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Abstract: 

With the increasing number of computational systems based on continuous streams           

of information, progressively learning and accommodating new knowledge in a more           

efficient manner becomes a long-standing challenge. This thesis proposes methods          

employing a Brain-Inspired Spiking Neural Network (BI-SNN) architecture for transfer          

learning scenarios. The proposed transfer learning approaches were experimentally         

validated using a benchmark brain data related to upper limb movement. The results             

showed that the proposed methods have the capability to effectively learn new            

knowledge by retaining and reusing previously learned knowledge, resulting in a           

better accuracy of classification (up to 88.89%) when compared with non-transfer           

learning methods. Further, a new deep knowledge representation approach is          

proposed and developed, which allows extracting spatial temporal rules from deep           

knowledge, enabling a better interpretation of learning patterns in the SNN models            

and evolution trace of knowledge during transfer learning. 
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Chapter 1   Introduction 

1.1 Rationale and Motivation

Large amounts of data ​are produced in the form of continuous streams and the              

distribution behind these produced data may be changed over time. Consequently,           

adaptive and scalable algorithms are required to capture such changes and leverage            

prior knowledge in order to improve the learning performance of target domains and             

avoid becoming obsolete. The ability of continually learning over long time spans and             

transferring knowledge across domains, referred to as transfer learning, is crucial for            

the development of real-life applications when processing continuous streams of          

information.  

The majority of current transfer learning research has been carried out in            

conventional machine learning techniques, such as, support vector machine (SVM)          

(Bruzzone, & Marconcini, 2009), and deep neural networks (Rusu et al., 2016; Li,             

Parikh, & He, 2018). ​However, these methods often model spatial and temporal            

components separately without considering informative spatio-temporal correlations       

in the data (Kasabov, 2019).  

Compared to conventional machine learning methods, Spiking Neural Networks         

(SNNs) are promising computational paradigms for modelling complex information         

such as Spatio-temporal Brain Data (STBD) (Kasabov, 2019). However, few studies           

have thoroughly investigated transfer learning in SNNs in a systematic way, even            
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though they are naturally adaptive to changing environments. The challenge now is            

to develop new SNN algorithms and methods for the efficient learning of STBD in a               

transfer learning manner. 

 

This thesis covers this research gap by adapting Brain-Inspired Spiking Neural           

Network (BI-SNN) architecture in a transfer learning scenario, with the goals of            

learning new information from different tasks or subjects sequentially, while retaining           

the knowledge from previously learned tasks or subjects without forgetting. This           

research also contributes to an improved level of interpretability of learning patterns            

in SNN models through deep knowledge representation. The task to task and subject             

to subject transfer learning case studies here use real-life Electroencephalogram          

(EEG) dataset which was measured prior to this study by New Zealand College of              

Chiropractic and Aalborg University under the ethical approval of the local ethics            

committee (N-20130081) who are acknowledged in this thesis. 

 

1.2 Aims of this Thesis and Research Questions 

The primary aims of this thesis are summarised as follows: 

1) Proposal of novel deep transfer learning methods in BI-SNN. 

● To develop an incremental learning method based on SNN models 

● To develop a transfer learning method based on SNN models 

● To develop connection weights pruning techniques for transfer learning         

in SNN models 
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● To develop neuron aggregation technique for transfer learning SNN        

models

2) Empirical study of the proposed transfer learning approaches on task to task           

transfer learning in one subject.

● To design optimal transfer learning in SNN models that can learn          

sequentially presented tasks

● To achieve an improved classification accuracy on previous learned        

tasks while learning new tasks

● To interpret the learning patterns in SNN models captured during the          

learning process

3) Empirical study of the proposed transfer learning approaches on subject to          

subject transfer learning.

● To design optimal transfer learning in SNN models that can learn          

sequentially presented subjects

● To achieve an improved classification accuracy on previously learned

subjects while learning new subjects

● To interpret the learning patterns in SNN model captured during the          

learning process

4) Development of a new method for knowledge representation in BI-SNN and          

for tracing the evolution of knowledge during transfer learning.

● To develop a new method for dynamic spatio-temporal rule extraction         

of patterns generated during supervised learning in SNN models
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● To improve the level of interpretability of learning patterns in the SNN            

models  

● To develop a method for tracing the evolution of knowledge during           

transfer learning 

 

During the progression of this thesis, the following research questions have been 

addressed: 

Q1. How to develop a transfer learning technique for a Spiking Neural Network             

framework? 

Q2. How to deal with non-stationarity among different domains so that better transfer             

learning performance can be obtained across domains? 

Q4. How to improve the level of interpretability and understanding of learning            

patterns in a successful transfer learning in SNN models? 

 

1.3 Thesis Structure 

This thesis consists of eight chapters which are outlined as follows: 

 

Chapter 1​ ​states the research rationale, motivations, and research questions. 

 

Chapter 2 reviews the research about the definitions and existing approaches for            

incremental learning and transfer learning and the relationship between these two           
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learning techniques. This section is then followed by a review on deep knowledge             

representation in order to gain further understanding of the learning process. 

 
Chapter 3 discusses the techniques of information encoding, computational model          

of a spiking neuron and learning in SNN models. Then, this chapter introduces a              

BI-SNN architecture, namely NeuCube for modelling spatio-temporal data. 

 
Chapter 4 ​reveals the methodology for the study and is proposing two new training              

approaches including “incremental training” and “transfer learning”, called ImSNN         

and TrSNN respectively, along with three additional algorithms that can be combined            

with the proposed transfer learning approaches, including two connection weights          

pruning algorithms, and one neuron aggregation algorithm.  

 

Chapter 5 ​proposes a transfer learning approach for the scenario of task to task              

transfer learning in one subject. It represents the dataset that was used in this              

research.  

 

Chapter 6 ​proposes transfer learning algorithms across multiple subjects utilising the           

SNN architecture under investigation. 

 

Chapter 7 proposes a new algorithm for knowledge representation based on the            

NeuCube SNN architecture and demonstrates it for knowledge discovery through          

extracting and analyzing spatial temporal rules (STR) for task to task and subject to              

subject transfer learning models as introduced in the previous chapters. 
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Chapter 8 summarises the key findings, contributions, limitations and future works           

for this research. 

Figure 1-1 illustrates a bird’s-eye view of the thesis and its different components             

towards addressing the research questions.  

20 



 Figure 1-1 A bird’s-eye view of the thesis structure. 
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Chapter 2 Incremental and Transfer Learning and       
Knowledge Representation in Humans and     
Machines 
 

2.1 Introduction 

This chapter will first review computational approaches of learning which include           

incremental learning for overcoming catastrophic forgetting problems in Section 2.2          

and transfer learning for the reuse of knowledge during learning of new tasks for one               

subject or the same task across different subjects in Section 2.3. Then, in Section              

2.4, deep knowledge representation will be discussed as the main technique for            

improving the level of interpretability of learning patterns in the SNN models. 

 

2.2 Incremental Learning 

Humans and animals exhibit an astonishing ability to learn in a lifelong fashion by              

incrementally acquiring, accommodating, refining new knowledge and skills, and         

transferring them across domains (Cichon, & Gan, 2015; Bremner, Lewkowicz &           

Spence, 2012). The ability to continuously adapt to new knowledge over time without             

forgetting crucial information from prior learned experiences can be referred to as            

incremental learning (Parisi, Kemker, Part, & Wermte, 2019). Thus, the capacity of            

incremental learning is essential for the development of computational systems          

performing in the real world. However, the tendency for previously learned           

information being interfered by newly learned knowledge remains a key challenge for            
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computational models regarding incremental learning. This phenomenon is called         

catastrophic forgetting or interference (McClelland, McNaughton, & O’Reilly, 1995;         

McCloskey & Cohen, 1989). 

2.2.1 Incremental Learning Approaches 

Numerous approaches for incremental learning that mitigate catastrophic forgetting         

have been explored in the literature. They can be categorised into three groups,             

regularization approaches, dynamic architectures, and complementary learning       

systems and memory replay (Parisi, Kemker, Part, & Wermte, 2019). Figure 2-1            

presents a venn diagram of some popular incremental learning strategies leveraging           

ideas from these three categories. These strategies are explained in the following            

subsections. 

 Figure 2-1 Venn diagram of some of the incremental learning strategies: EWC (Kirkpatricka, et al.,               
2017), AR1 (Maltoni, & Lomonaco, 2019), CFN (Allred, & Roy 2020), ECOS (Kasabov, 2007),              
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eSPANNet (Kumarasinghe, Taylor, & Kasabov, 2019), GDM (Maltoni, & Lomonaco, 2019), and            
EXSTREAM (Hayes, Cahill, & Kanan, 2019). 
 

 

A. Regularization Approaches:  

Regularization approaches alleviate catastrophic forgetting by selectively       

constraining the neural weights, which are vital to retain connections for past            

memories (Parisi,  Kemker, Part,  and Wermte, 2019). 

 

Elastic weight consolidation (EWC) (Kirkpatricka, et al., 2017) is a popular           

regularization strategy attempting to alleviate catastrophic forgetting in two contexts,          

supervised and reinforcement learning. In this approach, a quadratic penalty was           

applied to constrain the amount of change of important parameters which are            

important for old tasks. Given a two tasks scenario, task A and task B, to reduce the                 

magnitude of weight changes when training in a new task B, a modified cost   θ             

function with a regularization term is given by: 

        (2-1)(θ) L (θ) F (θ  θ )L =  B +  ∑
 

i

λ
2 i i −  *

A, i
2  

Where is the loss for task B, is the regularization strength, and is the L B       λ      F   

diagonal of the fisher information matrix. 

 

At the intersection between architectural and regularization strategies, the AR1          

model was proposed for single-incremental-task scenarios (Maltoni, & Lomonaco,         

2019). Their approach is composed of two components, a modified copy weight with             

reinit (CWR) (Lomonaco, & Maltoni, 2017), denoted as CWR+, and synaptic           

intelligence (SI) regularization constraint (Zenke, Poole, & Ganguli, 2017). The          
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experiment results on CORe50 (Lomonaco, & Maltoni, 2017) and CIFAR-100          

(Krizhevsky, 2009) benchmark datasets show that AR1 model outperformed existing          

regularization approaches such as learning without forgetting (LwF) (Li, & Hoiem,           

2016), EWC and SI. 

B. Dynamic Architectures

This method expands neural architecture dynamically to accommodate novel neural          

resources in response to new knowledge, for example, by retraining with an            

increased number of neurons or network layers (Parisi, Kemker, Part, and Wermte,            

2019). 

Controlled Forgetting Networks (CFNs) (Allred, & Roy 2020) is one of the            

architectural strategies proposed and inspired by biological dopamine signals. The          

modified version of STDP learning rule, called heterogeneously modulated STDP          

learning, was introduced to perform isolated adaptation in the synapses of neurons            

related to the novel information while retaining the knowledge from previous tasks.            

This approach was experimentally validated using the MNIST dataset. The results           

show that CFN allows the training of spiking neural network models with less             

forgetting. 

In (Kasabov, 2007), the principle of evolving connectionist systems (ECOS) was           

introduced and later developed and applied for many applications. ​An ECOS evolves            

and adapts its structure and functionality from incoming data by generating new            

neurons to capture new patterns from the incoming data or by adapting existing             
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neuronal connections to accommodate new data. ECOS allows for fuzzy rule           

extraction from the incrementally evolved structures. A continuation of this work was            

the proposed dynamic evolving SNN (deSNN) as discussed in the next chapter            

(Kasabov et al, 2013). 

Kumarasinghe, Taylor and Kasabov (2019) proposed the combination of Spike          

Pattern Association Neuron (SPAN) model with a computational interpretation of a           

’population vector’ in order to address the non-stationarity and high trial-to-trial           

variability of current Brain Computer Interfaces (BCI) applications. This approach,          

referred to as eSPANNet model, enables incremental learning from incoming training           

data and online prediction for single-trial BCI. Reported results on the finger flexion             

prediction dataset from the fourth BCI competition show that eSPANNet allows a            

higher classification performance compared to several classification approaches and         

a better approximation of the actual movement signal compared to several other            

regression analysis methods.  

