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Abstract 
 

With the ever-expanding use of technology for communications, the demand for strong 

cryptographic methods is continually growing. The implementation of cryptographic 

algorithms in modern networked systems is crucial to ensure the security and 

confidentiality of data. Standardized encryption algorithms have emerged to allow users 

and developers a quantifiable and thoroughly tested level of security within their systems.  

While much research has been done to improve the security of traditional ciphers 

such as the Advanced Encryption Standard (AES) and the now-defunct Rivest Cipher 4 

(RC4), there are opportunities for the development and improvement of alternative 

ciphers based on graphic methods. Encryption using graphic methods, such as Visual 

Cryptography (VC) and Elliptic Curve Cryptography (ECC), give high levels of security, 

and demonstrate alternative approaches to achieve secure methods for the ever-expanding 

online world. 

This thesis proposes an alternative word-oriented symmetric stream cipher based 

on graphic methods called Coordinate Matrix Encryption (CME), which offers 

quantifiably high levels of security and a non-singular mapping of plaintext to ciphertext. 

The focus of this thesis was to explore the security offered by alternative graphic methods, 

in comparison to traditional classical methods, as well as the difficulties faced in 

implementing these alternative systems. It is hypothesized that graphic-based methods 

would offer higher levels of security with lower overheads than classical methods, and 

that the proposed CME system would prove secure against attack. 

The proposed system was implemented in Java along with four comparable 

algorithms, both graphic-based and traditional, which were AES, RC4, ECC, and VC. 

The algorithms were all tested for security and efficiency, and the comparative results 

show the high levels of security achievable by alternative graphic-based ciphers. The 

resistance of the proposed 8-bit CME system to brute force attacks was shown to be 

157,899 orders of magnitude higher than that of a 128-bit key in traditional ciphers such 

as AES. Examination of the avalanche effect of the CME scheme showed that less than 

0.5% of all bytes within the ciphertext remained in the same position when a single bit of 

the plaintext was altered. While the RC4 scheme offered the best efficiency in terms of 

time required to encrypt and decrypt the data, the CME scheme had lower memory 

requirements and was faster in the setup execution. 

Further research into alternative graphic methods is required to explore the 

applications of alternative systems such as CME. The security offered by the proposed 
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CME scheme makes it an ideal candidate for post-quantum cryptographic research. The 

system’s alternative key structure and non-singular mapping allow for resistance to 

known and chosen plaintext attacks, and these features require further exploration. 

Further comparative analysis between traditional and graphic-based ciphers is required to 

determine whether alternative graphic methods are able to offer higher security for lower 

overheads. Optimization of the CME scheme requires further testing, to ensure it has 

competitive advantage, and it is able to be implemented in application development. 

There is currently little standardisation in stream ciphers to replace RC4, and as such the 

opportunity exists for an optimized version of CME to assist in this particular space in 

applications such as TLS that utilize stream ciphers for encryption on a day-to-day basis. 
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Chapter 1 
Introduction 

 

 

1.0 BACKGROUND 
 
The use of cryptography for securing information can be traced back to early human 

civilisations. Transforming information so as to prevent unauthorized access is a 

necessity in the digital age. The standardisation of algorithms such as AES (Advanced 

Encryption Standard) provides for a quantifiable level of security. The ability to 

rigorously prove the security of a standard algorithm allows users to have confidence in 

the security of their implementation. It also allows programmers and developers to build 

around predefined structures for secure systems. Standard algorithms such as AES have 

undergone many iterations of testing and research to provide the necessary confidence in 

their security. 

 Modern symmetric ciphers use a Feistel design. This involves multiple rounds of 

operations for encrypting blocks of data. These operations include substitutions and 

transpositions, as well as adding individual round keys. The security of these symmetric 

ciphers rests on the security of the key, usually a binary string of at least 128 bits. AES 

gives the option of 128, 192 or 256 bit keys. Due to the rising tide of research into 

quantum computing, and the introduction of Grover’s Algorithm (Grover, 1996), it is now 

recommended that symmetric encryption systems use keys greater than 128. The effect 

of quantum computing on security is discussed in chapters 5 and 6. 

 The current security climate, stoked by events such as the release of Edward 

Snowden’s files from NSA surveillance programs, and the subsequent increase in 

encryption implementation by firms such as Apple and Facebook, has thrust 

cryptographic research to the forefront of social consciousness. As such, the demand for 

better, stronger, faster encryption methods is increasing globally. To meet this demand, 

new cryptographic algorithms must be developed. On this basis, the research in this thesis 

revolved around the creation of an alternative symmetric stream cipher called Coordinate 

Matrix Encryption (CME), using a matrix based key structure. The implemented CME 

scheme gave a theoretical security to brute force attacks that outstripped the compared 

standardized algorithms, a more pronounced avalanche effect, and remained 
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competitively efficient in execution. 

 
1.1 MOTIVATION FOR RESEARCH 
 
The use of encryption in technology underpins the security of modern life. The 

burgeoning Internet of Things has resulted in a high demand for secure algorithms to 

protect personal data, such as the integration of asymmetric encryption technologies into 

banking applications and email, the use of encrypted smart card chips in bank cards and 

industry access cards, and the need to secure newly networked devices from smartphones 

to wearables to electric bicycles. As computer technology increases in speed and 

performance, and radical developments such as Shor’s Algorithm threatening the security 

of current public key systems (Shor, 1994), the importance of and demand for strong 

cryptography is growing rapidly.  

The use of symmetric encryption algorithms such as the industry standard AES 

(Advanced Encryption Standard) for the security of data has been implemented, and 

traditional encryption methods built on Feistel cipher design have received numerous 

improvements and upgrades in recent years. However, the security possibilities proposed 

by alternative ciphers based on graphic methods, and those that use alternative key 

structures is under-developed in comparison.  

The motivation of this study is to develop and evaluate the possibilities of security 

and efficiency offered by alternative graphic-based ciphers and key structures. The 

constant expansion of computing technology requires that researchers continually 

develop and test new methods of encryption. As such, the realm of ciphers based on 

graphic-methods and the security offered by alternative key structures such as graphs or 

polynomial curves is of high importance in cryptography. The strength of alternative key 

structures, such as the matrices employed in the proposed CME system, is in the 

dramatically increased key space, which is discussed in Chapters 3, 4 and 5. The size of 

the key space, and resistance to traditional attacks makes alternative key structures, such 

as those proposed in the CME scheme, a highly attractive prospect for future research and 

implementation. 

 
1.2 RESEARCH APPROACH AND FINDINGS 
 
The research conducted in this study was performed through the analysis of the efficiency 

and security of four well-developed and researched algorithms (Visual Cryptography, 
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Elliptic Curve Cryptography, Rivest Cipher 4, and the Advanced Encryption Standard), 

as well as the proposed CME system. The tests were performed over many iterations to 

provide stable results, and the different algorithms were then compared in pairs. The 

result of this experimental design suggested that the proposed CME scheme offered a 

high level of security while remaining comparatively efficient, though more optimisation 

may be required to ensure a truly competitive design. The study was conducted using 

Java standard implementations of ECC, RC4 and AES, as well as a string-oriented version 

of VC specifically developed for the purpose of the experiment. All the algorithms were 

tested for efficiency and security, with criteria developed based on prior studies and 

reviewed literature. The memory requirements, the time required at each stage, and the 

key space were among the testing criteria. For the relevant algorithms, the avalanche 

effect and the frequency distribution of the ciphertext was also examined. 

 The research design was developed through the analysis of comparable studies, 

given in Chapter 3, and current literature, which is evaluated in Chapter 2. The current 

methodologies of graphic based systems and industry standards for encryption were 

explored, and recent developments in cryptography were discussed. This research then 

formed the basis of the research questions and the study design, which utilized both 

practical and theoretical analysis of the efficiency and security of the algorithms.  

 
1.3 STRUCTURE OF THESIS 
 
The thesis is split into 6 chapters, followed by 4 appendices. The chapter structure is as 

follows: 1. Introduction; 2. Literature Review; 3. Methodology and Design; 4. Research 

Findings; 5. Research Discussion; 6. Conclusion. The Appendices are: A. Glossary of 

Terms; B. Source Code; C. Testing Data; D. Example Results. Prior to the appendices is 

a list of all texts and materials referenced within the thesis. 

 Chapter 2: Literature Review explores the current research available in graph-

based cryptography, and gives an in depth background for the material contained in the 

study. It details the current standards for cryptography such as AES and RC4, and gives 

the mathematical foundations of graphic-based cryptography. The more widely explored 

graphic-based systems such as ECC and VC are detailed, as are those encryption systems 

based on multivariable equations and graphs. The history and design of error-correcting 

codes is also examined. 

 Chapter 3: Methodology and Design gives an in-depth analysis of similar studies 

and outlines the research design. Prior comparative algorithm analyses are discussed and 
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the benefits and limitations of their design are enumerated. The research questions and 

hypotheses are formulated, and the testing criteria are detailed. 

 Chapter 4: Research Findings details the results of the study. The results of the 

tests are given individually for each of the tested algorithms, and then the pairs of 

comparative algorithms are examined together. The string oriented Coordinate Matrix 

Encryption (CME) system and Visual Cryptography algorithm are compared, as are the 

byte-oriented CME scheme and AES; the byte-oriented CME and RC4; and byte-oriented 

CME and Elliptic Curve Cryptography (ECC) employing the Diffie-Hellman protocol. 

 Chapter 5: Research Discussion addresses the implications of the study. The 

research questions are answered based on the results given in Chapter 3, and the 

hypotheses are redressed given the findings. The difficulties faced in the implementation 

of the algorithms as well as the benefits and limitations of encryption systems based on 

graphic methods and alternative key structures are discussed. 

 Chapter 6: Conclusion enumerates the limitations of the study in design and 

execution. The ways these limitations may have impacted on the results are detailed. Then 

the opportunities for further research are explored, and recommendations for future study 

are given. 
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Chapter 2 
Literature Review 

 

 
2.0 INTRODUCTION 
 

The literature review is an in-depth study of the selected elements of cryptography that 

will impact on this thesis. It has review of the origins and history of graphic based 

cryptographic methods, the current research undertaken in these areas, and concludes 

with an analysis of outstanding issues, problems, and unresolved challenges in the 

research area. The first section details the necessary cryptographic background, and 

covers current standards as well as classical encryption methods. The second section 

explains the mathematical theory underlying graphic based cryptography, such as 

matrices, vectors, fields, rings and groups. Section three reviews the more generic graphic 

based methods in cryptographic research, including multivariate cryptography and 

cryptography based on special graph families. Section four details Elliptic Curve 

Cryptography, a well-studied graphic method which offers an alternative to current 

asymmetric encryption technologies, while section five outlines Visual Cryptography, an 

image encryption method based around graph decomposition and matrix operations. 

Section six explores the issues and problems within each of the detailed graphic based 

methods, while section seven discusses the conclusions that can be drawn from this 

research.  

 

2.1 CRYPTOGRAPHY 
 
The use of cryptography and the encryption of data, provides for secure transmission 

while maintaining confidentiality and integrity (Chandra, Paira, Alam, & Sanyal, 2014). 

Modern encryption technologies such as asymmetric encryption like the Advanced 

Encryption Standard and Rivest, Shamir and Adleman (RSA), as well as security 

protocols such as WiFi Protected Access (WPA) are in widespread use across the globe, 

protecting web browsing, home networks, and personal devices.  The most widespread 
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encryption algorithms, such as the Advanced Encryption Standard (AES), are based 

around classical substitution and transposition techniques. Cryptographic methods can 

also be broken down into block ciphers versus stream ciphers (Anderson, 2008). Section 

2.1.1 gives an overview of symmetric cryptography, followed in section 2.1.2 by a 

description of the current standard block cipher, AES, the Advanced Encryption 

Standard. Section 2.1.3 then details the use of stream ciphers, including Rivest Cipher 4 

(RC4). Finally section 2.1.4 explains asymmetric cryptography. 

 

2.1.1 Classical Symmetric Cryptography 
Classical encryption, such as the early Caesar cipher, uses substitution and transposition 

methods to scramble a data stream, so as to render it meaningless without the 

corresponding key. In symmetric encryption, the same key is used to encrypt and decrypt 

the data. The breaking of symmetric encryption relies on the security and secrecy of the 

key – the algorithm used for encryption does not need to be kept confidential, as the 

encryption cannot be reversed without the key (Stallings, 2014). Symmetric encryption 

is used in most modern technologies, for the bulk of encrypted communication. Currently, 

encryption is used to secure much of the online world, such as banking transactions, 

secure email, website logins, and company data. In 2013, over 600 million people were 

making use of email services (Hosnieh, Martin von, & Christoph, 2013). With so many 

people utilizing the Internet for communication, the ability to ensure such 

communications remain private becomes of similar significance to a home owner being 

able to lock his/her front door. The steady increase in demand for encryption, especially 

with the surge in growth of the Internet of Things, has given rise to a new wave of 

cryptographic research. Being able to encrypt the transmissions of devices that link in to 

the web is of huge importance. Cars, air conditioning units, televisions, and many other 

household items are now becoming networked. Hence, it is necessary to ensure security, 

and prevent malicious attackers from manipulating these devices for their own ends. Self-

driving cars require security to ensure that a malicious attacker is unable to take over the 

operating system and alter their functionality. The use and operation of drones adds 

another layer of importance to the use of encryption, as they are remotely controlled and 

can be highly weaponized. It is therefore exceedingly important to ensure that the 

commands received by drones are from a valid and securely-verified source.  

Symmetric encryption is a classification of encryption methods based on a shared 

secret key, and is also known as secret key or shared key encryption. This typically relies 

on substitution and transposition ciphers. One example of symmetric encryption is the 
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Caesar cipher, the earliest known encryption algorithm, which shifted the alphabet 3 

places to the right. For the Caesar cipher, the key for decryption is the shift – the number 

of places to the left the cipher alphabet must be moved to result in the plaintext.  

Equation 2.1.1.i   𝐶 = 𝐸(𝑘, 𝑝) = (𝑝 + 𝑘)𝑚𝑜𝑑 26 

(Stallings, 2014, p.15) 

The general equation for encryption in the Caesar shift cipher is shown in Equation 

2.1.1.i, where p is the plaintext letter of the alphabet, and k is the key shift – a value 

between 1 and 25.  

Equation 2.1.1.ii   𝑝 = 𝐷(𝑘, 𝐶) = (𝐶 − 𝑘)𝑚𝑜𝑑 26 

(Stallings, 2014, p.15) 

The reversal algorithm for decryption is shown in Equation 2.1.1.ii, where C is the 

ciphertext letter. As there are only 25 possible shifts (if shifting to the original position is 

discounted), the Caesar cipher is not a secure method of encryption (Martin, 2012). The 

small key space of 25 means that each of the key possibilities can be calculated until the 

correct key shift is found.  

 

2.1.2 Advanced Encryption Standard 
Modern symmetric ciphers have significantly higher levels of security than prior classical 

methods. The Advanced Encryption Standard (AES) is the current standard for data 

encryption worldwide, and uses multiple rounds of substitutions, transpositions and keys 

to obfuscate plaintext into ciphertext. AES uses finite field arithmetic, with all operations 

performed over a finite Galois field 𝒢ℱ(28) (Stallings, 2014). This finite field arithmetic 

constrains any and all results from operations to within the 256 possible 8-bit bytes. The 

encryption process is shown in Figure 2.1.  AES uses different numbers of rounds 

depending on the security level of the implementation. 128-bit AES uses 10 rounds, 192-

bit has 12 rounds, and 256-bit AES uses 14 rounds. The original key is expanded, 

resulting in a key word for each round. The encryption process uses 4 transformation 

operations; substitute bytes, which swaps out the bytes of the current block with those in 

a predefined matrix; mix columns, which shifts the columns of the current block using 

modular arithmetic; shift rows, moving all rows within the block; and add round key, 

which performs a single XOR operation over the current block and round key. Each round 

makes use of these transformations, and once all rounds are completed, the final 

ciphertext is output. 
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Figure 2.1: The AES Encryption Process (Adapted from Stallings, 2014, p.133) 

2.1.3 Stream Ciphers and Rivest Cipher 4 
The implementation of technologies such as TLS (Transport Layer Security) and SSL 

(Secure Sockets Layer) for use in website authentication required the use of fast 

encryption models that operated on streams of data. As such, it was necessary to design 

stream ciphers, encryption methods that operate on small pieces of the data sequentially. 

According to Martin (2012), a stream cipher can be described as a variant of the block 

cipher, which has a designated block size of less than 64 bits. The general model of a 

stream cipher encrypts data byte by byte, or 8 bits at a time (Stallings, 2014). Figure 2.2 

gives a visual comparison of stream versus block ciphers. 

 Rivest Cipher 4 (RC4), was developed in 1987 by Ron Rivest to address this need 

for secure stream ciphers in web technologies. While it has since been proven insecure, 

it was, as of 2014, the most widely implemented stream cipher (Rivest & Schuldt, 2014). 

RC4 operates by permuting the data using a keystream of up to 256 bytes (2048 bits) and 
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algorithmic access to a state vector S which contains all possible 8-bit bytes (Stallings, 

2014).   

  
Figure 2.2: Stream ciphers versus block ciphers. (Martin, 2012, p. 107) 

 Some attacks on RC4 take advantage of the methods with which the session keys 

are created, shown in Equation 2.1.2.i. 

Equation 2.1.2.i  𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑘𝑒𝑦 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟||𝑚𝑎𝑖𝑛 𝑘𝑒𝑦 

(Klein, 2008, p.1) 

Key creation as per Equation 2.1.2.i result in predictable behaviours from the session key, 

and attacks such as the FMS-Attack (Fluhrer, Mantin & Shamir, 2001) take advantage of 

those behaviours. As yet, no stream cipher that has been standardized and widely adopted 

to replace RC4. The eSTREAM project was setup specifically for the purpose of 

standardising a group of new stream ciphers, and was funded and operated through 

ECRYPT, the European Network of Excellence for Cryptography (Afzal, Kausar & 

Masood, 2006).  

 

 

2.1.4 Asymmetric Cryptography 
Asymmetric encryption, also termed public key encryption, relies on one-way 

computations for security. Functions such as the computation of prime factors or discrete 

logarithms are used to provide a one-way trapdoor function that is easy to compute in one 

direction, but extremely difficult to reverse without all the original information. In this 

case, each algorithm uses two keys – one public and one private. The public key encrypts 

the information, but cannot decrypt it. The private key is then used to decrypt the 

information. Public key systems are often used to securely transmit keys for symmetric 

encryption, as well as to verify an online identity, such as in a digital signature or 
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certificate. Digital signatures are an alternative to the physical signature, and give an 

online option for the verification of an identity. This method requires a way of creating a 

signature that can be verified by anyone but cannot be forged. The public key/private key 

system gives an option for this, using a private key that is only known to the user to 

generate the signature, and a public key that anyone can use to verify it.  

RSA - named for the aforementioned Ron Rivest, Adi Shamir and Leonard 

Adleman - is an example of a public key system, which gives each user a public and 

private key for verifying and securely transmitting information. The public key is 

published for use by anyone who wants to be able to communicate securely with the 

owner of the key. The method of creating these keys relies on a one-way function, so that 

the private key cannot be computed from the public one. RSA’s one-way function is the 

Integer Factorization Problem or IFP (Yan, 2008). RSA works because the IFP has no 

known solution that computes in polynomial time or less. One of the requirements of 

these public key systems is the implementation of a secure key distribution method. These 

methods require that the user is verified in some manner, to prevent identity theft, as well 

as making sure that keys can be updated or withdrawn in real time. These distribution 

methods remain one of the more challenging parts of the implementation of public key 

systems.  

 
2.2 ERROR CORRECTING CODES 
 

Error correcting codes form a base of study in coding theory. The use of these codes to 

ensure the correct and accurate communication of information through data transmission 

was introduced by Hamming (1950). The motivation behind the creation of these codes 

was the removal of error in data, through the ability to automatically correct any 

distortions or changes in the transmission. Originally called systematic codes, Hamming 

(1950) posited that binary codewords of a specific length could be used to ensure 

redundancy in transmission and operation of data. Each codeword was set a binary code 

of length n, wherein m digits were used for information, and the remaining 𝑘 = 𝑛 − 𝑚 

digits provided for the automatic detection and subsequent removal and correction of 

errors. 

 Hamming (1950) defined the redundancy levels of codes that were capable of 

correcting a single error in data as in Eq. 2.2.i. These codes were based on the number of 

1 digits in a codeword – the data of the codeword was stored in the first 𝑛 − 1 bits, and 

then in the final position a single 1 or 0 bit was added to ensure that the binary word 
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contained an even number of 1s. Then, if a single bit of data was corrupted, the scheme 

would detect the error, as there would no longer be an even number of 1 bits. 

Equation 2.2.i   𝑅 = 𝑛
𝑛−1

= 1 + 1
𝑛−1

 

(Hamming, 1950, p.3) 

The single error detecting code proposed by Hamming (1950) evolved into the parity 

check, or parity bit. The system only works reliably when n is constrained and small, so 

data could be split into many symbols of length 𝑛 − 1 and a parity bit added for each. 

This allows the probability of a double-error to be kept consistently low.  

 The Hamming distance of a two codewords or code symbols is the bits that differ 

between them in the same position (Shankar, 1997). The calculation of the Hamming 

distance provides a basis for determining the minimum distance of an error-correcting 

code, or the minimum Hamming distance between two code symbols within the code. In 

order to correct up to t errors, the minimum Hamming distance of a code must be 

calculated as in Eq. 2.1.ii. 

Equation 2.2.ii   𝑑𝑚𝑖𝑛 ≥ 2𝑡 + 1 

(Shankar, 1997, p.34) 

Reed Solomon codes are an alternative error-correcting code to the Hamming code. The 

Reed Solomon codes operate on bytes, rather than bits, which gives a larger field for 

operation. 

 The benefit of error-correcting codes is their ability to eliminate noise from 

transmissions, and detect and correct errors in data. The use of codewords or symbols 

with carefully defined Hamming distances enables the efficient correction of errors. Due 

to their ability to detect changes in the data, error-correcting codes have been proposed 

as a method of securing data, such as in the creation of digital watermarks (Mehta, 

Varadharajan, & Nallusamy, 2012). The use of error-correcting codes in digital 

watermarks has been found to significantly increase their resistance to attacks. 

 

2.3 GROUP THEORY IN CRYPTOGRAPHY 
 
Graph theory and group theory comprise many theorems and methods which are of use 

in fields such as computer science. Groups, rings and fields are especially of use in 

cryptography, as their unusual topology provides for many different and robust 

algorithms. A group is a tuple, a pair (𝐺, ∗), where G is a set of objects – for example, 

the set of all real numbers – and * is a binary operation performed on 𝐺, which is closed 

under 𝐺 (Loehr, 2014). Groups must satisfy four basic conditions: Closure; associativity; 
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identity; and inverse. The function * is closed under 𝐺, meaning that for any 𝑎, 𝑏 ∈ 𝐺 

which is used in the function 𝑎 ∗ 𝑏, the result will also be in 𝐺. The associativity property 

requires that combining three or more elements of the set with the function will have the 

same result, regardless of the order of operation. For any 𝑎, 𝑏, 𝑐 ∈ 𝐺 | 𝑎 ∗ (𝑏 ∗ 𝑐) =

(𝑎 ∗ 𝑏) ∗ 𝑐. The identity property requires that there be a single element that, when 

combined with any other element via the function, results in that other, unchanged 

element. ∃𝑒 (𝑒, 𝑎 ∈ 𝐺 | 𝑒 ∗ 𝑎 = 𝑎 ∗ 𝑒 = 𝑎). The final property is that of the inverse: for 

every element a, there must be an element 𝑎−1, which combines with a to give the identity 

element. ∀𝑎∃𝑎−1(𝑎, 𝑎−1 ∈ 𝐺 | 𝑎 ∗ 𝑎−1 =  𝑎−1 ∗ 𝑎 = 𝑒). Only a pair that satisfies all of 

the above properties can be considered a group. 

 

2.3.1 Rings and Fields 
Rings and fields are extensions of groups. They require all the properties of groups, as 

well as special properties of their own. A ring is a triple (𝑅, #,∗ ), a set R with two binary 

functions. R is an abelian group under #. This means (𝑅, #) satisfies all the conditions of 

a group, as well as being commutative – for any 𝑎, 𝑏 ∈ 𝑅 | 𝑎 # 𝑏 = 𝑏 # 𝑎. Any group 

that is commutative is known as an abelian group. The second operand ∗ is required to be 

closed and associative under R. The two operations are usually called + and ∙ , or addition 

and multiplication, respectively. A ring that is commutative satisfies a further axiom – its 

multiplication operation is commutative under R. (𝑎, 𝑏 ∈ 𝑅 | 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎) (Cohn, 2000). 

The set of integers, or ℤ, forms a ring under the addition and multiplication operations, 

and is a commutative ring. Rings are also formed by the set of rational numbers (ℝ), and 

the set of natural numbers (ℕ).  

A field is a further extension of a ring. If a ring is commutative, unital, contains 

no zero divisors, and each non-zero element of the ring is a unit, then that ring is also a 

field. A field has 4 binary operations – as well as the addition and multiplication they 

inherit from rings, they have two inverse functions for these (Cohn, 2000). The inverse 

of addition is defined as subtraction, and the inverse of multiplication is the division 

function. So a field F would be (𝐹, +, ⋅ , − , ÷).  Fields can be finite, or infinite. For 

example, the set of all rational numbers (ℚ) is an infinite field. A particular set ℤ𝑝 is a 

finite field if p is prime. Systems such as Elliptic Curve Cryptography are concerned with 

transformations over finite fields. 

 

2.3.2 Matrices and Graphs 
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Another area of relevance in computing from graphic methods is matrix theory. A matrix 

is an array of numbers. These are the matrix entries, also simply referred to as entries. 

Matrices are used in cryptographic methods such as secret sharing schemes to encode 

shares of information. These schemes rely on matrix operations and representations to 

scramble, expand and then encode the data. Matrices are also used to organize 

information about groups, rings and fields, such as a Cayley table, which displays the 

result of the binary operation on each combination of elements in the set. Implementations 

of graphs with encryption schemes can utilize matrices to represent vertices and edges. 

Matrix operations, such as matrix multiplication, are used in systems such as Visual 

Cryptography. Matrix multiplication is of particular use because it is not commutative – 

the order in which the matrices are multiplied affects the outcome.  

 Families of matrices such as Hadamard matrices are used in the generation of 

error-correcting codes. Hadamard matrices are defined as an “n by n matrix H with entries 

+1 or -1 such that 𝐻𝐻𝑇 = 𝑛𝐼[1]” (Chan-Hyoung, Hong-Yeop & Kyu Tae, 1998, p. 117). 

All rows within a Hadamard matrix are mutually orthogonal. Hadamard matrices also 

give rise to Sylvester and Walsh matrices (Giorgobiani, Kvaratskhelia, & Menteshashvili, 

2015). A Hadamard matrix produces Hadamard codes, which provide high levels of error-

correcting ability. Given a Hadamard matrix 𝐻𝑛, of size 2𝑛 by 2𝑛, a Hadamard code can 

be created which gives a Hamming distance of 2𝑛−1, and is capable of detecting [2𝑛−1 −

1] errors (Pal, 2007). While transmission of data using these codes requires a higher 

number of bits, they provide for very good error detection and correction, which is of 

particular use in noisy networks. 

Cryptography makes use of finite, regular graphs, due to the usefulness of their 

underlying structures. These families, such as Cayley graphs, are a connected and secure 

structure on which to base algorithms for encryption. A graph G with a finite set of 

vertices and edges is defined as a triple 𝐺 = ( 𝑉, 𝐸, 𝜙), such that V is the set of vertices, 

E the set of edges connecting those vertices and 𝜙 is the function that maps two vertices 

into an edge (Agnarsson & Greenlaw, 2007). In this way it can be thought of as an 

extension of the original group, where edges are a connection formed by the operation of 

combining some two members of the set V. A graph’s degree is the highest number of 

edges connecting a vertex to those adjacent to it.  For example, a regular graph with 

degree 2 means that each vertex will be adjacent to exactly two other vertices. Special 

families of regular, undirected graphs, like Cayley, expander or Ramanujan graphs are of 

particular interest in encryption schemes. As these graphs are large and undirected they 

can be constructed to ensure a high level of security in algorithms based around graph 
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walks, special graph colourings, or those that use the Discrete Logarithm Problem to 

provide intractable encryption. 

 

2.4 GRAPHIC METHODS IN CRYPTOGRAPHY 
 
This section explores the graphic methods applied in cryptography, and relates the 

necessary background for the research of these methods. Section 2.4.1 discusses 

cryptography based around graph families. Section 2.4.2 then explores cryptography 

using systems of multivariate equations.  

 

2.4.1 Cryptography Based on Families of Graphs 
Graphic based systems rely on group theory and graph theory to create secure algorithms 

for encryption. Some of the more popular graphic based methods are Elliptic Curve 

Cryptography (ECC) and Visual Cryptography (VC). However, there are other 

algorithms that take advantage of the innate properties of group theory and families of 

graphs. These proposed graphic methods for encryption exploit particular traits of certain 

types of graphs, such as those using families of graphs of large girth, like Cayley graphs 

(Ustimenko, 2007). A Cayley graph is defined as a graph 𝒢(𝐺, 𝑆) where S is a non-empty 

subgroup of the group G, such that S is equal to its own inverse (𝑆 = 𝑆−1), and the set of 

vertices is equal to G, 𝑉 = 𝐺, and the set of edge elements is as follows: 

Equation 2.4.1.i    𝐸 = {{𝑥, 𝑦} ∶ 𝑥, 𝑦 ∈ 𝐺; ∃𝑠 ∈ 𝑆 ∶ 𝑦 = 𝑥𝑠} 

(Davidoff, Sarnak, & Valette, 2003, p.108) 

A Cayley graph constructed in the manner described by equation 2.4.1.i is a regular graph, 

but it is necessary to note that not all regular graphs are also Cayley graphs. Cayley graphs 

are also undirected. These underlying algebraic structures of the family of Cayley graphs 

can be exploited for use in encryption. Of particular relevance to the field is the quality 

of expansion in these graphs – the search for expander families of optimal growth. The 

growth rate of a graph relates to its diameter, and is generally a function of the number of 

nodes or vertices in the graph (Krebs & Shaheen, 2011).   
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Figure 2.3: A simple Cayley graph, as described by Equation 2.4.1.ii  (Davidoff, Sarnak & 

Valette, 2003, p.  119) 

Equation 2.4.1.ii   𝐺 = ℤ
6ℤ

, 𝑆 = {1, −1} 

(Davidoff, Sarnak & Valette, 2003, p. 119) 

Another family of graphs that are a possible route for cryptographic research is 

the family of directed graphs of large girth. The fact that there are only three families of 

undirected graphs of arbitrarily large girth limits their use, however there are infinite 

numbers of algebraically constructed families of directed graphs of large girth. These can 

be converted to equivalent Turing machines of basic construction, as a basic finite 

automaton is equitable to a directed graph, if the memory component is set aside. The 

arrows on this directed graph can then be labelled with colours as is required according 

to the automaton’s alphabet. These graphs are part of the expander family of graphs 

(Ustimenko & Romańczuk, 2013). Cayley graphs can be used to describe a linear 

automata, while other graph families can be used to result in non-linear systems. 

Encryption over directed graphs uses finite fields to calculate the arithmetic operations. 

Encryption systems based around groups of graphs such as Cayley or expander 

families use sequences of vertices or graph-colourings to create a ciphertext. Others opt 

for using strongly regular graphs to generate a Hadamard matrix for encoding images 

(Priyadarsini & Ayyagari, 2013). Some systems use the vertices to represent the plaintext 

space and the path within the graph becomes the password (Priyadarsini, 2015). Systems 

such as these based around walks along graph edges can be used in the construction of 

stream ciphers (Ustimenko, 2014). Some of these graph based systems are also reliant on 

the intractability of the DLP, and ensure that the groups or rings they are based around 

are of sufficiently large girth to make the DLP 𝑁𝑃-complete (Klisowski & Ustimenko, 

2010). Expander graphs are also of particular interest in cryptography. These graphs are 

sparse, finite, and highly connected. Ramanujan graphs are a particular brand of expander 

graphs that are of use for encryption. Expander graphs were drawn from the study of 

Cayley graphs (Polak & Ustimenko, 2013).  



 

 16 

 

2.4.2 Multivariate Cryptography 
Systems have been proposed that utilise group theory and rings to create encryption that 

relies on the combining of two group elements. Elliptic Curve Cryptography (ECC) 

transports the classic Discrete Logarithm Problem onto an elliptic curve or graph-based 

encryption and the reversal of this process is computationally infeasible without the 

original units involved (Hurley & Hurley, 2011). Public key cryptosystems based around 

commutative rings also use a variant of the Diffie-Hellman problem to secure their 

protocols (Kotorowicz, Romanczuk, & Ustimenko, 2011). Multivariate cryptography is 

the set of cryptosystems which use polynomials and finite commutative rings for 

encryption, and these are part of the post-quantum cryptography movement. Post-

quantum cryptography involves systems that are theoretically resistant to Quantum 

attacks (Ustimenko, 2014).  

Graphic based cryptographic research revolves around increasing efficiency and 

security. Graphic based methods are based around a “significant demand… for new non-

standard cryptographic methods” (Paszkiewicz et al., 2001, p. 1) ECC, VC and other 

graphic methods are currently being researched and expanded as this demand grows. 

Current research as applies to general graph based methods has focused on different 

families of graphs – such as expander graphs, which are very highly connected but have 

few nodes (Polak & Ustimenko, 2013). The implementation options for programming 

graphs are also a topic of research, with current methods using lists and matrices.  

Another development in graphic methods has been the implementation of 

algebraic geometry into the field of multivariate public key cryptosystems. These are 

based around a set of multivariate quadratic polynomial equations over a finite field (Ding 

& Yang, 2009). Further to this, there has been study into parameterized matrices for 

systems of paraunitary equations for encryption. Multivariate polynomials are a solution 

to the problems of RSA and an alternative to systems like ECC, using multivariate 

systems of equations over small fields, such as 𝐺𝐹(2𝑚) where m is some small number 

(Delgosha & Fekri, 2006). The use of multivariate polynomials is a proposed solution to 

the issues with key size and set up time, both of which are high in computational 

complexity and require large amounts of data to communicate. Multivariate systems 

generally use quadratic polynomial fields. The multivariate systems rely on their own 

version of the one-way problem, in this case called the MQ problem, based on the 

computational complexity of solving many different quadratic equations over multiple 

different fields using many different variables. The complexity of the MQ problem has 
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led to them being proposed as a possible quantum-resistant encryption method (Liu, Han 

& Wang, 2011).  

 

2.5 ELLIPTIC CURVE CRYPTOGRAPHY 
 
This section reviews Elliptic Curve Cryptography (ECC) and its applications. Section 

2.5.1 gives an introduction to ECC and how it relates to the prior standards in public key 

systems. Section 2.5.2 explores the Elliptic Curve Discrete Logarithm Problem. Section 

2.5.3 then discusses the current trends in research and the applications of ECC. 

 

2.5.1 Elliptic Curve Cryptography and RSA 
Elliptic Curve Cryptography (ECC) is a proposed alternative to the public key system 

RSA, as it provides equivalent security with smaller key sizes and lower overheads 

(Stallings, 2014). It was intended as a method of transferring the public key discrete 

logarithm problem into a system which would allow for more efficient computation 

without loss of security (Miller, 1985). The constant acceleration of computational power 

has resulted in RSA being considered less than secure in some situations due to its key 

length, and the high overheads encountered in increasing that key length (Bai, Zhang, 

Jiang, & Lu, 2012). In fact, in 2003 RSA using a 576 bit key was successfully broken 

over a three-month time span, further cementing its declining level of security due to its 

reliance on computational complexity (Ontiveros, Soto, & Carrasco, 2006). An RSA key 

size of 1024 bits is equivalent to a 163 bits in ECC. The larger the RSA key size the 

smaller the ratio of the ECC equivalent key, for example a 256 bit ECC key is equivalent 

to a 3072 bit key in RSA (Pateriya & Vasudevan, 2011). Because ECC based systems are 

able to provide far smaller key length without sacrificing security, they have become a 

more attractive option than RSA, which is of much higher computational cost especially 

in environments of low computing power.  

ECC uses transformations over one of two types of field: a finite Galois field 

𝐺(𝐹𝑝), where p is a large prime, or a finite field of characteristic 2, also known as a binary 

field, notated as 𝐺𝐹(2𝑚) (Bai et al., 2012). A cyclic group, such as those used in ECC, is 

considered to be appropriate for the implementation of a discrete logarithm based system 

if it satisfies the following: the entries of a group require minimal representation; the 

binary operation performed on the group is efficient; and the DLP within the group 

remains intractable (Galbraith & Menezes, 2005). The elliptic curve consists of several 

elements: it has a series of rational points, which form the entries of the set within the 
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group; there is also an element that is a special point at infinity – called point O – which 

is also known as the identity element (Ye & Liu, 2011). This set that forms the basis of 

the field is formed by the solutions to the following equation: 

Equation 2.5.1.i    (𝑥, 𝑦) ∈ 𝐾2 

      𝑦2 =  𝑥3 + 𝑎𝑥 + 𝑏 

where 𝑎, 𝑏 ∈ 𝐾 (Koblitz, 1987, p.1).  

A cryptographically strong elliptic curve is one that is non-singular (Kamarulhaili, 

2010). In other words, the roots of the polynomial of the curve must be unique. Elliptic 

curves can be represented in many different ways, including as coordinate systems. 

Computation of these curves can be made more efficient by the use of different kinds of 

coordinate systems. Following the optimization of the coordinate system it is possible to 

mix several different coordinate systems to improve the computational time even more 

and further optimize the algorithm (Setiadi, Kistijantoro, & Miyaji, 2015). The basis of 

the ECC algorithm involves the encoding of a message or plaintext onto a point of the 

chosen curve for encryption (Singh & Debbarma, 2014). The point used is taken from the 

group of rational points which form the series of the curve. Each point of the set 

corresponds to a different part of the plaintext message. This can be done for alphabet 

characters using a code table which corresponds to points and for binary implementations 

can be used even to encrypt images.  

 

2.5.2 The ECC Discrete Logarithm Problem 
Public key cryptography systems, such as ECC, rely on the intractability of the discrete 

logarithm problem (Galbraith & Menezes, 2005). The Discrete Logarithm Problem 

(DLP) is the one-way property of computing logarithms. The one-way property, or 

trapdoor function, is that they are easy to compute in one direction, but hard to reverse 

without the information used in the original computation. This basis, which forms the set 

of public key cryptography systems, relies on computational complexity for security. The 

DLP, as defined for any finite cyclic group G, is as follows: 

Equation 2.5.2.i   𝑓, 𝑔 ∈ 𝐺 ∶  ∃𝑦 (𝑓𝑦 = 𝑔) 

such that y is the smallest possible positive integer that satisfies equation 2.5.2.i (Polak, 

Romańczuk, Ustimenko, & Wróblewska, 2013). This problem, originally called the 

Diffie-Hellman problem and used in traditional public key cryptography systems, was 

ported to the domain of Elliptic Curves to increase security, and this version is known as 

the Elliptic Curve DLP, which uses scalars and point multiplication. 

