLAB includes the function of

“trainFasterRCNNObjectDetector()” which can train a faster RCNN network. The computer

information for training and detection is:

146

CPU: Intel Core i7-6700, 8 cores, 3.4GHz

RAM: 32.0 GB

GPU: NVIDIA GeForce GT 730

GPU RAM: 2.0GB

Operating system: Windows 10

The computer is slow for current deep learning training. Because of this hardware limitation, the

pretrained network is used in this research. VGG-16 pretrained network is chosen as the core

network for the Faster RCNN network. This network includes 16 convolutional layers. The

experiment shows the GPU RAM of the training computer is not enough for more network layers,

such as VGG-19 (19 layers), GoogLeNet (22 layers), ResNet-50 (50 layers) and ResNet-101 (101

layers). Pollen bee images are collected from two recorded videos for transfer learning.

5.2.1 Training and validation data
The honey bee monitoring video has resolution of 1980x1280, but the pollen sacs on bee’s back

legs have a resolution from 15x15 to 40x40, which is very small on the full video frame. The

individual bee images are firstly collected, then pollen sacs are detected from the smaller bee

images. An individual bee image has a resolution from 100x100 to 200x200. Therefore, it is easier

to detect pollen sacs from the individual bee images. The bees are detected from video frame

with colour and motion, which is introduced from section 4.2. The individual bee images are

cropped from full video frames for data collection.

The Faster RCNN and VGG-16 networks are used to detect pollen sacs on the individual bee

images. Therefore, the individual bee images which include pollen sacs are collected for training.

Two videos are used for data collection. One video (training video 1) is recorded from 11 am in

the morning, the other video (training video 2) is recorded from 1pm on another day. This enables

network training for image under different light condition. (Training video 1 is the same video

which provided the first 400 frames used for collecting data for the two lines method.) In training

video 1, 700 individual bee images are collected from 2000 frames. All these images include

pollen sacs. These are the “pollen bee images”. These 700 images are randomly separated to

two groups: 600 images for training, and 100 for validation. There are also many individual bee

images which do not have pollen sacs in the 2000 frames. These are the “non-pollen bee images”.

100 non-pollen bee images are randomly collected from the 2000 frames, which are also used as

validation data. In training video 2, 500 pollen bee images are collected from 2000 frames. These

500 images are also randomly separated to two groups: 400 images for training, and 100 for

validation. Another 100 non-pollen bee images are randomly collected from the 2000 frames in

this video for validation. The overview of all data is shown in Table 5-9.

Table 5-9 The detail of data collection

Training
Videos

No.
Frames

Training data Validation data

Pollen bee images Pollen bee
images

Non-pollen
bee images

1 2000 600 100 100
2 2000 400 100 100

Total 1000 200 200

147

All the training data from the two videos are combined for Faster RCNN network training. These

1000 pollen bee images are labelled pollen sacs using the MATLAB “Image Labeller” APP. Figure

5.18 shows an example of pollen sac labelling. The pollen sac region-of-interest (RoI) is labelled

on pollen bee images with a rectangle. Then, the non-RoI part on the images is the background

in a Faster RCNN network.

Figure 5.18 An example of pollen sacs labelling in pollen bee images.

After these 1000 training images are labelled manually, these images and labels are also flipped

horizontally for data augmentation. This is because there are many images showing pollen sacs

on the left side of bees, but few images have pollen sacs on the right side of bees. More data

augmentation can also be used, such as rotation, resizing and modified brightness and contrast.

However, because of the hardware limitation, more data augmentation will require a very long

time to train the network. In this research, most bees fly face down to the beehive entrance on

the video. Therefore, only flipped horizontal images are used for data augmentation. As a result,

there are 2000 pollen bee images with labels for training.

5.2.2 The training, pollen detection and pollen and non-pollen bee
image identification

The VGG-16 pretrained network is used as the core network for Faster RCNN network training.

The Faster RCNN network is trained using the 2000 labelled pollen bee images. These training

uses 50 epochs. A MATLAB function randomly shuffled the images. The detection overlap with

ground truth is greater than 0.5. The training time of each network is about 24 hours on the

computer. An important training operation parameter is learning rate. Different learning rates give

different detection results. The learning rate choice depends on the detection results. This will be

introduced in section 5.2.3.

148

The training produces a network for pollen detection on individual bee images. The network is

applied for pollen detection on the 400 validation images (200 pollen bee images and 200 non-

pollen bee images). The network detected pollen on the validation images. Some examples of

results are shown in Figure 5.19.

In Figure 5.19, there are five images showing different pollen detection results. The network

produces bounding boxes to mark the detection of pollen sacs on each image. Each bounding

box has label of “Pollen” and a number. The number represents a probability (or confidence score)

of it actually being a pollen sac. For example, in image (a), the 0.82129 of the bigger bounding

box means the network identifies that this RoI bounding box contains a pollen sac with about

82.1% probability. A threshold of this confidence score needs to be chosen to filter out low score

detections. If the threshold is too small, many wrong detections will be shown on the image.

Figure 5.20 An example of detection with 0.005 threshold of detect score.

Figure 5.20 is an example with the threshold score of 0.005. It can be seen that the two pollen

sac bounding boxes have scores 0.4522 and 0.82129 respectively. Other bounding boxes have

very small scores. They are not pollen sacs. Therefore, the threshold should not be too low.

However, if the threshold is too high, only few pollen sacs will be detected on the images. The

results in Figure 5.19 are obtained with threshold of 0.36.

After this pollen detection, a bee image can be identified as to whether it has pollen or not. A bee

carrying pollen can show one or two pollen sacs on the image. Therefore, if an image is detected

having at least one pollen sac, this image is a positive result, which is identified as a pollen bee

image. In Figure 5.19, images (a), (b) and (d) are positive results. Image (a) is a true positive

result. Image (b) is also a true positive result, although the detection does not detect the pollen

(a) (b) (c) (d) (e)

Figure 5.19 Examples of pollen detection on images.
Notes: these five images are detected pollen with the same trained network. (a)-(c) The
pollen bee images detection results. (d) and (e) The non-pollen bee images detection results.

149

location correctly. Image (d) is a false positive result, because this image does not have any pollen

sac. Images (c) and (e) are negative results, which are identified as non-pollen bee images. The

network does not detect anything on both images, but image (c) has a pollen sac. Therefore,

image (c) is false negative result. Image (e) shows a true negative result, because this image

does not have pollen sac.

The threshold of the bounding box confidence score relates to the pollen and non-pollen bee

image identification. A lower threshold will cause more positive results, which increases true

positives among the pollen bee images, but it will also increases the false positive results among

the non-pollen bee images. A higher threshold will cause more negative results, which increases

true negative results among non-pollen bee images, but it will produce more false negative results

among the pollen bee images. A confidence threshold should be chosen which can produce a

good balance of sensitivity and specificity for the identification of pollen and non-pollen images.

A ROC curve can be applied to see the effect of choosing different thresholds. 100 thresholds

(from 0 to 1) are chosen to produce the ROC curve. The trained network is applied on the 400

validation images with the different thresholds. This produces different results for sensitivity and

specificity. The detail of ROC curve and the learning rates chosen will be shown in the next

section.

5.2.3 Training repetition and learning rate choosing
Section 5.2.2 shows the process of training, pollen detection and pollen and non-pollen images

identification. Training Faster RCNN with different learning rates produces different results. When

the learning rate is changed, the process of section 5.2.2 should be repeated. The results of the

ROC curves can help choose a good learning rate. The learning rate trialled were 0.01, 0.001,

10-4 and 10-5. Each learning rate is used for Faster RCNN network training with 2000 training

images, then a network is produced for pollen detection. Then pollen and non-pollen bee

identification is applied on the 400 validation images. With 100 different score thresholds from 0

to 1, a ROC curve can be produced to show the performance of the network. The whole learning

rate and network model choice process is shown in Figure 5.21 below:

Training images

Train Faster-
RCNN + VGG-16

Network
model

Validation images

Pollen sacs
detection

Pollen and non-pollen
images identification

ROC curve with
score thresholds

The best result

Decide
learning rate &
corresponding
network modelChange learning rate

Figure 5.21 The training process for finding a good learning rate and good network model

In Figure 5.21, a learning rate and other training operations are decided initially, the training

images are input to the Faster RCNN + VGG-16 network for training. After the training, a network

model for pollen sac detection are produced. The network model is utilized to detection pollen

sacs on the validation images. The results are used to identify pollen and non-pollen bee images.

150

Then the ROC curve is built with a range of confidence score thresholds. Different learning rates

produce different ROC curves. ROC curves can be compared using the method from section 3.8.

The best curve corresponds to the best learning rate among all the trialled learning rates. Then,

the corresponding network of the best learning rate is chosen as the pollen sac detection model.

Figure 5.22 ROC curve of three learning rate result.

In the experiment, the learning rate of 0.01 cannot detect pollen sacs on any validation images.

However, the other three learning rates have better results. The ROC curve results for these three

networks (from the three learning rates) are shown in Figure 5.22.

From Figure 5.22, the learning rate of 10-4 produces a better ROC curve than other two learning

rates. The best learning rate in this situation is 10-4 . However, there may be a better learning rate

between 0.001 and 10-5. Therefore, two more learning rates which are close to 10-4 are chosen

to check whether a better result can be found. They are 1.2*10-4 and 0.8*10-4. ROC curves from

these two learning rates are compared to the ROC curve from 10-4 . The result is shown in Figure

5.23. The figure shows that a learning rate 10-4 still give the best result. The other two learning

rates produce very similar results, but they are worse than the learning rate 10-4. As a result, the

learning rate of 10-4 is chosen. The corresponding network will be used for pollen detection model.

151

Figure 5.23 ROC curves of learning rate 10-4, and two other learning rates beside.

In addition, the ROC curve of learning rate 10-4 is smooth. The point on the curve which is closest

to the point (0, 1) is (0.175, 0.805). Table 5-10 displays this point’s information. This point leads

to a threshold of confidence score. In addition, this point also satisfies the Youden index, which

is the maximum value of senstivity+sepecificity-1 (Subtil and Rabilloud, 2015). Therefore, a

threshold for detection is chosen as 0.36.

Table 5-10 The confidence threshold information

LR Thr TP FN FP TN Sens SPC Precision Acc Shortest
distance

Youden
index

10-4 0.36 161 39 35 165 0.805 0.825 0.821 0.815 0.262 0.63
LR: Learning Rate
Thr: Threshold
Acc: Accuracy

5.2.4 Pollen measurement on video frame sequences
Section 5.2.3 introduced the training process of the pollen detection model. Then, an automatic

model can be used on each video frame to identify pollen and non-pollen bee images. This model

is shown in Figure 5.24.

152

Individual bee
image from

bee detection

Network
model

Pollen sacs
detection result

Pollen and non-pollen
images identification

Pollen carrying
ratio

Pollen
count

Single tracking
count

Deep learning pollen detection

Figure 5.24 The deep learning model for pollen detection in bee tracking model.

In Figure 5.24, an individual bee image is input to the deep learning network model for pollen sac

detection. The network model is the one chosen in section 5.2.3. It produces a pollen sac

detection result. Then the result is used to identify whether the bee image has pollen or not. The

output of the model using deep learning pollen detection is the pollen count which is combined

with the single tracking count from bee tracking model to calculate the pollen carrying ratio for a

bee appearing on the video. The deep learning pollen detection model is combined with the bee

tracking model which as shown in Figure 5.25.

Predictions of bees Detecctions of bees

Assign the
predictions and

detections

Assigned predictions
and detections

Unassigned
predictions

Unassigned
detections

Merged
situation

Hough transform for
merging detection

Y

Delete the
tracking

N

Calculate the
corrections

Create a Kalman
filter for tracking the

new bee

Assumed the
prediction same as

the detection

Calculate the
predictions for next

tracking

N

Y

Single tracking
count >2

N

Y

Take the pollen-
carrying ratio

Pollen
count + 1

Single
tracking

count + 1

Deep
learning
pollen
detect

Pollen
carrying

ratio
calculation

Figure 5.25 The whole pollen count model with deep learning pollen detection.

153

In Figure 5.25, the bee detection and tracking are similar to Figure 5.16 in section 5.1.6. The

difference is that the pollen detection uses the deep learning model. Once a bee is detected flying

individually (single bee), this bee image is input to the deep learning model to detect whether the

bee image has pollen or not. If the individual bee image is detected having pollen, the pollen
count is incremented. Otherwise, the pollen count is not changed from previous video frame. At

the end of the bee tracking sequence, the pollen carrying ratio is calculated as the pollen count
divided by a single tracking count from the bee tracking model.

For each bee flying on the video, the ratio calculated for the pollen count and the single tracking
count is the bee’s pollen carrying ratio. However, in this section, the pollen detection is using

deep learning method, therefore the threshold of pollen carrying ratio should be recalculated.

The ROC curve is used to identify the threshold of the pollen carrying ratio. Because two videos

are used for training the network, the ROC method is used to analyse these two videos. From

training video 1, another 1000 frames were collected for this analysis. In these 1000 frames, 31

bees are carrying pollen sacs and 194 bees do not have pollen. In training video 2, another 2000

continuous frames were collected. In the 2000 frames, 58 bees are carrying pollen and 210 bees

do not have pollen sacs. All of the bees from these two videos appear individually on more than

two frames. The video information is shown in Table 5-11.

Table 5-11 Two videos' new frames for pollen carrying ratio

Training videos No. Frames Pollen bees Non-pollen bees Flying frames
1 1000 31 194 >2
2 2000 58 210 >2

The pollen-carrying ratio for each of bee is used to draw a ROC curve with 100 thresholds from

0 (0%) to 1 (100%) for the two videos separately, to find a good threshold which can identify a

bee as pollen-carrying. If the ratio is greater than the threshold, the bee is identified as carrying

pollen, otherwise it is not. Figure 5.26 displays the ROC curve of training video 1. On this curve,

the point in the ROC space which is closest to the perfect classifier (0,1) has a value of 1-SPC

equal to 0.13 and a sensitivity of 0.84. The distance between the point (0.13, 0.84) and perfect

classifier (0,1) is 0.2069.

154

Figure 5.26 The ROC curve for the bees’ pollen carrying ratio from video 1.

The corresponding threshold is 0.35 which is shown on Table 5-12. However, the threshold

produces 25 false positives (FP), whereas the number of false negatives (FN) is only 5. This may

not be a good threshold, because the number of false positives (FP) affects the measurement

accuracy significantly.

Table 5-12 The ROC point closest to perfect classifier

Threshold Distance TP FN FP TN Sensitivity Specificity
0.35 0.2069 26 5 25 168 0.84 0.87

Figure 5.27 shows the ROC curve of training video 2. On this curve, the point which is closest to

the point (0, 1) is (0.17, 0.88). The shorted distance is 0.2097. The corresponding threshold is

0.29.

0.13, 0.84

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
ns

iti
vi

ty

1- Specificity

ROC for Pollen Carrying Ratio in Video 1

155

Figure 5.27 The ROC curve for the bees’ pollen carrying ratio from video 2.

The point in the ROC space which is closest to the point (0, 1) is shown in Table 5-13. From this

table, the threshold of 0.29 produces 7 false negatives (FN) and 36 false positives (FP). This

value is also not suitable as a threshold for identifying whether a bee is carrying pollen or not,

because the number of false positives (FP) is too high to measure the number of pollen bees

accurately.

Table 5-13 The ROC point on ROC curve which is closest to point (0, 1)

Threshold Distance TP FN FP TN Sensitivity Specificity
0.29 0.2097 51 7 36 174 0.88 0.83

Considering the two videos’ pollen carrying ratio thresholds analysis, the points which are closest

to the perfect classifier (0,1) are not suitable thresholds for the pollen carrying ratio. However,

the aim of this research is to measure the number of pollen bees on the video. Therefore, a good

threshold is one that produces the same number of false negatives and false positives. Then, the

156

resulting measurement is similar to the actual number of pollen bees. For the two videos above,

the thresholds that can satisfy this, are show in Table 5-14:

Table 5-14 The thresholds in two videos having similar FN and FP.

Training videos No. Thresholds TP FN FP TN Sensitivity Specificity
1 0.54 19 12 12 181 0.61 0.94
2 0.39 42 16 18 192 0.72 0.91

In Table 5-14, the two videos have two different thresholds which produce the same number of

false negatives (FN) and false positives (FP). These thresholds have sensitivities greater than

60% and specificities greater than 90%. The threshold of pollen carrying ratio can be chosen

as the average value of these two thresholds, which is 0.46. In section 6.2, more videos are used

to test the pollen measurement model.

157

Chapter 6

Chapter 6: Results and discussion
__

The pollen detection and measurement model was detailed in the previous chapter. The research

includes two steps: bee detection and tracking, and pollen detection and measurement. These

are both evaluated in this chapter. This chapter begins with the results of the bee tracking using

the different methods outlined in previous chapters. After that, the model of measuring number of

pollen carrying bees are tested on 5 bee monitoring videos. This will test two lines method and

deep learning. The results are used to discuss the comparing of these two methods.

6.1 Results of bee tracking
6.1.1 The preparation
Bee tracking has been evaluated by viewing recorded video, frame by frame. Choosing the video

to analyse is the first task. There are some conditions that may affect the result.

• Lack of Colour Information. If there is not enough sunlight to show the bee colour clearly,

the system cannot detect them. Bee tracking will not operate until the bee colour

reappears. When detection restarts, the system will treat these bees as new objects. If

this occurs during a merged situation, the result will be unpredictable.

• Background problem. Although the single colour (white) board simplifies the background,

the board can be made dirty by bees. Sometimes, bees drop their pollen sacs on the

board. In addition, bees can stand or crawl on the board. Normally, these bees are

detected as foreground. The flying bees also merge with them. This may reduce the

tracking accuracy.

• Bee Shadows. The shadows do not have an orange colour, but they may be detected as

moving objects. If the shadows pass standing bees or pollen sacs on the board, the

system detects them as bees. Therefore, detection may be affected by shadows. If there

are many shadows on the image, tracking may not work well.

