

Using Graphic Based Systems to Improve

Cryptographic Algorithms

ERIN PATRICIA CHAPMAN

Bachelor of Science (University of Auckland, NZ)

A thesis submitted to the graduate faculty of Design and Creative Technologies
Auckland University of Technology

in partial fulfilment of the
requirements for the degree of

Master of Computer and Information Sciences

School of Engineering, Computer and Mathematical Sciences

Auckland, New Zealand
2016

 i

Declaration

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person nor material which to a substantial extent has been accepted for the qualification

of any other degree or diploma of a University or other institution of higher learning,

except where due acknowledgement is made in the acknowledgements.

..
Erin Patricia Chapman

qplewordscore@gmail.com

 ii

Acknowledgements

I would like to thank Auckland University of Technology and my supervisor Dr Brian

Cusack for both the opportunity and the support they have provided throughout the

process of completing my degree. Dr Cusack’s advice and experience has been invaluable

in the development of this thesis.

 I would also like to thank my family, for being supportive and understanding

throughout the relentless insanity that is post-graduate research, especially my mother for

her assistance in proof-reading. I would also like to extend many thanks to Johanna

Quinn, for her blunt and honest appraisal of a multitude of different drafts and ideas; and

Jerina Grewar and Ebony Sparrow, for wading through the final draft with great

enthusiasm.

 iii

Abstract

With the ever-expanding use of technology for communications, the demand for strong

cryptographic methods is continually growing. The implementation of cryptographic

algorithms in modern networked systems is crucial to ensure the security and

confidentiality of data. Standardized encryption algorithms have emerged to allow users

and developers a quantifiable and thoroughly tested level of security within their systems.

While much research has been done to improve the security of traditional ciphers

such as the Advanced Encryption Standard (AES) and the now-defunct Rivest Cipher 4

(RC4), there are opportunities for the development and improvement of alternative

ciphers based on graphic methods. Encryption using graphic methods, such as Visual

Cryptography (VC) and Elliptic Curve Cryptography (ECC), give high levels of security,

and demonstrate alternative approaches to achieve secure methods for the ever-expanding

online world.

This thesis proposes an alternative word-oriented symmetric stream cipher based

on graphic methods called Coordinate Matrix Encryption (CME), which offers

quantifiably high levels of security and a non-singular mapping of plaintext to ciphertext.

The focus of this thesis was to explore the security offered by alternative graphic methods,

in comparison to traditional classical methods, as well as the difficulties faced in

implementing these alternative systems. It is hypothesized that graphic-based methods

would offer higher levels of security with lower overheads than classical methods, and

that the proposed CME system would prove secure against attack.

The proposed system was implemented in Java along with four comparable

algorithms, both graphic-based and traditional, which were AES, RC4, ECC, and VC.

The algorithms were all tested for security and efficiency, and the comparative results

show the high levels of security achievable by alternative graphic-based ciphers. The

resistance of the proposed 8-bit CME system to brute force attacks was shown to be

157,899 orders of magnitude higher than that of a 128-bit key in traditional ciphers such

as AES. Examination of the avalanche effect of the CME scheme showed that less than

0.5% of all bytes within the ciphertext remained in the same position when a single bit of

the plaintext was altered. While the RC4 scheme offered the best efficiency in terms of

time required to encrypt and decrypt the data, the CME scheme had lower memory

requirements and was faster in the setup execution.

Further research into alternative graphic methods is required to explore the

applications of alternative systems such as CME. The security offered by the proposed

 iv

CME scheme makes it an ideal candidate for post-quantum cryptographic research. The

system’s alternative key structure and non-singular mapping allow for resistance to

known and chosen plaintext attacks, and these features require further exploration.

Further comparative analysis between traditional and graphic-based ciphers is required to

determine whether alternative graphic methods are able to offer higher security for lower

overheads. Optimization of the CME scheme requires further testing, to ensure it has

competitive advantage, and it is able to be implemented in application development.

There is currently little standardisation in stream ciphers to replace RC4, and as such the

opportunity exists for an optimized version of CME to assist in this particular space in

applications such as TLS that utilize stream ciphers for encryption on a day-to-day basis.

 v

Table of Contents

Table of Contents .. v

Table of Figures ... x

Chapter 1 Introduction ... 1

1.1 MOTIVATION FOR RESEARCH ... 2

1.2 RESEARCH APPROACH AND FINDINGS .. 2

1.3 STRUCTURE OF THESIS .. 3

Chapter 2 Literature Review ... 5

2.0 INTRODUCTION .. 5

2.1 CRYPTOGRAPHY .. 5

2.1.1 Classical Symmetric Cryptography ... 6

2.1.2 Advanced Encryption Standard ... 7

2.1.3 Stream Ciphers and Rivest Cipher 4 ... 8

2.1.4 Asymmetric Cryptography .. 9

2.2 ERROR CORRECTING CODES... 10

2.3 GROUP THEORY IN CRYPTOGRAPHY ... 11

2.3.1 Rings and Fields .. 12

2.3.2 Matrices and Graphs .. 12

2.4 GRAPHIC METHODS IN CRYPTOGRAPHY ... 14

2.4.1 Cryptography Based on Families of Graphs ... 14

2.4.2 Multivariate Cryptography .. 16

2.5 ELLIPTIC CURVE CRYPTOGRAPHY ... 17

2.5.1 Elliptic Curve Cryptography and RSA .. 17

2.5.2 The ECC Discrete Logarithm Problem ... 18

2.5.3 Applications and Research in ECC ... 19

2.6 VISUAL CRYPTOGRAPHY .. 20

2.6.1 Secret Sharing Schemes .. 21

2.6.2 Extended Visual Cryptography Schemes .. 22

2.6.3 Pixel Expansion and Contrast Constraints .. 23

2.6.4 Random Grid Visual Cryptography Schemes ... 23

2.6.5 Applications and Research in Visual Cryptography ... 24

2.7 ISSUES AND PROBLEMS ... 25

2.7.1 Issues in Elliptic Curve Cryptography .. 25

2.7.2 Issues in Visual Cryptography .. 27

 vi

2.7.3 Issues in Graph Based Cryptography .. 28

2.8 CONCLUSIONS ... 29

Chapter 3 Methodology .. 30

3.0 INTRODUCTION .. 30

3.1 REVIEW OF SIMILAR STUDIES .. 30

3.1.1 Jeeva, Palanisamy and Kanagaram (2012) .. 30

3.1.2 Afzal, Kausar and Masood (2006) .. 32

3.1.3 Sharma, Garg and Dwivedi (2014).. 33

3.1.4 Kohafi, Turki and Khalid (2003) ... 34

3.1.5 Masadeh, Aljawarneh, Turab and Abuerrub (2010) .. 35

3.1.6 Thakur and Kumar (2011) ... 35

3.1.7 Bhat, Ali and Gupta (2015) ... 36

3.1.8 Prachi, Dewan and Pratibha (2015) ... 37

3.1.9 Singhal and Raina (2011) .. 38

3.2 RESEARCH DESIGN .. 38

3.2.1 Summary of Similar Studies and Review of the Problems and Issues 39

3.2.2 Research Questions and Hypotheses ... 40

3.2.3 Research Phases & Algorithm Implementations ... 42

3.2.4 Coordinate Matrix Encryption Algorithm Design ... 43

3.3 DATA REQUIREMENTS ... 46

3.3.1 Algorithm Testing ... 47

3.3.2 Algorithm Analysis ... 48

3.3.3 Data Presentation ... 49

3.4 LIMITATIONS ... 50

3.5 CONCLUSION ... 52

Chapter 4 Research Findings ... 53

4.0 INTRODUCTION .. 53

4.1 COORDINATE MATRIX ENCRYPTION ... 53

4.1.1 Implementation Details for CME on Binary Strings ... 53

4.1.2 Implementation Details for CME based on Byte Arrays ... 55

4.1.3 Efficiency .. 56

4.1.4 Security ... 58

4.2 ADVANCED ENCRYPTION STANDARD .. 63

4.2.1 Implementation Details ... 64

4.2.2 Efficiency .. 64

4.2.3 Security ... 65

4.3 ELLIPTIC CURVE CRYPTOGRAPHY ... 68

 vii

4.3.1 Implementation Details ... 68

4.3.2 Efficiency .. 69

4.3.3 Security ... 69

4.4 VISUAL CRYPTOGRAPHY .. 70

4.4.1 Implementation Details ... 70

4.4.2 Efficiency .. 72

4.4.3 Security ... 73

4.5 RC4 .. 75

4.5.1 Implementation Details ... 75

4.5.2 Efficiency .. 75

4.5.3 Security ... 76

4.6 COMPARATIVE RESULTS .. 79

4.6.1 2-out-of-2 VC versus 4-bit CME... 79

4.6.2 AES versus 8-bit CME Byte Scheme .. 82

4.6.3 ECC versus 8-bit CME Byte Scheme .. 86

4.6.4 RC4 versus 8-bit CME .. 87

4.7 CONCLUSION ... 91

Chapter 5 Discussion and Analysis of Findings ... 92

5.0 INTRODUCTION .. 92

5.1 RESEARCH QUESTIONS AND HYPOTHESES .. 92

5.1.1 Research Question 1: What are the security benefits of graphic based systems in

comparison to classical block ciphers? .. 92

5.1.2 Research Question 2: What difficulties are faced in the implementation of graphic

based systems? ... 93

5.1.3 Sub-Questions ... 94

5.1.4 Hypothesis 1: Graphic-based methods provide a better level of security with lower

overheads than classical encryption techniques ... 96

5.1.5 Hypothesis 2: The proposed encryption system based around graphic methods is

computationally secure against attacks .. 97

5.2 DISCUSSION .. 98

5.2.1 Testing Algorithms .. 98

5.2.2 Benefits and Applications of Graphic Based Ciphers ... 99

5.2.3 Difficulties and Optimizations in Implementation .. 101

5.3 CONCLUSION ... 102

Chapter 6 Conclusion ... 103

6.0 INTRODUCTION .. 103

6.1 LIMITATIONS OF RESEARCH ... 103

 viii

6.1.1 Programming Limitations ... 103

6.1.2 Comparing Asymmetric and Symmetric Systems ... 104

6.1.3 Binary Implementation of Visual Cryptography ... 105

6.2 FUTURE RESEARCH ... 105

6.3 CONCLUSION ... 108

References .. 109

Appendix A: Glossary ... 120

Appendix B: Source Code .. 130

B-1: GENERATION OF PSEUDO-RANDOM BINARY STRINGS 130

B-2: AES AND RC4 CODE AND ANALYSIS PROGRAMS .. 130

B-2i: AES implementation ... 130

B-2ii: RC4 implementation .. 135

B-2iii: AES/RC4 Frequency Analysis Program ... 139

B-2iv: AES/RC4 Avalanche Effect Program ... 143

B-2v: AES/RC4 Message to binary string conversion ... 144

B-3: ELLIPTIC CURVE IMPLEMENTATION .. 145

B-3i: Generate EC Key .. 145

B-3ii: Complete ECDH protocol .. 146

B-4: VC IMPLEMENTATION ... 147

B-4i: 2-out-of-2 VC Encryption scheme .. 147

B-4ii: VC Avalanche effect .. 151

B-5: CME BYTE IMPLEMENTATION.. 152

B-5i: CME Byte setup and ByteCE classes.. 152

B-5ii: CME Byte code .. 157

B-6: CME STRING IMPLEMENTATION ... 164

B-6i: CME String setup and Entry classes ... 164

B-6ii: CME string code .. 169

B-7: CME ANALYSIS PROGRAMS ... 179

B-7i: Frequency analysis .. 179

B-7ii: Avalanche effect .. 185

B-7iii: CME UTF-8 string to binary conversion .. 188

Appendix C: Testing Data .. 190

C-1: DATA USED IN COMPARISON OF AES, RC4 AND CME 190

C-2: DATA USED IN COMPARISON OF CME AND VC (PSEUDORANDOM
BINARY STRINGS)... 191

Appendix D: Example Results ... 193

 ix

D-1: EXAMPLE RESULT FROM AES ... 193

D-2: EXAMPLE RESULT FROM RC4 ... 193

D-3: EXAMPLE RESULT FROM ECDH ... 193

D-4: EXAMPLE RESULT FROM VC ... 193

D-5: EXAMPLE RESULT FROM BYTE CME ... 194

D-6: EXAMPLE RESULT FROM BIT-STRING CME ... 194

 x

Table of Figures

Figure 2.1: The AES Encryption Process (Adapted from Stallings, 2014, p.133) 8

Figure 2.2: Stream ciphers versus block ciphers. (Martin, 2012, p. 107) 9

Figure 2.3: A simple Cayley graph, as described by Equation 2.4.1.ii (Davidoff, Sarnak

& Valette, 2003, p. 119) ... 15

Figure 3.1: Results from Jeeva et al., 2012, p. 3036 ... 31

Figure 3.2: Phases of research ... 42

Figure 3.3: A randomly generated key matrix for a 3-bit coordinate matrix scheme. 43

Figure 3.4: Key matrix generation in the Coordinate Matrix Encryption scheme. 44

Figure 3.5: Example plaintext ciphertext pair output from a 4-bit CME scheme. 46

Figure 3.6: An example of frequency analysis on a 2-bit coordinate matrix scheme. 48

Table 4.1: Mean encryption/decryption times for byte CME (3d.p.) 56

Table 4.2: Mean encryption/decryption times for 4-bit string CME (3d.p.) 57

Table 4.3: Mean setup time and memory for byte CME (3d.p.) 57

Table 4.4: Mean encryption/decryption memory for byte CME (3d.p.) 57

Table 4.5: Mean setup time and memory for 4-bit string CME (3d.p.) 58

Table 4.6: Mean encryption/decryption memory required for 4-bit string CME (3d.p.) 58

Table 4.7: Frequency analysis of ciphertext from an 8816-bit string. (3d.p.) 62

Table 4.8: Frequency analysis of ciphertext from a 4048-bit chosen plaintext string.

(3d.p.) .. 62

Table 4.9: Frequency analysis of ciphertext from a 4408-bit string. (3d.p.) 63

Table 4.10: Avalanche effect in byte CME. (3d.p.) .. 63

Table 4.11: Mean encryption/decryption times for 128-bit AES (3d.p.) 64

Table 4.12: Mean setup time and memory required for 128-bit AES (3d.p.) 65

Table 4.13: Mean memory required for encryption/decryption in 128-bit AES (3d.p.) . 65

Table 4.14: Frequency analysis of ciphertext from a 8144-bit string in 128-bit AES (3d.p.)

 ... 66

Table 4.15: Frequency analysis of ciphertext from a 4048-bit single character string in

128-bit AES (3d.p.) ... 67

Table 4.16: Frequency analysis of ciphertext from a 4408-bit string in 128-bit AES (3d.p.)