ECC is uses scalar multiplication to compute the one-way function that results in 
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the elliptic curve DLP, using point P from the set of points, and a scalar multiplier k.  

Equation 2.5.2.ii     𝑘. 𝑃 = 𝑄 

This operation provides another point on the curve. The scalar multiplication operation is 

fairly simple to compute, however reversing it – computing k where only Q and P are 

known – is not currently feasible in less that exponential time, as it is the brute force 

equivalent of searching through all possible multiples until a common point between Q 

and P is found, and in application k should be large enough to make this computationally 

infeasible. As such, the computational complexity of the elliptic curve DLP is where the 

security of ECC lies (Amara & Siad, 2011). Simplifying the point multiplication 

operation is one of the optimization goals of ECC algorithm research, as it is the most 

expensive part of the algorithm (Sutter, Deschamps, & Imana, 2013). This point 

multiplication can be implemented as a multiplication in the software or hardware, or 

broken down into other operations, such as modular functions of addition and 

multiplication, which are lower level computations (Qu & Hu, 2010). Using broken down 

modular operations makes the scalar multiplication less expensive.  

 

2.5.3 Applications and Research in ECC 
Elliptic curve cryptography has been transplanted into protocols for Diffie-Hellman key 

exchange, and other researchers have looked at the introduction of text-based encryption 

systems using ECC (Vigila & Muneeswaran, 2009), which have proven to have very high 

levels of security against brute force attacks. There has been research into different 

algorithms for utilizing the security of ECC, for example implementing matrix 

scrambling to improve the overall security against current attacks. Matrix scrambling in 

ECC uses circular queues to shift the text in random patterns (Amounas & Kinani, 2012). 

The matrix-scrambling technique adds cycles of encryption, which ensure the plaintext is 

encrypted differently each time, and as such helps to protect against cryptanalysis. ECC 

has also been implemented as an authentication setup in smartphones and similar devices 

using QR (Quick Response) codes to secure their online activity. QR codes are two 

dimensional matrix barcodes, and due to their prevalence on mobile platforms they are 

an effective option for generating and securing one-time passcodes (Thiranant et al., 

2014). ECC can also be utilized in e-commerce, as the creation of digital signatures is 

central to each step of the process in SET (Secure Electronic Transactions) protocols (Xia, 

2012). Because the signatures are created multiple times, the use of ECC is more efficient 

than methods such as RSA, as it lessens the load incurred by the processing application. 

ECC has also been successfully used to encrypt multimedia imagery during compression, 
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where it has been proven to be efficient in encrypting the imagery without affecting the 

overall compression algorithm’s efficiency. However, the compression and encryption 

process does result in a degradation of clarity in the final recovered image, in varying 

levels (Tawalbeh, Mowafi, & Aljoby, 2013). 

Elliptic Curve Cryptography is of particular interest in systems that operate on 

limited resources – such as smart cards and other embedded systems (Targhetta, Owen, 

Israel, & Gratz, 2015). These systems require efficient implementations, particularly in 

regards to the more complex ECC operations, such as the scalar multiplication of the 

curve points which is one of the more expensive to perform. Some recent research has 

focused on finding a way to improve computation time for this operation, as the reduction 

of computational time for this part of the algorithm increases the overall efficiency of the 

implementation (Leca & Rincu, 2014). One of the key ways to decrease the complexity 

of this operation is the reduction of the Hamming weight of the scalar value. This can be 

done through a conversion to binary numbers to improve the efficiency of the scalar 

multiplication (Akhter, 2015). There has also been interest in utilizing ECC algorithms 

for wireless sensor networks, due to the limited computing power in the individual 

connected nodes, which prevents the implementation of traditional public key 

architecture as there cannot be a single trusted public key authority, as well as the 

difficulty of performing the high cost operations in RSA (Modares, Moravejosharieh, & 

Salleh, 2011). In situations like sensor networks, ECC provides an advantage because of 

its lower computational costs, allowing implementation in low-level hardware 

(Deligiannidis, 2015). Utilizing the set of shifting primes as basis for the curves can also 

increase the efficiency of the algorithm. This enables the use of multiplication operations 

without requiring the use of any multiplier function, instead implementing addition and 

shifts to the same result, which is far more practical for low-cost hardware. Simple 

embedded systems do not always have a hardware implementation for multiplication, 

thus making this method of ECC highly attractive as a security option (Marin, Jara, & 

Skarmeta, 2012). 

 
2.6 VISUAL CRYPTOGRAPHY 
 

This section describes Visual Cryptography (VC), and the ways in which it can be applied 

to current technologies. Section 2.6.1 gives an overview of the secret sharing schemes 

VC is based on and the original proposed VC methodology. Section 2.6.2 discusses 

extended VC schemes, and 2.6.3 explores the issues of pixel expansion and contrast 
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constraints. Section 2.6.4 discusses the advances made in Random Grid VC, and 2.6.5 

then describes current research and applications in VC.  

 

2.6.1 Secret Sharing Schemes 
Visual Cryptography (VC) is a popular graphic method for encrypting images, though it 

is generally a less effective graphic-based system than ECC, due to computational 

complexity, and overheads, as well as being less applicable to general encryption 

problems.  VC is a set of secret sharing schemes that divide a secret image into n parts, 

called shares, of “random binary patterns” (Zhi, Arce & Di Crescenzo, 2006, p. 2441), 

that only reveal the original image when all shares are superimposed upon one another. 

However it encounters difficulties due to the high overhead incurred by pixel expansion; 

which is the number of subpixels required to create a pixel that will encode the share 

(Hajiabolhassan & Cheraghi, 2010).  Much of the research conducted into VC has gone 

into the issue of minimizing pixel expansion, which is usually directly affected by the 

number of nodes in the scheme (Blundo, Cimato, & De Santis, 2006) but it is yet to gain 

wide application use. Research into visual cryptography schemes has also begun to 

expand to colour images (Liu, Wu & Lin, 2008), and into integrating visual cryptography 

into authentication methods (Jaya, Malik, Aggarwal, & Sardana, 2011). Another option 

proposed for minimizing pixel expansion is step construction, which uses a recursive 

implementation to create several shares for a single participant (Liu, Wu & Lin, 2010). 

Secret sharing schemes are designed to ensure a single secret can be securely 

shared between a specific group of users. It guarantees that only pre-agreed subsets of 

those users are able to access the information (Blakley & Kabatiansky, 2011). Each 

scheme has a dealer, who creates and distributes the shares from the scheme, as well as 

the user set, who each receive a single share. The shares are each a subset of the original 

secret. The dealer uses a predefined algorithm to split the secret into shares, which have 

to be recombined to recreate the secret. Secret sharing schemes operate on a specific 

definition of perfect secrecy:  that a scheme that does not reveal any information about 

the original secret without all the required subsets is considered perfectly secure. This 

forms the basis of visual cryptography schemes, which split images into secure shares 

(Naor & Shamir, 1995). One of the main tenants of the original visual cryptography 

schemes was that they are able to be decrypted without assistance of a computer, or any 

specialized cryptographic knowledge (Naor & Shamir, 1995). This makes it an attractive 

option for instances when more complicated systems are not feasible. The encoded 

subpixels appear as either black or white to the human visual system, when all necessary 
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shares are layered over one another (Droste, 1996). The lowering of the contrast – such 

as in schemes that optimise pixel expansion – make it more difficult to visually decode.  

 

2.6.2 Extended Visual Cryptography Schemes 
Further alterations to the original VC schemes have been proposed – called Extended VC 

schemes or EVCS – which encode the shares into target images, in order to ensure that 

they appear innocuous (Ateniese, Blundo, Santis, & Stinson, 2001). Using a target image 

implements a layer of steganography over the encryption, hiding the fact that the image 

contains a secret share of a message. While this addition of stenography does increase the 

security of the system, it also heightens the computational requirements of the 

implementation and the pixel expansion of the scheme overall, requiring each subpixel 

be encoded to match two separate contrast constraints, one to securely encode the secret 

image and another to ensure that it matches the target image (Liu & Wu, 2011). EVCS 

can also enable multiple secrets to be shared between different accepted parties (Klein & 

Wessler, 2007). With the steganography within an EVCS it is also possible to use a 

chaotic map to generate one of the pair of shares to improve the security of the scheme. 

Using a chaotic map to generate half of each pair increases its resistance to cryptanalytic 

attacks (Mostaghim & Boostani, 2014). The encoded shares can also be designed as 

circles, which enables multiple secrets to be encoded by the different rotations of the 

shares (Shyu, Huang, Lee, Wang, & Chen, 2007). Implementing circular shares means 

that a single pair of shares can encode more than one secret, and requires that the users 

have knowledge of which rotations of each circle are required to decode each secret 

image.  

Further extension of visual cryptography schemes has resulted in graph-based 

EVCS (GEVCS). This uses a graph-based substructure, in which there are multiple pairs, 

each of which is able to recover a secret unique to that pair. This means each share 

encodes subsets for every pair it is part of and the shares are denoted by a node in the 

graph. If there exists a vertex connecting two nodes, then there is a secret shared between 

them. Combining the two shares will reveal the secret denoted by the edge (Lu, Manchala, 

& Ostrovsky, 2011). If a graph is complete, or fully connected, then every node shares a 

secret with every other node. This is not always the case, so before combining shares it is 

necessary to check that the nodes in question are connected by an edge. This means the 

creation process for each share is much more complex, as there are multiple target images 

for each source image. Other GEVCS have been proposed, which require that each pair 

of shares be combined at specific angles to encrypt and decrypt the shares (Feng, Wu, 
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Tsai, Chang, & Chu, 2008).  

Because of how complex the creation of shares in a GEVCS is, the main graph of 

the scheme can be decomposed into subgraphs. Decomposing the graph allows each share 

to be created in a smaller scale, which decreases the overall computational complexity of 

the process. A share matrix is then created for recombining the separate subgraphs. This 

involves creating a share matrix for each subgraph, padding it to ensure they are all of 

even length using extra one bits, then concatenating the matrices. Once the concatenation 

is complete, the result is a complete share matrix for the overall graph.  

 

2.6.3 Pixel Expansion and Contrast Constraints 
Graph based extended visual cryptography uses matrix operations to encode the shares of 

information from an original plaintext image. These operations generate the format for 

subpixels, and contain contrast blocks for both the source and the target. The operations 

involve the calculation of the number of subpixels in an image that are to be black – 

controlling the image’s contrast. The contrast constraint also allows the share to be 

generated so as to satisfy a particular contrast constraint, or how dark or light a pixel 

needs to be in order to be considered ‘black’ or ‘white’. This controls the level of clarity 

in the final image once all shares are combined, and as such, every VC scheme attempts 

to maximise the contrast as much as is possible (Liu, Wu & Lin, 2010). One of the issues 

with pixel expansion and contrast is that they cannot both be optimal at once. Each 

algorithm is required to make a trade-off between pixel expansion and clarity of contrast 

(Arumugam, Lakshmanan, & Nagar, 2013). There have been many proposed systems to 

minimize the pixel expansion, and therefore increase the efficiency of the encoding 

algorithm. Many proposed schemes require polynomial pixel expansion. In most, the 

expansion is directly affected by the number of shares (Blundo et al., 2006). Those that 

are attempting to optimize expansion have had success in constraining the pixel 

expansion, however this comes with the trade-off of lowered contrast. Researchers have 

managed to constrain pixel expansion to 𝑂(log 𝑛) time in some schemes (Ateniese, 

Blundo, De Santis, & Stinson, 1996), while systems based around extended graph 

structures have provided constant expansion (Lu et al., 2011).  

 

2.6.4 Random Grid Visual Cryptography Schemes 
A technique known as Random Grid VC (RGVC) has been proposed by researchers as a 

counter to traditional, deterministic VC - as well as probabilistic VC - as a way to control 

pixel expansion. Probabilistic VC differs from classical, deterministic VC in that it uses 
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a binary basis matrix to select whether a given pixel is black or white given equal 

probability. In the traditional RGVC scheme, each pixel’s likelihood of being either black 

or white in a particular share is decided by a random coin toss style operation, and the 

pixels are individually considered to be grids (Kafri & Keren, 1988). The trade-off for 

the lack of pixel expansion in the RGVC scheme is the light transmission. The light 

transmission is the amount of light that is capable of diffusing through the stacked 

transparencies of the shares – the overall contrast of the final decoded image. Because the 

light transmission of shares in an RGVC scheme is automatically ½, as approximately 

50% of all pixels are black in each share, the overall quality of recovered images is 

significantly impacted (Hou, Wei, & Lin, 2014). To counter this degradation of the 

images, generalized RGVC was introduced to create an adjustable light transmission. 

(Wu & Sun, 2013). Generalized RGVC gives an adjustable probability for the likelihood 

that a given pixel in a particular share will be white.  

Further extensions to RGVC schemes have been proposed, such as common share 

RGVC. In a common share RGVC scheme involves a scheme that has a set of shares for 

participants, plus a single key share which is the same for all secrets, and must therefore 

be kept secure, as would be a user’s private key in a public key system (Joseph & Ramesh, 

2015). The individual shares are constructed using a random grid algorithm, where the 

first share is created randomly, and the preliminary second share is created based on that 

first share and the secret image. This set of steps is then iterated over the preliminary 

share two to create the final share two and the preliminary share three, over the 

preliminary share three to create the final share three and the preliminary share four, and 

so on and so forth. The original randomly generated share becomes the key image for all 

shares. The result of this algorithm is a VC scheme that is asymmetric, rather than 

classically symmetric as in probabilistic VC. However, it has also been shown that a 

regular RGVC scheme can be converted to an equivalent classical VC scheme and vice 

versa, as there exists a strict equivalence relation between the two types (De Prisco & De 

Santis, 2014). The relation between these types means that it is possible to use research 

and findings in both types of scheme. 

 

2.6.5 Applications and Research in Visual Cryptography 
Current research has looked at the possible implementation of VC algorithms into fields 

which require high levels of security in image related data, such as biometrics stores of 

data for facial recognition, or fingerprint verification (Ross & Othman, 2011). As VC 

methods involve splitting the secret image into shares, there can then be a private and 
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public database of biometric images, and only once the shares from the two are combined 

will the original biometric data be of use. The original image can also be decomposed 

into shares using target images of other biometric data, benefitting from the extra layer 

of steganography provided by such EVCS.  

The expansion of VC schemes into the arena of colour imagery is a current area 

of development in research, as the addition of colour images increases the overall 

complexity and pixel expansion of the schemes. As such, classical VC methods cannot 

be used for this purpose. Schemes have been proposed that utilize half-toning methods 

on colour images to simplify the process of encryption. Error diffusion has previously 

been used to half-tone a grayscale image for VC schemes, and has been further extended 

to allow for implementation in schemes that use colour images. In colour half-toning, the 

process is applied to the different channels of colour individually (Kang, Arce, & Lee, 

2011). However while the resulting images are recognizable, a side-effect of the half-

toning process is a degradation of image quality, for both the shares and the decoded 

secret image, as it introduces noise and therefore lowers the overall image contrast.  

It is also possible to add supplementary material to VC shares, using a method 

introduced as tagged VC (Wang & Hsu, 2011). In this manner, the shares can be folded 

to give extra information to the participants, as each contains the secret image, plus a set 

tag image for each share that is generated in the scheme. As a result, each individual 

tagged share can then be folded to reveal the tag image. Such a scheme can be extended 

to allow for multiple folding operations to occur, and for shares to be folded at different 

angles. The addition of tags to a VC scheme can also allow for an extra layer of security, 

wherein the tags can contain a particular security message to guard against forged shares, 

and assist in cheating prevention. These tagged schemes have also been extended to create 

a system in which the VC scheme is lossless – that is, there is no difference in visual 

quality between the original and the decoded secret image (Wang, Pei & Li, 2014). 

 

2.7 ISSUES AND PROBLEMS 
 

This section describes the current issues and problems facing cryptography. Section 2.7.1 

looks at current problems in ECC, while 2.7.2 discusses issues facing VC. Section 2.7.3 

then explores difficulties in graph based cryptography. 

 

 

2.7.1 Issues in Elliptic Curve Cryptography 
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The security of ECC relies on computational complexity – the assurance that it is 

intractable to compute the Elliptic Curve Discrete Logarithm Problem. This reliance 

means that the security would be severely compromised should the ever-increasing speed 

of technology provide a method of computing the solution to the Elliptic Curve Discrete 

Logarithm Problem in less than the current exponential time. On the realization of 

quantum computers, the Elliptic Curve Discrete Logarithm problem will no longer be 

computationally infeasible to compute (Krämer, 2015). The weakness surrounding ECC 

in a post-quantum world is based on Shor’s algorithm (Shor, 1994), operating on a 

quantum computer, which is capable of solving problems such as discrete logarithms in 

polynomial time (Ding, Petzoldt, & Wang, 2014). Aside from the possibility of breaking 

the Discrete Logarithm Problem, ECC also has disadvantages in its implementation. It is 

highly complex to implement, and the resulting ciphertext message is increased in length 

from the original plaintext (Chandra et al., 2014).  

Advances in fields such as index calculus and number-field sieves have shown 

possible weaknesses in systems based around the problem of computing discrete 

logarithms (Joux & Vitse, 2012). Index calculus, a method of computing discrete 

logarithms using probability and field arithmetic, has been used by mathematicians to 

exploit characteristics of groups and to then solve the original discrete logarithm problem 

in sub-exponential time (Miller, 1985). While classic index calculus has not been 

implemented successfully against general ECC systems, and exponential time square root 

attacks are more efficient against these general ECC algorithms (Silverman & Suzuki, 

1998), the reduction in computing time for solving the discrete logarithm problem in other 

systems may suggest weakness in the overall computational complexity of DLP-based 

systems. Futher, for some special families of elliptic curves, it is possible to transpose the 

curve into a field where index calculus is then an efficient option for attacks. One example 

is elliptic curves over binary fields, where an attack using Weil descents is capable of 

solving the elliptic curve DLP in sub-exponential time (Petit & Quisquater, 2012). 

Another family of curves which is vulnerable is the class of supersingular elliptic curves, 

which can be transformed into an extension field. If the chosen k is small, the extension 

field system can then be solved in polynomial time (Menezes, Okamoto, & Vanstone, 

1993). Index calculus attacks on discrete logarithms also depend on the type of curve and 

the field over which the problem is defined. Over small fields, cover attacks using index 

calculus are best suited, while decomposition attacks work over curves on an extension 

field. In a variation on the basic index calculus attack, a combination of Weil descent and 

decomposition index calculus attacks have also been shown to enable a transplanted 
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elliptic curve in a Jacobian field to be successfully solved, with a 146-bit elliptic curve 

defined over 𝔽𝑝6, an extension field of degree 6, taking approximately one month to break 

(Joux & Vitse, 2012). The development of these cover and decomposition attacks 

therefore concretely threaten the security of ECC as a whole. 

Implementation of ECC in smart cards could theoretically be weakened by fault 

attacks, which is a type of side channel attack that actively forces a fault within the 

algorithm (Jie & King, 2013). These attacks then gather the faulty information from the 

card to rebuild the secret key for use by the attacker. In particular, there has been the 

suggestion that ECC could be exploited by sign change attacks, which alter the sign of 

the point on the curve, however the actual implementation of this attack would be both 

complex and unlikely to succeed in breaking most applications of ECC. Because of the 

suggested weakness of ECC to these fault attacks, it is important that the design of the 

algorithm take side channel attacks into account during the development process, to 

ensure the system is robust (Ma & Wu, 2014). 

 

2.7.2 Issues in Visual Cryptography 
VC schemes encounter difficulties due to pixel expansion, which is the number of 

subpixels required to encode the correct level of contrast in each share. This expansion 

greatly affects the required overhead of VC schemes, and as such is the target of much 

research (Blundo et al., 2006). While there have been schemes proposed that give a 

constant pixel expansion, such as graph-based extended VC  (Lu et al., 2011), many 

schemes require linear, or even polynomial pixel expansion based on the number of nodes 

within the scheme, making them infeasible for larger implementations. Within the 

schemes which ensure pixel expansion remains constant, the overhead for the encoding 

of the shares is still computationally high for large images with a greater numbers of 

pixels. These systems which constrain pixel expansion also degrade the contrast of an 

image, as there are fewer subpixels differentiating dark and light in the image, making it 

more difficult for the human eye to visually decode. Once multiple colours are introduced 

to the scheme, pixel expansion becomes even more complex, and overall image contrast 

is lowered further. A colour VC scheme will also require higher overall time complexity, 

as each colour within the image must have a different threshold for contrast (Liu et al., 

2008). 

VC is also open to malicious man-in-the-middle attacks, during the transfer of 

shares to participants. If the shares are intercepted, the malicious intermediary could keep 

the original share, and forward a new, false share to the intended participant. The 
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interception of the share would as such result in the security of the scheme being 

completely undermined. Attacking a VC scheme in this manner is generally referred to 

as cheating. While this risk can be decreased by the implementation of an EVCS where 

each participant is assigned a specific target image, cheating is still possible, by a 

malicious participant. A malicious participant is an authorized participant in the scheme, 

who then proceeds to undermine its security through the generation of false shares. 

Cheating prevention VC schemes have been proposed that use specific basis matrices in 

the generation of both the secret shares, and a set of verification shares, to counter the 

ability to generate fake shares (Hu & Tzeng, 2007). These matrices added an extra column 

to the originals, one column of all 1s in the secret share matrix and one column of all 0s 

in the verification share matrix. The verification shares can then be stacked to check the 

veracity of the image. However these basis matrix schemes have since been proven 

through cryptanalysis not to be cheating immune using two theoretical cheaters working 

in concert, who are then able to determine the location of these extra columns within the 

basis matrices (Chen, Horng, & Tsai, 2012). To prevent this type of cheating, it is 

necessary to introduce multiple extra zero columns into the basis matrices. As a result, 

cheating prevention VC schemes result in higher overheads and increased pixel expansion 

when compared regular VC algorithms, which results in a lower level of utility in real-

world application. The proposal of adding tags to individual shares to allow for the 

identification of false or forged shares may offer additional protection against cheating, 

however it is still vulnerable to attack if an attacker is in possession of a genuine share, 

and can therefore find and replicate the security tag. 

 

2.7.3 Issues in Graph Based Cryptography 
Encryption systems that use graphs for encoding, like those based around VC, can have 

very high computational overheads, due to the size of the graphs required to achieve the 

required levels of security. Also, those encryption methods that base themselves around 

the special colourings of vertices and edges are vulnerable to cubical linearization attacks, 

which make decryption possible, despite being costly in practice (Ustimenko, 2014). For 

those graph-based systems that also rely on the DLP, the same vulnerabilities encountered 

by ECC encryption apply. 

Another issue within graph based systems is implementation. Representing a 

graph within a computer program can be broken down into four possible types: the 

adjacency list; the adjacency matrix; the incidence list; and the incidence matrix. Each 

lists either vertices or edges, and they are either enumerated fully - in a matrix - or only 
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where a connection occurs - in a list (Riaz & Ali, 2011). These implementations affect 

the use of a particular system, especially with larger connected graphs, with many entries 

in its matrix or list.  

 
2.8 CONCLUSIONS 
 

Graphic based systems are slowly being incorporated into mainstream use due to their 

high levels of security. However, the heavy overhead incurred by the computational 

components of VC systems can limit their usefulness, and they remain vulnerable to 

attack through the creation of forged shares. Meanwhile the security of ECC algorithms 

depends on the DLP remaining intractable. The development of specialized cover and 

decomposition attacks against ECC, and the future advent of quantum computing put the 

security of the Elliptic Curve DLP at risk. These issues require further examination, as do 

alternative graphic based systems that incorporate the use of topology for high levels of 

security. ECC is currently the best developed, researched and applied graphic based 

cryptographic system and it can therefore be used as a benchmark to compare the 

performance of any other graphic based system.  

 Based on the analysis of the security of ECC and VC systems, a comparative 

analysis of four existing cryptographic methods is proposed in the next chapter, as well 

as the design, implementation and evaluation of a fifth proposed system. Chapter 3 

defines the research methodology which is fundamentally a comparison of competing 

cryptographic algorithms. 
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Chapter 3 
Methodology 

 

3.0 INTRODUCTION 
 
In Chapter 2, a wide range of literature was reviewed and assessed, and the foundational 

topics of cryptography, group theory, and graphic methods as applied to encryption were 

defined. These topics were then analysed, and current research in the areas of encryption 

and graphic based methods was explored.  

In this chapter, the foundation formed from the analysis of literature in Chapter 2 

is utilized in the design of the study. Section 3.1 critically evaluates similar studies of 

relevance to the topic, and explains in depth how the authors of these studies went about 

the study and the results they gained. Section 3.2 then gives the design of the study, with 

reference to the standards and benchmarks from the previous research evaluated in section 

3.1. In section 3.3 the requirements for the collection and analysis of the resulting data 

are explained, as well as the data presentation format. Section 3.4 acknowledges the 

limitations of the research design, and section 3.5 summarises the overall study. 

 
3.1 REVIEW OF SIMILAR STUDIES 
 

In this section, prior similar studies and relevant works are reviewed and evaluated for 

strengths and weaknesses, as well as the potential application they pose to the design of 

this study. The key focus is on the way in which the authors went about their research in 

order to achieve their findings. In this way the best approach to cryptographic testing 

research may be derived. Nine comparative studies which propose testing criteria for the 

evaluation of encryption algorithms are introduced and explored in depth in sections 3.1.1 

through 3.1.9. Each is evaluated for strengths and weaknesses, and the ways in which the 

proposed benchmarks in each have been tested is explored. The following section 3.2 

then details the design of the research, and the standards for testing developed from the 

benchmarks proposed in the evaluated studies. 

 

3.1.1 Jeeva, Palanisamy and Kanagaram (2012) 
Jeeva, Palanisamy, and Kanagaram (2012) propose several standards for measuring the 

security of an algorithm and these are tested on the most widespread symmetric and 
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asymmetric encryption algorithms. To measure the overall security of an encryption 

algorithm Jeeva et al. (2012) propose using the key length, strength against attacks such 

as brute force, known plaintext attacks, et cetera. The ability to alter the encryption 

parameters at run time, called ‘tunability’ (Jeeva et al., 2012, p.3036) is also suggested as 

a desirable trait for an algorithm to have, as it increases the overall security. 

 

Factors 
Analyzed 

Symmetric Encryption Asymmetric Encryption 

AES DES 3DES Blowfish RC4 RSA Diffie-Hellman 

Encryption 
Ratio 

High High Moderate High Low High High 

Speed Fast Fast Fast Fast Slow Fast Slow 

Key Length 128, 192 

or 256 bit 

56 bit 112 or 

168 bits 

32 to 448 

bits 

256 bits > 1024 

bits 

Key Exchange 

Management 

Tunability No No No Yes No Yes Yes 

Security 
Against 
Attacks 

Chosen 

plaintext, 

known 

plaintext. 

Brute 

force 

Brute 

force, 

chosen 

plaintext, 

known 

plaintext 

Dictionary 

attacks 

Bit 

flipping 

attacks 

Timing 

attacks 

Eavesdropping 

Figure 3.1: Results from Jeeva et al., 2012, p. 3036 

Jeeva et al. (2012) propose that the efficiency of an encryption algorithm can be measured 

through computation time. The overall time taken to encrypt and decrypt the information 

is required to be “fast enough to meet real time requirements” (Jeeva et al., 2012, p.3036). 

Also proposed is the calculation of the encryption ratio – measured by the length of the 

data to be encrypted and the key length. Jeeva et al. (2012) suggest this should be 

constrained as much as possible to improve overall efficiency in the algorithm. The results 

of their study suggest overall that symmetric encryption gives a faster performance where 

the encryption ratio is higher. Systems such as RC4, a symmetric stream cipher with a 

low encryption ratio, are classed as slow, while AES, which receives a high encryption 

ratio, is rated as fast.  

 The benefit of studying both the efficiency and the security of encryption 

algorithms is that the trade-off between the strength of the algorithm and the overall 

computational complexity. It can be carefully evaluated to deliver a better overall 
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understanding of the usefulness of the algorithm in real world situations. Encryption 

systems such as AES, which is shown in Figure 3.1 to have high levels of both efficiency 

and security, will be more portable to multiple architectures and situations than those such 

as RC4, which Figure 3.1 shows as rated slow in overall encryption time. Strong but slow 

encryption algorithms are unlikely to be utilized in any situation that requires real-time 

processing or fast communication between participants.  

 

3.1.2 Afzal, Kausar and Masood (2006) 
Afzal, Kausar, and Masood (2006) proposed and implemented a framework for the 

evaluation of 34 different stream ciphers. These ciphers were submitted to ECRYPT, the 

European Network of Excellence for Cryptography, for the eSTREAM project, which 

looked to create a standard stream cipher algorithm (Afzal et al., 2006). Stream ciphers 

are highly useful in processing real time data, due to the way they operate on individual 

pieces of plaintext sequentially, usually at high speed. The study done by Afzal et al. 

(2006) was prompted by the need for a new standard of stream cipher, and focused on the 

evaluation of the submissions for such a standard by the international research 

community. The study looked at the overall design of each of the ciphers. Each main 

subset of stream cipher is broken down, evaluated for strengths, weaknesses and practical 

applications. For the purposes of evaluation, the proposed ciphers are split into two 

categories; those with high-level software implementations and security of at least 128-

bits, and those with low-level hardware implementations and security of 80-bits. The 

hardware and software implementations were also designated as either bit-oriented, 

operating on a single bit of data at a time, or word oriented, operating on a bit-word.   

According to Afzal et al. (2006), there are several main elements commonly used 

in stream cipher design. Linear feedback shift registers (LFSR) are common due to their 

structure, which allows for low-cost implementation. Because LFSR operate in a linear 

fashion, ciphers that use LFSR in their design are required to also include a form of non-

linear function. Non-linear feedback shift registers (NLFSR) do not suffer from the linear 

properties of LFSR, but most NLFSR operate in small cycles, and are weakened as a 

result. Feedback with carry shift registers (FCSR) are LFSR with one point of difference. 

Instead of modulo arithmetic using modulus 2, the addition is performed through carrying 

propagation. To ensure non-linearity, functions such as clock-controlled generators can 

be implemented in the cipher. If the cipher is irregularly clocked, this can break the linear 

properties of the algorithm. Non-linearity can also be introduced using combining or 

filtering functions. 



 

 33 

 Within the categories set out by Afzal et al. (2006), LFSR was the most commonly 

implemented function, however only a few ciphers submitted used a non-linear function 

in conjunction with LFSR. The only cipher that implemented a non-linear function was 

subsequently discovered to be weak to an algebraic attack. The second most popular 

design element found in the 34 submitted ciphers was the non-linear combining or 

filtering functions.  

 Because Afzal et al. (2006) evaluate the different ciphers based on their design 

elements, they are able to compare within categories, as well as apply known techniques 

for cryptanalysis on the ciphers within those categories. This gives a framework for the 

testing of each cipher, as not all cryptanalytic methods can be applied to all stream 

ciphers. The results of this comparative study by Afzal et al. (2006) explored only the 

design features of each stream cipher, and gave little practical data in regards to each 

cipher’s efficiency, or their individual security. Most of the analysis of the algorithms 

was instead based on the theoretical basis of the design elements.   

 

3.1.3 Sharma, Garg and Dwivedi (2014) 
Multiple studies have examined the comparative efficiency and performance of 

encryption algorithms, without also exploring the security of each algorithm. In the study 

by Sharma, Garg, and Dwivedi (2014), the authors propose a new symmetric encryption 

method called NPN, or nth prime number. The NPN encryption system is then compared 

with the DES algorithm. The comparison in Sharma et al. (2014) is based on the time 

taken for encryption and decryption in each algorithm, as well as the overall memory 

requirements for each. This provides a clear and concise view of the comparative 

efficiency between the proposed algorithm and the benchmark DES algorithm, however 

the results of this study are limited by the lack of comparison between the security of the 

two competing algorithms.   

 The proposed NPN encryption system in Sharma et al. (2014) utilizes 

multithreading for efficiency optimization, and is a symmetric cipher. The use of parallel 

programming within the implementation is offered as a way to optimize its time 

requirements in encryption and decryption. NPN operates on the class of Strings in Java, 

and involves finding the nth prime number for each character of the plaintext, and then 

adding a particular constant to that recovered prime prior to adding the result to the 

ciphertext string.   

The choice of DES as the single comparative algorithm is somewhat limiting, as 

DES was superseded in 2001 by AES after being proven to be computationally insecure. 
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As such, DES is no longer considered a benchmark for security and efficiency in 

cryptography applications. The comparative results of the study look at a standard DES 

algorithm and a multithreaded NPN algorithm, and their relative efficiency in 

nanoseconds. For a larger data size of 156 characters, the standard DES algorithm takes 

approximately 1.93% (3d.p.) of the time taken by the multithreaded NPN algorithm.  

The NPN algorithm also uses only a 32-bit key, which suggests the algorithm would be 

computationally insecure. 

 Sharma et al. (2014) offer data on the overall efficiency of each algorithm as 

relates to encryption and decryption time, but do not give information about the 

comparative security of the algorithms. This lack of analysis in regards to security means 

the overall analysis is limited in its ability to draw conclusions about the use of each 

algorithm. The choice of DES as a benchmark also limits the author’s ability to 

demonstrate the security and efficiency of their algorithm as compared with current 

technological standards. 

 

3.1.4 Kohafi, Turki and Khalid (2003) 
In Kofahi, Turki, and Khalid (2003), the efficiency of the DES, 3DES and Blowfish 

algorithms are compared, based on memory requirements and processing time. Similar to 

the previous studies discussed, Kofahi et al. (2003) provide a clear comparison of the 

efficiency of each algorithm, but the comparative security is not discussed.  

 Kofahi et al. (2003) utilize the inbuilt Java Cryptography Architecture (JCA) for 

the implementations of their compared algorithms. All three compared algorithms are 

symmetric block ciphers, and are designed around Feistel ciphers. Because of the 

similarities in design, they are highly comparable. Kofahi et al. (2003) timed each of the 

modular operations of key generation, encryption and decryption individually for each of 

the three algorithms, without user interaction, so as to give a more complete picture of 

the efficiency of each. For all algorithms, the time required for key generation was 

approximately equal. Blowfish was demonstrably more efficient in encryption and 

decryption than DES and 3DES, taking approximately 13.5 seconds for each operation, 

where DES took 25.3 for encryption and 26.5 for decryption, and 3DES took 39.2 for 

encryption and 38.5 for decryption.  

 The comparison of relative efficiency of the algorithms in Kofahi et al. (2003) 

does not look at CPU load, or memory requirements, and also fails to address the relative 

security of each algorithm. As such, it is limited in comparative ability to the time 

requirements for each stage of the algorithm. However, the testing schema is designed to 
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compare the three algorithms and gives a thorough overview of the time requirements, 

which can be used as a basis for further testing. 

 

3.1.5 Masadeh, Aljawarneh, Turab and Abuerrub (2010) 
Masadeh, Aljawarneh, Turab, and Abuerrub (2010) provide a framework for evaluating 

proposed algorithms against industry standards. The authors propose a new encryption 

method specifically aimed towards the encryption of wireless network traffic, and 

compare it in practical implementations against AES, DES, 3DES and Blowfish. 

However, this comparison is limited as the proposed method is asymmetric, while all the 

comparative algorithms are symmetric.  

 The proposed sWiFi system (secure Wireless Fidelity) uses a Feistel structure and 

asymmetric encryption. It utilizes Automata Theory, and contains an alphabet, or 

codebook, of all words W. The designed implementation operates on ASCII characters, 

and has two main functions for key generation S(L) and P(L) which are used to create the 

keys for encryption and decryption in the algorithm. The size of the key used in the system 

proposed by Masadeh et al. (2010) is not discussed, though the algorithm is disclosed as 

operating on 64 bit blocks of data. 

The study bases evaluation on the time requirements for each of the algorithms. 

All algorithms were evaluated on three operating systems, Windows Vista, Windows XP 

and Linux. The algorithms were tested in each environment on three sizes of file: 145MB, 

510MB and 900MB. Masadeh et al. (2010) then give the time taken in seconds for 

encryption in each algorithm. The proposed sWiFi scheme gives a better time 

performance overall than the standard algorithms it is tested against, for each data size. 

The time taken for decryption and key generation is not addressed by the study.  

The results of the study are based on quantitative empirical data, and all 

algorithms are tested on three different computer operating systems and with three 

different sample sizes of plaintext for a fuller range of results. The lack of results relating 

to relative efficiency in decryption and key generation limits the ability of the authors to 

draw conclusions about the performance of the algorithms. Masadeh et al. (2010) are also 

hampered by the lack of evaluation of the security of the compared algorithms, as the 

proposed sWiFi system does not involve the disclosure of key size or details of its 

implementation.  Comparison to the efficiency and security of other asymmetric ciphers 

would also give a better view of the relative performance of the proposed sWiFi system. 

 

3.1.6 Thakur and Kumar (2011) 
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Thakur and Kumar (2011) compared the relative performance of AES, DES and 

Blowfish, using the execution time over different sizes of data as the measure of 

efficiency. AES was evaluated in each of four modes: ECB, CBC, OFB and CFB. The 

simulation results gave Blowfish as the most efficient algorithm in respect to 

performance. 

 Thakur and Kumar (2011) used the Java Cryptography Architecture (JCA) in the 

Java Development Kit 1.7 to implement the three algorithms, through use of Java’s 

Cipher class. DES was evaluated with a key size of 64 bits, while AES and Blowfish used 

a key size of 128 bits. The authors did not evaluate relative security, as “strength against 

cryptographic attacks is already known and discussed” (Thakur and Kumar, 2011, p. 10). 

Instead, performance was evaluated based on the time required to encrypt and decrypt 

plaintext of multiple sizes. The execution time was measured in seconds, and the tested 

plaintext sizes were from 3 KB to 203 KB blocks. Each experiment was performed twice, 

on a system with an AMD Sempron processor running 2GB of RAM. Thakur and Kumar 

(2011) reason that the repetition of the experiment allows them to establish of the validity 

of the experimental results. 

 Overall, Blowfish gave a better performance in encrypting and decrypting the data 

than DES or AES. AES was tested against DES and Blowfish in each available mode: 

ECB, CBC, OFB and CFB. This enabled a further comparison of the efficiency of each 

mode of AES encryption, with OFB mode resulting in the best performance. However, 

AES resulted in the highest processing time of all the algorithms, regardless of the chosen 

mode of encryption. The repetition of the tests lent validity, though many more repetitions 

would likely provide a more conclusive picture. 

