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Our study methodology is motivated from three disparate needs: one, imaging studies
have existed in silo and study organs but not across organ systems; two, there are gaps in
our understanding of paediatric structure and function; three, lack of representative data
in New Zealand. Our research aims to address these issues in part, through the
combination of magnetic resonance imaging, advanced image processing algorithms
and computational modelling. Our study demonstrated the need to take an organ-
system approach and scan multiple organs on the same child. We have pilot tested an
imaging protocol to be minimally disruptive to the children and demonstrated state-of-
the-art image processing and personalized computational models using the imaging
data. Our imaging protocol spans brain, lungs, heart, muscle, bones, abdominal and
vascular systems. Our initial set of results demonstrated child-specificmeasurements on
one dataset. This work is novel and interesting as we have run multiple computational
physiology workflows to generate personalized computational models. Our proposed
work is the first step towards achieving the integration of imaging and modelling
improving our understanding of the human body in paediatric health and disease.
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1 Introduction

There are significant gaps in our understanding of paediatric structure and function.
Biomedical and health research therefore use or adapt existing non-representative data. This
gap in the knowledge base can in part can be addressed through the combination of magnetic
resonance imaging (MRI) and computational modelling.
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MRI-studies have existed in silo, often only focusing on individual
organs. Our study aims to disrupt this trend and take an organ-system
approach—by imagingmultiple organs on the same subject. Furthermore,
paediatric imaging studies are poorly developed in New Zealand, as such
the variability in the NZ population (Table 1) has not been adequately
described. Furthermore, there is even less data that represents Māori and
Pacific children. Hence clinical and health research are left to use or adapt
existing non-representative data. Countries such as the Netherlands,
Germany, United Kingdom, and United States (Satterthwaite et al.,
2014; Sadananthan et al., 2015; Tint et al., 2016; Pausova et al., 2017;
Chaarani et al., 2021) are building significant population-based imaging
studies, the findings of which will underpin the next-generation of
advances in personalized and predictive medicine. These populations
will be the first beneficiaries of these advances, and benefit will be greater
as findings will be based directly on their population data.

Computational modelling has increasingly been applied to questions
of human physiology: modelling has significantly increased our
understanding of adult physiology in health and disease, but paediatric
applications are very much in their infancy. Computational models are
essentially workflows or methodologies that can be employed to derive,
infer, or predict structural and/or functional aspects of an organ or organ
system.Model-based approaches are powerful tools to understand human
structure and function, adding value through in silico trials, pre-clinical
trials, and help understand disease pathways and biomarkers for their
detection, prevention or treatment.

To bridge these two gaps, we first developed an imaging protocol
for children. Then state-of-the-art methods were employed to extract
measurements from these images. Our protocol spans brain, lungs,
heart, muscle, bones, abdominal and vascular systems.

In the longer term, our study will serve to establish normative
standards and to improve early diagnosis for paediatric pathologies
accounting for an individual’s phenotypic (anatomical and functional)
variations. The accompanying data will enable comprehensive
tracking and understanding of growth in a young population.
Ultimately, our normative imaging and modelling databases can be
used to develop predictive and preventative models (Davendralingam
et al., 2020; Taylor, 2022) in paediatric medicine.

2 Methods

2.1 Overall design

This study involved participation from four teams from two
institutions including New Zealand community to 1) involve the

community and Māori families through co-designing the research
protocol and respect Māori culture, 2) finalize and pilot test the
imaging protocol to be minimally disruptive to the children, and 3)
demonstrate image processing and personalized computational
models based on MRI data (Figure 1).

2.2 Demographical context

This study was conducted in the Tairāwhiti-Gisborne region
located in the eastern coast of New Zealand with an approximate
50% indigenous Māori population living there. It was unclear at the
beginning how to implement a population imaging study in the
community setting as there was no prior community engagement
in the region. Issues of tolerance of scans, cooperation from children
and their family were additional complexities.

2.3 Participant recruitment

Children resident in the Tairāwhiti-Gisborne District, aged
between seven and 12 years old were recruited through
convenience sampling. Volunteers with significant congenital
abnormalities or morbidity, and inability to tolerate MRI scanning

TABLE 1 Paediatric imaging studies across the world, their study scope, organs studied and a brief description of the participants.

Study Design Imaging Participants

Generation R
Netherlands

Child development study investigating normal and abnormal growth,
development and health

Brain, lungs, Abdominal,
cardiac

6–11 years old

GUSTO Singapore Longitudinal studying roles of foetal, developmental and epigenetic factors in
pathways to disease

Brain, abdominal; whole
body EchoMRI

5-year olds

Saguenay Study
Canada

Cross sectional/quasi longitudinal study of adolescents and their parents
investigating common cardiometabolic and brain diseases

Brain, abdominal Adolescents. Participants selected for
genetic homogeneity

ABCD Study
United States

Understanding development of risk for mental and physical health outcomes Brain 9–10 year olds. Imaging planned every
2 years

FIGURE 1
Flowchart showing the overall study design and multiple stages.
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TABLE 2 Details of image sequences used, with imaging parameters and purpose of the sequence in the study.

Sequence Scan time Parameters Purpose/Link to computational model

Lung

Zero TE (ZTE) 2:00 min O: Axial Geometrical model of thoracic cavity, upper airways and prediction of ventilation

Radial 3D spoiled gradient echo TR: 629 ms/TE: 0 ms/FA: 1

Res: 1.1 × 1.1 × 1.5 mm

Resp triggered

Abdomen and Musculoskeletal

LAVA FLEX 14 s per station O: Axial Bone shape models and extract morphometry

TR: 4 ms/TE: 1.1 & 2.3 ms/FA: 12°; 1.5 × 1.5 × 1.5 mm Muscle volume distributions and shape models

3D spoiled gradient echo with 2 point DIXON 7 stations head to foot Breath Hold Models of fat and iron distribution

Autobind - in phase, out of phase, fat and water

Cardiac

Short Axis Cine 7 s O: Short axis stack Shape and motion models at multiple temporal frames and for biomechanical
simulations

(2D Balanced Steady State Free Precession) per slice TR: 2.8 ms/TE: 1 ms/FA: 50

Res: 1.8 × 1.8 × 6 mm skip 4 mm

6–10 slices 30 phases/Breath Hold

Long Axis Cines 7 s per slice O: Vertical Long Axis Generating shape and motion models at multiple temporal frames and for
biomechanical simulations