C. Complementary Learning Systems and Memory Replay

Complementary learning systems aim to model memory consolidation and retrieval          

in which past information is periodically replayed to the model for protecting            

consolidated knowledge while alleviating the memorization and generalization for         

complementary tasks (Parisi,  Kemker, Part,  and Wermte, 2019). 

Leveraging ideas from architectural and memory replay strategies, Maltoni and          

Lomonaco (2019) proposed a Growing Dual-Memory (GDM) architecture for learning          
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spatiotemporal representations from videos for lifelong learning scenarios. This         

approach consists of two growing recurrent self-organizing networks that dynamically          

adapt the number of neurons and synapses, growing episodic memory (G-EM) and            

growing semantic memory (G-SM). Reported experiments show that the proposed          

method significantly outperforms current lifelong learning methods in three different          

incremental learning scenarios with the CORe50 benchmark dataset. 

Hayes, Cahill, and Kanan (2019) proposed an ExStream algorithm for          

memory-efficient rehearsal. In contrast to the full rehearsal approach that eliminates           

catastrophic forgetting by learning a mixture of all prior samples with new samples,             

ExStream algorithm stores a smaller number of prototypes that capture most of the             

intra-class variance instead. Experiments reported good results on four different          

paradigms, requiring less memory usage and computation compared with full          

rehearsal approach and other streaming clustering methods.  

While numerous algorithms have been developed to address incremental learning          

tasks, it differs significantly from a richer set of learning capabilities in humans and              

animals. Learning in a continual manner goes beyond the ability to accommodate            

new knowledge incrementally, importantly, benefiting from generalized knowledge        

and skills across domains and tasks (Parisi, Kemker, Part, and Wermte, 2019).            

Figure 2-2 presents a schematic view of the main difference between traditional            

machine learning, incremental learning and transfer learning. The next section will           

discuss transferring the learned knowledge and skills across multiple domains. 
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 Figure 2-2 Schematic view of the main difference between traditional machine learning, incremental             
learning (Section 2.2), and transfer learning (Section 2.3). 

2.3 Transfer Learning

Transfer learning which aims to leverage the previously acquired knowledge from           

source domains and then apply this knowledge to a new target domain, can be              

considered as a beneficial solution to reduce the expensive and time-consuming           

data collection efforts. The definition of transfer learning is given following the            

notations introduced by Pan and Yang (2009). A domain is composed of two         D      

terms: feature space and its marginal probability distribution , which is   χ       (X)P    

denoted by . Subsequently, given a specific domain , its task is  χ, P (X)}D = {        D    T   

defined by a label space and an predictive function , which can be to learn     Υ       (.)f       

the feature and label pairs , where and . From the     x , y }{ i  i   xi ∈ χ   yi ∈ Υ    

perspective of probability, the predicted function  ​can be written as . (.)f (Y |X) P   
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Based on the notations defined above, the definition of transfer learning can be             

defined as follows:  

Definition 1. “Given a source domain and learning task , a target      DS     T S    

domain and and learning task , transfer learning aims to help improve DT      T T        

the learning of the target predictive function in using the knowledge       (.)fT   DT     

in  and , where , or ” (Pan, & Yang, 2009).DS T S =DS / DT =T S / T T   

 

The above definition, the target and source domains are not the same ( )            =DS / DT  

implies that either the feature spaces ( ) are different, the marginal      =χS / χT      

probability distributions ( ) are different, or both. Similarly, given  (X) = (X)P S / P T        

specific domains and , two different learning tasks ( ) refers to either  DS   DT      =T S / T T     

mismatch label spaces between domains ( ), mismatch conditional     =ΥS / ΥT    

probability distributions between domains ( ), or both. In the    (X |Y ) = (X |Y )P S S / P T T      

context of traditional machine learning, the target and source domains are the same             

( ), and their learning tasks are the same ( ). The common notationsDS = DT         TT S =  T     

used in this study is 

summarized in Table 2-1. 

 

 Table 2-1 Summary of commonly used notation. 
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Notation Description Notation Description 

Subscript S  Denotes source  χ  Feature space 

Subscript  T  Denotes target (X)  P  Marginal distribution 

 D  Domain data  Υ  Label space 

 T  Learning task (Y |X)  P  Conditional distribution 



 

 

2.2.2 Transfer Learning Categories 

Based on whether the source and target domains and tasks are identical or not,              

transfer learning can be broadly divided into three main categories, namely inductive            

transfer learning, transductive transfer learning, and unsupervised transfer learning.  

 

A. Inductive Transfer Learning 

Inductive transfer learning refers to the scenario where knowledge is transferred           

across different but related source and target tasks regardless of whether the source             

and target domains are identical or not. Moreover, the label information of the target              

domain is available in inductive transfer learning (Pan, & Yang, 2009). Based on the              

availability of label information from the source domain, inductive transfer learning           

can be further categorized into two categories: 

● When a large amount of labeled data is available from the source domain,             

inductive transfer learning is similar to Multi-task learning (​Alamgir,         

Grosse-Wentrup, & Altun, 2010​). 

● When the label information is unknown for the source domain, inductive           

transfer learning is similar to Self-taught learning (​Raina, Battle, & Lee H,            

2007​) 

 

B. Transductive Transfer Learning 

In the setting of transductive transfer learning, the source and target are            

represented in different domains, but the same task. In this case, a large amount of               
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source domain labelled trials is available, while the label information is unknown for             

target domains (Pan, & Yang, 2009). According to the consistency between the            

source and the target feature spaces and the marginal probability distributions of the             

input data, transductive transfer learning can be further categorized into two           

categories: 

● When there are non-identical label spaces between domains, , this        =  XS / XT   

scenario is referred to as heterogeneous transfer learning (Weiss,         

Khoshgoftaar, & Wang, 2016). 

● When the source and target domains are represented in different feature           

spaces, , but different marginal distributions, , this  XS = XT      (X) = (X)  P S / P T   

scenario is termed as homogeneous transfer learning (Weiss, Khoshgoftaar,         

& Wang, 2016).  

 
C. Unsupervised Transfer Learning 

Unsupervised transfer learning aims to transfer knowledge across different but          

related source and target tasks. In this transfer learning method, the label            

information of both target source and domain instances are not available (Pan, &             

Yang, 2009).  

 

2.2.3 Transfer Learning Approaches 

Based on which types of knowledge that can be transferred across domains or tasks,              

approaches to transfer learning can be categorised into four different groups. These            

approaches are explained in the following subsections. 
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A. Instance-based Transfer Learning 

This instance-representation-based approach is based on the assumption that some          

similar features are shared between source and target domains and the performance            

of the target prediction function can be improved by reusing certain parts of the              

source domain labeled data for learning the target domain (Azab, Toth, Mihaylova, &             

Arvaneh, 2018). The two major techniques in this context are instance re-weighting            

(Jiang, & Zhai, 2007) and importance sampling. 

 

An example of instance-based transfer learning, called improved active transfer          

learning (ATL), was proposed by Hossain, Khosravi and Nahavandhi (2016) to           

reduce non-stationarities between subjects. The main principle of active transfer          

learning is that only the most informative samples are labeled such that the learning              

performance of a new subject or a new task is expected to be improved. They also                

proposed two extended algorithms of ATL. The first one was called Selective            

Instance Transfer with Active Learning (SITAL), which aims to select samples from            

source domains that have a similar distribution with the target domain. The second             

algorithm was classed Selective Informative Instance Transfer with Active Learning          

(SIITAL), which selects samples from source domain that have both high           

classification accuracy and normalized entropy. The proposed algorithm is promising          

when there is a lower quantity of data from the target subject, as it was suggested to                 

reduce the calibration effort. 
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Another approach based on the principle of weighted adaptation regularization          

(wAR) and active learning, namely active weighted adaptation regularization         

(AwAR), was proposed by Wu, Lawhern, Hairston, and Lance (2016) to reduce            

non-stationarity between headsets in BCI. wAR is applied under the assumption           

when there is a large amount of labeled data from the previous headset and this data                

can be used to improve the learning performance for a different headset. They also              

proposed to integrate wAR with active learning, which selects the most beneficial            

target samples for labelling. This integrated algorithm can achieve a desired           

classification accuracy, given a small number of labeled samples required from the            

new headset, thus making AwAR more suitable for wide-scale applications. 

B. Feature-representation Transfer Learning

This feature-representation-based approach focuses on transferring the knowledge        

via the adjustment and the transformation of feature representation, such that the            

knowledge can be transferred across domains. Specifically, by constructing a new           

feature representation for the target domain, the performance of the target tasks can             

be improved (Azab, Toth, Mihaylova, & Arvaneh, 2018). According to different           

methods of mapping the original feature to the new feature representation,           

feature-based approaches can be further divided into asymmetric and symmetric          

feature-based transfer learning (Kulis, Saenko, & Darrell, 2011; Pan, Tsang, Kwok, &            

Yang, 2009). Asymmetric approaches aim to map the features from the source            

domain to the target domain, while symmetric approaches try to create a common             

latent feature space for both source and target domains.  
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He and Wu (2019) proposed a novel Electroencephalogram (EEG) trial alignment           

approach in the Euclidean space across different subjects such that the similarity of             

data distributions between different subjects can be increased. This Euclidean-space          

alignment approach only required unlabelled EEG data from the new subject, and it             

can be used as a preprocessing step before any signal processing, feature            

extraction, and machine learning algorithms. The experiment results showed that the           

proposed approach led to enhanced computation when comparing with the          

Riemannian space covariance matrix alignment approach. 

 

Recently, the proposed different set domain adaptation approach (2020) was          

presented to be an extension of the Euclidean-space alignment approach, which           

considers different domain adoption scenarios for both task-task and         

subject-to-subject transfer, for example source and target subjects have different          

label spaces and feature spaces. They introduced a label alignment approach to            

align the label space across different source and target domains. A higher            

performance can also be achieved when integrating with other domain adoption           

approaches.  

 

C. Classifier-based Transfer Learning 

The previous two approaches of transfer learning aim to transfer the knowledge in             

the data level, while the classifier-based approach mainly focuses on transferring the            

knowledge in the parameter level. An assumption behind the classifier-based          

transfer learning is that there are some shared parameters or prior distributions            

between the prediction function of the source and target tasks. With the shared             
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parameters or priors, the performance of the target prediction function is expected to             

be improved (Azab, Toth, Mihaylova, & Arvaneh, 2018). 

 

For instance, Jayaram, Alamgir, Altun, Scholkopf, and Grosse-Wentrup (2016)         

proposed a general framework for transfer learning in the context of BCIs that is              

applicable to any arbitrary feature space, as well as a regression estimation method.             

Reported results on both motor imagery and a novel cognitive paradigm showed that             

the proposed framework outperformed other comparable methods with both         

session-to-session and subject-to-subject scenarios.  

 

Cui, Xu and Wu (2019) proposed a feature weighted episodic training (FWET)            

approach, which does not require any calibration data from the new subject,            

eliminating the calibration requirement completely. FWET consists of two parts:          

feature weighting and episodic training. Feature weighting is used to learn the            

weights for each feature automatically according to the importance of different           

features, while episodic training is used for domain generalization. Experiments on           

driver drowsiness estimation showed that FWET can achieve better generalization          

performance, given no calibration data from the new subject, thus making FWET            

more suitable for plug-and-play BCI applications. 

 

D. Relational-based Transfer Learning 

The relational-based transfer learning approach mainly focuses on the problem that           

data in the source and target domains are not independent and identically distributed             

(IID), but have some similar relational patterns. Thus, by extracting some common            
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relationships among the data, knowledge can be transferred across tasks (Azab,           

Toth, Mihaylova, & Arvaneh, 2018). Statistical relational learning techniques are          

well-known techniques using this approach (Mihalkova, Huynh,& Mooney, 2007;         

Davis, & Domingos, 2008). 

 

It can be concluded from the literature that the majority of current transfer learning              

research has been carried out in traditional machine learning techniques. ​However,           

these methods often model spatial and temporal components separately without          

considering informative spatio-temporal correlations in the data (Kumarasinghe,        

Taylor, & Kasabov, 2019). Compared to conventional machine learning methods,          

Spiking Neural Networks (SNNs) are promising computational paradigms for         

modelling complex information such as spatio-temporal data (Kasabov, 2019), which          

will be discussed in Chapter 3. 