• Bee Activity. If bees are quiet, there are not so many merged situations. Then tracking is

more accurate. If bees are active, many bees are flying in front of the entrance. Then the

video records more merging, so there will be more merged tracking.

In the conditions above, colour information is the most important factor. If the video is unclear, the

bee detection can fail, and then the tracking will not be accurate. The chosen videos are colourful

158

and vivid, and then enhanced by a Protune operation which was mentioned in section 4.1. The

background and shadow issues depend on whether bees are active or not. If many bees are flying

and crawling at the entrance, there are many shadows on the background and the background

becomes complicated.

Considering these conditions, two videos were chosen to demonstrate the results. Both of them

were taken in a sunny environment, so that few detections were lost. The first video is an “Active”

video (Figure 6.1 (a)). There were about eight bees in a frame view. This video was taken from

the middle of the day, when the sunlight was clear and bees were flying actively. In addition, this

video captured many merged situations, so that it can be used to estimate results for the merged

situation tracking. The second video also shows bees flying busily, but there are many shadows

on the board (Figure 6.1 (b)). Therefore, this is called a “Shadow” video. This video also captures

many merged situations. In addition, it can test the method when there are many shadows in the

background. Both videos have a white background, because these results were obtained very

early in this research when the green background had not been created. The green background

did not significantly improve the tracking results, so these white background videos are

satisfactory for this evaluation.

In this research, there are two main tracking situations that need to be evaluated: single bee

tracking and merged bee tracking. Single bee tracking is the tracking model which tracks

individual flying bees. Merged bee tracking occurs when the model tracks bees that appear to

cross over each other. This tracking is complex, because, as shown in section 4.3.1, the bees

cannot be detected individually.

Three tracking models are used to implement bee tracking: the prediction model, the Kalman filter

model and the model using the Kalman filter + Hough transform (K+H). They are all successful in

single bee tracking, but experience difficulty in merged bee tracking. The prediction model uses

the assumed detection (outlined in section 4.3.1) to solve the merged bee problem. The Kalman

filter method performs merged tracking using the merged blob as the position measurement for

both merged bees. However, this method produces a large error between the actual position and

the measurement. The Kalman filter + Hough transform improves the merged bee tracking

compared with using only the Kalman filter. The Hough transform estimates merged bee positions

(a) (b)

Figure 6.1 Example frames from three videos.
Note: (a) The “Active” video. (b) The “Shadow” video.

159

for the Kalman filter, which reduces the error. In considering the tracking methods, several factors

may affect the result:

• Boundary Mistakes. Most bees come from beyond the boundary. Some of them are only

partly visible on their first appearance. In single bee tracking, tracking starts with this

partly visible body. Merged bees on the boundary cannot be detected as a merged

situation, but are treated as single bee tracking by the tracking model. In addition, bees

may stay merged as they disappear beyond the frame boundary, so they are not seen

separately. Then it is hard to know whether the merged bee tracking is correct or not.

Furthermore, when two merged bees are close to the boundary, if one of the bees goes

beyond the boundary of the video, the tracking cannot detect this bee separating from

the merged situation. Thus, this bee is still tracked as merged, but it has actually

disappeared. In summary, the video boundary causes incorrect tracking.

• Merged tracking limitation. Apart from the boundary problem, tracking models can also

make other mistakes. In particular, merged bee tracking is not perfect. In the prediction

model, bee detection during the merged situation is the assumed detection. This

detection is based on the velocity just before merging occurs. During the merging, if the

bee velocities change by a small amount, tracking may still be correct when the bees

separate. However, if bees significantly change direction and/or speed, the model may

lose track of some bees. In the Kalman filter model, the measurements of bee positions

are the merged blob centre. This may result in a large error between the measurements

and the predictions, and may cause tracking failure. In the K+H, model, most of the

measurements of bee positions are close to the actual positions. However, this can be

unsuccessful when a smaller bee is obscured by a larger bee. Although the Hough

transform tracks some changes of direction, it cannot track the bees which change

direction too quickly. Moreover, if two bees of the same size merge in the same direction,

the Hough transform may not calculate the bee positions correctly. Sometimes the

merging is complicated. Merging can involve more than two bees. Sometimes as many

as five or six bees merge together. All three models may fail to track bees in this situation.

• Problem of shadows. The videos are taken under sunlight, so the shadows of bees are

also moving with bees. Some shadows are beside bee bodies, when these bees crawl or

stand on the background board. When a shadow is detected in the same blob as the

corresponding bee, the shadow does not affect the bee tracking. However, there are

many individual shadows on the video. The bee detection process removes most of them,

but some shadows can be detected as bees in some situations, such as when the shadow

is close to an orange colour or close to a bee body. These shadows can be mistakenly

detected as bees. In addition, the shadows may also merge with bees, so that the tracking

model will track an individual bee as a merged situation. Therefore, these shadows can

affect the bee tracking. The shadows creating problems are recorded in the evaluation

results to determine whether they significantly affect the bee tracking.

160

The evaluation results record the above error factors for further investigation. This can show which

factor is the main cause of errors, so that it can indicate possible future improvements in bee

tracking.

6.1.2 The results and evaluation
Two results are displayed: single bee tracking and merged bee tracking. The single bee tracking

includes the evaluation of the prediction model and K+H model. The Kalman filter model for single

bee tracking is similar to the K+H model, so the Kalman filter model is not displayed. In the merged

bee tracking, all three models are evaluated, because they use different methods to track merged

bees.

6.1.2.1 Single bee tracking
The first evaluation is for single bee tracking. The single bee tracking is evaluated frame by frame.

Each bee is given an index on the video. If a bee is assigned the same index as in the previous

frame, the tracking is correct. If the index is different from the previous frame on the same bee,

the tracking is incorrect. Two models are evaluated in the single bee tracking: the prediction model

and the K+H (Kalman filter + Hough transform) model. The Kalman filter model and K+H model

use the same approach to track single flying bees. This section does not show the result of

Kalman filter model.

The evaluation of single bee tracking using the prediction model is displayed in Table 6-1. Both

the “Active” and “Shadow” videos were evaluated over about 300 frames to capture single tracking

situations. These numbers do not include the tracking of standing and crawling bees, because

this research focuses on tracking flying bees. In the “Active” video, single bee tracking produced

1741 correct tracking results, and 3 incorrect tracking results. The “Correct rate” is 99.8%. The

“Shadow” video produced 1622 correct tracking results and 6 incorrect tracking results. The

“Correct rate” in this video is 99.6%. Both videos have high correct rates. The single bee tracking

is close to perfect.

Table 6-1 The single bee tracking results with prediction model

Videos Frames Correct Incorrect
Incorrect reasons Correct

rate (%) Boundary Tracking
limitation Shadow

Active 300 1741 3 2 0 1 99.83
Shadow 300 1622 6 1 2 3 99.63

The reasons for incorrect tracking are also reported in Table 6-1. The “Active” video has 2

“Boundary” mistakes and the “Shadow” video has one such mistake. The boundary mistake in

the single bee tracking happens on a bee disappearing on the boundary of the monitoring video.

At the same time, another bee appears at the same place, the tracking uses the same index for

the new coming bee. The mistakes because of “Tracking limitation” are also a small problem.

Some bees fly too fast to be tracked. The model always gives these bees new indexes among

frames. This mistake only happens for two bees in the “Shadow” video. The “Active” video does

not have this problem. The “Shadow” mistake is that the shadow is tracked as a bee by the model.

The “Active” video has one “Shadow” mistake; the “Shadow” video has three of these mistakes.

161

The “Shadow” video has more shadow mistakes than the “Active” video. However, the shadow

does not affect single tracking significantly in the prediction model.

Table 6-2 reports the single bee tracking evaluation with the K+H (Kalman filter + Hough

transform) model. To make sure this can be compared to the prediction model, both videos are

also evaluated over 300 frames. The definition of “Correct” and “Incorrect” is similar to Table 6-1.

Table 6-2 shows that the K+H model achieves a 99.83% “Correct rate” in the “Active” video and

99.63% in “Shadow” video. The “Correct rate” is similar to Table 6-1. The K+H model has a correct

rate the as same as prediction model.

Table 6-2 The single bees tracking result with K+H model

Videos Frames Correct Incorrect
Incorrect reasons Correct

rate (%) Boundary Tracking
limitation Shadow

Active 300 1744 3 2 0 1 99.83
Shadow 300 1627 6 1 2 3 99.63

In Table 6-2, the reasons of incorrect tracking are also shown. The boundary problem causes the

same number of mistakes as in the prediction model in Table 6-1. There are two “Boundary”

mistakes in the “Active” video and one mistake in the “Shadow” video. The number of “Tracking

limitation” problems is similar to the prediction model in this single bee tracking evaluation. The

“Active” video does not have this problem, but the “Shadow” video has two tracking limitation

problems. The “Shadow” problem also has a similar number to Table 6-1. One “Shadow” problem

occurs in the “Active” video, and the “Shadow” problem occur three times in the “Shadow” video.

Although the “Shadow” video includes more “Shadow” problems than the “Active” video, the total

number of this problem is very small. Therefore, the “Shadow” is not a significant problem in the

K+H model in single bee tracking.

The single bee tracking has been evaluated above. The tracking is close to perfect with a correct

rate of more than 99%. The prediction model and K+H model have similar results. All of the three

reasons for errors (boundary, tracking limitation and shadows) are similar between the two models

and they do not affect the result significantly. Especially, both the prediction and Kalman filter

models deal with the shadow problem very well. The Kalman filter without Hough transform has

similar results to the K+H model, so the results are not shown in this section.

6.1.2.2 The merged bee tracking
Because the bee monitoring video is 2D, bees can merge on the view of the video. Usually,

merging consists of two bees merged together on the video. Sometimes, more than two bees

merge, and merges of about six bees have been observed. It is difficult to evaluate the merged

bee tracking frame by frame, because the individual bees cannot be detected during the merged

situation. However, a bee can merge with other bees and then separate at the end of the merging.

Once a bee separates from the merging, the evaluation is to check whether each separate bee

has been tracked correctly from before the merging until after the merging ends. For example, if

three bees merge and then separate, and one of them is correctly identified with itself before

merging, but the other two are incorrectly identified, then one result is “Correct” and other two

results are “Incorrect”. Incorrect tracking includes cases where a single bee is tracked as a

162

merged bee. In addition, if merged bees (bees merged to a single blob) are tracked as one single

bee, these bees are counted as incorrect tracking. Two videos of “Active” video and “Shadow”

video are used to perform the evaluation. The merged situation is less common than the single

bee situation on the video, so the first 1000 frames from both videos are used for the evaluation.

The result of merged bee tracking with the prediction model is shown in Table 6-3. In the “Active”

video, 173 merged bees are tracked correctly, 82 are incorrect. The “Correct rate” is 67.8%. In

the “Shadow” video, 167 merged bees are tracked correctly and 125 merged bees are tracked

incorrectly. The “Shadow” video has a 57.2% “Correct rate”.

Table 6-3 The evaluation of merged bee tracking with prediction model

Videos Frames Correct Incorrect
Incorrect reasons Correct

rate (%) Boundary Tracking
limitation Shadow

Active 1000 173 82 55 23 4 67.8
Shadow 1000 167 125 103 18 4 57.2

Table 6-3 shows the factors causing mistakes. From the above table, the video boundary is the

main factor. The “Active” video has 55 mistakes due to the “Boundary” problem. The “Shadow”

video results in 103 incorrect trackings on the “Boundary”. “Tracking limitation” is the second main

problem in producing mistakes in the videos. The “Active” video has 23 mistakes because of

“Tracking limitation” and the “Shadow” video has 18 mistakes due to this problem. The tracking

limitation of the prediction model is caused by bees changing velocity during their merging. This

method for merged bee tracking (in section 4.3.1) only uses the direction and speed before their

merging. Bees that change velocity quickly may be lost in the tracking. The “Shadows” in the

video recording create another problem in the tracking. There are 4 “Shadow” mistakes in the

“Active” video and a further 4 in the “Shadow” video. An interesting result is that the two videos

have the same number of “Shadow” problems.

Merged tracking can also be performed by the Kalman filter model. Table 6-4 displays the results

of merged tracking using only the Kalman filter. The same as the evaluation of the prediction

model, over the 1000 frames, merged tracking using Kalman filter has “Correct rates” of 54.6%

and 55.8% in the “Active” and “Shadow” videos respectively. Compared with the prediction

method, the Kalman filter has advantages and disadvantages. The “Active” video has a lower

“Correct rate” with Kalman filter model compared with the prediction model, but the “Correct rate”

in “Shadow” video is similar to the prediction model.

Table 6-4 The merged tracking evaluation with only Kalman filter

Videos Frames Correct Incorrect
Incorrect reasons Correct

rate (%) Boundary Tracking
limitation Shadow

Active 1000 136 113 46 63 4 54.6
Shadow 1000 154 122 87 31 4 55.8

Table 6-4 displays the reasons for the incorrect tracking. In the “Active video”, “Tracking limitation”

is the main problem. There are about 63 mistakes under the “Tracking limitation” problem. The

“Boundary” problem generates 46 mistakes which is the second main reason for the “Incorrect”

tracking. In the “Shadow video”, the biggest problem is “Boundary”, which produces 87 mistakes.

163

The second biggest problem is the “Tracking limitation”, with 31 mistakes come due to this

problem. An interesting result is that the Kalman filter reduces the number of “Boundary” problems

when compared with the prediction model. However, the Kalman filter has more tracking limitation

problems than the prediction model. The tracking method of the Kalman filter also uses the

velocity before merging, but the difference is that the measurement is the centre coordinate of the

merged blob (section 4.3.2.1). This causes a big error between the measurement and the actual

bee position during bee merging. In addition, if more than two bees merge together (complicated

merging), these methods can only match one measurement, but the bees are at different positions

in the merged blob. Therefore, the Kalman filter has more “Tracking limitation” problems. The

“Shadow” problem is also a small problem in the Kalman filter model. The number of these

mistakes is the same as in the prediction model in Table 6-3. Both “Active” and “Shadow” videos

have 4 “Incorrect” tracking errors because of the “Shadow” problem.

The results for the K+H model on merged bee tracking are shown below in Table 6-5. The “Active”

video has a 67.9% “Correct rate”. In the “Shadow video”, the “Correct rate” is 60.7%. It can be

seen that the Hough transform improves the tracking of the Kalman filter model, although it is not

perfect. The “Correct rate” in both two videos is increased from Table 6-4. Moreover, compared

to the Table 6-3, the “Active” video has a similar “Correct rate”, and the “Shadow” video has a

higher “Correct rate”, than the prediction model.

Table 6-5 The merged bee tracking evaluation with K+H model

Videos Frames Correct Incorrect
Incorrect reasons Correct

rate (%) Boundary Tracking
limitation Shadow

Active 1000 169 80 49 27 4 67.9
Shadow 1000 167 108 80 24 4 60.7

Table 6-5 displays the incorrect tracking reasons. The “Boundary” factor is the major problem in

both videos. This problem produces 49 incorrect tracking in the “Active” video and 80 incorrect

tracking in the “Shadow” video. This problem is similar to the Kalman filter model and the

prediction model. Comparing the K+H model to the prediction model, the “Active” video has a

similar number of “Boundary” mistakes, and the “Boundary” problem reduces from 103 to 80 in

the “Shadow” video. The “Tracking limitation” problem produces 27 mistakes in the “Active” video

and 24 in the “Shadow” video. The method of merged bee tracking in the K+H model is different

from other two models above. The Hough transform uses the bees’ shapes before their merging

to track the bees in the merged blob. This method decreases the “Tracking limitation” problem.

However, the problem of “Tracking limitation” is similar to the prediction model. The “Shadow”

problem is similar to the other two models, as both videos also have 4 cases of incorrect tracking

because of “Shadow”. The “Shadow” is not a big problem in the K+H model.

Considering Table 6-3, Table 6-4 and Table 6-5, the worst model is the Kalman filter which has a

correct rate of about 55%. The prediction model is better for the “Active” video, which has a correct

rate of about 67%. The K+H model has the correct rate in the “Active” video is similar to the

prediction model. The “Shadow” video with the K+H model has a correct rate around 60%.

164

For the merged bee tracking results above, the “Correct rate” is about 54%-68%. The main cause

of errors is the boundary problem. Although the K+H model reduces the boundary errors in the

“Shadow” video, none of the three models solve this problem completely. In addition, the “Active”

video does not show the same phenomenon. However, the boundary problem only happens on

the boundary of the video. When bees fly inside the frame of the video, the tracking still works.

For example, if two merged bees appear on the boundary, when they separate in the video, they

can still be tracked. The boundary can interfere with the tracking, but the tracking inside the video

is reliable. The tracking models have been evaluated while ignoring the boundary problems. Table

6-6 shows the results without including boundary errors.

Table 6-6 The merged bee tracking result without considering boundary errors

Model Video Frames Correct Incorrect Rate

Prediction Active 1000 169 27 86.2%
Shadow 1000 154 22 87.5%

Kalman filter Active 1000 128 67 65.6%
Shadow 1000 143 35 80.3%

Kalman filter and
Hough transform

Active 1000 164 31 84.1%
Shadow 1000 149 28 84.1%

In Table 6-6, most of the correct rates are more than 80%, if the evaluation does not include the

boundary mistakes. Only the “Active” video with the Kalman filter model has a lower 65.6% correct

rate. This table shows the prediction model performs best. The “Active” video has an 86.2%

correct rate and the “Shadow” video has 87.5%. The K+H model has a slightly smaller correct

rate. The “Active” video is 84.1% and the “Shadow” video is 84.1%. The worst model is Kalman

filter. The “Active” video has a very low correct rate, but the “Shadow” video has a correct rate of

80.3%.

6.1.3 Summary of tracking results
The bee tracking model includes single bee tracking and merged bee tracking. In single bee

tracking, the prediction and the K+H models produce similar results. This can be seen from Table

6-1 and Table 6-2. Both prediction and K+H models have a more than 99% correct rate. The

single tracking is near perfect.