[Vertical Long Axis

4 Chamber 4 Chamber, Left Ventricular Outflow Tract, Right Ventricular
Outflow Tract

3 Chamber TR: 2.8 ms/TE: 1 ms/FA: 50°

Right Ventricular Outflow Tract] ST: 1.8 × 1.8 × 6 mm

2D Balanced Steady State Free Precession (bSSFP) cine 30 phases/Breath Hold

4D Phase Contrast 6:36 min O: Axial; TR: 4 ms/TE: 2.2 ms/FA: 8 Non-invasive estimation of cardiac pressures, and validation of computational
models

Res: 1.8 × 1.8 × 1.2 mm overlap 0.8 mm

VENC: 160 cm/s; 20 phases; Free Breathing

Neuro

3D T2 FLAIR with Real-time Prospective Motion Correction (PROMO) 2:41 min O: Sagittal; TR: 6,300 ms/TE: 101 ms Generating shape model and biomechanical simulations

TI: 1852 ms/FA: 90

Res: 1 × 1 × 0.7 mm

(Continued on following page)
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TABLE 2 (Continued) Details of image sequences used, with imaging parameters and purpose of the sequence in the study.

Sequence Scan time Parameters Purpose/Link to computational model

T1 MPRAGE with PROMO 2:34 min O: Sagittal; TR: 7.3 ms/TE: 3 ms/FA: 8 Generating shape model and biomechanical simulations

IR-prep 3D spoiled gradient echo with Prospective Motion Correction IR prep time: 1,000 ms

Recovery time: 1,012 ms

Res: 1 × 1 × 0.8 mm

2D Diffusion Tensor multi b-value (HARDI post-processing) 3:57 min O: Axial Generation of diffusion tracts, and integration with biomechanical simulation
models

TR: 6,248 ms/TE: 70 ms

Res: 2 × 2 × 2 mm b = 0, 1,000, 2000, 3000 s/mm2 4, 15,15,30
directions

3D Inhance Velocity 2:43 min O: Sagittal; TR: 8.4 ms/TE: 3.6 ms/FA: 10 Generation of vasculature models and centrelines

3D Phase Contrast Res: 0.8 × 0.8 × 1 mm

VENC: 40 cm/s

Amplified MRI (aMRI) 1:31 min O: Sagittal Developing understandings of brain movement and stiffness

3D bSSFP cine TR: 2.8 ms/TE: 1.1 ms/FA: 25

Res: 1.3 × 1.3 × 1.3 mm

20 phases

2D Phase Contrast 1:03 min O: Cerebral aqueduct CSF flow for use in calibrating the brain model + motion

O:Axial at the level of C2

4D Phase Contrast 2:00 min O: Axial; TR: 4.3 ms/TE: 2.4 ms/FA: 8 Cardiac pulsation-induced brain motion (providing blood flow input function)

Res: 1.2 × 1.2 × 1.2 mm

VENC: 80 cm/s; 20 Phases

Body

Body coronal T2 (single shot fast spin echo with respiratory triggering
through the thorax)

46 per station x 3
stations

O: Coronal; TR: 1,170 ms/TE 90 ms effective/FA: variable Res: 6
× 1.3 × 1.6 mm

General anatomy

Liver IDEAL-IQ

O: Axial

TR: 4 ms/TE: 1.1 & 2.3 ms/FA: 12°; 1.5 × 1.5 × 1.5 mm Hepatic iron deposition

Breath Hold

FA: Flip angle; O:Orientation; Resp: Respiratory’ TE: Echo time; TR: Repetition time.
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were excluded. Informed consent/assent was gained from parents
before participation. Ethical approval was obtained through the
Health and Disability Ethic Committee (20/CEN/107). The study
was further reviewed by an independent Māori Advisory Board to
ensure that the aims and processes are in line with the regional values
and priorities. All study scans were reviewed by a consultant
radiologist and significant incidental findings were reported to the
volunteer’s general practitioner. Participant documentation (consent
forms, MRI safety checklist, demographics) were stored on a secure
research data management system (REDCap).

2.4 Imaging

Images were acquired on a 3T GE SIGNA Premier scanner (General
Electric Healthcare, MI, United States), using state-of-the-art 48-channel
head coil andAir Coil (AIR™) technologies based at Tairāwhiti-Gisborne,
New Zealand. In-bore screen, acoustic shielding, and pre-scan
familiarization improved the children’s overall experience.

2.5 Imaging protocol

Imaging protocols for each body part were developed in
conjunction with the modelling teams. Due to the large number of
organ systems of interest and the large number of models being
generated, we aimed to incorporate the minimum number of
sequences needed for model generation and optimize them for
speed and resolution. This was done in an iterative fashion with
the modelling teams providing feedback regarding the suitability of
images for post-processing as the imaging team made sequence
modifications. When the post processing would permit, faster

sequences were substituted for slower ones. The final protocol is
detailed in Table 2 along with the purpose of each sequence.

Developing research protocols for children can be challenging due
to their relatively small size (which inherently limits signal), restlessness,
and poor impulse control such as needs to go to the bathroom. Our goal
was to implement a comprehensive protocol that could be scanned in
two 45-min blocks with minimal breath holds. A short break allows for
appropriate coil changes and bathroom breaks. Allowing participants to
watch TV (movies, YouTube, Netflix) while inside the scanner was
expected to be a major factor in increased compliance.

2.6 Feedback to participants

Before scanning, the purpose of the study was explained to the
family of the participants. At the end of the imaging session, feedback
was collected from participants and their families. Children were
shown samples of images acquired during the scans.
Accompanying parents and family members were informed about
the purpose of the study. A phone call was conducted at the end of the
project to update the family on the completion of the pilot.