 

2.4 Deep Knowledge Representation 

Deep learning in the brain is achieved through processing information, either           

triggered by external stimuli, or by inner processes, for example, visual auditory,            

tactile, gustatory and olfactory, complex neural network connections between         

neurons in space and time are formed across the whole brain. The patterns that are               

formed by these connections represent deep knowledge (Kasabov, 2019).  

 

Deep knowledge is defined by Kasabov (2019) to refer to a sequence of events that               

happen in different spatially located parts of the brain, activated at different times,             
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constituting dynamically changing and Informative knowledge deep in time and          

space through symbolic and/or numerical expressions. 

 
More specifically, given a set of events that form a neural trajectory            

, each can be represented as the following format:E , E , ..., E }E = { 1  2   n Ei  

F , S , T )  Ei = ( i  i  i  

Where is a function that trigger event changes; is the location of the activity at F i        S   i         

time .T i   

 

Deep knowledge can also be represented in several forms. One way to represent             

deep knowledge through a deep crisp rule. Given the activation level of three neural              

clusters over three-time bins , the crisp rule S {S , S , S })  ( =  1  2  3     T  {T , T , T })( =  1  2  3     

can be defined as follow: 

IF (event : function , location around , time about )E1 F 1  S1 T 1   

AND (event : function , location around , time about )E2 F 2  S2 T 2  

AND (event : function , location around , time about )E3 F 3  S3 T 3  

THEN (The pattern event/task/process  is recognised)Q   

 

One limitation of crisp rules is that it is only suitable for the case when the activation                 

of exact clusters of neurons happens at exact times in their sequence. Another form              

of spatial-temporal rule is the deep fuzzy rule (Zadeh, 1965), which allows for the              

pattern to be recognised even If the slightly different cluster neurons are activated Q              

at slightly different times. An example of deep fuzzy rule with corresponding fuzzy             

values , which represented by their membership functions, is given as follow:W  
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IF (event : function , location around , time about , probability about ,  E1   F 1     S1    T 1    P 1  

strength is )W 1  

AND (event : function , location around , time about , probability  E2   F 2     S2    T 2   

about , strength is )P 2 W 2  

AND (event : function , location around , time about , probability  E3   F 3     S3    T 3   

about , strength is )P 3 W 3  

THEN (The pattern event/task/process   is recognised)Q  

2.4.1 Knowledge Granularity 

When considering a sequence of events that happen in a similar location at a similar               

time, a suitable level of spatial and temporal scale is required for the rule extraction.               

Different spatial and temporal scales represent different knowledge information,         

forming a granularity level of deep representation (Kasabov, 2019).  

The terms of time resolution or time depth and spatial resolution or spatial depth              

define spatial and temporal scales to represent the knowledge. The temporal depth            

refers to the size of time bin of the brain signals, ranging from milliseconds to       T i         

second (Kasabov, 2019). The spatial depth of knowledge is defined by the spatial             

cluster of neurons associated with different anatomical levels (Kasabov, 2019). For           

example, at a higher level of the hierarchy, neuronal clusters spatially located in two              

hemispheres can be considered as two distinct granules. In a deeper hierarchy level,             

neuronal clusters spatially located in different lobes of the brain can be considered             

as a separate knowledge granule. At the next level, the knowledge can further             
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scale-up to the different cellular areas in each lobe. A proper level of granularity for a                

given task is essential and hard to be defined and it depends on different tasks and                

problems, even measured data (​Kumarasinghe, Kasabov, & Taylor, 2020)​. 

 

2.5 Chapter Summary 

This chapter reviewed two computational approaches of learning (incremental         

learning and transfer learning), which remain a long-standing challenge for          

computational models. Then, a review on deep knowledge representation was          

presented. In the next chapter, Brain-Inspired Spiking Neural Network principles and           

models are discussed. 
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Chapter 3   Spiking Neural Networks 

3.1 Introduction 

The Brain-Inspired Spiking Neural Networks (SNNs) are a promising computational          

paradigm that consist of artificial neurons with interconnected structure, where          

internal information is represented as trains of spikes and learned in an adaptive and              

self-organising manner, similar to how a biological neuron functions (Izhikevich,          

2006; Brette, et al., 2007). This inherent nature of the spiking neuron has the              

capacity to model complex information such as spatio-temporal data (Kasabov,          

2019). 

 

So far, numerous applications of SNNs have been developed, such as EEG data             

modelling (Kasabov, & Capecci, 2015; ​Doborjeh, Kasabov, Doborjeh, & Sumich,          

2018​), Functional Magnetic Resonance Imaging (fMRI) data modelling (Kasabov,         

Doborjeh, & Doborjeh, 2017), Brain-Computer Interfaces (BCI) (Taylor et al., 2014​;           

Hu, Hou, Chen, Kasabov, & Scott, 2014​; ​Kumarasinghe, Owen, Taylor, Kasabov, &            

Kit, 2018​), multimodal audio-visual information processing (Wysoski, Benuskova, &         

Kasabov, 2010), bioinformatics (Koefoed, Capecci, & Kasabov, 2018; Dray, Capecci,          

& Kasabov, 2018; Capecci, Lobo, Laña, Espinosa-Ramos, & Kasabov, 2019), and           

multisensory streaming data modelling (Tu, Kasabov, & Yang, 2016). 
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3.2 Information Encoding as Spikes 

Spiking neural networks are inspired by the principles in the biological brain, where             

external information is encoded as short electrical pulses (Kasabov, 2019). The main            

principle is that real value of input information is optimally converted to spike events              

as a new form of input into SNN, preserving the task related information of the               

original signal during the encoding process. 

 

Numerous spike encoding algorithms have been developed in the literature, some           

well-known algorithms are listed as follows, and one of the most popular encoding             

algorithms, called Threshold-based encoding,  is discussed afterward. 

● Threshold-based encoding (Delbruck, & Lichtsteiner, 2007) 

● Rank Order Coding (Thorpe & Gautrais, 1998) 

● Population Rank Coding (Bohte, 2004) 

● Ben’s Spike Encoding algorithm (Schrauwen & Van Campenhout, 2003) 

● Step Forward Encoding algorithm (Kasabov, et al., 2016) 

● Moving-Window Spike Encoding Algorithm (Kasabov, et al., 2016) 

 

Threshold Based Encoding (TBR). ​This encoding method, a simple         

implementation of Temporal Contrast, was introduced by Delbruck and Lichtsteiner          

for the development of the Address-Event Representation (AER) system (Delbruck,          

& Lichtsteiner, 2007). In the method, changes between in signal amplitudes are            

compared with a given threshold, and a positive or negative spike is emitted             

according to whether the value exceeds or belows the encoding threshold. The            
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encoding threshold is given by a summation of the mean of the signal amplitude              

variation and its standard deviation multiplied by a factor, in which factor is a              

parameter of this encoding algorithm.  

 

3.3 Computational Model of a Spiking Neuron 

The structure of the biological neuron can be divided into three components: soma,             

dendrites and axon, as shown in Figure 3-1. The dendrites are positioned at the              

beginning to receive the electrical impulses from other neurons and transmits these            

signals to the soma. The cell body plays a key role in processing input spikes to                

maintain the function of a neuron. The output signal is delivered via axon to other               

neurons connected to it. The junction between two neurons is connected across            

synapses. 

 

 

 Figure 3-1 Structure of a biological neuron. Figure from (Neves, González, Leander, & Karoumi,              

2017). 

 

42 



 

Different computational models of spiking neurons have been proposed in order to            

resemble a biological neuron. Some popular ones are: Hodgkin-Huxley Model          

(Hodgkin, & Huxley, 1952), Integrate-and-Fire Model ​(Abbott, 1999)​, Izhikevich         

Model (Izhikevich, 2003), Spike Response Model (Gerstner, & van Hemmen, 1992),           

Thorpe’s Model (Thorpe, 1990), and Probabilistic and Stochastic Spiking Neuron          

Models (Kasabov, 2010). The main characteristics of Integrate-and-Fire Model is          

explained as follow: 

 

The Leaky Integrate and Fire Model (LIFM)​: ​The integrate and fire neuron model             

was proposed by Lapicque (Abbott, 1999) and it is based on the principle of an               

electrical circuit consisting of a capacitor in parallel with a resistor to product      C       R    

current . ​The principal of LIFM can be conceived as a leaky integrator, where an (t)I               

action potential is emitted when membrane potential reaches the critical voltage       (t)u      

for spike initiation called threshold . After the arrival of a spike, the membrane     θ          

potential decays back to the resting potential . The moment of threshold       urest      

crossing defines the timing at which a neuron fires. Before the next threshold    t           

crossing occurs, There is a refractory period during which the neuron cannot            

produce another action potential and the summation of the membrane potential           

slowly leaks over time, which is denoted by a temporal parameter . The structure           τ    

and the functionality of the LIFM is illustrated in Figure 3-2 and the model can be                

described by the following differential equation: 

                       (3-1)   − [u(t) u  ] R I(t)τm dt
du =  −  rest +    
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Where the membrane time constant , is the resting potential, is the     Cτm = R  urest      I    

input current,  is the membrane potential, and  is the resistance.(t)u R  

 Figure 3-2 The LIFM of a spiking neuron. ​(a) Schematic representation; (b) Showing an input train of                 
spikes (top row), the emitted output spikes (second row) and the membrane potential changes over               
time. Figure from (Kasabov, 2014). 

3.4 Learning in SNN Models 

Learning in SNN is the process of adjusting the connection weights between two             

spiking neurons. The most popular learning rules are SpikeProp (Bohte, Kok, &            
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Poutre, 2000), Spike-Time Dependent Plasticity (Song, Miller, & Abbott, 2000),          

Spike-Driven Synaptic Plasticity (Fusi, Annunziato, Badoni, Salamon, & Amit, 1999),          

Rank Order Learning Rule (Thorpe, & Gautrais, 1998). Two important learning rules            

are explained in the following: 

 

Spike Timing Dependent Plasticity (STDP): ​This learning paradigm was inspired          

by the principle of Hebbian learning (Song, Miller, & Abbott, 2000; Hebb, 1949), in              

which the synaptic weights are adopted according to the temporal order of            

pre-synaptic and post-synaptic action potentials. In STDP learning, the arrival time of            

pre-synaptic spikes earlier than the post-synaptic spikes results in synaptic          

potentiation, namely Long-term Potentiation (LDP), while the timing of pre-synaptic          

spike activity after the post-synaptic spikes causes synaptic depression, namely          

Long-term Depression (LTD). The STDP learning rule is defined using the following            

equation:  

     (3-2) 

 

Where defines the magnitude of this synaptic change based on the (t )W pre − tpost            

time interval ( ), as illustrated in Figure 3-3, the parameters and refer  tpre − tpost         A+   A−   

to the learning rate and parameters and define the time interval of      τ +   τ −       

pre-to-post-synaptic spike.  
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 Figure 3-3 Synaptic change in a STDP learning neuron. ​Figure from (Song, Miller, & Abbott, 2000). 
 
 

3.5 NeuCube - An SNN Framework 

NeuCube is a Brain-Inspired Spiking Neural Network (BI-SNN) architecture and it           

has demonstrated the feasibility of learning from spatio-temporal data (Kasabov,          

2014). The basic NeuCube model consists of the following five sub-modules, as            

illustrated in Figure 3-4. 

● Input data encoding and mapping 

● Unsupervised learning in a 3D SNN model 

● Supervised Learning in an Evolving SNN 
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 Figure 3-4 Block diagram of NeuCube architecture, including: input spatio-temporal data encoding            
module, 3D SNN module, output module for classification/regression, and gene regulatory network            
(GRN) module (optional). Figure from (Kasabov, 2012). 
 