 ... 67

Table 4.17: Avalanche effect in 128-bit AES (3d.p.) ... 68

Table 4.18: Memory and time requirements for execution of ECDH protocol (3d.p.) ... 69

 xi

Figure 4.1: A visual representation of the six possible subpixel states for the implemented

VC scheme. ... 71

Table 4.19: Mean encryption/decryption times in bit-string VC. (3d.p.) 72

Table 4.20: Mean encryption/decryption memory requirements in bit-string VC. (3d.p.)

 ... 72

Table 4.21: Mean setup time and memory requirements in bit-string VC. (3d.p.) 73

Table 4.22: Avalanche effect in bit-string VC. (3d.p.) ... 74

Table 4.23: Encryption and decryption times in RC4 (3d.p.) ... 76

Table 4.24: Set up requirements for RC4 (3d.p.) .. 76

Table 4.25: Memory requirements for RC4 (3d.p.) .. 76

Table 4.26: Frequency analysis of an RC4 encrypted 8144-bit string (3d.p.) 77

Table 4.27: Frequency analysis of ciphertext from a 4048-bit chosen plaintext string

(3d.p.) .. 78

Table 4.28: Frequency analysis of a 4408-bit string encrypted with RC4. (3d.p.) 78

Table 4.29: Avalanche effect in RC4 (3d.p.) .. 79

Table 4.30: Mean encryption and decryption times for differing bit string lengths in the

VC and CME schemes. (3d.p.).. 80

Table 4.31: Mean setup for the VC and CME schemes. (3d.p.) 80

Table 4.32: Avalanche effect for differing bit string lengths in the VC and CME schemes.

(3d.p.) .. 81

Table 4.33: Mean setup requirements for the AES and byte-level CME schemes. (3d.p.)

 ... 82

Table 4.34: Mean encryption/decryption time for the AES and byte-level CME schemes.

(3d.p.) .. 83

Table 4.35: Mean encryption/decryption memory for the AES and byte-level CME

schemes. (3d.p.)... 83

Table 4.36: Frequency analysis for 128-bit AES on ciphertext from an 8814-bit string.

(3d.p.) .. 84

Table 4.37: Frequency analysis for byte-level CME on ciphertext from an 8814-bit string.

(3d.p.) .. 85

Table 4.38: Frequency analysis for 128-bit AES on ciphertext from a 4048-bit chosen

plaintext string. (3d.p.) .. 85

Table 4.39: Frequency analysis for byte-level CME on ciphertext from a 4048-bit chosen

plaintext string. (3d.p.) .. 85

Table 4.40: Avalanche effect in 128-bit AES and byte-level CME schemes. (3d.p.) 86

 xii

Table 4.41: Setup requirements for byte-level CME and ECDH protocols. (3d.p.) 86

Table 4.42: Comparative set up requirements for RC4 and 8-bit CME (3d.p.) 87

Table 4.43: RC4 versus 8-bit CME encryption and decryption time requirements (3d.p.)

 ... 88

Table 4.44: RC4 versus CME memory requirements (3d.p.) ... 88

Table 4.45: Frequency analysis of ciphertext from an 8814-bit string in RC4 (3d.p.) ... 90

Table 4.46: Frequency analysis of ciphertext from an 8814-bit string in 8-bit CME. (3d.p.)

 ... 90

Table 4.47: Frequency analysis of ciphertext from a 4048-bit chosen plaintext in RC4

(3d.p.) .. 90

Table 4.48: Frequency analysis of ciphertext from a 4048-bit chosen plaintext in 8-bit

CME (3d.p.) .. 91

Table 4.49: Comparative avalanche effect in RC4 and 8-bit CME (3d.p.) 91

 1

Chapter 1
Introduction

1.0 BACKGROUND

The use of cryptography for securing information can be traced back to early human

civilisations. Transforming information so as to prevent unauthorized access is a

necessity in the digital age. The standardisation of algorithms such as AES (Advanced

Encryption Standard) provides for a quantifiable level of security. The ability to

rigorously prove the security of a standard algorithm allows users to have confidence in

the security of their implementation. It also allows programmers and developers to build

around predefined structures for secure systems. Standard algorithms such as AES have

undergone many iterations of testing and research to provide the necessary confidence in

their security.

 Modern symmetric ciphers use a Feistel design. This involves multiple rounds of

operations for encrypting blocks of data. These operations include substitutions and

transpositions, as well as adding individual round keys. The security of these symmetric

ciphers rests on the security of the key, usually a binary string of at least 128 bits. AES

gives the option of 128, 192 or 256 bit keys. Due to the rising tide of research into

quantum computing, and the introduction of Grover’s Algorithm (Grover, 1996), it is now

recommended that symmetric encryption systems use keys greater than 128. The effect

of quantum computing on security is discussed in chapters 5 and 6.

 The current security climate, stoked by events such as the release of Edward

Snowden’s files from NSA surveillance programs, and the subsequent increase in

encryption implementation by firms such as Apple and Facebook, has thrust

cryptographic research to the forefront of social consciousness. As such, the demand for

better, stronger, faster encryption methods is increasing globally. To meet this demand,

new cryptographic algorithms must be developed. On this basis, the research in this thesis

revolved around the creation of an alternative symmetric stream cipher called Coordinate

Matrix Encryption (CME), using a matrix based key structure. The implemented CME

scheme gave a theoretical security to brute force attacks that outstripped the compared

standardized algorithms, a more pronounced avalanche effect, and remained

 2

competitively efficient in execution.

1.1 MOTIVATION FOR RESEARCH

The use of encryption in technology underpins the security of modern life. The

burgeoning Internet of Things has resulted in a high demand for secure algorithms to

protect personal data, such as the integration of asymmetric encryption technologies into

banking applications and email, the use of encrypted smart card chips in bank cards and

industry access cards, and the need to secure newly networked devices from smartphones

to wearables to electric bicycles. As computer technology increases in speed and

performance, and radical developments such as Shor’s Algorithm threatening the security

of current public key systems (Shor, 1994), the importance of and demand for strong

cryptography is growing rapidly.

The use of symmetric encryption algorithms such as the industry standard AES

(Advanced Encryption Standard) for the security of data has been implemented, and

traditional encryption methods built on Feistel cipher design have received numerous

improvements and upgrades in recent years. However, the security possibilities proposed

by alternative ciphers based on graphic methods, and those that use alternative key

structures is under-developed in comparison.

The motivation of this study is to develop and evaluate the possibilities of security

and efficiency offered by alternative graphic-based ciphers and key structures. The

constant expansion of computing technology requires that researchers continually

develop and test new methods of encryption. As such, the realm of ciphers based on

graphic-methods and the security offered by alternative key structures such as graphs or

polynomial curves is of high importance in cryptography. The strength of alternative key

structures, such as the matrices employed in the proposed CME system, is in the

dramatically increased key space, which is discussed in Chapters 3, 4 and 5. The size of

the key space, and resistance to traditional attacks makes alternative key structures, such

as those proposed in the CME scheme, a highly attractive prospect for future research and

implementation.

1.2 RESEARCH APPROACH AND FINDINGS

The research conducted in this study was performed through the analysis of the efficiency

and security of four well-developed and researched algorithms (Visual Cryptography,

 3

Elliptic Curve Cryptography, Rivest Cipher 4, and the Advanced Encryption Standard),

as well as the proposed CME system. The tests were performed over many iterations to

provide stable results, and the different algorithms were then compared in pairs. The

result of this experimental design suggested that the proposed CME scheme offered a

high level of security while remaining comparatively efficient, though more optimisation

may be required to ensure a truly competitive design. The study was conducted using

Java standard implementations of ECC, RC4 and AES, as well as a string-oriented version

of VC specifically developed for the purpose of the experiment. All the algorithms were

tested for efficiency and security, with criteria developed based on prior studies and

reviewed literature. The memory requirements, the time required at each stage, and the

key space were among the testing criteria. For the relevant algorithms, the avalanche

effect and the frequency distribution of the ciphertext was also examined.

 The research design was developed through the analysis of comparable studies,

given in Chapter 3, and current literature, which is evaluated in Chapter 2. The current

methodologies of graphic based systems and industry standards for encryption were

explored, and recent developments in cryptography were discussed. This research then

formed the basis of the research questions and the study design, which utilized both

practical and theoretical analysis of the efficiency and security of the algorithms.

1.3 STRUCTURE OF THESIS

The thesis is split into 6 chapters, followed by 4 appendices. The chapter structure is as

follows: 1. Introduction; 2. Literature Review; 3. Methodology and Design; 4. Research

Findings; 5. Research Discussion; 6. Conclusion. The Appendices are: A. Glossary of

Terms; B. Source Code; C. Testing Data; D. Example Results. Prior to the appendices is

a list of all texts and materials referenced within the thesis.

 Chapter 2: Literature Review explores the current research available in graph-

based cryptography, and gives an in depth background for the material contained in the

study. It details the current standards for cryptography such as AES and RC4, and gives

the mathematical foundations of graphic-based cryptography. The more widely explored

graphic-based systems such as ECC and VC are detailed, as are those encryption systems

based on multivariable equations and graphs. The history and design of error-correcting

codes is also examined.

 Chapter 3: Methodology and Design gives an in-depth analysis of similar studies

and outlines the research design. Prior comparative algorithm analyses are discussed and

 4

the benefits and limitations of their design are enumerated. The research questions and

hypotheses are formulated, and the testing criteria are detailed.

 Chapter 4: Research Findings details the results of the study. The results of the

tests are given individually for each of the tested algorithms, and then the pairs of

comparative algorithms are examined together. The string oriented Coordinate Matrix

Encryption (CME) system and Visual Cryptography algorithm are compared, as are the

byte-oriented CME scheme and AES; the byte-oriented CME and RC4; and byte-oriented

CME and Elliptic Curve Cryptography (ECC) employing the Diffie-Hellman protocol.

 Chapter 5: Research Discussion addresses the implications of the study. The

research questions are answered based on the results given in Chapter 3, and the

hypotheses are redressed given the findings. The difficulties faced in the implementation

of the algorithms as well as the benefits and limitations of encryption systems based on

graphic methods and alternative key structures are discussed.

 Chapter 6: Conclusion enumerates the limitations of the study in design and

execution. The ways these limitations may have impacted on the results are detailed. Then

the opportunities for further research are explored, and recommendations for future study

are given.

 5

Chapter 2
Literature Review

2.0 INTRODUCTION

The literature review is an in-depth study of the selected elements of cryptography that

will impact on this thesis. It has review of the origins and history of graphic based

cryptographic methods, the current research undertaken in these areas, and concludes

with an analysis of outstanding issues, problems, and unresolved challenges in the

research area. The first section details the necessary cryptographic background, and

covers current standards as well as classical encryption methods. The second section

explains the mathematical theory underlying graphic based cryptography, such as

matrices, vectors, fields, rings and groups. Section three reviews the more generic graphic

based methods in cryptographic research, including multivariate cryptography and

cryptography based on special graph families. Section four details Elliptic Curve

Cryptography, a well-studied graphic method which offers an alternative to current

asymmetric encryption technologies, while section five outlines Visual Cryptography, an

image encryption method based around graph decomposition and matrix operations.

Section six explores the issues and problems within each of the detailed graphic based

methods, while section seven discusses the conclusions that can be drawn from this

research.

2.1 CRYPTOGRAPHY

The use of cryptography and the encryption of data, provides for secure transmission

while maintaining confidentiality and integrity (Chandra, Paira, Alam, & Sanyal, 2014).

Modern encryption technologies such as asymmetric encryption like the Advanced

Encryption Standard and Rivest, Shamir and Adleman (RSA), as well as security

protocols such as WiFi Protected Access (WPA) are in widespread use across the globe,

protecting web browsing, home networks, and personal devices. The most widespread

 6

encryption algorithms, such as the Advanced Encryption Standard (AES), are based

around classical substitution and transposition techniques. Cryptographic methods can

also be broken down into block ciphers versus stream ciphers (Anderson, 2008). Section

2.1.1 gives an overview of symmetric cryptography, followed in section 2.1.2 by a

description of the current standard block cipher, AES, the Advanced Encryption

Standard. Section 2.1.3 then details the use of stream ciphers, including Rivest Cipher 4

(RC4). Finally section 2.1.4 explains asymmetric cryptography.

2.1.1 Classical Symmetric Cryptography
Classical encryption, such as the early Caesar cipher, uses substitution and transposition

methods to scramble a data stream, so as to render it meaningless without the

corresponding key. In symmetric encryption, the same key is used to encrypt and decrypt

the data. The breaking of symmetric encryption relies on the security and secrecy of the

key – the algorithm used for encryption does not need to be kept confidential, as the

encryption cannot be reversed without the key (Stallings, 2014). Symmetric encryption

is used in most modern technologies, for the bulk of encrypted communication. Currently,

encryption is used to secure much of the online world, such as banking transactions,

secure email, website logins, and company data. In 2013, over 600 million people were

making use of email services (Hosnieh, Martin von, & Christoph, 2013). With so many

people utilizing the Internet for communication, the ability to ensure such

communications remain private becomes of similar significance to a home owner being

able to lock his/her front door. The steady increase in demand for encryption, especially

with the surge in growth of the Internet of Things, has given rise to a new wave of

cryptographic research. Being able to encrypt the transmissions of devices that link in to

the web is of huge importance. Cars, air conditioning units, televisions, and many other

household items are now becoming networked. Hence, it is necessary to ensure security,

and prevent malicious attackers from manipulating these devices for their own ends. Self-

driving cars require security to ensure that a malicious attacker is unable to take over the

operating system and alter their functionality. The use and operation of drones adds

another layer of importance to the use of encryption, as they are remotely controlled and

can be highly weaponized. It is therefore exceedingly important to ensure that the

commands received by drones are from a valid and securely-verified source.

Symmetric encryption is a classification of encryption methods based on a shared

secret key, and is also known as secret key or shared key encryption. This typically relies

on substitution and transposition ciphers. One example of symmetric encryption is the

 7

Caesar cipher, the earliest known encryption algorithm, which shifted the alphabet 3

places to the right. For the Caesar cipher, the key for decryption is the shift – the number

of places to the left the cipher alphabet must be moved to result in the plaintext.

Equation 2.1.1.i 𝐶 = 𝐸(𝑘, 𝑝) = (𝑝 + 𝑘)𝑚𝑜𝑑 26

(Stallings, 2014, p.15)

The general equation for encryption in the Caesar shift cipher is shown in Equation

2.1.1.i, where p is the plaintext letter of the alphabet, and k is the key shift – a value

between 1 and 25.

Equation 2.1.1.ii 𝑝 = 𝐷(𝑘, 𝐶) = (𝐶 − 𝑘)𝑚𝑜𝑑 26

(Stallings, 2014, p.15)

The reversal algorithm for decryption is shown in Equation 2.1.1.ii, where C is the

ciphertext letter. As there are only 25 possible shifts (if shifting to the original position is

discounted), the Caesar cipher is not a secure method of encryption (Martin, 2012). The

small key space of 25 means that each of the key possibilities can be calculated until the

correct key shift is found.