 

3.1.7 Bhat, Ali and Gupta (2015) 
Bhat, Ali, and Gupta (2015) studied the performance of the AES and DES encryption 

algorithms. This research looked at the memory requirements of each algorithm and time 

taken, as benchmarks for efficiency. It also examined the overall avalanche effect of the 

algorithms as the benchmark for security. The benefit of looking at the avalanche effect 

in an encryption algorithm is the ability to gauge the scheme’s resistance to chosen 

plaintext attacks.  

AES resulted in almost double the change in bits that was provided by DES in the 

ciphertext given a one bit variation in the plaintext. This increase in the avalanche effect 

provides a much higher level of security against cryptanalysis. However, the overall 

memory requirements for AES proved to be four times that of the DES implementation. 
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The simulation time of AES was also far higher than that of DES, with AES taking 

approximately ten times the simulation time of the DES implementation. As AES 

operates using a 128-bit key where DES uses a 64-bit (56-bits for computation) key, this 

discrepancy in efficiency is expected. The trade-off required for higher levels of security 

is decreased efficiency. Bhat et al. (2015) implemented the experimental design in Matlab 

7, on an Intel Pentium machine with 2 GB of RAM.  

The authors do not discuss the repetition of the performed tests, or the specific 

details of the implementations, which creates difficulties for readers in regards to 

reproducing the study or critically analysing the results. 

The comparison made by Bhat et al. (2015) of avalanche effect and efficiency 

gives a clear view of the some of the trade-offs made in obtaining the higher level of 

security in AES. The dramatic increase in the avalanche effect is tempered by the higher 

performance costs necessary to achieve the required level of security. The lack of 

information regarding the design of the study gives the reader little to no information 

about the robustness of the presented results. 

 

3.1.8 Prachi, Dewan and Pratibha (2015) 
Prachi, Dewan, and Pratibha (2015) compared the security and efficiency of ECC, RSA, 

DES and AES. This comparative analysis was based on theoretical knowledge, as 

opposed to practical simulations. Efficiency was measured by the key size of each scheme 

and the estimated output size of the data, to evaluate likely memory requirements. The 

security analysis was based on the key size of the scheme in relation to the number of 

operations required for a successful brute force attack.  

The overall consensus of Prachi et al. (2015) was that ECC had a better level of 

security and a higher level of efficiency than the other algorithms, based on these 

theoretical underpinnings. The comparison of key sizes between RSA and ECC displayed 

a higher level of computational security for relative key size in ECC, with a 160-bit ECC 

key equivalent in security to a 1024-bit RSA key. ECC is also shown to be theoretically 

more efficient than RSA, as a smaller key size results in lower computational overheads. 

However, the comparison with DES is limited to the key size of the algorithm, and while 

the operation of an AES implementation is explained by Prachi et al. (2015), little 

practical or theoretical comparison is made by the authors between AES and ECC. The 

results of the analysis gave the security of algorithms as “Good”, “Excellent” or “Not 

Good Enough” ratings, but did not give the metrics used to arrive at these conclusions, 

which removes the ability to reproduce the study. 
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3.1.9 Singhal and Raina (2011) 
Singhal and Raina (2011) compared the efficiency and performance of AES and RC4. 

They used empirical data, and their metrics based the evaluation on time taken for 

encryption and decryption, the throughput (processing speed in kB/s), the CPU load for 

each process and the overall memory used. The wide span of the metrics gives a thorough 

representation of the efficiency of the two algorithms, and the differences in performance 

between RC4 as a stream cipher and AES as a block cipher.  

Each algorithm was tested with multiple sizes of plaintext data, with file sizes 

between 100 KB and 50 MB. AES was also tested in three different operating modes, 

ECB, CBC and CFB, to see the effect the mode has on its overall performance. ECB 

mode gave the best performance of the AES encryption modes, however it was still 

significantly slower than RC4. Encryption time was also tested using multiple different 

key sizes of 128, 196 and 256. The time requirements for encryption in RC4 remained 

stable despite the change in key size, while the time taken for encryption with AES 

increased as the key size increased. One explanation for the increase in time is the increase 

in rounds. 192 bit AES involves 12 rounds, compared to 128 bit AES with 10 rounds, and 

256 bit AES performs 14 rounds. This translates into many more operations per data block 

to encrypt the plaintext, which then accounts for the time difference. Similarly, as the key 

size used in AES increases, the throughput of the algorithm decreases. The results for 

efficiency in decryption is mirrored by those of encryption. 

In testing the memory, Singhal and Raina (2011) found that RC4 required lower 

levels of memory to perform encryption on larger files. As the file size increased, AES 

required dramatically more memory than the RC4 implementation. The CPU load 

requirements for RC4 over the different file sizes were also lower than that of all modes 

of AES. Based on these metrics, RC4 takes less time to encrypt and decrypt information 

overall than AES, regardless of the mode of use, and the key size of the encryption system 

is shown to have less effect on the overall encryption time of RC4 than it does in AES. 

Using the standards for evaluation given, the authors are able to provide empirical 

evidence for the assertion that the performance of RC4 is more efficient than that of AES.  

 

3.2 RESEARCH DESIGN 
 
This section gives the design of the study, which starts with guidance derived from the 

research reviewed in Section 3.1. Section 3.2.1 summarizes the studies discussed in 
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Section 3.1, as well as the issues and problems faced in these studies. The research 

questions are proposed in 3.2.2. The phases of the research and the architecture of the 

testing systems are described in 3.2.3. Then in 3.2.4, the design of the proposed graphic 

system, referred to as a coordinate matrix encryption scheme, is explained. 

 

3.2.1 Summary of Similar Studies and Review of the Problems and Issues 
The standards for security and efficiency proposed in Jeeva et al. (2012) are the most 

comprehensive of the examined studies, and as such can be used to design the benchmarks 

for the comparison of the graphic based encryption algorithms. The study provides clear 

testing criteria, which measure the efficiency and security for each algorithm. However, 

more detailed analysis of the security of each algorithm is required, and thus extra testing 

criteria from other studies will also be required such as the measuring of the avalanche 

effect of each algorithm, proposed in Bhat et al. (2015). The avalanche effect of an 

algorithm is an easily implemented and highly effective way of quantifying the security 

of a system. It is necessary when designing the study to ensure that all standards for both 

efficiency and security are as comprehensive and exhaustive as possible, so that the 

resulting data can be compared with confidence that it is representative of the relative 

performance of each algorithm.  

 Many of the evaluated studies focused in particular on either security or efficiency 

in their testing. This bias towards on particular aspect of the algorithms results in an 

uneven comparison of the trade-offs required. It is necessary to study how a particular 

algorithm has achieved a high level of efficiency, and what trade-offs may have occurred 

in security to obtain it, and vice versa. As such, this study will attempt to balance the 

testing of each aspect, so that the reader might get a more complete picture of the benefits, 

drawbacks and possible applications of each algorithm tested.  

 Another point of importance in the comparative analysis of encryption algorithms 

is the necessity of comparing algorithms of the same classification. Studies such as 

Masadeh et al. (2010) compare a new asymmetric method with standard symmetric 

methods, rather than with established asymmetric methods. While some comparison 

between types is useful, more relevant data results from the comparison of algorithms of 

the same type. As such, this study will use comparable algorithms of both symmetric and 

asymmetric type, as well as graphic and classical algorithms and stream and block 

ciphers, to give a full range of results by comparing industry standards with the proposed 

symmetric graphic-based, word-oriented, stream cipher system. 

 One aspect on which multiple studies on the comparison of encryption algorithms 
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often suffer is the lack of empirical data on which to base assertions. Surveys such as 

Kofahi et al. (2003) and Chandra et al. (2014) rely on the theoretical basis of the 

algorithms in question, which limits the results of such a comparison. The research in this 

study will rely on both theoretical knowledge and actual test results, so as to give a more 

thorough and representative analysis. The importance of the theoretical comparative 

performance of the algorithms is uncontested, however providing empirical data from 

simulations of the algorithms in a study gives a better view of the theoretical results, as 

well as providing a stronger basis for any and all conclusions from the data. As such, this 

study will look at both the theoretical basis of and real-world implementations of the 

comparative algorithms and the results of both, so as to find the algorithm that best 

balances security and efficiency. 

 

3.2.2 Research Questions and Hypotheses 
From the literature reviewed in Chapter 2, a detailed understanding and evaluation of the 

ideas, foundations and benchmarks for cryptographic algorithms has been presented. The 

integrity and security of data are the main motivations behind the use of cryptographic 

algorithms and the implementation of graphic based systems revolves around their 

unusual structures and high levels of security. The ease and efficiency of the deployment 

of an encryption algorithm is also an important factor in choosing a cryptographic 

algorithm. Using these criteria of security and efficiency, it is possible to evaluate 

multiple cryptographic algorithms for their overall usefulness and application to real 

world situations. Based on these ideas and research criteria, two main research questions 

have been formulated for the study of graphic based encryption algorithms in this thesis. 

The first research question can be derived from the evaluation of literature surrounding 

ECC, evaluated in 2.5, which suggests the particular structure allows for greater security 

and efficiency than the traditional RSA. The improvement in security is shown in Pateriya 

& Vasudevan (2011), who found that a 256 bit ECC key is equivalent to a 3072 bit key 

in RSA. The second research question comes from the research completed into problems 

surrounding the implementation of ECC and VC schemes, evaluated in 2.7.1 and 2.7.2. 

VC schemes suffer particularly due to pixel expansion. Blundo et al. (2006) found that in 

most VC schemes pixel expansion increased relative to the number of nodes. Liu et al. 

(2010) noted that all schemes attempt to minimize this expansion to improve the 

efficiency of the implementation. ECC schemes face difficulties in implementation due 

to their complexity, and the increased length of the ciphertext (Chandra et al., 2014). 
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Research Question 1:  

What are the security benefits of graphic based systems in comparison to classical 
block ciphers? 

Research Question 2:  

What difficulties are faced in the implementation of graphic based systems? 
 

Sub-questions: 

Sub-question 1:  

Does the implementation of the proposed method provide better levels of security 

than the comparable algorithms? 

Sub-question 2:  

How is the level of security achieved in the proposed method? 

Sub-question 3:  

What is the reduction in computational overhead in the proposed scheme from 

comparable algorithms? 

 

From these research questions, the studies evaluated in 3.1 and the literature reviewed in 

Chapter 2, two specific hypotheses have been developed for further exploration. 

Hypothesis 1 is derived from the research conducted into comparing traditional RSA and 

the graphic-based ECC. ECC provides a faster execution with lower overheads, as 

demonstrated in the study conducted by Prachi et al. (2015), reviewed in subsection 3.1.8. 

Hypothesis 2 is derived from the studies of the security of VC methods, and the VC 

definition of perfect secrecy, as originally proposed by Naor & Shamir (1995), wherein 

an adversary with unlimited computing power is required to guess, for any given pixel, 

whether that pixel is black or white. 

 

Hypothesis 1:  

Graphic based methods provide a better level of security with lower overheads than 
classical encryption techniques. 
 

Hypothesis 2:  

The proposed encryption system based around graphic methods is computationally 
secure against cryptanalytic and brute force attacks. 
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3.2.3 Research Phases & Algorithm Implementations 
The testing and analysis performed in the study will require multiple phases of 

development. Each phase will enable fine-tuning of the algorithms and testing methods, 

so as to ensure that all collected results are as accurate as possible. Phase 1 will involve 

the development of the implementations for the comparative algorithms. Phase 2 will see 

the implementation of the proposed coordinate matrix encryption scheme. Phase 3 will 

then consist of the testing of the algorithms, based on the benchmarks described in Section 

3.3 for efficiency and security. In Phase 4, further refinements will then be made to the 

proposed coordinate encryption scheme, which will be retested as part of Phase 5. The 

final Phase 6 will involve the analysis of the data from phase 5 based on the predetermined 

benchmarks for efficiency and security.  

 
Figure 3.2: Phases of research 

All proposed algorithms will be implemented in Java, and two different versions of the 

proposed algorithm will be developed to allow for a more effective comparison. The 

testing will occur on the following machine configuration: a laptop with a 3.1 GHz Intel 

Core i7 processor, and 16 GB RAM.  

The standardized algorithms that have been chosen for the purposes of 

comparison are: Elliptic Curve Cryptography (ECC); 2-out-of-2 Visual Cryptography 

(VC); the Advanced Encryption Standard (AES); and Rivest Cipher 4 (RC4). ECC is the 

most widely developed of graphic encryption methods, and should therefore provide a 

target in performance for the security and efficiency of such systems. A 2-out-of-2 VC 

scheme operating on binary digits instead of black and white pixels will provide a highly 

comparable implementation to the proposed coordinate matrix encryption system. Each 

of the generated shares for the VC scheme will consist of a binary string, rather than a 

black and white share image. AES is included to allow for the comparison of the 

differences in efficiency and security between graphic and classical methods of 

encryption. Finally, RC4, while now considered insecure, is still one of the best-

researched stream ciphers, and is not under patent. It is also freely available for 
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implementation through Java’s cryptographic framework, and as such can be used for 

comparison between the proposed system detailed in 3.2.4 and classical stream ciphers. 

The implementations of AES, RC4 and ECC will utilize Java’s inbuilt crypto package 

and its functions. 

 

3.2.4 Coordinate Matrix Encryption Algorithm Design 
The proposed algorithm design for the Coordinate Matrix Encryption (CME) scheme will 

be based around a square coordinate matrix and transformations in a finite Galois field 

𝐺𝐹(2𝑛). The coordinate matrix design will be based around the concepts used in error-

correcting codes, in which sparse matrices and code words are used to eliminate noise 

from the transmissions, and will utilize security principles from VC. A brief overview of 

the algorithm is given in this section. Full implementation details can be found in Chapter 

4, and source code for the algorithm can be found in Appendix B.  

 
Figure 3.3: A randomly generated key matrix for a 3-bit coordinate matrix scheme. 

An n-bit coordinate scheme which uses all 2𝑛 possible n-bit strings will consist of a 2𝑛-

by-2𝑛 encryption matrix, containing 22𝑛 total coordinates. Within the matrix, each 

possible n-bit string of binary values will be assigned to multiple random coordinate 

locations, as per Equation 3.2.4.i.  

Equation 3.2.4.i  𝑀𝑠𝑖𝑧𝑒 =  (2𝑛)2 

    𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑡𝑟𝑖𝑛𝑔 =  𝑀𝑠𝑖𝑧𝑒
2(2𝑛)

 

The remaining coordinate locations will be assigned as empty, for use in padding the 

ciphertext output. The process of generating this key matrix is shown in Figure 3.4. Once 

this coordinate matrix has been created it becomes the encryption key for all users, 

because the coordinate scheme is symmetric. The total number of possible key matrices 
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for an n-bit scheme is described in Eq. 3.2.4.ii. Fig 3.3 shows a 3-bit CME key matrix. 

Equation 3.2.4.ii  𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ =  2𝑛 

    𝑀𝑎𝑡𝑟𝑖𝑐𝑒𝑠 = (𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ + 1)𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ
2
 

 

 
Figure 3.4: Key matrix generation in the Coordinate Matrix Encryption scheme. 

As well as the creation of a key matrix, the key matrix is then used to produce a pseudo-

random key string. This key string is the first x coordinate for each of the generated bit 

strings. The key string is combined with the plaintext as the first part of the encryption 

process to eliminate any statistical properties prior to the main encryption, via an 

exclusive-OR operation. The key string is combined with the plaintext again as the last 

stage of decryption to recover the original plaintext. Because the key string is produced 

from the key matrix, there is no requirement to communicate an extra key, as all parties 

with a copy of the key matrix can calculate the key string.  

The main encryption process uses a randomized coin toss style procedure, which 

is similar to the VC method of choosing whether a given pixel is black or white. This coin 

toss decides if the next section of the ciphertext is to be a blank padding section, or if it 

is the next section of the plaintext message. If it is a blank padding section, one of the 
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locations containing an empty entry is picked at random from a blank list, and the binary 

or integer coordinates (depending on the implementation) of that location are then input 

as the next part of the ciphertext. Else, if the section is a part of the plaintext message, 

then a location containing that bit string is randomly chosen from the list of locations for 

the string. The location is then translated into the corresponding coordinates and 

concatenated to the ciphertext. The scheme involves the addition of exactly the same 

number of blank coordinates as enciphered message coordinates. As a result of the 

addition of padding characters, the resulting ciphertext is exactly four times the length of 

the plaintext, with two coordinates for every message or padding character, and exactly 

the same number of padding and message characters. The style of encryption means that 

the total length of the outputted ciphertext is fixed at exactly four times the length of the 

plaintext, which may prove to result in undesirable overheads for transmission.  

The padding of the ciphertext adds noise and confusion to the output, and the 

exclusive-OR operation assists in stripping the statistical properties from the plaintext. 

The addition of multiple locations for each bit string also further diffuses any statistical 

properties that the combined key string and plaintext may have, and protects against 

attacks involving known or chosen plaintext. The variable nature of the padding and 

different coordinate locations for each string results in multiple different ciphertexts for 

each encryption of a single plaintext, and as such help guard against known plaintext 

attacks. Because the encryption process operates on individual pieces of the plaintext 

sequentially, the proposed CME scheme can be classified as a stream cipher in the byte 

implementation, operating byte-by-byte, fulfilling the definition in Martin (2012) of a 

stream cipher as a block cipher with a block size of less than 64 bits. The proposed system 

could theoretically be implemented with a larger block size, for use as a standard 

symmetric block cipher, however the memory requirements to generate a key matrix in a 

64-bit scheme would be significant, and are too costly for the purposes of this research. 

As such, the proposed CME system will be implemented as a stream cipher, with a block 

size of 8-bits for the implementation compared with AES, RC4 and ECC, and a block 

size of 4-bits for the implementation compared with VC. 

The use of multiple locations for each bit string and the addition of an equal 

number of padding coordinates at random locations in the ciphertext should provide 

resistance to cryptanalysis, and particularly to known and chosen plaintext attacks, as the 

encryption process therefore results in a non-singular mapping. This non-singular 

mapping means each plaintext input has many possible ciphertext outputs for any one key 

matrix. The multiple locations also result in far more of the overall matrix being taken up 
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by bit strings than would be the case if each string appeared only once. Again, this helps 

prevent cryptanalytic attacks, as it increases the likely occurrence of the same of padding 

coordinates appearing more than once, which is helpful in further confusing any analysis 

of the resulting data. A sample of a 16-bit plaintext and the corresponding 64-bit 

ciphertext resulting from encryption using a 4-bit coordinate matrix scheme is shown in 

Figure 3.5. 

 
Figure 3.5: Example plaintext ciphertext pair output from a 4-bit CME scheme. 

The decryption process uses the same key matrix as in the encryption process and 

looks up each of the coordinates. If a given coordinate is an empty padding variable, it is 

discarded. If not, the value of the coordinate is combined with the next character of the 

key string using exclusive-OR, and the resulting value is added to the plaintext output. In 

this manner, the extra noise generated by the encryption process to ensure security is 

efficiently removed during decryption. Because each step of the decryption process 

consists only of simple entry check and exclusive-OR operation, the overall efficiency 

for decrypting the ciphertext is theoretically higher than that of the encryption process. 

The CME algorithm, implements VC methods of security but is classified as a 

symmetric encryption algorithm, not a secret sharing scheme. Depending on the bit-size 

of the scheme, it can be classed as either a stream or block cipher. This is due to the way 

it operates on a set number of bits at each point before moving to the next set, and the 

blocks of bits are not linked. The 8-bit byte version is a stream cipher, as it moves along 

the plaintext encrypting it one byte at a time. Figure 2.2 (Martin, 2012, p.107) showed 

the operation of block versus stream ciphers. In relation to classical encryption methods, 

the CME cipher also makes use of some of the ideas of error-correcting codes seen in 

subsection 2.2. The influence of error-correcting codes can be seen in the use of binary 

codewords of a particular bit size, which are used to encrypt the data. Based on the 

divisions established by Afzal et al. (2006), the 8-bit CME scheme is a word-oriented 

stream cipher, as it operates byte-by-byte, rather than bit-by-bit. 

 

3.3 DATA REQUIREMENTS 
 
This section outlines the requirements for the analysis and presentation of the raw data 

resulting from the research outlined in the previous section. Subsection 3.3.1 summarizes 
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the type of raw data that will be used for analysis of the results, measuring for efficiency 

and security. Subsection 3.3.2 describes the methodology of the analysis, and the 

standards each algorithm will be compared on. Subsection 3.3.3 outlines the ways in 

which the results of this analysis will be presented, and how the overall comparisons 

between the algorithms will be displayed. 

 

3.3.1 Algorithm Testing 
Each of the algorithms for comparison will be implemented in Java. The VC and binary 

string version of CME will take as input a pseudorandom binary plaintext string, and 

return the encrypted binary string before decrypting and returning the corresponding 

plaintext. The AES, RC4 and byte-oriented CME schemes will take as input a UTF-8 

encoded plaintext string, transform it into the corresponding byte array, and encrypt it. 

After the decryption the array will be translated back into its corresponding UTF-8 

encoding. Each of the operations within the implementations will be timed, without any 

user interaction, to ensure that the times are accurately reflected. The raw data output of 

each algorithm will be collected. Each algorithm will undergo multiple tests on different 

plaintexts of different lengths. Testing will be repeated over many iterations and the mean 

calculated. For the purposes of analysis, transformations on the binary string will be done 

in a high-level Java software implementation of the algorithms for VC and CME, and on 

byte arrays in a low-level Java software implementation for the ECC, AES, RC4 and 

CME comparisons, to ensure the results are an accurate representation of the comparative 

results of each of the algorithms.  

 The VC and bit-string CME algorithms will be given as input different 

pseudorandom binary plaintext strings of data, in size 16, 32, 64, 128, 256 and 512 bits. 

This will allow the testing of the implementations over a variety of sizes, to observe how 

well the schemes scale up. Testing will be done for efficiency based on time requirements 

and memory occupied by the JVM at each stage, while testing for security will be based 

on the avalanche effect, the theoretical resistance of the scheme to brute force and chosen 

or known plaintext attacks. 

 For the testing performed on byte array implementations of AES, RC4 and CME, 

the input will be a plaintext string encoded in UTF-8. This will be transformed into its 

corresponding byte array, before encryption and decryption are performed. The resulting 

array of bytes will then be transformed back into its corresponding UTF-8 encoded 

plaintext string. The schemes will be tested on multiple sizes of plaintext data, with 

lengths of 304, 928, 3024, 4408 and 8166 bits. These English language plaintext strings 
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will contain generic frequency information as is typical of the language, and have been 

taken from excerpts of Pride and Prejudice (Austen, 2006) and Hamlet (Shakespeare & 

Ackroyd, 2006). The use of this particular type of plaintext data will allow for frequency 

analysis to be performed on the resulting ciphertexts. A custom-built program will be 

implemented to analyse the ciphertext frequencies. Figure 3.6 gives an example output of 

the frequency analysis program. The AES, RC4 and byte CME schemes will also be tested 

for efficiency using the time and memory requirements at each stage, and for security 

using theoretical resistance to brute force attacks, chosen or known plaintext attacks, and 

the practical avalanche effect. 

 
Figure 3.6: An example of frequency analysis on a 2-bit coordinate matrix scheme.  

As ECC is a scheme used mainly in the implementation of the ECC Diffie-Hellman key 

exchange protocol, rather than for the actual encryption of data, the comparisons between 

the byte implementation of CME and ECC will occur based on the practical efficiency 

and theoretical security of key generation. These comparisons will be based on the results 

of timing the operations, the memory required to perform the operations, and the 

underlying theoretical basis of the algorithms. 

 The memory requirements of each of the algorithms will be based on the in-use 

memory in the Java Virutal Environment at the end of each stage of the implementation. 

 

3.3.2 Algorithm Analysis 
This section describes the standards used for the analysis of the results from the algorithm 

testing phase. The tested algorithms will be evaluated along benchmarks for security and 

efficiency. Security will be measured via theoretical analysis of the key space and 

resistance to attacks, as well as practical cryptanalysis and examination of factors such as 

the avalanche effect. The efficiency of the compared algorithms will be measured through 

the time in milliseconds taken for each stage of the process, and the required memory 

usage for each of these stages.  

To measure the efficiency of the algorithms, the setup of the key, the encryption, 

and the decryption of the binary string will all be timed as part of the implementation. 

This will enable comparison between each of the implemented methods, as well as the 

average time of each algorithm over many tests at each level of encryption. The resulting 
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times will be compared in milliseconds. The amount of memory required by the Java 

Virtual Machine (JVM) runtime environment during the execution of the implementation, 

for setting up the scheme, for encrypting the plaintext, and for decrypting the ciphertext 

will all be measured to evaluate the hardware and space requirements that are necessary 

for each algorithm. 

 The security of the algorithms will be evaluated by several factors. Mathematical 

evaluation of the key space, the number of operations required to try all possible keys, 

frequency analysis of the ciphertext (where applicable), and theoretical weaknesses of 

each algorithm to known and chosen plaintext attacks will also be explored. The 

avalanche effect of the ciphertext resulting from a change to a single bit or byte of the 

plaintext undergoing encryption will also be measured for each algorithm. The program 

implemented to measure the overall avalanche effect in the byte implementations of AES 

and CME will look at both the number of changes to the overall bytes of the ciphertext – 

how many of the same bytes occur in the two different ciphertexts – as well as the changes 

in order – how many of the same bytes occur in the same places in the two ciphertexts. 

The avalanche effect in the bit string implementations of CME and VC will be measured 

by the percentage of positions in which the bits are unchanged. These tests will provide 

a view of the overall avalanche effect in each algorithm.  

 

3.3.3 Data Presentation 
The data resulting from the testing and analysis phases of the research will be presented 

in Chapter 4: Research Findings. The analysis of the efficiency of each algorithm will be 

discussed individually, as well as the comparative overall efficiency for each algorithm. 

These results will be presented visually as well as textually, collated into tables for more 

effective understanding. The analysis of the security of each algorithm will be presented 

textually, as will the comparative analysis of the algorithms. The presentation of data on 

key space relative to scheme size will also be presented visually in comparative tables, in 

which data and results will be grouped first by the particular test, then by the algorithm 

used, and finally by the message or data block size that was presented for encryption. The 

grouping of data will provide an explanation of results as well as any and all assertions 

made based on those results. The results will then be critically examined further and the 

implications of the study will be explored in Chapter 5: Research Discussion. 

 The source code for each algorithm’s implementation and for the custom-built 

testing programs will be provided for review in Appendix B, while the plaintext data used 

for testing each implementation will be provided in Appendix C. A selection of raw 
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testing data and results will be provided in Appendix D. The addition of the testing data 

will allow the reader to better understand the overall results, as well as gain further insight 

into the way in which the data was collected for the study. The addition of the source 

code also provides the opportunity for the reproduction of the study by the reader. 

 
3.4 LIMITATIONS 
 
It is necessary to identify the limitations of the research, so as to correctly define the scope 

of the results, and the possible applications of the data presented. These limitations should 

also be kept in mind when presenting and analysing the results of the research.  

The research plan proposed in Section 3.3 is affected by the design of the 

algorithm implementations for each compared scheme. Due to the use of high-level 

software implementations for the most effective comparison of VC and string-oriented 

CME, the efficiency of the algorithms may be less than it would in an equivalent low-

level software or hardware implementation. This trade-off is necessary to ensure that each 

of the algorithms is able to be fairly compared with its counterparts, but it is important to 

note nonetheless that this particular implementation will most likely result in slightly 

longer processing times for these VC and CME schemes than might occur in real world 

applications that implement encryption schemes at a low-level in software or hardware 

instead. The results from the VC and string -oriented CME will therefore not be as easily 

generalized to those real-world applications as the results from the other algorithms may 

be. 

The programming for each implemented scheme will also impact on the results. 

The implementations of AES and RC4 will utilize the inbuilt functions of the javax.crypto 

package, as will the implementation of ECDH. These inbuilt options for encryption 

simplify the overall implementation. A version of the CME scheme which operates on 

byte arrays will be created for a more balanced comparison with these algorithms. In 

comparison to VC, the implementation of the schemes for VC and the high level CME 

will use custom built code based around binary strings to function. This may result in the 

implementations for ECC, AES, RC4 and the byte-oriented version of CME having an 

advantage in terms of efficiency, over those of VC and the high-level string-oriented 

CME scheme, and as such the results will not be comparable between these classes. 

Another limitation of this study is that one of the chosen comparative algorithms, 

ECC, is an asymmetric cryptographic system, while the others are symmetric. The rising 

level of research and implementation of ECC as an option for encryption makes it an 
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important component of any study relating to the exploration of graphic methods in 

cryptography, but the results of the study will need to take the difference in structure into 

account, and discuss the affect this difference will have on the data. The difference in 

structure may impact the overall results for the ECC algorithm. ECC is also used for key 

exchange in symmetric encryption systems, through the ECC Diffie-Hellman protocol. 

As such, the comparisons between ECC and CME will be based around the efficiency of 

performance in the set up process, and the security as it relates to the ease of key 

generation, rather than the result of encryption, due to ECC’s use in generating keys for 

use in other systems. 

It should be noted that the implementation of VC in this study is altered to perform 

encryption on binary strings. Typical VC schemes operate on black and white share 

images, with each pixel transformed into a subset of black and white subpixels. The 

superimposition of these subpixels upon one another then recreates the original pixel. For 

the purposes of this research, the pixels are replaced by bits, and each bit is transformed 

into a set of bits referred to as a subpixel array during the share creation process. The 

secret image and the share images are all therefore replaced by binary strings of bits, and 

the share strings can then be combined to recreate the original secret string. The 

translation of these VC schemes into binary encryption algorithms is a trivial one, but the 

change in domain for the algorithm may possibly affect its results. This alteration should 

therefore be kept in mind for the results of the VC algorithm implementation, and in the 

following discussion of those results. 

In relation to the use of RC4 for comparative purposes, it must be noted that RC4 

has been proven insecure, and is no longer recommended for use (Rivest & Schuldt, 

2014). However, it is still the best researched and most widely studied stream cipher, and 

as it is freely available with no restrictions or patents, it has been chosen as the classical 

stream cipher. It is necessary to include a stream cipher comparison in the research, as 

CME is classed as a word-oriented, symmetric stream cipher.  

Further research opportunities are presented by these limitations, such as a study 

of the equivalent hardware implementations of the tested algorithms or of the porting of 

the proposed CME system into a low-level hardware implementation for alternative 

domains. The limitations also affect the ability to compare results outside the designated 

pairs. For example, the results from testing the binary string version of VC will not be 

comparable with those of the byte level implementation of AES. The use of a high-level 

implementation for the VC algorithm will give results that are unlikely to generalize well 

to lower level implementations. These research possibilities and the effect the limitations 
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had on the raw testing data will be discussed in greater detail in Chapter 6. 

 
3.5 CONCLUSION 
 
In this chapter, the overall design and methodology of the research has been explained, 

and the benchmarks for the analysis of each comparative algorithm have been set based 

on those set by previous studies in the area of encryption algorithms. The research 

questions, hypotheses and motivations have been discussed, and the proposed coordinate 

matrix system has been laid out. Limitations of the study design have been discussed, to 

ensure the reader is aware of the impact these may have on the resulting data in the 

following chapters. 

 In the next chapter, the results of the study will be given, and the data reviewed 

based on the framework outlined in this chapter. The gathered data will be presented 

individually for each algorithm, followed by the comparative results. 
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Chapter 4 
Research Findings 

 

 

 

4.0 INTRODUCTION 
 
In Chapter 3, a framework for testing comparable algorithms with regards to efficiency 

and security was proposed. This gave standards to evaluate the chosen ECC, VC, AES 

and RC4 schemes against, as well as the newly proposed Coordinate Matrix Encryption 

scheme. 

 In this chapter, the results from the testing framework from Chapter 3 are given, 

first individually for each algorithm, and then the overall comparative results. Section 4.1 

gives the results for the CME algorithm, followed by the results for AES in section 4.2. 

Section 4.3 details the results for ECC, section 4.4 gives the results for VC, followed by 

the results for RC4 in section 4.5. Section 4.6 provides the overall comparison between 

the different schemes, broken down into efficiency and security components, and finally, 

section 4.7 gives the conclusion and a summary of the results. 

 
4.1 COORDINATE MATRIX ENCRYPTION 
 
This section describes the results of testing the Coordinate Matrix Encryption scheme 

(CME), proposed in Chapter 3. Section 4.1.1 details the specifics of the implementation 

used for the algorithm which operates on binary strings, while 4.1.2 gives the details of 

the implementation which is based around byte arrays. Section 4.1.3 describes the results 

from the tests derived to evaluate the algorithms’ efficiency. Finally, section 4.1.4 gives 

the results for the tests for the algorithms’ security. 

 

4.1.1 Implementation Details for CME on Binary Strings 
The implementation for the CME scheme was completed in Java. The scheme utilized 2-

dimensional arrays (referred to hereafter as ‘key matrices’) of a Coordinate Entry class to 

achieve the required high-level software implementation. This implementation was 

discussed briefly in section 3.2.4, and the specifics of the design are elaborated here. 

 The first step of the implementation was the generation of all possible bit strings 
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for the selected bit length. Once these were enumerated, each string was assigned to an 

instance of the Coordinate Entry class. These contained several elements, including a 

Boolean isEmpty value, a list of all matrix locations for that string, and the bit string 

value. 

The key matrix was generated using a pseudo random number generator (PRNG) 

to choose multiple different locations for each of the bit strings. The PRNG gave two 

pseudo-random numbers, used as x and y coordinates in the matrix, which were then 

checked by the algorithm. If the location was empty, the bit string in question was inserted 

into that location in the matrix. If not, another location was generated by the PRNG. Once 

the matrix had been generated, all blank locations were enumerated in a separate list of 

blank entries. The total number of blank entries was assigned to be equal to the number 

of all possible bit strings, and then each blank entry was assigned multiple coordinates in 

the same method as the bit string entries. Once all blank entries had been assigned the 

requisite number of empty coordinates, the key string was calculated. This was a single 

binary string containing the first x coordinate for each of the bit strings. Because these 

coordinates were randomly generated as part of the key matrix setup, and only the pair of 

[x,y] coordinates was required to be unique, the key string gives the equivalent of a PRNG 

bit key, of length 2𝑛, where n is the number of all possible bit strings. 

The encryption in the CME scheme took the plaintext and converted it into a 

binary string if it was not already in binary format. The first operation of the encryption 

process was an exclusive-OR, in which the binary encoding of the plaintext was combined 

with the binary key string. The key string and plaintext were combined using an 

exclusive-OR operation bit by bit, with the key string wrapping around to the start if the 

plaintext length exceeds its own. The encryption process moved along the resulting string 

in sections of n-bits at a time. A coin toss operation utilizing a PRNG decided if the next 

part of the ciphertext was to be an encrypted piece of the message, or a blank padding 

coordinate. If the coin toss decided to add a padding character, another PRNG picked a 

single blank coordinate pair location from the location list of a randomly chosen blank 

entry. If the coin toss chose to encrypt the next bit string of the message, the PRNG chose 

a random location from the list of coordinates containing that particular bit string. The 

algorithm then added the two randomly chosen [x, y] coordinates in binary representation 

to the string of ciphertext. The encryption process continues until all message characters 

have been enciphered, and an equal number of padding coordinates have been placed in 

the string. 

Decryption in the CME scheme is based on entry lookup. For each of the 
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coordinates in the ciphertext, the algorithm checks the value in the given location in the 

key matrix. If the coordinates are empty, that part of the ciphertext is discarded. If the 

coordinates contain a bit string value, that value is added to the plaintext. Once all 

coordinates have been checked, the recovered string is then combined with the key string 

using exclusive-OR. Upon completion of the lookup and application of the key string, the 

original plaintext has been recovered. Because the process of decryption is based on look-

up operations, the overall time complexity for decryption in the CME implementation is 

theoretically lower than that of encryption. 

 

4.1.2 Implementation Details for CME based on Byte Arrays 
The CME scheme described in 4.1.1 allows for the testing of different sizes of bit 

schemes, however, as it is a high-level implementation which operates on binary strings, 

the overall efficiency of the implementation will automatically be significantly lower than 

those inbuilt Java functions for encryption systems such as AES, which perform 

operations on arrays of bytes. In order to provide an accurate picture of the comparative 

efficiency of the schemes, a version of CME using a fixed 8-bit scheme size was 

developed which operates on arrays of bytes, instead of processing binary strings. This 

lower level implementation of the CME scheme is therefore able to operate in a fashion 

comparable with that of the inbuilt Java functions for encryption using AES and key 

generation using ECC. 

 The overall CME Byte Array scheme operates in a similar implementation to that 

described in 4.1.1. The set of all possible binary strings is stored in a matrix using a 

modified version of the Coordinate Entry class, which stores each bit string as its 

corresponding byte value. The data to be encrypted does not require padding, as each 

UTF-8 character is translated into its corresponding byte value between [-128, 127]. The 

ciphertext is then composed of an array of integer values from [0, 255], and every pair of 

integer values gives the x and y locations of an entry in the key matrix. Unlike the high-

level implementation, the exclusive-OR operation on the plaintext is done byte-by-byte 

while the coordinate encryption process occurs, rather than separately beforehand. The 

encryption process moves along the array and either inputs a set of two integer 

coordinates for the relevant byte value, or a set of coordinates for a randomly selected 

empty padding location. This integer array is then transmitted as the ciphertext. 

 The decryption process reverses the encryption by checking the location based on 

every two entries in the integer array that composes the ciphertext, with the entries 

assigned as x and y respectively. If a byte value exists at the location, it is combined with 
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the current integer value of the key string, and the result of this exclusive-OR operation 

is converted into a byte and added to the byte array which composes the plaintext. Once 

all coordinates have been checked, the plaintext byte array is translated back into the 

UTF-8 characters encoded by each byte value, and displayed. 

 The full source code for both implementations of the CME schemes can be found 

in Appendix B. 

 

4.1.3 Efficiency 
The efficiency of the CME scheme was measured using several different methods, as per 

the research design laid out in Chapter 3. The time for set up and key generation, the time 

to encrypt and to decrypt the data, and the overall memory used in the running of the 

implementation were measured. Each piece of data was encrypted and decrypted 1000 

times in the byte implementation, and 500 times in the bit-string implementation. The 

average time and memory for each of these iterations was recorded, and averages for each 

data size were then calculated. The testing data used is available in Appendix C. The 

UTF-8 encoded plaintext used for testing the byte implementation of CME was taken 

from Hamlet (Shakespeare & Ackroyd, 2006) and Pride and Prejudice (Austen, 2006). 

Source code for the testing programs is available in Appendix B. 