2.7 Image analysis

2.7.1 Brain volume segmentation
For extracting brain volumes, the AccuBrain® software was used.

AccuBrain® performs brain structure and tissue segmentation and
quantification in a fully automatic mode, has shown better accuracy,
efficiency and inter-scanner reproducibility than the widely-used free
package FreeSurfer (Abrigo et al., 2019; Liu et al., 2020). T1-MPRAGE
and T2 FLAIR with prospective motion correction (PROMO) were

FIGURE 2
Example of images used for one participant. AutoBind whole body images on the right and left was used for bones and muscle, top three pictures (Cine
FIESTA, DTI and T1 MPRAGE) were used to model the brain, under the brain are two pictures of the sequences (Short Axis and Zero TE) used for the heart and
lungs.
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adopted for automatic segmentation and quantification of cortical,
subcortical, and infratentorial structures based on prior anatomical
knowledge specified by experienced radiologists. Absolute volumetric
measurements were calculated from the segmentations of the specific
brain structures. The relative volumes were calculated as the ratios of the
absolute volumetric measurements to the subject’s intracranial volume
(ICV) (% of ICV). The high repeatability of this automatic brain structure
quantification tool has been validated by brain MR images acquired from
different scanners (Zhao et al., 2022). Quantification of myelin was
performed using SyMRI (SyntheticMR, Linköping, Sweden) software.
R1, R2, and PD maps are generated and input into a four-compartment
model (myelin, cellular water, free water, and excess parenchymal water)
as in Hagiwara et al. (2017).

2.7.2 Diffusion tractography
Diffusion (dMRI) images were taken through several pre-

processing steps using FMRIB’s Diffusion Toolbox (Behrens et al.,
2003). Topup (Andersson et al., 2003; Andersson and Sotiropoulos,
2016) was used to estimate susceptibility induced distortion and a
distortion field map is estimated. Outputs from Topup and brain mask
extracted using BET (Smith, 2002) were fed into the Eddy tool (Pajevic
and Pierpaoli, 1999) for eddy-current distortion correction. Finally, a
diffusion tensor model was created at each voxel by running DTIFIT.
The distortion-corrected image generated from the previous step was
used as an input along with a binary brain mask, bvec (a text file
containing gradient diffusion direction information), and bval (a text
file containing magnitude of gradient diffusion) files. This tool
generated ten files including first three eigenvectors (ε1, ε2, ε3), λ1
or RD (1st eigenvalue, or radial diffusivity), λ2 (2nd eigenvalue), λ3
(3rd eigenvalue), MD (Mean diffusivity), FA (Fractional anisotropy),
M0 (mode of anisotropy), and S0 (raw T2 signal). To make the RD,
fslmaths was applied for averaging L2 and L3 files. FA, MD, AD, and
RD maps were used for further analysis. Color maps were generated
from the combination of FA map and ε1 with conventional color-
coding (Smith, 2002). The directionality of fibre tracts is represented in
color-coded FA maps by displaying fibres with superior-inferior
direction in blue; fibres with anterior-posterior direction in green;
and fibres with left-right direction in red.

2.7.3 Brain model methodology
Anatomical T1-weighted scans were used to extract the brain using

Brain Extraction Tool (BET) in FSL. Then FMRIB’s Automated
Segmentation Tool (Zhang et al., 2001) was used to segment the brain
into different tissue types—white matter, grey matter, CSF using a hidden
Markov random field model and an associated Expectation-
Maximization algorithm (Zhang et al., 2001). The accuracy of this
method has been quantitatively evaluated (Kazemi and Noorizadeh,
2014). Diffusion images were then processed with the FMRIB’s
Diffusion Toolbox (FDT). They were then processed to extract
subject-specific heterogeneous material properties of the brain. The
brain tissue was modelled with the hyper-viscoelastic fibre reinforced
anisotropic model (Gasser et al., 2006) where the strain energy per unit
volume is defined with shear modulus, bulk modulus as well as fibre
stiffness. One key feature of this formulation is the fibre dispersion
parameter which has been linked with FE measures from diffusion
MR images (Giordano and Kleiven, 2014). Using these theoretical
frameworks, an automated pipeline that can generate subject-specific
FE models of the brain directly fromMR images can be employed (Shim
et al., 2022). Briefly, our method first customizes a template model of the
brain to match the geometry of the subject from the segmented T1-
weighted images of the brain using a Free Form Deformation based
method. Then each element in the model is automatically assigned with
the material property that corresponds the matching MRI voxel in DTI
image using the in-house python code, which is based on the automatic
material assignment algorithm that we developed for assigning materials
to FE models of the bone from CT scans (Shim et al., 2015).

2.7.4 Cerebrovascular and cerebrospinal flow
Delineation of blood vessels and CSF compartments are carried

out using CVI42 (Circle Cardiovascular Imaging, AB, Canada)
v5.14.1. For blood flow, each image was first preprocessed with a
static tissue and mask correction to delineate intracranial blood
vessels. Offset correction and anti-aliasing were also applied to
reduce image degradation from phase offsets and aliasing artefacts.
Each blood vessel was segmented manually by tracing the vessel at a
start point and with subsequent points until the end point of the vessel
was reached. Each point was adjusted in the sagittal, axial, and coronal
plane to ensure it was in the center of the vessel lumen. Blood flow
analysis was performed by manually placing regions of interest (ROI)
throughout the length of each segmented vessel. ROIs were positioned
perpendicular to the presumed direction of blood flow. An automatic
contour of the vessel cross-section from the ROI placement was
generated for flow calculation in each cardiac phase. Measurements
of blood flow, velocity, and kinetic energy of flow were automatically
calculated for each ROI throughout the 20 cardiac phases.

For 2D flow, a ROI was manually traced around the CSF
compartments of the aqueduct and the subarachnoid space at the
level of C2 on a single slice. A static tissue mask correction was applied
to better delineate the CSF compartments and aid in tracing of the
compartment contour. Background correction and anti-aliasing
correction was also applied to reduce inherent errors during
acquisition such as eddy currents, gradient field effects and phase
offset as well as reducing aliasing artefacts that can decrease the
accuracy of flow parameters. The ROI contour was forwarded into
the 30 cardiac phases andmeasurements of CSF flow and velocity were
automatically generated throughout the cardiac phases.

TABLE 3 Relative and absolute volume measurements from Accubrain.

Relative (Left, Right) Relative total

Cingulate (1.22, 1.36) Pons 0.903

Frontal (8.35, 8.24) Hippocampus 0.4

Insular (0.66, 0.625) Cerebellum 10.4

Occipetal (3.92, 3.8) Parenchyma 92.25

Parietal (0.122, 0.118) CSF 20.5

Pallidum (0.173, 0.168) WM 41.9

Putamen (0.436, 0.47) GM 48.3

Caudate (0.221, 0.21)

Amygdala (0.124, 0.124)

Thalamus (0.41, 0.354)
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2.7.5 Extracting brain motion
Brain motion was extracted from the aMRI sequence using two

steps. Cine images are amplified by employing a previously published
(Abderezaei et al., 2021; Terem et al., 2021) phase-based video
processing method. An amplification factor of 30 was used. This
amplification factor supports sufficient amplification with minimum
artefacts and distortions. Dynamic displacement field of the amplified
brain motion was calculated using intensity-based image registration.