2.1.2 Advanced Encryption Standard
Modern symmetric ciphers have significantly higher levels of security than prior classical

methods. The Advanced Encryption Standard (AES) is the current standard for data

encryption worldwide, and uses multiple rounds of substitutions, transpositions and keys

to obfuscate plaintext into ciphertext. AES uses finite field arithmetic, with all operations

performed over a finite Galois field 𝒢ℱ(28) (Stallings, 2014). This finite field arithmetic

constrains any and all results from operations to within the 256 possible 8-bit bytes. The

encryption process is shown in Figure 2.1. AES uses different numbers of rounds

depending on the security level of the implementation. 128-bit AES uses 10 rounds, 192-

bit has 12 rounds, and 256-bit AES uses 14 rounds. The original key is expanded,

resulting in a key word for each round. The encryption process uses 4 transformation

operations; substitute bytes, which swaps out the bytes of the current block with those in

a predefined matrix; mix columns, which shifts the columns of the current block using

modular arithmetic; shift rows, moving all rows within the block; and add round key,

which performs a single XOR operation over the current block and round key. Each round

makes use of these transformations, and once all rounds are completed, the final

ciphertext is output.

 8

Figure 2.1: The AES Encryption Process (Adapted from Stallings, 2014, p.133)

2.1.3 Stream Ciphers and Rivest Cipher 4
The implementation of technologies such as TLS (Transport Layer Security) and SSL

(Secure Sockets Layer) for use in website authentication required the use of fast

encryption models that operated on streams of data. As such, it was necessary to design

stream ciphers, encryption methods that operate on small pieces of the data sequentially.

According to Martin (2012), a stream cipher can be described as a variant of the block

cipher, which has a designated block size of less than 64 bits. The general model of a

stream cipher encrypts data byte by byte, or 8 bits at a time (Stallings, 2014). Figure 2.2

gives a visual comparison of stream versus block ciphers.

 Rivest Cipher 4 (RC4), was developed in 1987 by Ron Rivest to address this need

for secure stream ciphers in web technologies. While it has since been proven insecure,

it was, as of 2014, the most widely implemented stream cipher (Rivest & Schuldt, 2014).

RC4 operates by permuting the data using a keystream of up to 256 bytes (2048 bits) and

 9

algorithmic access to a state vector S which contains all possible 8-bit bytes (Stallings,

2014).

Figure 2.2: Stream ciphers versus block ciphers. (Martin, 2012, p. 107)

 Some attacks on RC4 take advantage of the methods with which the session keys

are created, shown in Equation 2.1.2.i.

Equation 2.1.2.i 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑘𝑒𝑦 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟||𝑚𝑎𝑖𝑛 𝑘𝑒𝑦

(Klein, 2008, p.1)

Key creation as per Equation 2.1.2.i result in predictable behaviours from the session key,

and attacks such as the FMS-Attack (Fluhrer, Mantin & Shamir, 2001) take advantage of

those behaviours. As yet, no stream cipher that has been standardized and widely adopted

to replace RC4. The eSTREAM project was setup specifically for the purpose of

standardising a group of new stream ciphers, and was funded and operated through

ECRYPT, the European Network of Excellence for Cryptography (Afzal, Kausar &

Masood, 2006).

2.1.4 Asymmetric Cryptography
Asymmetric encryption, also termed public key encryption, relies on one-way

computations for security. Functions such as the computation of prime factors or discrete

logarithms are used to provide a one-way trapdoor function that is easy to compute in one

direction, but extremely difficult to reverse without all the original information. In this

case, each algorithm uses two keys – one public and one private. The public key encrypts

the information, but cannot decrypt it. The private key is then used to decrypt the

information. Public key systems are often used to securely transmit keys for symmetric

encryption, as well as to verify an online identity, such as in a digital signature or

 10

certificate. Digital signatures are an alternative to the physical signature, and give an

online option for the verification of an identity. This method requires a way of creating a

signature that can be verified by anyone but cannot be forged. The public key/private key

system gives an option for this, using a private key that is only known to the user to

generate the signature, and a public key that anyone can use to verify it.

RSA - named for the aforementioned Ron Rivest, Adi Shamir and Leonard

Adleman - is an example of a public key system, which gives each user a public and

private key for verifying and securely transmitting information. The public key is

published for use by anyone who wants to be able to communicate securely with the

owner of the key. The method of creating these keys relies on a one-way function, so that

the private key cannot be computed from the public one. RSA’s one-way function is the

Integer Factorization Problem or IFP (Yan, 2008). RSA works because the IFP has no

known solution that computes in polynomial time or less. One of the requirements of

these public key systems is the implementation of a secure key distribution method. These

methods require that the user is verified in some manner, to prevent identity theft, as well

as making sure that keys can be updated or withdrawn in real time. These distribution

methods remain one of the more challenging parts of the implementation of public key

systems.

2.2 ERROR CORRECTING CODES

Error correcting codes form a base of study in coding theory. The use of these codes to

ensure the correct and accurate communication of information through data transmission

was introduced by Hamming (1950). The motivation behind the creation of these codes

was the removal of error in data, through the ability to automatically correct any

distortions or changes in the transmission. Originally called systematic codes, Hamming

(1950) posited that binary codewords of a specific length could be used to ensure

redundancy in transmission and operation of data. Each codeword was set a binary code

of length n, wherein m digits were used for information, and the remaining 𝑘 = 𝑛 − 𝑚

digits provided for the automatic detection and subsequent removal and correction of

errors.

 Hamming (1950) defined the redundancy levels of codes that were capable of

correcting a single error in data as in Eq. 2.2.i. These codes were based on the number of

1 digits in a codeword – the data of the codeword was stored in the first 𝑛 − 1 bits, and

then in the final position a single 1 or 0 bit was added to ensure that the binary word

 11

contained an even number of 1s. Then, if a single bit of data was corrupted, the scheme

would detect the error, as there would no longer be an even number of 1 bits.

Equation 2.2.i 𝑅 = 𝑛
𝑛−1

= 1 + 1
𝑛−1

(Hamming, 1950, p.3)

The single error detecting code proposed by Hamming (1950) evolved into the parity

check, or parity bit. The system only works reliably when n is constrained and small, so

data could be split into many symbols of length 𝑛 − 1 and a parity bit added for each.

This allows the probability of a double-error to be kept consistently low.

 The Hamming distance of a two codewords or code symbols is the bits that differ

between them in the same position (Shankar, 1997). The calculation of the Hamming

distance provides a basis for determining the minimum distance of an error-correcting

code, or the minimum Hamming distance between two code symbols within the code. In

order to correct up to t errors, the minimum Hamming distance of a code must be

calculated as in Eq. 2.1.ii.

Equation 2.2.ii 𝑑𝑚𝑖𝑛 ≥ 2𝑡 + 1

(Shankar, 1997, p.34)

Reed Solomon codes are an alternative error-correcting code to the Hamming code. The

Reed Solomon codes operate on bytes, rather than bits, which gives a larger field for

operation.

 The benefit of error-correcting codes is their ability to eliminate noise from

transmissions, and detect and correct errors in data. The use of codewords or symbols

with carefully defined Hamming distances enables the efficient correction of errors. Due

to their ability to detect changes in the data, error-correcting codes have been proposed

as a method of securing data, such as in the creation of digital watermarks (Mehta,

Varadharajan, & Nallusamy, 2012). The use of error-correcting codes in digital

watermarks has been found to significantly increase their resistance to attacks.

2.3 GROUP THEORY IN CRYPTOGRAPHY

Graph theory and group theory comprise many theorems and methods which are of use

in fields such as computer science. Groups, rings and fields are especially of use in

cryptography, as their unusual topology provides for many different and robust

algorithms. A group is a tuple, a pair (𝐺, ∗), where G is a set of objects – for example,

the set of all real numbers – and * is a binary operation performed on 𝐺, which is closed

under 𝐺 (Loehr, 2014). Groups must satisfy four basic conditions: Closure; associativity;

 12

identity; and inverse. The function * is closed under 𝐺, meaning that for any 𝑎, 𝑏 ∈ 𝐺

which is used in the function 𝑎 ∗ 𝑏, the result will also be in 𝐺. The associativity property

requires that combining three or more elements of the set with the function will have the

same result, regardless of the order of operation. For any 𝑎, 𝑏, 𝑐 ∈ 𝐺 | 𝑎 ∗ (𝑏 ∗ 𝑐) =

(𝑎 ∗ 𝑏) ∗ 𝑐. The identity property requires that there be a single element that, when

combined with any other element via the function, results in that other, unchanged

element. ∃𝑒 (𝑒, 𝑎 ∈ 𝐺 | 𝑒 ∗ 𝑎 = 𝑎 ∗ 𝑒 = 𝑎). The final property is that of the inverse: for

every element a, there must be an element 𝑎−1, which combines with a to give the identity

element. ∀𝑎∃𝑎−1(𝑎, 𝑎−1 ∈ 𝐺 | 𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 𝑒). Only a pair that satisfies all of

the above properties can be considered a group.

2.3.1 Rings and Fields
Rings and fields are extensions of groups. They require all the properties of groups, as

well as special properties of their own. A ring is a triple (𝑅, #,∗), a set R with two binary

functions. R is an abelian group under #. This means (𝑅, #) satisfies all the conditions of

a group, as well as being commutative – for any 𝑎, 𝑏 ∈ 𝑅 | 𝑎 # 𝑏 = 𝑏 # 𝑎. Any group

that is commutative is known as an abelian group. The second operand ∗ is required to be

closed and associative under R. The two operations are usually called + and ∙ , or addition

and multiplication, respectively. A ring that is commutative satisfies a further axiom – its

multiplication operation is commutative under R. (𝑎, 𝑏 ∈ 𝑅 | 𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎) (Cohn, 2000).

The set of integers, or ℤ, forms a ring under the addition and multiplication operations,

and is a commutative ring. Rings are also formed by the set of rational numbers (ℝ), and

the set of natural numbers (ℕ).

A field is a further extension of a ring. If a ring is commutative, unital, contains

no zero divisors, and each non-zero element of the ring is a unit, then that ring is also a

field. A field has 4 binary operations – as well as the addition and multiplication they

inherit from rings, they have two inverse functions for these (Cohn, 2000). The inverse

of addition is defined as subtraction, and the inverse of multiplication is the division

function. So a field F would be (𝐹, +, ⋅ , − , ÷). Fields can be finite, or infinite. For

example, the set of all rational numbers (ℚ) is an infinite field. A particular set ℤ𝑝 is a

finite field if p is prime. Systems such as Elliptic Curve Cryptography are concerned with

transformations over finite fields.

2.3.2 Matrices and Graphs

 13

Another area of relevance in computing from graphic methods is matrix theory. A matrix

is an array of numbers. These are the matrix entries, also simply referred to as entries.

Matrices are used in cryptographic methods such as secret sharing schemes to encode

shares of information. These schemes rely on matrix operations and representations to

scramble, expand and then encode the data. Matrices are also used to organize

information about groups, rings and fields, such as a Cayley table, which displays the

result of the binary operation on each combination of elements in the set. Implementations

of graphs with encryption schemes can utilize matrices to represent vertices and edges.

Matrix operations, such as matrix multiplication, are used in systems such as Visual

Cryptography. Matrix multiplication is of particular use because it is not commutative –

the order in which the matrices are multiplied affects the outcome.

 Families of matrices such as Hadamard matrices are used in the generation of

error-correcting codes. Hadamard matrices are defined as an “n by n matrix H with entries

+1 or -1 such that 𝐻𝐻𝑇 = 𝑛𝐼[1]” (Chan-Hyoung, Hong-Yeop & Kyu Tae, 1998, p. 117).

All rows within a Hadamard matrix are mutually orthogonal. Hadamard matrices also

give rise to Sylvester and Walsh matrices (Giorgobiani, Kvaratskhelia, & Menteshashvili,

2015). A Hadamard matrix produces Hadamard codes, which provide high levels of error-

correcting ability. Given a Hadamard matrix 𝐻𝑛, of size 2𝑛 by 2𝑛, a Hadamard code can

be created which gives a Hamming distance of 2𝑛−1, and is capable of detecting [2𝑛−1 −

1] errors (Pal, 2007). While transmission of data using these codes requires a higher

number of bits, they provide for very good error detection and correction, which is of

particular use in noisy networks.

Cryptography makes use of finite, regular graphs, due to the usefulness of their

underlying structures. These families, such as Cayley graphs, are a connected and secure

structure on which to base algorithms for encryption. A graph G with a finite set of

vertices and edges is defined as a triple 𝐺 = (𝑉, 𝐸, 𝜙), such that V is the set of vertices,

E the set of edges connecting those vertices and 𝜙 is the function that maps two vertices

into an edge (Agnarsson & Greenlaw, 2007). In this way it can be thought of as an

extension of the original group, where edges are a connection formed by the operation of

combining some two members of the set V. A graph’s degree is the highest number of

edges connecting a vertex to those adjacent to it. For example, a regular graph with

degree 2 means that each vertex will be adjacent to exactly two other vertices. Special

families of regular, undirected graphs, like Cayley, expander or Ramanujan graphs are of

particular interest in encryption schemes. As these graphs are large and undirected they

can be constructed to ensure a high level of security in algorithms based around graph

 14

walks, special graph colourings, or those that use the Discrete Logarithm Problem to

provide intractable encryption.

2.4 GRAPHIC METHODS IN CRYPTOGRAPHY

This section explores the graphic methods applied in cryptography, and relates the

necessary background for the research of these methods. Section 2.4.1 discusses

cryptography based around graph families. Section 2.4.2 then explores cryptography

using systems of multivariate equations.

2.4.1 Cryptography Based on Families of Graphs
Graphic based systems rely on group theory and graph theory to create secure algorithms

for encryption. Some of the more popular graphic based methods are Elliptic Curve

Cryptography (ECC) and Visual Cryptography (VC). However, there are other

algorithms that take advantage of the innate properties of group theory and families of

graphs. These proposed graphic methods for encryption exploit particular traits of certain

types of graphs, such as those using families of graphs of large girth, like Cayley graphs

(Ustimenko, 2007). A Cayley graph is defined as a graph 𝒢(𝐺, 𝑆) where S is a non-empty

subgroup of the group G, such that S is equal to its own inverse (𝑆 = 𝑆−1), and the set of

vertices is equal to G, 𝑉 = 𝐺, and the set of edge elements is as follows:

Equation 2.4.1.i 𝐸 = {{𝑥, 𝑦} ∶ 𝑥, 𝑦 ∈ 𝐺; ∃𝑠 ∈ 𝑆 ∶ 𝑦 = 𝑥𝑠}

(Davidoff, Sarnak, & Valette, 2003, p.108)

A Cayley graph constructed in the manner described by equation 2.4.1.i is a regular graph,

but it is necessary to note that not all regular graphs are also Cayley graphs. Cayley graphs

are also undirected. These underlying algebraic structures of the family of Cayley graphs

can be exploited for use in encryption. Of particular relevance to the field is the quality

of expansion in these graphs – the search for expander families of optimal growth. The

growth rate of a graph relates to its diameter, and is generally a function of the number of

nodes or vertices in the graph (Krebs & Shaheen, 2011).