 The time requirements for the byte implementation of CME increased linearly 

with the data size, as is to be expected of a stream cipher which operates on a piece of 

data byte-by-byte. Table 4.1 gives the mean encryption and decryption times for each of 

the tested data sizes. 

Data Size Average Encryption (ms) Average Decryption (ms) 

304 0.031 0.012 

928 0.059 0.023 

3024 0.136 0.065 

4408 0.173 0.050 

8144 0.262 0.093 

Table 4.1: Mean encryption/decryption times for byte CME (3d.p.) 

The time requirements for the bit-string based implementation were higher, due to the 

nature of the operations performed. As the implementation used string variables and 

performed various permutation and substitution operations on them, the time taken was 

noticeably longer. The mean time requirements as calculated over 500 iterations are 

shown in Table 4.2. 
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Data Size (bits) Average Encryption (ms) Average Decryption (ms) 

16 0.020 0.026 

32 0.066 0.036 

64 0.104 0.060 

128 0.214 0.074 

256 0.396 0.136 

512 1.130 0.328 

Table 4.2: Mean encryption/decryption times for 4-bit string CME (3d.p.) 

The memory requirements for the byte implementation of CME were tested by 

measurement of the total memory occupied within the Java Virtual Machine environment 

during each task: set up of the scheme and key matrix; encryption; decryption. The set up 

and key generation was tested 100 times, with the memory requirement in megabytes and 

the time taken in milliseconds recorded. These mean of these results was then calculated. 

Table 4.3 shows the results for the scheme setup. 

 

Memory used (MB): 1.217 

Time taken (ms): 80.130 

Table 4.3: Mean setup time and memory for byte CME (3d.p.) 

The memory requirements for encryption and decryption in the byte version of CME were 

measured for each of the data string sizes, over the course of 1000 encryption and 

decryption iterations with a single key. Table 4.4 shows the mean results of these tests. 

Similarly to the time requirements, the increase is linear with the size of the encrypted 

data. 

Data Size Average Encryption (MB) Average Decryption (MB) 

304 1.244 1.244 

928 1.245 1.246 

3024 1.251 1.251 

4408 1.255 1.255 

8144 1.263 1.264 

Table 4.4: Mean encryption/decryption memory for byte CME (3d.p.) 

The memory requirements for the bit-string version of CME were tested similarly. Setup 
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time and occupied memory for the JVM were recorded for 100 iterations, and the mean 

calculated. Table 4.5 gives these results. 

Memory used (MB): 0.448 

Time taken (ms): 21.440 

Table 4.5: Mean setup time and memory for 4-bit string CME (3d.p.) 

As the bit string implementation operated on a four bit scheme size with a 16-by-16 key 

matrix, the overall requirements for creating and storing the key were less than that of the 

eight bit scheme used in the byte implementation, which utilized a 256-by-256 key 

matrix. 

 The memory requirements for encryption and decryption in the 4-bit string 

implementation were measured over 500 iterations with a single key for each of the 

different data sizes of the pseudo-random bit strings. The mean of these results was then 

calculated for each data size. Table 4.6 gives these results. 

Data Size (bits) Average Encryption (MB) Average Decryption (MB) 

16 0.475 0.475 

32 0.476 0.478 

64 0.476 0.476 

128 0.478 0.478 

256 0.480 0.480 

512 0.484 0.484 

Table 4.6: Mean encryption/decryption memory required for 4-bit string CME (3d.p.) 

4.1.4 Security 
The CME scheme is quantifiably resistant to brute force attacks for implementations 

equal to or greater than a given size of bit scheme. This is because of the relative size of 

the matrix, and the number of possible values within each location of the matrix. On 

average, a brute force attack requires that an adversary attempt ½ of all possible keys. 

The number of possible matrix keys for a given bit scheme is shown in Equation 4.1.4.i.  

Equation 4.1.4.i 𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ =  2𝑛 

   𝑀𝑎𝑡𝑟𝑖𝑐𝑒𝑠 = (𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ + 1)𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ
2
 

Thus, if an adversary attempted to brute force a 4-bit CME scheme, the number of 

matrices that they would be required to try, on average would be: 

Equation 4.1.4.ii 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  1
2

(17256) 
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𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  
1
2 (9.883798 ×  10314) 

   𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 4.941899 × 10314 

 

The result of Equation 4.1.4.ii is so large it is impractical to compute with a regular 

calculator, as it exceeds the maximum allowable value for an IEEE float. As such, the 

variable point integer toolbox in MatLab was necessary to compute the result. For a more 

effective implementation, using an 8-bit byte-oriented scheme, the possible matrix keys 

are 25765536.  The average number of key matrix attempts which a brute force attack 

would require to break an 8-bit scheme is given in Equation 4.1.4.iii. 

Equation 4.1.4.iii 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  1
2

(25765536) 

   𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  1
2

(2.3832557 ×  10157937) 

   𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1.19162785 × 10157937 

 

A side effect of the number of possible matrices is that it is statistically likely that, were 

it possible to try all matrix keys for a given scheme, the adversary would likely encounter 

more than one key matrix that resulted in an intelligible plaintext. This is further 

exacerbated by the exclusive-OR operation which utilizes the first generated x location 

for each of the bit-strings/bytes, as an adversary would also be required to try the different 

possible key strings for each key matrix. The adversary would then be required to work 

out which key was the correct one. The number of possible key strings within each key 

matrix for a given bit scheme size is given in Equation 4.1.4.iv. 

Equation 4.1.4.iv 𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 =  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 

   𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 = ((22𝑛 2(2𝑛)⁄ )2𝑛 

For a bit scheme of size 4, the number of key strings an adversary would be required to 

try for each attempted key matrix is shown in Equation 4.1.4.v. The adversary would need 

to try all key strings for the incorrect key matrices, and approximately half of the key 

strings for the correct key matrix. The average number of key string attempts for the 

correct key matrix is given for a 4-bit scheme in Equation 4.1.4.vi. 

Equation 4.1.4.v 𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 =  ((22𝑛 2(2𝑛)⁄ )2𝑛 

   𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 =  ((22(4) 2(24)⁄ )24 

   𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 =  816 

   𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 =  2.814749767 × 1014 
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Equation 4.1.4.vi 𝐵𝐹𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 ≈  1
2

(2.814749767 ×  1014) 

   𝐵𝐹𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 ≈ 1.407374884 × 1014 

Given the number of possible key strings, the approximate total average number of 

operations to attempt to brute force a 4-bit CME scheme is given in Equation 4.1.4.vii. 

Equation 4.1.4.viii 𝐵𝐹𝑡𝑜𝑡𝑎𝑙 ≈ (𝑠𝑡𝑟𝑖𝑛𝑔𝑠 ∙ (1
2

∙ (𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠) − 1)) + (1
2

∙ 𝑠𝑡𝑟𝑖𝑛𝑔𝑠) 

   𝐵𝐹𝑡𝑜𝑡𝑎𝑙 ≈ (816 ∙ (1
2

∙ (17256) − 1)) + (1
2

∙ (816)) 

𝐵𝐹𝑡𝑜𝑡𝑎𝑙  ≈ (2.814749767 ×  1014) ∙ (4.941899 ×  10314 − 1) + (1.407374884 

×  1014) 

   𝐵𝐹𝑡𝑜𝑡𝑎𝑙  ≈ 1.391020944 ×  10329 

    

One of the key features of the algorithm is its diffusion of any statistical properties of the 

plaintext, by using multiple locations for each bit string in the matrix and by the exclusive-

OR operation performed prior to the coordinate encryption. The matrix is set up so that 

exactly half is blank locations, and the other half is bit strings. During the encryption of 

the plaintext, whether the algorithm decides to insert one of the blank locations or one of 

the locations for the next bit string to encrypt is decided by a coin toss procedure which 

uses a PRNG. Because of this, the likelihood of any particular blank padding location 

occurring is approximately equal to the likelihood of any particular bit string location 

occurring. The calculation of the number of locations per string is shown in Equation 

4.1.1.ix. 

Equation 4.1.4.ix  𝑀𝑠𝑖𝑧𝑒 =  (2𝑛)2 

    𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑡𝑟𝑖𝑛𝑔 =  𝑀𝑠𝑖𝑧𝑒
2(2𝑛)

 

As any given coordinate is equally likely to be an empty padding location as it is a bit 

string, even given unlimited computing power, an adversary would be required to guess, 

with a ½ chance of guessing correctly for each string, whether a coordinate contained a 

part of the message, or was simply padding material. Because of the addition of the 

exclusive-OR operation with the key string prior to turning the message into encrypted 

coordinates, the frequency information of the original text is not reflected in the result.   

The likelihood of correctly guessing for all coordinates of any given string is given in 

Equation 4.1.3.x, the binomial probability formula from the Bernoulli Trials. 

Equation 4.1.4.x  𝑃(𝑘 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑖𝑛 𝑛 𝑡𝑟𝑖𝑎𝑙𝑠) = (𝑛
𝑘

)𝑝𝑘𝑞𝑛−𝑘 

where n is the number of trials, k is the number of successes, (n-k) is the number of 

failures, p is the probability of success in one trial, and q =  1-p which is the probability 
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of failure in one trial.  Equation 4.1.4.xi gives the probability of correctly guessing 

whether a coordinate is full or blank for all coordinates of a 20 coordinate ciphertext 

string in a single attempt. 

Equation 4.1.4.xi  𝑃(20) = (20
20

) ∙ (0.5)20 ∙ (0.5)0 

    𝑃(20) = 9.536743164 × 10−7 

The smallest plaintext string used to test the byte version of CME was 304 bits. This 

resulted in a ciphertext of 1216 bits, or 608 coordinates. Equation 4.1.4.xii gives the 

probability of successfully guessing for each of the 608 coordinates whether they are 

padding or full. 

Equation 4.1.4.xii  𝑃(608) = (608
608

) ∙ (0.5)608 ∙ (0.5)0 

    𝑃(608) =  9.41374947 × 10−184 

 

The CME scheme avoids frequency analysis through the combination of the exclusive-

OR operation prior to encryption, and the multiple locations assigned to each bit string. 

The creation of the list of blank entries, which mirrors exactly that of the list of occupied 

coordinates, gives another layer of confusion to the statistics of the resulting data. The 

scheme was analysed through a specially developed frequency analysis program, which 

took the ciphertext input, as well as the key matrix, and calculated the frequency of 

occurrences for each blank and full coordinate. The frequency analysis program then 

output the statistics for how many of the singular occurrences were blank coordinates, 

how many were full coordinates; how many of the double occurrences were blank or full 

coordinates; and so on. The program was run on the CME byte implementation, using the 

plaintext strings of differing sizes, and each string was used to generate one thousand 

ciphertexts from a single key. The results of the frequency analysis for each of these 

ciphertexts were then tabulated, and the averages mapped. 

 Of the occurrences, coordinates that occurred once were equally likely to be blank 

or full, as were secondary occurrences. Third and fourth occurrences in full versus blank 

coordinates were within 10% of one another. Table 4.7 shows the average frequency 

information for the largest of the testing data, an English language string of 8816 bits, as 

well as the number of times a ciphertext gave that frequency of occurrences within the 

thousand tests. The overall frequencies are fairly flat, and as they reflect the statistics of 

an already encrypted piece of data, give little to no information on the underlying 

plaintext. In addition, the greater the number of times the particular frequency occurred, 

the flatter the distribution became. As such, it seems likely that more extensive testing 
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would result in even flatter distributions. 

 

Frequency Blank Full Times Occurred 

1 50.047% 49.953% 1000 

2 48.589% 51.411% 1000 

3 46.491% 53.508% 308 

4 40.000% 60.000% 5 

Table 4.7: Frequency analysis of ciphertext from an 8816-bit string. (3d.p.) 

The addition of empty padding coordinates helps protect the scheme against known and 

chosen plaintext attacks, as knowing what the plaintext message is does not give any 

further information about which coordinates in the ciphertext are empty padding, and 

which are locations for plaintext strings. The exclusive-OR operation performed on each 

bit string or byte assists in stripping statistical properties from the data, and protects the 

scheme from frequency analysis. An adversary with unlimited computing power would 

still need to venture a guess whether each coordinate was empty or not. 

In regards to chosen plaintext attacks, the CME byte scheme gave a similar 

distribution when a 4048-bit string of a single repeated character was used. Of the 

thousand variable ciphertexts resulting in the encryption process with the same key, only 

46 ciphertexts contained coordinates that were repeated more than twice. Table 4.8 shows 

the average results for the analysis of the chosen plaintext attack. Because there are so 

few repeated coordinates, and blank coordinates also occur in the repetitions, a chosen 

plaintext attack would likely give little information about the possible key string or 

matrix. Also, any information about the repeated characters within the key string would 

not be subject to known frequency information, as the key string is generated randomly. 

 

Frequency Blank Full Times Occurred 

1 50.105% 49.895% 1000 

2 44.127% 55.873% 1000 

3 31.915% 68.085% 46 

Table 4.8: Frequency analysis of ciphertext from a 4048-bit chosen plaintext string. (3d.p.) 

The results from the encryption of a single string of repeated characters can then be 

compared to those results from analysis of ciphertext from a 4408-bit English language 

plaintext string, shown in Table 4.9. The overall distributions are similar, and minor 
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variations may be accounted for by the differing key strings and key matrices.  

 

Frequency Blank Full Times Occurred 

1 50.015% 49.985% 1000 

2 49.109% 50.891% 1000 

3 53.704% 46.296% 54 

Table 4.9: Frequency analysis of ciphertext from a 4408-bit string. (3d.p.) 

The final measure of security was the avalanche effect of the algorithm. Because the 

scheme results in a different ciphertext almost each time the same plaintext is encrypted 

by the same key, the CME scheme provides a good avalanche effect, with under 0.5% of 

bytes unchanged from the previous ciphertext. The avalanche effect was measured in the 

byte implementation by the total percentage of the same bytes occurring, and the 

percentage of the same bytes occurring in the same position. For the sake of comparison, 

these variables were measured over 1000 iterations of encryption/decryption on data that 

varied by a single bit, and over 1000 iterations on the same piece of data. Table 4.10 gives 

the results of the changed and unchanged data averaged over these tests. 

 

Data Size Unchanged from Previous 1-bit Altered from Previous 

Same Bytes Same Position Same Bytes Same Position 

304 44.653% 0.441% 44.839% 0.414% 

928 84.064% 0.419% 84.026% 0.388% 

3024 99.722% 0.390% 99.713% 0.422% 

4408 99.973% 0.400% 99.984% 0.404% 

8144 100.000% 0.396% 100.000% 0.395% 

Table 4.10: Avalanche effect in byte CME. (3d.p.) 

 
4.2 ADVANCED ENCRYPTION STANDARD 
 
This section discusses the details of the low level software implementation of AES, as 

well as the results for efficiency and security based on the testing criteria. Section 4.2.1 

gives a detailed discussion of the implementation used. Section 4.2.2 discusses the AES 

efficiency, based on the testing data. Finally, section 4.2.3 gives an overview of the AES 

security, using the theoretical underpinnings of the algorithm, as well as the practical data 

from testing results. 
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4.2.1 Implementation Details 
The implementation for AES encryption utilized the inbuilt standards of the javax.crypto 

and java.security packages available as part of the JSE 7. The scheme used the inbuilt 

SecureRandom function to generate a random 128-bit key and the Initialisation Vector. 

The algorithm took as input a UTF-8 encoded plaintext string, which was then converted 

into a byte array and encrypted using Java’s Cipher function, utilizing the parameters for 

AES Encryption, CBC mode, and PKCS5 Padding. This function returned a byte array as 

the ciphertext. Decryption was then completed using the same parameters with the Cipher 

function, and the resulting plaintext byte array was converted back into its UTF-8 encoded 

string. 

 The mode of encryption was chosen as CBC to provide better security against 

methods of statistical analysis, as studies suggest that use of ECB mode can result in 

repeated blocks of ciphertext, and it is the least secure mode of operation for AES 

implementations (Thakur & Kumar, 2011). CBC mode combines each block of ciphertext 

with the next consecutive block of plaintext, and as such prevents the repetition of blocks. 

The full source code used for the AES implementation of encryption and decryption 

methods can be found in Appendix B. 

 

4.2.2 Efficiency 
The efficiency of AES was measured by the time taken to setup the scheme and key, 

encrypt the plaintext, and decrypt the ciphertext. The memory occupied in the JVM at 

each of these stages was also recorded. The averages were then calculated. This process 

was done for each of the different data sizes. The testing data used is available in 

Appendix C. The source code for testing programs can be found in Appendix B. 

 The time taken for encryption and decryption was measured for each of five data 

sizes, with each piece of data encrypted and decrypted 1000 times. The time taken for 

each iteration was tabulated. The means are shown in Table 4.11.  

Data Size Average Encryption (ms) Average Decryption (ms) 

304 0.199 0.170 

928 0.142 0.182 

3024 0.173 0.179 

4408 0.185 0.196 

8144 0.148 0.250 

Table 4.11: Mean encryption/decryption times for 128-bit AES (3d.p.) 
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The time taken and memory used for setting up the implementation were also measured. 

The scheme setup was completed 100 times, and the results for occupied memory in 

megabytes and time taken in milliseconds were recorded. Table 4.12 gives these results. 

 

Memory used (MB): 2.364 

Time taken (ms): 409.000 

Table 4.12: Mean setup time and memory required for 128-bit AES (3d.p.) 

 The memory occupied by the JVM for encryption and decryption were measured over 

1000 iterations on each of the different strings of data. Table 4.13 gives the results of 

these tests. 

 

Data Size Average Encryption (MB) Average Decryption (MB) 

304 1.415 1.393 

928 1.416 1.399 

3024 1.417 1.414 

4408 1.417 1.422 

8144 1.419 1.442 

Table 4.13: Mean memory required for encryption/decryption in 128-bit AES (3d.p.) 

4.2.3 Security 
Security in AES was tested using the schema defined in Chapter 3. The operations 

required to brute force attack the implementation, vulnerability to known and chosen 

plaintext, frequency analysis, and the avalanche effect were examined. This allowed the 

analysis of the overall security level of the scheme. The testing data used is available in 

Appendix C. 

 A brute force attack on AES relies on attempting the different possible keys. 128-

bit AES has a total key space of 2128. A brute force attack in general requires that one 

half of all possible keys are attempted. The average number of attempts for a brute force 

attack on AES 128 are detailed in Equation 4.2.3.i. 

Equation 4.2.3.i  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈  1
2

2128 

    𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(3.4028237 ×  1038) 

    𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.7014118 × 1038 

The number of operations for 128-bit AES as shown in Equation 4.2.3.i is considered to 
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be impracticably large for an attacker to attempt given current technological standards.  

 AES was designed to be resistant to frequency analysis. The multiple round keys 

that are added in each of the 12 rounds of 128-bit AES as well as the substitutions and 

permutations are employed to destroy the statistical properties of the plaintext. Frequency 

analysis was performed on the ciphertext resulting from the AES encryption scheme on 

each of the five plaintext strings. Table 4.14 gives the results of frequency analysis on the 

ciphertext of a 8144-bit plaintext string, over the course of 1000 encryptions and 

decryptions, each with a different key – as AES results in a singular mapping, the same 

ciphertext for the same plaintext encrypted with the same key. 

Frequency Average # of Bytes Times Occurred 

1 18.626 1000 

2 37.606 1000 

3 50.462 1000 

4 50.010 1000 

5 39.938 1000 

6 26.581 1000 

7 15.194 1000 

8 7.554 1000 

9 3.403 978 

10 1.780 749 

11 1.271 388 

12 1.068 146 

13 1.019 54 

14 1 18 

15 1 4 

16 1 1 

Table 4.14: Frequency analysis of ciphertext from a 8144-bit string in 128-bit AES (3d.p.) 

The distribution of frequencies occurs over a curve, with higher numbers of bytes at the 

3rd and 4th frequencies than at the singular and double frequencies. The lowest 

occurrences are at the highest three frequencies. 

 AES was designed to be resistant to all forms of chosen and known plaintext 

analysis. As a measure of this resistance, frequency analysis was also performed on the 

ciphertext resulting from a 4048-bit string consisting of a single repeated character over 

1000 iterations of encryption and decryption, each with a different key. The number of 
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occurrences of each frequency were then measured and averaged. Table 4.15 shows the 

averaged results of the chosen plaintext attack analysis. 

Frequency Average # of Bytes Times Occurred 

1 69.115 1000 

2 69.620 1000 

3 46.234 1000 

4 23.054 1000 

5 9.207 1000 

6 3.070 963 

7 1.491 561 

8 1.098 184 

9 1.026 38 

10 1 13 

Table 4.15: Frequency analysis of ciphertext from a 4048-bit single character string in 128-bit 

AES (3d.p.) 

The results of the frequency analysis on the ciphertext of the chosen plaintext string can 

be contrasted with the results of testing on the ciphertext from a 4408-bit string of 

plaintext data. Table 4.16 gives the frequency analysis results of testing on the ciphertext 

of a 4408-bit string. 

Frequency Average # of Bytes Times Occurred 

1 62.636 1000 

2 69.346 1000 

3 49.979 1000 

4 27.471 1000 

5 11.751 1000 

6 4.234 990 

7 1.794 757 

8 1.170 317 

9 1.049 81 

10 1 16 

11 1 1 

Table 4.16: Frequency analysis of ciphertext from a 4408-bit string in 128-bit AES (3d.p.) 

The final security measurement was that of the avalanche effect of the algorithm. Each 
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of the plaintext data sizes was altered by one bit for each encryption/decryption iteration, 

and the percentage of the same bytes, as well as the percentage of bytes occurring in the 

same position were measured over the course of 500 iterations. The results were then 

tabulated and the mean calculated. Table 4.17 gives the results of the avalanche testing. 

Data Size 1-bit Altered from Previous 

Same Bytes Same Position 

304 37.767% 24.779% 

928 62.777% 38.905% 

3024 87.935% 45.857% 

4408 94.276% 48.227% 

8144 99.100% 48.593% 

Table 4.17: Avalanche effect in 128-bit AES (3d.p.) 

4.3 ELLIPTIC CURVE CRYPTOGRAPHY 
 
This section gives the details and basis for the implementation of the ECC scheme. 

Section 4.3.1 gives a detailed overview of the way the implementation was created, 

followed by a discussion of its efficiency in section 4.3.2, based on the test results from 

the research design defined in Chapter 3. Section 4.3.3 then discusses the scheme’s 

security, based both on the theoretical analysis of the basis of the algorithm, and the 

practical data from testing. 

 

4.3.1 Implementation Details 
The implementation used for performing the ECC key generation and ECC Diffie-

Hellman key exchange is based on that given by Martinez and Encinas (2013). The 

authors describe the use of the inbuilt functions of JSE 7 which allow for the simple 

implementation of ECC protocols over predefined curves. The curve used for the 

purposes of this research was the Java curve secp192r1, which is given in the standards 

for ANSI X9.62 as X9.62 prime192v1, and the NIST FIPS 186-2 standard as NIST P-

192. This curve is defined over a prime field 𝔽𝑝, and has an equivalent security level of 

192 bits. The equation for the finite prime field of this elliptic curve, the field polynomial 

is given in Equation 4.3.1.i, as specified in NIST (2000). 

Equation 4.3.1.i  𝑝 =  2192 −  264 − 1 

  

Martinez and Encinas (2013) provide examples of source code for implementing these 
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curves in the java.security package included in JSE 7, and this code was modified for use 

in the comparative analysis. The full source code used for the ECC protocols can be found 

in Appendix B. 

 

4.3.2 Efficiency 
The efficiency of the ECC implementation was tested using the schema laid out in 

Chapter 3. Time for the ECDH scheme setup and the memory occupied by the JVM 

during setup were measured over multiple iterations of the algorithm. These results were 

then tabulated.  

 The setup time was measured in milliseconds over 100 iterations, and gave the 

average time requirement for the ECDH protocol to complete, with the generation of 

individual private-public key pairs, and the calculation of a common key. Concurrently, 

the total memory requirement was calculated using the occupied memory in the JVM 

during this process. Table 4.18 gives the average results of this testing. 

Memory used (MB): 1.192 

Time taken (ms): 359.500 

Table 4.18: Memory and time requirements for execution of ECDH protocol (3d.p.) 

4.3.3 Security 
The implemented ECDH scheme results in two separate sets of keys: the original public-

private key pair generated for each user from the curve; and the shared symmetric key 

generated using the two public-private key pairs during the Diffie-Hellman key exchange. 

The generated symmetric key is 128-bits, which gives the symmetric key the same level 

of security against brute force attacks as 128-bit AES, as per the average number of 

operations calculated in Equation 4.3.3.i. 

Equation 4.3.3.i  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈  1
2

2128 

    𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(3.4028237 ×  1038) 

    𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.7014118 × 1038 

The public-private key pairs are secured by the difficulty of computing discrete 

logarithms on elliptic curves. The curve used in the implementation gives a relative 

security level of 192-bits. According to Stallings (2014, p. 296) the fastest current method 

for solving the elliptic curve discrete logarithm problem is the Pollard rho method, which 

gives 192-bit ECC the equivalent security of 1024-bit RSA, and of an 80-bit symmetric 

encryption algorithm. The average number of operations to brute force the 192-bit ECC 

is given in Equation 4.3.3.ii, and the number of operations using the Pollard rho method 
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is given in Equation 4.3.3.iii. 

Equation 4.3.3.ii  𝐵𝐹𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈  1
2

(2192) 

    𝐵𝐹𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈  1
2

(6.2771017 × 1057) 

    𝐵𝐹𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 3.1385509 × 1057 

Equation 4.3.3.iii  𝑃𝑅𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈  280 

    𝑃𝑅𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.2089258 × 1024 

 
4.4 VISUAL CRYPTOGRAPHY 
 
This section discusses the details for the implementation of the binary version of the 2-

out-of-2 VC scheme. Section 4.4.1 details how the implementation was created, and the 

equivalence to classical VC schemes. Section 4.4.2 then discusses the efficiency of the 

scheme, based on the results gained from testing. Finally, section 4.4.3 gives the analysis 

of the scheme’s security, both in theory and based on the results of the testing data. 

 

4.4.1 Implementation Details 
The implementation for the VC algorithm was based on the 2-out-of-2 scheme originally 

proposed by Naor and Shamir (1995) with the particulars of share generation based on 

random grid VC as proposed by Kafri and Keren (1988). The implementation designed 

for this research took a binary string of plaintext as its input, and then generated two 

shares from the string. In an image-based VC scheme, each single pixel is split into 

several subpixels, and each subpixel is either black or white. The contrast constraint is 

the feature of these schemes that makes the pixel either black or white once the subpixels 

in each share are recombined. For the purposes of this research, the contrast constraint 

was set to ½, so that for a given bit to be considered ‘white’, represented by a 0, the 

recombined set of subpixels must be ½ white, or ½ 0 bits. The subpixels were assigned 

six possible states using 4-bit strings of binary digits as representation of a two-by-two 

matrix of visual pixels.  These possible states are shown in Fig 4.1. A black subpixel was 

represented by a 1 bit, and a white subpixel by a 0 bit. For example, the top leftmost 

subpixel state in Fig 4.1 would be represented by “1001”, as the top row has a black then 

white subpixel, and the bottom row a white then black subpixel. Strings were organized 

left to right by column then top to bottom by row. 
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Figure 4.1: A visual representation of the six possible subpixel states for the implemented VC 

scheme. 

The six possible subpixel states were all assigned to two separate string arrays, with the 

second array containing the states in a different order: the opposite subpixel state was 

assigned to the same location as that of the first array, so that if the subpixel states from 

the same location in the first and second arrays were combined, the result would be a fully 

black pixel – represented in the code by a full string of 1s, “1111”. The pairs of opposite 

subpixel states are shown in Fig 4.4.1.i by column – the top leftmost state is the opposite 

of the bottom leftmost state, and so on. When transposed one on top of the other, these 

opposite states would result in all subpixels being black. 

 The encryption process for generating shares advances along the plaintext one bit 

at a time. Share generation in the implementation uses a PRNG to pick a subpixel state 

from the first array. This state is added into the string for the first share. Then the current 

plaintext bit is checked. If the current bit is a 1, the opposite subpixel state is assigned to 

share two. If the current bit is a 0, the same subpixel state is assigned to share two. The 

share generation continues in this manner until subpixels have been generated for every 

bit of the plaintext. 

 The decryption process in the implementation revolves around the recombining 

of the shares. The algorithm advances along the shares four bits at a time, and checks if 

the current four bits of the shares are equal or opposite. If they are equal, a 0 bit is added 

to the decrypted plaintext. If they are opposite, a 1 bit is added. Once all subpixel states 

have been checked, the decrypted plaintext is returned. 

 The complete source code for the VC algorithm implementation of binary 

encryption and decryption is available in Appendix B. 
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4.4.2 Efficiency 
The efficiency of the VC implementation was measured using the standards set out in 

Chapter 3. The time taken in milliseconds to encrypt and decrypt the data, the time taken 

to setup the implementation, the memory occupied by the JVM in setup, encryption and 

decryption were all measured and recorded. 

 The time taken for encryption and decryption in the VC implementation was 

measured for multiple data sizes of pseudo-random bit strings, and each was encrypted 

and decrypted over 500 iterations. The mean was then calculated. Table 4.19 gives the 

results of this testing. 

Data Size (bits) Average Encryption (ms) Average Decryption (ms) 

16 0.056 0.010 

32 0.080 0.014 

64 0.196 0.052 

128 0.368 0.088 

256 0.868 0.214 

512 2.822 0.492 

Table 4.19: Mean encryption/decryption times in bit-string VC. (3d.p.) 

The memory requirements for encryption and decryption were also measured over 500 

iterations of the algorithm. Table 4.20 shows the mean occupied memory in megabytes 

in the JVM at the end of each task. 

Data Size (bits) Average Encryption (MB) Average Decryption (MB) 

16 0.451 1.729 

32 0.452 1.729 

64 0.450 1.730 

128 0.452 1.732 

256 0.455 1.735 

512 0.461 1.741 

Table 4.20: Mean encryption/decryption memory requirements in bit-string VC. (3d.p.) 

The time taken and memory required for the setup of the VC scheme was measured over 

100 iterations of the algorithm. Because the setup of the scheme required only the 

assignment of two string arrays of predefined values, the mean setup time was zero 

milliseconds for all trials. Table 4.21 gives the results of the testing. 
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Memory used (MB): 0.456 

Time taken (ms): 0.000 

Table 4.21: Mean setup time and memory requirements in bit-string VC. (3d.p.) 

4.4.3 Security 
The theoretical security of VC schemes rests on the methods by which shares are 

generated. Because the first share is assigned random subpixel states, and the second 

share’s subpixel states are assigned based on those of the first share, the states used in the 

shares do not reflect the encrypted secret image unless recombined. VC schemes operate 

on a specific definition of security – that even an adversary with unlimited computing 

power, given a single share of the image, would be reduced to guessing for any given 

subpixel state: whether the secret image pixel was black or white. This brute force 

approach of guessing at possible pixel states may be feasible in small shares, where a 

computer can run through all possible alternatives, but quickly becomes too 

computationally expensive as the length of shares increases. Because the scheme rests on 

the shares for security, longer shares give a stronger encryption strength. The likelihood 

of guessing the correct state for all pixels of the secret image is the equivalent of a 

binomial probability, as per the Bernoulli trials, the equation for which was given in 

Equation 4.4.3.i. Given a secret ‘image’ of length 608-bits, the probability of correctly 

guessing for all pixels whether they are black or white is given by Equation 4.4.3.ii. 

Equation 4.4.3.i 𝑃(𝑘 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑖𝑛 𝑛 𝑡𝑟𝑖𝑎𝑙𝑠) = (𝑛
𝑘

)𝑝𝑘𝑞𝑛−𝑘 

Equation 4.4.3.ii 𝑃(608) = (608
608

) ∙ (0.5)608 ∙ (0.5)0 

   𝑃(608) =  9.41374947 × 10−184 

 

A brute force attack on a VC implementation requires prior knowledge of the setup. The 

attacker must know the pixel expansion of the scheme, in order to identify the subpixel 

arrays, so that the overall size or length of the secret image or plaintext may be 

determined. A brute force attack on the scheme would then involve trying all possible 

plaintexts or images of that length/size. The number of operations required for this task 

is as follows in Equation 4.4.3.iii. 

Equation 4.4.3.iii  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =  2𝑙 𝑠⁄  

In Equation 4.4.3.i, l is the length of the share, and s is the pixel expansion of the scheme. 

The number of operations required for a brute force attack is, on average, those required 

to try half of all possibilities. The average number of operations for the attacker to recover 

plaintext from the VC scheme is described in Equation 4.4.3.iv. 
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Equation 4.4.3.iv  1
2

(2𝑙 𝑠⁄ ) 

For a share length of 4096 bits, or a secret ‘image’ string of 1024 bits, the average number 

of attempts to successfully brute force attack the scheme is given in Equation 4.4.3.v. 

Equation 4.4.3.v  𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  1
2

(24096
4⁄ ) 

 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  1
2

(21024) 

    𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  1
2

(1.79769313 ×  10308) 

    𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 8.98846567 ×  10307 

 

VC schemes offer non-singular mapping of plaintext to ciphertext, because the first share 

is assigned random subpixel states, and the second share is assigned based on the first 

share. Each time the same piece of plaintext is encrypted, it is likely to result in two new 

shares. This increases its security against outside attacks. However, as the scheme does 

not have separate ciphertexts and keys, and the shares are both key and ciphertext, a 

chosen plaintext attack would allow for the unknown share to be generated by an attacker, 

based on the share that was communicated. This issue is known as cheating, and involves 

an adversary who is an authorized participant in the scheme. In this manner, the 

implemented VC scheme has a theoretical weakness to known and chosen plaintext 

attacks. 

 The practical security of the VC scheme was measured by the avalanche effect of 

the algorithm. The percentage of individual bits that were altered based on the alteration 

of a single bit of the pseudo-random plaintext bit string were measured over all the data 

sizes, during the course of 500 iterations. Table 4.22 gives the results of this testing. 

Data Size % of Bits Changed 

16 49.275 

32 50.169 

64 50.005 

128 49.934 

256 49.981 

512 50.072 

Table 4.22: Avalanche effect in bit-string VC. (3d.p.) 
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4.5 RC4 
 

This section discusses the results of the tests conducted on the RC4 algorithm. Section 

4.5.1 gives an in-depth review of the implementation used in the research. Section 4.5.2 

then explores the results of the testing for efficiency, and finally, section 4.5.3 details the 

security results. 

 

4.5.1 Implementation Details 
The implementation used in the research conducted into RC4 was based around Java’s 

in-built cryptographic functions. The JSE 7 Crypto and security libraries were utilized, 

along with the Cipher function. The program used the SecureRandom function to generate 

an initialization vector, which was then implemented with the KeyGenerator to produce 

a 128-bit key. The Cipher object was set to RC4 mode, and encryption and decryption 

occurred on arrays of bytes. The encryption function took a single plaintext string as 

input, and then returned the encrypted byte array as the ciphertext output. The decryption 

function took the ciphertext byte array and returned the decrypted byte array, which was 

then converted back into the original plaintext string using UTF-8 encoding.  

 The testing programs for frequency analysis and avalanche effect were the same 

as those used in the evaluation of the AES algorithm, as both schemes produce ciphertext 

byte arrays. The source code for the RC4 implementations can be found in Appendix B.  

 

4.5.2 Efficiency 
The efficiency of the RC4 implementation was measured by the time taken to encrypt and 

decrypt the data, the average memory required at each stage, and the memory and time 

taken during the algorithm set up. The time taken was measured in milliseconds using the 

inbuilt CurrentTimeMillis function, which gives the current system time, while the 

memory was measured using the current memory occupied by the JVM at each stage 

during runtime. 

 The result of the testing for the time taken to encrypt and decrypt the different 

data sizes is shown in Table 4.23. The times were measured over 1000 iterations on each 

data size. The encryption and decryption times do not appear to scale linearly with the 

size of the data.  
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Data Size Average Encryption (ms) Average Decryption (ms) 

304 0.014 0.022 

928 0.027 0.025 

3024 0.023 0.016 

4408 0.020 0.045 

8144 0.024 0.032 

Table 4.23: Encryption and decryption times in RC4 (3d.p.) 

The amount of memory and the time taken to set up the implementation were also 

measured over the course of 100 iterations. The results are shown in Table 4.24. The time 

taken was measured in milliseconds, while the memory requirement was evaluated in 

megabytes. 

Memory used (MB): 2.340 

Time taken (ms): 258.500 

Table 4.24: Set up requirements for RC4 (3d.p.) 

The memory requirements for encrypting and decrypting the different data sizes were 

measured over the course of 500 iterations on each data size. The results of this testing 

are shown in Table 4.25. 

Data Size Average Encryption (MB) Average Decryption (MB) 

304 1.362 1.361 

928 1.363 1.362 

3024 1.364 1.366 

4408 1.364 1.364 

8144 1.366 1.369 

Table 4.25: Memory requirements for RC4 (3d.p.) 

 

4.5.3 Security 
The security of the RC4 algorithm was measured through theoretical and practical 

analysis. The avalanche effect, frequency analysis of the output, vulnerablility to known 

and chosen plaintext, and the size of the key space were examined to provide an 

evaluation of the scheme’s comparative security. 

 The number of operations required on average to brute force attack the key space 

of 128-bit RC4 is equivalent to that of 128-bit AES, given in Equation 4.5.3.i. On average, 

half of all possible 128-bit keys must be attempted before the system is compromised. 
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Equation 4.5.3.i  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈  1
2

2128 

    𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(3.4028237 ×  1038) 

    𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.7014118 × 1038 

The result of Equation 4.5.3.i is considered to be impracticably large, and as such RC4 is 

considered secure against brute force attacks in this manner. 

 RC4 was also tested for vulnerability to frequency analysis, and gave similar 

distributions to that of 128-bit AES. Table 4.26 shows the frequency distribution of the 

ciphertext outputs of a single 8144-bit plaintext string. Each encryption and decryption 

of the string used a different, randomly generated key, as RC4 provides a singular 

mapping – the same plaintext input with the same key will always provide the same 

ciphertext output. The tests were conducted over 1000 iterations, and then the mean 

calculated. 

Frequency Average # of Bytes Times Occurred 

1 18.875 1000 

2 37.987 1000 

3 50.649 1000 

4 50.299 1000 

5 38.588 1000 

6 26.575 1000 

7 14.693 1000 

8 7.395 1000 

9 3.207 995 

10 1.501 872 

11 0.889 488 

12 0.792 212 

13 0.736 72 

14 0.682 22 

15 0.429 7 

16 1 4 

Table 4.26: Frequency analysis of an RC4 encrypted 8144-bit string (3d.p.) 