The merged bee tracking includes three models: prediction model, Kalman filter and K+H (Kalman

filter + Hough transform). The full evaluation includes boundary, shadow and tracking limitation

problems. The three tracking methods produce similar results. The tracking correct rate is about

55% to 68%. These are shown from Table 6-3 to Table 6-5. The boundary problem causes the

highest number of tracking errors. However, this error only occurs on the boundary of videos. The

three tracking methods are not designed to solve the boundary problem. The methods are only

designed to operate inside the video. If the boundary problem is not included in the evaluation,

the three methods all have similar results. The tracking rate is from 80% to 87% most of the time,

although one video had only 66% accuracy.

The prediction model uses the assumed detection to solve the merging problem. It calculates the

position of a merged bee using the predicted position and velocity from the video frame before

merging. However, the disadvantage of the prediction model is the bee’s flying direction. The

165

model cannot respond when a bee changes direction during merging. The Kalman filter uses the

merged blob position (blob centre) as the measurement to calculate the final tracking result.

However, the error between the measurement and the prediction is very large. In addition, if bees

merge for a long time, the prediction and measurement converge to the same position. Thus, the

Kalman filter tracking can be unsuccessful. The Kalman filter + Hough transform (K+H) model

finds the merged bees using the individual bee's shapes from the frame before merging. The

merged bee tracking with Kalman filter and Hough transform reduce the error between prediction

and measurement. In addition, the Hough transform can respond the bee’s flying direction during

merging. However, the tracking can still fail, because the Hough transform can sometimes be

inaccurate in finding the position of the bees, and this affects the Kalman filter calculation of the

flying direction of the bees. Consequently, the merged bee tracking can be a failure due to such

Hough transform inaccuracies.

6.1.4 Mistakes analysis
According to section 6.1.2, the bee tracking model has a 99% correct rate in single bee tracking.

The merged bee tracking has a maximum 87.5% correct rate, when the boundary problem is

ignored. However, there are still mistakes in the bee tracking model, showing that the tracking

model has limitations. This section will describe the mistakes and limitations of the bee tracking

model on the video. If these limitations and problems can be solved, the bee tracking result will

be improved.

6.1.4.1 Merged bee tracking limitation
The merged tracking limitations were explained briefly in section 6.1.1. This section will describe

more detail of the advantages and disadvantages of the three tracking models (prediction, Kalman

filter and K+H models).

Figure 6.2 shows the tracking results of the three models in the same merged situation. The red,

cyan and yellow bounding boxes display prediction, correction and single bee detection

respectively. The blue bounding box indicates the merged blob detection. The positions (including

prediction, correction and single and merged bee detections) are the centres of the bounding

boxes. The prediction in each image is for the current frame. It is calculated from the two previous

frames (see section 4.3). Images (a) to (d) show the merged bee tracking of the prediction model.

The green bounding box shows the assumed detection of the prediction model. The smaller bee’s

tracking in image (c) is not precise, but the final result of the tracking in image (d) is correct. The

Kalman filter model result is displayed in images (e) to (h). The Kalman filter uses the centre of

the merged blob detection (blue bounding box) as the measurement to calculate the correction

with the prediction for the tracking. The correct position is also not precise in image (g) which is

the same merged situation as in image (c). However, the result is correct, because the prediction

still has the correct direction for the bee’s flight path. The images (i) – (l) of Figure 6.2 show the

K+H (Kalman filter + Hough transform) model for merged bee tracking. The measurement is

different from the Kalman filter model. This comes from the Hough transform. The result of the

Hough transform detection is shown by the bee’s shape (shown as a green curve on the images)

166

which is from the shape before the merging. The position for the Hough transform detection is the

centre of the shape. Most of the time, the Hough transform is accurate, as shown in images (j)

and (k). The tracking result is also correct as image (l) shows.

The problem with the prediction model is that it cannot follow the bees' changing velocities during

merging, because the prediction of position and velocity comes from the frame before the

merging. Figure 6.3 shows an example of incorrect tracking using the prediction model. In this

merged situation, the Kalman filter model and K+H model are both correct, as indicated in Figure

6.4 and Figure 6.5 respectively. In Figure 6.3, these two bees fly and touch each other. Then,

they both stop and fly back away from each other. However, the prediction model follows the

flying direction before their merging. In image (c), the indexes of the two bees are swapped. The

assumed detection does not follow the change in flying direction. Therefore, the tracking is

incorrect. After merging, the two bees finish with different indexes in image (f) compared with

image (a) before merging.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.2 The results of correct tracking of three models.
Note: Consecutive frames from (a) to (d) show the result of prediction model. Consecutive
frames from (e) to (f) show the result of Kalman filter model. Consecutive frames from (i) to

(l) show the result of K+H model.

167

Figure 6.4 shows the Kalman filter model tracking the bees correctly in this situation. In image (c),

the prediction and correction of the Kalman filter show the same problem as the prediction model,

but the prediction and correction are then made good by the measurements in images (d) and

(e), because the Kalman filter uses the centre of the merged blob as the measurement. However,

(a) (b) (c)

(d) (e) (f)

Figure 6.3 The incorrect tracking of prediction model.
Note: These are consecutive frames.

(a) (b) (c)

(d) (e) (f)

Figure 6.4 The Kalman filter model tracking in the same situation as Figure 6.3.
Note: These are consecutive frames.

168

the two predictions and corrections for the tracking of the two bees are close to the centre of the

merged blob (the centre of the blue bounding box). Although the tracking is correct in image (f),

the two predictions are very close to each other. Therefore, this tracking is not perfect.

In Figure 6.5, the K+H model tracks these two bees correctly. Although the two bees change their

flying directions, their shapes’ orientations are not changed significantly. The Hough transform

detection uses the shapes and the orientations to produce perfect measurements, which are close

to the actual positions of the bees in images (b) - (e). These measurements are used by the

Kalman filter for tracking. In image (f), the two predictions of the bees are close to their actual

positions, which is better than the Kalman filter model.

Figure 6.6, Figure 6.7 and Figure 6.8 show a merged situation in which the Kalman filter model is

a failure, but the other two models are correct. In Figure 6.6, the prediction model calculation of

the bees' flying directions is approximately correct. The assumed detection position is far from the

actual smaller bee’s position in image (e), but the prediction for image (f) is inside the smaller bee

image. Therefore, the overall tracking is correct.

(a) (b) (c)

(d) (e) (f)

Figure 6.5 The K+H model tracking in the same situation as Figure 6.3.
Note: These are consecutive frames.

169

The result of the Kalman filter model is shown in Figure 6.7. It can be seen that in image (d) and

(e), the Kalman prediction and correction are close to the centre of the merged blob, because the

prediction covariance matrix values get larger during the merging, so the Kalman gain adjusts the

correction to be close to the measurement. The two bee trackings have only one measurement,

(a) (b) (c)

(d) (e) (f)

Figure 6.6 The correct tracking of prediction model.
Note: These are consecutive frames.

(a) (b) (c)

(d) (e) (f)

Figure 6.7 The incorrect tracking of the Kalman filter model.
Note: These are consecutive frames. The situation is similar to Figure 6.6.

170

which is the centre of the merged blob. The predictions of the two bees relate to the corrections,

and therefore the predicted positions of the bees are close to each other. This causes the tracking

to be inaccurate. When the two bees separate, there is an incorrect assignment of the predictions

to the detections of the bees (section 4.3.4). In image (f), the two bees are assigned different

indexes from image (a). This is the main problem of the Kalman filter which causes the tracking

result to be worse than the prediction model in section 6.1.2.2.

In Figure 6.8, the K+H model tracks these two bees correctly, even though the Hough transform

detection loses the smaller bee in images (c) and (d). The mistake arises because as the smaller

bee is hidden under the big bee, the shape information is not enough to use the Hough transform

successfully. However, in the later image (e), the Hough transform detection finds the smaller bee

perfectly. This leads to the correct tracking in the final image (f), when the two bees separate from

the merging.

Figure 6.9, Figure 6.10 and Figure 6.11 indicate another merged situation. In this case, the

prediction model and Kalman filter are correct, but the K+H model fails. Figure 6.9 shows the

prediction model performance in this situation. It starts to lose the smaller bee from image (d),

because the bee changes its flying direction during the merging. The tracking of the bee is correct,

even though the prediction is far away from the detection in image (f), because the bigger bee’s

predicted position is close to the actual position.

(a) (b) (c)

(d) (e) (f)

Figure 6.8 The correct traking of K+H model.
Note: There are consecutive frames. The situation is similar to Figure 6.6.

171

In Figure 6.10, the Kalman filter tracks these two bees correctly. However, it can be seen that,

the two bees trackings are close to each other and near the centre of the merged blob in image

(d) and (e). This problem is similar to the situation of Figure 6.7. In image (f), the two predicted

positions of the bees are close to each other and far from the actual positions. In this case the

tracking is correct, but this is not always true.

(a) (b) (c)

(d) (e) (f)

Figure 6.9 The correct tracking of the prediction model.
Note: These are consecutive frames.

(a) (b) (c)

(d) (e) (f)

Figure 6.10 The correct tracking of Kalman filter model.
Note: there are consecutive frames from (a) to (f). The situation is similar to Figure 6.9.

172

In Figure 6.11, the K+H model wrongly tracks the bees, because the Hough transform detection

is incorrect. In image (e), the Hough transform makes an error in the small bee detection. Although

the Hough transform has a tolerance for the change in body orientation, the small bee changes

its orientation more than the tolerance. Once the Hough transform detection is wrong, the

correction of the Kalman filter is also wrong, and the tracking prediction for the next frame in

image (f) is also different from the actual direction of the bee flight. In this case, the tracking fails.

The indexes of the two bees in image (f) are different from image (a). This is the limitation of the

K+H model.

In Figure 6.3 to Figure 6.11, the three tracking models are compared. The disadvantages of each

model are also explained. It can be seen that the K+H performs perfect tracking in the merged

situation of Figure 6.5 and Figure 6.8. However, if the Hough transform detection is incorrect

during the merging (image (e) in Figure 6.11), then tracking is unsuccessful. The prediction model

can follow the flying direction and speed of the bees for the merged bee tracking, but it is not

suitable for changes of flying directions. The Kalman filter always shifts the correction and

prediction towards the centre of the merged blob, so it is not suitable for long merging times.

The next three figures (Figure 6.12, Figure 6.13 and Figure 6.14) show an example of a complex

merged situation. There are 5 bees merging in 7 consecutive frames. In Figure 6.12 image (a),

there are two bees merging, with a large bee coming towards them. Using north, south, east and

west to describe the positions, from image (a) to (b), the large bee from the west and another bee

from the north merge with the two bees in the south, appearing as 4 bees in the merged blob. In

image(c), the south-west bee separates from the merged blob. Another bee from the north-east

(in image (c)) merges with the large bee and a smaller bee in image (d). The north bee (in image

(d) and (c)) moves to the north-west and separates from the merging. The north-east bee stays

(a) (b) (c)

(d) (e) (f)

Figure 6.11 The incorrect tracking of the K+H model.
Note: These are consecutive frames. The situation is similar to Figure 6.9.

173

merged in image (e) and separates in image (f). On the east of image (f) and (g), it can be seen

that the large and the smaller bee are still merged. These two bees separate in the frame after

image (g), which is not shown here.

This complicated merging sometimes happens during busy times on the bee monitoring videos.

This is used to examine the performance of the three tracking models in a complicated merged

situation.

Figure 6.12 shows the prediction model tracking process. In image (c), the south-west bee is

tracked well. The index is the same as at the beginning in image (a). In image (d), the north bee

is tracked correctly. It is recognised the same as in image (a). The north-east bee in image (a) is

tracked well, because it is indexed the same in image (f) when it separates from merging.

However, the larger bee in the west and a smaller bee (bee 67) in image (a) are not tracked

correctly. In images (f) and (g), they are mistakenly tracked as a single bee flying. It can be seen

that the larger bee is lost in image (c). In image (c), the smaller bee in the west is flying individually,

but it is tracked as a merged bee. This is because the predicted position of the larger bee is much

further forward than its actual position. The prediction model in this complex merged situation

tracks 3 bees correctly and 2 bees incorrectly.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.12 More complex merged tracking with the prediction model.
Note: There are consecutive frames.

174

In Figure 6.13, the Kalman filter is used to analyse the same complex merged situation. The

south-west bee, in image (c), is tracked well. The index is the same as at the beginning in image

(a). In image (d), the north bee separates from the merging, but is mistakenly tracked as a merged

bee. In the same image, the biggest bee is lost. This bee is still merged with other bees, but the

model incorrectly identifies it as merged with the north bee. In image (e), the north-east bee, the

biggest bee and a smaller bee (bee 67 in image (a)) are tracked as a single flying bee by the

Kalman filter model. However, they are actually merged together. These three bees are tracked

incorrectly by the model. The Kalman filter model in this complex merged situation tracks only

one bee correctly. The other four bees are tracked incorrectly.

Figure 6.14 shows bees in the same complicated merged situation tracked by the K+H model.

The north bee is detected incorrectly by the Hough transform from image (b), but the other three

bees are still detected well. Following image (b), the north bee is lost by the tracking model in

image (c). In the same image, the south-west bee is separated from the merged blob, but is

mistakenly tracked as merged. These are two incorrect merged bee trackings. Another bee from

the north-east merges with the biggest bee and a smaller bee in image (d). The north bee (in

images (d) and (c)) moves to the north-west and separates from the merging. However, this bee

is given the index which belongs to the north-east bee in image (c). Later, the north-east bee

stays merged in image (e) and separates in the image (f). Because it is not detected as merged

in image (d), it is given the index of the smaller bee which is hidden behind the biggest bee in

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.13 The more complex merged tracking with Kalman filter.
Note: These are consecutive frames. The situation is similar to Figure 6.12.

175

image (f). The tracking of the north-east bee (which is now in the centre in image (f)) is an incorrect

merged bee tracking, because the bee is not recognised before it merges. On the east of images

(f) and (g), it can be seen that the biggest and the smaller bee are still merged, but they are

tracked as a single bee tracking. These are two incorrect merged bee trackings. It can be seen

that all 5 bees are tracked incorrectly in the complex merged situation.

In the example of the complex merged situation in the above three figures, there are 5 bees

participating in the merging. The prediction model has the best performance, producing 3 correct

trackings and 2 incorrect trackings. The Kalman filter tracks only 1 bee correctly, with 4 bees

tracked incorrectly. The K+H model has the worst result with none of the bees being tracked

correctly. This indicates the prediction model is more suitable for the complex merged situation.

However, this example does not represent all complex merged situations. In addition, this type of

complex merging is not common on the video. Therefore, this does not mean that the prediction

model is the best tracking algorithm overall. The whole video shows all three models cannot

always track bees accurately. The final evaluations of the three models have been shown in

section 6.1.2. Moreover, all of the figures in this section indicate that the worst model is the

Kalman filter, whereas the prediction model and K+H model have different advantages and

disadvantages.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.14 The more complex merged tracking with K+H model.
Note: there are consecutive frames from (a) to (g). The situation is similar to Figure 6.12.

176

Considering the improvement of these three models, the prediction model cannot be improved

any more. The Kalman filter model may be improved by calculating more optimal covariance

values, which might improve the Kalman filter performance.

The K+H model can be improved by two approaches. One method is to improve the Hough

transform detection in the merged situation. The Hough transform uses a bee’s shape before its

merging to detect the bee in the merge situation. This was introduced in section 4.3.3.2. In

addition, the Hough transform considers 21 orientations that bees can change to, as explained in

section 4.3.3.4. There are 21 voting maps from the 21 orientations. The 21 detected positions

may include the actual position of the bee. These are the candidate positions. The final detected

position is chosen as the candidate position with the highest vote value. However, the actual

position may not be at the point with the highest vote value. Although the highest value is chosen

by the region values around the 21 candidate positions (section 4.3.3.4), the experiment indicates

this is not enough to track merged bees precisely. If there is a better method to select the bee

position in the future, the Hough transform detection may be improved.

Another improvement for the K+H model concerns the Kalman filter. The Kalman filter combines

measurement and prediction to calculate a corrected position. However, the corrected position

can still be lost. In this model, the measurement is defined by the Hough transform, which usually

improves the tracking. However, the Hough transform detection can still make mistakes. Figure

6.14 (b) displays an example of a mistake for the north bee. This bee is detected incorrectly and

the detected position is far from the actual position (This bee’s shape curve is near the south west

bee). In this case the prediction model is working well. Figure 6.12 (b) shows the assumed

detection of the bee (the green bounding box with the index 69) as being close to the actual

position. It may be possible to combine the assumed detection of the prediction model with the

K+H model, to improve tracking in the future.

6.1.4.2 Boundary errors
The problems on the boundary of videos was mentioned in section 6.1.1. Taking Figure 4.1 (b) in

section 4.1 as an example, the boundary includes two types: video boundary and tracking

boundary. The video boundary is at the left, right and top sides of the image, and the tracking

boundary is on the bottom of the video (the red line). When a bee flies across the video boundary,

the bee has disappeared completely. If a bee crosses the tracking boundary, the bee has not

disappeared on the video, but the system treats it as having disappeared. The boundary problem

on these two types of boundaries is similar. The examples below only focus on the tracking

boundary.

Figure 6.15 displays the first example of a boundary error. The upper bee is flying close to the

boundary, while the lower bee is flying towards the boundary from the beehive. Because the

system only detects one blob on image (b), the merged situation is identified as single bee

tracking until the two bees separate in the image (d). It can be seen that the new incoming bee is

only detected when it is seen as an individual. In this case, there are also two incorrect merged

bee trackings. This problem occurs frequently in the video. Most of the bees appear and disappear

177

on the boundary of the video. It is common to see them merged on the boundary. However, they

can be tracked well only after they are no longer merged.