 15

Figure 2.3: A simple Cayley graph, as described by Equation 2.4.1.ii (Davidoff, Sarnak &

Valette, 2003, p. 119)

Equation 2.4.1.ii 𝐺 = ℤ
6ℤ

, 𝑆 = {1, −1}

(Davidoff, Sarnak & Valette, 2003, p. 119)

Another family of graphs that are a possible route for cryptographic research is

the family of directed graphs of large girth. The fact that there are only three families of

undirected graphs of arbitrarily large girth limits their use, however there are infinite

numbers of algebraically constructed families of directed graphs of large girth. These can

be converted to equivalent Turing machines of basic construction, as a basic finite

automaton is equitable to a directed graph, if the memory component is set aside. The

arrows on this directed graph can then be labelled with colours as is required according

to the automaton’s alphabet. These graphs are part of the expander family of graphs

(Ustimenko & Romańczuk, 2013). Cayley graphs can be used to describe a linear

automata, while other graph families can be used to result in non-linear systems.

Encryption over directed graphs uses finite fields to calculate the arithmetic operations.

Encryption systems based around groups of graphs such as Cayley or expander

families use sequences of vertices or graph-colourings to create a ciphertext. Others opt

for using strongly regular graphs to generate a Hadamard matrix for encoding images

(Priyadarsini & Ayyagari, 2013). Some systems use the vertices to represent the plaintext

space and the path within the graph becomes the password (Priyadarsini, 2015). Systems

such as these based around walks along graph edges can be used in the construction of

stream ciphers (Ustimenko, 2014). Some of these graph based systems are also reliant on

the intractability of the DLP, and ensure that the groups or rings they are based around

are of sufficiently large girth to make the DLP 𝑁𝑃-complete (Klisowski & Ustimenko,

2010). Expander graphs are also of particular interest in cryptography. These graphs are

sparse, finite, and highly connected. Ramanujan graphs are a particular brand of expander

graphs that are of use for encryption. Expander graphs were drawn from the study of

Cayley graphs (Polak & Ustimenko, 2013).

 16

2.4.2 Multivariate Cryptography
Systems have been proposed that utilise group theory and rings to create encryption that

relies on the combining of two group elements. Elliptic Curve Cryptography (ECC)

transports the classic Discrete Logarithm Problem onto an elliptic curve or graph-based

encryption and the reversal of this process is computationally infeasible without the

original units involved (Hurley & Hurley, 2011). Public key cryptosystems based around

commutative rings also use a variant of the Diffie-Hellman problem to secure their

protocols (Kotorowicz, Romanczuk, & Ustimenko, 2011). Multivariate cryptography is

the set of cryptosystems which use polynomials and finite commutative rings for

encryption, and these are part of the post-quantum cryptography movement. Post-

quantum cryptography involves systems that are theoretically resistant to Quantum

attacks (Ustimenko, 2014).

Graphic based cryptographic research revolves around increasing efficiency and

security. Graphic based methods are based around a “significant demand… for new non-

standard cryptographic methods” (Paszkiewicz et al., 2001, p. 1) ECC, VC and other

graphic methods are currently being researched and expanded as this demand grows.

Current research as applies to general graph based methods has focused on different

families of graphs – such as expander graphs, which are very highly connected but have

few nodes (Polak & Ustimenko, 2013). The implementation options for programming

graphs are also a topic of research, with current methods using lists and matrices.

Another development in graphic methods has been the implementation of

algebraic geometry into the field of multivariate public key cryptosystems. These are

based around a set of multivariate quadratic polynomial equations over a finite field (Ding

& Yang, 2009). Further to this, there has been study into parameterized matrices for

systems of paraunitary equations for encryption. Multivariate polynomials are a solution

to the problems of RSA and an alternative to systems like ECC, using multivariate

systems of equations over small fields, such as 𝐺𝐹(2𝑚) where m is some small number

(Delgosha & Fekri, 2006). The use of multivariate polynomials is a proposed solution to

the issues with key size and set up time, both of which are high in computational

complexity and require large amounts of data to communicate. Multivariate systems

generally use quadratic polynomial fields. The multivariate systems rely on their own

version of the one-way problem, in this case called the MQ problem, based on the

computational complexity of solving many different quadratic equations over multiple

different fields using many different variables. The complexity of the MQ problem has

 17

led to them being proposed as a possible quantum-resistant encryption method (Liu, Han

& Wang, 2011).

2.5 ELLIPTIC CURVE CRYPTOGRAPHY

This section reviews Elliptic Curve Cryptography (ECC) and its applications. Section

2.5.1 gives an introduction to ECC and how it relates to the prior standards in public key

systems. Section 2.5.2 explores the Elliptic Curve Discrete Logarithm Problem. Section

2.5.3 then discusses the current trends in research and the applications of ECC.

2.5.1 Elliptic Curve Cryptography and RSA
Elliptic Curve Cryptography (ECC) is a proposed alternative to the public key system

RSA, as it provides equivalent security with smaller key sizes and lower overheads

(Stallings, 2014). It was intended as a method of transferring the public key discrete

logarithm problem into a system which would allow for more efficient computation

without loss of security (Miller, 1985). The constant acceleration of computational power

has resulted in RSA being considered less than secure in some situations due to its key

length, and the high overheads encountered in increasing that key length (Bai, Zhang,

Jiang, & Lu, 2012). In fact, in 2003 RSA using a 576 bit key was successfully broken

over a three-month time span, further cementing its declining level of security due to its

reliance on computational complexity (Ontiveros, Soto, & Carrasco, 2006). An RSA key

size of 1024 bits is equivalent to a 163 bits in ECC. The larger the RSA key size the

smaller the ratio of the ECC equivalent key, for example a 256 bit ECC key is equivalent

to a 3072 bit key in RSA (Pateriya & Vasudevan, 2011). Because ECC based systems are

able to provide far smaller key length without sacrificing security, they have become a

more attractive option than RSA, which is of much higher computational cost especially

in environments of low computing power.

ECC uses transformations over one of two types of field: a finite Galois field

𝐺(𝐹𝑝), where p is a large prime, or a finite field of characteristic 2, also known as a binary

field, notated as 𝐺𝐹(2𝑚) (Bai et al., 2012). A cyclic group, such as those used in ECC, is

considered to be appropriate for the implementation of a discrete logarithm based system

if it satisfies the following: the entries of a group require minimal representation; the

binary operation performed on the group is efficient; and the DLP within the group

remains intractable (Galbraith & Menezes, 2005). The elliptic curve consists of several

elements: it has a series of rational points, which form the entries of the set within the

 18

group; there is also an element that is a special point at infinity – called point O – which

is also known as the identity element (Ye & Liu, 2011). This set that forms the basis of

the field is formed by the solutions to the following equation:

Equation 2.5.1.i (𝑥, 𝑦) ∈ 𝐾2

 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

where 𝑎, 𝑏 ∈ 𝐾 (Koblitz, 1987, p.1).

A cryptographically strong elliptic curve is one that is non-singular (Kamarulhaili,

2010). In other words, the roots of the polynomial of the curve must be unique. Elliptic

curves can be represented in many different ways, including as coordinate systems.

Computation of these curves can be made more efficient by the use of different kinds of

coordinate systems. Following the optimization of the coordinate system it is possible to

mix several different coordinate systems to improve the computational time even more

and further optimize the algorithm (Setiadi, Kistijantoro, & Miyaji, 2015). The basis of

the ECC algorithm involves the encoding of a message or plaintext onto a point of the

chosen curve for encryption (Singh & Debbarma, 2014). The point used is taken from the

group of rational points which form the series of the curve. Each point of the set

corresponds to a different part of the plaintext message. This can be done for alphabet

characters using a code table which corresponds to points and for binary implementations

can be used even to encrypt images.

2.5.2 The ECC Discrete Logarithm Problem
Public key cryptography systems, such as ECC, rely on the intractability of the discrete

logarithm problem (Galbraith & Menezes, 2005). The Discrete Logarithm Problem

(DLP) is the one-way property of computing logarithms. The one-way property, or

trapdoor function, is that they are easy to compute in one direction, but hard to reverse

without the information used in the original computation. This basis, which forms the set

of public key cryptography systems, relies on computational complexity for security. The

DLP, as defined for any finite cyclic group G, is as follows:

Equation 2.5.2.i 𝑓, 𝑔 ∈ 𝐺 ∶ ∃𝑦 (𝑓𝑦 = 𝑔)

such that y is the smallest possible positive integer that satisfies equation 2.5.2.i (Polak,

Romańczuk, Ustimenko, & Wróblewska, 2013). This problem, originally called the

Diffie-Hellman problem and used in traditional public key cryptography systems, was

ported to the domain of Elliptic Curves to increase security, and this version is known as

the Elliptic Curve DLP, which uses scalars and point multiplication.

ECC is uses scalar multiplication to compute the one-way function that results in

 19

the elliptic curve DLP, using point P from the set of points, and a scalar multiplier k.

Equation 2.5.2.ii 𝑘. 𝑃 = 𝑄

This operation provides another point on the curve. The scalar multiplication operation is

fairly simple to compute, however reversing it – computing k where only Q and P are

known – is not currently feasible in less that exponential time, as it is the brute force

equivalent of searching through all possible multiples until a common point between Q

and P is found, and in application k should be large enough to make this computationally

infeasible. As such, the computational complexity of the elliptic curve DLP is where the

security of ECC lies (Amara & Siad, 2011). Simplifying the point multiplication

operation is one of the optimization goals of ECC algorithm research, as it is the most

expensive part of the algorithm (Sutter, Deschamps, & Imana, 2013). This point

multiplication can be implemented as a multiplication in the software or hardware, or

broken down into other operations, such as modular functions of addition and

multiplication, which are lower level computations (Qu & Hu, 2010). Using broken down

modular operations makes the scalar multiplication less expensive.

2.5.3 Applications and Research in ECC
Elliptic curve cryptography has been transplanted into protocols for Diffie-Hellman key

exchange, and other researchers have looked at the introduction of text-based encryption

systems using ECC (Vigila & Muneeswaran, 2009), which have proven to have very high

levels of security against brute force attacks. There has been research into different

algorithms for utilizing the security of ECC, for example implementing matrix

scrambling to improve the overall security against current attacks. Matrix scrambling in

ECC uses circular queues to shift the text in random patterns (Amounas & Kinani, 2012).

The matrix-scrambling technique adds cycles of encryption, which ensure the plaintext is

encrypted differently each time, and as such helps to protect against cryptanalysis. ECC

has also been implemented as an authentication setup in smartphones and similar devices

using QR (Quick Response) codes to secure their online activity. QR codes are two

dimensional matrix barcodes, and due to their prevalence on mobile platforms they are

an effective option for generating and securing one-time passcodes (Thiranant et al.,

2014). ECC can also be utilized in e-commerce, as the creation of digital signatures is

central to each step of the process in SET (Secure Electronic Transactions) protocols (Xia,

2012). Because the signatures are created multiple times, the use of ECC is more efficient

than methods such as RSA, as it lessens the load incurred by the processing application.

ECC has also been successfully used to encrypt multimedia imagery during compression,

 20

where it has been proven to be efficient in encrypting the imagery without affecting the

overall compression algorithm’s efficiency. However, the compression and encryption

process does result in a degradation of clarity in the final recovered image, in varying

levels (Tawalbeh, Mowafi, & Aljoby, 2013).

Elliptic Curve Cryptography is of particular interest in systems that operate on

limited resources – such as smart cards and other embedded systems (Targhetta, Owen,

Israel, & Gratz, 2015). These systems require efficient implementations, particularly in

regards to the more complex ECC operations, such as the scalar multiplication of the

curve points which is one of the more expensive to perform. Some recent research has

focused on finding a way to improve computation time for this operation, as the reduction

of computational time for this part of the algorithm increases the overall efficiency of the

implementation (Leca & Rincu, 2014). One of the key ways to decrease the complexity

of this operation is the reduction of the Hamming weight of the scalar value. This can be

done through a conversion to binary numbers to improve the efficiency of the scalar

multiplication (Akhter, 2015). There has also been interest in utilizing ECC algorithms

for wireless sensor networks, due to the limited computing power in the individual

connected nodes, which prevents the implementation of traditional public key

architecture as there cannot be a single trusted public key authority, as well as the

difficulty of performing the high cost operations in RSA (Modares, Moravejosharieh, &

Salleh, 2011). In situations like sensor networks, ECC provides an advantage because of

its lower computational costs, allowing implementation in low-level hardware

(Deligiannidis, 2015). Utilizing the set of shifting primes as basis for the curves can also

increase the efficiency of the algorithm. This enables the use of multiplication operations

without requiring the use of any multiplier function, instead implementing addition and

shifts to the same result, which is far more practical for low-cost hardware. Simple

embedded systems do not always have a hardware implementation for multiplication,

thus making this method of ECC highly attractive as a security option (Marin, Jara, &

Skarmeta, 2012).

2.6 VISUAL CRYPTOGRAPHY

This section describes Visual Cryptography (VC), and the ways in which it can be applied

to current technologies. Section 2.6.1 gives an overview of the secret sharing schemes

VC is based on and the original proposed VC methodology. Section 2.6.2 discusses

extended VC schemes, and 2.6.3 explores the issues of pixel expansion and contrast

 21

constraints. Section 2.6.4 discusses the advances made in Random Grid VC, and 2.6.5

then describes current research and applications in VC.

2.6.1 Secret Sharing Schemes
Visual Cryptography (VC) is a popular graphic method for encrypting images, though it

is generally a less effective graphic-based system than ECC, due to computational

complexity, and overheads, as well as being less applicable to general encryption

problems. VC is a set of secret sharing schemes that divide a secret image into n parts,

called shares, of “random binary patterns” (Zhi, Arce & Di Crescenzo, 2006, p. 2441),

that only reveal the original image when all shares are superimposed upon one another.

However it encounters difficulties due to the high overhead incurred by pixel expansion;

which is the number of subpixels required to create a pixel that will encode the share

(Hajiabolhassan & Cheraghi, 2010). Much of the research conducted into VC has gone

into the issue of minimizing pixel expansion, which is usually directly affected by the

number of nodes in the scheme (Blundo, Cimato, & De Santis, 2006) but it is yet to gain

wide application use. Research into visual cryptography schemes has also begun to

expand to colour images (Liu, Wu & Lin, 2008), and into integrating visual cryptography

into authentication methods (Jaya, Malik, Aggarwal, & Sardana, 2011). Another option

proposed for minimizing pixel expansion is step construction, which uses a recursive

implementation to create several shares for a single participant (Liu, Wu & Lin, 2010).