Each cardiac frame was registered to the first cardiac frame resulting in
a Lagrangian displacement field.

2.7.6 Vascular model methodology
Arterial and venous systems were manually segmented from 3D

Phase Contrast sequence using 3D Slicer. The centerlines were then
extracted using SlicerVMTK extension. Radius and length for each
vessel were automatically computed using an in-house Python

FIGURE 3
(Top and middle row) An exemplar case of child-specific brain model customized to an anatomical T1-weighted image and FE model overlaid. (Bottom
row) Cross section of the diffusion tractography (DTI) images with FA-based heterogeneous material properties.

FIGURE 4
Cerebral dynamics measured from cardiac-gated sequences: (A) Mid-sagittal slice showing maximum difference map depicting mid-brain motion.
Arrows showing motion in the Pons-CSF interface, Medula Oblongata CSF interface, brain stem motion, motion in the cerebellar tonsil and lateral ventricle
CSF boundary. (B–C) Flow processing for one representative subject. Plots show blood flow over the cardiac cycle in the basilar artery (B), as well as CSF flow
(C) over the cardiac cycle at the level of C2.
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script from the smoothed segmentation of the vasculature for each
subject.

2.7.7 Cardiac modelling methodology
Child-specific biventricular mathematical models were

generated from short and long axis cardiac MR images using a
semi-automated segmentation workflow in Cardiac Image Modeler
(CIM) (v8.3.0, University of Auckland, New Zealand) (Young et al.,
2000). User identified anatomical landmarks were located and
automatically tracked throughout the cardiac cycle using non-
rigid registration. These landmarks included the four valves, the
epicardial apex, right ventricular inserts, and center points. Guide-
points were then placed to deform the automatically fitted model to
match those points in real-time to end diastolic and end systolic
volumes. RV and LV endocardial and epicardial surfaces were fitted,
while the papillary muscles were excluded from the myocardial mass.
Cardiac indices, such as end diastolic, end systolic and stroke
volumes, as well as ventricular mass were calculated using
numerical integration (Dyverfeldt et al., 2015; Mauger et al., 2019;
Mauger et al., 2021; Elsayed et al., 2022).

Flow acquisitions were processed using 4D Flow Demonstrator
V2.3 software (Siemens AG, Erlangen, Germany). Corrections used

were antialiasing and background phase correction providing a range
of flow measurements of up to 320 cm/s without aliasing effects.
Forward and reverse volumes across the pulmonary and aortic
valves were quantified. Velocities across the valves were also
measured (Dyverfeldt et al., 2015).

2.7.8 Lung modelling methodology
Lung and airways were segmented using Pulmonary ToolKit (PTK,

available at: https://github.com/tomdoel/pulmonarytoolkit.git). Further,
the main bronchi are identified during segmentation, thereby separating
the left and right lung. Next, a 3D surface geometrical model of the lung is
chosen as a template mesh with predefined topology. The left and right
lung segmentations are fitted to this template geometry following amethod
previously described (Minaeizaeim et al., 2019). Next, the trachea and
upper airways (to the first sub-segmental bronchi) were represented
using a predefined template, i.e., a connected set of lines consisting of
69 nodes and 68 elements placed at the centerlines of the upper
airway tree. An upper pulmonary arterial tree was derived to match
the upper airway template. Finally, the subject-specific lung fitted
lung shape and subject-based upper airway and arterial trees were
used to generate anatomically consistent airway and arterial
trees—from the trachea or main pulmonary artery to the terminal

FIGURE 5
Child-specific cardiac ventricular model and extracted indices.

TABLE 4 Tractography values for corpus callossum fibers.
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conducting bronchioles and their accompanying arterioles—using
a previously published volume-filling algorithm (Tawhai et al.,
2004). Tissue perfusion was simulated using the arterial tree
geometry and a published model for simulating pulmonary
blood flow (Clark et al., 2011; Clark et al., 2019). The geometric
and perfusion model methods use the same approaches as have
previously been used to model adult lung anatomy. For
demonstration purposes, a 15 mmHg mean arterial inlet
pressure, 6 mmHg venous pressure and a venous side outlet
radius of 12 mm was assumed. Blood flow in the ladder-model
was simulated in the supine posture.

2.7.9 Bone modelling methodology
Pelvis, femurs, tibias and fibulas were manually segmented

from the LAVA Flex Autobind WATER sequence using
Stradview (University of Cambridge, United Kingdom) (Cignoni
et al., 2008). The resulting point cloud was smoothed and remeshed
using Meshlab (Carman et al., 2022). Each of the bones meshes in
the dataset were fitted to a template mesh (one for the pelvis, one
for the femur and one for the tibia/fibula) to achieve nodal
correspondence for each bone. The template mesh is chosen as
the mesh with the desired number of nodes and node distributions
for which all meshes in the dataset will be fitted to. This was
achieved by non-rigidly registering the template model and
iteratively fitting the template mesh to the segmented data using
radial basis functions (Carman et al., 2022). Next, all bones were
rigidly aligned in accordance with their individual center of mass to
remove rotational and translational variations. The final step was to
perform a PCA on the aligned meshes to generate the mean mesh
and the principal components of variation in the dataset.

In order to understand morphological changes in bone shape and
clinical measurements in the dataset, each bone (pelvis, femur and tibia/
fibula) was aligned according to their International Society of
Biomechanics coordinate systems convention (Wu et al., 2002) using
automatic detection of bony landmarks calculated from each 3D mesh to
ensure all measures were in the same orientation. Bone measurements

were automatically computed using an in-house Python code from the
calculated 3D landmarks for each mesh, as described below:

Angular and torsional measurements.

• Anteversion angle: angle between the neck axis of the femur
(measured between a sphere fit to the femoral head and the
center of a cylinder fitted to the femoral neck), and the posterior
condylar axis (measured between the medial and lateral
posterior femoral condyle.

• Neck shaft angle: angle between the neck axis of the femur and the
shaft axis of the femur (measured between the center of a cylinder
fit to the femoral shaft below the lower trochanter and the
midpoint of the center of a cylinder fit to each femoral condyle).

