
Methods for Deep Transfer Learning and

Knowledge Transfer in the NeuCube

Brain-Inspired Spiking Neural Network

Yongyao Tan

A thesis submitted to

Auckland University of Technology

in partial fulfillment of the requirements for the degree of

Master of Computer and Information Sciences (MCIS)

2020

Faculty of Design & Creative Technologies

School of Computing and Information Sciences

Supervisors:

Professor Nikola Kasabov

Doctor Maryam Doborjeh

Abstract:

With the increasing number of computational systems based on continuous streams

of information, progressively learning and accommodating new knowledge in a more

efficient manner becomes a long-standing challenge. This thesis proposes methods

employing a Brain-Inspired Spiking Neural Network (BI-SNN) architecture for transfer

learning scenarios. The proposed transfer learning approaches were experimentally

validated using a benchmark brain data related to upper limb movement. The results

showed that the proposed methods have the capability to effectively learn new

knowledge by retaining and reusing previously learned knowledge, resulting in a

better accuracy of classification (up to 88.89%) when compared with non-transfer

learning methods. Further, a new deep knowledge representation approach is

proposed and developed, which allows extracting spatial temporal rules from deep

knowledge, enabling a better interpretation of learning patterns in the SNN models

and evolution trace of knowledge during transfer learning.

1

Contents

List of Figures 5

List of Tables 9

List of Abbreviations 11

Attestation of Authorship 13

Acknowledgments 14

Chapter 1 Introduction 15
Rationale and Motivation 15
Aims of this Thesis and Research Questions 16
Thesis Structure 18

Chapter 2 Incremental and Transfer Learning and Knowledge Representation
in Humans and Machines 21

Introduction 21
Incremental Learning 21

Incremental Learning Approaches 22
Transfer Learning 27

Transfer Learning Categories 29
Transfer Learning Approaches 30

Deep Knowledge Representation 35
Knowledge Granularity 37

Chapter Summary 38

Chapter 3 Spiking Neural Networks 39
Introduction 39
Information Encoding as Spikes 40
Computational Model of a Spiking Neuron 41
Learning in SNN Models 43
NeuCube - An SNN Framework 45

Input Data Encoding 46
Input Data Mapping 47
Unsupervised Learning in SNNcube 47
Supervised Learning and Classification in Evolving SNN 48

Chapter Summary 48

Chapter 4 Proposed Methodology for Transfer Learning in BI-SNN 50

2

Introduction 50
Incremental Learning in BI-SNN 50
Proposed Transfer Learning Algorithm for BI-SNN 51
Connection Weights Pruning Techniques for TrSNN Models 53

SNNcube Pruning 53
Output Layer Pruning in the deSNN 54

Neuron Aggregation Technique for TrSNN Models 56
Chapter Summary 60
Contribution 61

Chapter 5 Modelling Transfer Learning of New Tasks by a Single Subject in
NeuCube 62

Introduction 62
Dataset and Preprocessing 62
Experimental Design 65
Experimental Results 68

Analysis of SNNcube Patterns in an Unsupervised Mode 68
Analysis of Output Layer Patterns in a Supervised Mode 72
Analysis of the Results on Test Data to Evaluate the Transfer Learning
Performance 72

Chapter Summary 76
Contribution 77

Chapter 6 Modelling Transfer Learning Across Multiple Subjects 78
Introduction 78
Experimental Design 78
Experimental Results 82

Analysis of SNNcube Patterns in an Unsupervised Mode 82
Analysis of Output Layer Patterns in a Supervised Mode 86
Analysis of the Results on Test Data to Evaluate the Transfer Learning
Performance 86

Chapter Summary 89
Contribution 90

Chapter 7 Methods and Algorithms for Knowledge Representation in BI-SNN
as Spatial Temporal Rules (STR) 91

Introduction 91
Deep Spatio Temporal Rules Extraction Approach 91
Spatial Temporal Rules for Task To Task Transfer in One Subject 95

Functional Organisation of Neural Clusters 95
Extraction of Fuzzy Rules 97

Spatial Temporal Rules for Subject To Subject Transfer 99

3

Functional Organisation of Neural Clusters 99
Extraction of Fuzzy Rules 102

Chapter Summary 104
Contribution 104

Chapter 8 Conclusions and Recommendations for Future Work 105
Introduction 105
Aim and Methodological Approach 105
Empirical and Theoretical Contributions 105
Limitation of the Thesis 106
Future Direction and Implications 107

Reference​s 109

Appendix A Talairach Mapping 119

Appendix B Transfer Learning Study 122
B.1 Default Parameter settings for NeuCube Model 122
B.2 Statistics Analysis of Output Layer After Neuron Aggregation 123

4

List of Figures

5

Figure 1-1 A bird’s-eye view of the thesis structure.​ 21

Figure 2-1 Venn diagram of some of the incremental learning strategies: EWC

(Kirkpatricka, et al., 2017), AR1 (Maltoni, & Lomonaco, 2019), CFN (Allred, & Roy

2020), ECOS (Kasabov, 2007), eSPANNet (Kumarasinghe, Taylor, & Kasabov,

2019), GDM (Maltoni, & Lomonaco, 2019), and EXSTREAM (Hayes, Cahill, &

Kanan, 2019).​ 23

Figure 2-2 Schematic view of the main difference between traditional machine

learning, incremental learning (Section 2.2), and transfer learning (Section 2.3).​ 28

Figure 3-1 Structure of a biological neuron. Figure from (Neves, González,

Leander, & Karoumi, 2017).​ 42

Figure 3-2 The LIFM of a spiking neuron. (a) Schematic representation; (b)

Showing an input train of spikes (top row), the emitted output spikes (second row)

and the membrane potential changes over time. Figure from (Kasabov, 2014).​ 44

Figure 3-3 Synaptic change in a STDP learning neuron. Figure from (Song, Miller,

& Abbott, 2000).​ 46

Figure 3-4 Block diagram of NeuCube architecture, including: input spatio-temporal

data encoding module, 3D SNN module, output module for

classification/regression, and gene regulatory network (GRN) module (optional).

Figure from (Kasabov, 2012).​ 47

Figure 4-1 Schematic diagram of the proposed TrSNN-CP-NG.​ 60

6

Figure 4-2 Schematic diagram of the proposed TrSNN-OP-NG.​ 61

Figure 5-1 Timing scheme of the motor imagery tasks.​ 64

Figure 5-2 Topological graph for EEG channels in 10-20 standard.​ 65

Figure 5-3 The flowchart of preparation of training and testing datasets for

task-to-task transfer learning in one subject scenarios. ​ 68

Figure 5-4 The distribution of connection weights for TrSNN models before and

after cube pruning. ​ 71

Figure 5-5 The connection weights of the pruned SNNcube for TrSNN models

trained; (a) after class 1; (b) after class 2; (c) after class 3; (d) after class 4.

Differences between the connectivity in the sequentially trained TrSNN models are

shown in figs (e),(f),(g). The more new classes are added, the less new

connections are added, as for the classification of new classes data, some of the

previously created connections are utilised.​ 73

Figure 5-6 The Feature Interaction Network (FIN) captured the total spike

interaction between the areas in TrSNN models representing 62 EEG channels as

input neurons during the STDP learning at each stage of the learning process for

the pruned SNNcube.​ 74

Figure 5-7 Final per-task accuracy for each experiment after training four classes

with one single subject. ​ 77

Figure 5-8 Final F-score for each experiment ​after training four classes with one

single subject​.​ 77

Figure 5-9 Per-task classification accuracy as new tasks are added over time, up

7

to and including the current task for all experiments.​ 78

Figure 5-10 Confusion matrices of the classification results trained for

TrSNN-CP-NG model.​ 79

Figure 6-1 The flowchart of preparation of training and testing datasets for

subject-to-subject transfer learning scenarios.​ 83

Figure 6-2 The connection weights of the SNNcube for class 2 in TrSNN models

trained (a) after subject 9 (threshold: 0.3), (b) subject 10 (threshold: 0.4), (c)

subject 11 (threshold: 0.5), (d) after subject 12 (threshold: 0.6). Differences

between the connectivity in the trained TrSNN models (e)(f)(g) (threshold: 0.3).

The larger the number of new connections, the larger the difference between the

new subject and old ones for the same task.​ 87

Figure 6-3 The connection weights of the SNNcube for class 3 in TrSNN models

trained (a) after subject 9 (threshold: 0.3), (b) subject 10 (threshold: 0.4), (c)

subject 11 (threshold: 0.5), (d) after subject 12 (threshold: 0.6). Differences

between the connectivity in the trained TrSNN models (e)(f)(g) (threshold: 0.3). For

both task 2(Fig.6-2) and task 3 (this figure) the larger differences are observed

when Subject 11 data is learned in the SNNcube.​ 88

Figure 6-4 Final average accuracy for each experiment after training four subjects

using two classes (class 2 and class 3).​ 90

Figure 6-5 Final F-score for each experiment after training four subjects using two

classes (class 2 and class 3).​ 91

Figure 6-6. Per class accuracy for each subject trained with baseline, TrSNN, and

TrSNN-CP models.​ 92

8

Figure 7-1 Example of fuzzy gaussian membership functions that represent a

variable firing rate.​ 96

Figure 7-2 Difference in firing rate of brain areas between the SNN models trained

(a) after class 1 and after class 2 (b) after class 2 and after class 3, (c) after class 3

and after class 4.​ 99

Figure 7-3 Difference in firing rate of brain areas when executing class 2 between

the trained SNN models (a) after subject 9 and after subject 10 (b) after subject 10

and after subject 11, (c) after subject 11 and after subject 12.​ 103

Figure 7-4 Difference in firing rate of brain areas when executing class 3 between

the trained SNN models (a) after subject 9 and after subject 10 (b) after subject 10

and after subject 11, (c) after subject 11 and after subject 12.​ 104

List of Tables

9

Table 2-1 Summary of commonly used notation. ​ 29

Table 4-1 The proposed ImSNN algorithm for deSNN (Kasabov et al. 2013).​ 52

Table 4-2 The proposed TrSNN algorithm for NeuCube. ​ 53

 ​Table 4-3 The proposed SNNcube pruning algorithm.​ 55

Table 4-4 The proposed output layer pruning algorithm for deSNN (Kasabov et al.

2013).​ 57

Table 4-5 The proposed neuron aggregation algorithm for deSNN (Kasabov et al.

2013).​ 59

Table 5-1 Summary of the upper limb movements dataset. ​ 65

Table 5-2 Description of experiment schemes.​ 66

Table 5-3 Parameter settings for each TrSNN experiment.​ 69

Table 5-4 The number of connections of the output layer for the TrSNN model

before and after pruning.​ 75

Table 6-1 Parameter settings for each TrSNN experiment.​ 84

Table 6-2 The number of connections of the output layer for the TrSNN model

before and after pruning.​ 89

10

Table 7-1 The proposed deep spatial temporal rule extraction algorithm. ​ 97

List of Abbreviations

11

ANN Artificial Neural Network

ATL Active Transfer Learning

AwAR Active Weighted Adaptation Regularization

AER Address-Event Representation

BI-SNN Brain-Inspired Spiking Neural Network

BCI Brain-Computer Interfaces

BSA Ben Spike Algorithm

CFNs Controlled Forgetting Networks

CWR Copy Weight with Reinit

deSNN Dynamic evolving SNN classifier

EWC Elastic Weight Consolidation

EEG Electroencephalogram

fMRI Functional Magnetic Resonance Imaging

FWET Feature Weighted Episodic Training

GDM Growing Dual-Memory

G-EM Growing Episodic Memory

G-SM Growing Semantic Memory

IID Independent and Identically Distributed

LIFM Leaky Integrate and Fire Model

12

LDP Long-term Potentiation

LwF Learning without Forgetting

LTD Long-term Depression

MNI Montreal Neurological Institute

RO Rank-order

SI Synaptic Intelligence

SPAN Spike Pattern Association Neuron

SITAL Selective Instance Transfer with Active Learning

SIITAL Selective Informative Instance Transfer with Active Learning

SNNs Spiking Neural Networks

SVN Support Vector Machine

STDP Spike Timing Dependent Plasticity

STR Spatial Temporal Rules

TBR Threshold Based Encoding

wAR Weighted Adaptation Regularization

Attestation of Authorship

“I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person (except where explicitly defined in the acknowledgments), nor

material which to a substantial extent has been submitted for the award of any other

degree or diploma of a university or other institution of higher learning”.

Signature

Date 23/01/2021

13

Acknowledgments

I have the pleasure to acknowledge the support of many people who have

supported, inspired and helped me over this year. First and foremost, I am very

grateful to my primary supervisor Professor Nikola Kasabov for his support and

inspiration. I would also like to express my appreciation to my secondary supervisor

Doctor Maryam Doborjeh for her guidance and support. I am also very thankful to

Kaushalya Kumarasinghe, the member of Knowledge Engineering and Discovery

Research Institute, who helped me at the beginning of my study.

14

Chapter 1 Introduction

1.1 Rationale and Motivation

Large amounts of data ​are produced in the form of continuous streams and the

distribution behind these produced data may be changed over time. Consequently,

adaptive and scalable algorithms are required to capture such changes and leverage

prior knowledge in order to improve the learning performance of target domains and

avoid becoming obsolete. The ability of continually learning over long time spans and

transferring knowledge across domains, referred to as transfer learning, is crucial for

the development of real-life applications when processing continuous streams of

information.

The majority of current transfer learning research has been carried out in

conventional machine learning techniques, such as, support vector machine (SVM)

(Bruzzone, & Marconcini, 2009), and deep neural networks (Rusu et al., 2016; Li,

Parikh, & He, 2018). ​However, these methods often model spatial and temporal

components separately without considering informative spatio-temporal correlations

in the data (Kasabov, 2019).

Compared to conventional machine learning methods, Spiking Neural Networks

(SNNs) are promising computational paradigms for modelling complex information

such as Spatio-temporal Brain Data (STBD) (Kasabov, 2019). However, few studies

have thoroughly investigated transfer learning in SNNs in a systematic way, even

15

though they are naturally adaptive to changing environments. The challenge now is

to develop new SNN algorithms and methods for the efficient learning of STBD in a

transfer learning manner.

This thesis covers this research gap by adapting Brain-Inspired Spiking Neural

Network (BI-SNN) architecture in a transfer learning scenario, with the goals of

learning new information from different tasks or subjects sequentially, while retaining

the knowledge from previously learned tasks or subjects without forgetting. This

research also contributes to an improved level of interpretability of learning patterns

in SNN models through deep knowledge representation. The task to task and subject

to subject transfer learning case studies here use real-life Electroencephalogram

(EEG) dataset which was measured prior to this study by New Zealand College of

Chiropractic and Aalborg University under the ethical approval of the local ethics

committee (N-20130081) who are acknowledged in this thesis.

1.2 Aims of this Thesis and Research Questions

The primary aims of this thesis are summarised as follows:

1) Proposal of novel deep transfer learning methods in BI-SNN.