Figure 6.16 shows the second example of an error on the video boundary. In image (a), a bee

has just appeared on the boundary with part of its body visible, and then it merges with another

bee which is heading towards the boundary. In image (b), the newly appeared bee has only part

of its body shape available for use by the Hough transform in the merged tracking, because the

body of the bee in image (a) only shows half the bee. This affects the merged detection in the

next merged frame, shown in image (c). The Hough transform detects the bee in a wrong position

because of the lack of edge information. When the two bees separate in image (d), the tracking

is a failure, which is shown by the bee indexes switching from one bee to the other. Merged

tracking does exist in this situation, but the tracking is wrong, so there are two incorrect trackings.

This problem is common in video bee tracking. Bees normally appear at the beginning with only

part of their body showing. If the merging happens at this time, the problem cannot be avoided.

However, the tracking may be successful, because bees can be tracked well if the direction of

motion is detected correctly.

Figure 6.17 shows the third example of a boundary mistake. From image (a) to image (h), two

bees merge near the boundary, while the smaller bee is flying towards the tracking boundary.

(a) (b) (c) (d)

Figure 6.15 The first example of a boundary problem.
Note: These are consecutive frames.

(a) (b) (c) (d)

Figure 6.16 The second example of boundary problem.
Note: These are consecutive frames.

178

When their bodies separate in image (d), they are still detected as merged. If they separate inside

the boundary, the merged tracking is correct. However, the smaller bee crosses the boundary

and disappears. The tracking model still detects the bigger bee in the merged situation, because

the bee detection model only detects one blob during the period from image (b) to (h). These are

two incorrect merged trackings, because the merged trackings still exist, but the small bee has

disappeared. This problem occurs when two bees are merged near the boundary and one bee

crosses the boundary without having been detected separate from the merging.

Figure 6.18 displays the fourth example of a boundary problem. A bee merges with a crawling

bee, while it is moving over the tracking boundary. The consecutive frames from image (a) to (f)

show this situation. These two bees stay merged, while the flying bee is crossing the boundary

during the frames from image (d) to image (f). Then the flying bee disappears across the tracking

boundary, but the system still detects a merged situation. This problem produces two incorrect

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.17 The third example of a boundary problem.
Note: These are consecutive frames.

(a) (b) (c) (d) (e) (f)

Figure 6.18 The fourth example of a boundary problem.
Note: These are consecutive frames.

179

merged bee trackings. If there are bees standing or crawling in front of the beehive entrance,

close to the tracking boundary, this problem can easily occur. The frequency of this problem

depends on the time of day when the video is recorded.

Figure 6.19 displays the fifth example of a boundary problem. In image (a), a bee has just

appeared near the boundary, and it is assigned index 260 and a bounding box. As described in

section 4.3.1, when the bee first appears in a video frame, the prediction position and bounding

box for the next frame is the same as for the detection in the current frame. Section 4.3.1

described the prediction model, and the Kalman filter treats the first appeared bee in the same

way. When this bee merges with the smaller bee in image (b), the merged blob is far away from

the large bee's prediction position (The prediction position is deleted in the image, so it is not

shown here). Therefore, the tracking model does not detect this merged situation, but it tracks

these two bees as a single bee. When the two bees separate in image (c), the smaller bee is

tracked correctly, but the bigger bee is given a new index which means it is a new tracking. These

are two incorrect merged bee trackings. This problem does not occur frequently. Most of the

merged situations are detected by the bee tracking model, if there are two blobs before the

merging. The bee 260 in this example is moving too fast to be tracked initially.

Figure 6.20 shows the sixth example of a boundary problem. Because this problem is not

common, it was not found in the white background videos which were used to test the tracking

model. Here is an example that occured on a green background video. On the left, a bee with

pollen is crossing the tracking boundary, while another bee appears just below the middle of the

boundary. Image (c) shows the index shifting from the bee with pollen to the new non-pollen bee.

The bee with pollen has disappeared, but its single tracking keeps going with the other bee. This

(a) (b) (c)

Figure 6.19 The fifth example of a boundary problem.
Note: These are consecutive frames.

(a) (b) (c) (d)

Figure 6.20 The sixth example of a boundary problem.
Note: These are consecutive frames.

180

is an incorrect single bee tracking result. The new bee in image (d) is another incorrect tracking,

because the model tracks the middle bee as the bee with pollen. This problem rarely occurs. It is

unusual for a disappearing bee and an appearing bee to be confused in this way. However, this

problem may occur more frequently when bees are flying quickly, at a busy time.

The above six examples the video on boundaries exhibit simple problems. The first three

problems are common on the video tracking. The last three problems depend on the time of day

of the video recording. In the afternoon, it is common for many bees to crawl in front of the

entrance of the beehive. At a busy time, bees fly faster, and therefore are more difficult to track.

Moreover, the boundary merged situation can be more complicated. Figure 6.21 and Figure 6.22

show two examples of this. In Figure 6.21, two bees appear from the upper boundary in a merged

situation. The smaller bee separates from the bigger bee, and then merges with another bee in

image (d). After that, the two smaller bees merge with another bee in image (e). The three bees

finally separate in image (f). None of these bees are tracked correctly.

Figure 6.22 displays a more complex situation than Figure 6.21. One bee appears much bigger

than the other bees, because this bee is flying closer to the camera. In addition, other smaller

bees also merge with the biggest bee during images (b) to (e). In image (f), another smaller bee

is hidden under the biggest bee, but it reappears in the next frame in image (g). The two complex

merged problems (Figure 6.21 and Figure 6.22) from the boundary do not occur frequently, but

they do indicate a disadvantage of the bee tracking model. Consequently, this model is not very

suitable for complex merging.

(a) (b) (c)

(d) (e) (f)

Figure 6.21 An example of complex merged situation on a boundary.
Note: These are consecutive frames.

181

Boundary errors are an obvious problem. This can be seen from Table 6-3, Table 6-4 and Table

6-5, in which this problem accounts for almost half of the number of ‘Incorrect reasons’. No

solution has been found for this problem, because the video cannot get more information from

outside the boundary.

6.1.4.3 Problem of bee shadow
A single colour board is used to simplify the video background. Whether the background colour

is white or green, the shadows of bees cannot be removed. The background subtraction with

GMM is sensitive to the shadows, because they move with the bees. The colour detection reduces

the shadow detection with bees. However, orange, black and white colours (on the green

background) are detected on the video, so if a bee’s shadow moves across these colours, they

can still be detected. Sometimes, these moving shadows affect the bee tracking model.

Figure 6.23 shows an example of the shadow problem. This affects single bee tracking, because

the bee tracking model does not track bees, but the shadow's movement. The mistake is shown

from image (a) to image (d). There is a pollen on the board, and it is not moving. When a shadow

passes over the pollen, the bee tracking model detects this shadow with the pollen as an individual

bee.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.22 Another example of a complicated problem on boundary.
Note: There are consecutive frames.

182

The shadow problem also affects merged bee tracking. Figure 6.24 shows an example of the

shadow problem. In image (a), a shadow is detected on the orange pollen. Then it merges with

an incoming bee in image (b). The merged tracking continues in image (c) and ends at image (d).

Because there is only a single bee flying, the merged bee tracking in this case is not correct.

The problem of bee shadows does not greatly affect the bee tracking model. This can be seen in

section 6.1.2 in Table 6-1 and Table 6-2. The individual shadows are not frequently detected and

tracked. Most of them can be removed by the bee detection method which is shown in section

4.2.3. In addition, there are different shadows which are detected and tracked with bees’ bodies,

but they do not affect the tracking. However, they may affect the pollen detection.

6.2 Evaluation of pollen measurement
6.2.1 Test videos
In this section, new videos are required to test the pollen counting models of the two lines
method and deep learning model. The difficulty of video collection is that only a small group of

bees brings pollen back to the hive. In this thesis, they are called “pollen bees”. The best situation

is during good weather, because the temperature is higher and bees are more active. In addition,

the camera cannot record pollen sacs clearly on cloudy or rainy days. Therefore, all of the video

data was recorded on sunny day. The training video 1 and 2 in section 5.2.1 have the highest

ratio of pollen bees among all collected videos. They were used for training because they were

more convenient for pollen bee image collection. Most of the monitoring videos include only a few

(a) (b) (c) (d)

Figure 6.23 An example of the shadow problem which affects single bee tracking.
Note: Images from (a) to (d) are consecutive frames.

(a) (b) (c) (d)

Figure 6.24 An example of shadow problem which affect merged bee tracking.
Note: These are consecutive frames.

183

pollen bees. Apart from the two training videos, five other videos are chosen from all of the

recorded videos for the test. These five videos all have some pollen bees. They are recorded from

different days and different times of a day. Each video contains 3000 frames (one minute of 50

frame rate video). Because the pollen detection is on flying bees, these videos have also been

chosen for having more individual flying bees. The background is green colour in all the videos.

The number of bees on these videos are shown in Table 6-7 below.

Table 6-7 Test videos’ information

Test videos No. Frames Recording time Pollen bees Non-pollen bees
1 3000 10:00 am 43 458
2 3000 10:46 am 41 453
3 3000 11:26 am 29 408
4 3000 2:00 pm 38 509
5 3000 4:00 pm 46 1107

For these five videos, the number of pollen bees has been counted manually, but the number of

non-pollen bees is too high to be counted manually. However, the bee tracking model adds an

index to each bee appearing on the video. The number of bee indexes can be used to obtain an

approximate number of non-pollen bees. Although the bee tracking can include errors, the number

of bees from tracking is very close to the actual number of bees. Therefore, the number of non-

pollen bees is calculated from the number of tracked bees minus the number of pollen bees.

From Table 7, it is a challenge to identify pollen bees on the honey bee monitoring video. This is

because the number of pollen bees is from 30 to 50, whereas the number of non-pollen bees is

greater than 400. Especially, the test video 5 has 1107 non-pollen bees, which is about 24 times

the number of pollen bees. This video was taken in the late spring, when the temperature is higher

than earlier spring. This may cause the total number of bees to be twice that on other videos.

The evaluation parameters for the test include sensitivity and measurement error. The sensitivity

indicates the ratio of true positive (TP) in the actual positives (actual number of pollen carrying

bees). The measurement error is defined as below:

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)−(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 6-1

This measurement error indicates the difference between measured positive number (TP+FP)

and the actual positive number (TP+FN). The measured number is the result of the pollen

counting model; the actual positive number is the true number of pollen carrying bees appearing

on the video. The measurement error shows how close the measured positive number is to the

actual number of pollen bees. The test of the two methods is shown in next section.

6.2.2 Experimental results and comparison
The first test is the two lines method which applies the image processing technology. In this

model, the pollen carrying ratio threshold is 0.65. This was discussed in section 5.1.6. Results

from videos are shown in Table 6-8.

184

Table 6-8 The pollen bees counting results with two lines method

Test videos No. TP FN FP TN Sensitivity Measurement
error

1 30 13 10 448 0.70 -0.07
2 25 16 22 431 0.61 0.15
3 14 15 3 405 0.48 -0.41
4 15 23 3 506 0.39 -0.53
5 9 37 1 1106 0.20 -0.78

Total 93 104 39 2896 0.47 -0.33

From Table 6-8, test video 1 has the best result. The sensitivity is 0.70; and the measurement

error is -0.07. This video includes large pollen sacs than other videos, so the sensitivity is the

highest. The second-best result is test video 2, which has 0.61 sensitivity and 0.15 measurement

error. The results of this video is closer to test video 1 than other 3 videos. Test videos 3, 4 and

5 have sensitivity lower than 50%. The results are worse when the recording time is closer to the

end of day time. Sensitivities are 0.48, 0.39 and 0.2 respectively. In addition, there are much

higher false negative (FN) errors than the number of false positive (FP) errors in test video 3, 4

and 5. This causes the measurement errors to be much higher than videos 1 and 2. The errors

are -0.41, -0.53 and -0.78 respectively. The total number of true positives (TP) and false negatives

(FN) are the totals over all five videos. They are 93 and 104 respectively. The sensitivity of the

total result is 0.47. The total number of false positives (FP) is 39 which is less than the false

negatives (FN). The measurement error for the totals is -0.33.

The second test is the deep learning model. In this model, the threshold of the pollen carrying

ratio is 0.46. This was discussed in section 5.2.4. Table 6-9 displays the pollen counting test.

Table 6-9 The pollen bees counting results with the deep learning model

Test Videos No. TP FN FP TN Sensitivity Measurement
error

1 30 13 13 445 0.70 0.00
2 30 11 19 434 0.73 0.20
3 18 11 12 396 0.62 0.03
4 12 26 6 503 0.32 -0.53
5 21 25 50 1057 0.46 0.54

Total 111 86 100 2835 0.56 0.07

From Table 6-9, test video 1 has a dramatically similar sensitivity (0.70) to the two lines method

in test video 1. Both models have good results on this video. In addition, test video 1 has the best

measurement error (0.00). The best sensitivity for deep learning is on test video 2, it is about 0.73.

However, the measurement error is 0.2, because the number of false positives (FP) is more than

the false negatives (FN).Test video 3 has a result close to test videos 1 and 2. It has a sensitivity

of 0.62 and a measurement error 0.03.

Test videos 4 and 5 have different results from test videos 1, 2 and 3. In test video 4, the sensitivity

is 0.32; and measurement error is -0.53. The main problem in test video 4 is the falsie negative

(FN) which is 26, while the false positive (FP) is 6. The result for test video 5 has a large number

of false positives (FP), which is 50. The number of false negatives (FN) is 25, which is half number

185

of false positives (FP). This causes the higher measurement error of 0.54. The sensitivity for test

video 5 is about 46%. The number of true positives (TP) is little less than the false negatives (FN).

Comparing the two tests, the deep learning method has 3 videos (1, 3 and 5) which include higher

sensitivities and lower measurement errors than two lines method. In test video 2, the deep

learning model has higher sensitivity, but higher measurement error. In test video 4, the two lines
method has better sensitivity than deep learning. In addition, in this video, the two lines method

has a similar measurement error to the deep learning method. In two lines method test, the total

measurement number of pollen bees is 132 (TP+FP in total), while the actual number of the pollen

bees is 197 (TP+FN in total). The measurement error is about 33%. In the deep learning method

test, the total pollen bee count is totally 211 (TP+FP in total), while the actual number of pollen

bees is 197 (TP+FN in total). The measurement error is about 7%. In this case, the deep learning

produces better results than two lines method.

6.2.3 Discussion of two methods
In section 6.2.2, the total measurement error shows the deep learning is much better than the

two lines method. The two lines method produces a measurement error of 33%, but deep

learning has 7% error. Apart from the tests, this section will explain more advantages and

disadvantages of these two methods. In addition, comparing the two methods is discussed.

6.2.3.1 Data collection and analysis
In the two lines method, 276 pollen bee images and 1320 non-pollen bee images are collected

from 400 frames. In total, 1596 individual bee images are used for analysis. The images are

collected from bee detection bounding boxes. Then the bee main body detection and colour

thresholding are utilized to analyse the images for pollen sacs detection. This outputs blobs on

binary images. These blobs need to be identified manually as pollen or non-pollen blobs by

observing the binary images, which takes a long time to complete. All these blobs are analysed

by the blob detection software to produce values for four features. Then, the features are

analysed find a method which can distinguish pollen and non-pollen blobs automatically in the

future test. Therefore, the two lines method requires a lot of manual work.

In deep learning method, training replaces the data analysis. 1000 pollen bee images are

collected for training and 400 other images (200 pollen bee images and 200 non-pollen bee

images) for validation. They are collected from 4000 frames from two videos (2000 frames from

each video). The images are also collected from bee detection bounding boxes on the full

1920*1080 resolution video frames. The 1000 pollen bee images are used for data augmentation

which produces another 1000 images. Totally about 2400 individua bee images are used. The

data collection also includes pollen sac labelling which needs to be done manually on the

individual bee images. However, MATLAB has an APP named “Image Labeller” which makes the

labelling much easier. Although, the labelling is manual job, it will not cost so much time. 1000

pollen images were labelled manually. However, the data augmentation of flipping images and

labels is not a manual job. It is done by programming code. The data training can be done by the

computer, not manual analysis. This research required 24 hours for each training when trying

different learning rates.

186

Comparing the two methods, the two lines method uses all the pollen and non-pollen images

included in 400 frames of one video for analysis. This is because the statistical method requires

random and objective data collection. However, the deep learning method only needs pollen

images for data training. This is because the Faster RCNN is only trained by the desired object

(pollen sacs in this research) and background. The data collection for the two methods are

different. Therefore, this can not show which method is better.

However, the two lines method data analysis costs more manual work than the deep learning

method. The four features of pollen and non-pollen blobs are distinguished manually. It requires

the researcher looking at pollen bee images and finding the corresponding blob features,

especially the pollen blob features. In addition, the feature analysis requires manual work. The

deep learning method also require manual work for labelling pollen sacs before its training, but it

is simplified by software. Then, the data is trained automatically by a computer which saves

manual work. Although the training costs time, it could be faster, if a faster computer could be

used.

6.2.3.2 Error analysis
The two lines method partly uses image processing techniques for pollen detection, such as the

bee’s main body detection and colour thresholding. The main reasons for errors can be found by

observing the image again. From the test, the false negative (FN) errors are the first problem. The

main reasons for false negatives (FN) include different light condition, small pollen sacs, and

some situations unsuitable for this method.

The different light conditions on the videos cause the pollen sacs to not appear clearly on the

video, so the pollen colour detection cannot detect the whole of the pollen sac. This problem

causes false negative (FN) errors. Figure 6.25 shows some examples. In image (a), the pollen

sac on the right of the bee is partly dark, because the bee body blocks most of the sunlight. The

pollen sac in image (b) has lost more colour than the sac in image (a) because the sunlight is

blocked and there is motion blur. Images (a) and (b) mainly show the sunlight position problem.

These pollen sacs can not be detected correctly using the colour thresholding method, because

some of them only display part of the pollen, and some are too dark to be detected. The probability

of these pollen sacs being detected is therefore lower than the clearly coloured pollen sacs.