3.3.1 Input Data Encoding 

The continuous time series of spatio-temporal data are first encoded into spike            

series, representing the time of changes in the input data. Algorithms for spike             

encoding implemented in NeuCube include: 

● Threshold-based Encoding (Delbruck, & Lichtsteiner, 2007) 

● Moving-Window Spike Encoding Algorithm (Kasabov, et al., 2016) 

● Step Forward Encoding algorithm (Kasabov, et al., 2016) 

● Ben’s Spike Encoding algorithm (Schrauwen & Van Campenhout, 2003) 
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3.3.2 Input Data Mapping 

After the encoding process, the encoded sequence of spikes are transferred into            

spatially located spiking neurons in the SNN model. In NeuCube, a recurrent 3D             

structure, namely SNNcube, is constructed to map the spatial components of input            

data according to a 3D brain template, such as Tailarach atlas (Talairach &             

Tournoux, 1988), Montreal Neurological Institute (MNI) template (Brett, Christoff,         

Cusack, & Lancaster, 2001) or other brain coordinate systems. After mapping input            

data spatially to the SNN model, the LIFM spiking neuron connectivity in the             

SNNcube is initialized using the small-world connectivity rule (Bullmore, & Sporns,           

2009). Learning within the SNN model consists of two phases, including           

unsupervised and supervised learning. These learning processes are explained in          

Section 3.3.3 and Section 3.3.4 respectively. 

3.3.3 Unsupervised Learning in SNNcube 

The first stage is unsupervised learning that is intended to modify the neuronal             

connection weights in the SNNcube based on the learning of spatial and temporal             

associations from the encoded sequence of spikes. In the NeuCube framework,           

STDP learning rule (Song, Miller, & Abbott, 2000) is applied to the 3D SNNcube,              

resulting in an evolving connectionist structure in the SNNcube. In this learning, the             

arrival time of pre-synaptic spikes earlier than the post-synaptic spikes induces           

Long-term Potentiation (LDP), while the timing of pre-synaptic spike activity after the            

post-synaptic spikes causes Long-term Depression (LTD). The goal of the learning           
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rule is to capture the relative timing of pre-synaptic and post-synaptic activity,            

forming trajectories of connections to represent spatio-tempral patterns in the data. 

 

3.3.4 Supervised Learning and Classification in Evolving SNN  

Once the SNN model training in an unsupervised mode is completed, dynamic            

evolving SNN classifier (deSNN) (Kasabov, Dhoble, Nuntalid, & Indiveri, 2013) is           

performed in a supervised learning mode to learn the class labels relationship to             

each training sample. For each training sample, a new output neuron is assigned to              

the output neuronal layer, and all neurons from the SNNcube are connected to the              

output neurons in the SNN model. In the deSNN classifier, the initial connection             

weights of each synapse are established using the RO learning rule (Thorpe, &             

Gautrais, 1998) based on the first spike at this synapse. These connection weights             

need to be further adjusted through the SDSP algorithm (Fusi, Annunziato, Badoni,            

Salamon, & Amit, 1999). After that, this newly created neuron is added to the output               

neuron repository. Given a new spatio-temporal sample without class label          

information, the synaptic weights of a newly created output neuron are compared            

with the already existing output neurons in the output neuron repository during            

training. The class label of the new sample is determined by the closest output              

neuron using k nearest neighbors (KNN) method. 
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3.6 Chapter Summary 

This chapter reviews computational models of SNNs and introduces the SNN           

framework NeuCube for modelling spatial-temporal data, enabling a better         

interpretation of spatio-temporal characteristics of data. In the next chapter, the           

proposed methods for transfer learning in BI-SNN will be introduced which is based             

on the NeuCube framework. 
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Chapter 4 Proposed Methodology for Transfer      
Learning in BI-SNN 
 

4.1 Introduction 

In the previous chapter, I have reviewed that the NeuCube framework is an ideal              

system for modelling complex spatio-temporal patterns. In this chapter, I proposed           

new adaptations based on the NeuCube framework for transfer learning scenarios,           

including incremental learning and transfer learning algorithms. In addition, I          

proposed three additional new algorithms, including two connection weights pruning          

algorithms and one neuron aggregation algorithm. These three algorithms can be           

integrated with the proposed transfer learning approaches.  

 

4.2 Incremental Learning in BI-SNN 
 
As transfer learning belongs to the class of incremental learning algorithms, here I             

have explored incremental learning in the deSNN. The incremental learning (ImSNN)           

algorithm is algorithmically described in Algorithm 1. In this method, samples from            

target tasks or subjects are presented one-by-one to the model without any data             

reinforcement from previous samples with the goal of learning target tasks or            

subjects sequentially. More specifically, the model first creates a repository of output            

neurons for the training patterns. When a new task or subject is given, each sample               

belonging to these new tasks or subjects will create a neuron to the output neuron               

repository sequentially. The learning procedure of the deSNN classifier relies mostly           
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on the repository of output neurons. Thus, the output neuron repository tends to             

store redundant information when processing target tasks or subjects. Here lies the            

rationale for merging similar neurons within the output neuron repository by applying            

the neuron aggregation technique, which is explored in the next subsection 4.5. 

 Table 4-1 ​The proposed ImSNN algorithm ​for deSNN ​(Kasabov et al. 2013)​. 

4.3 Proposed Transfer Learning Algorithm for BI-SNN 

Algorithm 2 reflects the adaptations of the SNNcube in the ​original NeuCube            

architecture in order to deploy it in transfer learning scenarios, namely TrSNN. The             

training procedure is similar to ImSNN approach Algorithm 1. The only difference            

between the proposed TrSNN approach (Algorithm 2) and the ImSNN approach           

(Algorithm 1) is that TrSNN performs both unsupervised learning and supervised           

learning steps, while ImSNN uses deSNN classifier only. Given an existing model            

trained with the source tasks or subjects, when a new task or subject is given, a new                 
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SNNcube is created, and the neural connectivity with the target tasks or subjects are              

learned based on the prevised trained SNNcube. At the supervised learning stage,            

each target sample will create an output neuron to the output neuron repository             

sequentially. The process of unsupervised learning can be regarded as a learning            

process that forms deep patterns of connectivity between individual neurons based           

on the timing of their spiking activity and the connection between these neurons.             

Furthermore, the knowledge stored in the SNNcube can be transferred to the            

subsequent trained models such that subsequent tasks or subjects can reuse this            

common knowledge to improve the learning performance. This leads to a more            

suitable model design for transfer learning environments. Thus, TrSNN has the           

capacity to share and reuse this common knowledge. 

 

 

 Table 4-2 ​The proposed TrSNN algorithm​ for NeuCube. 
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4.4 Connection Weights Pruning Techniques for TrSNN      
Models  

The TrSNN approach sketched in Algorithm 1 is the basis for our proposed             

approaches hybridized with connection weights pruning schemes, in which SNNcube          

pruning and output layer pruning techniques are applied on unsupervised learning           

stage and supervised learning stage respectively. The resulting hybrid approaches          

are labeled as TrSNN-CP and TrSNN-OP. In these connection weights pruning           

schemes, only the informative connections from the SNNcube to the corresponding           

output neurons in the classifier are left, and the others are removed. By cutting off               

certain connections in the network, such that new knowledge can take advantage of             

previously learned features but cause no interference in the pathways of the            

previously learned samples. The main goal is to forget outlier or stale information             

rather than the similar trajectories that may be essential for previous knowledge,            

ensuring commonly-used or recent information are retained.  

 

4.4.1 SNNcube Pruning 

In this method, inactive neurons in the SNNcube, which did not have active             

connections with other neurons, were suspended. ​The SNNcube pruning performed          

in the unsupervised learning stage is algorithmically described in Algorithm 3. ​Given            

a NeuCube learned from the previous task or subject, the connection weight of the              

learned SNNcube can be pruned before feeding the subsequent tasks or subjects            

into the NeuCube model. The pruned thresholds are adaptive based on the minimum             
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and maximum value of the weights, such that the threshold can be dynamically             

changed instead of fixed thresholds. After that, the pruned weights are reset to initial              

values, giving a chance to the subsequent tasks or subjects for continued training.  

 

 
 

 Table ​4-3 The proposed SNNcube pruning algorithm​. 
 
 

4.4.2 Output Layer Pruning in the deSNN 

The output layer weight pruning method consists of two parts. First, during the             

training of each task, a weight regulator is added to promote sparsity in the output               

layer and to regulate the density of connections from the SNNcube to the             

corresponding output neurons. The second part of the sparsification scheme is           
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pre-validating weight pruning based on the connection state of each training sample,            

as each training sample has a different pruning position.  

 

A precise definition of the pruning strategy is as follows. Given an output layer in               

NeuCube, composed of neurons, each has been trained from different training   N i          

samples. In order to find the active and inactive connection weights between            

SNNcube and output neurons, the minimum weight was computed for each           

individual output neuron. Connection weights below a threshold are considered          

critical, while others are non-critical. The weights of all non-critical synapses are            

reduced to zero.The threshold value is a post-training hyperparameter, which can     θ        

control over the amount of sparsity in the output layer. Furthermore, if , the            θ = 0   

function being computed is entirely by the dense network. The weight pruning            

strategy is algorithmically described in Algorithm 4. 

 

The validation phase is carried out by first pruning away the unused connections of              

the newly created output neuron based on the pruning index of all trained output              

neurons that are within the same output class group in the repository. The class              

label for the validation sample is assigned according to synaptic similarity of the             

newly pruned output neuron and the already trained output neurons. 
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 Table ​4-4 The proposed output layer pruning algorithm for deSNN (Kasabov et al. 2013)​. 

4.5 Neuron Aggregation Technique for TrSNN Models

The proposed TrSNN approach sketched in Algorithm 1 can also be combined with a              

neuron aggregation technique, in which the output neurons which belong to the            

same class and have similar connection weights are merged in an incremental way             

through averaging to obtain a compact feature representation and in this way the             

structure of network can evolves continuously in a life-long manner. The neuron            

aggregation performed in the deSNN classifier is algorithmically described in          

Algorithm 5.  
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Given an output layer in NeuCube, composed of a repository of output neurons,             

each has been trained from different training samples. For every new training            

sample, a new output neuron is allocated and connected to all neurons in the              

SNNcube through . The weight matrices of the newly produced output neuron  wj, i           

and the already trained output neurons in the repository are then compared. If the              

new neuron weight vector is similar to any of the any of the already trained output                

neurons using Euclidean distance, these two neurons will be merged by averaging            

the connection weights using following equation: 

                    (4-1)wj, i =  M
w + wnew  j, i  

Where is the number of neurons being aggregated on the output layer. After M              

merging the neurons, the new created output neuron will be discarded. If there are              

no existing trained neurons in the repository found to be similar to the new output               

neuron, then it will be added to the corresponding class pool of neurons in the               

repository. One post-training hyperparameter was introduced to control its similarity          

with the other output neurons during training, namely similarity parameter SIM.           

Furthermore, if SIM = 0, the function being computed is entirely by the model without               

neuron aggregation.  

 

Neuron aggregation can be also used along with connection weights pruning           

algorithms. The flow diagrams for the TrSNN model with weight connection pruning            

methods and neuron aggregation are presented Figure 4-1 and Figure 4-2           

respectively, namely TrSNN-CP-NG and TrSNN-OP-NG. Notice that when neuron         

aggregation is used with output layer pruning, repruning the connection weights is            

required for the merged neurons. 
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 Table ​4-5 The proposed neuron aggregation algorithm for deSNN (Kasabov et al, 2013)​. 
.  
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 Figure 4-1 Schematic diagram of the proposed TrSNN-CP-NG. 
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 Figure 4-2 Schematic diagram of the proposed TrSNN-OP-NG. 

4.6 Chapter Summary

In this chapter, a methodology and algorithms are proposed for transfer learning in             

the NeuCube architecture through introducing new methods for learning of          
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sequentially presented tasks and subjects, resulting in the ImSNN and TrSNN           

algorithms. Three techniques, including two connection weights pruning algorithms         

and one neuron aggregation algorithm, were also introduced as an additional           

algorithm that can be freely cooperated with the TrSNN learning procedure. In the             

next two chapters, the proposed methods will be applied to extensive experiments            

with the aim of evaluating the performance of the proposed schemes on a real-life              

case study of EEG data from two empirical studies, including transfer learning across             

tasks in one subject and transfer learning across subjects in one task.  