● To develop an incremental learning method based on SNN models

● To develop a transfer learning method based on SNN models

● To develop connection weights pruning techniques for transfer learning

in SNN models

16

● To develop neuron aggregation technique for transfer learning SNN

models

2) Empirical study of the proposed transfer learning approaches on task to task

transfer learning in one subject.

● To design optimal transfer learning in SNN models that can learn

sequentially presented tasks

● To achieve an improved classification accuracy on previous learned

tasks while learning new tasks

● To interpret the learning patterns in SNN models captured during the

learning process

3) Empirical study of the proposed transfer learning approaches on subject to

subject transfer learning.

● To design optimal transfer learning in SNN models that can learn

sequentially presented subjects

● To achieve an improved classification accuracy on previously learned

subjects while learning new subjects

● To interpret the learning patterns in SNN model captured during the

learning process

4) Development of a new method for knowledge representation in BI-SNN and

for tracing the evolution of knowledge during transfer learning.

● To develop a new method for dynamic spatio-temporal rule extraction

of patterns generated during supervised learning in SNN models

17

● To improve the level of interpretability of learning patterns in the SNN

models

● To develop a method for tracing the evolution of knowledge during

transfer learning

During the progression of this thesis, the following research questions have been

addressed:

Q1. How to develop a transfer learning technique for a Spiking Neural Network

framework?

Q2. How to deal with non-stationarity among different domains so that better transfer

learning performance can be obtained across domains?

Q4. How to improve the level of interpretability and understanding of learning

patterns in a successful transfer learning in SNN models?

1.3 Thesis Structure

This thesis consists of eight chapters which are outlined as follows:

Chapter 1​ ​states the research rationale, motivations, and research questions.

Chapter 2 reviews the research about the definitions and existing approaches for

incremental learning and transfer learning and the relationship between these two

18

learning techniques. This section is then followed by a review on deep knowledge

representation in order to gain further understanding of the learning process.

Chapter 3 discusses the techniques of information encoding, computational model

of a spiking neuron and learning in SNN models. Then, this chapter introduces a

BI-SNN architecture, namely NeuCube for modelling spatio-temporal data.

Chapter 4 ​reveals the methodology for the study and is proposing two new training

approaches including “incremental training” and “transfer learning”, called ImSNN

and TrSNN respectively, along with three additional algorithms that can be combined

with the proposed transfer learning approaches, including two connection weights

pruning algorithms, and one neuron aggregation algorithm.

Chapter 5 ​proposes a transfer learning approach for the scenario of task to task

transfer learning in one subject. It represents the dataset that was used in this

research.

Chapter 6 ​proposes transfer learning algorithms across multiple subjects utilising the

SNN architecture under investigation.

Chapter 7 proposes a new algorithm for knowledge representation based on the

NeuCube SNN architecture and demonstrates it for knowledge discovery through

extracting and analyzing spatial temporal rules (STR) for task to task and subject to

subject transfer learning models as introduced in the previous chapters.

19

Chapter 8 summarises the key findings, contributions, limitations and future works

for this research.

Figure 1-1 illustrates a bird’s-eye view of the thesis and its different components

towards addressing the research questions.

20

 Figure 1-1 A bird’s-eye view of the thesis structure.

21

Chapter 2 Incremental and Transfer Learning and
Knowledge Representation in Humans and
Machines

2.1 Introduction

This chapter will first review computational approaches of learning which include

incremental learning for overcoming catastrophic forgetting problems in Section 2.2

and transfer learning for the reuse of knowledge during learning of new tasks for one

subject or the same task across different subjects in Section 2.3. Then, in Section

2.4, deep knowledge representation will be discussed as the main technique for

improving the level of interpretability of learning patterns in the SNN models.

2.2 Incremental Learning

Humans and animals exhibit an astonishing ability to learn in a lifelong fashion by

incrementally acquiring, accommodating, refining new knowledge and skills, and

transferring them across domains (Cichon, & Gan, 2015; Bremner, Lewkowicz &

Spence, 2012). The ability to continuously adapt to new knowledge over time without

forgetting crucial information from prior learned experiences can be referred to as

incremental learning (Parisi, Kemker, Part, & Wermte, 2019). Thus, the capacity of

incremental learning is essential for the development of computational systems

performing in the real world. However, the tendency for previously learned

information being interfered by newly learned knowledge remains a key challenge for

22

computational models regarding incremental learning. This phenomenon is called

catastrophic forgetting or interference (McClelland, McNaughton, & O’Reilly, 1995;

McCloskey & Cohen, 1989).

2.2.1 Incremental Learning Approaches

Numerous approaches for incremental learning that mitigate catastrophic forgetting

have been explored in the literature. They can be categorised into three groups,

regularization approaches, dynamic architectures, and complementary learning

systems and memory replay (Parisi, Kemker, Part, & Wermte, 2019). Figure 2-1

presents a venn diagram of some popular incremental learning strategies leveraging

ideas from these three categories. These strategies are explained in the following

subsections.

 Figure 2-1 Venn diagram of some of the incremental learning strategies: EWC (Kirkpatricka, et al.,
2017), AR1 (Maltoni, & Lomonaco, 2019), CFN (Allred, & Roy 2020), ECOS (Kasabov, 2007),

23

eSPANNet (Kumarasinghe, Taylor, & Kasabov, 2019), GDM (Maltoni, & Lomonaco, 2019), and
EXSTREAM (Hayes, Cahill, & Kanan, 2019).

A. Regularization Approaches:

Regularization approaches alleviate catastrophic forgetting by selectively

constraining the neural weights, which are vital to retain connections for past

memories (Parisi, Kemker, Part, and Wermte, 2019).

Elastic weight consolidation (EWC) (Kirkpatricka, et al., 2017) is a popular

regularization strategy attempting to alleviate catastrophic forgetting in two contexts,

supervised and reinforcement learning. In this approach, a quadratic penalty was

applied to constrain the amount of change of important parameters which are

important for old tasks. Given a two tasks scenario, task A and task B, to reduce the

magnitude of weight changes when training in a new task B, a modified cost θ

function with a regularization term is given by:

 (2-1)(θ) L (θ) F (θ θ)L = B + ∑

i

λ
2 i i − *

A, i
2

Where is the loss for task B, is the regularization strength, and is the L B λ F

diagonal of the fisher information matrix.

At the intersection between architectural and regularization strategies, the AR1

model was proposed for single-incremental-task scenarios (Maltoni, & Lomonaco,

2019). Their approach is composed of two components, a modified copy weight with

reinit (CWR) (Lomonaco, & Maltoni, 2017), denoted as CWR+, and synaptic

intelligence (SI) regularization constraint (Zenke, Poole, & Ganguli, 2017). The

24

experiment results on CORe50 (Lomonaco, & Maltoni, 2017) and CIFAR-100

(Krizhevsky, 2009) benchmark datasets show that AR1 model outperformed existing

regularization approaches such as learning without forgetting (LwF) (Li, & Hoiem,

2016), EWC and SI.

B. Dynamic Architectures

This method expands neural architecture dynamically to accommodate novel neural

resources in response to new knowledge, for example, by retraining with an

increased number of neurons or network layers (Parisi, Kemker, Part, and Wermte,

2019).

Controlled Forgetting Networks (CFNs) (Allred, & Roy 2020) is one of the

architectural strategies proposed and inspired by biological dopamine signals. The

modified version of STDP learning rule, called heterogeneously modulated STDP

learning, was introduced to perform isolated adaptation in the synapses of neurons

related to the novel information while retaining the knowledge from previous tasks.

This approach was experimentally validated using the MNIST dataset. The results

show that CFN allows the training of spiking neural network models with less

forgetting.

In (Kasabov, 2007), the principle of evolving connectionist systems (ECOS) was

introduced and later developed and applied for many applications. ​An ECOS evolves

and adapts its structure and functionality from incoming data by generating new

neurons to capture new patterns from the incoming data or by adapting existing

25

neuronal connections to accommodate new data. ECOS allows for fuzzy rule

extraction from the incrementally evolved structures. A continuation of this work was

the proposed dynamic evolving SNN (deSNN) as discussed in the next chapter

(Kasabov et al, 2013).

Kumarasinghe, Taylor and Kasabov (2019) proposed the combination of Spike

Pattern Association Neuron (SPAN) model with a computational interpretation of a

’population vector’ in order to address the non-stationarity and high trial-to-trial

variability of current Brain Computer Interfaces (BCI) applications. This approach,

referred to as eSPANNet model, enables incremental learning from incoming training

data and online prediction for single-trial BCI. Reported results on the finger flexion

prediction dataset from the fourth BCI competition show that eSPANNet allows a

higher classification performance compared to several classification approaches and

a better approximation of the actual movement signal compared to several other

regression analysis methods.

C. Complementary Learning Systems and Memory Replay

Complementary learning systems aim to model memory consolidation and retrieval

in which past information is periodically replayed to the model for protecting

consolidated knowledge while alleviating the memorization and generalization for

complementary tasks (Parisi, Kemker, Part, and Wermte, 2019).

Leveraging ideas from architectural and memory replay strategies, Maltoni and

Lomonaco (2019) proposed a Growing Dual-Memory (GDM) architecture for learning

26

spatiotemporal representations from videos for lifelong learning scenarios. This

approach consists of two growing recurrent self-organizing networks that dynamically

adapt the number of neurons and synapses, growing episodic memory (G-EM) and

growing semantic memory (G-SM). Reported experiments show that the proposed

method significantly outperforms current lifelong learning methods in three different

incremental learning scenarios with the CORe50 benchmark dataset.

Hayes, Cahill, and Kanan (2019) proposed an ExStream algorithm for

memory-efficient rehearsal. In contrast to the full rehearsal approach that eliminates

catastrophic forgetting by learning a mixture of all prior samples with new samples,

ExStream algorithm stores a smaller number of prototypes that capture most of the

intra-class variance instead. Experiments reported good results on four different

paradigms, requiring less memory usage and computation compared with full

rehearsal approach and other streaming clustering methods.

While numerous algorithms have been developed to address incremental learning

tasks, it differs significantly from a richer set of learning capabilities in humans and

animals. Learning in a continual manner goes beyond the ability to accommodate

new knowledge incrementally, importantly, benefiting from generalized knowledge

and skills across domains and tasks (Parisi, Kemker, Part, and Wermte, 2019).

Figure 2-2 presents a schematic view of the main difference between traditional

machine learning, incremental learning and transfer learning. The next section will

discuss transferring the learned knowledge and skills across multiple domains.

27

 Figure 2-2 Schematic view of the main difference between traditional machine learning, incremental
learning (Section 2.2), and transfer learning (Section 2.3).

2.3 Transfer Learning

Transfer learning which aims to leverage the previously acquired knowledge from

source domains and then apply this knowledge to a new target domain, can be

considered as a beneficial solution to reduce the expensive and time-consuming

data collection efforts. The definition of transfer learning is given following the

notations introduced by Pan and Yang (2009). A domain is composed of two D

terms: feature space and its marginal probability distribution , which is χ (X)P

denoted by . Subsequently, given a specific domain , its task is χ, P (X)}D = { D T

defined by a label space and an predictive function , which can be to learn Υ (.)f

the feature and label pairs , where and . From the x , y }{ i i xi ∈ χ yi ∈ Υ

perspective of probability, the predicted function ​can be written as . (.)f (Y |X) P

28

Based on the notations defined above, the definition of transfer learning can be

defined as follows:

Definition 1. “Given a source domain and learning task , a target DS T S

domain and and learning task , transfer learning aims to help improve DT T T

the learning of the target predictive function in using the knowledge (.)fT DT

in and , where , or ” (Pan, & Yang, 2009).DS T S =DS / DT =T S / T T

The above definition, the target and source domains are not the same () =DS / DT

implies that either the feature spaces () are different, the marginal =χS / χT

probability distributions () are different, or both. Similarly, given (X) = (X)P S / P T

specific domains and , two different learning tasks () refers to either DS DT =T S / T T

mismatch label spaces between domains (), mismatch conditional =ΥS / ΥT

probability distributions between domains (), or both. In the (X |Y) = (X |Y)P S S / P T T

context of traditional machine learning, the target and source domains are the same

(), and their learning tasks are the same (). The common notationsDS = DT TT S = T

used in this study is

summarized in Table 2-1.

 Table 2-1 Summary of commonly used notation.

29

Notation Description Notation Description

Subscript S Denotes source χ Feature space

Subscript T Denotes target (X) P Marginal distribution

 D Domain data Υ Label space

 T Learning task (Y |X) P Conditional distribution

2.2.2 Transfer Learning Categories

Based on whether the source and target domains and tasks are identical or not,

transfer learning can be broadly divided into three main categories, namely inductive

transfer learning, transductive transfer learning, and unsupervised transfer learning.

A. Inductive Transfer Learning

Inductive transfer learning refers to the scenario where knowledge is transferred

across different but related source and target tasks regardless of whether the source

and target domains are identical or not. Moreover, the label information of the target

domain is available in inductive transfer learning (Pan, & Yang, 2009). Based on the

availability of label information from the source domain, inductive transfer learning

can be further categorized into two categories:

● When a large amount of labeled data is available from the source domain,

inductive transfer learning is similar to Multi-task learning (​Alamgir,

Grosse-Wentrup, & Altun, 2010​).

● When the label information is unknown for the source domain, inductive

transfer learning is similar to Self-taught learning (​Raina, Battle, & Lee H,

2007​)

B. Transductive Transfer Learning

In the setting of transductive transfer learning, the source and target are

represented in different domains, but the same task. In this case, a large amount of

30

source domain labelled trials is available, while the label information is unknown for

target domains (Pan, & Yang, 2009). According to the consistency between the

source and the target feature spaces and the marginal probability distributions of the

input data, transductive transfer learning can be further categorized into two

categories:

● When there are non-identical label spaces between domains, , this = XS / XT

scenario is referred to as heterogeneous transfer learning (Weiss,

Khoshgoftaar, & Wang, 2016).

● When the source and target domains are represented in different feature

spaces, , but different marginal distributions, , this XS = XT (X) = (X) P S / P T

scenario is termed as homogeneous transfer learning (Weiss, Khoshgoftaar,

& Wang, 2016).

C. Unsupervised Transfer Learning

Unsupervised transfer learning aims to transfer knowledge across different but

related source and target tasks. In this transfer learning method, the label

information of both target source and domain instances are not available (Pan, &

Yang, 2009).

2.2.3 Transfer Learning Approaches

Based on which types of knowledge that can be transferred across domains or tasks,

approaches to transfer learning can be categorised into four different groups. These

approaches are explained in the following subsections.

31

A. Instance-based Transfer Learning

This instance-representation-based approach is based on the assumption that some

similar features are shared between source and target domains and the performance

of the target prediction function can be improved by reusing certain parts of the

source domain labeled data for learning the target domain (Azab, Toth, Mihaylova, &

Arvaneh, 2018). The two major techniques in this context are instance re-weighting

(Jiang, & Zhai, 2007) and importance sampling.

