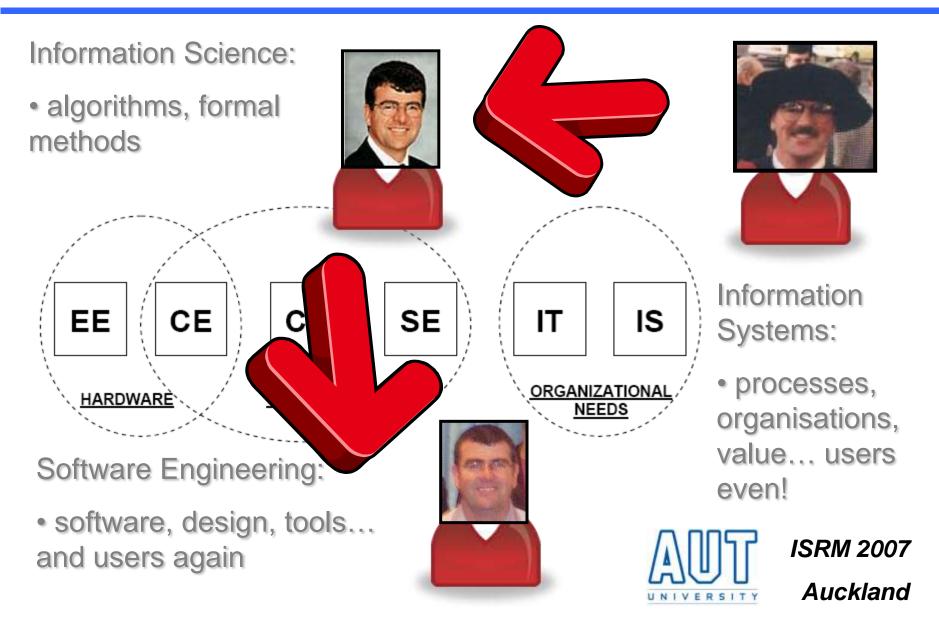
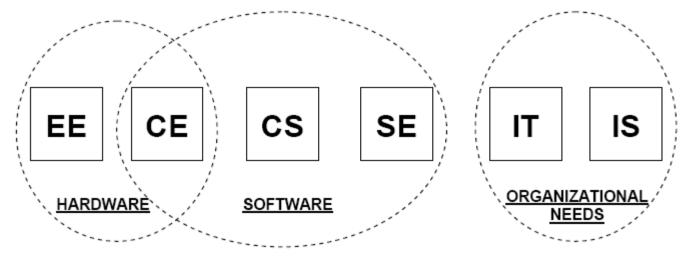
Never the Twain... Research Methods in (some of) the Computing Disciplines


Stephen MacDonell Auckland University of Technology, New Zealand

International Symposium on Research Methods

Context - a personal research journey (1)


Context - a personal research journey (2)

Information Science:

 field test, simulations, experiments, proofs

Meaning that:

- I have encountered a variety of methods
- I (therefore?) see value in them all

Information Systems:

 case studies, qualitative analyses, the odd taxonomy

Software Engineering:

prototypes, proofs of concept, metrics,
 'expert' walkthroughs

In contrast - the 'one true way'

- For some in computing, valid research can only be undertaken using one particular method
- So knowledge on that method alone is needed
- In software engineering, the 'one true way' is akin to atheism, or perhaps agnosticism – i.e. there is no research method in SE, or at least its place is doubtful
- Methodology what methodology?

What we say to SE research students...

What they hear...