Images (c) and (d) in Figure 6.25 show another light condition problem. On image (c) the pollen

sac includes green colour. The pollen sac on image (d) is not clearly displayed. All the test videos

have this problem to some extent, because their brightness is different from the training video.

(a) (b) (c) (d)

Figure 6.25 The example of unclear colour pollen sacs.

187

The training video is recorded at 11 am, so the morning videos have mainly better results than

the afternoon videos. Particularly, test video 5 was recorded at 4pm in the afternoon, when the

sunlight is very soft. Most of the false negative (FN) mistakes in test video 5 are caused by the

unclear colour of the pollen sacs.

Small pollen sacs cause false negative (FN) errors. The result of pollen colour detection includes

pollen and non-pollen blobs. The next step is using pollen features to detect pollen sacs, as

introduced in section 5.1.4. One of the main features is the area of the pollen. Most of the non-

pollen blobs have a small area, so pollen blobs which also have a small area are difficult to

distinguish from the non-pollen blobs. Figure 6.26 shows some examples of small pollen sacs.

Comparing Figure 5.6 in section 5.1.2, these pollen sacs are much smaller. These pollen sacs

appear small for two reasons. One is that the pollen sacs are actually small as shown on images

(a) and (b), and the other is that the pollen is hidden under the abdomen of the bee, as shown on

images (c) – (f). On images (c) and (d), part of pollen sac is hidden. The pollen sacs can still be

seen, but they are not clear enough for the method. Pollen sacs on images (e) and (f) can be

seen with difficultly. They are almost hidden under the bee body. Test videos 3, 4 and 5 have not

only different light conditions, but also many bees carrying small pollen sacs, especially some

bees with frequently hidden pollen sacs. Therefore, there are higher ratios of false negatives (FN)

in these two videos with the two lines method.

Some false negatives (FN) are caused when the image situation is not suitable for the method.

For example, a pollen sac can be on top of the bee body. In this case, the pollen sac is shown

clearly, but it is not beside the abdomen of the bee, so the bee blob does not show the pollen sac

as a projection (or convex) feature. Figure 6.27 shows an example. Image (a) is the original single

bee image; where the main part of the pollen sac is on the abdomen of the bee. The bee detection

produces the bee blob in image (b), which shows the bee shape very well. However, the main

body detection and removal in image (c) removes not only the main body, but also most of the

pollen sac. Image (d) shows the pollen colour detection result. The pollen sac is only partly

detected as a small blob. This problem occurs because of the unsuitable angle of the bee’s body.

The current two lines method is not suitable for this flying angle.

(a) (b) (c) (d) (e) (f)

Figure 6.26 Examples of small pollen sacs.

188

False positives (FP) are another error which occurs on the non-pollen bee’s identification. The

main reasons of this error include wing reflection, bee body detection effects and shadows beside

bees.

The wings reflect light and appear as a white colour, and wings are also beside the bee body.

Therefore, wing reflection can be confused with the pollen sacs. The pollen colour detection can

mistakenly detect this as a pollen blob. This problem produces false positive (FP) mistake. An

example is shown in Figure 6.28. Image (a) shows the whole wing of the bee. The bee detection

detects the bee blob in image (b), and it removes most of the wings, leaving only a small part.

Image (c) shows the main body removed from the bee blob. The south east part of the image

includes an area with a white colour. The blob features analysis will identify this white blob in

image (d) as a pollen sac.

Bee body detection effects are the second reason for false positives (FP). The two lines method

sometimes relies on the quality of bee body detection. The bee detection works well on bee

position identification, but it cannot always clearly detect the bee’s shape. This comes from the

disadvantages of colour thresholds. The colour of the bee’s body can be affected by the green

background, so that the shape or dark area includes a slightly green colour. In addition, the

brightness changes at different times while recording the videos, but the colour thresholds are

constant values in these different situations. Therefore, the bee detection can lose the bee shape,

subsequently affecting all pollen detection methods. Figure 6.29 shows an example of this. Image

(a) is the original bee image. The bee blob detection result in the image (b) does not show the

bee’s shape correctly. It includes a convex projection of the bee’s thorax (on the right of the image)

and a concave part (which is a small black hole on the image.). The main body detection in image

(a) (b) (c) (d)

Figure 6.27 An example of a pollen sac on top of the body.
Note: (a) The original image. (b) The bee blob from bee detection. (c)
The main body removal. (d) The pollen detection result.

(a) (b) (c) (d)

Figure 6.28 An example of wing reflection.
Note: (a) The original image. (b) The bee blob from bee detection. (c) The main
body removal. (d) The pollen detection result.

189

(c) does not include the thorax correctly. In addition, the concave hole causes the main body to

be detected as smaller than the actual body, so that part of the abdomen on the right of the bee

is also not included in the main body in image (c). Image (d) shows the result of pollen colour

detection. There are two blobs on the left and right of image (d). They are similar to pollen blobs.

Another example of the bee blob detection problem is displayed in Figure 6.30. A bee can curl up

its body while flying. Then the shape is too complex to remove as its main body. Image (a) shows

a bee slightly curling up its body, so that the bee blob (in image (b)) is too bent to detect the main

body. Therefore, the main body detection in image (c) does not remove the whole body. Image

(d) shows the pollen colour detection detecting a blob which looks like a pollen blob.

The bee shadow is another reason for false positives (FP). The bee detection method can remove

individual bee shadows, but shadows beside bee body can still be detected. Figure 6.31 shows

the detail of the problem. This is a disadvantage of bee detection model D. Model D is described

in section 4.2.4.2. Image (a) is the single bee’s original image. Image (b) is from the orange and

white colour detection. It detects most of the bee body except the bee head. The foreground

detection is shown in image (c). It includes body, wings, legs and shadow. The dilated (DI) image

is shown in image (d). It includes the bee body and part of the shadow. Image (e) shows the

colour detection of orange, white and black. It detects the whole bee body and the shadow.

Because the dilated image and the colour detection both include the shadow, the final result in

image (f) shows the bee body with the shadow. Image (g) is obtained after morphological filtering

of image (f). In summary, because the shadow is near the bee, model D detects the shadow as

part of the bee body.

(a) (b) (c) (d)

Figure 6.29 An example of bee blob detection problem effecting.
Note: The (a) The original image. (b) The bee blob from bee detection. (c) The
main body removal. (d) The pollen detection result.

(a) (b) (c) (d)

Figure 6.30 An example of problem due to body curling.
Note: (a) The original image. (b) The bee blob from bee detection. (c) The main body
removal. (d) The pollen detection result.

190

This shadow problem which affects pollen detection is displayed in Figure 6.32. One example is

shown from image (a) to image (d). The bee flies across a shadow in image (a), and the blob

includes part of the shadow in image (b). Image (c) shows the main body detection and removal.

The black ellipse is the main body calculated by the system, and it is different from the actual

body of the bee. The pollen detection in image (d) shows a blob similar to a pollen sac. The

second example is displayed from image (e) to image (h). This bee may be dead on the board,

but the shadow detection in this case may be the same as for a standing bee. The image (e)

(a) Origin (b)MOWI (c) MFgI (d) DI

(e) MBCI (f) MBBI (g) Morphological filter

Figure 6.31 An example of the bee detection process with a shadow problem.
Note: (a) The original single bee image. (b) The orange and white colour detection. (c) The
foreground detection. (d) The dilation image with orange, white colour and foreground. (e)
The orange, white and black colour. (f) The combination detection. (g) The final result after
morphological filtering.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.32 Two examples of shadow effects.
Note: (a)&(e) Original images. (b)&(f) The bee blob. (c)&(g) The
main body removal. (d)&(h) The pollen detection.

191

shows its body and shadow together. Image (f) shows a bee blob including both the shadow and

body. The main body removal in image (g) is incorrect because the bee blob does not show the

bee body shape correctly. The pollen colour detection in image (h) shows a blob which is similar

to a pollen sac. This problem produces a significant error. The bee’s blob on the binary image

includes the bee’s body and shadow. Then the main body detection method (in section 5.1.1)

may not work correctly. The experiment shows that the shadow problem commonly happens with

standing bees. If a bee stands on the green board, its shadow is just beside its body. However,

this rarely happens with flying bees which typically cross the shadows of other bees.

The last problem which can produce mistakes is failure of bee tracking. Bee tracking failure can

produce both false negative (FN) and false positive (FP) mistakes. The bee tracking model and

pollen detection model are combined for counting pollen carrying bees. It calculates the pollen
carrying ratio which is used to decide whether a bee is carrying pollen or not. If the bee has

pollen, the pollen carrying ratio is updated from each frame of the video. However, if the bee is

tracked incorrectly, it is given another bee’s index, and the pollen carrying ratio are assigned to

the wrong bee (section 5.1.6). Because the pollen carrying bee counting is based on the pollen
carrying ratio, the count will not be correct.

In summary, the false negatives (FN) and false positives (FP) in two lines method are found for

the reasons above. Solving these problems can help to improve the method. This can give the

future work some direction.

The deep learning method uses neural networks to detect pollen, which is different from the two
lines method. The reason for errors is difficult to analyse, because the detection process is in

the hidden convolutional layers. The false negative (FN) errors may also occur because of the

light conditions and small pollen sacs. It is hard to find the evidence from the detection process,

but there are some inferences. The smallest pollen image resolution is 15*15. The CNN network

performs convolution between weight filters of features and images. It focuses on the intensity

pattern from the three colour channels on the image. The small pollen sacs may not show enough

features (or pattern) for deep learning to detect them.

However, the deep learning method detects more true positive (TP) results than the two lines
method in video with different light conditions. In the deep learning test, the test videos 3 and 5

have better sensitivity than the two lines method. One reason is that although many bees on

these videos do not show clear colour, the convolution can still find the shape feature of the pollen

sacs. This may help the deep learning method to detect more pollen carrying bees, when pollen

sacs are not shown clearly. In addition, another reason may be that two videos were used for

training. These videos have different light conditions. This may cause deep learning to handle

more different light conditions. Thus, deep learning can detect more pollen carrying bees on test

videos 3 and 5.

The reason for false positive (FP) errors is also difficult to find. Perhaps, the CNN finds something

including similar features to pollen sacs. Figure 6.33 displays some examples of false positive

(FP) errors. In image (a), one bounding box marks green background to be a pollen sac, another

bounding box marks part of the abdomen as a pollen sac. Image (b) shows that the bounding box

192

also marks the bee’s abdomen to be pollen sac. In image (c), part of the bee’s wing is detected

as a pollen sac. Image (d) indicates that the thorax of the bee is detected as a pollen sac. In

image (e), the result shows the deep learning model detected part of the shadow as a pollen sac.

The deep learning finds some things have similar features to pollen sacs, which people cannot

see. In this case, it is difficult to find the reason of these errors.

However, the testing of the deep learning method shows the test video 5 has more than twice the

rate of false positives (FP) of other videos. In addition, the non-pollen bee number in test video 5

is also more than twice that of other videos. Therefore, the number of non-pollen bees may cause

deep learning to produce producing more false positive (FP) errors.

Because the deep learning method includes hidden layers, the reason for mistakes is hard to

analyse. However, the deep learning method can be improved by using more layers than the

VGG-16 network or more data augmentation, if the hardware is fast enough.

In this error analysis, the problem of the two lines method can be found by analysing the

detection results on the bee images. The advantage of this is that it can give clear direction for

method improvement. The reason for errors in the deep learning method is unclear. However, the

model can be improved by designing a better network. The deep learning method is developing

quickly at present. There may be better networks especially for small objects in the near future.

6.2.3.3 Comparison of research methodologies
In this research, the two lines method was built first, and this cost time to collect and analyse

data. After that, the deep learning method was used near the end of the research. Some research

methodologies which were changed for deep learning, were not modified in the two lines
method. The result is that the two methods have been analysed in different ways.

First, although the number of images are similar for the two methods, the two lines method uses

one video’s data for the training, while the deep learning method uses two videos’ data for its

training. This may benefit the deep learning method results. If another video’s data could be

collected for training of two lines method, it might have different light condition and different sizes

of pollen sacs. The blob features distribution may be different. The results of the two lines
method may be different from Table 6-8.

Second, the threshold of the pollen carrying ratio selection is different for the two methods. In

the two lines method, it was chosen at the point on the ROC space which is closest to the perfect

classification point (0,1), while the deep learning model used a similar number of false negatives

(a) (b) (c) (d) (e)

Figure 6.33 Examples of false positives (FP) from deep learning method pollen detection

193

(FN) and false positives (FP) to choose the threshold. In addition, the deep learning used the two

training videos as data for the threshold selection, while the two lines method had only one

video.

The different research methodologies which are mentioned above may cause the five video test

results for comparing the two methods to not produce a very strong conclusion. It is better to use

one more video data for the two lines method. However, collecting and analysing more data for

the two lines method was not possible at the end of the research. In addition, training data for

the deep learning method cannot be shared with the two lines method. This is because the data

collection of the two lines method includes non-pollen images, while deep learning data does

not include so many non-pollen images (only 200). Therefore, the two lines method still used

the same methodology as before. This is a weakness of this research, but the result of this

research is strong enough to give a conclusion that the deep learning is much better than the two
lines method.

194

Chapter 7

Chapter 7: Conclusions and future work
__

This chapter will present conclusions concerning the bee detection model, bee tracking

performance and the pollen detection and measurement. It presents both the advantages and

disadvantages of these models. After that, future work from this research is presented. This

includes the application of pollen blob measurement to the video, improvement of the

methodology and further areas for research such as detection of other insects and the use of

stereo video.

7.1 The bee detection model
The bee detection model detects all movements of bees utilizing foreground (motion) detection.

The colour of bees is easily detected by using a single colour board as a background. The green

colour background is better than the white colour for bee detection. The detected positions are

close to the actual positions of bees. The bounding boxes around the bee bodies are all correct.

The individual shadows on the background are removed. Small orange regions, such as pollen

sacs which are dropped down on the board and dead bees' bodies on the board, can also be

removed. When bees cross over each other in the video, the model detects them together as a

merged blob rather than as individual bee blobs.

Conversely, there are some disadvantages. Firstly, bee shapes are not detected clearly and in

the process some important parts of the body may be lost, such as pollen sacs, thorax and tail.

The shape detection can be affected by the reflections off wings, orange colour on other body

parts and the bee’s angle relative to the camera. Secondly, shadows which are near or connected

to bees' bodies, are also detected as part of the bees. This changes the bee blobs significantly,

so that the main body detection is incorrect, and this affects the pollen detection later on.

7.2 The bee tracking performance
The flight tracking for individual single bees is successful in more than 99% cases. Flight tracking

for the merged situation is more than 80% correct, when the boundary problem is ignored. The

tracking produces bee flight curves that help predict the future positions of bees. The indexes

assigned to each bee can be used to count the number of bees appearing in the video. Although

there are some failures, faulty tracking does not significantly affect the pollen counting. Therefore,

the tracking is suitable for pollen measurement.

195

The tracking can be unsuccessful. One of the main problems concerns bees crossing each other

in the video frames (the merged situation). Sometimes, a bee cannot be detected in the merged

situation, so its position is predicted (prediction model) or assumed (using the Hough transform).

If the detection position is incorrect, the tracking may fail. Another problem is the boundary of the

video. Bees appear and disappear at the boundary of videos. Sometimes, a bee appears at the

same time as another bee disappears at the boundary. In this case, the tracking information (index

and curve) is assigned to the new bee, which means the model tracks the new bee as the previous

bee. This affects single bee tracking. Moreover, bees can merge when they are near the

boundary. In this research, there is no method to check for merged bees on the boundary. In

addition, if the merged bees separate from the merged blob and disappear on the boundary, they

cannot be recognised as having separated. The boundary problem affects the merged tracking

accuracy significantly. When the boundary problem is included, the merged bee tracking has a

success rate of about 60%.

7.3 The pollen detection and measurement
Two pollen detection and measurement methods are used in this research: the two lines method

and the deep learning method. The five videos test shows that the deep learning method has

better performance than the two lines method. Especially in the total number of the pollen

carrying bees counting, deep learning has 7% measurement error, while the two lines method

has 33% error. In data collection and analysis, the two lines method requires more manual work

and costs more time than deep learning. Deep learning can save manual work in its training,

although it requires a faster computer. Regarding future improvement, the two lines method can

be improved by analysing reasons for the problems described in section 6.2.3.2, but it is difficult

to analyse reasons for errors in the deep learning method. However, the deep learning method

could be improved by designing a better network, such as a deeper network or using more training

data. In the case of overfitting, deep learning handles the overfitting better than the two lines
method. This may be because of the data augmentation and training data from two videos. In

summary, the deep learning method has more advantages than the two lines method. In

addition, the technology is developing very quickly, which means a good future for the deep

learning method. Therefore, applying the deep learning method for pollen measurement is very

powerful.

However, the pollen detection and measurement has disadvantages. In the process of the two
lines method, the main body detection relies on the bee blob from the bee detection. If the bee

blob and main body detection do not work well, the pollen colour detection cannot detect the

whole pollen sac. In addition, the pollen colour detection can detect some parts of the bee body

as blobs which have a similar colour to the pollen sac. In the deep learning process, the

application did not use the state-of-art methods (ResNet, Mask RCNN and YOLOv3), because of

hard ware limitations. The deep neural network is a complicated model. It calculates millions of

parameters (weights and biases), which requires more RAM of GPU. In addition, the training costs

time, if the training computer is slow, although the training saves manual work. Deep learning

requires the latest technology computer.

196

7.4 Future work
This research has made good progress in bee tracking and detection. The pollen detection and

measurement also have a good performance in the test results. There several other ideas given

in this section which may improve the results. Moreover, some ideas can extend the research to

detect and count other insects on the video.