An example of instance-based transfer learning, called improved active transfer

learning (ATL), was proposed by Hossain, Khosravi and Nahavandhi (2016) to

reduce non-stationarities between subjects. The main principle of active transfer

learning is that only the most informative samples are labeled such that the learning

performance of a new subject or a new task is expected to be improved. They also

proposed two extended algorithms of ATL. The first one was called Selective

Instance Transfer with Active Learning (SITAL), which aims to select samples from

source domains that have a similar distribution with the target domain. The second

algorithm was classed Selective Informative Instance Transfer with Active Learning

(SIITAL), which selects samples from source domain that have both high

classification accuracy and normalized entropy. The proposed algorithm is promising

when there is a lower quantity of data from the target subject, as it was suggested to

reduce the calibration effort.

32

Another approach based on the principle of weighted adaptation regularization

(wAR) and active learning, namely active weighted adaptation regularization

(AwAR), was proposed by Wu, Lawhern, Hairston, and Lance (2016) to reduce

non-stationarity between headsets in BCI. wAR is applied under the assumption

when there is a large amount of labeled data from the previous headset and this data

can be used to improve the learning performance for a different headset. They also

proposed to integrate wAR with active learning, which selects the most beneficial

target samples for labelling. This integrated algorithm can achieve a desired

classification accuracy, given a small number of labeled samples required from the

new headset, thus making AwAR more suitable for wide-scale applications.

B. Feature-representation Transfer Learning

This feature-representation-based approach focuses on transferring the knowledge

via the adjustment and the transformation of feature representation, such that the

knowledge can be transferred across domains. Specifically, by constructing a new

feature representation for the target domain, the performance of the target tasks can

be improved (Azab, Toth, Mihaylova, & Arvaneh, 2018). According to different

methods of mapping the original feature to the new feature representation,

feature-based approaches can be further divided into asymmetric and symmetric

feature-based transfer learning (Kulis, Saenko, & Darrell, 2011; Pan, Tsang, Kwok, &

Yang, 2009). Asymmetric approaches aim to map the features from the source

domain to the target domain, while symmetric approaches try to create a common

latent feature space for both source and target domains.

33

He and Wu (2019) proposed a novel Electroencephalogram (EEG) trial alignment

approach in the Euclidean space across different subjects such that the similarity of

data distributions between different subjects can be increased. This Euclidean-space

alignment approach only required unlabelled EEG data from the new subject, and it

can be used as a preprocessing step before any signal processing, feature

extraction, and machine learning algorithms. The experiment results showed that the

proposed approach led to enhanced computation when comparing with the

Riemannian space covariance matrix alignment approach.

Recently, the proposed different set domain adaptation approach (2020) was

presented to be an extension of the Euclidean-space alignment approach, which

considers different domain adoption scenarios for both task-task and

subject-to-subject transfer, for example source and target subjects have different

label spaces and feature spaces. They introduced a label alignment approach to

align the label space across different source and target domains. A higher

performance can also be achieved when integrating with other domain adoption

approaches.

C. Classifier-based Transfer Learning

The previous two approaches of transfer learning aim to transfer the knowledge in

the data level, while the classifier-based approach mainly focuses on transferring the

knowledge in the parameter level. An assumption behind the classifier-based

transfer learning is that there are some shared parameters or prior distributions

between the prediction function of the source and target tasks. With the shared

34

parameters or priors, the performance of the target prediction function is expected to

be improved (Azab, Toth, Mihaylova, & Arvaneh, 2018).

For instance, Jayaram, Alamgir, Altun, Scholkopf, and Grosse-Wentrup (2016)

proposed a general framework for transfer learning in the context of BCIs that is

applicable to any arbitrary feature space, as well as a regression estimation method.

Reported results on both motor imagery and a novel cognitive paradigm showed that

the proposed framework outperformed other comparable methods with both

session-to-session and subject-to-subject scenarios.

Cui, Xu and Wu (2019) proposed a feature weighted episodic training (FWET)

approach, which does not require any calibration data from the new subject,

eliminating the calibration requirement completely. FWET consists of two parts:

feature weighting and episodic training. Feature weighting is used to learn the

weights for each feature automatically according to the importance of different

features, while episodic training is used for domain generalization. Experiments on

driver drowsiness estimation showed that FWET can achieve better generalization

performance, given no calibration data from the new subject, thus making FWET

more suitable for plug-and-play BCI applications.

D. Relational-based Transfer Learning

The relational-based transfer learning approach mainly focuses on the problem that

data in the source and target domains are not independent and identically distributed

(IID), but have some similar relational patterns. Thus, by extracting some common

35

relationships among the data, knowledge can be transferred across tasks (Azab,

Toth, Mihaylova, & Arvaneh, 2018). Statistical relational learning techniques are

well-known techniques using this approach (Mihalkova, Huynh,& Mooney, 2007;

Davis, & Domingos, 2008).

It can be concluded from the literature that the majority of current transfer learning

research has been carried out in traditional machine learning techniques. ​However,

these methods often model spatial and temporal components separately without

considering informative spatio-temporal correlations in the data (Kumarasinghe,

Taylor, & Kasabov, 2019). Compared to conventional machine learning methods,

Spiking Neural Networks (SNNs) are promising computational paradigms for

modelling complex information such as spatio-temporal data (Kasabov, 2019), which

will be discussed in Chapter 3.

2.4 Deep Knowledge Representation

Deep learning in the brain is achieved through processing information, either

triggered by external stimuli, or by inner processes, for example, visual auditory,

tactile, gustatory and olfactory, complex neural network connections between

neurons in space and time are formed across the whole brain. The patterns that are

formed by these connections represent deep knowledge (Kasabov, 2019).

Deep knowledge is defined by Kasabov (2019) to refer to a sequence of events that

happen in different spatially located parts of the brain, activated at different times,

36

constituting dynamically changing and Informative knowledge deep in time and

space through symbolic and/or numerical expressions.

More specifically, given a set of events that form a neural trajectory

, each can be represented as the following format:E , E , ..., E }E = { 1 2 n Ei

F , S , T) Ei = (i i i

Where is a function that trigger event changes; is the location of the activity at F i S i

time .T i

Deep knowledge can also be represented in several forms. One way to represent

deep knowledge through a deep crisp rule. Given the activation level of three neural

clusters over three-time bins , the crisp rule S {S , S , S }) (= 1 2 3 T {T , T , T })(= 1 2 3

can be defined as follow:

IF (event : function , location around , time about)E1 F 1 S1 T 1

AND (event : function , location around , time about)E2 F 2 S2 T 2

AND (event : function , location around , time about)E3 F 3 S3 T 3

THEN (The pattern event/task/process is recognised)Q

One limitation of crisp rules is that it is only suitable for the case when the activation

of exact clusters of neurons happens at exact times in their sequence. Another form

of spatial-temporal rule is the deep fuzzy rule (Zadeh, 1965), which allows for the

pattern to be recognised even If the slightly different cluster neurons are activated Q

at slightly different times. An example of deep fuzzy rule with corresponding fuzzy

values , which represented by their membership functions, is given as follow:W

37

IF (event : function , location around , time about , probability about , E1 F 1 S1 T 1 P 1

strength is)W 1

AND (event : function , location around , time about , probability E2 F 2 S2 T 2

about , strength is)P 2 W 2

AND (event : function , location around , time about , probability E3 F 3 S3 T 3

about , strength is)P 3 W 3

THEN (The pattern event/task/process is recognised)Q

2.4.1 Knowledge Granularity

When considering a sequence of events that happen in a similar location at a similar

time, a suitable level of spatial and temporal scale is required for the rule extraction.

Different spatial and temporal scales represent different knowledge information,

forming a granularity level of deep representation (Kasabov, 2019).

The terms of time resolution or time depth and spatial resolution or spatial depth

define spatial and temporal scales to represent the knowledge. The temporal depth

refers to the size of time bin of the brain signals, ranging from milliseconds to T i

second (Kasabov, 2019). The spatial depth of knowledge is defined by the spatial

cluster of neurons associated with different anatomical levels (Kasabov, 2019). For

example, at a higher level of the hierarchy, neuronal clusters spatially located in two

hemispheres can be considered as two distinct granules. In a deeper hierarchy level,

neuronal clusters spatially located in different lobes of the brain can be considered

as a separate knowledge granule. At the next level, the knowledge can further

38

scale-up to the different cellular areas in each lobe. A proper level of granularity for a

given task is essential and hard to be defined and it depends on different tasks and

problems, even measured data (​Kumarasinghe, Kasabov, & Taylor, 2020)​.

2.5 Chapter Summary

This chapter reviewed two computational approaches of learning (incremental

learning and transfer learning), which remain a long-standing challenge for

computational models. Then, a review on deep knowledge representation was

presented. In the next chapter, Brain-Inspired Spiking Neural Network principles and

models are discussed.

39

Chapter 3 Spiking Neural Networks

3.1 Introduction

The Brain-Inspired Spiking Neural Networks (SNNs) are a promising computational

paradigm that consist of artificial neurons with interconnected structure, where

internal information is represented as trains of spikes and learned in an adaptive and

self-organising manner, similar to how a biological neuron functions (Izhikevich,

2006; Brette, et al., 2007). This inherent nature of the spiking neuron has the

capacity to model complex information such as spatio-temporal data (Kasabov,

2019).

So far, numerous applications of SNNs have been developed, such as EEG data

modelling (Kasabov, & Capecci, 2015; ​Doborjeh, Kasabov, Doborjeh, & Sumich,

2018​), Functional Magnetic Resonance Imaging (fMRI) data modelling (Kasabov,

Doborjeh, & Doborjeh, 2017), Brain-Computer Interfaces (BCI) (Taylor et al., 2014​;

Hu, Hou, Chen, Kasabov, & Scott, 2014​; ​Kumarasinghe, Owen, Taylor, Kasabov, &

Kit, 2018​), multimodal audio-visual information processing (Wysoski, Benuskova, &

Kasabov, 2010), bioinformatics (Koefoed, Capecci, & Kasabov, 2018; Dray, Capecci,

& Kasabov, 2018; Capecci, Lobo, Laña, Espinosa-Ramos, & Kasabov, 2019), and

multisensory streaming data modelling (Tu, Kasabov, & Yang, 2016).

40

3.2 Information Encoding as Spikes

Spiking neural networks are inspired by the principles in the biological brain, where

external information is encoded as short electrical pulses (Kasabov, 2019). The main

principle is that real value of input information is optimally converted to spike events

as a new form of input into SNN, preserving the task related information of the

original signal during the encoding process.

Numerous spike encoding algorithms have been developed in the literature, some

well-known algorithms are listed as follows, and one of the most popular encoding

algorithms, called Threshold-based encoding, is discussed afterward.

● Threshold-based encoding (Delbruck, & Lichtsteiner, 2007)

● Rank Order Coding (Thorpe & Gautrais, 1998)

● Population Rank Coding (Bohte, 2004)

● Ben’s Spike Encoding algorithm (Schrauwen & Van Campenhout, 2003)

● Step Forward Encoding algorithm (Kasabov, et al., 2016)

● Moving-Window Spike Encoding Algorithm (Kasabov, et al., 2016)

Threshold Based Encoding (TBR). ​This encoding method, a simple

implementation of Temporal Contrast, was introduced by Delbruck and Lichtsteiner

for the development of the Address-Event Representation (AER) system (Delbruck,

& Lichtsteiner, 2007). In the method, changes between in signal amplitudes are

compared with a given threshold, and a positive or negative spike is emitted

according to whether the value exceeds or belows the encoding threshold. The

41

encoding threshold is given by a summation of the mean of the signal amplitude

variation and its standard deviation multiplied by a factor, in which factor is a

parameter of this encoding algorithm.

3.3 Computational Model of a Spiking Neuron

The structure of the biological neuron can be divided into three components: soma,

dendrites and axon, as shown in Figure 3-1. The dendrites are positioned at the

beginning to receive the electrical impulses from other neurons and transmits these

signals to the soma. The cell body plays a key role in processing input spikes to

maintain the function of a neuron. The output signal is delivered via axon to other

neurons connected to it. The junction between two neurons is connected across

synapses.

 Figure 3-1 Structure of a biological neuron. Figure from (Neves, González, Leander, & Karoumi,

2017).

42

Different computational models of spiking neurons have been proposed in order to

resemble a biological neuron. Some popular ones are: Hodgkin-Huxley Model

(Hodgkin, & Huxley, 1952), Integrate-and-Fire Model ​(Abbott, 1999)​, Izhikevich

Model (Izhikevich, 2003), Spike Response Model (Gerstner, & van Hemmen, 1992),

Thorpe’s Model (Thorpe, 1990), and Probabilistic and Stochastic Spiking Neuron

Models (Kasabov, 2010). The main characteristics of Integrate-and-Fire Model is

explained as follow:

The Leaky Integrate and Fire Model (LIFM)​: ​The integrate and fire neuron model

was proposed by Lapicque (Abbott, 1999) and it is based on the principle of an

electrical circuit consisting of a capacitor in parallel with a resistor to product C R

current . ​The principal of LIFM can be conceived as a leaky integrator, where an (t)I

action potential is emitted when membrane potential reaches the critical voltage (t)u

for spike initiation called threshold . After the arrival of a spike, the membrane θ

potential decays back to the resting potential . The moment of threshold urest

crossing defines the timing at which a neuron fires. Before the next threshold t

crossing occurs, There is a refractory period during which the neuron cannot

produce another action potential and the summation of the membrane potential

slowly leaks over time, which is denoted by a temporal parameter . The structure τ

and the functionality of the LIFM is illustrated in Figure 3-2 and the model can be

described by the following differential equation:

 (3-1) − [u(t) u] R I(t)τm dt
du = − rest +

43

Where the membrane time constant , is the resting potential, is the Cτm = R urest I

input current, is the membrane potential, and is the resistance.(t)u R

 Figure 3-2 The LIFM of a spiking neuron. ​(a) Schematic representation; (b) Showing an input train of
spikes (top row), the emitted output spikes (second row) and the membrane potential changes over
time. Figure from (Kasabov, 2014).

3.4 Learning in SNN Models

Learning in SNN is the process of adjusting the connection weights between two

spiking neurons. The most popular learning rules are SpikeProp (Bohte, Kok, &

44

Poutre, 2000), Spike-Time Dependent Plasticity (Song, Miller, & Abbott, 2000),

Spike-Driven Synaptic Plasticity (Fusi, Annunziato, Badoni, Salamon, & Amit, 1999),

Rank Order Learning Rule (Thorpe, & Gautrais, 1998). Two important learning rules

are explained in the following:

Spike Timing Dependent Plasticity (STDP): ​This learning paradigm was inspired

by the principle of Hebbian learning (Song, Miller, & Abbott, 2000; Hebb, 1949), in

which the synaptic weights are adopted according to the temporal order of

pre-synaptic and post-synaptic action potentials. In STDP learning, the arrival time of

pre-synaptic spikes earlier than the post-synaptic spikes results in synaptic

potentiation, namely Long-term Potentiation (LDP), while the timing of pre-synaptic

spike activity after the post-synaptic spikes causes synaptic depression, namely

Long-term Depression (LTD). The STDP learning rule is defined using the following

equation:

 (3-2)

Where defines the magnitude of this synaptic change based on the (t)W pre − tpost

time interval (), as illustrated in Figure 3-3, the parameters and refer tpre − tpost A+ A−

to the learning rate and parameters and define the time interval of τ + τ −

pre-to-post-synaptic spike.