• Femoral mechanical angle: angle between the knee axis of the
femur (measured between the most distal points on the medial
and lateral femoral condyles) and the y-axis (measured between
the femoral head center and the condylar midpoint).

• Tibial torsion: angle between the posterior condylar axis (measured
between the medial and lateral posterior tibial condyle) and the
malleolar axis (measured between themedial and lateral malleolus).

• Tibial mechanical angle: angle between the knee axis of the tibia
(measured between the centres of a cylinder fit to the medial and
lateral tibial condyle) and the y-axis (measured between the
midpoint of a cylinder fit to the medial and lateral tibial condyle
and the midpoint between the medial and lateral malleolus).

Additionally, linear measurements included Anterior Superior
Iliac Spine (ASIS) width, Posterior Superior Iliac Spine (PSIS)
width, pelvis depth, hip joint center distance, femoral head
diameter, femoral length, epicondylar width, condylar width, tibial
length, and malleolar width.

2.7.10 Muscle models methodology
To understand paediatric development, growth, and overall physical

fitness, skeletal muscle volumes were determined and evaluated from
MRI data. We segmented individual muscles in MR images acquired

FIGURE 6
Flow chart showing the generation of child-specific airway and vascular geometries.
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using the LAVA Flex Autobind WATER sequence. Segmentation was
performed semi-automatically using 3D Slicer (Fedorov et al., 2012) by
manually identifyingmuscle boundaries in axial slices at several locations
through the muscle length. The interpolation function in 3D Slicer was
then used to segment muscles between manually segmented slices. All
slices were visually inspected by a trained user to ensure accuracy and the
3D rendered muscles were further inspected for any apparent errors.
After generation of 3D muscle models, muscle volume data can be used
to determine size scaling relationships, normative muscle volume
profiles, abnormality for pathological populations, assessment of
activity-based strength profiles, or statistical shape modeling.

3 Results

The final image protocol is shown in Table 2. From the
31 children participants recruited, one child could not tolerate
the MRI scan, finding the breath holds particularly uncomfortable.
Several children struggled with the breath holds during cardiac and
lung imaging. Children and their parents reported positively on the
ability to watch video during scan, having break during protocol
with juice and snack and showing children samples of images
acquired during the scans. Sample images from the sequences are
shown in Figure 2.

3.1 Exemplar subcortical volume result

Table 3 shows the relative values of various regions of interest. The
relative volumes were obtained through calculating the ratio of the
absolute volume to intracranial volume (ICV). The left and right
relative measurements were generated for comparison of the
asymmetry between the left and right hemispheres. The total
relative measurements were obtained by the sum of the left and
right relative volumetric measurements.

3.2 Sample tractography results

Average diffusion tractography values of the corpus callosum are
shown in Table 4. These include the fractional anisotropy (FA), mean
diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD).
Least amount of variation across the corpus callosum is the mean RD
with a standard deviation percentage variation of about 35%. AD
showed the highest amount of variation with a percentage variation of
169%. This is followed by MD which showed a 143% variation and FA
which had a percentage variation of about 58%. Our results showed
that FA had a very low amount of variation compared to AD and MD.
This is an important finding as it suggests that FA, which is by far the
most widely used DTI metric, may not be the most relevant when
investigating white matter based on diffusion imaging. This is
consistent with others (Maller et al., 2014; Sarica et al., 2019) who
reported a similar conclusion.

3.3 Child-specific brain model results

Customised brain model results are shown in Figure 3. The
model customization to the segmented brain image was performedTA
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with the accuracy of less than 1 mm RMS error between the model
and the segmented images. Figure 3 shows the material property
assignment using the FA values of the DTI images. It demonstrates
how the model captures subject-specific heterogeneous anisotropy
of the brain.

3.4 Dynamics-brain motion, cerebrovascular
and cerebrospinal flow profiles

Brain motion, blood flow profile, CSF flow profile measured
through the C2 cervical level are shown in Figure 4. Negative CSF

FIGURE 7
Reconstructed pelvis, femurs, tibias and fibulas from MRI and subsequently fitted with template meshes (left) to automatically compute bone torsional
and linear measurements (right).

FIGURE 8
3D volume rendering of the lower limb skeletal muscles and bones offers insight into the musculoskeletal structure of the patient. Volumes can be
analyzed and compared against normative datasets to assess muscle size abnormality. 3D surface data offers information on muscle shape and can be used
for statistical shape modeling.
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flow values show caudocranial flow direction and positive values
show cranio-caudal flow direction. Flow through the left and right
ICA and basilar artery represents arterial blood flow. The temporal
pattern of the flow curves are similar with a systolic peak and a
diastolic peak.

3.5 Cardiac analysis results

Cardiac analysis included cardiac indices such as end diastolic
volume, end systolic volume, stroke volume, ventricular mass, and
ejection fraction, and the building of the 3D personalized model of
each subject. Global longitudinal strain was calculated from the model.
Then flow measurements such as forward and backward volumes and
velocities were calculated for the aorta, pulmonary artery and
branches, pulmonary veins, and the vena cava. An analysis of
valvular flow of the mitral and tricuspid was also performed. 4D
flow data was then combined with the cardiac model to further test the
new indices that could be calculated for flow and energy in
the ventricles. Figure 5 shows the indices and the cardiac model
workflow.

3.6 Vascular results

Table 5 shows the radii and lengths measurements of cerebral
vasculature (Circle of Willis). The measurements for some arteries
are missing due to low resolution of such small vessels in the MR
images. Note that further manual curation might be needed to
identify if the participant has a missing vessel.

3.7 Lung model results

Figure 6 shows a child-specific 3D lung geometry, airway, and
vascular tree. The airway and vascular tree each consists of a total of
about 60,000 segments covering the entire thoracic cavity. Extracted
measurements from the model and simulated blood flow in the
terminal units are also plotted. The mean and standard deviation
of blood flow calculated within 10-mm iso-gravitational or anterior-
posterior direction is shown. The model predicts a heterogeneous
perfusion distribution within iso-gravitational slices as illustrated by
the error bars (±SD) with increasing blood flow down most of the
gravitational height of the lung, and a section of decreasing flow in the
most gravitationally dependent lung region.