Secret sharing schemes are designed to ensure a single secret can be securely

shared between a specific group of users. It guarantees that only pre-agreed subsets of

those users are able to access the information (Blakley & Kabatiansky, 2011). Each

scheme has a dealer, who creates and distributes the shares from the scheme, as well as

the user set, who each receive a single share. The shares are each a subset of the original

secret. The dealer uses a predefined algorithm to split the secret into shares, which have

to be recombined to recreate the secret. Secret sharing schemes operate on a specific

definition of perfect secrecy: that a scheme that does not reveal any information about

the original secret without all the required subsets is considered perfectly secure. This

forms the basis of visual cryptography schemes, which split images into secure shares

(Naor & Shamir, 1995). One of the main tenants of the original visual cryptography

schemes was that they are able to be decrypted without assistance of a computer, or any

specialized cryptographic knowledge (Naor & Shamir, 1995). This makes it an attractive

option for instances when more complicated systems are not feasible. The encoded

subpixels appear as either black or white to the human visual system, when all necessary

 22

shares are layered over one another (Droste, 1996). The lowering of the contrast – such

as in schemes that optimise pixel expansion – make it more difficult to visually decode.

2.6.2 Extended Visual Cryptography Schemes
Further alterations to the original VC schemes have been proposed – called Extended VC

schemes or EVCS – which encode the shares into target images, in order to ensure that

they appear innocuous (Ateniese, Blundo, Santis, & Stinson, 2001). Using a target image

implements a layer of steganography over the encryption, hiding the fact that the image

contains a secret share of a message. While this addition of stenography does increase the

security of the system, it also heightens the computational requirements of the

implementation and the pixel expansion of the scheme overall, requiring each subpixel

be encoded to match two separate contrast constraints, one to securely encode the secret

image and another to ensure that it matches the target image (Liu & Wu, 2011). EVCS

can also enable multiple secrets to be shared between different accepted parties (Klein &

Wessler, 2007). With the steganography within an EVCS it is also possible to use a

chaotic map to generate one of the pair of shares to improve the security of the scheme.

Using a chaotic map to generate half of each pair increases its resistance to cryptanalytic

attacks (Mostaghim & Boostani, 2014). The encoded shares can also be designed as

circles, which enables multiple secrets to be encoded by the different rotations of the

shares (Shyu, Huang, Lee, Wang, & Chen, 2007). Implementing circular shares means

that a single pair of shares can encode more than one secret, and requires that the users

have knowledge of which rotations of each circle are required to decode each secret

image.

Further extension of visual cryptography schemes has resulted in graph-based

EVCS (GEVCS). This uses a graph-based substructure, in which there are multiple pairs,

each of which is able to recover a secret unique to that pair. This means each share

encodes subsets for every pair it is part of and the shares are denoted by a node in the

graph. If there exists a vertex connecting two nodes, then there is a secret shared between

them. Combining the two shares will reveal the secret denoted by the edge (Lu, Manchala,

& Ostrovsky, 2011). If a graph is complete, or fully connected, then every node shares a

secret with every other node. This is not always the case, so before combining shares it is

necessary to check that the nodes in question are connected by an edge. This means the

creation process for each share is much more complex, as there are multiple target images

for each source image. Other GEVCS have been proposed, which require that each pair

of shares be combined at specific angles to encrypt and decrypt the shares (Feng, Wu,

 23

Tsai, Chang, & Chu, 2008).

Because of how complex the creation of shares in a GEVCS is, the main graph of

the scheme can be decomposed into subgraphs. Decomposing the graph allows each share

to be created in a smaller scale, which decreases the overall computational complexity of

the process. A share matrix is then created for recombining the separate subgraphs. This

involves creating a share matrix for each subgraph, padding it to ensure they are all of

even length using extra one bits, then concatenating the matrices. Once the concatenation

is complete, the result is a complete share matrix for the overall graph.

2.6.3 Pixel Expansion and Contrast Constraints
Graph based extended visual cryptography uses matrix operations to encode the shares of

information from an original plaintext image. These operations generate the format for

subpixels, and contain contrast blocks for both the source and the target. The operations

involve the calculation of the number of subpixels in an image that are to be black –

controlling the image’s contrast. The contrast constraint also allows the share to be

generated so as to satisfy a particular contrast constraint, or how dark or light a pixel

needs to be in order to be considered ‘black’ or ‘white’. This controls the level of clarity

in the final image once all shares are combined, and as such, every VC scheme attempts

to maximise the contrast as much as is possible (Liu, Wu & Lin, 2010). One of the issues

with pixel expansion and contrast is that they cannot both be optimal at once. Each

algorithm is required to make a trade-off between pixel expansion and clarity of contrast

(Arumugam, Lakshmanan, & Nagar, 2013). There have been many proposed systems to

minimize the pixel expansion, and therefore increase the efficiency of the encoding

algorithm. Many proposed schemes require polynomial pixel expansion. In most, the

expansion is directly affected by the number of shares (Blundo et al., 2006). Those that

are attempting to optimize expansion have had success in constraining the pixel

expansion, however this comes with the trade-off of lowered contrast. Researchers have

managed to constrain pixel expansion to 𝑂(log 𝑛) time in some schemes (Ateniese,

Blundo, De Santis, & Stinson, 1996), while systems based around extended graph

structures have provided constant expansion (Lu et al., 2011).

2.6.4 Random Grid Visual Cryptography Schemes
A technique known as Random Grid VC (RGVC) has been proposed by researchers as a

counter to traditional, deterministic VC - as well as probabilistic VC - as a way to control

pixel expansion. Probabilistic VC differs from classical, deterministic VC in that it uses

 24

a binary basis matrix to select whether a given pixel is black or white given equal

probability. In the traditional RGVC scheme, each pixel’s likelihood of being either black

or white in a particular share is decided by a random coin toss style operation, and the

pixels are individually considered to be grids (Kafri & Keren, 1988). The trade-off for

the lack of pixel expansion in the RGVC scheme is the light transmission. The light

transmission is the amount of light that is capable of diffusing through the stacked

transparencies of the shares – the overall contrast of the final decoded image. Because the

light transmission of shares in an RGVC scheme is automatically ½, as approximately

50% of all pixels are black in each share, the overall quality of recovered images is

significantly impacted (Hou, Wei, & Lin, 2014). To counter this degradation of the

images, generalized RGVC was introduced to create an adjustable light transmission.

(Wu & Sun, 2013). Generalized RGVC gives an adjustable probability for the likelihood

that a given pixel in a particular share will be white.

Further extensions to RGVC schemes have been proposed, such as common share

RGVC. In a common share RGVC scheme involves a scheme that has a set of shares for

participants, plus a single key share which is the same for all secrets, and must therefore

be kept secure, as would be a user’s private key in a public key system (Joseph & Ramesh,

2015). The individual shares are constructed using a random grid algorithm, where the

first share is created randomly, and the preliminary second share is created based on that

first share and the secret image. This set of steps is then iterated over the preliminary

share two to create the final share two and the preliminary share three, over the

preliminary share three to create the final share three and the preliminary share four, and

so on and so forth. The original randomly generated share becomes the key image for all

shares. The result of this algorithm is a VC scheme that is asymmetric, rather than

classically symmetric as in probabilistic VC. However, it has also been shown that a

regular RGVC scheme can be converted to an equivalent classical VC scheme and vice

versa, as there exists a strict equivalence relation between the two types (De Prisco & De

Santis, 2014). The relation between these types means that it is possible to use research

and findings in both types of scheme.

2.6.5 Applications and Research in Visual Cryptography
Current research has looked at the possible implementation of VC algorithms into fields

which require high levels of security in image related data, such as biometrics stores of

data for facial recognition, or fingerprint verification (Ross & Othman, 2011). As VC

methods involve splitting the secret image into shares, there can then be a private and

 25

public database of biometric images, and only once the shares from the two are combined

will the original biometric data be of use. The original image can also be decomposed

into shares using target images of other biometric data, benefitting from the extra layer

of steganography provided by such EVCS.

The expansion of VC schemes into the arena of colour imagery is a current area

of development in research, as the addition of colour images increases the overall

complexity and pixel expansion of the schemes. As such, classical VC methods cannot

be used for this purpose. Schemes have been proposed that utilize half-toning methods

on colour images to simplify the process of encryption. Error diffusion has previously

been used to half-tone a grayscale image for VC schemes, and has been further extended

to allow for implementation in schemes that use colour images. In colour half-toning, the

process is applied to the different channels of colour individually (Kang, Arce, & Lee,

2011). However while the resulting images are recognizable, a side-effect of the half-

toning process is a degradation of image quality, for both the shares and the decoded

secret image, as it introduces noise and therefore lowers the overall image contrast.

It is also possible to add supplementary material to VC shares, using a method

introduced as tagged VC (Wang & Hsu, 2011). In this manner, the shares can be folded

to give extra information to the participants, as each contains the secret image, plus a set

tag image for each share that is generated in the scheme. As a result, each individual

tagged share can then be folded to reveal the tag image. Such a scheme can be extended

to allow for multiple folding operations to occur, and for shares to be folded at different

angles. The addition of tags to a VC scheme can also allow for an extra layer of security,

wherein the tags can contain a particular security message to guard against forged shares,

and assist in cheating prevention. These tagged schemes have also been extended to create

a system in which the VC scheme is lossless – that is, there is no difference in visual

quality between the original and the decoded secret image (Wang, Pei & Li, 2014).

2.7 ISSUES AND PROBLEMS

This section describes the current issues and problems facing cryptography. Section 2.7.1

looks at current problems in ECC, while 2.7.2 discusses issues facing VC. Section 2.7.3

then explores difficulties in graph based cryptography.

2.7.1 Issues in Elliptic Curve Cryptography

 26

The security of ECC relies on computational complexity – the assurance that it is

intractable to compute the Elliptic Curve Discrete Logarithm Problem. This reliance

means that the security would be severely compromised should the ever-increasing speed

of technology provide a method of computing the solution to the Elliptic Curve Discrete

Logarithm Problem in less than the current exponential time. On the realization of

quantum computers, the Elliptic Curve Discrete Logarithm problem will no longer be

computationally infeasible to compute (Krämer, 2015). The weakness surrounding ECC

in a post-quantum world is based on Shor’s algorithm (Shor, 1994), operating on a

quantum computer, which is capable of solving problems such as discrete logarithms in

polynomial time (Ding, Petzoldt, & Wang, 2014). Aside from the possibility of breaking

the Discrete Logarithm Problem, ECC also has disadvantages in its implementation. It is

highly complex to implement, and the resulting ciphertext message is increased in length

from the original plaintext (Chandra et al., 2014).

Advances in fields such as index calculus and number-field sieves have shown

possible weaknesses in systems based around the problem of computing discrete

logarithms (Joux & Vitse, 2012). Index calculus, a method of computing discrete

logarithms using probability and field arithmetic, has been used by mathematicians to

exploit characteristics of groups and to then solve the original discrete logarithm problem

in sub-exponential time (Miller, 1985). While classic index calculus has not been

implemented successfully against general ECC systems, and exponential time square root

attacks are more efficient against these general ECC algorithms (Silverman & Suzuki,

1998), the reduction in computing time for solving the discrete logarithm problem in other

systems may suggest weakness in the overall computational complexity of DLP-based

systems. Futher, for some special families of elliptic curves, it is possible to transpose the

curve into a field where index calculus is then an efficient option for attacks. One example

is elliptic curves over binary fields, where an attack using Weil descents is capable of

solving the elliptic curve DLP in sub-exponential time (Petit & Quisquater, 2012).

Another family of curves which is vulnerable is the class of supersingular elliptic curves,

which can be transformed into an extension field. If the chosen k is small, the extension

field system can then be solved in polynomial time (Menezes, Okamoto, & Vanstone,

1993). Index calculus attacks on discrete logarithms also depend on the type of curve and

the field over which the problem is defined. Over small fields, cover attacks using index

calculus are best suited, while decomposition attacks work over curves on an extension

field. In a variation on the basic index calculus attack, a combination of Weil descent and

decomposition index calculus attacks have also been shown to enable a transplanted

 27

elliptic curve in a Jacobian field to be successfully solved, with a 146-bit elliptic curve

defined over 𝔽𝑝6, an extension field of degree 6, taking approximately one month to break

(Joux & Vitse, 2012). The development of these cover and decomposition attacks

therefore concretely threaten the security of ECC as a whole.

Implementation of ECC in smart cards could theoretically be weakened by fault

attacks, which is a type of side channel attack that actively forces a fault within the

algorithm (Jie & King, 2013). These attacks then gather the faulty information from the

card to rebuild the secret key for use by the attacker. In particular, there has been the

suggestion that ECC could be exploited by sign change attacks, which alter the sign of

the point on the curve, however the actual implementation of this attack would be both

complex and unlikely to succeed in breaking most applications of ECC. Because of the

suggested weakness of ECC to these fault attacks, it is important that the design of the

algorithm take side channel attacks into account during the development process, to

ensure the system is robust (Ma & Wu, 2014).

2.7.2 Issues in Visual Cryptography
VC schemes encounter difficulties due to pixel expansion, which is the number of

subpixels required to encode the correct level of contrast in each share. This expansion

greatly affects the required overhead of VC schemes, and as such is the target of much

research (Blundo et al., 2006). While there have been schemes proposed that give a

constant pixel expansion, such as graph-based extended VC (Lu et al., 2011), many

schemes require linear, or even polynomial pixel expansion based on the number of nodes

within the scheme, making them infeasible for larger implementations. Within the

schemes which ensure pixel expansion remains constant, the overhead for the encoding

of the shares is still computationally high for large images with a greater numbers of

pixels. These systems which constrain pixel expansion also degrade the contrast of an

image, as there are fewer subpixels differentiating dark and light in the image, making it

more difficult for the human eye to visually decode. Once multiple colours are introduced

to the scheme, pixel expansion becomes even more complex, and overall image contrast

is lowered further. A colour VC scheme will also require higher overall time complexity,

as each colour within the image must have a different threshold for contrast (Liu et al.,

2008).

VC is also open to malicious man-in-the-middle attacks, during the transfer of

shares to participants. If the shares are intercepted, the malicious intermediary could keep

the original share, and forward a new, false share to the intended participant. The

 28

interception of the share would as such result in the security of the scheme being

completely undermined. Attacking a VC scheme in this manner is generally referred to

as cheating. While this risk can be decreased by the implementation of an EVCS where

each participant is assigned a specific target image, cheating is still possible, by a

malicious participant. A malicious participant is an authorized participant in the scheme,

who then proceeds to undermine its security through the generation of false shares.