45

 Figure 3-3 Synaptic change in a STDP learning neuron. ​Figure from (Song, Miller, & Abbott, 2000).

3.5 NeuCube - An SNN Framework

NeuCube is a Brain-Inspired Spiking Neural Network (BI-SNN) architecture and it

has demonstrated the feasibility of learning from spatio-temporal data (Kasabov,

2014). The basic NeuCube model consists of the following five sub-modules, as

illustrated in Figure 3-4.

● Input data encoding and mapping

● Unsupervised learning in a 3D SNN model

● Supervised Learning in an Evolving SNN

46

 Figure 3-4 Block diagram of NeuCube architecture, including: input spatio-temporal data encoding
module, 3D SNN module, output module for classification/regression, and gene regulatory network
(GRN) module (optional). Figure from (Kasabov, 2012).

3.3.1 Input Data Encoding

The continuous time series of spatio-temporal data are first encoded into spike

series, representing the time of changes in the input data. Algorithms for spike

encoding implemented in NeuCube include:

● Threshold-based Encoding (Delbruck, & Lichtsteiner, 2007)

● Moving-Window Spike Encoding Algorithm (Kasabov, et al., 2016)

● Step Forward Encoding algorithm (Kasabov, et al., 2016)

● Ben’s Spike Encoding algorithm (Schrauwen & Van Campenhout, 2003)

47

3.3.2 Input Data Mapping

After the encoding process, the encoded sequence of spikes are transferred into

spatially located spiking neurons in the SNN model. In NeuCube, a recurrent 3D

structure, namely SNNcube, is constructed to map the spatial components of input

data according to a 3D brain template, such as Tailarach atlas (Talairach &

Tournoux, 1988), Montreal Neurological Institute (MNI) template (Brett, Christoff,

Cusack, & Lancaster, 2001) or other brain coordinate systems. After mapping input

data spatially to the SNN model, the LIFM spiking neuron connectivity in the

SNNcube is initialized using the small-world connectivity rule (Bullmore, & Sporns,

2009). Learning within the SNN model consists of two phases, including

unsupervised and supervised learning. These learning processes are explained in

Section 3.3.3 and Section 3.3.4 respectively.

3.3.3 Unsupervised Learning in SNNcube

The first stage is unsupervised learning that is intended to modify the neuronal

connection weights in the SNNcube based on the learning of spatial and temporal

associations from the encoded sequence of spikes. In the NeuCube framework,

STDP learning rule (Song, Miller, & Abbott, 2000) is applied to the 3D SNNcube,

resulting in an evolving connectionist structure in the SNNcube. In this learning, the

arrival time of pre-synaptic spikes earlier than the post-synaptic spikes induces

Long-term Potentiation (LDP), while the timing of pre-synaptic spike activity after the

post-synaptic spikes causes Long-term Depression (LTD). The goal of the learning

48

rule is to capture the relative timing of pre-synaptic and post-synaptic activity,

forming trajectories of connections to represent spatio-tempral patterns in the data.

3.3.4 Supervised Learning and Classification in Evolving SNN

Once the SNN model training in an unsupervised mode is completed, dynamic

evolving SNN classifier (deSNN) (Kasabov, Dhoble, Nuntalid, & Indiveri, 2013) is

performed in a supervised learning mode to learn the class labels relationship to

each training sample. For each training sample, a new output neuron is assigned to

the output neuronal layer, and all neurons from the SNNcube are connected to the

output neurons in the SNN model. In the deSNN classifier, the initial connection

weights of each synapse are established using the RO learning rule (Thorpe, &

Gautrais, 1998) based on the first spike at this synapse. These connection weights

need to be further adjusted through the SDSP algorithm (Fusi, Annunziato, Badoni,

Salamon, & Amit, 1999). After that, this newly created neuron is added to the output

neuron repository. Given a new spatio-temporal sample without class label

information, the synaptic weights of a newly created output neuron are compared

with the already existing output neurons in the output neuron repository during

training. The class label of the new sample is determined by the closest output

neuron using k nearest neighbors (KNN) method.

49

3.6 Chapter Summary

This chapter reviews computational models of SNNs and introduces the SNN

framework NeuCube for modelling spatial-temporal data, enabling a better

interpretation of spatio-temporal characteristics of data. In the next chapter, the

proposed methods for transfer learning in BI-SNN will be introduced which is based

on the NeuCube framework.

50

Chapter 4 Proposed Methodology for Transfer
Learning in BI-SNN

4.1 Introduction

In the previous chapter, I have reviewed that the NeuCube framework is an ideal

system for modelling complex spatio-temporal patterns. In this chapter, I proposed

new adaptations based on the NeuCube framework for transfer learning scenarios,

including incremental learning and transfer learning algorithms. In addition, I

proposed three additional new algorithms, including two connection weights pruning

algorithms and one neuron aggregation algorithm. These three algorithms can be

integrated with the proposed transfer learning approaches.

4.2 Incremental Learning in BI-SNN

As transfer learning belongs to the class of incremental learning algorithms, here I

have explored incremental learning in the deSNN. The incremental learning (ImSNN)

algorithm is algorithmically described in Algorithm 1. In this method, samples from

target tasks or subjects are presented one-by-one to the model without any data

reinforcement from previous samples with the goal of learning target tasks or

subjects sequentially. More specifically, the model first creates a repository of output

neurons for the training patterns. When a new task or subject is given, each sample

belonging to these new tasks or subjects will create a neuron to the output neuron

repository sequentially. The learning procedure of the deSNN classifier relies mostly

51

on the repository of output neurons. Thus, the output neuron repository tends to

store redundant information when processing target tasks or subjects. Here lies the

rationale for merging similar neurons within the output neuron repository by applying

the neuron aggregation technique, which is explored in the next subsection 4.5.

 Table 4-1 ​The proposed ImSNN algorithm ​for deSNN ​(Kasabov et al. 2013)​.

4.3 Proposed Transfer Learning Algorithm for BI-SNN

Algorithm 2 reflects the adaptations of the SNNcube in the ​original NeuCube

architecture in order to deploy it in transfer learning scenarios, namely TrSNN. The

training procedure is similar to ImSNN approach Algorithm 1. The only difference

between the proposed TrSNN approach (Algorithm 2) and the ImSNN approach

(Algorithm 1) is that TrSNN performs both unsupervised learning and supervised

learning steps, while ImSNN uses deSNN classifier only. Given an existing model

trained with the source tasks or subjects, when a new task or subject is given, a new

52

SNNcube is created, and the neural connectivity with the target tasks or subjects are

learned based on the prevised trained SNNcube. At the supervised learning stage,

each target sample will create an output neuron to the output neuron repository

sequentially. The process of unsupervised learning can be regarded as a learning

process that forms deep patterns of connectivity between individual neurons based

on the timing of their spiking activity and the connection between these neurons.

Furthermore, the knowledge stored in the SNNcube can be transferred to the

subsequent trained models such that subsequent tasks or subjects can reuse this

common knowledge to improve the learning performance. This leads to a more

suitable model design for transfer learning environments. Thus, TrSNN has the

capacity to share and reuse this common knowledge.

 Table 4-2 ​The proposed TrSNN algorithm​ for NeuCube.

53

4.4 Connection Weights Pruning Techniques for TrSNN
Models

The TrSNN approach sketched in Algorithm 1 is the basis for our proposed

approaches hybridized with connection weights pruning schemes, in which SNNcube

pruning and output layer pruning techniques are applied on unsupervised learning

stage and supervised learning stage respectively. The resulting hybrid approaches

are labeled as TrSNN-CP and TrSNN-OP. In these connection weights pruning

schemes, only the informative connections from the SNNcube to the corresponding

output neurons in the classifier are left, and the others are removed. By cutting off

certain connections in the network, such that new knowledge can take advantage of

previously learned features but cause no interference in the pathways of the

previously learned samples. The main goal is to forget outlier or stale information

rather than the similar trajectories that may be essential for previous knowledge,

ensuring commonly-used or recent information are retained.

4.4.1 SNNcube Pruning

In this method, inactive neurons in the SNNcube, which did not have active

connections with other neurons, were suspended. ​The SNNcube pruning performed

in the unsupervised learning stage is algorithmically described in Algorithm 3. ​Given

a NeuCube learned from the previous task or subject, the connection weight of the

learned SNNcube can be pruned before feeding the subsequent tasks or subjects

into the NeuCube model. The pruned thresholds are adaptive based on the minimum

54

and maximum value of the weights, such that the threshold can be dynamically

changed instead of fixed thresholds. After that, the pruned weights are reset to initial

values, giving a chance to the subsequent tasks or subjects for continued training.

 Table ​4-3 The proposed SNNcube pruning algorithm​.

4.4.2 Output Layer Pruning in the deSNN

The output layer weight pruning method consists of two parts. First, during the

training of each task, a weight regulator is added to promote sparsity in the output

layer and to regulate the density of connections from the SNNcube to the

corresponding output neurons. The second part of the sparsification scheme is

55

pre-validating weight pruning based on the connection state of each training sample,

as each training sample has a different pruning position.

A precise definition of the pruning strategy is as follows. Given an output layer in

NeuCube, composed of neurons, each has been trained from different training N i

samples. In order to find the active and inactive connection weights between

SNNcube and output neurons, the minimum weight was computed for each

individual output neuron. Connection weights below a threshold are considered

critical, while others are non-critical. The weights of all non-critical synapses are

reduced to zero.The threshold value is a post-training hyperparameter, which can θ

control over the amount of sparsity in the output layer. Furthermore, if , the θ = 0

function being computed is entirely by the dense network. The weight pruning

strategy is algorithmically described in Algorithm 4.

The validation phase is carried out by first pruning away the unused connections of

the newly created output neuron based on the pruning index of all trained output

neurons that are within the same output class group in the repository. The class

label for the validation sample is assigned according to synaptic similarity of the

newly pruned output neuron and the already trained output neurons.

56

 Table ​4-4 The proposed output layer pruning algorithm for deSNN (Kasabov et al. 2013)​.

4.5 Neuron Aggregation Technique for TrSNN Models

The proposed TrSNN approach sketched in Algorithm 1 can also be combined with a

neuron aggregation technique, in which the output neurons which belong to the

same class and have similar connection weights are merged in an incremental way

through averaging to obtain a compact feature representation and in this way the

structure of network can evolves continuously in a life-long manner. The neuron

aggregation performed in the deSNN classifier is algorithmically described in

Algorithm 5.

57

Given an output layer in NeuCube, composed of a repository of output neurons,

each has been trained from different training samples. For every new training

sample, a new output neuron is allocated and connected to all neurons in the

SNNcube through . The weight matrices of the newly produced output neuron wj, i

and the already trained output neurons in the repository are then compared. If the

new neuron weight vector is similar to any of the any of the already trained output

neurons using Euclidean distance, these two neurons will be merged by averaging

the connection weights using following equation:

 (4-1)wj, i = M
w + wnew j, i

Where is the number of neurons being aggregated on the output layer. After M

merging the neurons, the new created output neuron will be discarded. If there are

no existing trained neurons in the repository found to be similar to the new output

neuron, then it will be added to the corresponding class pool of neurons in the

repository. One post-training hyperparameter was introduced to control its similarity

with the other output neurons during training, namely similarity parameter SIM.

Furthermore, if SIM = 0, the function being computed is entirely by the model without

neuron aggregation.

Neuron aggregation can be also used along with connection weights pruning

algorithms. The flow diagrams for the TrSNN model with weight connection pruning

methods and neuron aggregation are presented Figure 4-1 and Figure 4-2

respectively, namely TrSNN-CP-NG and TrSNN-OP-NG. Notice that when neuron

aggregation is used with output layer pruning, repruning the connection weights is

required for the merged neurons.

58

 Table ​4-5 The proposed neuron aggregation algorithm for deSNN (Kasabov et al, 2013)​.
.

59

 Figure 4-1 Schematic diagram of the proposed TrSNN-CP-NG.

60

 Figure 4-2 Schematic diagram of the proposed TrSNN-OP-NG.

4.6 Chapter Summary

In this chapter, a methodology and algorithms are proposed for transfer learning in

the NeuCube architecture through introducing new methods for learning of

61

sequentially presented tasks and subjects, resulting in the ImSNN and TrSNN

algorithms. Three techniques, including two connection weights pruning algorithms

and one neuron aggregation algorithm, were also introduced as an additional

algorithm that can be freely cooperated with the TrSNN learning procedure. In the

next two chapters, the proposed methods will be applied to extensive experiments

with the aim of evaluating the performance of the proposed schemes on a real-life

case study of EEG data from two empirical studies, including transfer learning across

tasks in one subject and transfer learning across subjects in one task.

4.7 Contribution

In this chapter, I have made the following original contributions:

● Proposal of an incremental learning approach based on the SNN architecture,

called ImSNN

● Proposal of a transfer learning approach based on the SNN architecture,

called TrSNN

● Proposal of two connection weights pruning techniques for TrSNN Models,

namely TrSNN-CP and TrSNN-OP

● Proposal of a neuron aggregation techinque for TrSNN Models

62

Chapter 5 Modelling Transfer Learning of New
Tasks by a Single Subject in NeuCube

5.1 Introduction

This chapter applies the proposed transfer learning methods (introduced in Chapter

4) to a case study of EEG data based on the scenario of task-to-task transfer

learning in one subject. In this study, I designed a series of experiments to examine

the effect of transfer learning approaches on different functional modules of

NeuCube architecture. I constructed optimal SNN models and trained them with an

EEG dataset related to functional upper limb movements. The models are also

evaluated in a three-phase analysis, including SNNcube patterns in an unsupervised

mode, output layer patterns in a supervised mode, and the final experiment results to

evaluate the transfer learning performance.

5.2 Dataset and Preprocessing

The functional upper limb movements dataset was used in this case study (Mohseni,

Shalchyan, Jochumsen, & Niazi, 2020). This dataset was collected by New Zealand

College of Chiropractic and Aalborg University under the ethical approval of the local

ethics committee (N-20130081), and it consists of EEG data from 12 healthy

subjects by 64 EEG channels at 512 Hz. Each subject was instructed to perform four

classes of motor imagery tasks as follow:

63

● Class 1: Reach for a glass of water, drink and place the glass on the table

● Class 2: Throw a ball from the right hand to the left hand

● Class 3: Lift a tray from the table and place the tray on the table again

● Class 4: Push a glass from position A to position B

Classe​s 1, and 4 are unilateral movements, while classes 2 and 3 are bilateral

movements. ​As shown in Figure 5-1, ​at the beginning of a trial, the subjects were

instructed to hit the ‘s’ key ​on the keyboard before executing the movements. ​When

the subject had finished the task, the experimenter hit the ‘s’ key again. In this

period, the subject was asked to perform a specific task. Then the visual cue

disappeared from the screen, and a short break followed until the next trial began.