7.4.1 Bee detection improvement
The colour thresholding method is used in this research for bee and pollen detection. The

disadvantage of using colour is the brightness of video. The brightness always changes in

different videos, especially at different recording times. The research uses constant thresholds to

perform the detection. Although the thresholds are suitable for most of the videos, they sometimes

lose important parts of bee bodies, such as the thorax, tail and pollen sacs. It is necessary to use

adaptive thresholds for the detection. The thresholds can be changed for different light

situations. This may solve the problem of dark pollen and shadows. It may also detect clearer bee

shapes and pollen sacs. It is complicated to find a method for the adaptive colour thresholds. The

initial idea is to calculate the mean value of brightness level in the whole frame. The threshold

can be the mean value or a value related to the mean. Another idea is the histogram of the frame.

This relates to the colour difference. If the colour difference is detected, it may be able to be used

for detecting other insects apart from bees.

The colour difference can also be used to detect the edges between different colour regions. The

edges can be combined together to find objects’ contour (shape). Contour detection is a

common method used in computer vision technology. There are two examples of using contour

detection. First, contour detection is used to create a hierarchical approach to detect many objects

such as human beings, animals and plants (Arbelaez et al., 2011). Second, a shape-based

(contour) detection algorithm is used to perform boundary segmentation (Toshev et al., 2012). In

this example, some objects can be segmented from a complex background. In this research, most

of the time, bees appear as a clear shape on the simple green background. The contour of pollen

sacs is also clear on the individual bee image. Therefore, it may be reasonable to use contour

detection for bee and pollen sac detection. With contour detection, bees may be detected even

in some complex (natural) backgrounds. If the time required is not a problem, contour detection

may be a good trial for this research.

7.4.2 Bee tracking improvement
There are two tracking models in this research: prediction method and Kalman filter with Hough

transform. The second method can still be improved. If a bee disappears (under another bee) in

a merged situation, the Hough transform cannot detect it correctly, causing the tracking to fail.

These disappeared bees can still be tracked with prediction. The assumed detection from the

prediction method and Hough transform can be combined for merged bees tracking. In this case,

the Hough transform detects a merged bee directly if it still appears during the merging. In

addition, if it has disappeared in the merged situation, the assumed detection can calculate the

position of the merged bee from the prediction bbox. With the advantages of both methods, the

tracking will be improved.

197

Another approach to improve the tracking is to optimize the Kalman gain. The tracking model

uses different noise covariance matrices for the individual bee tracking and the merged situation.

This modifies the Kalman gain to change the Kalman filter. In the individual bee tracking, the

Kalman filter is close to the measurement (detection). In the merged tracking, the Kalman filter

should be close to the prediction, because the detection has a large error concerning the actual

position. However, when the variance value is a bigger value, the Kalman gain automatically

becomes smaller. The Kalman filter is close to the prediction at the beginning, and then it goes

towards the detection during the merged situation. Conversely, if the Kalman filter only follows

the prediction, when bees stay merged over a long period of time, the prediction may go more

wrong, because it is calculated using the velocity from the situation before the merging. Then the

tracking may fail. Therefore, the Kalman gain may be not suitable for this situation. The Hough

transform detection gives a measurement which can fix this problem, but it can be incorrect. If the

Kalman gain can be calculated from the error between the prediction and the detection

(measurement), this adaptive gain will improve the tracking.

7.4.3 Improvement of pollen detection and measurement
In two lines method, problems are mentioned in section 6.2.3.2. Solving those problems can

improve the model of pollen detection. Particularly, pollen sacs are detected by colour detection.

The colour detection may be improved by using adaptive thresholds or contour detection, as

discussed above in section 7.4.1. In addition, shadows can affect the detection. This has been

outlined in section 6.2.3.2. It is necessary to find a theory to detect and remove the shadow without

removing the head of the bee. Thus, the main body detection and removal can be more accurate.

Then the number of non-pollen blobs can be reduced.

For the deep learning method, a better computer is required. Then a deeper network can be used

for pollen detection. Current technology can build very deep networks even to 101 layers

(ResNet). The pollen sac is small, so the deeper networks will perform with higher accuracy for

pollen detection. In addition, because of the time limitation, this research does not apply the latest

network, such as Mask RCNN and YOLOv3. MATLAB (2018a) does not include functions to apply

these two methods. Creating custom functions for these methods requires more time. However,

both methods have been shown to be more accurate than Faster RCNN (He et al., 2017, Redmon,

2018 and Farhadi, 2018). If these two latest methods can be applied, the pollen detection will be

improved.

The whole model of bee tracking and pollen detection is running very slowly, because the

programme is not optimized. If using the computer mentioned in section 5.2 with CPU

programming, the tracking model (K+H) with the two lines method required 0.8s ~ 4.4s per

frame; the tracking model (K+H) with deep learning model required 1.4s ~ 5.5s per frame.

Application of this model in real life requires a fast speed, especially applying this model in an

embedded system. One of the problems which slows down the model is the Hough Transform.

The Hough Transform that transforms the edges of a bee includes many iterations. Simplifying

the Hough Transform can reduce the calculation. Another problem is that the deep neural network

model also costs time. Each individual bee image is analysed with millions of parameters in the

network model. In the computer, GPU programming may reduce the running speed. For an

198

embedded system application, a mobile network (Howard et al., 2017) model or SqueezeNet

(Iandola et al., 2016) may be used to replace the VGG network in this research. This can increase

the running speed, but it may be not accurate enough. This requires more research.

In addition, this research uses 2D video in the detection of bees and pollen sacs. This causes

problems when the bees merge or pollen sacs are hidden. If stereo vision with two cameras could

be used for this research, the situation and outcome would be different. If bees merge in one

camera’s view, they might still be separate for the other camera. In addition, pollen sacs might be

hidden behind a bee body for one camera, but might still be visible by the other camera. Stereo

vision needs more precise setup and the cameras need to be synchronized. Space would be

synchronized by a manual measurement. The cameras would be set up using precise

measurement to create an axis space, so that bees shown on the two cameras could be correctly

matched. One trial has already taken place using a stereo video camera (Chiron et al., 2013a,

Chiron et al., 2013b). This has only been used to track bees, and has not been utilized for pollen

detection. In addition, the stereo video creates a depth map which can calculate the distance

between the camera and the detected object. This can be used to remove bees which are too far

from or too close to the camera without considering the bee size. Then the system can be

assumed to only count pollen on bees which are close to the entrance of the hive in both the

horizontal and vertical positions.

199

References

ADAMS, R. & BISCHOF, L. 1994. Seeded region growing. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 16, 641-647.

AIZEN, M. A. & HARDER, L. D. 2009. The Global Stock of Domesticated Honey Bees Is Growing
Slower Than Agricultural Demand for Pollination. Current Biology, 19, 915-918.

ALAUX, C., BRUNET, J. L., DUSSAUBAT, C., MONDET, F., TCHAMITCHAN, S., COUSIN, M.,
BRILLARD, J., BALDY, A., BELZUNCES, L. P. & LE CONTE, Y. 2010. Interactions between
Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera).
Environmental microbiology, 12, 774-782.

ANANTH, C., SENTHILKANI, A., GOMATHY, S. K., RENILDA, J. A. & JEBITHA, G. B. 2014. Color Image
Segmentation using IMOWT with 2D Histogram Grouping.

ANEJA, K., LAGUZET, F., LACASSAGNE, L. & MERIGOT, A. 2009. Video-rate image segmentation
by means of region splitting and merging. Proc. Signal and Image Processing
Applications, 437-442.

ARBELAEZ, P., MAIRE, M., FOWLKES, C. & MALIK, J. 2011. Contour Detection and Hierarchical
Image Segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
33, 898-916.

ARULAMPALAM, M. S., MASKELL, S., GORDON, N. & CLAPP, T. 2002. A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal
Processing, 50, 174-188.

AYCARD, O., SPALANZANI, A., BURLET, J., FULGENZI, C., VU, T. D., RAULO, D. & YGUEL, M.
Pedestrians Tracking Using Offboard Cameras. 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 9-15 Oct. 2006 2006. 513-518.

BABIC, Z., PILIPOVIC, R., RISOJEVIC, V. & MIRJANIC, G. 2016. POLLEN BEARING HONEY BEE
DETECTION IN HIVE ENTRANCE VIDEO RECORDED BY REMOTE EMBEDDED SYSTEM FOR
POLLINATION MONITORING. ISPRS Annals of Photogrammetry, Remote Sensing &
Spatial Information Sciences, 3.

BALLARD, D. H. 1981. Generalizing the Hough transform to detect arbitrary shapes. Pattern
Recognition, 13, 111-122.

BAOJUN, Q., TAO, W., BIN, D. & HANGEN, H. Fast detection of small infrared objects in maritime
scenes using local minimum patterns. Image Processing (ICIP), 2011 18th IEEE
International Conference on, 11-14 Sept. 2011 2011. 3553-3556.

BARRON, J. L., FLEET, D. J. & BEAUCHEMIN, S. S. 1994. Performance of optical flow techniques.
International Journal of Computer Vision, 12, 43-77.

BEAUCHEMIN, S. S. & BARRON, J. L. 1995. The computation of optical flow. ACM Comput. Surv.,
27, 433-466.

BENGIO, Y. 2009. Learning Deep Architectures for AI. Foundations and Trends® in Machine
Learning, 2, 1-127.

BHATTACHARYA, P., BISWAS, A. & MAITY, S. 2014. Wavelets-Based Clustering Techniques for
Efficient Color Image Segmentation. In: KUMAR KUNDU, M., MOHAPATRA, D. P., KONAR,
A. & CHAKRABORTY, A. (eds.) Advanced Computing, Networking and Informatics-
Volume 1. Springer International Publishing.

BIESMEIJER, J., ROBERTS, S., REEMER, M., OHLEMÜLLER, R., EDWARDS, M., PEETERS, T.,
SCHAFFERS, A., POTTS, S., KLEUKERS, R. & THOMAS, C. 2006. Parallel declines in
pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313,
351-354.

BISHOP, C. M. 2012. Pattern recognition and machine learning, 2006. 대한토목학회지, 60, 78-
78.

BOTTOU, L. Large-Scale Machine Learning with Stochastic Gradient Descent. 2010 Heidelberg.
Physica-Verlag HD, 177-186.

200

BOUWMANS, T. & EL BAF, F. 2009. Modeling of dynamic backgrounds by type-2 fuzzy Gaussians
mixture models. MASAUM Journal of of Basic and Applied Sciences, 1, 265-276.

BOUWMANS, T., EL BAF, F. & VACHON, B. 2008. Background modeling using mixture of gaussians
for foreground detection-a survey. Recent Patents on Computer Science, 1, 219-237.

BRODSCHNEIDER, R. & CRAILSHEIM, K. 2010. Nutrition and health in honey bees. Apidologie, 41,
278-294.

CAMPBELL, J., MUMMERT, L. & SUKTHANKAR, R. 2008. Video monitoring of honey bee colonies
at the hive entrance. Visual observation & analysis of animal & insect behavior, ICPR, 8,
1-4.

CARDANI, D. 2001. Adventures in hsv space. Laboratorio de Robótica, Instituto Tecnológico
Autónomo de México.

CELENK, M. 1990. A color clustering technique for image segmentation. Computer Vision,
Graphics, and Image Processing, 52, 145-170.

CHANGJIANG, Y., DURAISWAMI, R. & DAVIS, L. Fast multiple object tracking via a hierarchical
particle filter. Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference
on, 17-21 Oct. 2005 2005. 212-219 Vol. 1.

CHEN, C., LIANG, J., ZHAO, H., HU, H. & TIAN, J. 2009. Frame difference energy image for gait
recognition with incomplete silhouettes. Pattern Recognition Letters, 30, 977-984.

CHENG, H. D., JIANG, X. H., SUN, Y. & WANG, J. 2001. Color image segmentation: advances and
prospects. Pattern Recognition, 34, 2259-2281.

CHIRON, G., GOMEZ-KRÄMER, P. & MÉNARD, M. Outdoor 3d acquisition system for small and
fast targets. application to honeybee monitoring at the beehive entrance. Workshop
Proceedings of GEODIFF 2013, In conjuction with VISIGRAPP 2013, 2013a. 10-19.

CHIRON, G., GOMEZ-KRÄMER, P., MÉNARD, M. & REQUIER, F. 2013b. 3D Tracking of Honeybees
Enhanced by Environmental Context. In: PETROSINO, A. (ed.) Image Analysis and
Processing – ICIAP 2013. Springer Berlin Heidelberg.

CHITADE, A. Z. & KATIYAR, S. 2010. Colour based image segmentation using k-means clustering.
International Journal of Engineering Science and Technology, 2, 5319-5325.

CHIU, S.-H. & LIAW, J.-J. 2005. An effective voting method for circle detection. Pattern
Recognition Letters, 26, 121-133.

CHOI, Y. S., ZAIJUN, P., KIM, S. W., KIM, T. H. & PARK, C. B. Salient Motion Information Detection
Technique Using Weighted Subtraction Image and Motion Vector. Hybrid Information
Technology, 2006. ICHIT '06. International Conference on, 9-11 Nov. 2006 2006. 263-
269.

CIREŞAN, D., MEIER, U., MASCI, J. & SCHMIDHUBER, J. 2012. Multi-column deep neural network
for traffic sign classification. Neural Networks, 32, 333-338.

CRANDALL, D., FELZENSZWALB, P. & HUTTENLOCHER, D. Spatial priors for part-based
recognition using statistical models. Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, 20-25 June 2005 2005. 10-17 vol. 1.

CUCCHIARA, R., GRANA, C., PICCARDI, M. & PRATI, A. 2003. Detecting moving objects, ghosts,
and shadows in video streams. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 25, 1337-1342.

DAVIS, J. W. & SHARMA, V. 2004. Robust background-subtraction for person detection in
thermal imagery. IEEE Int. Wkshp. on Object Tracking and Classification Beyond the
Visible Spectrum.

DEARDEN, A., DEMIRIS, Y. & GRAU, O. Tracking football player movement from a single moving
camera using particle filters. Proceedings of the 3rd European Conference on Visual
Media Production (CVMP-2006), 2006. 29-37.

DESAI, U. B., MERCHANT, S. N., ZAVERI, M., AJISHNA, G., PUROHIT, M. & PHANISH, H. S. 2005.
Small Object Detection and Tracking: Algorithm, Analysis and Application. In: PAL, S.,
BANDYOPADHYAY, S. & BISWAS, S. (eds.) Pattern Recognition and Machine Intelligence.
Springer Berlin Heidelberg.

201

DEY, S., BHATTACHARYA, B. B., KUNDU, M. K. & ACHARYA, T. 2002. A simple architecture for
computing moments and orientation of an image. Fundam. Inf., 52, 285-295.

DUDA, R. O. & HART, P. E. 1972. Use of the Hough transformation to detect lines and curves in
pictures. Communications of the ACM, 15, 11-15.

DUTTA, J. & PAL, S. 2015. A note on Hungarian method for solving assignment problem. Journal
of Information and Optimization Sciences, 36, 451-459.

EILERS, E. J., KREMEN, C., GREENLEAF, S. S., GARBER, A. K. & KLEIN, A.-M. 2011. Contribution of
pollinator-mediated crops to nutrients in the human food supply. PLoS one, 6, e21363.

EL BAF, F., BOUWMANS, T. & VACHON, B. Fuzzy statistical modeling of dynamic backgrounds for
moving object detection in infrared videos. Computer Vision and Pattern Recognition
Workshops, 2009. CVPR Workshops 2009. IEEE Computer Society Conference on, 20-25
June 2009 2009. 60-65.

ELGAMMAL, A., HARWOOD, D. & DAVIS, L. 2000. Non-parametric model for background
subtraction. Computer Vision—ECCV 2000. Springer.

ERHAN, D., SZEGEDY, C., TOSHEV, A. & ANGUELOV, D. Scalable object detection using deep
neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014. 2147-2154.

FAWCETT, T. 2006. An introduction to ROC analysis. Pattern recognition letters, 27, 861-874.
FELZENSZWALB, P. F., GIRSHICK, R. B., MCALLESTER, D. & RAMANAN, D. 2010. Object Detection

with Discriminatively Trained Part-Based Models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32, 1627-1645.

FENG, N., DELHOMME, D., LECUN, Y., PIANO, F., BOTTOU, L. & BARBANO, P. E. 2005. Toward
automatic phenotyping of developing embryos from videos. IEEE Transactions on Image
Processing, 14, 1360-1371.

FLEYEH, H. Shadow and highlight invariant colour segmentation algorithm for traffic signs.
Cybernetics and Intelligent Systems, 2006 IEEE Conference on, 2006. IEEE, 1-7.

FRIEDMAN, N. & RUSSELL, S. Image segmentation in video sequences: A probabilistic approach.
Proceedings of the Thirteenth conference on Uncertainty in artificial intelligence, 1997.
Morgan Kaufmann Publishers Inc., 175-181.

FULKERSON, B., VEDALDI, A. & SOATTO, S. Class segmentation and object localization with
superpixel neighborhoods. Computer Vision, 2009 IEEE 12th International Conference
on, Sept. 29 2009-Oct. 2 2009 2009. 670-677.

GABORATORY, B. B. 1978. Chemical composition and nutritive value of bee-collected and bee-
stored pollen.

GALLAI, N., SALLES, J.-M., SETTELE, J. & VAISSIÈRE, B. E. 2009. Economic valuation of the
vulnerability of world agriculture confronted with pollinator decline. Ecological
Economics, 68, 810-821.

GANESAN, P. & RAJINI, V. YIQ color space based satellite image segmentation using modified
FCM clustering and histogram equalization. Advances in Electrical Engineering (ICAEE),
2014 International Conference on, 9-11 Jan. 2014 2014. 1-5.

GAO, J., KOSAKA, A. & KAK, A. C. 2005. A multi-Kalman filtering approach for video tracking of
human-delineated objects in cluttered environments. Computer Vision and Image
Understanding, 99, 1-57.

GARCIA, C. & DELAKIS, M. 2004. Convolutional face finder: a neural architecture for fast and
robust face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26, 1408-1423.

GIBSON, J. J. 1950. The perception of the visual world.
GIRSHICK, R. Fast r-cnn. Proceedings of the IEEE international conference on computer vision,

2015. 1440-1448.
GIRSHICK, R., DONAHUE, J., DARRELL, T. & MALIK, J. Rich feature hierarchies for accurate object

detection and semantic segmentation. Proceedings of the IEEE conference on computer
vision and pattern recognition, 2014. 580-587.