Cheating prevention VC schemes have been proposed that use specific basis matrices in

the generation of both the secret shares, and a set of verification shares, to counter the

ability to generate fake shares (Hu & Tzeng, 2007). These matrices added an extra column

to the originals, one column of all 1s in the secret share matrix and one column of all 0s

in the verification share matrix. The verification shares can then be stacked to check the

veracity of the image. However these basis matrix schemes have since been proven

through cryptanalysis not to be cheating immune using two theoretical cheaters working

in concert, who are then able to determine the location of these extra columns within the

basis matrices (Chen, Horng, & Tsai, 2012). To prevent this type of cheating, it is

necessary to introduce multiple extra zero columns into the basis matrices. As a result,

cheating prevention VC schemes result in higher overheads and increased pixel expansion

when compared regular VC algorithms, which results in a lower level of utility in real-

world application. The proposal of adding tags to individual shares to allow for the

identification of false or forged shares may offer additional protection against cheating,

however it is still vulnerable to attack if an attacker is in possession of a genuine share,

and can therefore find and replicate the security tag.

2.7.3 Issues in Graph Based Cryptography
Encryption systems that use graphs for encoding, like those based around VC, can have

very high computational overheads, due to the size of the graphs required to achieve the

required levels of security. Also, those encryption methods that base themselves around

the special colourings of vertices and edges are vulnerable to cubical linearization attacks,

which make decryption possible, despite being costly in practice (Ustimenko, 2014). For

those graph-based systems that also rely on the DLP, the same vulnerabilities encountered

by ECC encryption apply.

Another issue within graph based systems is implementation. Representing a

graph within a computer program can be broken down into four possible types: the

adjacency list; the adjacency matrix; the incidence list; and the incidence matrix. Each

lists either vertices or edges, and they are either enumerated fully - in a matrix - or only

 29

where a connection occurs - in a list (Riaz & Ali, 2011). These implementations affect

the use of a particular system, especially with larger connected graphs, with many entries

in its matrix or list.

2.8 CONCLUSIONS

Graphic based systems are slowly being incorporated into mainstream use due to their

high levels of security. However, the heavy overhead incurred by the computational

components of VC systems can limit their usefulness, and they remain vulnerable to

attack through the creation of forged shares. Meanwhile the security of ECC algorithms

depends on the DLP remaining intractable. The development of specialized cover and

decomposition attacks against ECC, and the future advent of quantum computing put the

security of the Elliptic Curve DLP at risk. These issues require further examination, as do

alternative graphic based systems that incorporate the use of topology for high levels of

security. ECC is currently the best developed, researched and applied graphic based

cryptographic system and it can therefore be used as a benchmark to compare the

performance of any other graphic based system.

 Based on the analysis of the security of ECC and VC systems, a comparative

analysis of four existing cryptographic methods is proposed in the next chapter, as well

as the design, implementation and evaluation of a fifth proposed system. Chapter 3

defines the research methodology which is fundamentally a comparison of competing

cryptographic algorithms.

 30

Chapter 3
Methodology

3.0 INTRODUCTION

In Chapter 2, a wide range of literature was reviewed and assessed, and the foundational

topics of cryptography, group theory, and graphic methods as applied to encryption were

defined. These topics were then analysed, and current research in the areas of encryption

and graphic based methods was explored.

In this chapter, the foundation formed from the analysis of literature in Chapter 2

is utilized in the design of the study. Section 3.1 critically evaluates similar studies of

relevance to the topic, and explains in depth how the authors of these studies went about

the study and the results they gained. Section 3.2 then gives the design of the study, with

reference to the standards and benchmarks from the previous research evaluated in section

3.1. In section 3.3 the requirements for the collection and analysis of the resulting data

are explained, as well as the data presentation format. Section 3.4 acknowledges the

limitations of the research design, and section 3.5 summarises the overall study.

3.1 REVIEW OF SIMILAR STUDIES

In this section, prior similar studies and relevant works are reviewed and evaluated for

strengths and weaknesses, as well as the potential application they pose to the design of

this study. The key focus is on the way in which the authors went about their research in

order to achieve their findings. In this way the best approach to cryptographic testing

research may be derived. Nine comparative studies which propose testing criteria for the

evaluation of encryption algorithms are introduced and explored in depth in sections 3.1.1

through 3.1.9. Each is evaluated for strengths and weaknesses, and the ways in which the

proposed benchmarks in each have been tested is explored. The following section 3.2

then details the design of the research, and the standards for testing developed from the

benchmarks proposed in the evaluated studies.

3.1.1 Jeeva, Palanisamy and Kanagaram (2012)
Jeeva, Palanisamy, and Kanagaram (2012) propose several standards for measuring the

security of an algorithm and these are tested on the most widespread symmetric and

 31

asymmetric encryption algorithms. To measure the overall security of an encryption

algorithm Jeeva et al. (2012) propose using the key length, strength against attacks such

as brute force, known plaintext attacks, et cetera. The ability to alter the encryption

parameters at run time, called ‘tunability’ (Jeeva et al., 2012, p.3036) is also suggested as

a desirable trait for an algorithm to have, as it increases the overall security.

Factors
Analyzed

Symmetric Encryption Asymmetric Encryption

AES DES 3DES Blowfish RC4 RSA Diffie-Hellman

Encryption
Ratio

High High Moderate High Low High High

Speed Fast Fast Fast Fast Slow Fast Slow

Key Length 128, 192

or 256 bit

56 bit 112 or

168 bits

32 to 448

bits

256 bits > 1024

bits

Key Exchange

Management

Tunability No No No Yes No Yes Yes

Security
Against
Attacks

Chosen

plaintext,

known

plaintext.

Brute

force

Brute

force,

chosen

plaintext,

known

plaintext

Dictionary

attacks

Bit

flipping

attacks

Timing

attacks

Eavesdropping

Figure 3.1: Results from Jeeva et al., 2012, p. 3036

Jeeva et al. (2012) propose that the efficiency of an encryption algorithm can be measured

through computation time. The overall time taken to encrypt and decrypt the information

is required to be “fast enough to meet real time requirements” (Jeeva et al., 2012, p.3036).

Also proposed is the calculation of the encryption ratio – measured by the length of the

data to be encrypted and the key length. Jeeva et al. (2012) suggest this should be

constrained as much as possible to improve overall efficiency in the algorithm. The results

of their study suggest overall that symmetric encryption gives a faster performance where

the encryption ratio is higher. Systems such as RC4, a symmetric stream cipher with a

low encryption ratio, are classed as slow, while AES, which receives a high encryption

ratio, is rated as fast.

 The benefit of studying both the efficiency and the security of encryption

algorithms is that the trade-off between the strength of the algorithm and the overall

computational complexity. It can be carefully evaluated to deliver a better overall

 32

understanding of the usefulness of the algorithm in real world situations. Encryption

systems such as AES, which is shown in Figure 3.1 to have high levels of both efficiency

and security, will be more portable to multiple architectures and situations than those such

as RC4, which Figure 3.1 shows as rated slow in overall encryption time. Strong but slow

encryption algorithms are unlikely to be utilized in any situation that requires real-time

processing or fast communication between participants.

3.1.2 Afzal, Kausar and Masood (2006)
Afzal, Kausar, and Masood (2006) proposed and implemented a framework for the

evaluation of 34 different stream ciphers. These ciphers were submitted to ECRYPT, the

European Network of Excellence for Cryptography, for the eSTREAM project, which

looked to create a standard stream cipher algorithm (Afzal et al., 2006). Stream ciphers

are highly useful in processing real time data, due to the way they operate on individual

pieces of plaintext sequentially, usually at high speed. The study done by Afzal et al.

(2006) was prompted by the need for a new standard of stream cipher, and focused on the

evaluation of the submissions for such a standard by the international research

community. The study looked at the overall design of each of the ciphers. Each main

subset of stream cipher is broken down, evaluated for strengths, weaknesses and practical

applications. For the purposes of evaluation, the proposed ciphers are split into two

categories; those with high-level software implementations and security of at least 128-

bits, and those with low-level hardware implementations and security of 80-bits. The

hardware and software implementations were also designated as either bit-oriented,

operating on a single bit of data at a time, or word oriented, operating on a bit-word.

According to Afzal et al. (2006), there are several main elements commonly used

in stream cipher design. Linear feedback shift registers (LFSR) are common due to their

structure, which allows for low-cost implementation. Because LFSR operate in a linear

fashion, ciphers that use LFSR in their design are required to also include a form of non-

linear function. Non-linear feedback shift registers (NLFSR) do not suffer from the linear

properties of LFSR, but most NLFSR operate in small cycles, and are weakened as a

result. Feedback with carry shift registers (FCSR) are LFSR with one point of difference.

Instead of modulo arithmetic using modulus 2, the addition is performed through carrying

propagation. To ensure non-linearity, functions such as clock-controlled generators can

be implemented in the cipher. If the cipher is irregularly clocked, this can break the linear

properties of the algorithm. Non-linearity can also be introduced using combining or

filtering functions.

 33

 Within the categories set out by Afzal et al. (2006), LFSR was the most commonly

implemented function, however only a few ciphers submitted used a non-linear function

in conjunction with LFSR. The only cipher that implemented a non-linear function was

subsequently discovered to be weak to an algebraic attack. The second most popular

design element found in the 34 submitted ciphers was the non-linear combining or

filtering functions.

 Because Afzal et al. (2006) evaluate the different ciphers based on their design

elements, they are able to compare within categories, as well as apply known techniques

for cryptanalysis on the ciphers within those categories. This gives a framework for the

testing of each cipher, as not all cryptanalytic methods can be applied to all stream

ciphers. The results of this comparative study by Afzal et al. (2006) explored only the

design features of each stream cipher, and gave little practical data in regards to each

cipher’s efficiency, or their individual security. Most of the analysis of the algorithms

was instead based on the theoretical basis of the design elements.

3.1.3 Sharma, Garg and Dwivedi (2014)
Multiple studies have examined the comparative efficiency and performance of

encryption algorithms, without also exploring the security of each algorithm. In the study

by Sharma, Garg, and Dwivedi (2014), the authors propose a new symmetric encryption

method called NPN, or nth prime number. The NPN encryption system is then compared

with the DES algorithm. The comparison in Sharma et al. (2014) is based on the time

taken for encryption and decryption in each algorithm, as well as the overall memory

requirements for each. This provides a clear and concise view of the comparative

efficiency between the proposed algorithm and the benchmark DES algorithm, however

the results of this study are limited by the lack of comparison between the security of the

two competing algorithms.

 The proposed NPN encryption system in Sharma et al. (2014) utilizes

multithreading for efficiency optimization, and is a symmetric cipher. The use of parallel

programming within the implementation is offered as a way to optimize its time

requirements in encryption and decryption. NPN operates on the class of Strings in Java,

and involves finding the nth prime number for each character of the plaintext, and then

adding a particular constant to that recovered prime prior to adding the result to the

ciphertext string.

The choice of DES as the single comparative algorithm is somewhat limiting, as

DES was superseded in 2001 by AES after being proven to be computationally insecure.

 34

As such, DES is no longer considered a benchmark for security and efficiency in

cryptography applications. The comparative results of the study look at a standard DES

algorithm and a multithreaded NPN algorithm, and their relative efficiency in

nanoseconds. For a larger data size of 156 characters, the standard DES algorithm takes

approximately 1.93% (3d.p.) of the time taken by the multithreaded NPN algorithm.

The NPN algorithm also uses only a 32-bit key, which suggests the algorithm would be

computationally insecure.

 Sharma et al. (2014) offer data on the overall efficiency of each algorithm as

relates to encryption and decryption time, but do not give information about the

comparative security of the algorithms. This lack of analysis in regards to security means

the overall analysis is limited in its ability to draw conclusions about the use of each

algorithm. The choice of DES as a benchmark also limits the author’s ability to

demonstrate the security and efficiency of their algorithm as compared with current

technological standards.

3.1.4 Kohafi, Turki and Khalid (2003)
In Kofahi, Turki, and Khalid (2003), the efficiency of the DES, 3DES and Blowfish

algorithms are compared, based on memory requirements and processing time. Similar to

the previous studies discussed, Kofahi et al. (2003) provide a clear comparison of the

efficiency of each algorithm, but the comparative security is not discussed.

 Kofahi et al. (2003) utilize the inbuilt Java Cryptography Architecture (JCA) for

the implementations of their compared algorithms. All three compared algorithms are

symmetric block ciphers, and are designed around Feistel ciphers. Because of the

similarities in design, they are highly comparable. Kofahi et al. (2003) timed each of the

modular operations of key generation, encryption and decryption individually for each of

the three algorithms, without user interaction, so as to give a more complete picture of

the efficiency of each. For all algorithms, the time required for key generation was

approximately equal. Blowfish was demonstrably more efficient in encryption and

decryption than DES and 3DES, taking approximately 13.5 seconds for each operation,

where DES took 25.3 for encryption and 26.5 for decryption, and 3DES took 39.2 for

encryption and 38.5 for decryption.

 The comparison of relative efficiency of the algorithms in Kofahi et al. (2003)

does not look at CPU load, or memory requirements, and also fails to address the relative

security of each algorithm. As such, it is limited in comparative ability to the time

requirements for each stage of the algorithm. However, the testing schema is designed to

 35

compare the three algorithms and gives a thorough overview of the time requirements,

which can be used as a basis for further testing.

3.1.5 Masadeh, Aljawarneh, Turab and Abuerrub (2010)
Masadeh, Aljawarneh, Turab, and Abuerrub (2010) provide a framework for evaluating

proposed algorithms against industry standards. The authors propose a new encryption

method specifically aimed towards the encryption of wireless network traffic, and

compare it in practical implementations against AES, DES, 3DES and Blowfish.

However, this comparison is limited as the proposed method is asymmetric, while all the

comparative algorithms are symmetric.

 The proposed sWiFi system (secure Wireless Fidelity) uses a Feistel structure and

asymmetric encryption. It utilizes Automata Theory, and contains an alphabet, or

codebook, of all words W. The designed implementation operates on ASCII characters,

and has two main functions for key generation S(L) and P(L) which are used to create the

keys for encryption and decryption in the algorithm. The size of the key used in the system

proposed by Masadeh et al. (2010) is not discussed, though the algorithm is disclosed as

operating on 64 bit blocks of data.

The study bases evaluation on the time requirements for each of the algorithms.

All algorithms were evaluated on three operating systems, Windows Vista, Windows XP

and Linux. The algorithms were tested in each environment on three sizes of file: 145MB,

510MB and 900MB. Masadeh et al. (2010) then give the time taken in seconds for

encryption in each algorithm. The proposed sWiFi scheme gives a better time

performance overall than the standard algorithms it is tested against, for each data size.

The time taken for decryption and key generation is not addressed by the study.

The results of the study are based on quantitative empirical data, and all

algorithms are tested on three different computer operating systems and with three

different sample sizes of plaintext for a fuller range of results. The lack of results relating

to relative efficiency in decryption and key generation limits the ability of the authors to

draw conclusions about the performance of the algorithms. Masadeh et al. (2010) are also

hampered by the lack of evaluation of the security of the compared algorithms, as the

proposed sWiFi system does not involve the disclosure of key size or details of its

implementation. Comparison to the efficiency and security of other asymmetric ciphers

would also give a better view of the relative performance of the proposed sWiFi system.