3.8 Bone model results

Resulting mesh fitted bones for one participant is shown in
Figure 7. From these mesh fitted bones, we can automatically
extract and display bones’ angular and torsional measurements as
shown on Figure 7. Understanding angular and torsional
measurement in the typically developed skeleton is important
to define what is considered “normal.” We aim to use this
dataset across ethnicity, age, and gender to build an atlas of
“normal” range for these values to empower clinicians in their
understanding of the ‘normal range’ values across ethnicity,
gender, and age.

3.9 Muscle model results

Figure 8 shows generated 3D muscle models from MRI in the
lower limb muscles. Twenty-five muscles and three bones were
successfully rendered from T1-LAVA data from a 3T MRI scanner.
Muscles rendered in 3D demonstrate the overall geometry, size,
and shape of the lower limb muscles (Figure 8). Segmentation of
individual muscles is a time-intensive process that generally
involves manual user input. In carrying out this segmentation,
data from individual muscles are available offering the ability to
assess individual muscle size against normative databases to
determine individual muscle abnormalities for the patient.
Shape data generated from individual muscle segmentation may
be used to conduct statistical shape modeling of individual muscles.
Muscle data also provides opportunities for correlating muscle size
with other organ physiology in longitudinal studies, offering
insight into the ways that skeletal muscles grow with other
tissues and organs in the body.

4 Discussion

This pilot study demonstrated that a child scanning initiative
can be implemented in a community setting. This prospective pilot
study demonstrated the first paediatric models in a representative
population (Māori and New Zealand European) fromMRI imaging
that can mimic both structure and function in a robust yet
physiologically accurate manner. This study is novel because it
has not been undertaken in NZ before; incorporated state-of-the-
art MR imaging sequences; examined multiple organ systems (head
to toe) within the same scan session; showed single-session
multiple organ imaging to be possible in children as young as
seven. In some organs, it showcased use of a “model-based”
approach to derive structural or functional information that
otherwise would not be possible just from images. In other
cases, it extracted useful information using advanced post-
processing methods.

Imaging challenges: Imaging children with MRI comes with its
own challenges. For example, the imaging of lung tissues with ZTE
(Hatabu et al., 2020) which is an ultrashort T2/T2*breathing is a
relatively new technique but holds huge promise for lung imaging.
Lung MRI (Dournes et al., 2021) can be used clinically to assess
cystic fibrosis also allowing for quantification of disease severity.
Hence use of lung MRI in combination with advanced structural
and functional models is justified. Cardiac MRI sessions are
typically time-consuming to acquire, with many exams taking
over an hour. Participants need to lie still for the duration of the
scan, and involves breath holds which makes it difficult for
participants who are fidgety or fearful especially for children.
Our imaging protocol has been refined with this aspect in
mind. Newer image reconstruction techniques such as using
deep learning can reduce the number of breath-holds required
to obtain the images needed for model generation from
approximately 20 breath-holds to five; with some of the breath
holds only lasting 2–4 s. Images using these newer techniques were
of acceptable quality for post-processing, model generation and
extraction of measurements.

Impacts: The long-term aim of this study is to develop an imaging
protocol and knowledge database by combining state-of-the-art
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imaging tools with cutting edge modelling. Our research process will
shift knowledge from reactive approaches to more personalized and
preventative one that relies on data derived from a rural New Zealand
population. Additionally, we believe this project will have an impact
on health education and benefit participants who, through their
engagement with researchers, will understand the value of their
participation and provide feedback.

4.1 Impact of brain physiology and structure
measurement and models

Brain MRI is used in clinical research studies to examine a vast
range of neurological conditions, including understanding common
brain diseases, neurodevelopment, illness progression, and the effect of
medical interventions. However, physiological factors such as
hydration and time of day may cause small changes in brain
volume, function, and hemodynamics. Providing a normative
database of structural and physiological metrics can thereby
provide a benchmark against which phenotypical differences can be
elucidated and increase the ability of imaging data to provide evidence
of beneficial and adverse outcomes of interventions or treatments.
However, there is a lack of such normative databases, in particular for
paediatric populations.

Our study demonstrated that it is feasible to include a range of
neuroimaging sequences in paediatrics that probe brain structure,
microstructure, motion, and physiology. Such a wide and
complementary set of neuroimaging methods will enable
understanding of the impact of childhood environments on brain
development.

Our study is the first of its kind to apply 4D blood flow and CSF
flow imaging along with amplified MRI (to visualize brain tissue
motion) in children. All three methods were acquired using a cine
method to capture the dynamics of these three key compartments that
impact brain mechanics. Understanding normative variation of blood
flow, CSF flow, and tissue motion are thought to be important for the
understanding and diagnosis of several diseases, such as those that
cause an elevation in intracranial pressure. Understanding the
interplay between the physiology of the brain and its intrinsic
motion is thought to assist with understanding various brain
pathologies such as in obstructive brain disorders, and diseases
which may alter the intracranial pressure (ICP). Changes in ICP
are attributed to volume changes in one or more of the constituent
tissues contained in the cranium. Causes of increased ICP include a
space occupying lesion (e.g., brain tumour); generalized brain swelling
(e.g., hypertensive encephalopathy and brain trauma); obstruction to
cerebrospinal fluid (CSF) flow (e.g., Chiari malformation or
meningitis) and idiopathic intracranial hypertension (IIH).
Providing normative metrics of physiological factors that might
vary ICP across children will assist in modelling the dynamics of
brain tissue, blood flow, and CSF and their influence on ICP.

Diffusion tensor imaging (DTI) has revolutionized our
understanding of white matter anatomy, structure-function
associations in the nervous system, neurological disease, and
developmental problems after pre-term delivery. More recently
myelin MRI technology has been developed to study alterations in
myelin as occurs in maturation and disease states (Warntjes et al.,
2016). DTI and myelin studies are refining the way white matter
development is understood. It is generally thought that myelination

limits developmental change and plasticity in axons. Therefore,
delayed myelination as tracked by such techniques, may help to
explain the continued growth of executive abilities (such as
planning, organizing, inhibiting automatic response) into
adulthood. Indeed, DTI can be used to link features of white
matter maturation to cognitive function.

Despite these discoveries and advances in the way we can image and
track white matter development with MRI, further research is needed
before DTI can be used routinely for clinical purposes. At the present
time, DTI is considered prone to variation across scanners, different
centers and scanning and image-processing protocols which has hindered
the application of DTI in the clinics. DTI has also not been applied widely
in diverse populations. Building a normative database using one scanner
and across a diverse population could help to mitigate such differences
and help to explain the variation in disparate findings.