Each subject had 50 trials from each class. Table 5-1 summaries the characteristics

of the dataset.

 Figure 5-1 Timing scheme of the motor imagery tasks.

Data preprocessing was performed using the Matlab EEGLAB toolbox (Delorme, &

Makeig, 2004). The continuous EEG data was first extracted between [0.5, 2.5]

seconds after the start of each trial (​odd index values of ‘s’​). Next the EEG signals

64

were downsampled from 512 Hz to 256 Hz. A butterworth band-pass filter (2the

order between [0.05, 45] Hz) and 2th order no​tch Filter with a lower cutoff frequency

of 49 Hz and a higher cutoff frequency of 51 Hz were then applied to the data.

Finally, an EEGLab plug-in ADJUST was used to remove the artifacts. Figure 5-2

shows the topological graph for EEG channels. ​The spatial mapping of EEG data in

the Talairach space (Talairach & Tournoux, 1988) is presented in Appendix A.

 Figure 5-2 Topological graph for EEG channels in 10-20 standard.

 Table 5-1 Summary of the upper limb movements dataset.

65

 Number of

 EEG
Channels

Subjects Time
samples

Classes Trials/class/subject

Functional upper
limb movements
dataset

64 12 768 4 50

5.3 Experimental Design

To validate the efficacy of the proposed approaches in transfer learning across tasks

in one subject, the NeuCube SNNcube and deSNN classifier were first trained with

samples from source task, class 1. After that, samples from other three

classes/target tasks were presented one-by-one to and learned without requiring a

retraining mechanism from previous classes with the goal of transferring some

knowledge acquired from the source tasks to the target tasks. To examine the effect

of transfer learning on different functional modules of NeuCube architecture, a series

of experiments were conducted to validate the performance of the proposed

approaches. Table 5-2 summarises the details of all experiments. A baseline model

which trains in a batch mode on all data simultaneously was established as a

baseline for comparison and both transfer learning model and baseline model were

performed using the same initial connection weights.

 Table 5-2 Description of experiment schemes.

66

Description

Baseline batch learning of all tasks using NeuCube

ImSNN Incremental learning of each task sequentially on deSNN
classifier only

TrSNN Transfer learning of each task sequentially in unsupervised
mode and deSNN classifier

TrSNN-CP Transfer learning of each task sequentially in unsupervised
mode and deSNN classifier, along with weight connection
pruning in the SNNcube after learning of each task

TrSNN-CP-NG Transfer learning of each task sequentially in unsupervised
mode and deSNN classifier, along with weight connection
pruning in the SNNcube and neuron aggregation in the
deSNN classifier

The flowchart of preparation of training and testing datasets for different schemes

is presented in Figure 5-3. The encoding procedure to transform input signals into

spike trains was a threshold-based encoding algorithm as explained in Chapter 3

and a fixed threshold was performed on each incoming task.

 Figure 5-3 The flowchart of preparation of training and testing datasets for task-to-task transfer
learning in one subject scenarios.

67

TrSNN-OP Transfer learning of each task sequentially in unsupervised
mode and deSNN classifier, along with connection weight
pruning between SNNcube and the output neurons in the
classifier

TrSNN-OP-NG Transfer learning of each task sequentially in unsupervised
mode and deSNN classifier, along with connection weight
pruning between SNNcube and the output neurons in the
classifier and neuron aggregation in the deSNN classifier

To demonstrate the performance of transfer learning over time, the NeuCube models

were saved at each task change and the testing results of all previously seen tasks

were evaluated at each task change. All experiments were performed five times and

reported the test accuracy and its standard deviation on all tasks.

The parameter optimization phase is carried out on TrSNN models only. Parameters

Drift, Mod, pruning percentage , and pruning threshold were chosen using grid p θ

search and picked the value of the best 3 fold cross validation accuracy across all

hyperparameters. For similarity parameter (SIM) in the neuronal aggregation

procedure of the deSNN classifier, a slightly different optimization scheme was used.

The models were first trained over a range of similarity parameters along with the

hyperparameters optimized as above using grid search. The optimal similarity

parameter (SIM) was chosen as the value of the best training accuracy to make sure

the performance of the neuron aggregation scheme performs on par with the model

trained without neuron aggregation on the training dataset. Furthermore, baseline

and ImSNN models were also conducted with the default parameters for

comparison. The details of the default parameters are presented in Appendix B,

Section B-1. For TrSNN experiments, there are some additional optimized

parameters, which is summarized in Table 5-3.

 Table 5-3 Parameter settings for each TrSNN experiment.

68

Parameters

TrSNN-CP Drift: 0.005
Mod: 0.8
SNNcube pruning percentage: 0.995

TrSNN-CP-NG Drift: 0.005

5.4 Experimental Results

The experimental results were organised in a three-phase analysis as follows:

● Analysis of SNNcube patterns in an unsupervised mode

● Analysis of output layer patterns in a supervised mode

● Analysis of the results to evaluate the transfer learning performance

5.4.1 Analysis of SNNcube Patterns in an Unsupervised Mode

After the unsupervised learning stage, the inactive connection weights in SNNcube

which did not have active connections with other neurons, were temporarily pruned,

allowing the model take advantage of previously learned features when learning new

tasks, but cause no interference in the pathways of the previously learned tasks​.

Figure 5-4 (b) and (d) show the weights connectivity of the complete and pruned

SNNcube after learning all four disjoint tasks sequentially. Further quantitative

information of the complete and pruned SNNcube are plotted in Figure 5-4 (a) and

(c), respectively.

69

Mod: 0.8
SNNcube pruning percentage: 0.995
SIM parameter: 2

TrSNN-OP Drift: 0.005
Mod: 0.8
Output layer pruning threshold: 0.533

TrSNN-OP-NG Drift: 0.005
Mod: 0.8
Output layer pruning threshold: 0.533
SIM parameter: 2

 Figure 5-4 The distribution of connection weights for TrSNN models before and after ​SNNcube
pruning.

The weights connectivity of SNNcube after connection weights pruning at each stage

of the learning process are visualized in Figure 5-5 (a)-(d), and It can be seen from

Figure 5-5 (a)-(d) that stronger connectivity is observed with further trained

SNNcube. To perform a better analysis of EEG changes at each task change, the

differences between the SNNcube for each stage of the learning process were

computed through subtracting with the previous trained cube, which allows

visualising the changes in neural connectivity as a result of transfer learning over

time. In the graphs shown in Figure 5-5 (e), (f), and (g), further trained SNNcube

resulted in a similar pattern of changes in some regional activation across all the

three new tasks. However, the size of the activated connectivity was higher in

70

SNNcube trained with class 3, compared to class 2 and 4. The connection weight

varied to different degrees as new tasks were added, demonstrating stronger activity

throughout the entire training process. ​Further analysis of the connectivity patterns of

SNNcube can be performed in several ways, such as quantitative analysis. Another

more efficient way to analyse the learning patterns is through deep knowledge

representation, which will be discussed in Chapter 7.

71

 Figure 5-5 The connection weights of the pruned SNNcube for TrSNN models trained; (a) after class
1; (b) after class 2; (c) after class 3; (d) after class 4. Differences between the connectivity in the
sequentially trained TrSNN models are shown in figs (e),(f),(g). The more new classes are added, the
less new connections are added, as for the classification of new classes data, some of the previously
created connections are utilised.

72

In order to analyse the information interaction between the brain areas after each

new task, the total temporal interactions in terms of spike communication between

input neurons was depicted. As illustrated by the Feature Interaction Network graph

in Figure 5-6, thicker interaction lines were formed between the EEG channels

positioned at Parietal region for the model trained with class 1 when compared with

the after class 2, class 3, and class 4 groups in Figure 5-6 (b, c, d).

 Figure 5-6 The Feature Interaction Network (FIN) captured the total spike interaction between the
areas in TrSNN models representing 62 EEG channels as input neurons during the STDP learning at
each stage of the learning process for the pruned SNNcube.

73

5.4.2 Analysis of Output Layer Patterns in a Supervised Mode

As mentioned in Chapter 3, all neurons in the SNNcube are connected to every

neuron in the output layer. Therefore, after output layer pruning, inactive neurons in

the output layer, which did not have activate connection with SNNcube, were pruned,

which reduced the output connections for all samples from 93513 to 73875, as

shown in Table 5-4​, ​a significant reduction of the dimensionality of the space for

classification.

 Table 5-4 The number of connections of the output layer for the TrSNN model before and after
pruning.

The number of output neurons before and after aggregation is illustrated in Appendix

B, Figures B-2.

5.4.3 Analysis of the Results on Test Data to Evaluate the Transfer
Learning Performance

Figure 5-7 shows the final test results of each individual task for all experiments by

the end of the training process and compares these results to the accuracy of the

baseline model that allows data reinforcement from previous classes throughout the

74

Output Layer Pruning

Model Total Density

Complete 93513 100%

Pruned 73875 79%

training process. As shown in Figure 5-7 that the TrSNN model showed a clear age

dependent decline in which older tasks were solved with lower accuracy (Figure 5-7;

green). This penalty is expected due to sequentially training the tasks without

knowledge of a task change. One possible reason is that all neurons from the

SNNcube are connected to every output neuron, including old and new, and the new

patterns in the SNNcube learned for the newly introduced task intervene with the old

ones. When enabling weight pruning methods, with a sensible choice for threshold,

even with the same penalty, the models outperformed the previous results by a

noticeable margin (Figure 5-7; red and purple ​vs green). In fact, even with this

penalty, the proposed TrSNN-CP achieved a respectable 81% test accuracy after

transfer learning, which performed on par with the baseline systems, averaging 3%

accuracy degradation. This suggests that given a sparse network trained on a

number of tasks sequentially, it reduces the degradation of accuracy significantly for

older tasks while learning new tasks. When comparing the performance of networks

which had trained with neuron aggregation (Figure 5-7; red vs purple, and purple vs

pink), these models yielded similar test accuracies. The ImSNN model roughly

achieved a 91% test accuracy, resulting in the highest performance among all

models. However, this finding was unexpected because new connections from new

tasks are created in the SNNcube in TrSNN models and they were expected to

obtain better performance. While the incremental learning in the deSNN

demonstrated higher accuracy of classification, this type of learning does not transfer

knowledge from one class to another, but simply creates new output neurons for new

classes, separate from the previously created for previously learned classes.

Further, the final F-Score for all experiments are presented in Figure 5-8.

75

 Figure 5-7 Final per-task accuracy for each experiment after training four classes with one single
subject.

 Figure 5-8 Final F-score for each experiment after training four classes with one single subject.

Besides the final accuracies of the transfer learning system, the performance

throughout the training process is also depicted in Figure 5-9. ​As shown in Figure

76

5-9, graceful degradation of total accuracies when adding more training tasks were

reduced significantly with connection weights pruning and neuron aggregation

approaches.

 Figure 5-9 Per-task classification accuracy as new tasks are added over time, up to and including the
current task for all experiments.

To gain further understanding of the types of errors that occur during the testing

stage, the confusion matrices of the classification results trained with the

TrSNN-CP-NG model is plotted in Figure 5-10. Notice that for this experiment, a

large number of class 1 were misclassified as class 4. This can be explained by the

large interclass ambiguity between class 1 and 4. These two classes exhibited high

similarity with the areas of neurons in the SNNcube for the activation of this output

neuron, hence the ​misclassification​ was mainly among the class 1 and class 4.

77

https://www.sciencedirect.com/topics/engineering/misclassification

 Figure 5-10 Confusion matrices of the classification results trained for TrSNN-CP-NG model.

5.5 Chapter Summary

In this chapter, I presented a case study of transfer learning across tasks in one

subject based on the NeuCube SNN architecture using EEG data. Some of the key

findings of this chapter are as follows:

1. The proposed methods for transfer learning in NeuCube make it learn new

patterns through making new spatio-temporal trajectories for new tasks.

2. All TrSNN variants (TrSNN-OP, TrSNN-CP, TrSNN-OP-NG, TrSNN-CP-NG)

have been proven to obtain better predictive performance than the direct

version of TrSNN without changes of the NeuCube structure.

78

The next chapter will demonstrate an empirical study on transfer learning across

multiple subjects to further investigate the feasibility of these transfer learning

models.

5.6 Contribution

In this chapter, I have made the following contributions:

● Designed an empirical study for transfer learning across tasks in one subject

● Analysed the learning patterns in SNNcube captured during the learning

process in SNN models

79

Chapter 6 Modelling Transfer Learning Across
Multiple Subjects

6.1 Introduction

In this chapter, the proposed transfer learning methods are further examined on the

second case study, transfer learning across multiple subjects, and the hypothesis is

that the proposed transfer learning approaches can be also successfully used in the

subject-to-subject transfer learning scenario. In this study, I constructed optimal SNN

models and trained them with data from multiple subjects. The models are also

evaluated in a three-phase analysis, including SNNcube patterns in an unsupervised

mode, output layer patterns in a supervised mode, and the final experiment results to

evaluate the transfer learning performance.

6.2 Experimental Design

In this case study, the same EEG data that has been used in Chapter 5 is selected

here again, and the description of EEG dataset and preprocessing steps were

presented in Chapter 5. To validate the efficacy of the proposed approaches in

transfer learning across multiple subjects, the SNNcube and deSNN classifier were

first trained with samples from source subjects. After that, samples from the other

three target subjects were presented one-by-one to the model without any data

reinforcement from previous subjects with the goal of transferring some knowledge

acquired from the source subject to the target subjects. A series of experiments were

80

conducted to validate the performance of the proposed transfer learning approaches

across four selected subjects for two classes, class 2 and class 3 using the following

schemes:

● Baseline ​: batch learning of all subjects’ data using NeuCube

● ImSNN ​: Incremental learning of each subject’s data sequentially in deSNN

classifier only

● TrSNN ​: Transfer learning of each subject’s data sequentially in unsupervised

mode and train deSNN classifier

● TrSNN-CP ​: Transfer learning of each subject’s data sequentially in

unsupervised mode and deSNN classifier, along with weight connection

pruning in the SNNcube after learning of each task

● TrSNN-CP-NG ​: Transfer learning of each subject’s data sequentially in

unsupervised mode and deSNN classifier, along with weight connection

pruning in the SNNcube and neuron aggregation in the deSNN classifier

● TrSNN-OP​: Transfer learning of each subject’s data sequentially in

unsupervised mode and deSNN classifier, along with connection weight

pruning between SNNcube and the output neurons in the classifier

● TrSNN-OP-NG ​: Transfer learning of each subject’s data sequentially in

unsupervised mode and deSNN classifier, along with connection weights

pruning between SNNcube and output neurons and neuron aggregation when

training deSNN classifier

The flowchart of the preparation of training and testing datasets for different

schemes is presented in Figure 6-1. The encoding procedure to transform input

81

signals into spike trains was a threshold-based encoding algorithm as explained in

Chapter 3 and a fixed threshold was performed on each incoming subject.