The vulnerability of RC4 to chosen plaintext attacks was examined using a single 4048-

bit chosen plaintext string consisting of a single repeated character. Table 4.27 shows the 

output of frequency analysis on the resulting ciphertext.  
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Frequency Average # of Bytes Times Occurred 

1 70.164 1000 

2 69.383 1000 

3 45.674 1000 

4 22.212 1000 

5 8.968 1000 

6 2.939 989 

7 1.242 683 

8 0.889 216 

9 0.917 48 

10 1 5 

Table 4.27: Frequency analysis of ciphertext from a 4048-bit chosen plaintext string (3d.p.) 

The results in Table 4.27 can then be contrasted with the frequency analysis of ciphertext 

from a 4408-bit plaintext string containing typical English language frequency 

information. The frequency analysis of the ciphertext output from this 4408-bit string is 

given in Table 4.28. 

Frequency Average # of Bytes Times Occurred 

1 64.449 1000 

2 68.749 1000 

3 49.360 1000 

4 26.736 1000 

5 11.407 1000 

6 4.002 997 

7 1.436 848 

8 0.948 362 

9 0.855 83 

10 0.714 14 

11 0.750 4 

12 1 1 

Table 4.28: Frequency analysis of a 4408-bit string encrypted with RC4. (3d.p.) 

The avalanche effect of the algorithm was measured by changing a single bit of the 

plaintext data and comparing the change in outputted ciphertext in both the total number 

of bytes altered and the number of positions altered. This was repeated over 500 
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iterations for each data size and the means calculated. Table 4.29 gives the results of this 

testing. 

Data Size 1-bit Altered from Previous 

Same Bytes Same Position 

304 97.668% 97.368% 

928 99.472% 99.145% 

3024 99.940% 99.735% 

4408 99.979% 99.819% 

8144 99.997% 99.902% 

Table 4.29: Avalanche effect in RC4 (3d.p.) 

 

4.6 COMPARATIVE RESULTS 
 
This section gives the comparative results of the different implementations of the tested 

schemes. Section 4.6.1 compares the relative efficiency and security of the high-level 

software implementations for the 2-out-of-2 VC scheme and the 4-bit CME scheme. This 

is followed in section 4.6.2 by the comparison of efficiency and security in the low level 

software implementations of AES and 8-bit byte-oriented CME. Finally, 4.6.3 discusses 

the comparative results from the byte-oriented CME and the low-level ECC 

implementation. 

 

4.6.1 2-out-of-2 VC versus 4-bit CME 
The comparison of the 2-out-of-2 VC scheme and the high level software CME 4-bit 

scheme was based on the encryption of binary strings. Each scheme was tested on the 

same pseudo random bit strings of lengths 16, 32, 64, 128, 256 and 512. Each string was 

encrypted and decrypted 500 times, and the average encryption and decryption times, as 

well as the resulting ciphertext length were averaged for each bit length. 

 The measurements for efficiency, using encryption time, decryption time and 

overall time for set up, were gauged in milliseconds. For encryption and decryption time, 

the CME scheme out-performed that of the 2-out-of-2 VC scheme, as shown in Table 

4.30. As the VC scheme did not require the generation of keys, and the only setup 

operation it utilized was to assign the string arrays of possible subpixel values, its overall 

time for setup was significantly better than that of the CME scheme, with the VC 

implementation taking 0ms where CME took 21.44ms on average. The details of the setup 
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tests are given in Table 4.31. This difference in setup time was expected, as the CME 4-

bit scheme setup involves the generation of a random 16 by 16 key matrix, as well as the 

generation of all possible bit strings of length 4. The difference in encryption and 

decryption time was unexpected, as the VC scheme involved fewer operations overall, 

and used only one pseudorandom generator. However, the CME scheme appeared to give 

a better performance in encrypting and decrypting data over all strings, and this difference 

became more pronounced when testing longer bit strings. 

Bit String 
Length 

Encryption (ms) Decryption (ms) 

VC 4-bit CME VC 4-bit CME 

16 0.056 0.020 0.010 0.020 

32 0.080 0.066 0.014 0.036 

64 0.196 0.104 0.052 0.060 

128 0.368 0.214 0.088 0.074 

256 0.868 0.369 0.214 0.136 

512 2.822 1.130 0.492 0.328 

Table 4.30: Mean encryption and decryption times for differing bit string lengths in the VC and 

CME schemes. (3d.p.) 

 4-bit CME VC 

Memory used (MB): 0.448 0.456 

Time taken (ms): 21.440 0.000 

Table 4.31: Mean setup for the VC and CME schemes. (3d.p.) 

The practical security of both algorithms was tested by the overall avalanche effect of 

each when a single bit of the pseudo-random plaintext data was flipped. Both schemes 

hover at the 50% mark for the total amount of bits that are unaltered from the previous 

ciphertext. Table 4.32 gives the results for the two schemes side by side for each of the 

six tested plaintext sizes. 

Data Size % of Bits Unchanged 

VC CME 4-bit 

16 49.275 50.319 

32 50.169 50.619 

64 50.005 50.499 

128 49.934 50.286 

256 49.981 50.337 
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Table 4.32: Avalanche effect for differing bit string lengths in the VC and CME schemes. (3d.p.) 

The requirements for brute force attacks on each algorithm were also calculated. The 

number of average operations required to brute force a VC scheme is given in Equation 

4.6.1.i, where l is the share length and s is the pixel expansion of the scheme. 

Equation 4.6.1.i  1
2

(2𝑙 𝑠⁄ ) 

In the utilized implementation, the pixel expansion is equal to four, so s can be replaced 

by 4 in Equation 4.6.1.i. The overall length of the shares then determines the level of 

security, as the shares within the VC scheme are both ciphertext and key at once. So a 

brute force attack on the implementation attempts all possible plaintexts. In contrast, the 

operations required for the brute force of a 4-bit CME scheme are shown in Equation 

4.6.1.ii.  

Equation 4.6.1.ii  𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 =  1
2

(17256) 

The results of Equation 4.5.1.ii are too large to practicably compute for most calculators. 

To give a result, the MatLab variable point integer toolbox was utilized. The obtained 

results are shown in Equation 4.6.1.iii. 

Equation 4.6.1.iii  𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 =  1
2

(9.883798 ×  10314) 

    𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 4.941899 × 10314 

Comparatively, even a VC scheme that consisted of shares of 4096-bits generated from a 

1024-bit secret ‘image’ plaintext would not match this level, as based on Equation 4.6.1.i 

the operations required for a brute force attack on a 4096-bit are shown in Equation 

4.6.1.iv. 

Equation 4.6.1.iv  𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 =  1
2

(24096
4⁄ ) 

    𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 =  1
2

(21024) 

    𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 =  1
2

(1.79769313 × 10308) 

    𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 8.98846567 ×  10307 

As the result of Equation 4.6.1.iv is seven orders of magnitude smaller than that of 

Equation 4.6.1.iii, it can be determined that the 4-bit CME scheme is quantifiably more 

resistant to brute force attack than the VC scheme for shares of up to 4096 bits. 

 The likelihood of an adversary successfully guessing the secret ‘image’ of the VC 

scheme for a 608-bit secret image is approximately equal to probability of an adversary 

successfully guessing for 608-bit coordinate ciphertext whether each coordinate is empty 

512 50.072 50.120 
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or full. This probability is given in Equation 4.6.1.v, as per the Bernoulli trials formula. 

Equation 4.6.1.v 𝑃(608) = (608
608

) ∙ (0.5)608 ∙ (0.5)0 

   𝑃(608) =  9.41374947 × 10−184 

 

 

4.6.2 AES versus 8-bit CME Byte Scheme 
The implementations of the byte-level CME scheme and Java’s inbuilt AES were 

compared as per the schema outlined in Chapter 3. The implementation efficiency was 

measured by the time taken in milliseconds at each stage, and the total memory required 

to complete each stage in megabytes. The security was then measured based on theoretical 

resistance to brute force attacks, chosen plaintext attacks, the results of practical 

frequency analysis, and the overall avalanche effect of the scheme. Each category was 

tested on each of the five different plaintext data strings over many iterations of the 

algorithm. The UTF-8 encoded plaintext for testing was taken from Hamlet (Shakespeare 

& Ackroyd, 2006) and Pride and Prejudice (Austen, 2006). 

 The time and memory requirements for the setup of the scheme were measured 

over the course of 100 iterations of the algorithm. The memory in megabytes occupied 

by the JVM at the end of the setup stage and the total time taken to complete the setup in 

milliseconds were recorded over the tests. Table 4.33 gives the results of the setup 

efficiency testing. 

 

 AES CME 

Time taken (ms): 409.000 80.130 

Memory used (MB): 2.364 1.217 

Table 4.33: Mean setup requirements for the AES and byte-level CME schemes. (3d.p.) 

The encryption and decryption time for each of the implementations were measured over 

the course of 1000 iterations of the algorithm on each of the five strings. Table 4.34 gives 

the results of mean encryption and decryption time over the testing for each different 

tested plaintext. The time requirements for the byte-level CME increase linearly with the 

size of the plaintext. 
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Data Size 

Encryption (ms) Decryption (ms) 

AES Byte CME AES Byte CME 

304 0.199 0.031 0.170 0.012 

928 0.142 0.059 0.182 0.023 

3024 0.173 0.136 0.179 0.065 

4408 0.185 0.173 0.196 0.050 

8144 0.148 0.262 0.250 0.093 

Table 4.34: Mean encryption/decryption time for the AES and byte-level CME schemes. (3d.p.) 

The memory requirements at each stage for encryption and decryption were measured by 

the amount of memory in use by the JVM at the end of the stage. These values were 

recorded over 500 iterations of the algorithm for each of the plaintext strings. Table 4.35 

gives the results of this testing. 

 

Data Size 

Encryption (MB) Decryption (MB) 

AES Byte CME AES Byte CME 

304 1.393 1.244 1.395 1.244 

928 1.397 1.245 1.400 1.246 

3024 1.396 1.251 1.416 1.251 

4408 1.399 1.255 1.424 1.255 

8144 1.395 1.263 1.444 1.264 

Table 4.35: Mean encryption/decryption memory for the AES and byte-level CME schemes. 

(3d.p.) 

The security for the two implementations was measured first by theoretical resistance to 

brute force attacks. 128-bit AES relies on the strength of its key to prevent brute force 

attacks. Equation 4.6.2.i gives the mean number of attempts an adversary would be 

required to make on average to correctly identify the key. 

Equation 4.6.2.i  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈  1
2

2128 

    𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(3.4028237 ×  1038) 

    𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.7014118 × 1038 

This result can be compared with that given in Equation 4.6.2.ii, the average number of 

attempted key matrices required to brute force the 8-bit byte-level implementation of 

CME. 

Equation 4.6.2.ii 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  1
2

(25765536) 
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   𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  1
2

(2.3832557 ×  10157937) 

   𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1.19162785 × 10157937 

 

The result of Equation 4.6.2.ii is 157,899 orders of magnitude larger than that of Equation 

4.6.2.i, suggesting that the CME implementation gives a higher level of resistance against 

brute force attacks. 

 The vulnerability of each algorithm to methods of frequency analysis and chosen 

plaintext was explored through a custom-built program that analysed the frequency of the 

ciphertext bytes over many iterations of the algorithms. Over the course of 1000 

iterations, an 8814-bit string of plaintext data was encrypted into 1000 ciphertexts, and 

the frequency with which each byte occurred was measured. For the CME 

implementation, the bytes were measured in their coordinate tuples, and the percentage 

of those coordinates which were full or empty was calculated. Table 4.36 gives the results 

from the analysis of 128-bit AES, while Table 4.37 gives the results from the byte-level 

CME. 

Frequency Average # of Bytes Times Occurred 

1 18.626 1000 

2 37.606 1000 

3 50.462 1000 

4 50.010 1000 

5 39.938 1000 

6 26.581 1000 

7 15.194 1000 

8 7.554 1000 

9 3.403 978 

10 1.780 749 

11 1.271 388 

12 1.068 146 

13 1.019 54 

14 1 18 

15 1 4 

16 1 1 

Table 4.36: Frequency analysis for 128-bit AES on ciphertext from an 8814-bit string. (3d.p.) 
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Frequency Blank Full Times Occurred 

1 50.047% 49.953% 1000 

2 48.589% 51.411% 1000 

3 46.491% 53.509% 308 

4 40.000% 60.000% 5 

Table 4.37: Frequency analysis for byte-level CME on ciphertext from an 8814-bit string. 

(3d.p.) 

The security of both schemes was further evaluated by the analysis of the frequencies of 

ciphertext resulting from the encryption of a string consisting of a single repeated 

character. Table 4.38 gives the results for 128-bit AES, while Table 4.39 gives the results 

for the byte-level CME. 

 

Frequency Average # of Bytes Times Occurred 

1 69.115 1000 

2 69.620 1000 

3 46.234 1000 

4 23.054 1000 

5 9.207 1000 

6 3.070 963 

7 1.491 561 

8 1.098 184 

9 1.026 38 

10 1 13 

Table 4.38: Frequency analysis for 128-bit AES on ciphertext from a 4048-bit chosen plaintext 

string. (3d.p.) 

Frequency Blank Full Times Occurred 

1 50.105% 49.895% 1000 

2 44.127% 55.873% 1000 

3 31.915% 68.085% 46 

Table 4.39: Frequency analysis for byte-level CME on ciphertext from a 4048-bit chosen 

plaintext string. (3d.p.) 

The final security measure was the overall avalanche effect of the algorithm. This was 

tested on the total percentage of bytes that occurred in the previous and current 

ciphertexts, changed and unchanged, as well as the total percentage of unchanged bytes 
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occurring in the same position. Each tested plaintext differed from the previous plaintext 

by exactly one bit, and the algorithms were tested over 500 iterations of encryption and 

decryption. Table 4.40 gives the comparative results for each of the different data strings. 

 

Data Size Same Bytes (%) Same Position (%) 

AES CME AES CME 

304 37.767 44.839 24.779 0.414 

928 62.777 84.026 38.905 0.388 

3024 87.935 99.713 45.857 0.422 

4408 94.276 99.984 48.227 0.404 

8144 99.100 100 48.593 0.395 

Table 4.40: Avalanche effect in 128-bit AES and byte-level CME schemes. (3d.p.) 

 

4.6.3 ECC versus 8-bit CME Byte Scheme 
The comparison of ECC and the byte-level CME scheme was performed according to the 

schema laid out in Chapter 3. The efficiency of the algorithms was calculated based on 

average setup time and the memory required by the JVM to execute the setup. The 

evaluation of security in each algorithm was based on the theoretical resistance of the 

schemes to brute force attacks. 

 The efficiency in setup of ECDH and byte-level CME was measured over 100 

iterations of the algorithm, based on the occupied memory in megabytes and the time 

taken in milliseconds. Table 4.41 gives the comparative results, which have been 

averaged over all trials. 

 ECC CME 

Time taken (ms): 359.500 80.130 

Memory used (MB): 1.192 1.217 

Table 4.41: Setup requirements for byte-level CME and ECDH protocols. (3d.p.) 

The security of CME and ECDH can be compared based on the resistance to brute force 

attacks. Equation 4.6.3.i gives the average number of key attempts required for a brute 

force attack on byte-level CME, while Equation 4.6.3.ii gives the average number of 

operations key attempts required for the symmetric key resulting from the ECDH 

protocol. Equation 4.6.3.iii gives the average number of operations to brute force attack 

the 192-bit ECC generated private key. 
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Equation 4.6.3.i 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  1
2

(25765536) 

   𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  1
2

(2.3832557 ×  10157937) 

   𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1.19162785 × 10157937 

Equation 4.6.3.ii 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈  1
2

2128 

   𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(3.4028237 ×  1038) 

   𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.7014118 × 1038 

Equation 4.6.3.iii 𝐵𝐹𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈  1
2

(2192) 

   𝐵𝐹𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈  1
2

(6.2771017 × 1057) 

   𝐵𝐹𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 3.1385509 × 1057 

 

Based on the results in Equations 4.6.3.1.i through iii, the byte-level CME scheme may 

be suggested to be quantifiably more resistant to brute force attacks than the 192-bit 

ECDH scheme. 

 

4.6.4 RC4 versus 8-bit CME 
The comparison between RC4 and 8-bit CME was completed using the Java 

implementations described in sections 4.5.1 and 4.1.2 respectively. The comparison was 

completed using the time and memory requirements for encryption, decryption and setup; 

the avalanche effect of the algorithm; frequency analysis of the output; resistance to 

chosen and known plaintext; and the number of operations required on average to 

complete a brute force attack on the key space. Complete source code for both algorithms 

can be found in Appendix B. The testing data used for the study was taken from Pride & 

Prejudice (Austen, 2006) and Hamlet (Ackroyd & Shakespeare, 2006). The testing data 

is available in Appendix C.  

 The set up requirements of the algorithms were tested over the course of 100 

iterations, using both the time elapsed and the memory occupied by the JVM. These 

results were then tabulated and the means calculated. Table 4.42 gives the results. 

 RC4 CME 

Time taken (ms): 258.500 80.130 

Memory used (MB): 2.340 1.217 

Table 4.42: Comparative set up requirements for RC4 and 8-bit CME (3d.p.) 

The time taken to encrypt and decrypt the different data sizes for each algorithm was 
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recorded over the course of 1000 iterations. The mean encryption and decryption time in 

milliseconds was then calculated in milliseconds for each data size and each algorithm. 

The RC4 implementation was significantly faster than the CME scheme in encryption 

over all data sizes, and in decryption over all data of 3024-bits and above. Table 4.43 

gives the results of the time requirement evaluations. 

Data Size 

Encryption (ms) Decryption (ms) 

RC4 Byte CME RC4 Byte CME 

304 0.014 0.031 0.022 0.012 

928 0.027 0.059 0.025 0.023 

3024 0.023 0.136 0.016 0.065 

4408 0.020 0.173 0.045 0.050 

8144 0.024 0.262 0.032 0.093 

Table 4.43: RC4 versus 8-bit CME encryption and decryption time requirements (3d.p.) 

The final efficiency test for the two algorithms was the comparison of memory 

requirements during encryption and decryption. Each data size was encrypted and 

decrypted over 500 iterations, and the mean for each data size was calculated for each 

algorithm. Table 4.44 gives the results of this testing. Over all data sizes, the memory 

required for execution of the CME algorithm was lower than that of RC4. 

Data Size Encryption (MB) Decryption (MB) 

RC4 Byte CME RC4 Byte CME 

304 1.362 1.244 1.361 1.244 

928 1.363 1.245 1.362 1.246 

3024 1.364 1.251 1.366 1.251 

4408 1.364 1.255 1.364 1.255 

8144 1.366 1.263 1.369 1.264 

Table 4.44: RC4 versus CME memory requirements (3d.p.) 

The theoretical security of the two algorithms against brute force attack was measured by 

the number of operations that would be required on average to successfully recover the 

key. The mean number of operations to recover the 128-bit RC4 key is given in Equation 

4.6.4.i. The mean number of operations required to recover the key matrix from the 8-bit 

CME scheme is given in Equation 4.6.4.ii. 

Equation 4.6.4.i  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈  1
2

2128 

    𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(3.4028237 ×  1038) 



 

 89 

    𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.7014118 × 1038 

Equation 4.6.4.ii  𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  1
2

(25765536) 

    𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈  1
2

(2.3832557 ×  10157937) 

    𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1.19162785 × 10157937 

 

The result of Equation 4.6.4.ii is 157,899 orders of magnitude greater than that of 

Equation 4.6.4.i. As such, it can be posited that the 8-bit CME scheme offers greater 

resistance to brute force attacks than the 128-bit RC4. 

The security of the two algorithms was measured using frequency analysis the 

ciphertext of strings of plaintext that reflected English language frequencies and a 

plaintext string of a single repeated character. The frequency analysis of the English 

language plaintext strings gave an indication of what, if any, frequency data from the 

original plaintext might be revealed by analysis of the ciphertext. Over 1000 iterations, a 

8814-bit string of English language plaintext was encrypted into 1000 different 

ciphertexts – using a different randomly generated key for each iteration in the RC4 

algorithm – and the frequency distribution of the bytes in each ciphertext was calculated. 

The mean distribution was then tabulated. Table 4.45 gives the results of the frequency 

analysis on RC4, while Table 4.46 gives the results of the analysis on 8-bit CME. The 

distribution of frequencies in the 8-bit CME scheme is significantly flatter than those of 

the RC4 algorithm. 

 

Frequency Average # of Bytes Times Occurred 

1 18.875 1000 

2 37.987 1000 

3 50.649 1000 

4 50.299 1000 

5 38.588 1000 

6 26.575 1000 

7 14.693 1000 

8 7.395 1000 

9 3.207 995 

10 1.501 872 

11 0.889 488 
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12 0.792 212 

13 0.736 72 

14 0.682 22 

15 0.429 7 

16 1 4 

Table 4.45: Frequency analysis of ciphertext from an 8814-bit string in RC4 (3d.p.) 

Frequency Blank Full Times Occurred 

1 50.047% 49.953% 1000 

2 48.589% 51.411% 1000 

3 46.491% 53.509% 308 

4 40% 60% 5 

Table 4.46: Frequency analysis of ciphertext from an 8814-bit string in 8-bit CME. (3d.p.) 

The resistance of the algorithms to chosen plaintext attacks was tested using a 4048-bit 

plaintext string consisting of a single repeated ‘a’ character. Frequency analysis was 

performed on the resulting ciphertext of this string over the course of 1000 iterations – 

using a different key for each iteration of the RC4 algorithm – and the resulting mean 

distribution was calculated. Table 4.47 shows the frequency analysis of RC4, while Table 

4.48 shows the frequency analysis of 8-bit CME. 

Frequency Average # of Bytes Times Occurred 

1 70.164 1000 

2 69.383 1000 

3 45.674 1000 

4 22.212 1000 

5 8.968 1000 

6 2.939 989 

7 1.242 683 

8 0.889 216 

9 0.917 48 

10 1 5 

Table 4.47: Frequency analysis of ciphertext from a 4048-bit chosen plaintext in RC4 (3d.p.) 

Frequency Blank Full Times Occurred 

1 50.105% 49.895% 1000 

2 44.127% 55.873% 1000 
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3 31.915% 68.085% 46 

Table 4.48: Frequency analysis of ciphertext from a 4048-bit chosen plaintext in 8-bit CME 

(3d.p.) 

The final measure of security in the algorithms was the avalanche effect they produced. 

Each plaintext was changed by exactly 1 bit for each new iteration, and the avalanche 

effect was measured over the course of 500 iterations by the total percentage of bytes that 

had remained unchanged from the previous plaintext, and the total number of bytes that 

remained in the same position in both ciphertexts. Table 4.49 gives the results of this 

avalanche testing. The avalanche effect of the CME algorithm was drastically higher than 

that of the RC4 algorithm. 

Data Size Same Bytes (%) Same Position (%) 

RC4 CME RC4 CME 

304 97.668 44.839 97.368 0.414 

928 99.472 84.026 99.145 0.388 

3024 99.940 99.713 99.735 0.422 

4408 99.979 99.984 99.819 0.404 

8144 99.997 100 99.902 0.395 

Table 4.49: Comparative avalanche effect in RC4 and 8-bit CME (3d.p.) 

4.7 CONCLUSION 
 

In this chapter, the test results of the study specified in Chapter 3 were enumerated for 

each individual algorithm, and the comparative results for each of the tested schemes 

were detailed. The data collected over many iterations of each of the schemes was 

averaged and the mean results of the testing were presented. Measures of efficiency and 

security were given across each of the algorithms, and used to compare the performance 

of each.  

 In Chapter 5, the results will be discussed and evaluated, and conclusions about 

the original hypotheses and research questions will be drawn.  
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Chapter 5 
Discussion and Analysis of Findings 

 

5.0 INTRODUCTION 
 

In Chapter 4, the results of the study were enumerated and explained, and the four 

algorithms evaluated based on their results in each of the testing criteria. The data was 

presented, and the sets of algorithms were analysed in pairs for a fairer comparison. The 

results provided a clearly detailed, achievable level of security in the graphic-based CME 

system. 

 In this chapter, the results are explored in depth. Section 1 uses the results of the 

study to answer the research questions posed in Chapter 3, and to revisit the hypotheses 

with the information gained from testing. Section 2 then discusses the implications of the 

results, and their application to real-world problems. Finally, section 3 gives the 

conclusions, which suggest that there are real world applications and security benefits to 

graphic-based ciphers. 

 

5.1 RESEARCH QUESTIONS AND HYPOTHESES 
 

In this section, the research questions and hypotheses posed in Chapter 3 are answered 

with the data from the tests. Section 5.1.1 reiterates the research questions and discusses 

the answers gained from the study. Section 5.1.2 then explores the hypotheses using the 

new data available from the testing. 

 

5.1.1 Research Question 1: What are the security benefits of graphic based systems 
in comparison to classical block ciphers? 
 

The alternative key structures in graphic based systems can provide a comparatively 

higher level of security in similarly sized implementations. The proposed Coordinate 

Matrix Encryption (CME) scheme offered a high level of security over all tests. In 

comparison with the 128-bit AES implementation, the resistance of the CME scheme to 

brute force was 157,899 orders of magnitude higher in the number of key attempts 

required on average as shown in Equations 4.6.2.i & ii, giving it a far higher theoretical 

resistance to brute force attacks. The avalanche effect of the CME scheme also outpaced 
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that of the implemented AES, with the CME scheme resulting in less than 1% of the bytes 

in the ciphertext remaining in the same position after a 1-bit variation in the plaintext 

(Table 4.40). In comparison, AES resulted in approximately 25-49% of the ciphertext 

bytes remaining in the same position after a single bit change in the plaintext. Frequency 

distributions over the ciphertext for both algorithms resulted in little to no information 

about the plaintext being communicated (Tables 4.36 to 4.39). The statistical properties 

of the plaintext in both algorithms are diffused by the addition of a pseudo-random key, 

assisting in creating confusion in the ciphertext.  The highest frequency occurrence of the 

same byte in the ciphertext resulting from the encryption of a 8814-bit plaintext string in 

AES 128 was 16 – a single byte occurring in the ciphertext 16 times (Table 4.36). In 

comparison, the same string encrypted with the 8-bit CME scheme resulted in a highest 

frequency occurrence of three (Table 4.37).  

In comparison to the stream cipher RC4, CME gave again a quantifiably higher 

level of security, with a brute force attack on the 8-bit CME being 157,899 orders of 

magnitude more expensive than on the 128-bit RC4 as shown in Equations 4.6.4.i & ii. 

The avalanche effect of the CME cipher was also drastically higher than that of RC4, 

which produced very little variation from one ciphertext to the next (Table 4.49). As the 

frequency distribution of RC4 was closely aligned with that of AES, the distribution of 

the 8-bit CME was flatter than RC4, with much lower occurrences of high frequencies. 

The highest frequency occurring in the ciphertext of an 8814-bit string in CME was three, 

while RC4 had a top frequency of 16 (Table 4.45).  

These results suggest a higher level of security is given by the graphic-based 

alternate cipher, than the Feistel-based AES or the traditional stream cipher RC4.  The 

alternative structure of the key, and the use of bit string codewords as an alphabet provides 

for a much higher number of possible keys than are achievable by a simple binary key 

string, which has only two possible options for any one bit of the key.  

   

5.1.2 Research Question 2: What difficulties are faced in the implementation of 
graphic based systems? 
 

The implementation of alternative graphic-based systems requires computational 

overheads in the creation of the key structure, because these systems rely on complex key 

structures for security. The creation and storage of such key structures results in a 

computational overhead not necessarily incurred by classical key structures such as bit 

keys. The CME method proposed utilizes a large 2-dimensional key matrix, and the 



 

 94 

majority of computational overhead in the algorithm lies in this key structure. Because 

the security of the algorithm rests particularly on the design of the key, the computational 

complexity of the key is relatively high. The 4-bit scheme produces a 16 by 16 key matrix, 

roughly equivalent to a 256-bit pseudorandom binary key, however each individual full 

coordinate in the matrix contains a 4 bit codeword. As a result, the key matrix requires a 

certain amount of memory to be occupied to store it. This result is in keeping with those 

ciphers based on special graphs of large girth, such as the Cayley graphs utilized by 

Ustimenko (2007), which can encounter large computational overheads due to the graph 

size. The unusual key structure of the CME design is not quantified in the manner of 

binary keys, where a key size can be simply determined, as in AES, and the particulars 

of the structure require that the algorithm find alternative means to store it. 

 

5.1.3 Sub-Questions 
Sub-question 1: Does the implementation of the proposed method provide better levels 

of security than the comparable algorithms? 

 

Answer: The implemented CME schemes gave a higher level of resistance to brute force 

attacks than all tested comparable algorithms. The particular structure of the key matrix 

resulted in many orders of magnitude more operations required to brute force the CME 

schemes than required for the AES, RC4, VC and ECC schemes. The frequency analysis 

resulted in a even distribution of full and empty coordinates across the frequencies (Table 

4.37), and the binomial probability of an adversary being successfully able to guess for 

any given ciphertext whether each coordinate was full or empty was low enough for the 

likelihood to be exceedingly improbable (Equation 4.6.1.v). The avalanche effect of the 

algorithm was on par with that of the VC scheme, with an approximate 50% change in 

the ciphertext given a 1-bit change in the plaintext (Table 4.32). When compared with the 

AES and RC4 schemes, the CME algorithm resulted in fewer than 1% of bytes in the 

ciphertext remaining in the same position given a 1-bit change in the plaintext. AES 

resulted in approximately 25-49% of bytes remaining in the same position (Table 4.40), 

while the RC4 algorithm resulted in approximately 97-99.9% of bytes remaining in the 

same position after altering a single bit of the plaintext (Table 4.49). 

These results suggest the implemented CME scheme could provide higher levels 

of security than given by the other algorithms. This result is in keeping with the basing 

of its security on VC models, as well as in keeping with the high levels of security 

proposed by studies such as Priyadarsini and Ayyagari (2013), who posited a security 
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level of 𝑛! could be achieved using Hadamard matrices of size n by n to create Shrikhande 

graphs for encoding images. In the method proposed by Priyadarsini and Ayyagari (2013) 

the adjacency matrix for the Shrikhande graph operates as the private key. The level of 

security achieved by the scheme shows the usefulness of matrices as encryption keys, 

though the proposed CME scheme differs from that proposed by Priyadarsini and 

Ayyagari (2013) as it does not generate a graph for encryption, and the CME key matrix 

utilizes codewords and blank padding spaces. 

 

Sub-question 2: How is the level of security achieved in the proposed method? 

 

Answer: The strength of the CME scheme relies heavily on its particular underlying key 

structure. The use of a partially-occupied matrix with a codeword alphabet of bit strings 

allows for a higher level of computational complexity. The random nature of the padding 

coordinates, and the use of multiple locations for each codeword create a non-singular 

mapping, so that each plaintext has many possible ciphertexts. This non-singular mapping 

gives a high-level of security against known and chosen plaintext attacks, as well as 

frequency analysis. The key matrix is protected from brute force attacks by both its size 

and the use of a codeword alphabet. Each entry in the matrix has multiple possible entries, 

rather than being either a 1 or 0. This drastically increases the number of possible key 

matrices, and therefore the number of operations an adversary would be required to 

compute in order to break the scheme successfully, as shown in Equations 4.1.4.i through 

4.1.4.iii.  

 

Sub-question 3: What is the reduction in computational overhead in the proposed 

scheme from comparable algorithms? 

 

Answer: The comparison of efficiency in the different schemes resulted in CME offering 

a faster setup time than AES, RC4 and ECC, though the 2 out of 2 VC scheme gave the 

fastest setup time (Table 4.3.1). The CME scheme offered reduced memory requirements 

in setup compared to that of the 128-bit AES and RC4 implementations (Tables 4.33, 

4.42), though the ECC scheme had lower memory requirements still (Table 4.41). In the 

comparison of the 8-bit CME scheme and the 128-bit AES implementation, the 

encryption and decryption time increased linearly in CME, where the encryption time for 

AES was constant (Table 4.34). Similarly, the RC4 algorithm was significantly faster 

than the CME scheme in encryption on all data sizes, and in decryption of the larger data 
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sizes, both of which remained constant in RC4 (Table 4.43). However, while the CME 

scheme required greater time for encryption for the longer plaintext sizes than AES, 

decryption in CME was consistently faster than its AES counterpart on all testing data 

(Table 4.34). The CME scheme also offered a lower memory requirement in encryption 

and decryption than the AES and RC4 implementations (Tables 4.35, 4.44). In 

comparison to the VC scheme, the 4-bit CME algorithm offered faster encryption on all 

plaintext strings, and faster decryption on the longer plaintext (Table 4.30). The memory 

requirements for setup in VC and CME were similar (Table 4.31). These results present 

CME as a scheme that is of comparable efficiency in many areas to the tested algorithms, 

though further optimisations would be necessary to ensure it is truly competitive. 

 

5.1.4 Hypothesis 1: Graphic-based methods provide a better level of security with 
lower overheads than classical encryption techniques 
 
Result: Indeterminate 

 

Explanation: While the overall results for security show that the 8-bit CME scheme gives 

a higher level of security than the 128-bit AES and RC4 implementations, the efficiency 

in regards to encryption time increased linearly in the CME scheme (Table 4.1). As the 

byte implementation of CME could be considered a stream cipher that operated on data 

byte by byte, the time complexity of the algorithm is linear, and grows with the size of 

the plaintext. The 128-bit AES system operates on set block sizes of data greater than that 

of the CME scheme, and as such the AES scheme offers a slower rate of growth in time 

complexity than that of the CME scheme (Table 4.34). The RC4 algorithm also gave 

better performance with regards to time in the encryption of data than CME, though 

required higher levels of memory (Tables 4.43, 4.44).  This suggests that the overall 

efficiency in encryption of data, and therefore the overheads incurred by encryption may 

be higher in the CME scheme than in the AES and RC4 implementations. The results for 

the efficiency of AES are supported by the prior studies, such as Jeeva et al. (2012), whose 

test results gave AES a high overall efficiency rating. Similarly, the results of testing 

RC4, which produced a faster encryption and decryption time on all data than AES are 

supported by prior studies such as Singhal and Raina (2011), who tested the comparative 

efficiency of RC4 and AES, and found that AES was slower and required more memory 

over all the tests. That the higher level of theoretical security provided by CME resulted 

in lower efficiency is in keeping with the results of Bhat et al. (2015), who found that 
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AES was significantly less efficient than DES, as a result of the increased key size and 

security requirements. The results of the study in the comparison of the efficiency of ECC 

and AES are also in keeping with prior studies, as Prachi et al. (2015) found that ECC 

was more efficient than AES, which is reflected in the efficiency results of the 

implemented ECDH scheme, which was faster in setup than the implemented AES 

algorithm. The comparison between ECC, AES and RC4 do suggest that the efficiency 

of the alternative graphic based methods provides for a high level of efficiency that is 

comparable with that of more traditional encryption methods. Further experimentation is 

required to fully explore and test the hypothesis, and other traditional ciphers such as 

Blowfish could be implemented to compare with graphic methods.  

 

5.1.5 Hypothesis 2: The proposed encryption system based around graphic methods 
is computationally secure against attacks 
 

Result: Accepted 

 

Explanation: The results of the testing and analysis show that the CME scheme is 

computationally secure against brute force attacks. The number of possible key matrices 

in schemes of 4-bits or more are many orders of magnitude higher than the number of 

possible keys in current systems such as AES and RC4, shown in Equations 4.1.4.ii, 

4.6.2.i, and 4.6.4.i. As 128-bit AES and RC4 schemes are considered to be 

computationally secure against brute force attacks, and the 4-bit CME scheme is 276 

orders of magnitude greater, then the 4-bit CME scheme, and any CME scheme greater 

than 4-bits, must also be computationally resistant to brute force attacks. In regards to 

chosen plaintext and known plaintext attacks, the diffusion of statistical properties of the 

plaintext through the use of a key string, multiple coordinate locations for each codeword, 

and the addition of blank padding coordinates result in the CME scheme being 

theoretically secure against known and chosen plaintext attacks. The scheme has also 

been shown secure against frequency analysis, based on test data gathered in relation to 

the occurrences of full and blank coordinates within the ciphertext (Tables 4.7 to 4.9). 

The avalanche effect of the scheme also assists in security against chosen plaintext attacks 

(Table 4.10). Finally, the non-singular mapping resulting from the design of the algorithm 

ensures a high level of security against both known and chosen plaintext attacks, as the 

plaintext input of the algorithm gives many different ciphertext outputs for a single key 

matrix. As a result, the knowledge of any or all of the plaintext would provide little to no 
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information about the particular coordinates within the ciphertext, as the adversary would 

still need to guess for each coordinate whether it was empty or full. 

 

5.2 DISCUSSION 
 
This section discusses the implications of the results. Section 5.2.1 details the specific 

programs created for testing and how their particular functions were determined. Section 

5.2.2 looks at how the study has given information about the security benefits, efficiency 

trade-offs, and applications of alternative graphic based ciphers. Section 5.2.2 then 

explores the refinements and alterations that were made to the proposed system during 

the process of testing and optimizing the scheme. 

 

5.2.1 Testing Algorithms 
The programs created for the testing of each of the comparable algorithms were designed 

to be as thorough as possible. The avalanche effect program utilized in the study was 

designed in two sections. The first section was used to test the resulting ciphertext from 

the bit-string CME and 2 out of 2 VC schemes. It took two binary ciphertext strings as 

input, where the original plaintext used to generate them differed by exactly one bit, and 

calculated the percentage of bits that occurred in the same position in both ciphertexts. 

This gave a good overview of the avalanche effect in each of these binary algorithms. 

The second section of the avalanche analysis program was designed to test the byte 

version CME and the 128-bit RC4 and AES. As all three algorithms gave arrays of either 

bytes or integers as the ciphertext output, the program looked at both the total percentage 

of bytes that occurred in both ciphertexts, and the total percentage of bytes that occurred 

in the same position in both ciphertexts. The first test, the percentage of bytes occurring 

in both ciphertexts, grows as the length of the ciphertext grows, as there are only 256 

bytes total. As the length of the plaintext increases, all algorithms trended towards 100% 

for this value, with CME reaching this value more rapidly, as the ciphertext output for the 

CME scheme is always four times the length of the plaintext, while AES and RC4 only 

give an increase in length from ciphertext to plaintext if padding is required. The second 

test, the total percentage of bytes that occur in the same position, gave a better view of 

the effect a single bit change in plaintext had on the ciphertext. The results from the CME 

algorithm hovered consistently at less than 1% of the total bytes occurring in the same 

position, while AES gave a result of 25-49% of bytes occurring in the same position. RC4 

resulted in 97-99.9% of bytes occurring in the same position. 
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 The frequency analysis program developed to examine the occurrences of 

particular bytes within the ciphertext output of the schemes was also developed in two 

modules. The first module was utilized in the testing of 128-bit AES and RC4, and 

checked only the number of occurrences for each individual byte. The results were then 

given as the number of bytes that occurred with a given frequency. The second module 

was developed specifically to test the byte version of the CME scheme. This module 

checked the number of occurrences of each set of coordinates, and then also checked – 

based on the provided key matrix – whether the given coordinates were blank padding, 

or contained a message character. The results were then given as the number of empty 

and full characters which occurred with a given frequency. This enabled the examination 

of trends within the algorithm, and gave practical results for the theoretical analysis of 

the probabilities with which blank or full coordinate pairs occur.  