3.1.6 Thakur and Kumar (2011)

 36

Thakur and Kumar (2011) compared the relative performance of AES, DES and

Blowfish, using the execution time over different sizes of data as the measure of

efficiency. AES was evaluated in each of four modes: ECB, CBC, OFB and CFB. The

simulation results gave Blowfish as the most efficient algorithm in respect to

performance.

 Thakur and Kumar (2011) used the Java Cryptography Architecture (JCA) in the

Java Development Kit 1.7 to implement the three algorithms, through use of Java’s

Cipher class. DES was evaluated with a key size of 64 bits, while AES and Blowfish used

a key size of 128 bits. The authors did not evaluate relative security, as “strength against

cryptographic attacks is already known and discussed” (Thakur and Kumar, 2011, p. 10).

Instead, performance was evaluated based on the time required to encrypt and decrypt

plaintext of multiple sizes. The execution time was measured in seconds, and the tested

plaintext sizes were from 3 KB to 203 KB blocks. Each experiment was performed twice,

on a system with an AMD Sempron processor running 2GB of RAM. Thakur and Kumar

(2011) reason that the repetition of the experiment allows them to establish of the validity

of the experimental results.

 Overall, Blowfish gave a better performance in encrypting and decrypting the data

than DES or AES. AES was tested against DES and Blowfish in each available mode:

ECB, CBC, OFB and CFB. This enabled a further comparison of the efficiency of each

mode of AES encryption, with OFB mode resulting in the best performance. However,

AES resulted in the highest processing time of all the algorithms, regardless of the chosen

mode of encryption. The repetition of the tests lent validity, though many more repetitions

would likely provide a more conclusive picture.

3.1.7 Bhat, Ali and Gupta (2015)
Bhat, Ali, and Gupta (2015) studied the performance of the AES and DES encryption

algorithms. This research looked at the memory requirements of each algorithm and time

taken, as benchmarks for efficiency. It also examined the overall avalanche effect of the

algorithms as the benchmark for security. The benefit of looking at the avalanche effect

in an encryption algorithm is the ability to gauge the scheme’s resistance to chosen

plaintext attacks.

AES resulted in almost double the change in bits that was provided by DES in the

ciphertext given a one bit variation in the plaintext. This increase in the avalanche effect

provides a much higher level of security against cryptanalysis. However, the overall

memory requirements for AES proved to be four times that of the DES implementation.

 37

The simulation time of AES was also far higher than that of DES, with AES taking

approximately ten times the simulation time of the DES implementation. As AES

operates using a 128-bit key where DES uses a 64-bit (56-bits for computation) key, this

discrepancy in efficiency is expected. The trade-off required for higher levels of security

is decreased efficiency. Bhat et al. (2015) implemented the experimental design in Matlab

7, on an Intel Pentium machine with 2 GB of RAM.

The authors do not discuss the repetition of the performed tests, or the specific

details of the implementations, which creates difficulties for readers in regards to

reproducing the study or critically analysing the results.

The comparison made by Bhat et al. (2015) of avalanche effect and efficiency

gives a clear view of the some of the trade-offs made in obtaining the higher level of

security in AES. The dramatic increase in the avalanche effect is tempered by the higher

performance costs necessary to achieve the required level of security. The lack of

information regarding the design of the study gives the reader little to no information

about the robustness of the presented results.

3.1.8 Prachi, Dewan and Pratibha (2015)
Prachi, Dewan, and Pratibha (2015) compared the security and efficiency of ECC, RSA,

DES and AES. This comparative analysis was based on theoretical knowledge, as

opposed to practical simulations. Efficiency was measured by the key size of each scheme

and the estimated output size of the data, to evaluate likely memory requirements. The

security analysis was based on the key size of the scheme in relation to the number of

operations required for a successful brute force attack.

The overall consensus of Prachi et al. (2015) was that ECC had a better level of

security and a higher level of efficiency than the other algorithms, based on these

theoretical underpinnings. The comparison of key sizes between RSA and ECC displayed

a higher level of computational security for relative key size in ECC, with a 160-bit ECC

key equivalent in security to a 1024-bit RSA key. ECC is also shown to be theoretically

more efficient than RSA, as a smaller key size results in lower computational overheads.

However, the comparison with DES is limited to the key size of the algorithm, and while

the operation of an AES implementation is explained by Prachi et al. (2015), little

practical or theoretical comparison is made by the authors between AES and ECC. The

results of the analysis gave the security of algorithms as “Good”, “Excellent” or “Not

Good Enough” ratings, but did not give the metrics used to arrive at these conclusions,

which removes the ability to reproduce the study.

 38

3.1.9 Singhal and Raina (2011)
Singhal and Raina (2011) compared the efficiency and performance of AES and RC4.

They used empirical data, and their metrics based the evaluation on time taken for

encryption and decryption, the throughput (processing speed in kB/s), the CPU load for

each process and the overall memory used. The wide span of the metrics gives a thorough

representation of the efficiency of the two algorithms, and the differences in performance

between RC4 as a stream cipher and AES as a block cipher.

Each algorithm was tested with multiple sizes of plaintext data, with file sizes

between 100 KB and 50 MB. AES was also tested in three different operating modes,

ECB, CBC and CFB, to see the effect the mode has on its overall performance. ECB

mode gave the best performance of the AES encryption modes, however it was still

significantly slower than RC4. Encryption time was also tested using multiple different

key sizes of 128, 196 and 256. The time requirements for encryption in RC4 remained

stable despite the change in key size, while the time taken for encryption with AES

increased as the key size increased. One explanation for the increase in time is the increase

in rounds. 192 bit AES involves 12 rounds, compared to 128 bit AES with 10 rounds, and

256 bit AES performs 14 rounds. This translates into many more operations per data block

to encrypt the plaintext, which then accounts for the time difference. Similarly, as the key

size used in AES increases, the throughput of the algorithm decreases. The results for

efficiency in decryption is mirrored by those of encryption.

In testing the memory, Singhal and Raina (2011) found that RC4 required lower

levels of memory to perform encryption on larger files. As the file size increased, AES

required dramatically more memory than the RC4 implementation. The CPU load

requirements for RC4 over the different file sizes were also lower than that of all modes

of AES. Based on these metrics, RC4 takes less time to encrypt and decrypt information

overall than AES, regardless of the mode of use, and the key size of the encryption system

is shown to have less effect on the overall encryption time of RC4 than it does in AES.

Using the standards for evaluation given, the authors are able to provide empirical

evidence for the assertion that the performance of RC4 is more efficient than that of AES.

3.2 RESEARCH DESIGN

This section gives the design of the study, which starts with guidance derived from the

research reviewed in Section 3.1. Section 3.2.1 summarizes the studies discussed in

 39

Section 3.1, as well as the issues and problems faced in these studies. The research

questions are proposed in 3.2.2. The phases of the research and the architecture of the

testing systems are described in 3.2.3. Then in 3.2.4, the design of the proposed graphic

system, referred to as a coordinate matrix encryption scheme, is explained.

3.2.1 Summary of Similar Studies and Review of the Problems and Issues
The standards for security and efficiency proposed in Jeeva et al. (2012) are the most

comprehensive of the examined studies, and as such can be used to design the benchmarks

for the comparison of the graphic based encryption algorithms. The study provides clear

testing criteria, which measure the efficiency and security for each algorithm. However,

more detailed analysis of the security of each algorithm is required, and thus extra testing

criteria from other studies will also be required such as the measuring of the avalanche

effect of each algorithm, proposed in Bhat et al. (2015). The avalanche effect of an

algorithm is an easily implemented and highly effective way of quantifying the security

of a system. It is necessary when designing the study to ensure that all standards for both

efficiency and security are as comprehensive and exhaustive as possible, so that the

resulting data can be compared with confidence that it is representative of the relative

performance of each algorithm.

 Many of the evaluated studies focused in particular on either security or efficiency

in their testing. This bias towards on particular aspect of the algorithms results in an

uneven comparison of the trade-offs required. It is necessary to study how a particular

algorithm has achieved a high level of efficiency, and what trade-offs may have occurred

in security to obtain it, and vice versa. As such, this study will attempt to balance the

testing of each aspect, so that the reader might get a more complete picture of the benefits,

drawbacks and possible applications of each algorithm tested.

 Another point of importance in the comparative analysis of encryption algorithms

is the necessity of comparing algorithms of the same classification. Studies such as

Masadeh et al. (2010) compare a new asymmetric method with standard symmetric

methods, rather than with established asymmetric methods. While some comparison

between types is useful, more relevant data results from the comparison of algorithms of

the same type. As such, this study will use comparable algorithms of both symmetric and

asymmetric type, as well as graphic and classical algorithms and stream and block

ciphers, to give a full range of results by comparing industry standards with the proposed

symmetric graphic-based, word-oriented, stream cipher system.

 One aspect on which multiple studies on the comparison of encryption algorithms

 40

often suffer is the lack of empirical data on which to base assertions. Surveys such as

Kofahi et al. (2003) and Chandra et al. (2014) rely on the theoretical basis of the

algorithms in question, which limits the results of such a comparison. The research in this

study will rely on both theoretical knowledge and actual test results, so as to give a more

thorough and representative analysis. The importance of the theoretical comparative

performance of the algorithms is uncontested, however providing empirical data from

simulations of the algorithms in a study gives a better view of the theoretical results, as

well as providing a stronger basis for any and all conclusions from the data. As such, this

study will look at both the theoretical basis of and real-world implementations of the

comparative algorithms and the results of both, so as to find the algorithm that best

balances security and efficiency.

3.2.2 Research Questions and Hypotheses
From the literature reviewed in Chapter 2, a detailed understanding and evaluation of the

ideas, foundations and benchmarks for cryptographic algorithms has been presented. The

integrity and security of data are the main motivations behind the use of cryptographic

algorithms and the implementation of graphic based systems revolves around their

unusual structures and high levels of security. The ease and efficiency of the deployment

of an encryption algorithm is also an important factor in choosing a cryptographic

algorithm. Using these criteria of security and efficiency, it is possible to evaluate

multiple cryptographic algorithms for their overall usefulness and application to real

world situations. Based on these ideas and research criteria, two main research questions

have been formulated for the study of graphic based encryption algorithms in this thesis.

The first research question can be derived from the evaluation of literature surrounding

ECC, evaluated in 2.5, which suggests the particular structure allows for greater security

and efficiency than the traditional RSA. The improvement in security is shown in Pateriya

& Vasudevan (2011), who found that a 256 bit ECC key is equivalent to a 3072 bit key

in RSA. The second research question comes from the research completed into problems

surrounding the implementation of ECC and VC schemes, evaluated in 2.7.1 and 2.7.2.

VC schemes suffer particularly due to pixel expansion. Blundo et al. (2006) found that in

most VC schemes pixel expansion increased relative to the number of nodes. Liu et al.

(2010) noted that all schemes attempt to minimize this expansion to improve the

efficiency of the implementation. ECC schemes face difficulties in implementation due

to their complexity, and the increased length of the ciphertext (Chandra et al., 2014).

 41

Research Question 1:

What are the security benefits of graphic based systems in comparison to classical
block ciphers?

Research Question 2:

What difficulties are faced in the implementation of graphic based systems?

Sub-questions:

Sub-question 1:

Does the implementation of the proposed method provide better levels of security

than the comparable algorithms?

Sub-question 2:

How is the level of security achieved in the proposed method?

Sub-question 3:

What is the reduction in computational overhead in the proposed scheme from

comparable algorithms?

From these research questions, the studies evaluated in 3.1 and the literature reviewed in

Chapter 2, two specific hypotheses have been developed for further exploration.

Hypothesis 1 is derived from the research conducted into comparing traditional RSA and

the graphic-based ECC. ECC provides a faster execution with lower overheads, as

demonstrated in the study conducted by Prachi et al. (2015), reviewed in subsection 3.1.8.

Hypothesis 2 is derived from the studies of the security of VC methods, and the VC

definition of perfect secrecy, as originally proposed by Naor & Shamir (1995), wherein

an adversary with unlimited computing power is required to guess, for any given pixel,

whether that pixel is black or white.

Hypothesis 1:

Graphic based methods provide a better level of security with lower overheads than
classical encryption techniques.

Hypothesis 2:

The proposed encryption system based around graphic methods is computationally
secure against cryptanalytic and brute force attacks.

 42

3.2.3 Research Phases & Algorithm Implementations
The testing and analysis performed in the study will require multiple phases of

development. Each phase will enable fine-tuning of the algorithms and testing methods,

so as to ensure that all collected results are as accurate as possible. Phase 1 will involve

the development of the implementations for the comparative algorithms. Phase 2 will see

the implementation of the proposed coordinate matrix encryption scheme. Phase 3 will

then consist of the testing of the algorithms, based on the benchmarks described in Section

3.3 for efficiency and security. In Phase 4, further refinements will then be made to the

proposed coordinate encryption scheme, which will be retested as part of Phase 5. The

final Phase 6 will involve the analysis of the data from phase 5 based on the predetermined

benchmarks for efficiency and security.

Figure 3.2: Phases of research

All proposed algorithms will be implemented in Java, and two different versions of the

proposed algorithm will be developed to allow for a more effective comparison. The

testing will occur on the following machine configuration: a laptop with a 3.1 GHz Intel

Core i7 processor, and 16 GB RAM.

The standardized algorithms that have been chosen for the purposes of

comparison are: Elliptic Curve Cryptography (ECC); 2-out-of-2 Visual Cryptography

(VC); the Advanced Encryption Standard (AES); and Rivest Cipher 4 (RC4). ECC is the

most widely developed of graphic encryption methods, and should therefore provide a

target in performance for the security and efficiency of such systems. A 2-out-of-2 VC

scheme operating on binary digits instead of black and white pixels will provide a highly

comparable implementation to the proposed coordinate matrix encryption system. Each

of the generated shares for the VC scheme will consist of a binary string, rather than a

black and white share image. AES is included to allow for the comparison of the

differences in efficiency and security between graphic and classical methods of

encryption. Finally, RC4, while now considered insecure, is still one of the best-

researched stream ciphers, and is not under patent. It is also freely available for

 43

implementation through Java’s cryptographic framework, and as such can be used for

comparison between the proposed system detailed in 3.2.4 and classical stream ciphers.

The implementations of AES, RC4 and ECC will utilize Java’s inbuilt crypto package

and its functions.

3.2.4 Coordinate Matrix Encryption Algorithm Design
The proposed algorithm design for the Coordinate Matrix Encryption (CME) scheme will

be based around a square coordinate matrix and transformations in a finite Galois field

𝐺𝐹(2𝑛). The coordinate matrix design will be based around the concepts used in error-

correcting codes, in which sparse matrices and code words are used to eliminate noise

from the transmissions, and will utilize security principles from VC. A brief overview of

the algorithm is given in this section. Full implementation details can be found in Chapter

4, and source code for the algorithm can be found in Appendix B.