 

4.7 Contribution 

In this chapter, I have made the following original contributions: 

● Proposal of an incremental learning approach based on the SNN architecture,           

called ImSNN 

● Proposal of a transfer learning approach based on the SNN architecture,           

called TrSNN 

● Proposal of two connection weights pruning techniques for TrSNN Models,          

namely TrSNN-CP and TrSNN-OP 

● Proposal of a neuron aggregation techinque for TrSNN Models  
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Chapter 5 Modelling Transfer Learning of New       
Tasks by a Single Subject in NeuCube 
 

5.1 Introduction 

This chapter applies the proposed transfer learning methods (introduced in Chapter           

4) to a case study of EEG data based on the scenario of task-to-task transfer               

learning in one subject. In this study, I designed a series of experiments to examine               

the effect of transfer learning approaches on different functional modules of           

NeuCube architecture. I constructed optimal SNN models and trained them with an            

EEG dataset related to functional upper limb movements. The models are also            

evaluated in a three-phase analysis, including SNNcube patterns in an unsupervised           

mode, output layer patterns in a supervised mode, and the final experiment results to              

evaluate the transfer learning performance. 

 

5.2 Dataset and Preprocessing 

The functional upper limb movements dataset was used in this case study (Mohseni,             

Shalchyan, Jochumsen, & Niazi, 2020). This dataset was collected by New Zealand            

College of Chiropractic and Aalborg University under the ethical approval of the local             

ethics committee (N-20130081), and it consists of EEG data from 12 healthy            

subjects by 64 EEG channels at 512 Hz. Each subject was instructed to perform four               

classes of motor imagery tasks as follow: 
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● Class 1: Reach for a glass of water, drink and place the glass on the table 

● Class 2: Throw a ball from the right hand to the left hand 

● Class 3: Lift a tray from the table and place the tray on the table again 

● Class 4: Push a glass from position A to position B 

 

Classe​s 1, and 4 are unilateral movements, while classes 2 and 3 are bilateral              

movements. ​As shown in Figure 5-1, ​at the beginning of a trial, the subjects were               

instructed to hit the ‘s’ key ​on the keyboard before executing the movements. ​When              

the subject had finished the task, the experimenter hit the ‘s’ key again. In this               

period, the subject was asked to perform a specific task. Then the visual cue              

disappeared from the screen, and a short break followed until the next trial began.              

Each subject had 50 trials from each class. Table 5-1 summaries the characteristics             

of the dataset. 

 

 

 Figure 5-1 Timing scheme of the motor imagery tasks. 

 

Data preprocessing was performed using the Matlab EEGLAB toolbox (Delorme, &           

Makeig, 2004). The continuous EEG data was first extracted between [0.5, 2.5]            

seconds after the start of each trial (​odd index values of ‘s’​). Next the EEG signals                
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were downsampled from 512 Hz to 256 Hz. A butterworth band-pass filter (2the             

order between [0.05, 45] Hz) and 2th order no​tch Filter with a lower cutoff frequency               

of 49 Hz and a higher cutoff frequency of 51 Hz were then applied to the data.                 

Finally, an EEGLab plug-in ADJUST was used to remove the artifacts. Figure 5-2             

shows the topological graph for EEG channels. ​The spatial mapping of EEG data in              

the Talairach space (Talairach & Tournoux, 1988) is presented in Appendix A. 

 

 
 Figure 5-2 Topological graph for EEG channels in 10-20 standard. 

 

 Table 5-1 Summary of the upper limb movements dataset. 
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 Number of 

 EEG 
Channels 

Subjects Time 
samples 

Classes Trials/class/subject 

Functional upper  
limb movements  
dataset 

64 12 768 4 50 
 



5.3 Experimental Design

To validate the efficacy of the proposed approaches in transfer learning across tasks             

in one subject, the NeuCube SNNcube and deSNN classifier were first trained with             

samples from source task, class 1. After that, samples from other three            

classes/target tasks were presented one-by-one to and learned without requiring a           

retraining mechanism from previous classes with the goal of transferring some           

knowledge acquired from the source tasks to the target tasks. To examine the effect              

of transfer learning on different functional modules of NeuCube architecture, a series            

of experiments were conducted to validate the performance of the proposed           

approaches. Table 5-2 summarises the details of all experiments. A baseline model            

which trains in a batch mode on all data simultaneously was established as a              

baseline for comparison and both transfer learning model and baseline model were            

performed using the same initial connection weights.  

 Table 5-2 Description of experiment schemes. 
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Description 

Baseline batch learning of all tasks using NeuCube 

ImSNN Incremental learning of each task sequentially on deSNN        
classifier only 

TrSNN Transfer learning of each task sequentially in unsupervised        
mode and deSNN classifier 

TrSNN-CP Transfer learning of each task sequentially in unsupervised        
mode and deSNN classifier, along with weight connection        
pruning in the SNNcube after learning of each task 

TrSNN-CP-NG Transfer learning of each task sequentially in unsupervised        
mode and deSNN classifier, along with weight connection        
pruning in the SNNcube and neuron aggregation in the         
deSNN classifier 



 

 
 

The flowchart of preparation of training and testing datasets for different schemes 

is presented in Figure 5-3. The encoding procedure to transform input signals into             

spike trains was a threshold-based encoding algorithm as explained in Chapter 3            

and a fixed threshold was performed on each incoming task. 

 

 

 Figure 5-3 The flowchart of preparation of training and testing datasets for task-to-task transfer              
learning in one subject scenarios. 
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TrSNN-OP Transfer learning of each task sequentially in unsupervised        
mode and deSNN classifier, along with connection weight        
pruning between SNNcube and the output neurons in the         
classifier 

TrSNN-OP-NG Transfer learning of each task sequentially in unsupervised        
mode and deSNN classifier, along with connection weight        
pruning between SNNcube and the output neurons in the         
classifier and neuron aggregation in the deSNN classifier 



 

To demonstrate the performance of transfer learning over time, the NeuCube models            

were saved at each task change and the testing results of all previously seen tasks               

were evaluated at each task change. All experiments were performed five times and             

reported the test accuracy and its standard deviation on all tasks.  

 

The parameter optimization phase is carried out on TrSNN models only. Parameters            

Drift, Mod, pruning percentage , and pruning threshold were chosen using grid    p     θ      

search and picked the value of the best 3 fold cross validation accuracy across all               

hyperparameters. For similarity parameter (SIM) in the neuronal aggregation         

procedure of the deSNN classifier, a slightly different optimization scheme was used.            

The models were first trained over a range of similarity parameters along with the              

hyperparameters optimized as above using grid search. The optimal similarity          

parameter (SIM) was chosen as the value of the best training accuracy to make sure               

the performance of the neuron aggregation scheme performs on par with the model             

trained without neuron aggregation on the training dataset. Furthermore, baseline          

and ImSNN models were also conducted with the default parameters for           

comparison. The details of the default parameters are presented in Appendix B,            

Section B-1. For TrSNN experiments, there are some additional optimized          

parameters, which is summarized in Table 5-3. 

 

 Table 5-3 Parameter settings for each TrSNN experiment. 
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Parameters 

TrSNN-CP Drift: 0.005 
Mod: 0.8 
SNNcube pruning percentage: 0.995 

TrSNN-CP-NG Drift: 0.005 



5.4 Experimental Results 

The experimental results were organised in a three-phase analysis as follows: 

● Analysis of SNNcube patterns in an unsupervised mode

● Analysis of output layer patterns in a supervised mode

● Analysis of the results to evaluate the transfer learning performance

5.4.1 Analysis of SNNcube Patterns in an Unsupervised Mode 

After the unsupervised learning stage, the inactive connection weights in SNNcube           

which did not have active connections with other neurons, were temporarily pruned,            

allowing the model take advantage of previously learned features when learning new            

tasks, but cause no interference in the pathways of the previously learned tasks​.             

Figure 5-4 (b) and (d) show the weights connectivity of the complete and pruned              

SNNcube after learning all four disjoint tasks sequentially. Further quantitative          

information of the complete and pruned SNNcube are plotted in Figure 5-4 (a) and              

(c), respectively.  
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Mod: 0.8 
SNNcube pruning percentage: 0.995 
SIM parameter: 2 

TrSNN-OP Drift: 0.005 
Mod: 0.8 
Output layer pruning threshold: 0.533 

TrSNN-OP-NG Drift: 0.005 
Mod: 0.8 
Output layer pruning threshold: 0.533 
SIM parameter: 2 



 

 

 Figure 5-4 The distribution of connection weights for TrSNN models before and after ​SNNcube              
pruning. 
 

The weights connectivity of SNNcube after connection weights pruning at each stage            

of the learning process are visualized in Figure 5-5 (a)-(d), and It can be seen from                

Figure 5-5 (a)-(d) that stronger connectivity is observed with further trained           

SNNcube. To perform a better analysis of EEG changes at each task change, the              

differences between the SNNcube for each stage of the learning process were            

computed through subtracting with the previous trained cube, which allows          

visualising the changes in neural connectivity as a result of transfer learning over             

time. In the graphs shown in Figure 5-5 (e), (f), and (g), further trained SNNcube               

resulted in a similar pattern of changes in some regional activation across all the              

three new tasks. However, the size of the activated connectivity was higher in             
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SNNcube trained with class 3, compared to class 2 and 4. The connection weight              

varied to different degrees as new tasks were added, demonstrating stronger activity            

throughout the entire training process. ​Further analysis of the connectivity patterns of            

SNNcube can be performed in several ways, such as quantitative analysis. Another            

more efficient way to analyse the learning patterns is through deep knowledge            

representation, which will be discussed in Chapter 7.  
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 Figure 5-5 The connection weights of the pruned SNNcube for TrSNN models trained; (a) after class                
1; (b) after class 2; (c) after class 3; (d) after class 4. Differences between the connectivity in the                   
sequentially trained TrSNN models are shown in figs (e),(f),(g). The more new classes are added, the                
less new connections are added, as for the classification of new classes data, some of the previously                 
created connections are utilised. 
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In order to analyse the information interaction between the brain areas after each             

new task, the total temporal interactions in terms of spike communication between            

input neurons was depicted. As illustrated by the Feature Interaction Network graph            

in Figure 5-6, thicker interaction lines were formed between the EEG channels            

positioned at Parietal region for the model trained with class 1 when compared with              

the after class 2, class 3, and class 4 groups in Figure 5-6 (b, c, d). 

 

 
 Figure 5-6 The Feature Interaction Network (FIN) captured the total spike interaction between the              
areas in TrSNN models representing 62 EEG channels as input neurons during the STDP learning at                
each stage of the learning process for the pruned SNNcube. 
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5.4.2 Analysis of Output Layer Patterns in a Supervised Mode 

As mentioned in Chapter 3, all neurons in the SNNcube are connected to every              

neuron in the output layer. Therefore, after output layer pruning, inactive neurons in             

the output layer, which did not have activate connection with SNNcube, were pruned,             

which reduced the output connections for all samples from 93513 to 73875, as             

shown in Table 5-4​, ​a significant reduction of the dimensionality of the space for              

classification.  

 

 Table 5-4 The number of connections of the output layer for the TrSNN model before and after                 
pruning. 

 
 

The number of output neurons before and after aggregation is illustrated in Appendix             

B, Figures B-2. 

 

5.4.3 Analysis of the Results on Test Data to Evaluate the Transfer           
Learning Performance 

Figure 5-7 shows the final test results of each individual task for all experiments by               

the end of the training process and compares these results to the accuracy of the               

baseline model that allows data reinforcement from previous classes throughout the           
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Output Layer Pruning 

Model  Total Density  

Complete  93513  100%  

Pruned  73875 79%  



 

training process. As shown in Figure 5-7 that the TrSNN model showed a clear age               

dependent decline in which older tasks were solved with lower accuracy (Figure 5-7;             

green). This penalty is expected due to sequentially training the tasks without            

knowledge of a task change. One possible reason is that all neurons from the              

SNNcube are connected to every output neuron, including old and new, and the new              

patterns in the SNNcube learned for the newly introduced task intervene with the old              

ones. When enabling weight pruning methods, with a sensible choice for threshold,            

even with the same penalty, the models outperformed the previous results by a             

noticeable margin (Figure 5-7; red and purple ​vs green). In fact, even with this              

penalty, the proposed TrSNN-CP achieved a respectable 81% test accuracy after           

transfer learning, which performed on par with the baseline systems, averaging 3%            

accuracy degradation. This suggests that given a sparse network trained on a            

number of tasks sequentially, it reduces the degradation of accuracy significantly for            

older tasks while learning new tasks. When comparing the performance of networks            

which had trained with neuron aggregation (Figure 5-7; red vs purple, and purple vs              

pink), these models yielded similar test accuracies. The ImSNN model roughly           

achieved a 91% test accuracy, resulting in the highest performance among all            

models. However, this finding was unexpected because new connections from new           

tasks are created in the SNNcube in TrSNN models and they were expected to              

obtain better performance. While the incremental learning in the deSNN          

demonstrated higher accuracy of classification, this type of learning does not transfer            

knowledge from one class to another, but simply creates new output neurons for new              

classes, separate from the previously created for previously learned classes.          