 

5.2.2 Benefits and Applications of Graphic Based Ciphers 
The use of alternative graphic methods to build ciphers for encryption offers a high level 

of security against attacks, both brute force and cryptanalysis. While the particular 

structure of the keys can incur higher computational overheads than traditional methods, 

the use of these alternative structures for secure communication requires further study. 

Use of systems like CME could offer higher levels of security in situations in which a 

slight decrease in efficiency was an acceptable trade-off for increased security. With the 

advent of quantum computers, and the constant increase in available computational 

processing power, traditional ciphers require higher and higher levels of security, which 

in most cases is resolved by a longer key length.  

 Quantum computing has been posited as a danger to current encryption 

technologies. According to the algorithm introduced by Grover (1996), the computational 

complexity of a system of 𝑂(𝑁) in classical computing can be translated into one of 

𝑂(𝑁1/2) in a quantum computer. This gives 128-bit AES a security level of 264, 

equivalent to the now-defunct DES. The 8-bit CME scheme, which offers 25765536 

different key matrices, would therefore be reduced to the equivalent security level of 

25732768. This would still theoretically offer a sufficient level of security. The currently 

recommended AES 256-bit would be reduced to a security level of 2128, and would as 

such be many orders of magnitude less that the security of the 8-bit CME scheme. The 

alternative structure of the key for the CME scheme therefore offers a high level of 

resistance to brute force attacks, even given the advent of quantum computers. 

 The use of CME or other alternative graphic based systems as a stream cipher 
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could offer a theoretical alternative to the now-defunct RC4, which has been proven 

vulnerable to several specific cryptanalytic attacks. While other stream ciphers, such as 

Spritz (Rivest & Schuldt, 2014), have been proposed to modify RC4 to prevent these 

attacks, as yet very little literature is available to provide support for their security. 

Because there is currently little standardisation in stream ciphers to replace RC4, the 

opportunity exists for an optimized version of CME to assist in this particular space in 

applications such as TLS that utilize stream ciphers for encryption on a day-to-day basis. 

 The structure of the CME scheme key matrix also allows for expansion into higher 

levels of security. The tested algorithm used a single key string of the first x coordinate 

for each codeword. As each codeword has ( 22𝑛

2(2𝑛)) locations, each consisting of an x,y 

coordinate pair, the scheme allows for the addition of multiple extra key strings, up to a 

final total of 2( 22𝑛

2(2𝑛)), to be used in the encryption of the data. The addition of these extra 

key strings in stronger schemes can be done without increasing the size of the key matrix, 

as the key matrix already contains these generated key strings, and their inclusion would 

require only one extra exclusive-OR operation per key string into the encryption and 

decryption loops. As such, the number of key strings can be increased without requiring 

an increase in the number of communicated keys.  

 The security of the proposed CME scheme rests in part on the addition of blank 

padding characters. Because each ciphertext contains an equal number of blank and full 

coodinates, and both occur even at the highest frequencies within the ciphertext, an 

adversary would be required to guess, for each coordinate within the ciphertext, whether 

it contained an encrypted message codeword, or was blank padding. Because of the 

addition of blank padding characters, the plaintext character locations do not necessarily 

match their location in the ciphertext. As such, even were an adversary to successfully 

guess a particular coordinate was full, he would only be able to guess at where in the 

plaintext that particular coordinate fell. 

 The use of alternative or unusual key structures enables graphic-based ciphers to 

use simplified algorithms, as the security rests on the structure, rather than the number of 

rounds of substitution or permutation. This simplicity of design could be of note in 

schemes that utilize stream ciphers for operation, as the CME scheme can operate byte 

by byte, and decryption is, as shown in the results, fast and efficient when compared with 

industry standards. This high-efficiency in decryption also suggests the proposed system 

could be utilized in high-security situations where fast access to encrypted data is of 

greater concern than the speed for the encryption and storage of the data.  
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5.2.3 Difficulties and Optimizations in Implementation 
The proposed graphic CME scheme required several iterations of refining to reach an 

acceptable result.  The testing of the algorithm in regards to frequency analysis, the 

binomial probability of successfully locating the full coordinates in a given ciphertext, 

and the speed of the algorithm all provided important data for the refining of the scheme. 

The original algorithm had failed to account for the overall trends in frequency 

within a non-random plaintext string. The addition of the key string to counter this 

frequency information was therefore a highly important improvement, as early versions 

without the key string proved vulnerable to frequency analysis given large blocks of 

ciphertext, where blank coordinates did not occur at higher frequencies. The altering of 

the structure for the blank coordinates then further mitigated this effect. The total number 

of blank coordinate entries was calculated to equal the total number of codewords. Each 

blank coordinate entry was then assigned a list of the same length as each codeword’s 

coordinate list, and these blank entry lists were then populated with randomly chosen 

empty locations. The algorithm then went through the same process to choose a particular 

blank coordinate that was required to choose a given codeword location. A blank entry 

was picked at random, and then a location within that blank entry’s list was also picked 

at random. This resulted, in conjunction with the addition of the key string, in a flatter 

frequency distribution, and both blank and full coordinates occurring at each frequency, 

in equal distributions. 

The original version of the algorithm also failed to produce a fixed-length 

ciphertext output. The number of added padding coordinates was determined randomly, 

and as such, the length of the ciphertext was variable. While this assisted in confusing the 

plaintext, the possibility existed, however small, that the algorithm would fail to add any 

padding coordinates, and the ciphertext would consist only of message coordinates. This 

possibility was dealt with by fixing the length of the ciphertext, and ensuring that equal 

numbers of padding and codeword coordinates were included in all ciphertext outputs. 

This also gave a fixed binomial probability for any ciphertext, that for any one coordinate 

the probability of being either blank or full was 1:1.  

Early versions of the CME algorithm also suffered in efficiency due to their 

programming. Part of the process for refining the algorithm was the editing of the code 

to make it more efficient. Several extra loops and operations were discovered within the 

code that could be removed without affecting the algorithm, and replaced with simpler 

and lower cost operations. This optimization process allowed for the creation of an 
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algorithm that operated with linear time complexity Ο(𝑛).  

 
5.3 CONCLUSION 
 

This chapter has discussed the results and implications of the study reported in Chapter 

4. The research questions and hypotheses were answered and explained, and the findings 

explored in depth in relation to the previous studies and literature examined in Chapters 

2 and 3. 

 The next and final chapter will draw conclusions from the research. It will discuss 

the limitations of the study in design and execution, and give recommendations for future 

research based on the results. 
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Chapter 6 
Conclusion 

 

6.0 INTRODUCTION 
 

The previous chapter discussed the results of the study, and the implications of these 

findings. It explained the difficulties encountered in the development of the 

implementations for each of the algorithms, and looked at the benefits and drawbacks of 

utilizing graphic-based methods for encryption. The previous chapter also examined the 

potential uses of alternative key structures like those proposed in the CME scheme.  

 This chapter enumerates the conclusions of the research. Section one discusses in 

depth the limitations of the study. Section two then offers recommendations for future 

research based on the study conducted in this thesis. Then section three gives the final 

summary and conclusions of the research. 

 

6.1 LIMITATIONS OF RESEARCH 
 

During the course of the study, all efforts were made to ensure the results were as even 

and unbiased as possible. However, several factors must be taken into consideration when 

examining the results. The programming of the different algorithms implementations is 

discussed in section 6.1.1, while the comparability of ECC with AES, RC4 and CME is 

discussed in 6.1.2. The impact of altering the VC scheme to operate on binary characters 

is then discussed in 6.1.3. 

 

6.1.1 Programming Limitations 
The nature of the conducted study required that the system have custom implementations 

for the different algorithms. It was necessary to insert code to time the functions, and to 

measure the currently occupied memory. It was also necessary to insert calls to custom 

programs for measuring the ciphertext frequencies and the overall avalanche effect. These 

custom implementations may therefore have impacted upon the results of the study. 

While every effort was made to ensure the implementations were efficient and accurate, 

it is possible that another programmer writing their own implementations would achieve 

different results.  

 The implementations created for the purpose of the research were also affected by 
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the algorithms they were being compared with. The implementations for VC and the bit-

string version of CME were created as high level implementations that operated on strings 

of input. This meant these implementations were automatically less efficient in memory 

and time than the implementations of AES, RC4 and byte-oriented CME, which operated 

on arrays of bytes and integers. This is because the byte implementations use primitive 

variables, which results in smaller memory requirements and more efficient computation 

overall. Strings in Java are a more complex variable type, and any change made to a String 

in Java requires the creation and allocation of an entirely new String. This leads to wasted 

memory and computation. It also results in the VC and bit-string version of CME test 

results being less likely to generalize well enough to give data on the efficiency of low-

level implementations of the same algorithms. 

 The implementation of the CME scheme was also affected by its choice of 

pseudorandom number generator. Due to the constrained problem domain of this thesis, 

only one pseudorandom number generator was implemented, the inbuilt Java function. 

Random number generation is a widely researched field in cryptography and security, 

and the security of an algorithm which utilizes the generation of random or pseudorandom 

numbers relies on the security of these generators. As such, it is necessary to acknowledge 

that future research into CME schemes requires exploration of the possible generators, 

and their effect on the overall scheme. The use of Java’s inbuilt random number generator 

may impede the ability of these results to be more generally compared with stream ciphers 

that utilize purpose-built secure random number generators. 

 It must be noted that a more efficient comparison between the algorithms would 

have utilized schemes with 256 bit or larger keys. However, due to export controls 

surrounding the dissemination of strong cryptographic algorithms, standard 

implementations for AES and RC4 did not offer key sizes larger than that of 128. The 

inbuilt Java functions used to develop the code for these algorithms set a maximum size 

of 128 for key generation. The use of 128-bit algorithms in comparison to the 

implemented CME scheme results in less generalizable data, as the scheme implemented 

would be closer in operation to 256-bit AES.  

 

6.1.2 Comparing Asymmetric and Symmetric Systems 
The inclusion of ECC in the study was necessary due to its prevalence as a graphic 

encryption system. However, it is important to note that ECC is an asymmetric encryption 

algorithm, while the others used in the study are symmetric. This automatically impacts 

on the results of comparison with ECC. Jeeva et al. (2012) found the original Diffie-
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Hellman protocol slow to execute, and while the ECC version of this protocol is quicker 

due to its smaller key size, the execution of asymmetric systems can be computationally 

slower than that of symmetric systems. In the results given in Chapter 4, the execution of 

the ECDH algorithm was on par with that of the AES setup time. AES 128 took 409 ms 

(mean) and ECDH with a 192-bit key took 359.5 ms (mean). It must also be taken into 

account that the most efficient algorithm for breaking the 192-bit curve of the 

implemented ECDH protocol results in the protocol offering equivalent security to a 

symmetric 80-bit key, lower than that of 128-bit AES (Stallings, 2014). In order to 

achieve the equivalent security of 128-bit AES, a much larger elliptic curve would be 

required. As such, the comparison of the ECDH system is limited by the differences in 

the overall architecture, and the way its particular function impacts on its efficiency. The 

resulting comparison between the ECDH scheme and the symmetric cipher 

implementations therefore is limited in impact and scope, due to the different 

architectures and security levels. This results in a lack of generalizability to higher 

security ECC schemes, which are more likely implemented in modern technologies. 

 

6.1.3 Binary Implementation of Visual Cryptography 
Classical VC schemes operate on images and their pixels. A secret image is split into 

shares which contain arrays of subpixels. The comparison between the VC and CME 

schemes operated on strings of binary plaintext, and so it was necessary to design an 

implementation which operated on strings instead of images. The equivalent VC 

implementation for encryption of strings was based on the 2-out-of-2 scheme originally 

proposed by Naor and Shamir (1995), and utilized share creation from Kafri and Keren 

(1988). The translation of the VC scheme into one which operates in a different domain 

was a trivial operation, but may have impacted on the results, as the schemes are designed 

for efficiency and security in the encryption of images, not text. As such, the results of 

the utilized VC scheme may not necessarily reflect the operational efficiency of a more 

standard, classical VC scheme which operates on images. 

 

6.2 FUTURE RESEARCH 
 

The use of alternative key structures and graphic-based ciphers for encryption requires 

further study. The results given in Chapter 4 show a high security level with comparable 

efficiency to current cryptographic standards. This security level requires further 

examination in relation to cryptanalysis. The advent of quantum computing will likely 
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result in the weakening of current symmetric encryption systems, as well as the 

destruction of public-key infrastructures. The quantum algorithm proposed by Grover 

(1996) gives a key of size 2𝑛 the equivalent security of a symmetric key size of 2𝑛/2. A 

scheme with computational complexity 𝑂(𝑁) then has complexity 𝑂 (𝑁
1
2). This would 

render 128-bit AES insecure, as the computational complexity would be reduced to 264, 

equal to the 64-bit DES algorithm, depreciated in 2001. The results of Chapter 4 suggest 

that alternative key structures could provide a pathway for the development of secure 

post-quantum cryptography. The number of possible key matrices for an 8-bit scheme in 

CME remains very high, even when subjected to Grover’s algorithm, with a revised 

security level of 23732768. The security level of CME opens avenues for further research 

into the resistance of CME and other alternative systems to quantum-based attacks. Future 

study could examine the particular matrix structure of the CME key scheme, and how this 

could be implemented in post-quantum cryptography.  

 Further study could also be done in comparison with other stream ciphers that are 

currently part of the ESTREAM portfolio such as HC-128 (Wu, 2008), and block ciphers 

such as Blowfish (Schneier, 1993). The expanding of comparable algorithms would allow 

for the system to be more accurately placed in the current cryptographic landscape. The 

research conducted in this study was limited in scope due to algorithm availability, and 

as such there are further opportunities to look at the comparison of alternative key systems 

such as CME with other well-developed and industry adopted algorithms. Given that 

studies such as Thakur and Kumar (2011) suggested that Blowfish gave even better 

overall performance than AES, it would be expected that Blowfish would result in a faster 

encryption time than CME, but further exploration of the comparative security would 

provide a detailed look at the trade-offs between efficiency and security. A comparison 

between HC-128 and a byte-level version of CME would give researchers the opportunity 

to examine the ways in which the two algorithms differed in efficiency and security, to 

further the current comparison between CME and RC4. Because the 8-bit or byte-level 

CME scheme is a word-oriented stream cipher, the comparison with other proposed 

stream ciphers would give further understanding to how CME could be placed as an 

alternative within the current encryption infrastructure. Further investigation could also 

examine the avenues for incorporating CME into current stream cipher-based 

technologies such as TLS. 

 Future research could also explore implementing CME algorithms with multiple 

key strings. The addition of differing key strings could provide for higher levels of 
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security and flatter distributions across the board. The key matrix setup of CME allows 

for the use of up to 2( 22𝑛

2(2𝑛)) key strings in the encryption process, without communicating 

any extra keys. This ability to further adapt and customize the algorithm provides for 

research opportunities into the overall effect on security and efficiency when increasing 

the number of key strings used.  

 Ciphers that provide non-singular mappings of plaintext to ciphertext require 

further investigation. The addition of this chaos element adds further layers of obscurity 

and obfuscation to the encryption system. The non-singular mapping provides for security 

against known and chosen plaintext attacks, as shown in the security analysis of both 

CME and VC. Further research should explore other options for encryption systems that 

provide these non-singular mappings, particularly within the realm of graphic-based 

systems.  

 Further study could be done to explore ways in which the CME scheme may be 

optimized for greater efficiency. Improvements to the algorithm design and the schema 

could allow for a low-level implementation which provided the level of security shown 

in this thesis, while also allowing for a higher level of efficiency. The improvement of 

CME with regards to efficiency and time complexity would allow for implementations 

which could be utilized in domains with limited computing power, such as smart cards, 

and for integration into technologies such as TLS, which require high-performance 

stream ciphers to function. 

 The indeterminate result of Hypothesis 1 opens avenues for further research into 

comparisons between graphic-based and traditional cryptographic methods. The results 

of this study were unable to conclusively prove that graphic-based methods for encryption 

offered higher levels of security with lower overheads than traditional methods. Further 

research into this hypothesis would include comparing CME and other graphic-based 

systems against a variety of different traditional ciphers, on larger plaintext sizes and 

documents. Further research should also compare the performance of traditional and 

graphic-based systems in different domains, such as image encryption or incorporation 

into email clients. 

 The use of 128-bit AES and RC4 in this study was due to cryptographic export 

constraints. Further study could explore the comparative results of 256-bit AES with the 

8-bit CME scheme, and with recently developed 256-bit stream ciphers. The results of 

the efficiency tests between AES and CME suggest that the CME scheme should offer 

competitive levels of efficiency with the 256-bit AES scheme. The use of alternative 

random number generators could also be explored, to determine the effect different 
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generators have on the overall efficiency of the algorithm.  

 The implementation options for graphic-based systems such as CME should be 

further researched. Low-level implementations for hardware such as smart cards could 

prove of use in banking situations, as the results of Chapter 4 suggest that CME offers a 

high-security scheme with a relatively low memory requirement in comparison to other 

schemes. As architecture such as smart cards usually operates on a limited memory 

capacity, schemes that can offer reduced memory requirements are of value in this field. 

 The possibility of implementing the CME scheme in technologies such as TLS, 

which is designed around the use of stream ciphers, and previously utilized RC4, deserves 

further exploration. The improvements offered by CME in terms of memory 

requirements, avalanche effect, and brute-force resistance make it of relevance to 

securing online interactions. The development of a transport layer level scheme for a 

high-efficiency implementation could provide an option for addressing the gap left by the 

depreciation of RC4. 

 

6.3 CONCLUSION 
 

The research conducted in this study has explored the possibilities offered by alternative 

key structures and graphic-based methods for the development of encryption algorithms. 

These structures present a significant research opportunity for secure communication, and 

require further study and exploration. The results suggest that systems based around 

alternative key structures and graphic-methods could offer high levels of security while 

remaining competitively efficient in execution. Further research into optimization and 

application is required to fully explore these possibilities. 
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Appendix A: Glossary 

Term Definition 

Adjacency list A method of implementing graphs in computer 
code. Enumerates all nodes which are connected 
by an edge. 

Adjacency matrix A method of implementing graphs in computer 
code. A 2-dimensional matrix where there is a 1 
entry if the two nodes are connected by an edge. 
Else, there is a 0 entry.  

AES Advanced Encryption Standard. Introduced to 
replace DES in 2001, through the National 
Institute of Standards and Technology (NIST). 
Based on the Feistel cipher structure. Allows for 
key sizes of 128, 192, or 256-bits. The current 
standard for symmetric block ciphers. 

Alphabetic Cipher Operates on characters from a given alphabet. 
Artificial Intelligence A technological theory and current research area 

into the possibility of developing an artificial mind 
which has the ability to mimic human 
consciousness. 

ASCII A character set utilized in most HTML sites. 
Based around UTF-8 encoding, and encodes text-
based characters into unique bytes from 0-255. 
Stands for American Standard Code for 
Information Interchange.  

Asymmetric Encryption Also termed Public-key encryption. These 
schemes have two keys, a private or secret key, 
and a public key. The public key is used to encrypt 
the data but cannot be used for decryption. The 
private key is used to decrypt the data. These 
systems form the basis of many Internet 
technologies, and can also be used to create digital 
signatures and certificates. 

Avalanche effect The resulting change in the ciphertext after 
altering a single bit of the plaintext. A high level 
of change in the ciphertext is a desirable security 
feature of modern ciphers. 

Bernoulli trials A series of trials each of which will either succeed 
or fail. The probability of n successes in k trials 
can be calculated through the binomial probability 
formula. 
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Binary codewords Used in error-correcting codes as introduced by 
Richard Hamming (1950). Binary strings of a set 
length with a particular Hamming weight that 
allows the system to detect errors in transmission. 
See also Hamming distance, Error-correcting 
codes. 

Binomial probability An experiment with only two outcomes: success 
or failure. See also Bernoulli trials. 

Bit-flipping attack An attack wherein the adversary alters the 
ciphertext to give a predictable alteration in the 
resulting plaintext.  

Block cipher A cryptographic method which operates on 
plaintext data block-by-block, usually with a block 
size of 64 to 128-bits. See AES. 

Brute force attack A simple attack wherein all possible keys are 
attempted. On average, a brute force attack 
requires that one half of all possible keys be 
attempted. 

Caesar cipher The earliest known cipher. A substitution scheme 
attributed to Julius Caesar, in which a plaintext 
message was encrypted by replacing each 
character with the letter 3 places to the right. See 
symmetric cipher and substitution. 

Cayley table A 2-dimensional matrix which gives the result of 
the binary operation on each combination of 
elements in a set. 

CBC mode An encryption mode in AES. Cipher Block 
Chaining mode. Each new block of plaintext is 
combined with the previous ciphertext block 
through an XOR operation prior to encryption. 

CFB mode An encryption mode in AES. Cipher Feedback 
mode. Turns AES into a stream cipher, but is very 
similar in functionality to CBC. 

Chosen plaintext attack A cryptanalytic attack wherein a malicious 
adversary chooses the plaintext to be encrypted to 
take advantage of particular tendencies or features 
of a cryptographic system. 

Ciphertext The resulting output of an encryption algorithm. 
Common share RGVC A version of Asymmetric encryption from Random 

Grid VC which creates shares based on a single 
key share which becomes the key for the overall 
scheme. 
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Computational complexity The difficulty of completing the required 
computations for cracking a particular 
cryptographic scheme, usually due to 
technological limitations. 

Contrast constraints The set delineation in Visual Cryptography 
between a pixel that is considered black and a 
pixel that is considered white. Defined by the 
percentage of subpixels in the recombined pixel 
that are black. See also Pixel expansion. 

Coordinate Matrix Encryption The proposed symmetric stream cipher which 
utilizes matrices and coordinates and blank 
padding spaces to encrypt data.  

Cryptanalysis The art of forcibly decoding ciphertext messages, 
either by exhaustive searches (see Brute force 
attack) or by manipulation of known trends and 
tendencies within an encryption algorithm (see 
Chosen plaintext attack, known plaintext attack, 
bit flipping attack). 

Decryption Algorithm The method by which the ciphertext is turned into 
plaintext. 

DES Data Encryption Standard. Developed in 1970s by 
Horst Feistel, and was the official standard from 
1977 to 2001. Used a key size of 64 bits (56 bits 
for computation), which was proven insufficient 
for modern technologies. Superceeded by AES. 

Dictionary attacks A simple attack in which a given dictionary of 
possible keys is tried exhaustively. A variation of 
the brute-force attack. 

Diffie-Hellman problem See Discrete Logarithm Problem. 
Digital certificate Electronic document used to verify online 

ownership. See also Asymmetric encryption, 
digital signature. 

Digital signature A method by which identity can be verified over 
the Internet. Uses asymmetric encryption to create 
a code which can be verified by anyone with 
access to the user's public key, but can only be 
created using a private key. See also Asymmetric 
encryption, public key, secret key, and Digital 
certificate. 

Digital watermarks The method of stamping a piece of digital material 
with a mark so as to prevent copyright 
infringement. Usually involves the use of 
steganography. 
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Discrete Logarithm Problem The computation of logarithms in a finite field. No 
general method outside of quantum computing 
currently exists which allows this problem to be 
solved in polynomial time or less. The DLP is the 
one-way function utilized in the security of ECC. 
See also Integer Factorization Problem. 

Eavesdropping attack A network layer attack. Involves listening to all 
transmissions on a network in hopes of capturing 
sensitive information. 

ECB mode An encryption mode in AES. Electronic Codebook 
mode. Each block of plaintext is encrypted 
individually. 

ECRYPT The European Network of Excellence for 
Cryptography. 

Elliptic Curve Cryptography An asymmetric encryption system based on the 
calculation of affine points on elliptic curves over 
finite fields. Allows for the use of smaller key 
sizes than that of RSA. See RSA, Asymmetric 
encryption. 

Encryption algorithm The method of turning the plaintext into 
ciphertext. 

Error-correcting codes Introduced by Richard Hamming (1950). Allow 
for the transmission of data using codewords that 
are capable of detecting and correcting errors 
within the transmission. See also Hamming 
distance, binary codewords. 

eSTREAM Project Launched by ECRYPT, a project to standardize 
new symmetric stream ciphers for use in 
cryptographic protocols. Currently contains seven 
stream ciphers for use in either software or 
hardware. See ECRYPT and Stream cipher. 

Extended VC Visual Cryptography schemes which encode each 
share into a specific target image. Requires two 
separate contrast constraints. 

Feedback with carry shift register Extends the Linear feedback shift register and 
implements carry over arithmetic. Used in Stream 
ciphers. 

Feistel cipher Proposed by Horst Feistel. A cipher that alternates 
between permutations and substitutions. 

Finite field arithmetic Modular arithmetic. All operationas are 
constrained within a set field, for example 28, or 
256, meaning that no result of any operation will 
be outside the range [0,256]. 
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FMS Attack An attack against RC4 posited by Fluhrer, Mantin 
& Shamir (2001). The attack exploits a weakness 
in the construction of session keys. See Rivest 
Cipher 4. 

Frequency Analysis A statistical method of cryptanalysis, using the 
statistical properties of the ciphertext to determine 
the key. 

Galois field See Finite field arithmetic. 
Generalized RGVC A version of Random Grid VC which gives 

adjustable light transmission, or contrast 
constraint. 

Graph decomposition The act of deconstructing a graph into smaller sub-
graphs without the loss of any information from 
the original graph. 

Graph-based EVCS Extended VC based on graphs. The scheme 
contains multiple subsets of authorized 
participants, each set of which are able to decode a 
particular secret. Each participant is designated as 
a node on the graph. If an edge exists between two 
nodes, then that pair share a given secret. 

Graphic-based ciphers Cryptographic technologies that base their design 
on topology and graph or group theory. See 
Elliptic Curve Cryptography or Visual 
Cryptography. 

Grover's algorithm A quantum algorithm for the computing of 
possible keys within a key space. Reduces the 
complexity of symmetric encryption systems from 
𝑂(𝑁) to 𝑂(𝑁1/2). 

Hadamard code An Error-correcting code derived from a 
Hadamard matrix. Capable of producing high-
levels of error correction. 

Hadamard matrices A special family of matrices with all entries either 
+1 or -1. When the matrix H is multiplied against 
its inverse the result is the identity matrix 
multiplied by the scalar n. 

Hamming distance Also known as the Hamming weight. The number 
of bits in the same position that differ between two 
binary codewords. The basis for the minimum 
distance of an error-correcting code. See also 
Error-correcting codes, binary codewords. 

HC-128 A stream cipher currently included in the suite of 
ciphers resulting from the eSTREAM project. 
Developed by Hongjun Wu (2008). 
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Incidence list A method of implementing graphs in computer 
code. Gives all edges that are adjacent to a given 
node n. 

Incidence matrix A method of implementing graphs in computer 
code. A 2-dimensional matrix with all nodes down 
one side and all edges along the other. A 1 entry 
occurs when a node is adjacent to a given edge. 
Elsewhere, the entry is 0. 

Index calculus A method of computing discrete logarithms using 
probability and field arithmetic. See also Discrete 
Logarithm Problem. 

Initialisation Vector A sequence used to initialize the state of a 
cryptographic function. 

Integer Factorization Problem The currently unresolved problem of factorizing 
large numbers. In cryptography, the IFP is usually 
based around very large prime factors. Currently, 
no known polynomial time algorithm exists 
outside the realm of quantum computing. This 
problem is addressed in Quantum computing by 
Shor's algorithm. The IFP forms the basis of 
security in RSA. See also RSA, Asymmetric 
encryption, Shor's algorithm, one-way function. 

Internet of Things The vast and ever-expanding web of networked 
technolgoies, such as smart watches, cars, and 
appliances. 

Java Cryptography Architecture JCA. Inbuilt library of cryptographic functions 
available as of JDK 1.1. 

Java Development Kit JDK. The released platform version of Java for use 
by developers. The current JDK is JDK 8u91. 

Key matrix The alternative key structure utilized in the 
proposed CME scheme. Each key matrix contains 
all possible bit strings of a given length, and is 
exactly half-full. 

Keyspace The number of possible keys in the system. 
Keystream The key used in modern stream ciphers. Usually a 

random or pseudo-random string of bits. See 
Stream cipher and Rivest Cipher 4. 

Known plaintext attack A cryptanalytic attack wherein a malicious 
adversary has possession of a plaintext-ciphertext 
pair to analyze for clues as to the key. 

Linear feedback shift register A linear register wherein the input is the result 
from some linear function applied to the previous 
state. Used in stream ciphers. 
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Man-in-the-middle attack An attack in which the communicated key or share 
is intercepted by a malicious adversary, who then 
creates their own key/share and sends it on to the 
intended recipient, thereby compromising all 
future communications between the parties. 

Matrix An array of elements. 
MQ problem The one-way function utilized in multivariate 

cryptography. The difficulty of solving many 
different quadratic equations over multiple fields 
using many variables. See also One-way function. 

Multithreading The use of multiple cores in computers to allow 
for parallel processing and increased computing 
power. 

Multivariate cryptography Cryptographic systems based around systems of 
multivariate equations.  

Non-linear feedback shift register Extends the Linear feedback shift register, and 
introduces non-linearity through some given 
function. As a result, it provides better protection 
against cryptanalysis. Used in stream ciphers. 

Non-singular mapping A given plaintext corresponds to multiple 
ciphertext outputs for a single key. 

NP-complete A problem for which the solution can be checked 
in polynomial time, but has no efficient method of 
discovering a solution. Referred to as 
nondeterministic polynomial time. 

OFB mode An encryption mode in AES. Output Feedback 
mode. This mode alters AES into a stream cipher, 
and uses keystreams for each encryption block. 

One-way function A trapdoor computation which is simple to 
execute in one direction, and difficult to reverse. 
The basis for asymmetric encryption. See 
Asymmetric encryption. 

Padding characters Blank coordinates used in the CME scheme to add 
confusion to the ciphertext output. 

Parity check Also known as the parity bit. A single bit of data 
added at the end of a sequence of bits to give the 
sequence an even number of 1 bits. If there is a 
corruption or error in the data transmitted, the 
parity check will result in an uneven number of 1 
bits. See also Error-correcting codes. 

Perfect secrecy A cryptographic scheme that is theoretically 
secure. That is, a scheme whose security does not 
rest on its computational complexity, and is secure 
even against an adversary with unlimited 
computing power. 
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Permutation The order in which elements in the plaintext occur 
is altered by some algorithmic means. 

Pixel expansion The phenomenon in Visual Cryptography by 
which the number of subpixels required to encode 
a particular pixel in the scheme increases with the 
number of nodes in the scheme. See also Contrast 
constraints. 

PKCS5 Padding A method by which the plaintext to be encrypted 
is padded using modular arithmetic, with mod 8. 

Plaintext The message/text/data that forms the input to an 
encryption algorithm. 

Pollard rho method Developed by John Pollard. There are versions for 
factorizing integers, and for calculating discrete 
logarithms. 

Post-quantum cryptography Cryptographic methods that are resistant to 
currently known quantum algorithms for 
cryptanalysis. See also Shor's algorithm and 
Grover's algorithm. 

Pseudorandom number A number that appears random but was generated 
through some algorithmic means. 

Pseudorandom number generator PRNG. An algorithm that returns a pseudorandom 
number. See also Pseudorandom sequence. 

Pseudorandom sequence A sequence that exhibits the properties of 
randomness, but is generated by some algorithmic 
means, is not truly random. 

Public-key encryption See asymmetric encryption. 
QR codes Quick-response codes. 2-dimensional matrix 

barcodes. 
Quantum computing The current technological theory and research area 

studying the application of quantum theories of 
superposition and entanglement to enable 
calculations to take place.  

Random Grid VC A method of Visual Cryptography which allows 
the control of pixel expansion. Uses a binary basis 
matrix to select whether a given pixel is black or 
white with equal probability. The first share is 
created by a random coin toss operation, and the 
second share is then created based on the first 
share. 

Reed Solomon codes Alternative to the Hamming codes introduced by 
Richard Hamming (1950). Reed-Solomon codes 
operate on bytes rather than bits. See also Error-
correcting codes. 
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Rivest Cipher 4 (RC4) Developed by Ron Rivest. The most widely used 
symmetric stream cipher. Has since been proven 
to be insecure. See Stream cipher. 

Round keys Utilized in many modern symmetric block ciphers. 
The key is expanded and split by some algorithmic 
means into a predetermined number of keys which 
are used in order in each round of the encryption 
and decryption processes. 

RSA Named for Rivest, Shamir and Adleman. An 
asymmetric encryption system which uses the IFP 
as its one-way function. Requires key lengths of 
1024 bits or above for security. See also 
Asymmetric encryption, Integer Factorization 
Problem. 

Secret key The key used to decrypt an encrypted message in a 
public key/asymmetric system. In a symmetric or 
private key system, the secret key is used for both 
encryption and decryption. 

SecureRandom An inbuilt Java function which allows for the 
generation of a secure pseudorandom number. 

SET protocols Secure Electronic Transactions. Protocols 
implemented in e-commerce. 

Shor's algorithm A quantum algorithm for the computing of 
discrete logarithms and factorizing integers. 
Allows for the completion of such problems in 
polynomial time. 

Singular mapping A given plaintext maps to exactly one ciphertext 
output for a given key. 

Sparse matrices A matrix in which the majority of elements are 
zero. 

Spritz A stream cipher proposed by Rivest & Schuldt 
(2014) as an update to the now insecure RC4. See 
also Rivest Cipher 4. 

SSL Stands for Secure Sockets Layer. The predecessor 
to TLS. See TLS. 

Steganography The art of hiding messages. Rather than 
encrypting a secret message, the existence of the 
message is hidden. Often produces undesirable 
overheads in computation. 

Stream cipher A cryptographic method which operates on data 
either bit-by-bit or byte-by-byte. May be defined 
as a block cipher with a block size of smaller than 
64 bits. Stream ciphers are wither word-oriented 
(operating byte-by-byte) or bit-oriented (operating 
bit-by-bit). See Rivest Cipher 4.  
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Substitution An element within the message/data that makes up 
the plaintext is swapped for a ciphertext element 
by some algorithmic means. 

Symmetric Encryption A scheme in which both parties share a single 
secret key and algorithm, which is used to encrypt 
and decrypt messages/data. The security of the 
scheme rests on keeping the key secure. 

Systematic codes See Error-correcting codes. 
Timing attack A side-channel attack. Involves the timing of the 

execution of each stage of the algorithm. 
TLS Stands for Transport Layer Security. A protocol 

for enabling secure transmission at the network 
layer. 

Topology The spatial and geometric properties of given 
elements. 

Transposition See Permutation. 
Turing machines Automata that perform operations on sequential 

pieces of input based on a predefined set of rules. 
UTF-8 Encodes all possible unicode characters in 8-bit 

code units. See also ASCII. 
Visual Cryptography A secret sharing scheme originally proposed by 

Naor and Shamir (1995). Uses a trading scheme 
made up of black and white pixels to create shares 
of an original secret image, which can then only 
be recreated when the authorized participants 
recombine their shares. VC makes use of matrices 
for share creation. 
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Appendix B: Source Code 

B-1: GENERATION OF PSEUDO-RANDOM BINARY STRINGS 
import java.io.Console; 

class GenerateBinaryString { 

 public static void main(String[] args) { 

  Console cons = System.console(); 

  String length = cons.readLine("Enter length of random binary string : "); 

  int stringLength = Integer.parseInt(length); 

  int toss; 

  String randString = ""; 

  for (int i = 0; i < stringLength; i++) { 

   toss = (int)(Math.random()*2); 

   if (toss == 0) { randString = randString+"0"; } 

   else { randString = randString+"1"; } 

  } 

  System.out.println("Random generated string : "+randString); 

 } 

} 

 

B-2: AES AND RC4 CODE AND ANALYSIS PROGRAMS 
 

B-2i: AES implementation 
import java.security.MessageDigest; 

import java.util.Arrays; 

import javax.crypto.KeyGenerator; 

import javax.crypto.SecretKey; 

import javax.crypto.spec.SecretKeySpec; 

import javax.crypto.spec.IvParameterSpec; 

import java.io.Console; 

 

import javax.crypto.Cipher; 

import javax.crypto.spec.IvParameterSpec; 

import javax.crypto.spec.SecretKeySpec; 

import javax.crypto.*; 
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import java.security.SecureRandom; 

 

public class AES { 

   static String plaintext; 

 static String encryptionKey; 

   static byte[] initVBytes; 

   static SecureRandom pseudoRNG; 

   static long megabyte = 1024L*1024L; 

   static Console cons; 

 

  public static void main(String [] args) { 

    try { 

  Runtime running = Runtime.getRuntime(); 

  running.gc(); 

       System.out.println("AES Encryption with Randomly Generated Key"); 

    cons = System.console(); 

    Boolean keepEncrypting = true; 

  int encryptYN = 0; 

  long setUpTime, setUpStart, setUpEnd; 

   

  //Generate a random 128-bit key and initialisation vector. 

  encryptionKey = "128"; 

  setUpStart = System.currentTimeMillis(); 

  KeyGenerator secretKey = KeyGenerator.getInstance("AES"); 

  secretKey.init(Integer.parseInt(encryptionKey)); 

  SecretKey randomAESKey = secretKey.generateKey(); 

  initVBytes = new byte[Integer.parseInt(encryptionKey)/8]; 

  pseudoRNG = new SecureRandom(); 

  pseudoRNG.nextBytes(initVBytes); 

  setUpEnd = System.currentTimeMillis(); 

  setUpTime = setUpEnd-setUpStart; 

  System.out.println("Set up complete, time taken: "+setUpTime+" ms"); 

  running.gc(); 

  long memoryInUse = running.totalMemory() - running.freeMemory(); 

  System.out.println("Total memory used: 
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"+((memoryInUse*1.0)/megabyte)+" MB"); 

   

  //Encrypt the user entered data. 

  while (keepEncrypting) { 

     plaintext = cons.readLine("Enter plaintext: "); 

     int encryptTimes = Integer.parseInt(cons.readLine("Enter times to 

encrypt the data: ")); 

   byte[] previous = new byte[0]; 

        System.out.println("plain:   " + plaintext); 

   for (int i = 0; i < encryptTimes; i++) { 

    running.gc(); 

      long startTime, endTime, encryptTime, decryptTime; 

      startTime = System.currentTimeMillis(); 

         byte[] cipher = encrypt(plaintext, randomAESKey); 

      endTime = System.currentTimeMillis(); 

      encryptTime = endTime-startTime; 

    running.gc(); 

    long encryptMem = running.totalMemory() - 

running.freeMemory(); 

     

    //The following code measures the change in ciphertext 

from the previous output to the current one. 

    if (i > 0) { 

     AvalancheEffect avEffect = new 

AvalancheEffect(cipher, previous); 

     double diffBits = avEffect.calculateBits(); 

     double diffPos = avEffect.calculatePositions(); 

     System.out.print((i)+","); 

     System.out.print((diffBits*100)+","); 

     System.out.println((diffPos*100)); 

    } 

    

    AnalyzeFrequencies freqAnalysis = new 

AnalyzeFrequencies(cipher); 

    freqAnalysis.displayFrequenciesAES(); 
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    running.gc(); 

     startTime = System.currentTimeMillis(); 

         String decrypted = decrypt(cipher, randomAESKey); 

      endTime = System.currentTimeMillis(); 

      decryptTime = endTime-startTime; 

    running.gc(); 

    long decryptMem = running.totalMemory() - 

running.freeMemory(); 

    previous = cipher; 

         System.out.println("decrypt: " + decrypted); 

 

    //Print the time taken to encrypt and decrypt the data. 