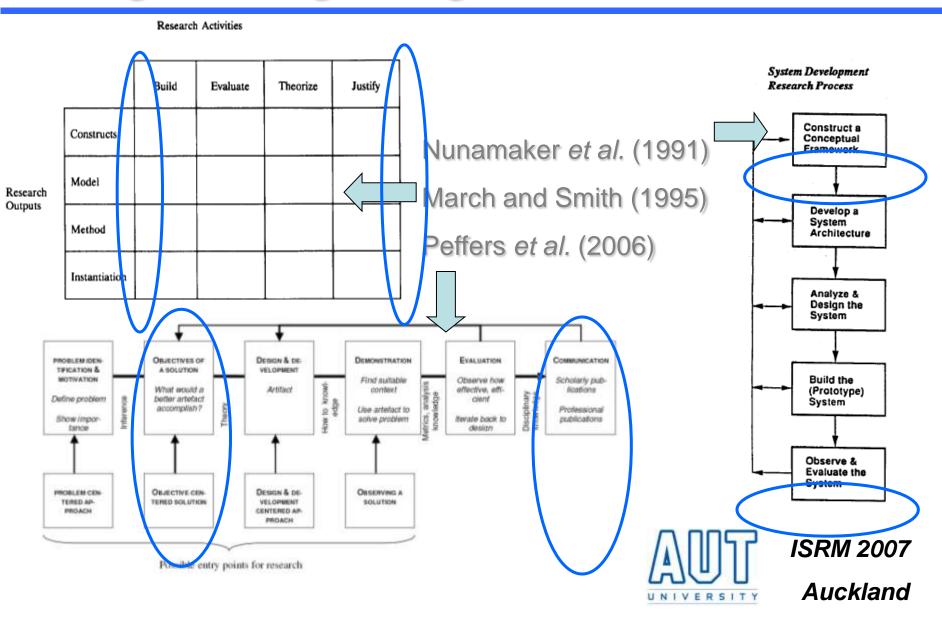
Incremental advances

- Glass et al. (2004) reported a review of the computing research literature across CS, SE and IS:
 - Research in SE has been dominated by formulative and descriptive work (86%) rather than evaluative, compared with 33% in IS
 - Research in SE has been dominated by conceptual analyses and concept implementations (71%); in IS, methods are more varied:

"I may be onto something, so I'm writing it up for the May Be Onto Something Journal."

conceptual analyses and implementations 28%, field studies 25%, lab experiments with human subjects 16%, case studies 13%

Towards 'better' research in software engineering...

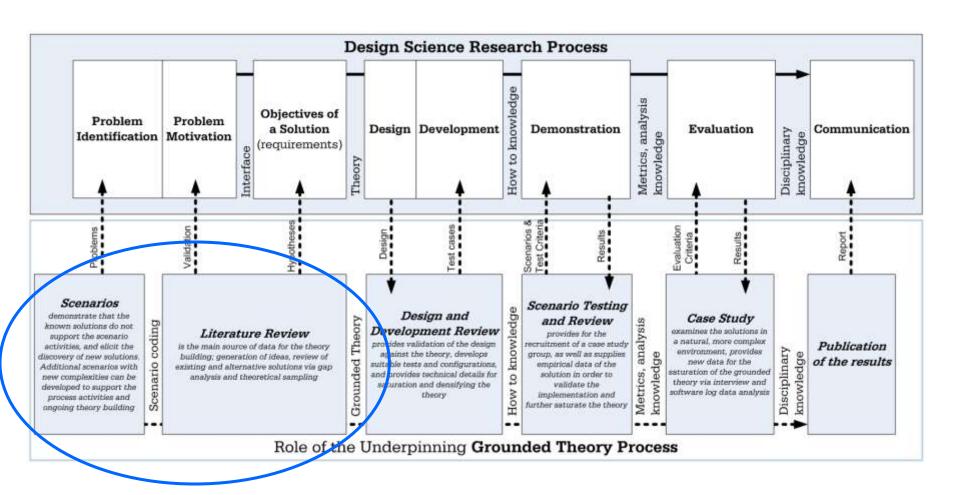


Current initiatives

- Increasing attention being paid to design science methods
 - adds legitimacy to the notion of research through the production of artifacts
 - tends to treat the basis of production and evaluation as something of a given, something self-evident
- Significant effort to promote and adopt evidencebased software engineering
 - a more evaluative approach to SE research outcomes
 - dominated by the medical research model that relies primarily on the scientific method

Augmenting design science...

...to address weaknesses...


Table 1 Design and design science process elements from IS other disciplines and synthesis objectives for a design science research process in IS.

	Objectives for a design science research proc- ess model	Archer (1984)	(Takeda et al. 1990)	Eekels and Roozenburg (1991)	Nunamaker et al (1991)	Walls et al (1992)	(Rossi et al. 2003)	(Hevner et al. 2004)
	1. Problem identification and motivation	Programming Data collection	Problem enumera- tion	Analysis	Construct a concep- tual framework	Meta-requirements Kernel theories	Identify a need	Important and relevant problems
1	2. Objectives of a solution			Requirements				Implicit in "rele- vance"
	3. Design and development	Analysis Synthesis Development	Suggestion Development	Synthesis Tenta- tive design pro- posals	Develop a system architecture Analyze and design the system. Build the system	Design method Meta design	Build	Iterative search process Artifact
	4. Demonstra- tion			Simulation, Con- ditional prediction	Experiment, observe, and evaluate the system			
	5. Evaluation		Confirmatory evaluation	Evaluation, Decision, Definite design		Testable design proc- ess/product hypothe- ses	Evaluate	Evaluate
1	6. Communica- tion	Communication						Communication

From Peffers et al. (2006)

...using grounded theory

© Petteri Kaskenpalo

Closing comments

- Conviction with respect to method(ology) is vital, but fanaticism can be unhelpful
- Absence of a theoretical framework does not mean absence of a theory
- We can do better in software engineering grounded design science is one option
- Does the multi-method approach have a chance?
- Perhaps this is another opportunity for the two research communities to learn from one another