Further, the final F-Score for all experiments are presented in Figure 5-8. 
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 Figure 5-7 Final per-task accuracy for each experiment after training four classes with one single 
subject. 

 

 
 

 Figure 5-8 Final F-score for each experiment after training four classes with one single subject. 
 

Besides the final accuracies of the transfer learning system, the performance           

throughout the training process is also depicted in Figure 5-9. ​As shown in Figure              
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5-9, graceful degradation of total accuracies when adding more training tasks were           

reduced significantly with connection weights pruning and neuron aggregation         

approaches.  

 Figure 5-9 Per-task classification accuracy as new tasks are added over time, up to and including the                 
current task for all experiments. 

To gain further understanding of the types of errors that occur during the testing              

stage, the confusion matrices of the classification results trained with the           

TrSNN-CP-NG model is plotted in Figure 5-10. Notice that for this experiment, a             

large number of class 1 were misclassified as class 4. This can be explained by the                

large interclass ambiguity between class 1 and 4. These two classes exhibited high             

similarity with the areas of neurons in the SNNcube for the activation of this output               

neuron, hence the ​misclassification​ was mainly among the class 1 and class 4.  
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 Figure 5-10 Confusion matrices of the classification results trained for TrSNN-CP-NG model. 
 

5.5 Chapter Summary 

In this chapter, I presented a case study of transfer learning across tasks in one               

subject based on the NeuCube SNN architecture using EEG data. Some of the key              

findings of this chapter are as follows: 

1. The proposed methods for transfer learning in NeuCube make it learn new            

patterns through making new spatio-temporal trajectories for new tasks. 

2. All TrSNN variants (TrSNN-OP, TrSNN-CP, TrSNN-OP-NG, TrSNN-CP-NG)       

have been proven to obtain better predictive performance than the direct           

version of TrSNN without changes of the NeuCube structure. 
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The next chapter will demonstrate an empirical study on transfer learning across            

multiple subjects to further investigate the feasibility of these transfer learning           

models. 

 

5.6 Contribution 

In this chapter, I have made the following contributions: 

● Designed an empirical study for transfer learning across tasks in one subject 

● Analysed the learning patterns in SNNcube captured during the learning          

process in SNN models 
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Chapter 6 Modelling Transfer Learning Across      
Multiple Subjects 
 

6.1 Introduction 

In this chapter, the proposed transfer learning methods are further examined on the             

second case study, transfer learning across multiple subjects, and the hypothesis is            

that the proposed transfer learning approaches can be also successfully used in the             

subject-to-subject transfer learning scenario. In this study, I constructed optimal SNN           

models and trained them with data from multiple subjects. The models are also             

evaluated in a three-phase analysis, including SNNcube patterns in an unsupervised           

mode, output layer patterns in a supervised mode, and the final experiment results to              

evaluate the transfer learning performance. 

 

6.2 Experimental Design 
 
In this case study, the same EEG data that has been used in Chapter 5 is selected                 

here again, and the description of EEG dataset and preprocessing steps were            

presented in Chapter 5. To validate the efficacy of the proposed approaches in             

transfer learning across multiple subjects, the SNNcube and deSNN classifier were           

first trained with samples from source subjects. After that, samples from the other             

three target subjects were presented one-by-one to the model without any data            

reinforcement from previous subjects with the goal of transferring some knowledge           

acquired from the source subject to the target subjects. A series of experiments were              
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conducted to validate the performance of the proposed transfer learning approaches           

across four selected subjects for two classes, class 2 and class 3 using the following               

schemes: 

● Baseline ​: batch learning of all subjects’ data using NeuCube

● ImSNN ​: Incremental learning of each subject’s data sequentially in deSNN         

classifier only

● TrSNN ​: Transfer learning of each subject’s data sequentially in unsupervised         

mode and train deSNN classifier

● TrSNN-CP ​: Transfer learning of each subject’s data sequentially in        

unsupervised mode and deSNN classifier, along with weight connection        

pruning in the SNNcube after learning of each task

● TrSNN-CP-NG ​: Transfer learning of each subject’s data sequentially in        

unsupervised mode and deSNN classifier, along with weight connection        

pruning in the SNNcube and neuron aggregation in the deSNN classifier

● TrSNN-OP​: Transfer learning of each subject’s data sequentially in        

unsupervised mode and deSNN classifier, along with connection weight        

pruning between SNNcube and the output neurons in the classifier

● TrSNN-OP-NG ​: Transfer learning of each subject’s data sequentially in        

unsupervised mode and deSNN classifier, along with connection weights        

pruning between SNNcube and output neurons and neuron aggregation when         

training deSNN classifier

The flowchart of the preparation of training and testing datasets for different            

schemes is presented in Figure 6-1. The encoding procedure to transform input            
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signals into spike trains was a threshold-based encoding algorithm as explained in            

Chapter 3 and a fixed threshold was performed on each incoming subject. 

 

 

 Figure 6-1 The flowchart of preparation of training and testing datasets for subject-to-subject transfer              
learning scenarios. 
 

To demonstrate the performance of different schemes, both transfer learning model           

and baseline model were performed using the same initial connection weights. The            

NeuCube models were saved at each subject change, and the testing results of all              

previously seen subjects were evaluated. All experiments were performed five times           

and reported the test accuracy and its standard deviation on all tasks. 

 
The parameter optimization phase is carried out on TrSNN models only. Parameters            

Drift, Mod, pruning percentage , and pruning threshold were chosen using grid    p     θ      
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search and picked the value of the best 3 fold cross-validation accuracy across all              

hyperparameters. For the similarity parameter (SIM) in the neuronal aggregation          

procedure of the deSNN classifier, a slightly different optimization scheme was used.            

The models were first trained over a range of similarity parameters along with the              

hyperparameters optimized as above using grid search. The optimal similarity          

parameter (SIM) was chosen as the value of the best training accuracy to make sure               

the performance of the neuron aggregation scheme performs on par with the model             

trained without neuron aggregation on the training dataset. Furthermore, baseline          

and ImSNN models were also conducted with the default parameters for           

comparison. The details of the default parameters are presented in Appendix B,            

Section B-1. For TrSNN experiments, there are some additional optimized          

parameters, which is summarized in Table 6-1. 

 

 Table 6-1 Parameter settings for each TrSNN experiment. 

 

 

83 

 
 

Parameters 

TrSNN-CP Drift: 0.005 
Mod: 0.8 
SNNcube pruning percentage: 0.7 

TrSNN-CP-NG Drift: 0.005 
Mod: 0.8 
SNNcube pruning percentage: 0.7 
SIM parameter: 2.5 

TrSNN-OP-NG Drift: 0.005 
Mod: 0.8 
Output layer pruning threshold: 0.533 

TrSNN-OP-NG Drift: 0.005 
Mod: 0.8 
Output layer pruning threshold: 0.533 
SIM parameter: 2.5 



 

6.3 Experimental Results 

The experimental results was organised in a two-phase analysis as follows:  

● Analysis of SNNcube patterns in an unsupervised mode  

● Analysis of output layer patterns in a supervised mode 

● Analysis of the results on test data to evaluate the transfer learning            

performance 

 

6.3.1 Analysis of SNNcube Patterns in an Unsupervised Mode 

The weights connectivity of SNNcube after connection weights pruning at each stage            

of the subject learning process for two classes, class 2 and class 3 are visualized in                

Figure 6-2 and Figure 6-3, respectively. It can be seen from Figure 6-2 and Figure               

6-3 (a)-(d) that stronger brain connectivity is observed with further trained           

SNNcubes. For class 3 (Figure 6-3 (a)-(d)), the connections were particularly           

enhanced between neurons located in the areas of Occipital and Posterior, which            

were less observed in the case of class 2 (Figure 6-2 (a)-(d)).  

 

To perform a better analysis of changes in SNNcube between subjects, the            

differences between the SNNcube for each stage of the learning process were            

computed through subtracting with the previous trained cube, which allows          

visualising the changes in neural connectivity as a result of transfer learning over             

time. In the graphs shown in Figure 6-2 (e), when the SNNcube was trained on               

subject 10, greater connections were mostly observed around the neurons          

positioned in Occipital and Temporal areas compared to other areas. As shown in             
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Figure 6-2 (f) for the subject 11, the neuron connectivity was enhanced around the              

Parietal, Sublobar, Temporal, Posterior and Occipital regions. Figure 6-2 (g)          

illustrates that EEG channels positioned in the Talairach areas associating with           

Frontal and Posterior lobes represented the most differences between subject 11           

and subject 12. The connection weight varied to different degrees as new subjects             

were added, demonstrating the difference in activity of brain areas across subjects            

throughout the entire training process. Similarly, the brain states when executing           

task 3 were compared in Figure 6-3 (e-g). Further trained SNNcube for subject 11              

resulted in a similar pattern of changes in some regional activation compared with             

class 2, while significant connectivity changes in some brain regions were observed            

for subject 10 and subject 12. ​Further analysis of the connectivity patterns of              

SNNcube can be performed in several ways, such as quantitative analysis. Another            

more efficient way to analyse the learning patterns is through deep knowledge            

representation, which will be discussed in Chapter 7.  
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 Figure 6-2 The connection weights of the pruned SNNcube for class 2 in TrSNN models trained (a)                 
after subject 9 (threshold: 0.3), (b) subject 10 (threshold: 0.4), (c) subject 11 (threshold: 0.5), (d) after                 
subject 12 (threshold: 0.6). Differences between the connectivity in the trained TrSNN models (e)(f)(g)              
(threshold: 0.3). The larger the number of new connections, the larger the difference between the new                
subject and old ones for the same task. 
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 Figure 6-3 The connection weights of the pruned SNNcube for class 3 in TrSNN models trained (a)                 
after subject 9 (threshold: 0.3), (b) subject 10 (threshold: 0.4), (c) subject 11 (threshold: 0.5), (d) after                 
subject 12 (threshold: 0.6). Differences between the connectivity in the trained TrSNN models (e)(f)(g)              
(threshold: 0.3). For both task 2 (Figure 6-2) and task 3 (this figure) the larger differences are                 
observed when Subject 11 data is learned in the SNNcube. 
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6.3.2 Analysis of Output Layer Patterns in a Supervised Mode 

As mentioned in Chapter 3, all neurons in the SNNcube are connected to every              

neuron in the output layer. Therefore, after output layer pruning, inactive neurons in             

output layer, which did not have activate connection with SNNcube, were pruned,            

which reduced the output connections for all samples from 137970 to 108727, as             

shown in Table 6-2, a significant reduction of the dimensionality of the space for              

classification.  

 Table 6-2 The number of connections of the output layer for the TrSNN model before and after                 
pruning. 

The number of output neurons before and after aggregation is illustrated in Appendix             

B, Figures B-2. 

6.3.3 Analysis of the Results on Test Data to Evaluate the Transfer           
Learning Performance 

The performance at the end of the training process was first evaluated using the              

overall accuracy and F-score achieved by each scheme across all four subjects, as             

shown in Figure 6-4 and Figure 6-5. TrSNN-CP resulted in the second highest             

classification performance by achieving up to 88.89% accuracy, suggesting that          

TrSNN-CP achieved better performance compared with other transfer learning or          
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Output Layer Pruning 

Model Total Density 

Complete 137970 100% 

Pruned 108727 79% 



 

incremental learning schemes. In terms of the performance for each subject, subject            

11 has a lower performance than other subjects. This can be explained by the large               

interclass ambiguity between the class 2 and 3 for subject 11 as shown in Figure 6-2                

(f) and Figure 6-3 (f). These two classes exhibited high similarity with the areas of               

neurons in the SNNcube for the activation of this output neuron, hence the             

misclassification was mainly among the subject 11. Figure 6-4 and Figure 6-5            

showed that the TrSNN-CP and TrSNN-CP-NG outperformed the incremental         

learning method (ImSNN) with an average accuracy improvement of 4%, which is            

opposite from the experiments in the previous chapter. 