      System.out.print(encryptTime+","); 

      System.out.print(decryptTime+","); 

    System.out.print((cipher.length*8)); 

    System.out.println(); 

     

    //The following code changes a single bit of one randomly 

chosen byte of the plaintext, and is only used when measuring the avalanche effect. 

    int toChange = (int) 

Math.floor(Math.random()*plaintext.length()); 

    char temp = plaintext.charAt(toChange); 

    String tempStr = temp+""; 

    MessageToBinary toBin = new 

MessageToBinary(tempStr); 

    tempStr = toBin.getBinaryString(); 

    int toChangeToo = (int) 

Math.floor(Math.random()*tempStr.length()); 

    String changed = ""; 

    if (tempStr.charAt(toChangeToo) == '0') { 

     changed = 

tempStr.substring(0,toChangeToo)+"1"+tempStr.substring(toChangeToo+1,tempStr.len

gth()); 

    } else { 

     changed = 
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tempStr.substring(0,toChangeToo)+"0"+tempStr.substring(toChangeToo+1,tempStr.len

gth()); 

    } 

    byte tmpByte = (byte)(Integer.parseInt(changed, 2)); 

    temp = (char)(tmpByte & 0xFF); 

    plaintext = 

plaintext.substring(0,toChange)+temp+plaintext.substring(toChange+1, 

plaintext.length()); 

     

    //Analyze the frequencies of the ciphertext. 

    freqAnalysis.displayFrequenciesAES(); 

     

    //The below code checks the overall memory used for the 

processes of encryption and decryption. 

    running.gc(); 

    memoryInUse = running.totalMemory() - 

running.freeMemory(); 

   

 System.out.println((i+1)+","+((encryptMem*1.0)/megabyte)+","+((decryptMem

*1.0)/megabyte)); 

   } 

    

   encryptYN = Integer.parseInt(cons.readLine("Do you want to 

keep encrypting with this key? 1=Y, 2=N : ")); 

   if (encryptYN == 2) { 

    keepEncrypting = false; 

   }  

  

  } 

 

    } catch (Exception e) { 

      e.printStackTrace(); 

    }  

  } 
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  public static byte[] encrypt(String plaintext, SecretKey secretKey) throws Exception { 

    Cipher encryption = Cipher.getInstance("AES/CBC/PKCS5Padding"); 

    encryption.init(Cipher.ENCRYPT_MODE, secretKey, new 

IvParameterSpec(initVBytes)); 

    return encryption.doFinal(plaintext.getBytes("UTF-8")); 

  } 

 

  public static String decrypt(byte[] ciphertext, SecretKey secretKey) throws Exception{ 

    Cipher decryption = Cipher.getInstance("AES/CBC/PKCS5Padding"); 

    decryption.init(Cipher.DECRYPT_MODE, secretKey, new 

IvParameterSpec(initVBytes)); 

    return new String(decryption.doFinal(ciphertext),"UTF-8"); 

  } 

} 

 
B-2ii: RC4 implementation 
import java.security.*; 

import javax.crypto.*; 

import java.io.Console; 

 

class RC4 { 

 static String plaintext; 

 static String encryptionKey; 

  static byte[] initVBytes;  

   static SecureRandom pseudoRNG; 

   static long megabyte = 1024L*1024L; 

   static Console cons; 

 static SecretKey randomRC4Key; 

 static Cipher rC4Cipher; 

  

 public static void main(String[] args) throws Exception { 

  Runtime running = Runtime.getRuntime(); 

  System.out.println("RC4 Encryption with Random 128 bit key"); 

  cons = System.console(); 

  long setUpTime, setUpStart, setUpEnd; 
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  //Initiate setup. 

  running.gc(); 

  setUpStart = System.currentTimeMillis(); 

  SetUp(); 

  Boolean keepEncrypting = true; 

  int encryptYN = 0; 

  setUpEnd = System.currentTimeMillis(); 

  setUpTime = setUpEnd-setUpStart; 

  System.out.println("Set up complete, time taken: "+setUpTime+" ms"); 

  running.gc(); 

  long memoryInUse = running.totalMemory() - running.freeMemory(); 

  System.out.println("Total memory used: 

"+((memoryInUse*1.0)/megabyte)+" MB"); 

   

  while (keepEncrypting) { 

   String plaintext = cons.readLine("Enter plaintext to encrypt: "); 

   int encryptTimes = Integer.parseInt(cons.readLine("Enter number 

of times to encrypt the data: ")); 

   byte[] previous = new byte[0]; 

   for (int i = 0; i < encryptTimes; i++) { 

    running.gc(); 

      long startTime, endTime, encryptTime, decryptTime; 

      startTime = System.currentTimeMillis(); 

         byte[] cipher = encrypt(plaintext); 

      endTime = System.currentTimeMillis(); 

      encryptTime = endTime-startTime; 

    running.gc(); 

    long encryptMem = running.totalMemory() - 

running.freeMemory(); 

       

    //The following code measures the change in ciphertext 

from the previous output to the current one. 

    if (i > 0) { 
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     AvalancheEffect avEffect = new 

AvalancheEffect(cipher, previous); 

     double diffBits = avEffect.calculateBits(); 

     double diffPos = avEffect.calculatePositions(); 

     System.out.print((i)+","); 

     System.out.print((diffBits*100)+","); 

     System.out.println((diffPos*100)); 

    } 

    

    AnalyzeFrequencies freqAnalysis = new 

AnalyzeFrequencies(cipher); 

    freqAnalysis.displayFrequenciesAES(); 

     

    running.gc(); 

    startTime = System.currentTimeMillis(); 

        String decrypted = decrypt(cipher); 

      endTime = System.currentTimeMillis(); 

      decryptTime = endTime-startTime; 

    

    running.gc(); 

    long decryptMem = running.totalMemory() - 

running.freeMemory(); 

    previous = cipher; 

         System.out.println("decrypt: " + decrypted); 

 

    //Print the time taken to encrypt and decrypt the data. 

      System.out.print(encryptTime+","); 

      System.out.print(decryptTime+","); 

    System.out.print((cipher.length*8)); 

    System.out.println(); 

     

    //The following code changes a single bit of one randomly 

chosen byte of the plaintext, and is only used when measuring the avalanche effect. 

    int toChange = (int) 

Math.floor(Math.random()*plaintext.length()); 
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    char temp = plaintext.charAt(toChange); 

    String tempStr = temp+""; 

    MessageToBinary toBin = new 

MessageToBinary(tempStr); 

    tempStr = toBin.getBinaryString(); 

    int toChangeToo = (int) 

Math.floor(Math.random()*tempStr.length()); 

    String changed = ""; 

    if (tempStr.charAt(toChangeToo) == '0') { 

     changed = 

tempStr.substring(0,toChangeToo)+"1"+tempStr.substring(toChangeToo+1,tempStr.len

gth()); 

    } else { 

     changed = 

tempStr.substring(0,toChangeToo)+"0"+tempStr.substring(toChangeToo+1,tempStr.len

gth()); 

    } 

    byte tmpByte = (byte)(Integer.parseInt(changed, 2)); 

    temp = (char)(tmpByte & 0xFF); 

    plaintext = 

plaintext.substring(0,toChange)+temp+plaintext.substring(toChange+1, 

plaintext.length()); 

     

    //The below code checks the overall memory used for the 

processes of encryption and decryption. 

    running.gc(); 

    memoryInUse = running.totalMemory() - 

running.freeMemory(); 

   

 System.out.println((i+1)+","+((encryptMem*1.0)/megabyte)+","+((decryptMem

*1.0)/megabyte)); 

   } 

     

   encryptYN = Integer.parseInt(cons.readLine("Do you want to 

keep encrypting with this key? 1=Y, 2=N : ")); 
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   if (encryptYN == 2) { 

    keepEncrypting = false; 

   }  

    

  } 

 

 } 

  

 public static void SetUp() throws Exception { 

  SecureRandom initVector = new SecureRandom(); 

  KeyGenerator kGen = KeyGenerator.getInstance("RC4"); 

  kGen.init(128); 

  randomRC4Key = kGen.generateKey(); 

  rC4Cipher = Cipher.getInstance("RC4"); 

 } 

  

 public static byte[] encrypt(String plaintext) throws Exception { 

  rC4Cipher.init(Cipher.ENCRYPT_MODE, randomRC4Key); 

  byte[] ciphertext = rC4Cipher.doFinal(plaintext.getBytes()); 

  return ciphertext; 

 } 

  

 public static String decrypt(byte[] ciphertext) throws Exception { 

  rC4Cipher.init(Cipher.DECRYPT_MODE, randomRC4Key); 

  byte[] plaintext = rC4Cipher.doFinal(ciphertext); 

  return new String(plaintext,"UTF-8"); 

 } 

  

} 

 

B-2iii: AES/RC4 Frequency Analysis Program 
class AnalyzeFrequencies { 

 private Frequency[] frequencies; 

 private int totalValues; 

 private int[] occurances; 
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 public static void main(String[] args) { 

   

 } 

  

 //Takes as input an array of bytes and measures the occurences of each byte. 

 public AnalyzeFrequencies(byte[] ciphertext) {  

   totalValues = ciphertext.length; 

   frequencies = new Frequency[totalValues]; 

   for (int i = 0; i < totalValues; i++) { 

    frequencies[i] = new Frequency("", 0, true, "none", ""); 

   } 

    String temp, xString, yString; 

   String actualVal = "none"; 

   String bitValue = ""; 

   Boolean exists = false; 

   int noOfEntries = 0; 

   int x,y; 

   byte[] buffer = new byte[1]; 

   Boolean matrixEntryEmpty = true; 

   for (int i = 0; i < ciphertext.length-1; i++) { 

    temp = (new Integer(ciphertext[i])+""); 

    for (int j = 0; j < totalValues; j++) { 

     if (frequencies[j].valueEqual(temp)) { 

      frequencies[j].updateOccurances(); 

      exists = true; 

      break; 

     }  

    } 

    if (!exists) { 

     noOfEntries++; 

     frequencies[noOfEntries].setFreqValue(temp); 

     frequencies[noOfEntries].updateOccurances(); 

     frequencies[noOfEntries].setEmpty(false); 

     }  
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    exists = false; 

   } 

   

   } 

    

  public void displayFrequenciesAES() { 

   maxOccurBytes(); 

   for (int i = 1; i < occurances.length; i++) { 

    System.out.print(occurances[i] + ","); 

   } 

   System.out.println(); 

  } 

    

  public void maxOccurBytes() { 

   int max = 0; 

   for (int i = 0; i < totalValues; i++) { 

    if (max < frequencies[i].getOccurances()) { 

     max = frequencies[i].getOccurances(); 

    } 

   } 

   occurances = new int[max+1]; 

   int current = 0; 

   for (int i = 0; i < totalValues; i++) { 

    current = frequencies[i].getOccurances(); 

    occurances[current]++; 

   } 

  } 

  

} 

 

class Frequency { 

 private String freqValue; 

 private int noOfOccurances; 

 private Boolean isEmpty; 

 private String actualValue; 
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 private String bitValue; 

  

 public Frequency(String value, int occurances, Boolean empty, String val, String 

bits) { 

  freqValue = value; 

  noOfOccurances = occurances; 

  isEmpty = empty; 

  actualValue = val; 

  bitValue = bits; 

 } 

  

 public void setBitValue(String bits) { bitValue = bits; } 

  

 public String getBitValue() { return bitValue; } 

  

 public void updateOccurances() { noOfOccurances++; } 

  

 public int getOccurances() { return noOfOccurances; } 

  

 public void setEmpty(Boolean empty) { isEmpty = empty; } 

  

 public Boolean isEmpty() { return isEmpty; } 

  

 public void setActualVal(String val) { actualValue = val; } 

  

 public String getActualVal() { return actualValue; } 

  

 public void setFreqValue(String value) { freqValue = value; } 

  

 public Boolean valueEqual(String toCheck) { 

  if (toCheck.equals(freqValue)) { 

   return true; 

  } else { 

   return false; 

  } 
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 } 

  

 public String getValue() { return freqValue; } 

} 

 

B-2iv: AES/RC4 Avalanche Effect Program 
import java.io.Console; 

 

class AvalancheEffect { 

  

 private static int bitsDiffer, positionsDiffer; 

 private static byte[] bOne, bTwo; 

 

 public AvalancheEffect(byte[] bytesOne, byte[] bytesTwo) { 

  bOne = bytesOne; 

  bTwo = bytesTwo; 

 } 

  

 public AvalancheEffect() {} 

  

 //Calculate the total number of the same bytes occurring in the two ciphertexts. 

 public double calculateBits() {  

  int matches = 0; 

  double percentMatch; 

  for (int i = 0; i < bOne.length; i++) { 

   for (int j = 0; j < bTwo.length; j++) { 

    if (bOne[i] == bTwo[j]) { 

     matches++; 

     break; 

    } 

   } 

  } 

  percentMatch = ((matches*1.0)/bOne.length); 

  return percentMatch; 

 } 
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 //Calculate the total number of bytes occurring in the same positions in the two 

ciphertexts. 

 public double calculatePositions() { 

  int matches = 0; 

  double percentMatch; 

  for (int i = 0; i < bOne.length; i++) { 

   if (bOne[i] == bTwo[i]) { 

    matches++; 

   } 

  } 

  percentMatch = ((matches*1.0)/bOne.length); 

  return percentMatch; 

   

 } 

} 

 

B-2v: AES/RC4 Message to binary string conversion 
import java.math.BigInteger; 

 

class MessageToBinary { 

 private char[] charSet; 

 private byte[] byteSet; 

 private static String binaryString; 

  

 public static void main(String[] args) throws Exception { 

  MessageToBinary toBinary = new MessageToBinary(args[0]); 

 } 

  

 public MessageToBinary(String toConvert) throws Exception { 

  byteSet = toConvert.getBytes("UTF-8"); 

  BigInteger binaryInt = new BigInteger(byteSet); 

  binaryString = binaryInt.toString(2); 

 } 
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 public String getBinaryString () { 

  return binaryString; 

 } 

  

 public String convertToCharacters(String binaryToConvert) { 

  BigInteger toHex = new BigInteger(binaryToConvert,2); 

  byte[] temp = toHex.toByteArray(); 

  String toReturn = ""; 

  try { 

  toReturn = new String(temp, "UTF-8"); 

  } catch (Exception e) {} 

  return toReturn; 

 } 

 

} 

 

B-3: ELLIPTIC CURVE IMPLEMENTATION 
 

B-3i: Generate EC Key 
import java.security.*; 

import java.security.spec.*; 

 

class GenerateECCKey { 

  

 private static PublicKey sharedKey; 

 private static PrivateKey secretKey; 

  

 public GenerateECCKey(String[] args) throws Exception { 

  main(args); 

 } 

  

 public static void main(String[] args) throws Exception { 

  KeyPairGenerator generate; 

  generate = KeyPairGenerator.getInstance("EC", "SunEC"); 

  ECGenParameterSpec specs; 
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  specs = new ECGenParameterSpec("secp192r1"); 

  generate.initialize(specs); 

   

  KeyPair pair = generate.genKeyPair(); 

  secretKey = pair.getPrivate(); 

  sharedKey = pair.getPublic(); 

 

 } 

  

 public PrivateKey getPrivateKey() { return secretKey; } 

  

 public PublicKey getPublicKey() { return sharedKey; } 

} 

 

B-3ii: Complete ECDH protocol 
import java.math.BigInteger; 

import java.security.*; 

import java.security.spec.*; 

import javax.crypto.KeyAgreement; 

 

class ECCKeyExchange { 

  

 private static KeyAgreement keyAV, keyAU; 

 private static BigInteger secretU, secretV; 

 private static long megabyte = 1024L*1024L; 

  

 public static void main(String[] args) throws Exception { 

  Runtime running = Runtime.getRuntime(); 

  running.gc(); 

  long setupStart = System.currentTimeMillis(); 

  GenerateECCKey keyPairU = new GenerateECCKey(args); 

  GenerateECCKey keyPairV = new GenerateECCKey(args); 

   

  keyAU = KeyAgreement.getInstance("ECDH"); 

  keyAU.init(keyPairU.getPrivateKey()); 
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  keyAU.doPhase(keyPairV.getPublicKey(), true); 

   

  keyAV = KeyAgreement.getInstance("ECDH"); 

  keyAV.init(keyPairV.getPrivateKey()); 

  keyAV.doPhase(keyPairU.getPublicKey(), true); 

   

  secretU = new BigInteger(1, keyAU.generateSecret()); 

  secretV = new BigInteger(1, keyAV.generateSecret()); 

   

  long setupEnd = System.currentTimeMillis(); 

  long setupTotalTime = setupEnd-setupStart; 

  running.gc(); 

  long memoryInUse = running.totalMemory() - running.freeMemory(); 

  System.out.println("Secret computed by U: "+ 

(secretU.toString(16)).toUpperCase()); 

  System.out.println("Secret computed by V: "+ 

(secretV.toString(16)).toUpperCase()); 

  System.out.println("Total time for setup: "+setupTotalTime+" ms"); 

  System.out.println("Total memory used: 

"+((memoryInUse*1.0)/megabyte)+" MB"); 

   

   

 } 

} 

B-4: VC IMPLEMENTATION 
 

B-4i: 2-out-of-2 VC Encryption scheme 
import java.io.Console; 

 

class VisualCryptoBinaryEncryption { 

  

 public static int possibleSubPixelStates = 6; 

 public static String randomShareOne, shareTwo; 

 private static long megabyte = 1024L*1024L; 
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 public static void main(String[] args) { 

  Runtime running = Runtime.getRuntime(); 

  running.gc(); 

  Console cons = System.console(); 

  long setupStart = System.currentTimeMillis(); //start counter for setup 

time. 

  String[] subPixelsOne = subPixelStatesOne(); 

  String[] subPixelsTwo = subPixelStatesTwo(); 

  long setupEnd = System.currentTimeMillis(); //end counter for setup time. 

  long setupTotal = setupEnd-setupStart; 

  running.gc(); 

  long setupMem = running.totalMemory() - running.freeMemory(); 

  System.out.println("Set up complete. Time taken: "+setupTotal+" ms."); 

  System.out.println("Total memory used: 

"+((setupMem*1.0)/megabyte)+" MB"); 

  System.out.println(); 

   

  String plaintext = cons.readLine("Enter plaintext to encrypt into shares: 

"); //get the binary plaintext string. 

  String encryptTimes = cons.readLine("Enter number of times 

encryption/decryption should be performed: "); //get the number of repetitions. 

  int repetitions = Integer.parseInt(encryptTimes); 

  String previousShareOne = ""; 

  long encryptMem, decryptMem; 

  for (int i = 0; i < repetitions; i++) { //perform the repeated encryptions. 

   running.gc(); 

   long encryptStart = System.currentTimeMillis(); 

   generateRandomShare(plaintext, subPixelsOne, subPixelsTwo); 

//split the binary plaintext string into shares. 

   long encryptEnd = System.currentTimeMillis(); 

   long encryptTotal = encryptEnd-encryptStart; 

   running.gc(); 

   encryptMem = running.totalMemory() - running.freeMemory(); 

   System.out.println("Encryption #"+(i+1)); 

   System.out.println("Shares generated. Time taken: 
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"+encryptTotal+" ms."); //display the shares. 

   System.out.println("Share one: "+randomShareOne); 

   System.out.println("Share two: "+shareTwo); 

   System.out.println("Share length: "+shareTwo.length()+" bits."); 

   if (i > 0) { 

    AvalancheEffect avEffect = new AvalancheEffect(); 

    double percentSame = 

avEffect.stringPos(previousShareOne, randomShareOne); 

    System.out.println(i+","+(percentSame*100)); 

   } 

   running.gc(); 

   long decryptStart = System.currentTimeMillis(); 

   String combined = recombineShares(randomShareOne, 

shareTwo); //recombine the shares into decrypted plaintext. 

   long decryptEnd = System.currentTimeMillis(); 

   long decryptTotal = decryptEnd-decryptStart; 

   decryptMem = running.totalMemory() - running.freeMemory(); 

  

 System.out.println((i+1)+","+((encryptMem*1.0)/megabyte)+","+((decryptMem

*1.0)/megabyte)); 

   System.out.println("Shares recombined. Time taken: 

"+decryptTotal+" ms."); 

   System.out.println("Decrypted plaintext: "+combined); 

   Boolean matches = combined.equals(plaintext); //check combined 

shares matches original plaintext. 

   System.out.println("Decrypted plaintext matches original data: 

"+matches); 

   System.out.println(); 

   previousShareOne = randomShareOne; 

   //The following code alters the inputted plaintext by exactly one 

bit, allowing for measure of the avalanche effect. 

   int randPos = 

(int)Math.floor((Math.random()*(plaintext.length()))); 

   String temp = ""; 

   if (plaintext.charAt(randPos) == '0') { 
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    temp = plaintext.substring(0, 

(randPos))+"1"+plaintext.substring((randPos+1), plaintext.length()); 

   } else { 

    temp = plaintext.substring(0, 

(randPos))+"0"+plaintext.substring((randPos+1), plaintext.length()); 

   } 

   plaintext = temp; 

  } 

   

 } 

  

 public static String[] subPixelStatesOne() { 

  String[] subPixelStringsOne = {"0101", "1010", "1100", "0011", "0110", 

"1001"}; //generate the first array of possible subpixel states. 

  return subPixelStringsOne; 

 } 

  

 public static String[] subPixelStatesTwo() { 

  String[] subPixelStringsTwo = {"1010", "0101", "0011", "1100", "1001", 

"0110"}; //generate the second array of possible subpixel states. 

  return subPixelStringsTwo; 

 } 

  

 public static void generateRandomShare(String toSplit, String[] 

subPixelStringsOne, String[] subPixelStringsTwo) { 

  randomShareOne = ""; 

  shareTwo = ""; 

  int randomSubPixel; 

  char currentPixel; 

  for (int i = 0; i < toSplit.length(); i++) { 

   randomSubPixel = 

(int)Math.floor(Math.random()*possibleSubPixelStates); //pick a random subpixel state. 

   currentPixel = toSplit.charAt(i); 

   randomShareOne = randomShareOne + 

subPixelStringsOne[randomSubPixel];   //assign the random subpixel state to the first 
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share. 

   if (currentPixel == '1') {   //if the pixel equals 

1, assign the opposite subpixel state to the second share. 

    shareTwo = shareTwo + 

subPixelStringsTwo[randomSubPixel]; 

   } else {       //if 

the pixel equals 0, assign the same subpixel state to the second share. 

    shareTwo = shareTwo + 

subPixelStringsOne[randomSubPixel]; 

   } 

  } 

 } 

  

 public static String recombineShares(String sOne, String sTwo) { 

  String combined = ""; 

  String tempOne, tempTwo; 

  for (int i = 0; i < sOne.length()-3; i+=4) { 

   tempOne = sOne.substring(i,i+4); 

   tempTwo = sTwo.substring(i,i+4); 

   if (tempOne.equals(tempTwo)) { 

    combined = combined+"0"; 

   } else { 

    combined = combined+"1"; 

   } 

  } 

  return combined; 

 } 

} 

 

B-4ii: VC Avalanche effect 
import java.io.Console; 

 

class AvalancheEffect { 

  

 private static int bitsDiffer, positionsDiffer; 
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 private static int[] bOne, bTwo; 

 private static byte[] byOne, byTwo; 

  

 public AvalancheEffect() {} 

  

 public static double stringPos(String one, String two) { 

  int matches = 0; 

  double percentMatch; 

  for (int i = 0; i < one.length(); i++) { 

   if (one.charAt(i) == two.charAt(i)) { 

    matches++; 

   } 

  } 

  percentMatch = ((matches*1.0)/one.length()); 

  return percentMatch; 

 } 

} 

 

B-5: CME BYTE IMPLEMENTATION 
 

B-5i: CME Byte setup and ByteCE classes 
 

import java.util.*; 

import java.io.*; 

import java.io.PrintWriter; 

import java.util.Arrays; 

import java.io.Console; 

import java.lang.Math; 

import java.math.BigInteger; 

 

class SetUpByteCE { 

  

 public static int totalStrings = 0; 

 private static ByteCE[][] matrix; 

 public static ByteCE[] bitStrings; 
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 public static ByteCE[] blankEntries; 

 public static int stringLength = 8; 

 public static int totalLocations; 

 public static int numberOfBlanks; 

  

 public SetUpByteCE(String[] args) { 

  main(args); 

 } 

  

 public static void main(String[] args) { 

  long startTime = System.currentTimeMillis(); //start stopwatch 

  Console cons = System.console(); 

  if (cons == null) { 

   System.err.println("No console available."); 

   System.exit(1); 

  } 

  PrintWriter consOut = cons.writer(); 

  bitStrings = generateBitStrings(stringLength); //generate the array of all 

possible bit strings of length n. 

 

  matrix = new ByteCE[totalStrings][totalStrings]; //generate the coordinate 

n^4 matrix. 

  int numberPerString =(int) 

(Math.pow(2,(2*stringLength))/(2*Math.pow(2,stringLength))); 

  numberOfBlanks = totalStrings; 

  System.out.println("Number of occupied spaces: 

"+(totalStrings*numberPerString)); 

  System.out.println("Number of blank spaces: 

"+(totalStrings*numberPerString)); 

  blankEntries = new ByteCE[totalStrings]; //generate the array of all blank 

entries. 

  try { 

   String currentLine; 

   int[] x, y; 

   for (int i = 0; i < totalStrings; i++) { 
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    x = new int[totalLocations]; 

    y = new int[totalLocations]; 

    for (int j = 0; j < totalLocations; j++) { 

     x[j] = 

(int)Math.floor(Math.random()*totalStrings); 

     y[j] = 

(int)Math.floor(Math.random()*totalStrings); 

     while (!(matrix[x[j]][y[j]] == null)) { 

      x[j] = 

(int)Math.floor(Math.random()*(totalStrings)); 

      y[j] = 

(int)Math.floor(Math.random()*(totalStrings)); 

     } 

     matrix[x[j]][y[j]] = bitStrings[i]; 

    } 

    bitStrings[i].setLocationsX(x); 

    bitStrings[i].setLocationsY(y); 

   }  

   int blanks = 0; 

   int randomBlank = 0; 

   for (int i = 0; i < totalStrings; i++){ 

    x = new int[totalLocations]; 

    y = new int[totalLocations]; 

    blankEntries[i] = new ByteCE(true); 

    for (int j = 0; j < totalLocations; j++) { 

     x[j] = 

(int)Math.floor(Math.random()*totalStrings); 

     y[j] = 

(int)Math.floor(Math.random()*totalStrings); 

     while (!(matrix[x[j]][y[j]] == null)) { 

      x[j] = 

(int)Math.floor(Math.random()*(totalStrings)); 

      y[j] = 

(int)Math.floor(Math.random()*(totalStrings)); 

     } 
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     matrix[x[j]][y[j]] = blankEntries[i]; 

    } 

    blankEntries[i].setLocationsX(x); 

    blankEntries[i].setLocationsY(y); 

   } 

   consOut.println("Total matrix size: 

["+totalStrings+","+totalStrings+"]"); 

 

   long endTime = System.currentTimeMillis(); 

   long timeTaken = endTime-startTime;   

  } catch (Exception e) { 

   consOut.println("Unknown exception occurred. Operation 

terminated. Stack trace below."); 

   e.printStackTrace(System.out); 

  } 

 } 

 

 public static ByteCE[] generateBitStrings(int stringLength) { 

  int maxStrings = (int)Math.pow(2.0,((double)stringLength)); 

  totalStrings = maxStrings; 

  totalLocations = (int) 

(Math.pow(2,(2*stringLength))/(2*Math.pow(2,stringLength))); 

  ByteCE[] bitStrings = new ByteCE[(int)maxStrings]; 

  byte temp; 

  int max = (int)maxStrings; 

  int lengthDifference = 0; 

  for (int i = 0; i < max; i++) { 

   temp = (byte) i; 

   bitStrings[i] = new ByteCE(temp, false); 

  } 

  System.out.println("Total strings: "+maxStrings); 

  return bitStrings; 

 } 

  

 public ByteCE[][] getMatrix() { 



 

 156 

  return matrix; 

 } 

} 

 

class ByteCE { 

  

 private byte bitValue; 

 private Boolean isEmpty; 

 private int locationX; 

 private int locationY; 

 public int[] locationsX; 

 public int[] locationsY; 

  

 public static void main(String[] args) {} 

  

 public ByteCE(byte bitVal, Boolean empty) { 

  bitValue = bitVal; 

  isEmpty = empty; 

 } 

  

 public ByteCE(Boolean empty) { isEmpty = empty; } 

  

 public Boolean entryEmpty() { return isEmpty; } 

  

 public byte entryValue() { return bitValue; } 

  

 public int getLocationX() { return locationX; } 

  

 public void setLocationX(int x) { locationX = x; } 

  

 public int getLocationY() { return locationY; } 

  

 public void setLocationY(int y) { locationY = y; } 

  

 public int[] getLocationsX() { return locationsX; } 
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 public void setLocationsX(int[] x) { locationsX = x; } 

  

 public int[] getLocationsY() { return locationsY; } 

  

 public void setLocationsY(int[] y) { locationsY = y; } 

} 

 

B-5ii: CME Byte code 
import java.util.*; 

import java.io.*; 

import java.io.Console; 

import java.lang.Math; 

 

class CMEByteFixed { 

  

 private static ByteCE[][] matrix; 

 private static ByteCE[] blanks; 

 private static ByteCE[] strings; 

 private static int totalStrings, noOfBlanks; 

 private static SetUpByteCE newMatrix; 

 private static Console cons; 

 private static String length; 

 private static long megabyte = 1024L*1024L; 

 private static int[] stringKey; 

  

 public static void main(String[] args) throws Exception { 

  //The following code completes the setup of a 256 by 256 key matrix 

containing all possible bytes. 

  Runtime running = Runtime.getRuntime(); 

  running.gc(); 

  long setUpStart = System.currentTimeMillis(); 

  cons = System.console(); 

  String[] arg = {"8"}; //Send bit string length as argument to set up. 

  newMatrix = new SetUpByteCE(arg); //Create the randomized new matrix 
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set up. 

  matrix = newMatrix.getMatrix(); //Get the matrix pointer. 

  blanks = newMatrix.blankEntries; //Get the blank entries. 

  strings = newMatrix.bitStrings; //Get the array of bit strings. 

  totalStrings = newMatrix.totalStrings; //Get the total number of bit strings. 

  noOfBlanks = newMatrix.numberOfBlanks; //Get the total number of 

blank entries. 

  //Assign the key locations for Exclusive-OR - always the first x coordinate 

for each byte. List is the same for each key matrix. 

  stringKey = new int[totalStrings];   for (int i = 0; i < totalStrings; 

i++) { 

   stringKey[i] = strings[i].locationsX[0]; 

  } 

  long setUpEnd = System.currentTimeMillis(); 

  long setUpTotal = setUpEnd-setUpStart; 

  running.gc(); 

  long memoryInUse = running.totalMemory() - running.freeMemory(); 

  System.out.println("Total memory used: 

"+((memoryInUse*1.0)/megabyte)+" MB"); 

  System.out.println("Set up complete, time taken: "+setUpTotal+" ms"); 

   

  //This code section repeats the encryption process until the user ends it. 

  Boolean continueEncrypting = true; 

  String continueEncYN; 

  int continueYN; 

  while (continueEncrypting) { 

   performEncryptDecrypt(); 

   continueEncYN = cons.readLine("Encrypt more data? 1 = Y, 2 = 

N : "); 

   continueYN = Integer.parseInt(continueEncYN); 

   if (continueYN == 1) { 

    continueEncrypting = true; 

   } else { 

    continueEncrypting = false; 

   } 
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  } 

   

 } 

  

 public static void performEncryptDecrypt() throws Exception { 

  //Get data and run encryption/decryption. 

  Runtime running = Runtime.getRuntime(); 

  String toEncrypt = cons.readLine("Enter data to encrypt: "); //get the 

plaintext. 

  int stringLength = toEncrypt.length(); //check plaintext length. 

  System.out.println("Entry length: "+(stringLength*8));  

  String repeatEncryptions = cons.readLine("How many times do you want 

to encrypt and decrypt the data? : "); 

  int repeats = Integer.parseInt(repeatEncryptions); 

  int[] cipher, previous = new int[0]; 

  byte[] paddedVersion, plain, bitVersion; 

  AnalyzeFrequencies freqOfCT; 

  int intLength = stringLength; 

  String convertedPT = toEncrypt; 

  for (int i = 0; i < repeats; i++) { // complete the encryption/decryption 

process as many times as required. 

    

   //Encryption: Time taken & memory in use are measured. String is 

converted to bytes.  

   //When not measuring memory, gc() calls should be commented 

out. 

   running.gc(); 

   long startTime = System.currentTimeMillis(); 

   bitVersion = convertedPT.getBytes("UTF-8"); 

   cipher = encrypt(matrix, bitVersion, 8); //encrypt the plaintext. 

   long endTime = System.currentTimeMillis(); 

   long encryptTime = endTime-startTime; 

   running.gc(); 

   long encryptMem = running.totalMemory() - 

running.freeMemory(); 
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   //Decryption: Time taken & memory in use are measured. Plaintext 

is converted back into a string.  

   //When not measuring memory, gc() calls should be commented 

out. 

   running.gc(); 

   startTime = System.currentTimeMillis(); 

   plain = decrypt(matrix, cipher); //decrypt the plaintext. 

   try { 

    convertedPT = new String(plain, "UTF-8"); 

   } catch (Exception e) {} 

   endTime = System.currentTimeMillis(); 

   long decryptTime = endTime-startTime; 

   running.gc(); 

   long decryptMem = running.totalMemory() - 

running.freeMemory(); 

    

   //This prints the time taken for encryption and decryption, and the 

resulting ciphertext length. 

   System.out.print((encryptTime)+","); 

   System.out.print(decryptTime+","); 

   System.out.print((cipher.length*8)); 

   System.out.println(); 

    

   //Print out the total memory used for encryption and decryption. 

  

 System.out.println((i+1)+","+((encryptMem*1.0)/megabyte)+","+((decryptMem

*1.0)/megabyte)); 

 

   //Analyze the frequencies of bytes occurring in the ciphertext. 

   freqOfCT = new AnalyzeFrequencies(cipher, matrix); 

   freqOfCT.displayFrequenciesAES(); 

    

   //The following section measures the difference in bytes between 

the current and previous ciphertexts. 
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   if (i > 0) { 

    AvalancheEffect avEffect = new AvalancheEffect(cipher, 

previous); 

    double diffBits = avEffect.calculateBits(); 

    double diffPos = avEffect.calculatePositions(); 

    System.out.print((i)+","); 

    System.out.print((diffBits*100)+","); 

    System.out.println((diffPos*100)); 

   } 

   previous = cipher; 

    

   //The following code changes a single bit of one randomly chosen 

byte of the plaintext, and is only used when measuring the avalanche effect. 

   int toChange = (int) Math.floor(Math.random()*plain.length); 

   byte temp = plain[toChange]; 

   String tempStr = ((char) (temp & 0xFF))+""; 

   MessageToBinary toBin = new MessageToBinary(tempStr); 

   tempStr = toBin.getBinaryString(); 

   int toChangeToo = (int) 

Math.floor(Math.random()*tempStr.length()); 

   String changed = ""; 

   if (tempStr.charAt(toChangeToo) == '0') { 

    changed = 

tempStr.substring(0,toChangeToo)+"1"+tempStr.substring(toChangeToo+1,tempStr.len

gth()); 

   } else { 

    changed = 

tempStr.substring(0,toChangeToo)+"0"+tempStr.substring(toChangeToo+1,tempStr.len

gth()); 

   } 

   temp = (byte)(Integer.parseInt(changed, 2)); 

   plain[toChange] = temp; 

   convertedPT = new String(plain,"UTF-8"); 

  } 

  System.out.println("Original plaintext: " + convertedPT); 
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 } 

  

 public static int[] encrypt(ByteCE[][] key, byte[] plaintext, int stringLength) { 

  int coinToss, location, randomBlank, current, toXOR, currentX, currentY; 

  int i = 0, j = 0, k = 0; 

  String temp = ""; 

  int numberPerString = (int) 

(Math.pow(2,(2*stringLength))/(2*Math.pow(2,stringLength))); //Get the total possible 

locations for each character. 

  ByteCE tempByte; 

  byte currentByte; 

  int blankPadding = (plaintext.length); 

  int[] cipher = new int[blankPadding*4]; 

  while ((j < plaintext.length || k < blankPadding) && i < cipher.length) { // 

Ciphertext length should be exactly (plaintext*4). 

   coinToss = (int)Math.floor(Math.random()*2.0); //Randomly 

distribute enciphered message characters among padding characters. 