 Figure 6-1 The flowchart of preparation of training and testing datasets for subject-to-subject transfer
learning scenarios.

To demonstrate the performance of different schemes, both transfer learning model

and baseline model were performed using the same initial connection weights. The

NeuCube models were saved at each subject change, and the testing results of all

previously seen subjects were evaluated. All experiments were performed five times

and reported the test accuracy and its standard deviation on all tasks.

The parameter optimization phase is carried out on TrSNN models only. Parameters

Drift, Mod, pruning percentage , and pruning threshold were chosen using grid p θ

82

search and picked the value of the best 3 fold cross-validation accuracy across all

hyperparameters. For the similarity parameter (SIM) in the neuronal aggregation

procedure of the deSNN classifier, a slightly different optimization scheme was used.

The models were first trained over a range of similarity parameters along with the

hyperparameters optimized as above using grid search. The optimal similarity

parameter (SIM) was chosen as the value of the best training accuracy to make sure

the performance of the neuron aggregation scheme performs on par with the model

trained without neuron aggregation on the training dataset. Furthermore, baseline

and ImSNN models were also conducted with the default parameters for

comparison. The details of the default parameters are presented in Appendix B,

Section B-1. For TrSNN experiments, there are some additional optimized

parameters, which is summarized in Table 6-1.

 Table 6-1 Parameter settings for each TrSNN experiment.

83

Parameters

TrSNN-CP Drift: 0.005
Mod: 0.8
SNNcube pruning percentage: 0.7

TrSNN-CP-NG Drift: 0.005
Mod: 0.8
SNNcube pruning percentage: 0.7
SIM parameter: 2.5

TrSNN-OP-NG Drift: 0.005
Mod: 0.8
Output layer pruning threshold: 0.533

TrSNN-OP-NG Drift: 0.005
Mod: 0.8
Output layer pruning threshold: 0.533
SIM parameter: 2.5

6.3 Experimental Results

The experimental results was organised in a two-phase analysis as follows:

● Analysis of SNNcube patterns in an unsupervised mode

● Analysis of output layer patterns in a supervised mode

● Analysis of the results on test data to evaluate the transfer learning

performance

6.3.1 Analysis of SNNcube Patterns in an Unsupervised Mode

The weights connectivity of SNNcube after connection weights pruning at each stage

of the subject learning process for two classes, class 2 and class 3 are visualized in

Figure 6-2 and Figure 6-3, respectively. It can be seen from Figure 6-2 and Figure

6-3 (a)-(d) that stronger brain connectivity is observed with further trained

SNNcubes. For class 3 (Figure 6-3 (a)-(d)), the connections were particularly

enhanced between neurons located in the areas of Occipital and Posterior, which

were less observed in the case of class 2 (Figure 6-2 (a)-(d)).

To perform a better analysis of changes in SNNcube between subjects, the

differences between the SNNcube for each stage of the learning process were

computed through subtracting with the previous trained cube, which allows

visualising the changes in neural connectivity as a result of transfer learning over

time. In the graphs shown in Figure 6-2 (e), when the SNNcube was trained on

subject 10, greater connections were mostly observed around the neurons

positioned in Occipital and Temporal areas compared to other areas. As shown in

84

Figure 6-2 (f) for the subject 11, the neuron connectivity was enhanced around the

Parietal, Sublobar, Temporal, Posterior and Occipital regions. Figure 6-2 (g)

illustrates that EEG channels positioned in the Talairach areas associating with

Frontal and Posterior lobes represented the most differences between subject 11

and subject 12. The connection weight varied to different degrees as new subjects

were added, demonstrating the difference in activity of brain areas across subjects

throughout the entire training process. Similarly, the brain states when executing

task 3 were compared in Figure 6-3 (e-g). Further trained SNNcube for subject 11

resulted in a similar pattern of changes in some regional activation compared with

class 2, while significant connectivity changes in some brain regions were observed

for subject 10 and subject 12. ​Further analysis of the connectivity patterns of

SNNcube can be performed in several ways, such as quantitative analysis. Another

more efficient way to analyse the learning patterns is through deep knowledge

representation, which will be discussed in Chapter 7.

85

 Figure 6-2 The connection weights of the pruned SNNcube for class 2 in TrSNN models trained (a)
after subject 9 (threshold: 0.3), (b) subject 10 (threshold: 0.4), (c) subject 11 (threshold: 0.5), (d) after
subject 12 (threshold: 0.6). Differences between the connectivity in the trained TrSNN models (e)(f)(g)
(threshold: 0.3). The larger the number of new connections, the larger the difference between the new
subject and old ones for the same task.

86

 Figure 6-3 The connection weights of the pruned SNNcube for class 3 in TrSNN models trained (a)
after subject 9 (threshold: 0.3), (b) subject 10 (threshold: 0.4), (c) subject 11 (threshold: 0.5), (d) after
subject 12 (threshold: 0.6). Differences between the connectivity in the trained TrSNN models (e)(f)(g)
(threshold: 0.3). For both task 2 (Figure 6-2) and task 3 (this figure) the larger differences are
observed when Subject 11 data is learned in the SNNcube.

87

6.3.2 Analysis of Output Layer Patterns in a Supervised Mode

As mentioned in Chapter 3, all neurons in the SNNcube are connected to every

neuron in the output layer. Therefore, after output layer pruning, inactive neurons in

output layer, which did not have activate connection with SNNcube, were pruned,

which reduced the output connections for all samples from 137970 to 108727, as

shown in Table 6-2, a significant reduction of the dimensionality of the space for

classification.

 Table 6-2 The number of connections of the output layer for the TrSNN model before and after
pruning.

The number of output neurons before and after aggregation is illustrated in Appendix

B, Figures B-2.

6.3.3 Analysis of the Results on Test Data to Evaluate the Transfer
Learning Performance

The performance at the end of the training process was first evaluated using the

overall accuracy and F-score achieved by each scheme across all four subjects, as

shown in Figure 6-4 and Figure 6-5. TrSNN-CP resulted in the second highest

classification performance by achieving up to 88.89% accuracy, suggesting that

TrSNN-CP achieved better performance compared with other transfer learning or

88

Output Layer Pruning

Model Total Density

Complete 137970 100%

Pruned 108727 79%

incremental learning schemes. In terms of the performance for each subject, subject

11 has a lower performance than other subjects. This can be explained by the large

interclass ambiguity between the class 2 and 3 for subject 11 as shown in Figure 6-2

(f) and Figure 6-3 (f). These two classes exhibited high similarity with the areas of

neurons in the SNNcube for the activation of this output neuron, hence the

misclassification was mainly among the subject 11. Figure 6-4 and Figure 6-5

showed that the TrSNN-CP and TrSNN-CP-NG outperformed the incremental

learning method (ImSNN) with an average accuracy improvement of 4%, which is

opposite from the experiments in the previous chapter.

 Figure 6-4 Final average accuracy for each experiment after training four subjects using two classes
(class 2 and class 3).

89

https://www.sciencedirect.com/topics/engineering/misclassification

 Figure 6-5 Final F-score for each experiment after training four subjects using two classes (class 2
and class 3).

In order to further analyze the accuracy of per class accuracy across subjects, per

class accuracy of three schemes at the end of the training process was evaluated

across all four subjects. It can be seen from Figure 6-6 that there was no significant

catastrophic forgetting when the new subjects are learned using the TrSNN model.

This might suggest that the feature of new subjects has no significant difference from

previously observed examples. Unexpectedly, there were sharp drops in accuracy of

class 3 for subject 11 when trained with TrSNN mode. The TrSNN-CP model

performed on par with the baseline model for all subjects under most circumstances.

Subject 11 in particular had a large increase in accuracy for class 3 when the

SNNcube pruning was applied, while retaining the accuracy of other subjects.

90

 Figure 6-6. Per class accuracy for each subject trained with baseline, TrSNN, and TrSNN-CP models.

6.4 Chapter Summary

In this chapter, I have shown that the proposed TrSNN model with SNNcube pruning

has a better adaptability to the novel information received from the new subjects by

cutting off certain connections in the network, while preserving useful knowledge

from previously learned subjects, allowing rapid learning from new information. Now

the question is: how the SNN models can be further investigated for a better

understanding of learning patterns that lead to a successful transfer learning and

which parts of the brain area are responsible for that? In the next chapter, a deep

spatio temporal rules extraction algorithm will be introduced. This allows for

knowledge representation in the models and contributes to the interpretation of

knowledge being transferred when training new tasks or subjects subsequently.

91

6.5 Contribution

In this chapter, I have made the following contributions:

● Designed an empirical study on transfer learning across multiple subjects

● Analysed the learning patterns in SNNcube captured during the learning

process in SNN models

92

Chapter 7 Methods and Algorithms for
Knowledge Representation in BI-SNN as Spatial
Temporal Rules (STR)

7.1 Introduction

In the previous two chapters, task to task and subject to subject experiments were

conducted to examine the proposed transfer learning approaches. Besides the

model accuracy, a better interpretation of the model is also essential. In this chapter,

I proposed a deep knowledge extraction and representation method using BI-SNN

architectures. This knowledge representation method is a technique to extract spatial

temporal rules from deep knowledge, improving the level of interpretability of

learning patterns that lead to a successful transfer learning and which parts of the

brain area are responsible for that. In addition, this algorithm was applied to perform

further analysis for the evolving patterns in transfer learning models, which has not

been interpreted in depth in the previous two experiments presented in Chapter 5

and Chapter 6.

7.2 Deep Spatio Temporal Rules Extraction Approach

The concept of deep knowledge representation in SNN is first introduced in

(Kasabov, 2019). Deep knowledge extraction and representation in a trained SNN

model is algorithmically described in Algorithm 6, in which activation activities of

93

different clusters of brain area at slightly different times are extracted numerically,

and use it to represent spatiotemporal relationships during a cognitive task. In

BI-SNN framework, each spiking neuron was annotated spatially by its

corresponding anatomical region in the human brain using a 3D coordinate in the

Talairach space (Talairach & Tournoux, 1988). The spatial mapping of EEG data is

presented in Appendix A. After unsupervised learning in SNNcube with SNNcube

pruning, the firing rate in each time bin was calculated along with neuron aggregation

during the supervised learning stage. The neuron aggregation was employed since

merged output neurons represent clusters of prototypes in a transformed space, and

this transformed space can be used to discover deep knowledge. More specifically,

for each aggregated output neuron, the average firing rate of the spatial cluster in

each time bin can be calculated based on the number of times a pre-synaptic

neurons spike. The spatial clusters were considered as active if the normalized firing

rate surpasses the rule threshold. After the spatio-temporal analysis, deep

knowledge is formed through the information obtained above.

The activation of different clusters of neurons associated with each output class

sample (prototype) at slightly different time bins can be analysed and deep

spatio-temporal rules can be extracted. For each output class sample S, a chain of

activated clusters of brain areas was formed over each time frame. A fuzzy rule-base

associated with this output class sample can be extracted and presented in the

following form (Kasabov, 2019):

IF (the firing rate of is A and is B and is F, at time about T1)area1 area2 area3

94

AND (the firing rate of is A and is B and is F, at time about T2) area1 area2 area3

AND (the firing rate of is A and is B and is F, at time about T3) area1 area2 area3

AND (the firing rate of is A and is B and is F, at time about T4)area1 area2 area3

THEN (The output class prototype is class C)

Where A, B and F are fuzzy values represented by their membership functions, C is

its corresponding class label, and indicates the set of brain areas that are areai

activated at time . For instance, at the lobe level of the hierarchy can be T areai

represented using the following subset of brain areas:

{Anterior Lobe, Frontal Lobe, Frontal emporal Space, Limbic Lobe, Medulla, areai ⊂ − T

idbrain, Occipital Lobe, Parietal Lobe, Pons, Posterior Lobe, Sub obar, Temporal Lobe} M − l

An example of fuzzy membership functions is shown in Figure 7-1.

 Figure 7-1 Example of fuzzy gaussian membership functions that represent a variable firing rate.

95

In the next two sections, this spatio temporal rules extraction algorithm was applied

to further analyse both task-to-task and subject-to-subject experiments. The

temporal resolution for this analysis was four time bins (t = {0.5s, 1s, 1.5s, 2s}), and

the spatial resolution was the lobe level in the Talairach Brain Atlas (Talairach &

Tournoux, 1988). The rule threshold that used to select spatial clusters for thrule

spatial temporal rule generation was fixed to 0.3.

 Table ​7-1 The proposed deep spatial temporal rule extraction algorithm.

96

7.3 Spatial Temporal Rules for Task To Task Transfer in One
Subject

7.3.1 Functional Organisation of Neural Clusters

For each output class sample, ​a subset of brain areas that indicate a specific

combination of activation level during the execution of a cognitive task were

selected. In order to perform a better quantitative analysis of the organization of

neural clusters across tasks, the average firing rates of different spatial clusters of

brain areas in each time bin are first calculated, and the difference of firing rate for

each stage of the learning process were computed through subtracting with the firing

rate for previous trained model, as shown in Figure 7-2. Different activation level of

slightly different clusters of neurons at different times are observed, for instance,

strong firing rates were created around the Frontal and Limbic lobes in Figure 7-2 (b)

while Frontal-temporal lobe was more active in Figure 7-2 (a), indicating different

knowledge were transferred at different stage of the training process.

97

 Figure 7-2 Difference in firing rate of brain areas between the SNN models trained (a) after class 1
and after class 2 (b) after class 2 and after class 3, (c) after class 3 and after class 4.

98

7.3.2 Extraction of Fuzzy Rules

The knowledge obtained above ​can further be converted into meaningful symbolic

representation, in which a fuzzy rule can be formed by using the activation of slightly

different clusters of neurons at slightly different times. Below are the fuzzy rules

obtained from Figure 7-2 (a) and Figure 7-2 (b).

A fuzzy rule for sample in Figure 7-2 (a) can be written as,

● = ​{Temporal Lobe}area (T1)1

= ​{Frontal-Temporal Space, Frontal Lobe, Posterior Lobe}area (T1)2

● = ​{Temporal Lobe}area (T2)1

= ​{ Frontal Lobe, Temporal Lobe}area (T2)2

= ​{Frontal-Temporal Space}area (T2)3

● = ​{Parietal Lobe, Temporal Lobe}area (T3)1

= ​{Frontal-Temporal Space, Frontal Lobe}area (T3)2

● = ​{Temporal Lobe}area (T4)1

= ​{Frontal-Temporal Space, Frontal Lobe, Posterior Lobe}area (T4)2

IF (the firing rate of is SMALL and is MEDIUM, at time about area (T1)1 area (T1)2

0.5s)

AND (the firing rate of is SMALL and is MEDIUM and area (T2)1 area (T2)2 area (T2)3

is HIGH, at time about 1s)

AND (the firing rate of is SMALL and is MEDIUM, at time about area (T3)1 area (T3)2

1.5s)

99

AND (the firing rate of is SMALL and is MEDIUM, at time about area (T4)1 area (T4)2

2s)

THEN (This is the knowledge that transfers from the model trained with class 1 to the

model that continues to train class 2 sequentially) .