202

GIRSHICK, R. B., FELZENSZWALB, P. F. & MCALLESTER, D. 2012. Discriminatively trained
deformable part models, release 5.

GONZALEZ, R. C. & WOODS, R. E. 2011. Digital Image Processing Third Edition, India, Dorling
Kindersley Pvt. Ltd.

GOULD, S., GAO, T. & KOLLER, D. Region-based Segmentation and Object Detection. NIPS, 2009.
2.

GRITZMAN, A., RUBIN, D. & PANTANOWITZ, A. 2014. Comparison of colour transforms used in
lip segmentation algorithms. Signal, Image and Video Processing, 1-11.

HA, J.-E. & LEE, W.-H. 2010. Foreground objects detection using multiple difference images.
Optical Engineering, 49, 047201-047201-5.

HAN, B., COMANICIU, D. & DAVIS, L. Sequential kernel density approximation through mode
propagation: applications to background modeling. proc. ACCV, 2004. 818-823.

HANBURY, A. 2007. Image Segmentation by Region Based and Watershed Algorithms. Wiley
Encyclopedia of Computer Science and Engineering. John Wiley & Sons, Inc.

HANNUN, A., CASE, C., CASPER, J., CATANZARO, B., DIAMOS, G., ELSEN, E., PRENGER, R.,
SATHEESH, S., SENGUPTA, S. & COATES, A. 2014. Deep speech: Scaling up end-to-end
speech recognition. arXiv preprint arXiv:1412.5567.

HARVILLE, M. 2002. A framework for high-level feedback to adaptive, per-pixel, mixture-of-
gaussian background models. Computer Vision—ECCV 2002. Springer.

HASSANAT, A. B., ALKASASSBEH, M., AL-AWADI, M. & ESRA'A, A. 2016. Color-based object
segmentation method using artificial neural network. Simulation Modelling Practice and
Theory.

HE, K., GKIOXARI, G., DOLLÁR, P. & GIRSHICK, R. Mask r-cnn. Computer Vision (ICCV), 2017 IEEE
International Conference on, 2017. IEEE, 2980-2988.

HE, K. & SUN, J. Convolutional neural networks at constrained time cost. Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015. 5353-5360.

HE, K., ZHANG, X., REN, S. & SUN, J. Spatial Pyramid Pooling in Deep Convolutional Networks for
Visual Recognition. 2014 Cham. Springer International Publishing, 346-361.

HE, K., ZHANG, X., REN, S. & SUN, J. Deep residual learning for image recognition. Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016. 770-778.

HENDRIKS, C., YU, Z., LECOCQ, A., BAKKER, T., LOCKE, B. & TERENIUS, O. Identifying all individuals
in a honeybee hive-progress towards mapping all social interactions. Workshop Vis.
Observation Anal. Anim. Insect Behav. ICPR, 2012.

HORPRASERT, T., HARWOOD, D. & DAVIS, L. S. A statistical approach for real-time robust
background subtraction and shadow detection. IEEE ICCV, 1999. 1-19.

HOUGH, P. V. 1962. Method and means for recognizing complex patterns.
HOWARD, A. G., ZHU, M., CHEN, B., KALENICHENKO, D., WANG, W., WEYAND, T., ANDREETTO,

M. & ADAM, H. 2017. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.

HSIEH, F.-Y., HAN, C.-C., WU, N.-S., CHUANG, T. C. & FAN, K.-C. 2006. A novel approach to the
detection of small objects with low contrast. Signal Processing, 86, 71-83.

HUANG, Z. 2010. Honey Bee Nutrition [Online]. Available:
http://www.beeccdcap.uga.edu/documents/CAPArticle10.html [Accessed June 23
2014].

IANDOLA, F. N., HAN, S., MOSKEWICZ, M. W., ASHRAF, K., DALLY, W. J. & KEUTZER, K. 2016.
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.
arXiv preprint arXiv:1602.07360.

IKOMA, N., HARAGUCHI, Y. & HASEGAWA, H. On an evaluation of tracking performance
improvement by SMC-PHD filter with intensity image of pedestrians detection over on-
board camera using neural network. 2014 World Automation Congress (WAC), 3-7 Aug.
2014 2014. 273-278.

ILEA, D. E. & WHELAN, P. F. An adaptive unsupervised segmentation algorithm based on color-
texture coherence. IEEE Trans. Image Process, 2005. Citeseer.

http://www.beeccdcap.uga.edu/documents/CAPArticle10.html

203

ILLINGWORTH, J. & KITTLER, J. 1988. A survey of the hough transform. Computer Vision, Graphics,
and Image Processing, 44, 87-116.

INDUSTRIES, M. F. P. 2013. 2013 apiculture monitoring programme [Online]. Available:
http://nba.org.nz/uploads/MPI%202013%20Apiculture%20Report.pdf [Accessed June
23 2014].

IQBAL, A., SHAH, S. W. & KHAN, S. 2014. Non-Linear Moving Target Tracking: A Particle Filter
Approach. International Journal of Computer and Communication System Engineering
(IJCCSE), 1.

JACQUES, J. C. S., JUNG, C. R. & RAUPP MUSSE, S. Background subtraction and shadow detection
in grayscale video sequences. Computer Graphics and Image Processing, 2005.
SIBGRAPI 2005. 18th Brazilian Symposium on, 2005. IEEE, 189-196.

JAVED, O., SHAFIQUE, K. & SHAH, M. A hierarchical approach to robust background subtraction
using color and gradient information. Motion and Video Computing, 2002. Proceedings.
Workshop on, 5-6 Dec. 2002 2002. 22-27.

JOHNSON, R. & CORN, M. L. 2014. Bee Health: Background and Issues for Congress.
KAVITHA, K. & TEJASWINI, A. 2012. VIBE: Background Detection and Subtraction for Image

Sequences in Video. International Journal of Computer Science and Information
Technologies, 3, 5223-5226.

KIMURA, T., OHASHI, M., CRAILSHEIM, K., SCHMICKL, T., ODAKA, R. & IKENO, H. Tracking of
Multiple Honey Bees on a Flat Surface. Emerging Trends in Engineering and Technology
(ICETET), 2012 Fifth International Conference on, 2012. IEEE, 36-39.

KIMURA, T., OHASHI, M., OKADA, R. & IKENO, H. 2011. A new approach for the simultaneous
tracking of multiple honeybees for analysis of hive behavior. Apidologie, 42, 607-617.

KLATT, B. K., HOLZSCHUH, A., WESTPHAL, C., CLOUGH, Y., SMIT, I., PAWELZIK, E. & TSCHARNTKE,
T. 2014. Bee pollination improves crop quality, shelf life and commercial value.
Proceedings of the Royal Society B: Biological Sciences, 281, 20132440.

KLEIN, A.-M., VAISSIERE, B. E., CANE, J. H., STEFFAN-DEWENTER, I., CUNNINGHAM, S. A.,
KREMEN, C. & TSCHARNTKE, T. 2007. Importance of pollinators in changing landscapes
for world crops. Proceedings of the Royal Society B: Biological Sciences, 274, 303-313.

KNAUER, U., HIMMELSBACH, M., WINKLER, F., ZAUTKE, F., BIENEFELD, K. & MEFFERT, B. 2005.
Application of an adaptive background model for monitoring honeybees.

KNAUER, U. & MEFFERT, B. Evaluation based combining of classifiers for monitoring honeybees.
Applications of Computer Vision (WACV), 2009 Workshop on, 7-8 Dec. 2009 2009. 1-6.

KNAUER, U. & MEFFERT, B. Fast computation of region homogeneity with application in a
surveillance task. Proceedings of ISPRS Commission, 2010. 337-342.

KOTOULAS, L. & ANDREADIS, I. Image analysis using moments. 5th Int. Conf. on Technology and
Automation, Thessaloniki, Greece, 2005. 360-364.

KRIZHEVSKY, A., SUTSKEVER, I. & HINTON, G. E. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 2012. 1097-1105.

KUANG, X., SANG, N. & GAO, C. 2016. Object localization with mid-level part detectors.
Neurocomputing.

KUHN, H. 2005. The Hungarian method for the assignment problem. Naval Research Logistics
(NRL), 52, 7-21.

KUMAR, A. An empirical study of selection of the appropriate color space for skin detection: A
case of face detection in color images. Issues and Challenges in Intelligent Computing
Techniques (ICICT), 2014 International Conference on, 7-8 Feb. 2014 2014. 725-730.

LAN, Y., JI, Z., GAO, J. & YAOWEI, W. Robot fish detection based on a combination method of
three-frame-difference and background subtraction. Control and Decision Conference
(2014 CCDC), The 26th Chinese, May 31 2014-June 2 2014 2014. 3905-3909.

LAWRENCE, S., GILES, C. L., AH CHUNG, T. & BACK, A. D. 1997. Face recognition: a convolutional
neural-network approach. IEEE Transactions on Neural Networks, 8, 98-113.

LECUN, Y., BENGIO, Y. & HINTON, G. 2015. Deep learning. Nature, 521, 436.

http://nba.org.nz/uploads/MPI%202013%20Apiculture%20Report.pdf

204

LECUN, Y., BOTTOU, L., BENGIO, Y. & HAFFNER, P. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86, 2278-2324.

LI, P., ZHANG, T. & MA, B. 2004. Unscented Kalman filter for visual curve tracking. Image and
Vision Computing, 22, 157-164.

LIEW, L. H., LEE, B. Y. & CHAN, M. Cell detection for bee comb images using circular Hough
transformation. Science and Social Research (CSSR), 2010 International Conference on,
2010. IEEE, 191-195.

LIN, H.-H., CHUANG, J.-H. & LIU, T.-L. 2011. Regularized background adaptation: a novel learning
rate control scheme for Gaussian mixture modeling. Image Processing, IEEE
Transactions on, 20, 822-836.

LIN, T.-Y., MAIRE, M., BELONGIE, S., HAYS, J., PERONA, P., RAMANAN, D., DOLLÁR, P. & ZITNICK,
C. L. Microsoft COCO: Common Objects in Context. 2014 Cham. Springer International
Publishing, 740-755.

LIPTON, A. J., FUJIYOSHI, H. & PATIL, R. S. Moving target classification and tracking from real-
time video. Applications of Computer Vision, 1998. WACV'98. Proceedings., Fourth IEEE
Workshop on, 1998. IEEE, 8-14.

LITTMANN, E. & RITTER, H. 1997. Adaptive color segmentation-a comparison of neural and
statistical methods. Neural Networks, IEEE Transactions on, 8, 175-185.

LIU, W., ANGUELOV, D., ERHAN, D., SZEGEDY, C., REED, S., FU, C.-Y. & BERG, A. C. SSD: Single
Shot MultiBox Detector. 2016 Cham. Springer International Publishing, 21-37.

LO, B. & VELASTIN, S. Automatic congestion detection system for underground platforms.
Intelligent Multimedia, Video and Speech Processing, 2001. Proceedings of 2001
International Symposium on, 2001. IEEE, 158-161.

LONG, J., SHELHAMER, E. & DARRELL, T. Fully convolutional networks for semantic segmentation.
Proceedings of the IEEE conference on computer vision and pattern recognition, 2015.
3431-3440.

LU, N., WANG, J., WU, Q. & YANG, L. 2008. An improved motion detection method for real-time
surveillance. IAENG International Journal of Computer Science, 35, 1-10.

LU, S., TSECHPENAKIS, G., METAXAS, D. N., JENSEN, M. L. & KRUSE, J. Blob Analysis of the Head
and Hands: A Method for Deception Detection. HICSS, 2005. 20.3.

LU, W. & TAN, J. 2008. Detection of incomplete ellipse in images with strong noise by iterative
randomized Hough transform (IRHT). Pattern Recognition, 41, 1268-1279.

MA, C. & LIU, C. 2015. Two dimensional hashing for visual tracking. Computer Vision and Image
Understanding, 135, 83-94.

MA, Y., ZHANG, Z. & LI, Y. 2015. Moving Vehicles Detection Based on Improved Gaussian Mixture
Model.

MAAS, A. L., HANNUN, A. Y. & NG, A. Y. Rectifier nonlinearities improve neural network acoustic
models. Proc. icml, 2013. 3.

MIGLIORE, D. A., MATTEUCCI, M. & NACCARI, M. 2006. A revaluation of frame difference in fast
and robust motion detection. Proceedings of the 4th ACM international workshop on
Video surveillance and sensor networks. Santa Barbara, California, USA: ACM.

MIN, H., JIA, W., WANG, X.-F., ZHAO, Y., HU, R.-X., LUO, Y.-T., XUE, F. & LU, J.-T. 2015. An
Intensity-Texture model based level set method for image segmentation. Pattern
Recognition, 48, 1547-1562.

MOHAPATRA, S., KAR, A., DASH, S., MOHANTY, S. & SWAIN, P. 2014. A Novel Approach to Face
Detection Using Advanced Support Vector Machine. Intelligent Computing, Networking,
and Informatics. Springer.

MURPHY, K. P. 2012. Machine learning, a probabilistic perspective, Cambridge, Massachusetts,
The MIT Press.

NAGI, J., DUCATELLE, F., CARO, G. A. D., CIRE, D., X015F, AN, MEIER, U., GIUSTI, A., NAGI, F.,
SCHMIDHUBER, J. & GAMBARDELLA, L. M. Max-pooling convolutional neural networks
for vision-based hand gesture recognition. 2011 IEEE International Conference on Signal
and Image Processing Applications (ICSIPA), 16-18 Nov. 2011 2011. 342-347.

205

NAIR, P. & SAUNDERS, A. 1996. Hough transform based ellipse detection algorithm. Pattern
Recognition Letters, 17, 777-784.

NAIR, V. & HINTON, G. E. Rectified linear units improve restricted boltzmann machines.
Proceedings of the 27th international conference on machine learning (ICML-10), 2010.
807-814.

NANDASHRI, D. & SMITHA, P. 2015a. An Efficient Tracking of Multi Object Visual Motion using
Hungarian Method. International Journal of Engineering Research & Technology (IJERT),
4.

NANDASHRI, D. & SMITHA, P. 2015b. An Visual Motion Tracking of Multi-Object Using Hungarian
Method. International Journal of Innovative Research and Development|| ISSN 2278–
0211, 4.

NANDASHRI, D. & SMITHA, P. 2015c. An Visual Motion Tracking of Multi-Object Using Hungarian
Method. International Journal of Innovative Research and Development, 4.

NAUG, D. 2009. Nutritional stress due to habitat loss may explain recent honeybee colony
collapses. Biological Conservation, 142, 2369-2372.

NIRGUDE, R. & JAIN, S. 2014. COLOR IMAGE SEGMENTATION WITH K MEANS CLUSTERING AND
DYNAMIC REGION MERGING. Sai Om Journal of Science, Engineering & Technology: A
Peer Reviewed National Journal (Online ISSN 2347-7547), 1, 1-10.

OHLANDER, R., PRICE, K. & REDDY, D. R. 1978. Picture segmentation using a recursive region
splitting method. Computer Graphics and Image Processing, 8, 313-333.

OHTA, Y.-I., KANADE, T. & SAKAI, T. 1980. Color information for region segmentation. Computer
Graphics and Image Processing, 13, 222-241.

OSADCHY, M., CUN, Y. L. & MILLER, M. L. 2007. Synergistic face detection and pose estimation
with energy-based models. Journal of Machine Learning Research, 8, 1197-1215.

OTSU, N. 1975. A threshold selection method from gray-level histograms. Automatica, 11, 23-
27.

PAN, S. J. & YANG, Q. 2010. A survey on transfer learning. IEEE Transactions on knowledge and
data engineering, 22, 1345-1359.

PAVLIDIS, T. & LIOW, Y. T. 1990. Integrating region growing and edge detection. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 12, 225-233.

PENG, X. 2015. Combine color and shape in real-time detection of texture-less objects. Computer
Vision and Image Understanding, 135, 31-48.

QI, B., WU, T., HE, H. & HU, T. 2011. Real-Time Detection of Small Surface Objects Using Weather
Effects. In: KIMMEL, R., KLETTE, R. & SUGIMOTO, A. (eds.) Computer Vision – ACCV 2010.
Springer Berlin Heidelberg.

QI, Y., ZHANG, G. & LI, Y. Fast Segmentation Algorithm Based on Texture. Proceedings of the
Second International Conference on Mechatronics and Automatic Control, 2015.
Springer, 541-547.

RAKIBE, R. S. & PATIL, B. D. 2013. Background subtraction algorithm based human motion
detection. International Journal of scientific and research publications, 3.

REDMON, J., DIVVALA, S., GIRSHICK, R. & FARHADI, A. You only look once: Unified, real-time
object detection. Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016. 779-788.

REDMON, J. & FARHADI, A. 2018. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767.

REN, S., HE, K., GIRSHICK, R. & SUN, J. Faster r-cnn: Towards real-time object detection with
region proposal networks. Advances in neural information processing systems, 2015.
91-99.

REN, S., HE, K., GIRSHICK, R. & SUN, J. 2017. Faster R-CNN: towards real-time object detection
with region proposal networks. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 1137-1149.

REZENDE, D. J., MOHAMED, S. & WIERSTRA, D. 2014. Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082.

206

RUSSAKOVSKY, O., DENG, J., SU, H., KRAUSE, J., SATHEESH, S., MA, S., HUANG, Z., KARPATHY, A.,
KHOSLA, A., BERNSTEIN, M., BERG, A. C. & FEI-FEI, L. 2015. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision, 115, 211-252.

SANCHEZ-GARCIA, A. J., RIOS-FIGUEROA, H. V., MARIN-HERNANDEZ, A. & ACOSTA-MESA, H. G.
Tracking and prediction of motion of segmented regions using the Kalman filter.
Electronics, Communications and Computers (CONIELECOMP), 2014 International
Conference on, 26-28 Feb. 2014 2014. 88-93.