    

   //If coin results in heads, insert coordinates for message character. 

   if (coinToss == 1 && j < plaintext.length) { 

    location = 

(int)Math.floor(Math.random()*numberPerString); 

    //Exclusive-OR the plaintext character with the next 

location of the key. 

    toXOR = (stringKey[(j%totalStrings)]); 

    current = (plaintext[j] ^ toXOR); 

    if (current < 0) { current = current+255; } //If the integer of 

a byte is negative, move its range into [0,255]. 

    cipher[i] = strings[current].locationsX[location]; 

    cipher[i+1] = strings[current].locationsY[location]; 

    j++; 

    i+=2; 

   } else if (k < blankPadding) { //If tails, add empty padding 

coordinates. 

    randomBlank = 
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(int)Math.floor(Math.random()*totalStrings); 

    location = 

(int)Math.floor(Math.random()*numberPerString); 

    tempByte = blanks[randomBlank]; 

    cipher[i] = tempByte.locationsX[location]; 

    cipher[i+1] = tempByte.locationsY[location]; 

    k++; 

    i+=2; 

   } 

    

  } 

  return cipher; 

   

 } 

  

 public static byte[] decrypt(ByteCE[][] key, int[] ciphertext) { 

  byte[] plaintext = new byte[ciphertext.length/4]; // Plaintext is exactly 1/4 

the length of the ciphertext. 

  int current = 0; 

  int x, y, tempInt, toXOR; 

  ByteCE temp; 

  for (int i = 0; i < ciphertext.length-1 && current < plaintext.length; i=i+2) 

{  

   //Decrypt ciphertext coordinates two at a time. 

   x = ciphertext[i]; 

   y = ciphertext[i+1]; 

   temp = key[x][y]; 

   if (!(temp.entryEmpty())) { 

    //Exclusive-OR the resulting character with the next 

position in the key and add the result to the plaintext. 

    toXOR = (stringKey[(current%totalStrings)]); 

    tempInt = (temp.entryValue() ^ toXOR); 

    plaintext[current] = (byte)tempInt; 

    current++; 

   } 
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  } 

  return plaintext; 

   

 } 

 

} 

 

 

B-6: CME STRING IMPLEMENTATION 
 

B-6i: CME String setup and Entry classes 
import java.util.*; 

import java.io.*; 

import java.io.PrintWriter; 

import java.util.Arrays; 

import java.io.Console; 

import java.lang.Math; 

 

class SetUp { 

  

 public static int totalStrings = 0; 

 private static CoordinateEntry[][] matrix; 

 public static CoordinateEntry[] bitStrings; 

 public static CoordinateEntry[] blankEntries; 

 public static int stringLength; 

 public static int totalLocations; 

 public static int numberOfBlanks; 

  

 public SetUp(String[] args) { 

  main(args); 

 } 

  

 public static void main(String[] args) { 

  stringLength = 0; 

  Console cons = System.console(); 
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  if (cons == null) { 

   System.err.println("No console available."); 

   System.exit(1); 

  } 

  PrintWriter consOut = cons.writer(); 

  String length = args[0]; 

  try { 

   stringLength = Integer.parseInt(length); //turn length into an 

integer. 

  } catch (Exception e) { 

   consOut.println("Error. Enter Numbers only."); 

  } 

  bitStrings = generateBitStrings(stringLength); //generate the array of all 

possible bit strings of length n. 

   

  String fileInput = "MatrixInput.txt"; 

  String fileOutput = "MatrixOutput.txt"; 

  BufferedReader br = null; 

  BufferedWriter bw = null; 

  matrix = new CoordinateEntry[totalStrings][totalStrings]; //generate the 

coordinate n^4 matrix. 

  int numberPerString =(int) 

(Math.pow(2,(2*stringLength))/(2*Math.pow(2,stringLength))); 

  numberOfBlanks = totalStrings; 

  System.out.println("Number of occupied spaces: 

"+(totalStrings*numberPerString)); 

  System.out.println("Number of blank spaces: 

"+(numberOfBlanks*numberPerString)); 

  blankEntries = new CoordinateEntry[numberOfBlanks]; //generate the 

array of all blank entries. 

  try { 

   String currentLine; 

   int[] x,y; 

   for (int i = 0; i < totalStrings; i++) { 

    x = new int[totalLocations]; 
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    y = new int[totalLocations]; 

    for (int j = 0; j < totalLocations; j++) { 

     x[j] = 

(int)Math.floor(Math.random()*totalStrings); 

     y[j] = 

(int)Math.floor(Math.random()*totalStrings); 

     while (!(matrix[x[j]][y[j]] == null)) { 

      x[j] = 

(int)Math.floor(Math.random()*(totalStrings)); 

      y[j] = 

(int)Math.floor(Math.random()*(totalStrings)); 

     } 

     matrix[x[j]][y[j]] = bitStrings[i]; 

    } 

    bitStrings[i].setLocationsX(x); 

    bitStrings[i].setLocationsY(y); 

   }  

   int blanks = 0; 

   for (int i = 0; i < totalStrings; i++){ 

    x = new int[totalLocations]; 

    y = new int[totalLocations]; 

    blankEntries[i] = new CoordinateEntry("", true); 

    for (int j = 0; j < totalLocations; j++) { 

     x[j] = 

(int)Math.floor(Math.random()*totalStrings); 

     y[j] = 

(int)Math.floor(Math.random()*totalStrings); 

     while (!(matrix[x[j]][y[j]] == null)) { 

      x[j] = 

(int)Math.floor(Math.random()*(totalStrings)); 

      y[j] = 

(int)Math.floor(Math.random()*(totalStrings)); 

     } 

     matrix[x[j]][y[j]] = blankEntries[i]; 

    } 
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    blankEntries[i].setLocationsX(x); 

    blankEntries[i].setLocationsY(y); 

 

   } 

   consOut.println("Total matrix size: 

["+totalStrings+","+totalStrings+"]");   

  } catch (Exception e) { 

   consOut.println("Unknown exception occurred. Operation 

terminated. Stack trace below."); 

   e.printStackTrace(System.out); 

  } 

 } 

 

 public static CoordinateEntry[] generateBitStrings(int stringLength) { 

  int maxStrings = (int)Math.pow(2.0,((double)stringLength)); 

  totalStrings = maxStrings; 

  totalLocations = (int) 

(Math.pow(2,(2*stringLength))/(2*Math.pow(2,stringLength))); 

  if (stringLength >= 63) { 

   System.out.println("Error. Length must be less than 63."); 

  } 

  CoordinateEntry[] bitStrings = new CoordinateEntry[(int)maxStrings]; 

  String temp; 

  int max = (int)maxStrings; 

  int lengthDifference = 0; 

  for (int i = 0; i < max; i++) { 

   temp = Integer.toBinaryString(i); 

   if (temp.length() != stringLength) { 

    lengthDifference = stringLength-temp.length(); 

    for (int j = 0; j < lengthDifference; j++){ 

     temp = "0"+temp; 

    } 

   } 

   bitStrings[i] = new CoordinateEntry(temp, false); 

   temp = ""; 
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  } 

  System.out.println("Total strings: "+maxStrings); 

  return bitStrings; 

 } 

  

 public CoordinateEntry[][] getMatrix() { 

  return matrix; 

 } 

  

 public void displayMatrix() { 

  for (int i = 0; i < bitStrings.length; i++) { 

   for (int j = 0; j < bitStrings.length; j++) { 

    System.out.print("["); 

    if (matrix[i][j].entryEmpty()) { 

     for (int k = 0; k < stringLength; k++) { 

      System.out.print("-"); 

     } 

    } else { 

     System.out.print(matrix[i][j].entryValue()); 

    } 

    System.out.print("]"); 

   } 

   System.out.println(); 

  } 

 } 

} 

 

class CoordinateEntry { 

  

 private String bitValue; 

 private Boolean isEmpty; 

 private int locationX; 

 private int locationY; 

 public int[] locationsX; 

 public int[] locationsY; 
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 public static void main(String[] args) {} 

  

 public CoordinateEntry(String bitVal, Boolean empty) { 

  bitValue = new String(bitVal+""); 

  isEmpty = empty; 

 } 

  

 public Boolean entryEmpty() { return isEmpty; } 

  

 public String entryValue() { return bitValue; } 

  

 public int getLocationX() { return locationX; } 

  

 public void setLocationX(int x) { locationX = x; } 

  

 public int getLocationY() { return locationY; } 

  

 public void setLocationY(int y) { locationY = y; } 

  

 public int[] getLocationsX() { return locationsX; } 

  

 public void setLocationsX(int[] x) { locationsX = x; } 

  

 public int[] getLocationsY() { return locationsY; } 

  

 public void setLocationsY(int[] y) { locationsY = y; } 

} 

 

B-6ii: CME string code 
import java.util.*; 

import java.io.*; 

import java.io.PrintWriter; 

import java.util.Arrays; 

import java.io.Console; 



 

 170 

import java.lang.Math; 

 

class CoordinateEncryptionAlgorithm { 

  

 private static CoordinateEntry[][] matrix; 

 private static CoordinateEntry[] blanks; 

 private static CoordinateEntry[] strings; 

 private static int totalStrings; 

 private static SetUp newMatrix; 

 private static int noOfBlanks; 

 private static Console cons; 

 private static String length, xorString; 

 private static long megabyte = 1024L*1024L; 

 private static byte[] forXOR; 

  

 public static void main(String[] args) throws Exception { 

  Runtime running = Runtime.getRuntime(); 

  running.gc(); 

  long setupStart = System.currentTimeMillis(); 

  cons = System.console(); 

  length = "4";  

  String[] arg = {length}; //Send bit string length as argument to set up. 

  newMatrix = new SetUp(arg); //Create the randomized new matrix set up. 

  matrix = newMatrix.getMatrix(); //Get the matrix pointer. 

  blanks = newMatrix.blankEntries; //Get the blank entries. 

  strings = newMatrix.bitStrings; //Get the array of bit strings. 

  totalStrings = newMatrix.totalStrings; //Get the total number of bit strings. 

  noOfBlanks = newMatrix.numberOfBlanks; //Get the total number of 

blank entries. 

  forXOR = new byte[totalStrings]; 

  int temp = 0; 

  for (int i = 0; i < totalStrings; i++) { 

   temp = strings[i].locationsX[0]; 

   forXOR[i] = (byte)temp; 

  } 
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  MessageToBinary bin = new MessageToBinary(new 

String(forXOR,"UTF-8")); 

  xorString = bin.getBinaryString(); 

  double divisor = 

((double)xorString.length()/((double)newMatrix.stringLength)); 

  if (Math.floor(divisor) != divisor) { 

   xorString = padPlaintext(xorString, divisor, 

Integer.parseInt(length)); 

  } 

  long setupEnd = System.currentTimeMillis(); 

  long setupTotal = setupEnd-setupStart; 

  newMatrix.displayMatrix(); 

  running.gc(); 

  long setupMem = running.totalMemory() - running.freeMemory(); 

  System.out.println("Set up complete, time taken: "+setupTotal+" ms."); 

  System.out.println("Total memory used: 

"+((setupMem*1.0)/megabyte)+" MB"); 

  Boolean continueEncrypting = true; 

  String continueEncYN; 

  int continueYN; 

  while (continueEncrypting) { //Continue encrypting & decrypting until the 

user ends the process. 

   performEncryptDecrypt(); 

   continueEncYN = cons.readLine("Encrypt more data? 1 = Y, 2 = 

N : "); 

   continueYN = Integer.parseInt(continueEncYN); 

   if (continueYN == 1) { 

    continueEncrypting = true; 

   } else { 

    continueEncrypting = false; 

   } 

  } 

   

 } 
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 public static void performEncryptDecrypt() throws Exception { 

  String toEncrypt = cons.readLine("Enter data to encrypt: "); //get the 

plaintext. 

  String original = toEncrypt; 

  Boolean isAlpha; 

  String alphaYN = cons.readLine("Is the text in binary format? Y/N: "); 

  alphaYN = alphaYN.toUpperCase(); 

  MessageToBinary toBin = new MessageToBinary(); 

  if (alphaYN.equals("N")){ 

   toBin = new MessageToBinary(toEncrypt); 

   toEncrypt = toBin.getBinaryString(); 

   isAlpha = true; 

  } 

  else { isAlpha = false; } 

  int stringLength = toEncrypt.length(); //check plaintext length. 

  System.out.println("Entry length: "+stringLength);  

  double divisor = 

((double)stringLength/((double)newMatrix.stringLength)); //check if plaintext requires 

padding. 

  String repeatEncryptions = cons.readLine("How many times do you want 

to encrypt and decrypt the data? : "); 

  int repeats = Integer.parseInt(repeatEncryptions); 

  System.out.println("Divisor: "+divisor); 

  String cipher, paddedVersion; 

  String plain = ""; 

  Boolean padded; 

  AnalyzeFrequencies freqOfCT; 

  long padStart = System.currentTimeMillis(); 

  long encryptMem, decryptMem; 

  Runtime running = Runtime.getRuntime(); 

  if (Math.floor(divisor) == divisor) { 

   System.out.println("Entry does not require padding."); 

   padded = false; 

   paddedVersion = toEncrypt; 

  } else { 
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   paddedVersion = padPlaintext(toEncrypt, divisor, 

Integer.parseInt(length)); 

   padded = true; 

  } 

  long padEnd = System.currentTimeMillis(); 

  long padTotal = padEnd-padStart; 

  int intLength = Integer.parseInt(length); 

  String converted = paddedVersion; 

  String previous = ""; 

  for (int i = 0; i < repeats; i++) { // complete the encryption/decryption 

process as many times as required. 

   //Encryption: Time taken & memory in use are measured. 

   //When not measuring memory, gc() calls should be commented 

out. 

   running.gc(); 

   long startTime = System.currentTimeMillis(); 

   paddedVersion = toBin.xor(converted, xorString, 

Integer.parseInt(length)); 

   cipher = encrypt(matrix, paddedVersion, intLength, intLength); 

//encrypt the plaintext. 

   long endTime = System.currentTimeMillis(); 

   long encryptTime = endTime-startTime; 

   running.gc(); 

   encryptMem = running.totalMemory() - running.freeMemory(); 

    

   //Decryption: Time taken & memory in use are measured. 

   //When not measuring memory, gc() calls should be commented 

out. 

   running.gc(); 

   startTime = System.currentTimeMillis(); 

   plain = decrypt(matrix, cipher, intLength); //decrypt the plaintext. 

   converted = toBin.xor(plain, xorString, Integer.parseInt(length)); 

   endTime = System.currentTimeMillis(); 

   long decryptTime = endTime-startTime; 

   running.gc(); 
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   System.out.println("Plaintext:"); 

   System.out.println(plain); 

   System.out.println("Ciphertext:"); 

   System.out.println(cipher); 

   decryptMem = running.totalMemory() - running.freeMemory(); 

    

   //This prints the time taken and memory in use for encryption & 

decryption. 

   System.out.println((encryptTime+padTotal)+" 

"+(decryptTime+padTotal)+" "+cipher.length()); 

  

 System.out.println((i+1)+","+((encryptMem*1.0)/megabyte)+","+((decryptMem

*1.0)/megabyte)); 

    

   //The following measures the frequencies of the characters in the 

ciphertext. 

   freqOfCT = new AnalyzeFrequencies(cipher, intLength, matrix); 

   freqOfCT.displayFrequencies(); 

       

   //This section measures the avalanche effect of the algorithm, 

comparing the current and previous ciphertexts. 

   if (i > 0) { 

    AvalancheEffect avEffect = new AvalancheEffect(); 

    double percentSame = avEffect.stringPos(cipher, 

previous); 

    System.out.println(i+" "+(percentSame*100)); 

   } 

   previous = cipher; 

    

   //This section changes the plaintext by exactly one bit. It is only 

used when measuring the avalanche effect. 

   int randPos = (int)Math.floor((Math.random()*(plain.length()))); 

   if (plain.charAt(randPos) == '0') { 

    toEncrypt = plain.substring(0, 

(randPos))+"1"+plain.substring((randPos+1), plain.length()); 
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   } else { 

    toEncrypt = plain.substring(0, 

(randPos))+"0"+plain.substring((randPos+1), plain.length()); 

   } 

  }  

  plain = toBin.xor(plain, xorString, Integer.parseInt(length)); 

  if (padded) { 

   plain = removePadding(plain, divisor, Integer.parseInt(length)); 

  } 

  if (isAlpha) { 

   plain = toBin.convertToCharacters(plain); 

  }  

  String convertedPT = ""; 

  System.out.println("Decoded binary string matches original input: 

"+(plain.equals(original))); 

 } 

  

 public static String encrypt(CoordinateEntry[][] key, String plaintext, int 

stringLength, int length) { 

  String ciphertext = ""; 

  int coinToss = 0; 

  String temp = ""; 

  int location, lengthDifference, randomBlank, blankX, blankY; 

  String xBit, yBit; 

  int i = 0; 

  int j = 0; 

  int blankPadding = plaintext.length(); 

  while (i < plaintext.length() || j < blankPadding) { 

   coinToss = (int) Math.floor(Math.random()*2.0); 

   if (coinToss == 0 && i < plaintext.length()) { 

    temp = temp + plaintext.substring(i, i+length); //get the 

next n bits of the string. 

    location = Integer.parseInt(temp, 2); //find the int 

equivalent of the bit string 

    if (location < 0) { location+=255; } 
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    int chosenLocation = (int) 

Math.floor(Math.random()*newMatrix.totalLocations); 

    xBit = 

Integer.toBinaryString(strings[location].locationsX[chosenLocation]); 

    if (xBit.length() != stringLength) { //make sure the bit 

string for location x is nbits long. 

     lengthDifference = stringLength-xBit.length(); 

     for (int k = 0; k < lengthDifference; k++){ 

      xBit = "0"+xBit; 

     } 

    } 

    yBit = 

Integer.toBinaryString(strings[location].locationsY[chosenLocation]); 

    if (yBit.length() != stringLength) { //make sure the bit 

string for location y is nbits long. 

     lengthDifference = stringLength-yBit.length(); 

     for (int k = 0; k < lengthDifference; k++){ 

      yBit = "0"+yBit; 

     } 

    } 

    ciphertext = ciphertext+xBit+yBit; //update ciphertext with 

new piece of string, bit strings for location x & y. 

    temp = ""; //clear temp for next bit section. 

    i = i+length; //move ahead to next bit section. 

    location = 0; 

   } else if (j < blankPadding) { 

    randomBlank = 

(int)Math.abs(Math.random()*noOfBlanks); 

    int chosenLocation = (int) 

Math.floor(Math.random()*newMatrix.totalLocations); 

    blankX = 

blanks[randomBlank].locationsX[chosenLocation]; 

    blankY = 

blanks[randomBlank].locationsY[chosenLocation]; 

    xBit = Integer.toBinaryString(blankX); 
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    if (xBit.length() != stringLength) { //make sure the bit 

string for location x is nbits long. 

     lengthDifference = stringLength-xBit.length(); 

     for (int k = 0; k < lengthDifference; k++){ 

      xBit = "0"+xBit; 

     } 

    } 

    yBit = Integer.toBinaryString(blankY); 

    if (yBit.length() != stringLength) { //make sure the bit 

string for location y is nbits long. 

     lengthDifference = stringLength-yBit.length(); 

     for (int k = 0; k < lengthDifference; k++){ 

      yBit = "0"+yBit; 

     } 

    } 

    ciphertext = ciphertext+xBit+yBit; //update ciphertext with 

new piece of string, bit strings for location x & y. 

    j=j+length; 

   } 

  } 

   

  return ciphertext; 

   

 } 

  

 public static String decrypt(CoordinateEntry[][] key, String ciphertext, int 

stringLength) { 

  String plaintext = ""; 

  int i = 0; 

  int x,y,j; 

  String xBit, yBit; 

  String temp = ""; 

  while (i < ciphertext.length()) { 

   temp = ciphertext.substring(i,i+stringLength); 

   i=i+stringLength;//update i for next location. 
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   x = Integer.parseInt(temp, 2);//get integer value for binary string. 

   temp = ""; //clear temp for next location. 

   temp = ciphertext.substring(i,i+stringLength); 

   i = i+stringLength; //update i for next location. 

   y = Integer.parseInt(temp, 2); //get integer value for binary string. 

   temp = ""; //clear temp for next location. 

   if (!matrix[x][y].entryEmpty()) { //test if entry is padding or 

message 

    plaintext = plaintext+matrix[x][y].entryValue(); //if 

message, add value to cipher text. 

   } 

  } 

   

  return plaintext; 

   

 } 

  

 public static String padPlaintext(String plaintext, double divisor, int length) { 

  int padding = (int) (Math.ceil(divisor)*length); 

  padding = padding-plaintext.length(); 

  for (int i = 0; i < padding; i++) { 

   plaintext = plaintext + "0"; 

  } 

  return plaintext; 

   

 } 

  

 public static String removePadding(String ciphertext, double divisor, int length) 

{ 

  double padding = (divisor*length); 

  int paddingToRemove = (int) ((Math.ceil(divisor)*length)-padding); 

  System.out.println("Amount of padding to remove: 

"+paddingToRemove); 

  String temp = ""; 

  for (int i = 0; i < (ciphertext.length()-paddingToRemove); i++) { 
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   temp = temp+ ciphertext.charAt(i); 

  } 

  return ciphertext = temp; 

   

 } 

 

} 

 

B-7: CME ANALYSIS PROGRAMS 
 

B-7i: Frequency analysis 
class AnalyzeFrequencies { 

 private Frequency[] frequencies; 

 private int totalValues, noOfEntries; 

 private int[] blankOccur, fullOccur, bytesOccur; 

 private String[] mostOccurances; 

  

 public static void main(String[] args) { 

   

 } 

  

 public AnalyzeFrequencies(String ciphertext, int valueLength, 

CoordinateEntry[][] matrix) { 

  totalValues = 

(int)Math.abs(Math.ceil(ciphertext.length()/(valueLength))); 

  frequencies = new Frequency[totalValues]; 

  for (int i = 0; i < totalValues; i++) { 

   frequencies[i] = new Frequency("", 0, true, "none", ""); 

  } 

   String temp, xString, yString; 

  String actualVal = "none"; 

  String bitValue = ""; 

  Boolean exists = false; 

  noOfEntries = 0; 

  int x,y; 
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  byte[] buffer = new byte[1]; 

  Boolean matrixEntryEmpty = true; 

  for (int i = 0; i <= (ciphertext.length()-(valueLength*2)); 

i=i+(2*valueLength)) { 

   temp = ciphertext.substring(i,i+(2*valueLength)); 

   xString = temp.substring(0, (valueLength)); 

   yString = temp.substring((valueLength), temp.length()); 

   x = Integer.parseInt(xString, 2); 

   y = Integer.parseInt(yString, 2); 

   if (!(matrix[x][y].entryEmpty())) { 

    matrixEntryEmpty = false; 

    bitValue = matrix[x][y].entryValue(); 

     

   }  

    

   for (int j = 0; j < totalValues; j++) { 

    if (frequencies[j].valueEqual(temp)) { 

     frequencies[j].updateOccurances(); 

     exists = true; 

     break; 

    }  

   } 

   if (!exists) { 

    frequencies[noOfEntries].setFreqValue(temp); 

    frequencies[noOfEntries].updateOccurances(); 

    frequencies[noOfEntries].setEmpty(false); 

    frequencies[noOfEntries].setBitValue(bitValue); 

    noOfEntries++; 

   } 

   exists = false; 

   bitValue = ""; 

    

  } 

 } 
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 public void displayFrequencies() { 

  maxOccurances(); 

  for (int i = 1; i < blankOccur.length; i++) { 

   System.out.print(blankOccur[i]+","+fullOccur[i]+","); 

  } 

  System.out.println(); 

 } 

  

 public void maxOccurances() { 

  int maxBlank = 0; 

  int maxFull = 0; 

  for (int i = 0; i < noOfEntries; i++) { 

   if (!(frequencies[i].bitEqual("")) && (maxFull < 

frequencies[i].getOccurances())) { 

    maxFull = frequencies[i].getOccurances(); 

   } else if (frequencies[i].bitEqual("") && (maxBlank < 

frequencies[i].getOccurances())) { 

    maxBlank = frequencies[i].getOccurances(); 

   } 

  } 

  int largest = Math.max(maxBlank,maxFull); 

  blankOccur = new int[largest+1]; 

  fullOccur = new int[largest+1]; 

  int current = 0; 

  for (int i = 0; i < noOfEntries; i++) { 

   current = frequencies[i].getOccurances(); 

   if (!(frequencies[i].bitEqual(""))) { 

    fullOccur[current]++; 

   } else if (frequencies[i].bitEqual("")) { 

    blankOccur[current]++; 

   } 

  } 

 } 

  

 public AnalyzeFrequencies(int[] ciphertext, ByteCE[][] matrix) { 
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   totalValues = ciphertext.length; 

   frequencies = new Frequency[totalValues]; 

   for (int i = 0; i < totalValues; i++) { 

    frequencies[i] = new Frequency("", 0, true, "none", ""); 

   } 

    String temp, xString, yString; 

   String actualVal = "none"; 

   String bitValue = ""; 

   Boolean exists = false; 

   noOfEntries = 0; 

   int x,y; 

   int[] buffer = new int[2]; 

   Boolean matrixEntryEmpty = true; 

   int i = 0; 

   while (i < (ciphertext.length-1)) { 

    x = ciphertext[i]; 

    y = ciphertext[i+1]; 

    temp = x+","+y; 

    i+=2; 

    for (int j = 0; j < totalValues; j++) { 

     if (frequencies[j].valueEqual(temp)) { 

      frequencies[j].updateOccurances(); 

      exists = true; 

      actualVal = "none"; 

      break; 

     }  

    } 

    if (!(matrix[x][y].entryEmpty())) { 

     actualVal = ""+(char)(matrix[x][y].entryValue()& 

0xFF); 

    } else { 

     actualVal = "none"; 

    } 

    if (!exists) { 

     frequencies[noOfEntries].setFreqValue(temp); 
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     frequencies[noOfEntries].updateOccurances(); 

     frequencies[noOfEntries].setEmpty(false); 

     frequencies[noOfEntries].setActualVal(actualVal); 

     noOfEntries++; 

    } 

    exists = false; 

     

   } 

 } 

    

  public void displayFrequenciesAES() { 

   maxOccurBytes(); 

   for (int i = 1; i < blankOccur.length; i++) { 

    System.out.print(blankOccur[i] + ","+fullOccur[i]+","); 

   } 

   System.out.println(); 

  } 

   

  public void maxOccurBytes() { 

   int maxBlank = 0; 

   int maxFull = 0; 

   for (int i = 0; i < totalValues; i++) { 

    if ((!(frequencies[i].valEqual("none"))) && (maxFull < 

frequencies[i].getOccurances())) { 

     maxFull = frequencies[i].getOccurances(); 

    } else if (frequencies[i].valEqual("none") && (maxBlank 

< frequencies[i].getOccurances())) { 

     maxBlank = frequencies[i].getOccurances(); 

    } 

   } 

   int largest = Math.max(maxBlank,maxFull); 

   blankOccur = new int[largest+1]; 

   fullOccur = new int[largest+1]; 

   mostOccurances = new String[largest+1]; 

   int current = 0; 
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   for (int i = 0; i < noOfEntries; i++) { 

    current = frequencies[i].getOccurances(); 

    if (!(frequencies[i].valEqual("none"))) { 

     fullOccur[current]++; 

     mostOccurances[current] = 

mostOccurances[current]+frequencies[i].getActualVal()+","; 

    } else if (frequencies[i].valEqual("none")) { 

     blankOccur[current]++; 

    } 

     

   } 

  } 

 

  

} 

 

class Frequency { 

 private String freqValue; 

 private int noOfOccurances; 

 private Boolean isEmpty; 

 private String actualValue; 

 private String bitValue; 

  

 public Frequency(String value, int occurances, Boolean empty, String val, String 

bits) { 

  freqValue = value; 

  noOfOccurances = occurances; 

  isEmpty = empty; 

  actualValue = val; 

  bitValue = bits; 

 } 

  

 public void setBitValue(String bits) { bitValue = bits; } 

  

 public String getBitValue() { return bitValue; } 
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 public Boolean bitEqual(String check) {  

  Boolean toReturn = (check.equals(bitValue)); 

  return toReturn; 

 } 

  

 public void updateOccurances() { noOfOccurances++; } 

  

 public int getOccurances() { return noOfOccurances; } 

  

 public void setEmpty(Boolean empty) { isEmpty = empty; } 

  

 public Boolean isEmpty() { return isEmpty; } 

  

 public void setActualVal(String val) { actualValue = val; } 

  

 public String getActualVal() { return actualValue; } 

  

 public Boolean valEqual(String check) {  

  Boolean toReturn = (check.equals(actualValue)); 

  return toReturn; 

 } 

  

 public void setFreqValue(String value) { freqValue = value; } 

  

 public Boolean valueEqual(String toCheck) { 

  Boolean toReturn = (toCheck.equals(freqValue)); 

  return toReturn; 

 } 

  

 public String getValue() { return freqValue; } 

} 

 

B-7ii: Avalanche effect 
import java.io.Console; 



 

 186 

 

class AvalancheEffect { 

  

 private static int bitsDiffer, positionsDiffer; 

 private static int[] bOne, bTwo; 

  

 public static void main(String[] args) { 

  Console cons = System.console(); 

  String sOne = cons.readLine("Enter ciphertext one: "); 

  String sTwo = cons.readLine("Enter ciphertext two: "); 

  double posChanged = stringPos(sOne, sTwo); 

  System.out.println("Bits same: "+(posChanged*100)+"%"); 

 } 

 

 public AvalancheEffect(int[] bytesOne, int[] bytesTwo) { 

  bOne = bytesOne; 

  bTwo = bytesTwo; 

 } 

  

 public AvalancheEffect() {} 

  

 public double calculateBits() { 

  int matches = 0; 

  double percentMatch; 

  for (int i = 0; i < bOne.length; i++) { 

   for (int j = 0; j < bTwo.length; j++) { 

    if (bOne[i] == bTwo[j]) { 

     matches++; 

     break; 

    } 

   } 

  } 

  percentMatch = ((matches*1.0)/bOne.length); 

  return percentMatch; 

 } 
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 public double calculatePositions() { 

  int matches = 0; 

  double percentMatch; 

  for (int i = 0; i < bOne.length; i++) { 

   if (bOne[i] == bTwo[i]) { 

    matches++; 

   } 

  } 

  percentMatch = ((matches*1.0)/bOne.length); 

  return percentMatch; 

   

 } 

  

 public double stringBits(String one, String two) { 

  int matches = 0; 

  double percentMatch; 

  for (int i = 0; i < one.length(); i++) { 

   for (int j = 0; j < two.length(); j++) { 

    if (one.charAt(i) == two.charAt(j)) { 

     matches++; 

     break; 

    } 

   } 

  } 

  percentMatch = ((matches*1.0)/one.length()); 

  return percentMatch; 

 } 

  

 public static double stringPos(String one, String two) { 

  int matches = 0; 

  double percentMatch; 

  for (int i = 0; i < one.length(); i++) { 

   if (one.charAt(i) == two.charAt(i)) { 

    matches++; 
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   } 

  } 

  percentMatch = ((matches*1.0)/one.length()); 

  return percentMatch; 

 } 

} 

 

B-7iii: CME UTF-8 string to binary conversion 
import java.math.BigInteger; 

 

class MessageToBinary { 

 private char[] charSet; 

 private byte[] byteSet; 

 private static String binaryString; 

  

 public static void main(String[] args) throws Exception { 

  MessageToBinary toBinary = new MessageToBinary(args[0]); 

 } 

  

 public MessageToBinary(String toConvert) throws Exception { 

  byteSet = toConvert.getBytes("UTF-8"); 

  BigInteger binaryInt = new BigInteger(byteSet); 

  binaryString = binaryInt.toString(2); 

 } 

  

 public String xor(String one, String two, int stringLength) { 

  String toReturn = ""; 

  for (int i = 0; i < (one.length()); i++) { 

   if (one.charAt(i) == two.charAt((i)%two.length())){ 

    toReturn = toReturn+"0"; 

   } else { 

    toReturn = toReturn+"1"; 

   } 

  } 

  return toReturn; 
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 } 

  

 public MessageToBinary() {} 

  

 public String getBinaryString () { 

  return binaryString; 

 } 

  

 public String convertToCharacters(String binaryToConvert) { 

  BigInteger toHex = new BigInteger(binaryToConvert,2); 

  byte[] temp = toHex.toByteArray(); 

  String toReturn = ""; 

  try { 

  toReturn = new String(temp, "UTF-8"); 

  } catch (Exception e) {} 

  return toReturn; 

 } 

 

} 
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Appendix C: Testing Data 

C-1: DATA USED IN COMPARISON OF AES, RC4 AND CME 
[The following test data was taken from Austen (2006), p.3] 

Data Size: 304 

IT is a truth universally acknowledged 

Data Size: 928 

IT is a truth universally acknowledged, that a single man in possession of a good fortune 

must be in want of a wife.  

Data Size: 3024 

IT is a truth universally acknowledged, that a single man in possession of a good fortune 

must be in want of a wife. However little known the feelings or views of such a man may 

be on his first entering a neighbourhood, this truth is so well fixed in the minds of the 

surrounding families, that he is considered as the rightful property of some one or other 

of their daughters.  

[The following test data was taken from Shakespeare & Ackroyd (2006), p. 1100] 

Data Size: 4408 

HAMLET: To be, or not to be--that is the question/Whether 'tis nobler in the mind to 

suffer/The slings and arrows of outrageous fortune/Or to take arms against a sea of 

troubles/And by opposing end them. To die, to sleep--/No more--and by a sleep to say we 

end/The heartache, and the thousand natural shocks/That flesh is heir to. 'Tis a 

consummation/Devoutly to be wished. To die, to sleep/To sleep--perchance to dream: ay, 

there's the rub/For in that sleep of death what dreams may come/When we have shuffled 

off this mortal coil/Must give us pause. 

Data Size: 8144 

HAMLET: To be, or not to be--that is the question/Whether 'tis nobler in the mind to 

suffer/The slings and arrows of outrageous fortune/Or to take arms against a sea of 

troubles/And by opposing end them. To die, to sleep--/No more--and by a sleep to say we 
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end/The heartache, and the thousand natural shocks/That flesh is heir to. 'Tis a 

consummation/Devoutly to be wished. To die, to sleep/To sleep--perchance to dream: ay, 

there's the rub/For in that sleep of death what dreams may come/When we have shuffled 

off this mortal coil/Must give us pause. There's the respect/That makes calamity of so 

long life/For who would bear the whips and scorns of time/Th' oppressor's wrong, the 

proud man's contumely/The pangs of despised love, the law's delay/The insolence of 

office, and the spurns/That patient merit of th' unworthy takes/When he himself might his 

quietus make/With a bare bodkin? Who would fardels bear/To grunt and sweat under a 

weary life/But that the dread of something after death/The undiscovered country 

[The following data was used to measure the effect of a chosen plaintext attack.] 

Data Size: 4048 

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

C-2: DATA USED IN COMPARISON OF CME AND VC (PSEUDORANDOM 
BINARY STRINGS) 
[The following test data was generated using the program detailed in Appendix B-1.] 

Data Size: 16 bits 

1101000110111011 

Data Size: 32 bits 

11000111111010101011000010010101 

Data Size: 64 

0011011100110111110001111000011101100110011010000111110100011110 

Data Size: 128 
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1100100101001100011111110110001110101101111111101111001111100011001100

1011110001110100101110010001111011011001101011010111101011 

Data Size: 256 

0100101001000110100101111011101011101101000110100111110010101011011110

0110001100111001001100101000100010000100000110000110101100011100111011

0000110011100110100110101101010001100111001011111100100010001000000101

1000101110100000011010101011110011101100000000 

Data Size: 512 

0100010100000100000100100111101011101101111011001110011100100111001000

1000101100000011011110000010010010001001100100110110101100111111111101

1001000010011000110111010110000011000110101001100010110110111101001100

0000110010110110101011000101011111110000001001100100101101010000101111

0101000101111101001000010010011100111110100111100110010101010001010111

0000010000010101111110010001010011110101100011100100010111110011010011

0011000011110101110011011100101010011101010000101001010100010101010111

1100111110010001101000 
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Appendix D: Example Results 

D-1: EXAMPLE RESULT FROM AES 
 

AES Encryption with Randomly Generated Key 
Set up complete, time taken: 202 ms 
Total memory used: 3.6447067260742188 MB 
Enter plaintext: IT is a truth universally acknowledged 
Enter times to encrypt the data: 1 
plain:   IT is a truth universally acknowledged 
37,5, 
decrypt: IT is a truth universally acknowledged 
10,0,384 
37,5, 
1,1.4362640380859375,1.3887176513671875 
Do you want to keep encrypting with this key? 1=Y, 2=N : 2 
 
D-2: EXAMPLE RESULT FROM RC4 
 
RC4 Encryption with Random 128 bit key 
Set up complete, time taken: 783 ms 
Total memory used: 2.3383026123046875 MB 
Enter plaintext to encrypt: IT is a truth universally acknowledged 
Enter number of times to encrypt the data: 1 
33,2, 
decrypt: IT is a truth universally acknowledged 
5,0,304 
1,1.3647308349609375,1.3632888793945312 
Do you want to keep encrypting with this key? 1=Y, 2=N : 2 
 
D-3: EXAMPLE RESULT FROM ECDH 
 
Secret computed by U: 
1F41B47533CF7128ED4B0C12335A8AD7F96850EB3A704B83 
Secret computed by V: 
1F41B47533CF7128ED4B0C12335A8AD7F96850EB3A704B83 
Total time for setup: 157 ms 
Total memory used: 1.19158935546875 MB 
 
 
D-4: EXAMPLE RESULT FROM VC 
 
Set up complete. Time taken: 0 ms. 
Total memory used: 0.40460205078125 MB 
 
Enter plaintext to encrypt into shares: 1101000110111011 
Enter number of times encryption/decryption should be performed: 1 
Encryption #1 
Shares generated. Time taken: 1 ms. 
Share one: 
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0101110001101010100101100011011011000110100101101001100110011010 
Share two: 
1010001101100101100101100011100100110110011010010110100101100101 
Share length: 64 bits. 
1,0.44730377197265625,1.7277297973632812 
Shares recombined. Time taken: 0 ms. 
Decrypted plaintext: 1101000110111011 
Decrypted plaintext matches original data: true 
 
D-5: EXAMPLE RESULT FROM BYTE CME 
 
Total strings: 256 
Number of occupied spaces: 32768 
Number of blank spaces: 32768 
Total matrix size: [256,256] 
Total memory used: 1.2040176391601562 MB 
Set up complete, time taken: 74 ms 
Enter data to encrypt: IT is a truth universally acknowledged 
Entry length: 304 
How many times do you want to encrypt and decrypt the data? : 1 
0,0,1216 
1,1.2431411743164062,1.2433090209960938 
38,38, 
Original plaintext: IT is a truth universally acknowledged 
Encrypt more data? 1 = Y, 2 = N : 2 
 
D-6: EXAMPLE RESULT FROM BIT-STRING CME 
 
Total strings: 16 
Number of occupied spaces: 128 
Number of blank spaces: 128 
Total matrix size: [16,16] 
Set up complete, time taken: 24 ms. 
Total memory used: 0.43534088134765625 MB 
Enter data to encrypt: 1101000110111011 
Is the text in binary format? Y/N: Y 
Entry length: 16 
How many times do you want to encrypt and decrypt the data? : 1 
Divisor: 4.0 
Entry does not require padding. 
Plaintext: 
0011000100011011 
Ciphertext: 
0001101010100001011100000001001100100011001010001011110100110011 
0 0 64 
1,0.47379302978515625,1.7539520263671875 
4,4, 
Decoded binary string matches original input: true 
Encrypt more data? 1 = Y, 2 = N : 2 
 
 