The axonal structural anisotropy represented in DTI indices can
also provide deeper insight into the mechanical responses of the brain
after traumatic brain injury (TBI). The strong anisotropy observed in
white matter fibre tracts has been shown to influence strain
distributions of the brain after head trauma. This led to the
development of a computational framework that can incorporate
FA values from the DT MR images to achieve heterogeneous and
anisotropic properties into finite element (FE) models of the brain.
This has also allowed the development of subject-specific FE models of
the brain, which has proven to be useful in analyzing wide ranges of
different brain responses after head impact, a hallmark of TBI.

4.2 Impact of cardiac ventricular
measurement and models

Continuous interaction between cardiac walls and blood
stimulates a change in wall architecture, with alterations in the
anatomy of flow being suggested as the cause of remodelling.
Building models of flow in paediatric hearts is essential to
understand the development of early biomarkers and predictors of
cardiovascular disease in a step towards improvement of cardiac
disease outcome. Personalized biventricular models have paved the
path to advanced and in-depth cardiac analysis. In addition to the
routine cardiac indices that are now easier and more robust in the way
they are measured; new predictive indices are gaining interest such as
strain measurements (Elsayed et al., 2022). Ultimately, our research
will lead to the development of paediatric cardiac atlases. Building atlas
from cardiac models has taken computational cardiac modelling into a
new era of quantification of variations in related age and pathology
groups to help with disease prediction by scoring changes and
associating them with risk factors (Mauger et al., 2019). Advanced
biomechanics models have enabled shape scoring and quantitative
analysis of regional cardiac shape changes with age and pathology
progression. 4D flow acquisitions have added real time visualization
and quantification of flow inside the ventricles and major vessels
adding another layer of knowledge.

4.3 Why we need pulmonary system
modelling

The conducting airways of the lung and their accompanying
vasculature are all present at birth, but the alveolar airways
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progressively develop throughout childhood and into adolescence.
Similarly, the chest wall, which plays a major role in patterns of
breathing, becomes less compliant through early life leading to a
transition between a young child predominantly “chest breathing” to a
more adult-like pattern of “diaphragm breathing.” It is not clear at
what age respiratory system development can be considered
“complete.” However, it is clear that the compliance of the lung
changes with growth right up to the late teens. Biophysical
structure-based modelling of the lung, which seeks to explain lung
function from its structure, has been dominated by the use of ionizing
CT imaging to provide structural information. This is limited-to-
impossible for imaging normal structure in children, or for follow-
up imaging in many paediatric patients. Improvements to
identification and treatment of chronic conditions such as
bronchiectasis and cystic fibrosis means that life-expectancy
with these conditions is increasing, and radiation exposure
matters more than ever. Model guided analyses will provide a
pathway for ensuring that multi-modal imaging obtained clinically
can appropriately be used for diagnosis (i.e., using CT) and for
longitudinal assessment of disease progression (i.e., using MRI),
particularly in children.

Our MRI-based approach, when applied to a larger cohort, will
enable us to build a first of its kind paediatric child-specific model of
the thoracic cavity, airways and pulmonary vessels using a safe and
repeatable imaging modality. The ability to predict ventilation and
perfusion distribution adds an additional fidelity to the predictive
power of such a model. Integration with the cardiac models described
here will capture the whole cardio-respiratory function.

The potential long-term impact of this study on managing
childhood respiratory disease are two-fold: 1) Many diagnostic
criteria for lung disease consider children to be small adults, which
they are not (Clark et al., 2011; Clark et al., 2019; Di Cicco et al., 2021).
Accounting for anatomical and functional differences between
paediatric and adult lungs will contribute to better understanding
of the symptoms of childhood respiratory disease and how they evolve
through childhood. Understanding developmental modifications to
the respiratory tract will be helpful for management of chronic airway
disease. 2) Repeated or severe childhood respiratory infections can
influence lung development and life-long respiratory health (Oakes et
al., 2018). Personalized models of the lung through childhood will
provide a tool for better interpreting the change in medical imaging
and diagnostic tests at follow-up timepoints.

4.4 Why we need bone measurement and
models

Skeletal growth in children is characterized by progressive
modelling of the skeleton in response to a complex interplay
between biological and mechanical factors (Carter, 1987). As the
limbs of the typically developing (TD) child grow, there is a
programmed modelling of the long bones with systematic changes
in length, width, and version (Herring and Tachdjian, 2020). Atypical
development, such as children suffering from cerebral palsy or slipped
capital femoral epiphysis (SCFE), can lead to delayed or altered
skeletal modelling with consequent effects on hip stability, gait
pattern and limb alignment (Gage et al., 2009; Hosseinzadeh et al.,
2020). Understanding morphological variation in the typically
developed skeleton is important to diagnose and treat

morphological variations and pathology. It is well known that bone
increases in size with age as a child grows until growth plate fusion
occurs, which can be up to 20 years of age in the lower limb (Herring
and Tachdjian, 2020). It is not well known whether gender and
ethnicity affect linear and angular bone measurements. Our
approach will help answer such questions.

4.5 Why we need skeletal muscle models

Lower limb muscle modeling is relevant to understanding gait and
ambulation; this is an important functional aspect of growth and
development in paediatric and adolescent populations. Whole body
image sets can be used to generate muscle models for the upper limb
and trunk, and to correlate these with measurements of growth for
other organs such as the heart and lungs.

Skeletal muscles are the unique driver of motion for humans
and animals. The healthy growth and development of skeletal
muscles during childhood and adolescence is essential to a
healthy adulthood. This is exemplary in the lower limb
muscles, where the correct development and use of the
muscles contributes to the proper development of the skeleton
(Nowlan et al., 2010); in conditions such as cerebral palsy,
impaired muscle mechanics contributes to bony deformities
that often require surgery to resolve (Quinby et al., 2005;
Graham et al., 2021). Beyond the mechanical contribution of
muscles to skeletal development, and the importance of healthy
musculature for healthy gait and overall mobility, skeletal muscle
contributes considerably to other aspects of physiology, such as
glucose uptake (Mizgier et al., 2014) and as a protein reservoir for
metabolism (Ruderman, 1975; Sartori et al., 2021). Given its
importance in growth and into adulthood, it is surprising that
so little is known about the correct progression of skeletal muscle
volume and morphology in childhood and adolescence. The
authors are unaware of longitudinal data on muscle size and
shape profiles in children and adolescents. Acquisition of such
important data will allow for an understanding of the normal
growth progression in humans, assessment of atypical growth,
early diagnosis of abnormal growth conditions, and an
opportunity for early intervention in these cases.