A fuzzy rule for sample in Figure 7-2 (b) can be written as,

● = ​{Occipital Lobe, Sub-lobar}area (T1)1

= ​{Temporal Lobe, Limbic Lobe, Parietal Lobe}area (T1)2

= ​{Frontal Lobe}area (T1)3

● = ​{Occipital Lobe, Sub-lobar}area (T2)1

= ​{Temporal Lobe, Parietal Lobe}area (T2)2

= ​{Frontal Lobe, Limbic Lobe}area (T2)3

● = ​{Occipital Lobe, Sub-lobar}area (T3)1

=​ ​{Temporal Lobe, Limbic Lobe, Parietal Lobe}area (T3)2

=​ ​{Frontal Lobe}area (T3)3

● = ​{Occipital Lobe, Sub-lobar}area (T4)1

= ​{Temporal Lobe, Parietal Lobe}area (T4)2

=​ ​{Frontal Lobe, Temporal Lobe}area (T4)3

IF (the firing rate of is SMALL and is MEDIUM and is area (T1)1 area (T1)2 area (T1)3

HIGH, at time about 0.5s)

AND (the firing rate of is SMALL and is MEDIUM and area (T2)1 area (T2)2 area (T2)3

is HIGH, at time about 1s)

100

AND (the firing rate of is SMALL and is MEDIUM and area (T3)1 area (T3)2 area (T3)3

is HIGH, at time about 1.5s)

AND (the firing rate of is SMALL and is MEDIUM and area (T4)1 area (T4)2 area (T4)3

is HIGH, at time about 2s)

THEN (This is the knowledge that transfers from the model trained with class 1 and

class 2 to the model that continues to train class 3 sequentially)

7.4 Spatial Temporal Rules​ for Subject To Subject Transfer

7.4.1 Functional Organisation of Neural Clusters

In order to perform a better quantitative analysis of the organization of neural

clusters between subjects, the average firing rates of different spatial clusters of

brain areas in each time bin for class 2 and class 3 are first calculated and the

difference of firing rate for each stage of the learning process were computed

through subtracting with the firing rate for previous trained model and visualized in

Figure 7-3 and Figure 7-4 respectively. In the graphs shown in Figure 7-3 (a), the

common knowledge for the model trained with subject 9 and model that continue to

trained with subject 10 was positioned around the areas in the Talairach areas

associating with Anterior Lobe, Medulla, Midbrain, Pons, Posterior Lobe at each time

bin. In Figure 7-3 (b), strong firing rates were mostly created around the Medulla,

Posterior, Pons and Occipital regions. Figure 7-3 (c) depicts that those neurons with

a high firing rate positioned around the Sub-lobar, Pons and Temporal Lobe after 1s,

Anterior Lobe in 1s and 2s, Limbic Lobe in 2s, while neural clusters in Occipital and

101

Posterior Lobe are activated at all time bins. Similarly, different activation activities of

different clusters of brain area at slightly different times when executing task 3 were

observed in Figure 7-4 (a-c).

 Figure 7-3 Difference in firing rate of brain areas when executing class 2 between the trained SNN
models (a) after subject 9 and after subject 10 (b) after subject 10 and after subject 11, (c) after
subject 11 and after subject 12.

102

 Figure 7-4 Difference in firing rate of brain areas when executing class 3 between the trained SNN
models (a) after subject 9 and after subject 10 (b) after subject 10 and after subject 11, (c) after
subject 11 and after subject 12.

103

7.4.2 Extraction of Fuzzy Rules

The knowledge obtained above ​can further be converted into meaningful symbolic

representation, in which a fuzzy rule can be formed by using the activation of slightly

different clusters of neurons at slightly different times. Below are the fuzzy rules

obtained from Figure 7-3 (c) and Figure 7-4 (c).

A fuzzy rule for sample in Figure 7-3 (c) can be written as,

● = ​{Frontal Lobe, Anterior Lobe, Temporal Lobe, Parietal Lobe, Pons, Sub-lobar}area (T1)1

= ​{Posterior Lobe, Occipital Lobe, Medulla}area (T1)2

● = ​{Limbic Lobe, Frontal Lobe, Frontal-Temporal Space, Parietal Lobe}area (T2)1

= ​{Temporal Lobe, Occipital Lobe, Medulla, Sub-lobar, Midbrain, Posterior Lobe,area (T2)2

Pons, Anterior Lobe}

● = ​{Parietal Lobe, Limbic Lobe}area (T3)1

= ​{Temporal Lobe, Pons, Occipital Lobe, Sub-lobar, Posterior Lobe}area (T3)2

● = ​{Midbrain, Frontal Lobe}area (T4)1

= ​{Anterior Lobe, Posterior Lobe, Limbic Lobe, Occipital Lobe, Pons, Parietalarea (T4)2

Lobe, Temporal Lobe, Sub-lobar}

=​ ​{Medulla}area (T4)3

IF (the firing rate of is SMALL, is MEDIUM, at time about 0.5s)area (T1)1 area (T1)2

AND (the firing rate of is SMALL, is MEDIUM, at time about 1s)area (T2)1 area (T2)2

AND (the firing rate of is SMALL, is MEDIUM, at time about 1.5s)area (T3)1 area (T3)2

104

AND (the firing rate of is SMALL, is MEDIUM, is area (T3)1 area (T3)2 area (T3)2

HIGH, at time about 2s)

THEN (This is the knowledge for class 2 that transfers from the model trained with

subject 9, 10, and 11 to the model that continues to train subject 12 sequentially) .

A fuzzy rule for sample in Figure 7-4 (c) can be written as,

● = ​{Pons}area (T1)1

= ​{Frontal Lobe, Temporal Lobe, Frontal-Temporal Space, Limbic Lobe, Occipitalarea (T1)2

Lobe, Parietal Lobe, Sub-lobar}

● =​ ​{Frontal Lobe}area (T2)1

= ​{Temporal Lobe, Limbic Lobe, Sub-lobar, Posterior Lobe, Frontal-Temporalarea (T2)2

Space, Pons, Parietal Lobe, Anterior Lobe}

=​ ​{Occipital Lobe}area (T2)3

● = ​{Pons, Midbrain}area (T3)1

= ​{Frontal Lobe, Temporal Lobe, Anterior Lobe, Occipital Lobe, Parietal Lobe,area (T3)2

Frontal-Temporal Space, Sub-lobar, Posterior Lobe}

=​ ​{Limbic Lobe}area (T3)3

● = ​{Anterior Lobe, Limbic Lobe, Occipital Lobe, Frontal Lobe, Parietal Lobe,area (T4)1

Sub-lobar}

=​ ​{Posterior Lobe, Frontal-Temporal Space, Pons, Medulla}area (T4)2

IF (the firing rate of is SMALL, at time about 0.5s)area (T1)1

AND (the firing rate of is SMALL and is MEDIUM and area (T2)1 area (T2)2 area (T2)3

is HIGH, at time about 1s)

105

AND (the firing rate of is SMALL and is MEDIUM and area (T3)1 area (T3)2 area (T3)3

is HIGH, at time about 1.5s)

AND (the firing rate of is MEDIUM and areas is LARGE, at time area (T4)1 area (T4)2

about 2s)

THEN (This is the knowledge for class 3 that transfers from the model trained with

subject 9, 10, and 11 to the model that continues to train subject 12 sequentially)

7.5 Chapter Summary

In this chapter, I proposed a new deep spatio temporal rules extraction approach

based on the SNN architecture. This resulted in a better interpretation of SNN

learning patterns. It also contributes to knowledge representation in SNN

architectures, allowing further analysis on how the trained transfer learning models

exchange information and transfer knowledge between tasks or subjects.

7.6 Contribution

In this chapter, I have made the following contributions:

● Proposal of a new deep spatio temporal rules extraction approach based on

the SNN architecture

● Designed a study on the proposed spatio temporal rules extraction approach

based on the task to task and subject to subject experiments

106

Chapter 8 Conclusions and Recommendations
for Future Work

8.1 Introduction

This chapter discusses the key findings and contributions of this thesis. The main

limitations of this work are then discussed along with an overview of future

implications.

8.2 Aim and Methodological Approach

This thesis aims to adapt the NeuCube Brain-Inspired Spiking Neural Network

(BI-SNN) architecture for transfer learning schemes. I proposed a family of transfer

learning methods based on the NeuCube framework that resulted in a better

adaptability to the novel information. The proposed approaches were experimentally

validated using the upper limb movement dataset on two empirical studies, including

transfer learning across tasks in one subject and transfer learning across subjects in

one task. Additionally, I proposed a new spatial-temporal rule based on SNN

architecture that offers an improved level of interpretability about how the transfer

learning models exchange information.

8.3 Empirical and Theoretical Contributions

The contributions of this thesis are:

107

1. Transfer learning in BI-SNN models

I adapted the NeuCube framework to be used on transfer learning environments,

which resulted in a better adaptability to the novel information received from the new

tasks or subjects, achieving up to 81.96% accuracy for task-to task transfer learning

in one subject and 88.89% accuracy for subject-to-subject transfer learning case

studies. The findings demonstrated that the new adaptations of SNN models are

able to learn from new incoming tasks or subjects rapidly without requiring retraining

from previous samples, while retaining the knowledge from previously learned tasks

or subjects with less forgetting. Therefore, the achieved transfer learning in SNN

models is a significant contribution for a further development of deep-learning in

SNN architecture.

2. Knowledge representation in BI-SNN models

I proposed a new deep knowledge representation approach to extract spatial

temporal rules from deep knowledge, enabling a better interpretation of learning

patterns in the SNN models. This approach also contributed to further analysis on

how the transfer learning models exchange information in order to trace the evolution

of knowledge during transfer learning.

8.4 Limitation of the Thesis

The limitations of this thesis are:

1. Scope and Parameters of the Research

108

The temporal and spatial resolution of knowledge representation extracted from a

trained SNN model was predefined manually. The optimization procedure needs to

be further investigated to find the optimal space and time of knowledge. ​In addition,

the data used in this thesis were only EEG data, however the proposed transfer

learning methods need to be further evaluated to other types of spatio-temporal data,

for instance, fMRI and gene data.

2. Methodological Point of View

A fixed threshold was used for encoding the input signals into spike trains for all

tasks and subjects. However, the encoding procedure and its parameters should be

adapted to different tasks or subjects. Assessment of different encoding methods

and optimising their parameters is crucial for further development of transfer learning

models.

8.5 Future Direction and Implications

There are some future directions that can be explored in the future as follows:

Bioinformatics: ​The proposed transfer learning methods presented in Chapter 5

can be further applied to the field of bioinformatics, for instance, a generic predictive

system for early prediction of health risk factors. To this aim, I aim to investigate the

feasibility of transfer learning using omics data, such as genomics or proteomics

data.

109

Learning to learn in BI-SNN: ​For further development of the proposed methods

presented in Chapter 5, I aim to enhance it towards learning to learn in SNN

models. The SNN models are not only capable of transferring prior knowledge in

order to learn new information more effectively but learning related tasks or subjects

from very few examples.

110

References

Abbott, L. F. (1999). Lapicque’s Introduction of the Integrate-and-Fire Model Neuron

(1907). ​Brain Research Bulletin ​, ​50 ​(5), 303-304.

Brett, M., Christoff, K., Cusack, R., & Lancaster, J. (2001). Using the Talairach Atlas

with the MNI Template. ​Neuroimage, 13 ​(6), 85-85.

Bruzzone, L., & Marconcini, M. (2009). Domain adaptation problems: A DASVM

classification technique and a circular validation strategy. ​IEEE Transactions

on Pattern Analysis and Machine Intelligence, 32 ​(5), 770-787.

Alamgir, M., Grosse–Wentrup, M., & Altun, Y. (2010, March). Multitask learning for

brain-computer interfaces. In ​Proceedings of the thirteenth international

conference on artificial intelligence and statistics (pp. 17-24). JMLR Workshop

and Conference Proceedings.

Azab, A. M., Toth, J., Mihaylova, L. S., & Arvaneh, M. (2018). A review on transfer

learning approaches in brain–computer interface. ​Signal Processing and

Machine Learning for Brain-Machine Interfaces ​, 81-98.

Allred, J. M., & Roy, K. (2020). Controlled Forgetting: Targeted Stimulation and

Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in

Spiking Neural Networks. ​Frontiers in neuroscience ​, ​14 ​.

Bohte, S. M., Kok, J. N., & La Poutré, J. A. (2000, April). SpikeProp:

backpropagation for networks of spiking neurons. In ​ESANN ​ (pp. 419-424).

Bohte, S. M. (2004). The Evidence for Neural Information Processing with Precise

SpikeTimes: A Survey. ​Natural Computing, 3 ​(2), 195-206.

111

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,

Diesmann, M., Morrison, A., Goodman, P.H., Harris, F.C. & Zirpe, M. (2007).

Simulation of networks of spiking neurons: a review of tools and strategies.

Journal of computational neuroscience, 23​(3), 349-398.

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. ​Nature Reviews Neuroscience,

10​(3), 186.

Bremner, A., Lewkowicz, D. & Spence, C. (2012). ​Multisensory development​. Oxford

University Press.

Cichon, J., & Gan, W. B. (2015). Branch-specific dendritic Ca 2+ spikes cause

persistent synaptic plasticity. ​Nature, 520​(7546), 180-185.

Cui, Y., Xu, Y., & Wu, D. (2019). EEG-based driver drowsiness estimation using

feature weighted episodic training. ​IEEE Transactions on Neural Systems and

Rehabilitation Engineering, 27​(11), 2263-2273.

Capecci, E., Lobo, J. L., Laña, I., Espinosa-Ramos, J. I., & Kasabov, N. (2019).

Modelling gene interaction networks from time-series gene expression data

using evolving spiking neural networks. ​Evolving Systems​, 1-15.

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of

single-trial EEG dynamics including independent component analysis. ​Journal

of neuroscience methods​, ​134​(1), 9-21.

Delbruck, T., & Lichtsteiner, P. (2007). Fast Sensory Motor Control based on

Event-Based Hybrid Neuromorphic-Procedural System. In ​IEEE International

Symposium on Circuits and Systems ​(pp. 845-848). IEEE.

112

Davis, J., & Domingos, P. (2009, June). Deep transfer via second-order markov

logic. In ​Proceedings of the 26th annual international conference on machine

learning​ (pp. 217-224).

Dray, J., Capecci, E., & Kasabov, N. (2018, December). Spiking neural networks for

cancer gene expression time series modelling and analysis. In ​International

Conference on Neural Information Processing​ (pp. 625-634). Springer, Cham.