 

 
 Figure 6-4 Final average accuracy for each experiment after training four subjects using two classes               
(class 2 and class 3). 
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 Figure 6-5 Final F-score for each experiment after training four subjects using two classes (class 2                
and class 3). 

 

In order to further analyze the accuracy of per class accuracy across subjects, per              

class accuracy of three schemes at the end of the training process was evaluated              

across all four subjects. It can be seen from Figure 6-6 that there was no significant                

catastrophic forgetting when the new subjects are learned using the TrSNN model.            

This might suggest that the feature of new subjects has no significant difference from              

previously observed examples. Unexpectedly, there were sharp drops in accuracy of           

class 3 for subject 11 when trained with TrSNN mode. The TrSNN-CP model             

performed on par with the baseline model for all subjects under most circumstances.             

Subject 11 in particular had a large increase in accuracy for class 3 when the               

SNNcube pruning was applied, while retaining the accuracy of other subjects. 
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 Figure 6-6. Per class accuracy for each subject trained with baseline, TrSNN, and TrSNN-CP models. 

6.4 Chapter Summary 

In this chapter, I have shown that the proposed TrSNN model with SNNcube pruning              

has a better adaptability to the novel information received from the new subjects by              

cutting off certain connections in the network, while preserving useful knowledge           

from previously learned subjects, allowing rapid learning from new information. Now           

the question is: how the SNN models can be further investigated for a better              

understanding of learning patterns that lead to a successful transfer learning and            

which parts of the brain area are responsible for that? In the next chapter, a deep                

spatio temporal rules extraction algorithm will be introduced. This allows for           

knowledge representation in the models and contributes to the interpretation of           

knowledge being transferred when training new tasks or subjects subsequently. 
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6.5 Contribution 

In this chapter, I have made the following contributions: 

● Designed an empirical study on transfer learning across multiple subjects 

● Analysed the learning patterns in SNNcube captured during the learning          

process in SNN models 
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Chapter 7 Methods and Algorithms for      
Knowledge Representation in BI-SNN as Spatial      
Temporal Rules (STR) 
 

7.1 Introduction 

In the previous two chapters, task to task and subject to subject experiments were              

conducted to examine the proposed transfer learning approaches. Besides the          

model accuracy, a better interpretation of the model is also essential. In this chapter,              

I proposed a deep knowledge extraction and representation method using BI-SNN           

architectures. This knowledge representation method is a technique to extract spatial           

temporal rules from deep knowledge, improving the level of interpretability of           

learning patterns that lead to a successful transfer learning and which parts of the              

brain area are responsible for that. In addition, this algorithm was applied to perform              

further analysis for the evolving patterns in transfer learning models, which has not             

been interpreted in depth in the previous two experiments presented in Chapter 5             

and Chapter 6. 

 

7.2 Deep Spatio Temporal Rules Extraction Approach 

The concept of deep knowledge representation in SNN is first introduced in            

(Kasabov, 2019). Deep knowledge extraction and representation in a trained SNN           

model is algorithmically described in Algorithm 6, in which activation activities of            
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different clusters of brain area at slightly different times are extracted numerically,            

and use it to represent spatiotemporal relationships during a cognitive task. In            

BI-SNN framework, each spiking neuron was annotated spatially by its          

corresponding anatomical region in the human brain using a 3D coordinate in the             

Talairach space (Talairach & Tournoux, 1988). The spatial mapping of EEG data is             

presented in Appendix A. After unsupervised learning in SNNcube with SNNcube           

pruning, the firing rate in each time bin was calculated along with neuron aggregation              

during the supervised learning stage. The neuron aggregation was employed since           

merged output neurons represent clusters of prototypes in a transformed space, and            

this transformed space can be used to discover deep knowledge. More specifically,            

for each aggregated output neuron, the average firing rate of the spatial cluster in              

each time bin can be calculated based on the number of times a pre-synaptic              

neurons spike. The spatial clusters were considered as active if the normalized firing             

rate surpasses the rule threshold. After the spatio-temporal analysis, deep          

knowledge is formed through the information obtained above. 

 

The activation of different clusters of neurons associated with each output class            

sample (prototype) at slightly different time bins can be analysed and deep            

spatio-temporal rules can be extracted. For each output class sample S, a chain of              

activated clusters of brain areas was formed over each time frame. A fuzzy rule-base              

associated with this output class sample can be extracted and presented in the             

following form (Kasabov, 2019): 

IF (the firing rate of  is A and  is B and  is F, at time about T1)area1 area2 area3   
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AND (the firing rate of is A and is B and is F, at time about T2)     area1     area2     area3        

AND (the firing rate of is A and is B and is F, at time about T3)     area1     area2     area3        

AND (the firing rate of  is A and  is B and  is F, at time about T4)area1 area2 area3   

THEN (The output class prototype is class C)  

Where A, B and F are fuzzy values represented by their membership functions, C is               

its corresponding class label, and indicates the set of brain areas that are     areai         

activated at time . For instance, at the lobe level of the hierarchy can be   T    areai           

represented using the following subset of brain areas: 

{Anterior Lobe, Frontal Lobe, Frontal emporal Space, Limbic Lobe, Medulla,  areai ⊂    − T    

idbrain, Occipital Lobe, Parietal Lobe, Pons, Posterior Lobe, Sub obar, Temporal Lobe}  M      − l   

 

An example of fuzzy membership functions is shown in Figure 7-1. 

 

 

 Figure 7-1 Example of fuzzy gaussian membership functions that represent a variable firing rate. 
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In the next two sections, this spatio temporal rules extraction algorithm was applied             

to further analyse both task-to-task and subject-to-subject experiments. The         

temporal resolution for this analysis was four time bins (t = {0.5s, 1s, 1.5s, 2s}), and                

the spatial resolution was the lobe level in the Talairach Brain Atlas (Talairach &              

Tournoux, 1988). The rule threshold that used to select spatial clusters for     thrule         

spatial temporal rule generation was fixed to 0.3.  

 Table ​7-1 The proposed deep spatial temporal rule extraction algorithm. 
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7.3 Spatial Temporal Rules for Task To Task Transfer in One          
Subject 

 

7.3.1 Functional Organisation of Neural Clusters 

For each output class sample, ​a subset of brain areas that indicate a specific              

combination of activation level during the execution of a cognitive task were            

selected. In order to perform a better quantitative analysis of the organization of             

neural clusters across tasks, the average firing rates of different spatial clusters of             

brain areas in each time bin are first calculated, and the difference of firing rate for                

each stage of the learning process were computed through subtracting with the firing             

rate for previous trained model, as shown in Figure 7-2. Different activation level of              

slightly different clusters of neurons at different times are observed, for instance,            

strong firing rates were created around the Frontal and Limbic lobes in Figure 7-2 (b)               

while Frontal-temporal lobe was more active in Figure 7-2 (a), indicating different            

knowledge were transferred at different stage of the training process.  
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 Figure 7-2 Difference in firing rate of brain areas between the SNN models trained (a) after class 1                  
and after class 2 (b) after class 2 and after class 3, (c) after class 3 and after class 4. 
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7.3.2 Extraction of Fuzzy Rules 
 
The knowledge obtained above ​can further be converted into meaningful symbolic           

representation, in which a fuzzy rule can be formed by using the activation of slightly               

different clusters of neurons at slightly different times. Below are the fuzzy rules             

obtained from Figure 7-2 (a) and Figure 7-2 (b).  

 

A fuzzy rule for sample in Figure 7-2 (a) can be written as, 

● = ​{Temporal Lobe}area (T1)1   

= ​{Frontal-Temporal Space, Frontal Lobe, Posterior Lobe}area (T1)2   

● = ​{Temporal Lobe}area (T2)1   

= ​{ Frontal Lobe, Temporal Lobe}area (T2)2   

= ​{Frontal-Temporal Space}area (T2)3   

● = ​{Parietal Lobe, Temporal Lobe}area (T3)1    

= ​{Frontal-Temporal Space, Frontal Lobe}area (T3)2   

● = ​{Temporal Lobe}area (T4)1   

= ​{Frontal-Temporal Space, Frontal Lobe, Posterior Lobe}area (T4)2   

 
IF (the firing rate of is SMALL and is MEDIUM, at time about     area (T1)1     area (T1)2       

0.5s)  

AND (the firing rate of is SMALL and is MEDIUM and     area (T2)1     area (T2)2     area (T2)3  

is HIGH, at time about 1s)  

AND (the firing rate of is SMALL and is MEDIUM, at time about     area (T3)1     area (T3)2        

1.5s) 
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AND (the firing rate of is SMALL and is MEDIUM, at time about      area (T4)1     area (T4)2        

2s)  

THEN (This is the knowledge that transfers from the model trained with class 1 to the                

model that continues to train class 2 sequentially) . 

 
 
A fuzzy rule for sample in Figure 7-2 (b) can be written as, 

● = ​{Occipital Lobe, Sub-lobar}area (T1)1   

= ​{Temporal Lobe, Limbic Lobe, Parietal Lobe}area (T1)2   

= ​{Frontal Lobe}area (T1)3   

● = ​{Occipital Lobe, Sub-lobar}area (T2)1   

= ​{Temporal Lobe, Parietal Lobe}area (T2)2   

= ​{Frontal Lobe, Limbic Lobe}area (T2)3   

● = ​{Occipital Lobe, Sub-lobar}area (T3)1    

=​ ​{Temporal Lobe, Limbic Lobe, Parietal Lobe}area (T3)2   

=​ ​{Frontal Lobe}area (T3)3   

● = ​{Occipital Lobe, Sub-lobar}area (T4)1   

= ​{Temporal Lobe, Parietal Lobe}area (T4)2   

=​ ​{Frontal Lobe, Temporal Lobe}area (T4)3   

 
IF (the firing rate of is SMALL and is MEDIUM and is     area (T1)1     area (T1)2     area (T1)3   

HIGH, at time about 0.5s)  

AND (the firing rate of is SMALL and is MEDIUM and     area (T2)1     area (T2)2     area (T2)3  

is HIGH, at time about 1s)  
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AND (the firing rate of is SMALL and is MEDIUM and     area (T3)1     area (T3)2     area (T3)3  

is HIGH, at time about 1.5s) 

AND (the firing rate of is SMALL and is MEDIUM and      area (T4)1     area (T4)2     area (T4)3  

is HIGH, at time about 2s)  

THEN (This is the knowledge that transfers from the model trained with class 1 and               

class 2 to the model that continues to train class 3 sequentially) 

 
 

7.4 Spatial Temporal Rules​ for Subject To Subject Transfer 

7.4.1 Functional Organisation of Neural Clusters 

In order to perform a better quantitative analysis of the organization of neural             

clusters between subjects, the average firing rates of different spatial clusters of            

brain areas in each time bin for class 2 and class 3 are first calculated and the                 

difference of firing rate for each stage of the learning process were computed             

through subtracting with the firing rate for previous trained model and visualized in             

Figure 7-3 and Figure 7-4 respectively. In the graphs shown in Figure 7-3 (a), the               

common knowledge for the model trained with subject 9 and model that continue to              

trained with subject 10 was positioned around the areas in the Talairach areas             

associating with Anterior Lobe, Medulla, Midbrain, Pons, Posterior Lobe at each time            

bin. In Figure 7-3 (b), strong firing rates were mostly created around the Medulla,              

Posterior, Pons and Occipital regions. Figure 7-3 (c) depicts that those neurons with             

a high firing rate positioned around the Sub-lobar, Pons and Temporal Lobe after 1s,              

Anterior Lobe in 1s and 2s, Limbic Lobe in 2s, while neural clusters in Occipital and                
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Posterior Lobe are activated at all time bins. Similarly, different activation activities of             

different clusters of brain area at slightly different times when executing task 3 were              

observed in Figure 7-4 (a-c).  