4.6 Roadmap

This work is the first step towards achieving the integration of
imaging and modelling towards improving our understanding of
the human body in health and disease and thereby help improve
clinical diagnosis and treatment of a range of medical conditions.
In this work, we have run multiple existing computational
physiology workflows that perform a series of processing steps
to personalize computational models using structural and
functional measurements from individuals, e.g., imaging or
waveform data. Computational modelling provides the unique
advantage of improving our ability to interpret and understand
large amounts of disparate data to elucidate structure-function
relationships (Gorgolewski et al., 2016; Hunter, 2016). We have
demonstrated in this study that we can apply our existing
workflows to generate personalized models of organs from
imaging data. The uniqueness of our study is that the data, and
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hence the generated personalized models, were acquired from the
same child. Such a dataset has numerous benefits, including
allowing structure-function relationships to be understood
across different organ systems and overcoming existing
challenges where data from only a single organ is available. In
future, we intend to use the personalized models to perform cross-
sectional analysis across a cohort of children. This will help
establish normative ranges of structure and function in children
and quantify their variability in a healthy population. Quantifying
this variability will help identify robust baseline measures against
which threshold values for diseases are defined in national/
international guidelines.

Our approach also enables novel “next-generation”
workflows to be developed including the linking of different
organ systems, by leveraging and reusing the personalized
models we have already created. For example, understanding
the interplay between the musculoskeletal system and
neurological control in cerebral palsy may help further
improve therapies compared with considering the
musculoskeletal alone. Furthermore, establishing normal
ranges may be important for the early diagnosis of such
diseases. To facilitate the reuse of data to enable such
developments, we will store models, measurements, and
associated workflow results in a standardized data structure
[e.g., the Brain Imaging Dataset Structure (BIDS) (Bandrowski
et al., 2021) or the SPARC Dataset Structure (SDS) (Wilkinson
et al., 2016)] to meet fair principles (Cassilhas et al., 2016).

In this study, we showed how existing computational physiology
workflows that were built for a specialized purpose could be used to
create personalized models of each organs in a child. For example, the
lung modelling workflow generated three-dimensional models all in
the same consistent geometrical framework. In this manner, different
workflows can be applied to the same dataset. We aim to integrate the
outputs of each of these workflows in the future to create a virtual
physiological human or “digital twin” of that individual. The creation
of digital twins can help to improve the understanding, prevention,
diagnosis and treatment while considering comorbidity influences.
This initiative is being led by the Auckland Bioengineering Institute
(ABI) as part of the International Physiome Project for the
International Union of Physiological Sciences (IUPS). The ABI is
also a founding member of the Virtual Physiological Human (VPH)
institute, an international not-for-profit organization, whose mission
is to ensure that the Virtual Physiological Human is fully realized,
universally adopted, and effectively used both in research and clinic.
This research will help contribute valuable data for delivering this
vision and help towards establishing the first digital twin of children.

The anatomical and functional definition provided by the
computational models here presented is essential to understand
the proper function of the physiology of an individual. As
different systems are highly integrated to each other,
deficiencies in one system can result in severe effects in others.
For example, there is a large body of evidence linking brain health
with physical exercise—that is, which links the actuation of the
musculoskeletal system with the positive benefits to the brain
(Wu et al., 2018; Hu et al., 2020). At the same time, systemic
conditions such as hypertension involves many systems, as it
results from vascular adaptation mediated by the nervous system
depending on the integration of different baro- and
chemoreceptors deployed in the vasculature [aortic arch

baroreceptors and carotid body chemoreceptors (Stillman
et al., 2020)], brain [astrocytes end-feet bororeceptors (Boron
and Boulpaep, 2016; Marina et al., 2020; Wu et al., 2020)] and
lungs (stretch baroreceptors). Even homeostasis and allostasis
processes usually rely on the interaction of these different
systems. For example, a person running will have an active
adaptation of the cardiovascular (systemic blood pressure and
local blood flow regulation depending in part by cardiac output
and frequency) and respiratory (gas exchange) systems, affected
by muscular action that promotes venous return and constraints
tissue perfusion resistance, and orchestrated by autonomous and
central nervous systems. In all these cases, only an integrated
physiology approach will yield a comprehensive and personalized
assessment of the health status and progression of disease. Our
study was partly motivated by a growing need to understand
growth in children who cannot be assumed to be scaled down
models of adults: not just in structure but also in function. Many
areas of research unfortunately make this assumption. Our study
will in part help understand early development through MRI and
computational models.

5 Limitations

The proposed methodology has some practical limitations.
First, it excluded the early childhood and post-puberty group as a
matter of convenience and logistical ease. Hence the immediate
benefits are mostly seen in the paediatric population of this
narrow and specific age group. In other words, age-associated
changes in physiology cannot be comprehensively studied across
a wider age range. Second, the choice of organs and organ systems
were not exhaustive. For example, many early biomarkers of
neurological diseases may be detectable in the orbits, muscles,
microvasculature, etc., of the eyes. But the current methodology
did not include such models. Third, the technology to understand
structure-functional relationships and organ-to-organ
interactions are not fully mature in some research areas.
Hence this may limit the ability of achieving fully functional
workflows in the immediate future. Despite these limitations,
given the growing interest in adopting data and model sharing
standards, we speculate that the present work—which includes
both advanced imaging and computational models—will create
important avenues for collaboration and helping to fast track the
development of inter-organ frameworks.

5.1 Role of MRI

While some disease conditions are routinely diagnosed by
computed tomography, including in children, great care must be
taken to ensure that radiation exposure in a child is not excessive
over a lifetime. MRI is a safe alternative and new imaging
protocols are being developed for clinical applications. For
example, diagnosis of bronchiectasis and cystic fibrosis using
MRI are gaining momentum. Similarly, imaging of bone has
recently become possible with the Zero TE technique (Cho
et al., 2019; Eley and Delso, 2021). With advances in imaging
and reconstruction technologies and further emergence of deep
learning-based segmentation, the scan times are becoming
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shorter without compromising image quality making it
particularly well suited for children. In our study, it can be
noticed that many sequences are only 1–3 min long. Hence
developing imaging protocols and accompanying image
analysis methods using MRI as the modality of choice holds
great promise for the future.
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