SCHMIDHUBER, J. 2015. Deep learning in neural networks: An overview. Neural Networks, 61,
85-117.

SEERAM, N. P. 2008. Berry fruits: compositional elements, biochemical activities, and the impact
of their intake on human health, performance, and disease. Journal of agricultural and
food chemistry, 56, 627-629.

SERMANET, P., EIGEN, D., ZHANG, X., MATHIEU, M., FERGUS, R. & LECUN, Y. 2013a. Overfeat:
Integrated recognition, localization and detection using convolutional networks. arXiv
preprint arXiv:1312.6229.

SERMANET, P., KAVUKCUOGLU, K., CHINTALA, S. & LECUN, Y. Pedestrian detection with
unsupervised multi-stage feature learning. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2013b. 3626-3633.

SHADEED, W., ABU-AL-NADI, D. I. & MISMAR, M. J. Road traffic sign detection in color images.
Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003 10th IEEE
International Conference on, 2003. IEEE, 890-893.

SHAFIE, A. A., HAFIZ, F. & ALI, M. 2009. Motion detection techniques using optical flow. World
Academy of Science, Engineering and Technology, 56, 559-561.

SHANTAIYA, S., VERMA, K. & MEHTA, K. 2015. Multiple Object Tracking using Kalman Filter and
Optical Flow. European Journal of Advances in Engineering and Technology, 2, 34-39.

SHUIGEN, W., ZHEN, C. & HUA, D. Motion detection based on temporal difference method and
optical flow field. 2009 Second International Symposium on Electronic Commerce and
Security, 2009. IEEE, 85-88.

SIANG TAN, K. & MAT ISA, N. A. 2011. Color image segmentation using histogram thresholding
– Fuzzy C-means hybrid approach. Pattern Recognition, 44, 1-15.

SIMONYAN, K. & ZISSERMAN, A. 2014. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

SINGLA, N. 2014. Motion Detection Based on Frame Difference Method. International Journal of
Information & Computation Technology, 4, 1559-1565.

SMITH, L. N. Cyclical learning rates for training neural networks. Applications of Computer Vision
(WACV), 2017 IEEE Winter Conference on, 2017. IEEE, 464-472.

SOBRAL, A. & VACAVANT, A. 2014. A comprehensive review of background subtraction
algorithms evaluated with synthetic and real videos. Computer Vision and Image
Understanding, 122, 4-21.

SRIVASTAVA, R. K., GREFF, K. & SCHMIDHUBER, J. 2015. Highway networks. arXiv preprint
arXiv:1505.00387.

STAUFFER, C. & GRIMSON, W. E. L. Adaptive background mixture models for real-time tracking.
Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on.,
1999 1999. 252 Vol. 2.

STAVELEY, J. P., LAW, S. A., FAIRBROTHER, A. & MENZIE, C. A. 2014. A causal analysis of observed
declines in managed honey bees (Apis mellifera). Human and Ecological Risk Assessment:
An International Journal, 20, 566-591.

STENGER, B., MENDONÇA, P. R. & CIPOLLA, R. Model-Based Hand Tracking Using an Unscented
Kalman Filter. BMVC, 2001. 63-72.

SUBTIL, F. & RABILLOUD, M. 2015. An enhancement of ROC curves made them clinically relevant
for diagnostic-test comparison and optimal-threshold determination. Journal of Clinical
Epidemiology, 68, 752-759.

207

SZEGEDY, C., LIU, W., JIA, Y., SERMANET, P., REED, S., ANGUELOV, D., ERHAN, D., VANHOUCKE,
V. & RABINOVICH, A. Going deeper with convolutions. Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015. 1-9.

TAN, R., HUO, H., QIAN, J. & FANG, T. 2006. Traffic video segmentation using adaptive-k gaussian
mixture model. Advances in Machine Vision, Image Processing, and Pattern Analysis.
Springer.

TANG, Y. 2013. Deep learning using linear support vector machines. arXiv preprint
arXiv:1306.0239.

TASHITA, A., KOBASHI, S., MORI, Y., MORIMOTO, M., AIKAWA, S., YOSHIOKA, Y. & HATA, Y.
Macrophage Tracking Using the Hungarian Algorithm in Time Lapse MR Images. 2015
7th International Conference on Emerging Trends in Engineering & Technology (ICETET),
18-20 Nov. 2015 2015. 169-173.

TELAGARAPU, P., RAO, M. V. N. & SURESH, G. A novel traffic-tracking system using morphological
and Blob analysis. 2012 International Conference on Computing, Communication and
Applications, 22-24 Feb. 2012 2012. 1-4.

THOU-HO, C., YU-FENG, L. & TSONG-YI, C. Intelligent Vehicle Counting Method Based on Blob
Analysis in Traffic Surveillance. Innovative Computing, Information and Control, 2007.
ICICIC '07. Second International Conference on, 5-7 Sept. 2007 2007. 238-238.

TIAN, J., QI, X., QU, L. & TANG, Y. 2016. New spectrum ratio properties and features for shadow
detection. Pattern Recognition, 51, 85-96.

TOMPSON, J., GOROSHIN, R., JAIN, A., LECUN, Y. & BREGLER, C. Efficient object localization using
convolutional networks. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015. 648-656.

TOSHEV, A., TASKAR, B. & DANIILIDIS, K. 2012. Shape-Based Object Detection via Boundary
Structure Segmentation. International Journal of Computer Vision, 99, 123-146.

TOYAMA, K., KRUMM, J., BRUMITT, B. & MEYERS, B. Wallflower: Principles and practice of
background maintenance. Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference on, 1999. IEEE, 255-261.

TREMEAU, A. & BOREL, N. 1997. A region growing and merging algorithm to color segmentation.
Pattern Recognition, 30, 1191-1203.

TSE-WEI, C., YI-LING, C. & SHAO-YI, C. Fast image segmentation based on K-Means clustering
with histograms in HSV color space. Multimedia Signal Processing, 2008 IEEE 10th
Workshop on, 8-10 Oct. 2008 2008. 322-325.

VAILLANT, R., MONROCQ, C. & CUN, Y. L. 1994. Original approach for the localisation of objects
in images. IEE Proceedings - Vision, Image and Signal Processing [Online], 141. Available:
http://digital-library.theiet.org/content/journals/10.1049/ip-vis_19941301.

VAN GERVEN, M. & BOHTE, S. 2018. Artificial neural networks as models of neural information
processing, Frontiers Media SA.

VANENGELSDORP, D. & MEIXNER, M. D. 2010. A historical review of managed honey bee
populations in Europe and the United States and the factors that may affect them.
Journal of Invertebrate Pathology, 103, Supplement, S80-S95.

VARD, A., JAMSHIDI, K. & MOVAHHEDINIA, N. 2012. Small object detection in cluttered image
using a correlation based active contour model. Pattern Recognition Letters, 33, 543-
553.

VEERARAGHAVAN, A., CHELLAPPA, R. & SRINIVASAN, M. 2008. Shape-and-Behavior Encoded
Tracking of Bee Dances. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
30, 463-476.

VERMAAK, J., DOUCET, A. & PEREZ, P. Maintaining multimodality through mixture tracking.
Proceedings Ninth IEEE International Conference on Computer Vision, 13-16 Oct. 2003
2003. 1110-1116 vol.2.

VIOLA, P. & JONES, M. J. 2004. Robust Real-Time Face Detection. International Journal of
Computer Vision, 57, 137-154.

http://digital-library.theiet.org/content/journals/10.1049/ip-vis_19941301

208

VITABILE, S., POLLACCIA, G., PILATO, G. & SORBELLO, F. Road signs recognition using a dynamic
pixel aggregation technique in the HSV color space. Image Analysis and Processing, 2001.
Proceedings. 11th International Conference on, 26-28 Sept. 2001 2001. 572-577.

WANG, H., ONEATA, D., VERBEEK, J. & SCHMID, C. 2015a. A robust and efficient video
representation for action recognition. International Journal of Computer Vision, 1-20.

WANG, K., LIANG, Y., XING, X. & ZHANG, R. 2015b. Target Detection Algorithm Based on
Gaussian Mixture Background Subtraction Model. In: DENG, Z. & LI, H. (eds.) Proceedings
of the 2015 Chinese Intelligent Automation Conference. Springer Berlin Heidelberg.

WANG, P., SHEN, X., LIN, Z., COHEN, S., PRICE, B. & YUILLE, A. L. Joint object and part
segmentation using deep learned potentials. Proceedings of the IEEE International
Conference on Computer Vision, 2015c. 1573-1581.

WEI, J. 2013. Small moving object detection from Infra-Red sequences. International Journal of
Image and Graphics, 13.

WELCH, G. & BISHOP, G. 2006. An introduction to the kalman filter. Department of Computer
Science, University of North Carolina. Chapel Hill, NC, unpublished manuscript.

WENG, S.-K., KUO, C.-M. & TU, S.-K. 2006. Video object tracking using adaptive Kalman filter.
Journal of Visual Communication and Image Representation, 17, 1190-1208.

WILLIAMS, I. 1994. The dependence of crop production within the European Union on
pollination by honey bees. Agricultural Zoology Reviews (United Kingdom).

WU, B. & NEVATIA, R. 2007. Detection and Tracking of Multiple, Partially Occluded Humans by
Bayesian Combination of Edgelet based Part Detectors. International Journal of
Computer Vision, 75, 247-266.

XANGDONG, X., SUDHAKAR, R. & HANQI, Z. 1995. Real-time eye feature tracking from a video
image sequence using Kalman filter. Systems, Man and Cybernetics, IEEE Transactions
on, 25, 1568-1577.

YONG-MEI, Z., SHENG-YI, J. & MEI-LIN, Y. A Region-Based Image Segmentation Method with
Mean-Shift Clustering Algorithm. Fuzzy Systems and Knowledge Discovery, 2008. FSKD
'08. Fifth International Conference on, 18-20 Oct. 2008 2008. 366-370.

YU, P. & POH, C. L. 2015. Region-based snake with edge constraint for segmentation of lymph
nodes on CT images. Computers in Biology and Medicine, 60, 86-91.

YUAN, J., WANG, D. & CHERIYADAT, A. M. 2015. Factorization-Based Texture Segmentation. IEEE
Transactions on Image Processing, 24, 3488-3497.

ZEALAND, T. N. B. A. O. N. 2013. Honey bees have been kept in New Zealand for over 150 years
[Online]. Available: http://nba.org.nz/about-bees/interesting-facts [Accessed June 23
2014].

ZENG, J., XIE, L. & LIU, Z.-Q. 2008. Type-2 fuzzy Gaussian mixture models. Pattern Recognition,
41, 3636-3643.

ZHANG, B., LI, Z., PERINA, A., BUE, A. D. & MURINO, V. Adaptive Local Movement Modelling for
Object Tracking. 2015 IEEE Winter Conference on Applications of Computer Vision, 5-9
Jan. 2015 2015. 25-32.

ZHANG, S., CHAN, S. C., LIAO, B. & TSUI, K. M. A new visual object tracking algorithm using
Bayesian Kalman filter. 2014 IEEE International Symposium on Circuits and Systems
(ISCAS), 1-5 June 2014 2014. 522-525.

ZHEN, H., YEWEI, L. & JINJIANG, L. Image Segmentation Algorithm Based on Improved Visual
Attention Model and Region Growing. Wireless Communications Networking and
Mobile Computing (WiCOM), 2010 6th International Conference on, 23-25 Sept. 2010
2010. 1-4.

ZHU, W., ZENG, N. & WANG, N. 2010. Sensitivity, specificity, accuracy, associated confidence
interval and ROC analysis with practical SAS implementations. NESUG proceedings:
health care and life sciences, Baltimore, Maryland, 19.

ZHU, Y.-F. 2011. Moving Objects Detection and Segmentation Based on Background Subtraction
and Image Over-Segmentation. JSW, 6, 1361-1367.

http://nba.org.nz/about-bees/interesting-facts

209

ZIA, K., BALCH, T. & DELLAERT, F. A Rao-Blackwellized particle filter for EigenTracking. Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE
Computer Society Conference on, 27 June-2 July 2004 2004. II-980-II-986 Vol.2.

	Abstract
	Attestation of Authorship
	Acknowledgements
	Ethics Approval
	Confidential Material
	Chapter 1 : Introduction
	1.1 Introduction of this research
	1.2 significance of this research
	1.3 Research gaps
	1.4 Outline of this thesis
	1.5 The important of bees and contribution of this research
	1.5.1 The important role of bees
	1.5.2 Health of bees
	1.5.3 Contribution of this research for bee health observation

	1.6 Publications

	Chapter 2 : Literature review
	2.1 Object detection in a single frame
	2.1.1 Colour feature for image segmentation
	2.1.2 Other features for object detection
	2.1.3 Region based segmentation
	2.1.4 The Hough transform for object shape detection

	2.2 Object detection with multiple frames
	2.2.1 Gaussian mixture model
	2.2.2 Background subtraction
	2.2.3 Frame difference
	2.2.4 Optical flow
	2.2.5 Shadow detection and removal

	2.3 Object tracking
	2.3.1 Object blob analysis for tracking
	2.3.2 Object tracking with a Kalman filter
	2.3.3 Object tracking with a particle filter
	2.3.4 Other tracking methods
	2.3.5 Multiple object tracking problem

	2.4 Small object tracking
	2.4.1 Direct detection of small object regions
	2.4.2 Segment the big object region in small parts

	2.5 Deep learning for computer vision
	2.6 Bee and pollen sacs detection in computer vision
	2.7 Approaches for this research

	Chapter 3 Background of research
	3.1 Motion detection using the Gaussian mixture model
	3.2 Colour segmentation
	3.2.1 Histogram thresholding with colour
	3.2.2 Colour spaces

	3.3 Hough transform detection
	3.3.1 The Hough transform theory
	3.3.2 An simple example of straight line detection
	3.3.3 The generalized Hough transform

	3.4 Morphological dilation and erosion
	3.4.1 Morphological erosion
	3.4.2 Morphological dilation
	3.4.3 Image opening, closing and hole filling
	3.4.3.1 Image opening and closing
	3.4.3.2 Filling holes

	3.5 Kalman filter for object tracking
	3.5.1 Discrete Kalman filter estimation
	3.5.2 Calculation of the Kalman gain
	3.5.3 Correction covariance update
	3.5.4 Summary of Discrete Kalman filter algorithm
	3.5.5 The filter parameters and tuning
	3.5.6 The Kalman filter for object tracking

	3.6 Hungarian assignment method
	3.6.1 The process of the Hungarian method
	3.6.2 The example of the method
	3.6.3 The Hungarian assignment method for multiple object tracking

	3.7 Blob analysis with image moments on binary image
	3.8 The Receiver operating characteristic
	3.9 Convolutional deep neural networks
	3.9.1 The architecture of CNNs
	3.9.2 The VGG networks
	3.9.3 Network training and learning
	3.9.4 The fast region-based convolutional neural network (Fast RCNN)
	3.9.5 The Faster RCNN

	Chapter 4 : Methodology of bee detection and tracking
	4.1 The research environment and equipment
	4.2 Bee Detection
	4.2.1 Bee detection with foreground subtraction
	4.2.2 Colour segmentation for bee detection
	4.2.3 The combination of foreground and colour detection
	4.2.3.1 Bee detection model A
	4.2.3.2 Bee detection model B

	4.2.4 Introduction to the problem of pollen detection
	4.2.4.1 Bee detection model C
	4.2.4.2 Bee detection model D

	4.3 Bee Tracking
	4.3.1 Prediction method
	4.3.2 Kalman filter
	4.3.2.1 Principle of Kalman filter
	4.3.2.2 The tracking model of the Kalman filter
	4.3.2.3 Kalman filter model with assumed detection

	4.3.3 Hough transform for improvement of merged bee tracking
	4.3.3.1 Definition of images
	4.3.3.2 The Hough transform
	4.3.3.3 The voting map
	4.3.3.4 The rotation of the bee
	4.3.3.5 The covariance matrix of the Kalman filter

	4.3.4 Brief explanation of the Hungarian assignment method for bees tracking

	Chapter 5 Methodology of pollen sacs detection and measurement
	5.1 Pollen sacs detection and measurement with image processing and statistics
	5.1.1 Detect main body of bee
	5.1.2 Detect colour of pollen sacs
	5.1.3 Pollen blob features
	5.1.4 The pollen feature detection model for pollen detection
	5.1.4.1 Statistics analysis for the blob features
	5.1.4.2 The receiver operating characteristic (ROC) analysis
	5.1.4.3 Blob feature combination
	5.1.4.4 The estimation for decreasing false positive (FP)

	5.1.5 Pollen measurement on images.
	5.1.6 Pollen measurement on the bee monitoring video

	5.2 Deep learning for pollen sacs detection and measurement
	5.2.1 Training and validation data
	5.2.2 The training, pollen detection and pollen and non-pollen bee image identification
	5.2.3 Training repetition and learning rate choosing
	5.2.4 Pollen measurement on video frame sequences

	Chapter 6 : Results and discussion
	6.1 Results of bee tracking
	6.1.1 The preparation
	6.1.2 The results and evaluation
	6.1.2.1 Single bee tracking
	6.1.2.2 The merged bee tracking

	6.1.3 Summary of tracking results
	6.1.4 Mistakes analysis
	6.1.4.1 Merged bee tracking limitation
	6.1.4.2 Boundary errors
	6.1.4.3 Problem of bee shadow

	6.2 Evaluation of pollen measurement
	6.2.1 Test videos
	6.2.2 Experimental results and comparison
	6.2.3 Discussion of two methods
	6.2.3.1 Data collection and analysis
	6.2.3.2 Error analysis
	6.2.3.3 Comparison of research methodologies

	Chapter 7 : Conclusions and future work
	7.1 The bee detection model
	7.2 The bee tracking performance
	7.3 The pollen detection and measurement
	7.4 Future work
	7.4.1 Bee detection improvement
	7.4.2 Bee tracking improvement
	7.4.3 Improvement of pollen detection and measurement

	References