 

 
 Figure 7-3 Difference in firing rate of brain areas when executing class 2 between the trained SNN                 
models (a) after subject 9 and after subject 10 (b) after subject 10 and after subject 11, (c) after                   
subject 11 and after subject 12. 
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 Figure 7-4 Difference in firing rate of brain areas when executing class 3 between the trained SNN                 
models (a) after subject 9 and after subject 10 (b) after subject 10 and after subject 11, (c) after                   
subject 11 and after subject 12. 
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7.4.2 Extraction of Fuzzy Rules 

The knowledge obtained above ​can further be converted into meaningful symbolic           

representation, in which a fuzzy rule can be formed by using the activation of slightly               

different clusters of neurons at slightly different times. Below are the fuzzy rules             

obtained from Figure 7-3 (c) and Figure 7-4 (c).  

 
A fuzzy rule for sample in Figure 7-3 (c) can be written as, 

● = ​{Frontal Lobe, Anterior Lobe, Temporal Lobe, Parietal Lobe, Pons, Sub-lobar}area (T1)1   

= ​{Posterior Lobe, Occipital Lobe, Medulla}area (T1)2   

● = ​{Limbic Lobe, Frontal Lobe, Frontal-Temporal Space, Parietal Lobe}area (T2)1   

= ​{Temporal Lobe, Occipital Lobe, Medulla, Sub-lobar, Midbrain, Posterior Lobe,area (T2)2            

Pons, Anterior Lobe} 

● = ​{Parietal Lobe, Limbic Lobe}area (T3)1   

= ​{Temporal Lobe, Pons, Occipital Lobe, Sub-lobar, Posterior Lobe}area (T3)2   

● = ​{Midbrain, Frontal Lobe}area (T4)1   

= ​{Anterior Lobe, Posterior Lobe, Limbic Lobe, Occipital Lobe, Pons, Parietalarea (T4)2             

Lobe, Temporal Lobe, Sub-lobar} 

=​ ​{Medulla}area (T4)3   

 
IF (the firing rate of is SMALL, is MEDIUM, at time about 0.5s)area (T1)1  area (T1)2    

AND (the firing rate of is SMALL, is MEDIUM, at time about 1s)area (T2)1  area (T2)2    

AND (the firing rate of is SMALL, is MEDIUM, at time about 1.5s)area (T3)1  area (T3)2   
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AND (the firing rate of is SMALL, is MEDIUM, is      area (T3)1    area (T3)2    area (T3)2   

HIGH, at time about 2s)  

THEN (This is the knowledge for class 2 that transfers from the model trained with               

subject 9, 10, and 11 to the model that continues to train subject 12 sequentially) . 

 

A fuzzy rule for sample in Figure 7-4 (c) can be written as, 

● = ​{Pons}area (T1)1   

= ​{Frontal Lobe, Temporal Lobe, Frontal-Temporal Space, Limbic Lobe, Occipitalarea (T1)2            

Lobe, Parietal Lobe, Sub-lobar} 

● =​ ​{Frontal Lobe}area (T2)1   

= ​{Temporal Lobe, Limbic Lobe, Sub-lobar, Posterior Lobe, Frontal-Temporalarea (T2)2           

Space, Pons, Parietal Lobe, Anterior Lobe} 

=​ ​{Occipital Lobe}area (T2)3   

● = ​{Pons, Midbrain}area (T3)1   

= ​{Frontal Lobe, Temporal Lobe, Anterior Lobe, Occipital Lobe, Parietal Lobe,area (T3)2             

Frontal-Temporal Space, Sub-lobar, Posterior Lobe} 

=​ ​{Limbic Lobe}area (T3)3   

● = ​{Anterior Lobe, Limbic Lobe, Occipital Lobe, Frontal Lobe, Parietal Lobe,area (T4)1             

Sub-lobar} 

=​ ​{Posterior Lobe, Frontal-Temporal Space, Pons, Medulla}area (T4)2   

 
IF (the firing rate of is SMALL, at time about 0.5s)area (T1)1    

AND (the firing rate of is SMALL and is MEDIUM and     area (T2)1     area (T2)2     area (T2)3  

is HIGH, at time about 1s)  
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AND (the firing rate of is SMALL and is MEDIUM and     area (T3)1     area (T3)2      area (T3)3   

is HIGH, at time about 1.5s) 

AND (the firing rate of is MEDIUM and areas is LARGE, at time      area (T4)1       area (T4)2       

about 2s)  

THEN (This is the knowledge for class 3 that transfers from the model trained with               

subject 9, 10, and 11 to the model that continues to train subject 12 sequentially) 

 

7.5 Chapter Summary 
 
In this chapter, I proposed a new deep spatio temporal rules extraction approach             

based on the SNN architecture. This resulted in a better interpretation of SNN             

learning patterns. It also contributes to knowledge representation in SNN          

architectures, allowing further analysis on how the trained transfer learning models           

exchange information and transfer knowledge between tasks or subjects. 

 

7.6 Contribution 

In this chapter, I have made the following contributions: 

● Proposal of a new deep spatio temporal rules extraction approach based on            

the SNN architecture  

● Designed a study on the proposed spatio temporal rules extraction approach           

based on the task to task and subject to subject experiments 
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Chapter 8 Conclusions and Recommendations     
for Future Work 

8.1 Introduction 

This chapter discusses the key findings and contributions of this thesis. The main             

limitations of this work are then discussed along with an overview of future             

implications. 

8.2 Aim and Methodological Approach

This thesis aims to adapt the NeuCube Brain-Inspired Spiking Neural Network           

(BI-SNN) architecture for transfer learning schemes. I proposed a family of transfer            

learning methods based on the NeuCube framework that resulted in a better            

adaptability to the novel information. The proposed approaches were experimentally          

validated using the upper limb movement dataset on two empirical studies, including            

transfer learning across tasks in one subject and transfer learning across subjects in             

one task. Additionally, I proposed a new spatial-temporal rule based on SNN            

architecture that offers an improved level of interpretability about how the transfer            

learning models exchange information. 

8.3 Empirical and Theoretical Contributions 

The contributions of this thesis are: 
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1. Transfer learning in BI-SNN models 

I adapted the NeuCube framework to be used on transfer learning environments,            

which resulted in a better adaptability to the novel information received from the new              

tasks or subjects, achieving up to 81.96% accuracy for task-to task transfer learning             

in one subject and 88.89% accuracy for subject-to-subject transfer learning case           

studies. The findings demonstrated that the new adaptations of SNN models are            

able to learn from new incoming tasks or subjects rapidly without requiring retraining             

from previous samples, while retaining the knowledge from previously learned tasks           

or subjects with less forgetting. Therefore, the achieved transfer learning in SNN            

models is a significant contribution for a further development of deep-learning in            

SNN architecture. 

 

2. Knowledge representation in BI-SNN models 

I proposed a new deep knowledge representation approach to extract spatial           

temporal rules from deep knowledge, enabling a better interpretation of learning           

patterns in the SNN models. This approach also contributed to further analysis on             

how the transfer learning models exchange information in order to trace the evolution             

of knowledge during transfer learning. 

 

8.4 Limitation of the Thesis 

The limitations of this thesis are: 

1. Scope and Parameters of the Research 
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The temporal and spatial resolution of knowledge representation extracted from a           

trained SNN model was predefined manually. The optimization procedure needs to           

be further investigated to find the optimal space and time of knowledge. ​In addition,              

the data used in this thesis were only EEG data, however the proposed transfer              

learning methods need to be further evaluated to other types of spatio-temporal data,             

for instance, fMRI and gene data. 

 

2. Methodological Point of View 

A fixed threshold was used for encoding the input signals into spike trains for all               

tasks and subjects. However, the encoding procedure and its parameters should be            

adapted to different tasks or subjects. Assessment of different encoding methods           

and optimising their parameters is crucial for further development of transfer learning            

models. 

 

8.5 Future Direction and Implications 

There are some future directions that can be explored in the future as follows: 

 

Bioinformatics: ​The proposed transfer learning methods presented in Chapter 5          

can be further applied to the field of bioinformatics, for instance, a generic predictive              

system for early prediction of health risk factors. To this aim, I aim to investigate the                

feasibility of transfer learning using omics data, such as genomics or proteomics            

data. 
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Learning to learn in BI-SNN: ​For further development of the proposed methods            

presented in Chapter 5, I aim to enhance it towards learning to learn in SNN               

models. The SNN models are not only capable of transferring prior knowledge in             

order to learn new information more effectively but learning related tasks or subjects             

from very few examples. 
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Appendix A  Talairach Mapping 

The EEG mapping into the NeuCube framework was performed according to the 3D 

coordinates in the Talairach space as presented in Table A-1. 

 
 Table A-1 Anatomical locations of cortical projections from (Koessler, et al., 2009) 

121 

 
Labels 

Talairach coordinates 

x (mm) y (mm) z (mm) 

Fp1 -20 60 10 

Fpz 0 60 10 

Fp2 20 60 10 

AF7 -40 40 30 

AF3 -20 60 20 

AF4 20 60 20 

AF8 40 40 30 

F7 -50 30 20 

F5 -40 30 20 

F3 -30 30 40 

F1 -10 30 50 

Fz 0 30 50 

F2 10 30 50 

F4 30 30 40 

F6 40 30 20 

F8 60 30 20 

FT7 -50 10 0 

FC5 -50 10 50 

FC3 -40 10 50 

FC1 -20 10 60 

FCz 0 10 60 
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FC2 20 10 60 

FC4 40 10 50 

FC6 50 10 50 

FT8 50 10 0 

T7 -50 -10 0 

C5 -40 -10 50 

C3 -30 -10 50 

C1 -20 -10 60 

Cz 0 -10 60 

C2 20 -10 60 

C4 30 -10 50 

C6 40 -10 50 

T8 50 -10 0 

TP7 -60 -40 0 

CP5 -50 -30 20 

CP3 -30 -20 60 

CP1 -20 -20 60 

CPz 0 -20 60 

CP2 20 -20 60 

CP4 30 -20 60 

CP6 50 -30 20 

TP8 60 -40 0 

P7 -50 -50 0 

P5 -40 -50 20 

P3 -30 -40 40 

P1 -10 -40 50 

Pz 0 -60 60 

P2 10 -40 50 

P4 30 -40 40 

P6 40 -50 20 
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P8 50 -50 0 

PO7 -40 -60 0 

PO3 -20 -50 30 

POz 0 -80 30 

PO4 20 -50 30 

PO8 40 -60 0 

O1 -30 -80 10 

Oz 0 -80 20 

O2 30 -80 10 

TP9 -60 -30 20 

TP10 60 -30 20 



 

Appendix B Transfer Learning Study 

B.1 Default Parameter settings for NeuCube Model 

 
Table B-1 default parameter setting of the NeuCube model 
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Method Parameter Description Default value 

Encoding Threshold  0.5 

LIF Firing Threshold Threshold voltage value to emit a 
spik 

0.5 

 Refractory Time The time period during which a 
neuron rests after firing 

6 

 Potential leak rate  0.002 

Unsupervised 
learning 

STDP rate Determines positive synaptic 
modifications 

0.01 

Supervised 
learning 

Mod  0.8 

 Drift  0.005 

 k The number of nearest neighbours 3 



B.2 Statistics Analysis of Output Layer After Neuron

Aggregation

Table B-2 The the number of output neurons before and after aggregation 
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Transfer Learning Across Tasks in One Subject 

Neuron aggregation TrSNN-CP-NG 

Class 1 Class 2 Class 3 Class 4 Total 

Number of neurons before 
aggregation 

15 16 15 15 61 

Number of neurons after 
aggregation 

11 14 12 14 51 

Neuron aggregation TrSNN-OP-NG 

Class 1 Class 2 Class 3 Class 4 Total 

Number of neurons before 
aggregation 

15 16 15 15 61 

Number of neurons after 
aggregation 

8 13 11 14 46 

Transfer Learning Across Multiple Subjects 

Neuron aggregation TrSNN-CP-NG 

Class 1 Class 2 Class 3 Class 4 Total 

Number of neurons before 
aggregation 

27 20 23 20 90 

Number of neurons after 
aggregation 

23 20 23 20 86 

Neuron aggregation TrSNN-OP-NG 

Class 1 Class 2 Class 3 Class 4 Total 

Number of neurons before 
aggregation 

27 20 23 20 90 

Number of neurons after 
aggregation 

16 12 13 11 52 