Doborjeh, Z. G., Kasabov, N., Doborjeh, M. G., & Sumich, A. (2018). Modelling

peri-perceptual brain processes in a deep learning spiking neural network

architecture. ​Scientific reports, 8​(1), 1-13.

Fusi, S., Annunziato, M., Badoni, D., Salamon, A., & Amit, D. J. (2000). Spike-driven

synaptic plasticity: theory, simulation, VLSI implementation. ​Neural

computation, 12​(10), 2227-2258.

Gerstner, W., & van Hemmen, J. L. (1992). Associative memory in a network of

‘spiking’neurons. ​Network: Computation in Neural Systems, 3​(2), 139-164.

Hebb, D. (1949). ​The Organization of Behavior: A Neuropsychological Approach​.

John Wiley & Sons.

Hu, J., Hou, Z. G., Chen, Y. X., Kasabov, N., & Scott, N. (2014, August). EEG-based

classification of upper-limb ADL using SNN for active robotic rehabilitation. In

5th IEEE RAS/EMBS international conference on biomedical robotics and

biomechatronics​ (pp. 409-414). IEEE.

Hossain, I., Khosravi, A., & Nahavandhi, S. (2016, July). Active transfer learning and

selective instance transfer with active learning for motor imagery based BCI.

In ​2016 International Joint Conference on Neural Networks (IJCNN) (pp.

4048-4055). IEEE.

113

Hayes, T. L., Cahill, N. D., & Kanan, C. (2019, May). Memory efficient experience

replay for streaming learning. In ​2019 International Conference on Robotics

and Automation (ICRA) ​(pp. 9769-9776). IEEE.

He, H., & Wu, D. (2019). Transfer learning for Brain–Computer interfaces: A

Euclidean space data alignment approach. ​IEEE Transactions on Biomedical

Engineering, 67​(2), 399-410.

He, H., & Wu, D. (2020). Different Set Domain Adaptation for Brain-Computer

Interfaces: A Label Alignment Approach. ​IEEE Transactions on Neural

Systems and Rehabilitation Engineering, 28​(5), 1091-1108.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. ​The Journal

of physiology, 117​(4), 500.

Izhikevich, E. M. (2006). Polychronization: Computation with Spikes. ​Neural

Computation, 18​(2), 245-282.

Jiang, J., & Zhai, C. (2007, June). Instance weighting for domain adaptation in NLP.

In ​Proceedings of the 45th annual meeting of the association of computational

linguistics​ (pp. 264-271).

Jayaram, V., Alamgir, M., Altun, Y., Scholkopf, B., & Grosse-Wentrup, M. (2016).

Transfer learning in brain-computer interfaces. ​IEEE Computational

Intelligence Magazine, 11​(1), 20-31.

Kasabov, N. K. (2007). ​Evolving connectionist systems: the knowledge engineering

approach​. Springer Science & Business Media.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.

114

Koessler, L., Maillard, L., Benhadid, A., Vignal, J., Felblinger, J., Vespignani, H., &

Braun, M. (2009). Automated Cortical Projection of EEG Sensors: Anatomical

Correlation via the International 10-10 System. ​Neuroimage, 46​(1), 64-72.

Kasabov, N. (2010). Neural Networks Letter: To Spike or Not to Spike: A

Probabilistic Spiking Neuron Model. ​Neural Networks, 23​(0893-6080), 16019.

Kulis, B., Saenko, K., & Darrell, T. (2011, June). What you saw is not what you get:

Domain adaptation using asymmetric kernel transforms. In ​CVPR 2011 (pp.

1785-1792). IEEE.

Kasabov, N. (2012, September). Neucube evospike architecture for spatio-temporal

modelling and pattern recognition of brain signals. In ​IAPR Workshop on

Artificial Neural Networks in Pattern Recognition (pp. 225-243). Springer,

Berlin, Heidelberg.

Kasabov, N., Dhoble, K., Nuntalid, N., & Indiveri, G. (2013). Dynamic Evolving

Spiking Neural Networks for On-Line Spatio-and Spectro-Temporal Pattern

Recognition. ​Neural Networks, ​41, 188-201.

Kasabov, N. (2014). NeuCube: A spiking neural network architecture for mapping,

learning and understanding of spatio-temporal brain data. ​Neural Networks​,

52, 62-76.

Kasabov, N., & Capecci, E. (2015). Spiking neural network methodology for

modelling, classification and understanding of EEG spatio-temporal data

measuring cognitive processes.​ Information Sciences​, 294, 565-575.

Kasabov, N., Scott, N., Tu, E., Marks, S., Sengupta, N., Capecci, E., Othman, M.,

Doborjeh, M., Murli, N., Hartono, R. & Espinosa-Ramos, J. (2016). Design

methodology and selected applications of evolving spatio-temporal data

115

machines in the NeuCube neuromorphic framework. ​Neural Networks​,

78​(2016)), 1-14.

Kasabov, N. K., Doborjeh, M. G., & Doborjeh, Z. G. (2017). Mapping, learning,

visualization, classification, and understanding of fMRI Data in the NeuCube

evolving spatiotemporal data machine of spiking neural networks. ​IEEE

transactions on Neural Networks and Learning Systems, 28​(4), 887-899.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,

Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D.,

Clopath, C., Kumaran, D. & Hadsell, R. (2017). Overcoming catastrophic

forgetting in neural networks. ​Proceedings of the National Academy of

Sciences, 114​(13), 3521–3526.

Kumarasinghe, K., Owen, M., Taylor, D., Kasabov, N., & Kit, C. (2018, May).

FaNeuRobot: A Framework for Robot and Prosthetics Control Using the

NeuCube Spiking Neural Network Architecture and Finite Automata Theory. In

2018 IEEE International Conference on Robotics and Automation (ICRA) (pp.

1-8). IEEE.

Koefoed, L., Capecci, E., & Kasabov, N. (2018, July). Analysis of gene expression

time series data of ebola vaccine response using the neucube and temporal

feature selection. In ​2018 International Joint Conference on Neural Networks

(IJCNN)​ (pp. 1-7). IEEE.

Kasabov, N. K. (2019). ​Time-space, spiking neural networks and brain-inspired

artificial intelligence​. Berlin, Heidelberg: Springer Berlin Heidelberg.

116

Kumarasinghe, K., Kasabov, N., & Taylor, D. (2020). Deep learning and deep

knowledge representation in Spiking Neural Networks for Brain-Computer

Interfaces. ​Neural Networks ​, ​121 ​, 169-185.

Rusu, A. A., Večerík, M., Rothörl, T., Heess, N., Pascanu, R., & Hadsell, R. (2017,

October). Sim-to-real robot learning from pixels with progressive nets. In

Conference on Robot Learning ​ (pp. 262-270). PMLR.

Lomonaco, V., & Maltoni, D. (2017, October). Core50: a new dataset and benchmark

for continuous object recognition. In ​Conference on Robot Learning (pp.

17-26). PMLR.

Li, Z., & Hoiem, D. (2017). Learning without forgetting. ​IEEE transactions on pattern

analysis and machine intelligence, 40 ​(12), 2935-2947.

Li, H., Parikh, N. A., & He, L. (2018). A novel transfer learning approach to enhance

deep neural network classification of brain functional connectomes. ​Frontiers

in neuroscience, 12​, 491.

McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist

networks: The sequential learning problem. In ​Psychology of learning and

motivation ​ (Vol. 24, pp. 109-165). Academic Press.

McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are

complementary learning systems in the hippocampus and neocortex: insights

from the successes and failures of connectionist models of learning and

memory. ​Psychological review, 102 ​(3), 419.

Mihalkova, L., Huynh, T., & Mooney, R. J. (2007, July). Mapping and revising markov

logic networks for transfer learning. In ​Aaai ​ (Vol. 7, pp. 608-614).

117

Maltoni, D., & Lomonaco, V. (2019). Continuous learning in single-incremental-task

scenarios. Neural Networks, 116, 56-73.

Mohseni, M., Shalchyan, V., Jochumsen, M., & Niazi, I. K. (2020). Upper limb

complex movements decoding from pre-movement EEG signals using wavelet

common spatial patterns. ​Computer methods and programs in biomedicine,

183​, 105076.

Neves, A. C., González, I., Leander, J., & Karoumi, R. (2017, July). A new approach

to damage detection in bridges using machine learning. In ​International

Conference on Experimental Vibration Analysis for Civil Engineering

Structures​ (pp. 73-84). Springer, Cham.

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. ​IEEE Transactions on

Knowledge and Data Engineering, 22​(10), 1345-1359.

Pan, S. J., Tsang, I. W., Kwok, J. T., & Yang, Q. (2010). Domain adaptation via

transfer component analysis. ​IEEE Transactions on Neural Networks, 22​(2),

199-210.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual

lifelong learning with neural networks: A review. ​Neural Networks, 113​, 54-71.

Raina, R., Battle, A., Lee, H., Packer, B., & Ng, A. Y. (2007, June). Self-taught

learning: transfer learning from unlabeled data. In ​Proceedings of the 24th

international conference on Machine learning​ (pp. 759-766).

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian Learning

Through Spike-timing-dependent Synaptic Plasticity. ​Nature Neuroscience,

3​(9), 919-926.

118

Schrauwen, B., & Van Campenhout, J. (2003). BSA, A Fast and Accurate Spike

Train Encoding Scheme. In ​Proceedings of the International Joint Conference

on Neural Networks ​(Vol. 4, pp. 2825-2830). IEEE Piscataway, NJ.

Talairach, J., & Tournoux, P. (1988). Co-planar Stereotaxic Atlas of the Human

Brain. 3- Dimensional Proportional System: An Approach to Cerebral Imaging.

Thieme Medical Publishers​. New York.

Thorpe, S. J. (1990). Spike Arrival Times: A Highly Efficient Coding Scheme for

Neural Networks. ​Parallel Processing in Neural Systems,​ 91-94.

Thorpe, S., & Gautrais, J. (1998). Rank order coding. ​Computational Neuroscience,

13​, 113–119.

Taylor D, Scott N, Kasabov N, Capecci E, Tu E, Saywell N, Chen Y, Hu J, Hou ZG.

(2014, July). Feasibility of neucube snn architecture for detecting motor

execution and motor intention for use in bciapplications. In ​2014 International

Joint Conference on Neural Networks (IJCNN)​ (pp. 3221-3225). IEEE.

Tu, E., Kasabov, N., & Yang, J. (2016). Mapping temporal variables into the neucube

for improved pattern recognition, predictive modeling, and understanding of

stream data. ​IEEE Transactions on Neural Networks and Learning Systems,

28​(6), 1305-1317.

Wysoski, S. G., Benuskova, L., & Kasabov, N. (2010). Evolving Spiking Neural

Networks for Audiovisual Information Processing. ​Neural Networks, 23​(7),

819-835.

Wu, D., Lawhern, V. J., Hairston, W. D., & Lance, B. J. (2016). Switching EEG

headsets made easy: Reducing offline calibration effort using active weighted

119

adaptation regularization. ​IEEE Transactions on Neural Systems and

Rehabilitation Engineering, 24​(11), 1125-1137.

Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning.

Journal of Big data, 3​(1), 9.

Zadeh, L. A. (1965). Fuzzy sets. ​Information and control, 8​(3), 338-353.

Zenke, F., Poole, B., & Ganguli, S. (2017, July). Continual learning through synaptic

intelligence. In ​International Conference on Machine Learning (pp.

3987-3995). PMLR.

120

Appendix A Talairach Mapping

The EEG mapping into the NeuCube framework was performed according to the 3D

coordinates in the Talairach space as presented in Table A-1.

 Table A-1 Anatomical locations of cortical projections from (Koessler, et al., 2009)

121

Labels

Talairach coordinates

x (mm) y (mm) z (mm)

Fp1 -20 60 10

Fpz 0 60 10

Fp2 20 60 10

AF7 -40 40 30

AF3 -20 60 20

AF4 20 60 20

AF8 40 40 30

F7 -50 30 20

F5 -40 30 20

F3 -30 30 40

F1 -10 30 50

Fz 0 30 50

F2 10 30 50

F4 30 30 40

F6 40 30 20

F8 60 30 20

FT7 -50 10 0

FC5 -50 10 50

FC3 -40 10 50

FC1 -20 10 60

FCz 0 10 60

122

FC2 20 10 60

FC4 40 10 50

FC6 50 10 50

FT8 50 10 0

T7 -50 -10 0

C5 -40 -10 50

C3 -30 -10 50

C1 -20 -10 60

Cz 0 -10 60

C2 20 -10 60

C4 30 -10 50

C6 40 -10 50

T8 50 -10 0

TP7 -60 -40 0

CP5 -50 -30 20

CP3 -30 -20 60

CP1 -20 -20 60

CPz 0 -20 60

CP2 20 -20 60

CP4 30 -20 60

CP6 50 -30 20

TP8 60 -40 0

P7 -50 -50 0

P5 -40 -50 20

P3 -30 -40 40

P1 -10 -40 50

Pz 0 -60 60

P2 10 -40 50

P4 30 -40 40

P6 40 -50 20

123

P8 50 -50 0

PO7 -40 -60 0

PO3 -20 -50 30

POz 0 -80 30

PO4 20 -50 30

PO8 40 -60 0

O1 -30 -80 10

Oz 0 -80 20

O2 30 -80 10

TP9 -60 -30 20

TP10 60 -30 20

Appendix B Transfer Learning Study

B.1 Default Parameter settings for NeuCube Model

Table B-1 default parameter setting of the NeuCube model

124

Method Parameter Description Default value

Encoding Threshold 0.5

LIF Firing Threshold Threshold voltage value to emit a
spik

0.5

 Refractory Time The time period during which a
neuron rests after firing

6

 Potential leak rate 0.002

Unsupervised
learning

STDP rate Determines positive synaptic
modifications

0.01

Supervised
learning

Mod 0.8

 Drift 0.005

 k The number of nearest neighbours 3

B.2 Statistics Analysis of Output Layer After Neuron

Aggregation

Table B-2 The the number of output neurons before and after aggregation

125

Transfer Learning Across Tasks in One Subject

Neuron aggregation TrSNN-CP-NG

Class 1 Class 2 Class 3 Class 4 Total

Number of neurons before
aggregation

15 16 15 15 61

Number of neurons after
aggregation

11 14 12 14 51

Neuron aggregation TrSNN-OP-NG

Class 1 Class 2 Class 3 Class 4 Total

Number of neurons before
aggregation

15 16 15 15 61

Number of neurons after
aggregation

8 13 11 14 46

Transfer Learning Across Multiple Subjects

Neuron aggregation TrSNN-CP-NG

Class 1 Class 2 Class 3 Class 4 Total

Number of neurons before
aggregation

27 20 23 20 90

Number of neurons after
aggregation

23 20 23 20 86

Neuron aggregation TrSNN-OP-NG

Class 1 Class 2 Class 3 Class 4 Total

Number of neurons before
aggregation

27 20 23 20 90

Number of neurons after
aggregation

16 12 13 11 52