Figure 3.3: A randomly generated key matrix for a 3-bit coordinate matrix scheme.

An n-bit coordinate scheme which uses all 2𝑛 possible n-bit strings will consist of a 2𝑛-

by-2𝑛 encryption matrix, containing 22𝑛 total coordinates. Within the matrix, each

possible n-bit string of binary values will be assigned to multiple random coordinate

locations, as per Equation 3.2.4.i.

Equation 3.2.4.i 𝑀𝑠𝑖𝑧𝑒 = (2𝑛)2

 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑡𝑟𝑖𝑛𝑔 = 𝑀𝑠𝑖𝑧𝑒
2(2𝑛)

The remaining coordinate locations will be assigned as empty, for use in padding the

ciphertext output. The process of generating this key matrix is shown in Figure 3.4. Once

this coordinate matrix has been created it becomes the encryption key for all users,

because the coordinate scheme is symmetric. The total number of possible key matrices

 44

for an n-bit scheme is described in Eq. 3.2.4.ii. Fig 3.3 shows a 3-bit CME key matrix.

Equation 3.2.4.ii 𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ = 2𝑛

 𝑀𝑎𝑡𝑟𝑖𝑐𝑒𝑠 = (𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ + 1)𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ
2

Figure 3.4: Key matrix generation in the Coordinate Matrix Encryption scheme.

As well as the creation of a key matrix, the key matrix is then used to produce a pseudo-

random key string. This key string is the first x coordinate for each of the generated bit

strings. The key string is combined with the plaintext as the first part of the encryption

process to eliminate any statistical properties prior to the main encryption, via an

exclusive-OR operation. The key string is combined with the plaintext again as the last

stage of decryption to recover the original plaintext. Because the key string is produced

from the key matrix, there is no requirement to communicate an extra key, as all parties

with a copy of the key matrix can calculate the key string.

The main encryption process uses a randomized coin toss style procedure, which

is similar to the VC method of choosing whether a given pixel is black or white. This coin

toss decides if the next section of the ciphertext is to be a blank padding section, or if it

is the next section of the plaintext message. If it is a blank padding section, one of the

 45

locations containing an empty entry is picked at random from a blank list, and the binary

or integer coordinates (depending on the implementation) of that location are then input

as the next part of the ciphertext. Else, if the section is a part of the plaintext message,

then a location containing that bit string is randomly chosen from the list of locations for

the string. The location is then translated into the corresponding coordinates and

concatenated to the ciphertext. The scheme involves the addition of exactly the same

number of blank coordinates as enciphered message coordinates. As a result of the

addition of padding characters, the resulting ciphertext is exactly four times the length of

the plaintext, with two coordinates for every message or padding character, and exactly

the same number of padding and message characters. The style of encryption means that

the total length of the outputted ciphertext is fixed at exactly four times the length of the

plaintext, which may prove to result in undesirable overheads for transmission.

The padding of the ciphertext adds noise and confusion to the output, and the

exclusive-OR operation assists in stripping the statistical properties from the plaintext.

The addition of multiple locations for each bit string also further diffuses any statistical

properties that the combined key string and plaintext may have, and protects against

attacks involving known or chosen plaintext. The variable nature of the padding and

different coordinate locations for each string results in multiple different ciphertexts for

each encryption of a single plaintext, and as such help guard against known plaintext

attacks. Because the encryption process operates on individual pieces of the plaintext

sequentially, the proposed CME scheme can be classified as a stream cipher in the byte

implementation, operating byte-by-byte, fulfilling the definition in Martin (2012) of a

stream cipher as a block cipher with a block size of less than 64 bits. The proposed system

could theoretically be implemented with a larger block size, for use as a standard

symmetric block cipher, however the memory requirements to generate a key matrix in a

64-bit scheme would be significant, and are too costly for the purposes of this research.

As such, the proposed CME system will be implemented as a stream cipher, with a block

size of 8-bits for the implementation compared with AES, RC4 and ECC, and a block

size of 4-bits for the implementation compared with VC.

The use of multiple locations for each bit string and the addition of an equal

number of padding coordinates at random locations in the ciphertext should provide

resistance to cryptanalysis, and particularly to known and chosen plaintext attacks, as the

encryption process therefore results in a non-singular mapping. This non-singular

mapping means each plaintext input has many possible ciphertext outputs for any one key

matrix. The multiple locations also result in far more of the overall matrix being taken up

 46

by bit strings than would be the case if each string appeared only once. Again, this helps

prevent cryptanalytic attacks, as it increases the likely occurrence of the same of padding

coordinates appearing more than once, which is helpful in further confusing any analysis

of the resulting data. A sample of a 16-bit plaintext and the corresponding 64-bit

ciphertext resulting from encryption using a 4-bit coordinate matrix scheme is shown in

Figure 3.5.

Figure 3.5: Example plaintext ciphertext pair output from a 4-bit CME scheme.

The decryption process uses the same key matrix as in the encryption process and

looks up each of the coordinates. If a given coordinate is an empty padding variable, it is

discarded. If not, the value of the coordinate is combined with the next character of the

key string using exclusive-OR, and the resulting value is added to the plaintext output. In

this manner, the extra noise generated by the encryption process to ensure security is

efficiently removed during decryption. Because each step of the decryption process

consists only of simple entry check and exclusive-OR operation, the overall efficiency

for decrypting the ciphertext is theoretically higher than that of the encryption process.

The CME algorithm, implements VC methods of security but is classified as a

symmetric encryption algorithm, not a secret sharing scheme. Depending on the bit-size

of the scheme, it can be classed as either a stream or block cipher. This is due to the way

it operates on a set number of bits at each point before moving to the next set, and the

blocks of bits are not linked. The 8-bit byte version is a stream cipher, as it moves along

the plaintext encrypting it one byte at a time. Figure 2.2 (Martin, 2012, p.107) showed

the operation of block versus stream ciphers. In relation to classical encryption methods,

the CME cipher also makes use of some of the ideas of error-correcting codes seen in

subsection 2.2. The influence of error-correcting codes can be seen in the use of binary

codewords of a particular bit size, which are used to encrypt the data. Based on the

divisions established by Afzal et al. (2006), the 8-bit CME scheme is a word-oriented

stream cipher, as it operates byte-by-byte, rather than bit-by-bit.

3.3 DATA REQUIREMENTS

This section outlines the requirements for the analysis and presentation of the raw data

resulting from the research outlined in the previous section. Subsection 3.3.1 summarizes

 47

the type of raw data that will be used for analysis of the results, measuring for efficiency

and security. Subsection 3.3.2 describes the methodology of the analysis, and the

standards each algorithm will be compared on. Subsection 3.3.3 outlines the ways in

which the results of this analysis will be presented, and how the overall comparisons

between the algorithms will be displayed.

3.3.1 Algorithm Testing
Each of the algorithms for comparison will be implemented in Java. The VC and binary

string version of CME will take as input a pseudorandom binary plaintext string, and

return the encrypted binary string before decrypting and returning the corresponding

plaintext. The AES, RC4 and byte-oriented CME schemes will take as input a UTF-8

encoded plaintext string, transform it into the corresponding byte array, and encrypt it.

After the decryption the array will be translated back into its corresponding UTF-8

encoding. Each of the operations within the implementations will be timed, without any

user interaction, to ensure that the times are accurately reflected. The raw data output of

each algorithm will be collected. Each algorithm will undergo multiple tests on different

plaintexts of different lengths. Testing will be repeated over many iterations and the mean

calculated. For the purposes of analysis, transformations on the binary string will be done

in a high-level Java software implementation of the algorithms for VC and CME, and on

byte arrays in a low-level Java software implementation for the ECC, AES, RC4 and

CME comparisons, to ensure the results are an accurate representation of the comparative

results of each of the algorithms.

 The VC and bit-string CME algorithms will be given as input different

pseudorandom binary plaintext strings of data, in size 16, 32, 64, 128, 256 and 512 bits.

This will allow the testing of the implementations over a variety of sizes, to observe how

well the schemes scale up. Testing will be done for efficiency based on time requirements

and memory occupied by the JVM at each stage, while testing for security will be based

on the avalanche effect, the theoretical resistance of the scheme to brute force and chosen

or known plaintext attacks.

 For the testing performed on byte array implementations of AES, RC4 and CME,

the input will be a plaintext string encoded in UTF-8. This will be transformed into its

corresponding byte array, before encryption and decryption are performed. The resulting

array of bytes will then be transformed back into its corresponding UTF-8 encoded

plaintext string. The schemes will be tested on multiple sizes of plaintext data, with

lengths of 304, 928, 3024, 4408 and 8166 bits. These English language plaintext strings

 48

will contain generic frequency information as is typical of the language, and have been

taken from excerpts of Pride and Prejudice (Austen, 2006) and Hamlet (Shakespeare &

Ackroyd, 2006). The use of this particular type of plaintext data will allow for frequency

analysis to be performed on the resulting ciphertexts. A custom-built program will be

implemented to analyse the ciphertext frequencies. Figure 3.6 gives an example output of

the frequency analysis program. The AES, RC4 and byte CME schemes will also be tested

for efficiency using the time and memory requirements at each stage, and for security

using theoretical resistance to brute force attacks, chosen or known plaintext attacks, and

the practical avalanche effect.

Figure 3.6: An example of frequency analysis on a 2-bit coordinate matrix scheme.

As ECC is a scheme used mainly in the implementation of the ECC Diffie-Hellman key

exchange protocol, rather than for the actual encryption of data, the comparisons between

the byte implementation of CME and ECC will occur based on the practical efficiency

and theoretical security of key generation. These comparisons will be based on the results

of timing the operations, the memory required to perform the operations, and the

underlying theoretical basis of the algorithms.

 The memory requirements of each of the algorithms will be based on the in-use

memory in the Java Virutal Environment at the end of each stage of the implementation.

3.3.2 Algorithm Analysis
This section describes the standards used for the analysis of the results from the algorithm

testing phase. The tested algorithms will be evaluated along benchmarks for security and

efficiency. Security will be measured via theoretical analysis of the key space and

resistance to attacks, as well as practical cryptanalysis and examination of factors such as

the avalanche effect. The efficiency of the compared algorithms will be measured through

the time in milliseconds taken for each stage of the process, and the required memory

usage for each of these stages.

To measure the efficiency of the algorithms, the setup of the key, the encryption,

and the decryption of the binary string will all be timed as part of the implementation.

This will enable comparison between each of the implemented methods, as well as the

average time of each algorithm over many tests at each level of encryption. The resulting

 49

times will be compared in milliseconds. The amount of memory required by the Java

Virtual Machine (JVM) runtime environment during the execution of the implementation,

for setting up the scheme, for encrypting the plaintext, and for decrypting the ciphertext

will all be measured to evaluate the hardware and space requirements that are necessary

for each algorithm.

 The security of the algorithms will be evaluated by several factors. Mathematical

evaluation of the key space, the number of operations required to try all possible keys,

frequency analysis of the ciphertext (where applicable), and theoretical weaknesses of

each algorithm to known and chosen plaintext attacks will also be explored. The

avalanche effect of the ciphertext resulting from a change to a single bit or byte of the

plaintext undergoing encryption will also be measured for each algorithm. The program

implemented to measure the overall avalanche effect in the byte implementations of AES

and CME will look at both the number of changes to the overall bytes of the ciphertext –

how many of the same bytes occur in the two different ciphertexts – as well as the changes

in order – how many of the same bytes occur in the same places in the two ciphertexts.

The avalanche effect in the bit string implementations of CME and VC will be measured

by the percentage of positions in which the bits are unchanged. These tests will provide

a view of the overall avalanche effect in each algorithm.

3.3.3 Data Presentation
The data resulting from the testing and analysis phases of the research will be presented

in Chapter 4: Research Findings. The analysis of the efficiency of each algorithm will be

discussed individually, as well as the comparative overall efficiency for each algorithm.

These results will be presented visually as well as textually, collated into tables for more

effective understanding. The analysis of the security of each algorithm will be presented

textually, as will the comparative analysis of the algorithms. The presentation of data on

key space relative to scheme size will also be presented visually in comparative tables, in

which data and results will be grouped first by the particular test, then by the algorithm

used, and finally by the message or data block size that was presented for encryption. The

grouping of data will provide an explanation of results as well as any and all assertions

made based on those results. The results will then be critically examined further and the

implications of the study will be explored in Chapter 5: Research Discussion.

 The source code for each algorithm’s implementation and for the custom-built

testing programs will be provided for review in Appendix B, while the plaintext data used

for testing each implementation will be provided in Appendix C. A selection of raw

 50

testing data and results will be provided in Appendix D. The addition of the testing data

will allow the reader to better understand the overall results, as well as gain further insight

into the way in which the data was collected for the study. The addition of the source

code also provides the opportunity for the reproduction of the study by the reader.

3.4 LIMITATIONS

It is necessary to identify the limitations of the research, so as to correctly define the scope

of the results, and the possible applications of the data presented. These limitations should

also be kept in mind when presenting and analysing the results of the research.

The research plan proposed in Section 3.3 is affected by the design of the

algorithm implementations for each compared scheme. Due to the use of high-level

software implementations for the most effective comparison of VC and string-oriented

CME, the efficiency of the algorithms may be less than it would in an equivalent low-

level software or hardware implementation. This trade-off is necessary to ensure that each

of the algorithms is able to be fairly compared with its counterparts, but it is important to

note nonetheless that this particular implementation will most likely result in slightly

longer processing times for these VC and CME schemes than might occur in real world

applications that implement encryption schemes at a low-level in software or hardware

instead. The results from the VC and string -oriented CME will therefore not be as easily

generalized to those real-world applications as the results from the other algorithms may

be.

The programming for each implemented scheme will also impact on the results.

The implementations of AES and RC4 will utilize the inbuilt functions of the javax.crypto

package, as will the implementation of ECDH. These inbuilt options for encryption

simplify the overall implementation. A version of the CME scheme which operates on

byte arrays will be created for a more balanced comparison with these algorithms. In

comparison to VC, the implementation of the schemes for VC and the high level CME

will use custom built code based around binary strings to function. This may result in the

implementations for ECC, AES, RC4 and the byte-oriented version of CME having an

advantage in terms of efficiency, over those of VC and the high-level string-oriented

CME scheme, and as such the results will not be comparable between these classes.

Another limitation of this study is that one of the chosen comparative algorithms,

ECC, is an asymmetric cryptographic system, while the others are symmetric. The rising

level of research and implementation of ECC as an option for encryption makes it an

 51

important component of any study relating to the exploration of graphic methods in

cryptography, but the results of the study will need to take the difference in structure into

account, and discuss the affect this difference will have on the data. The difference in

structure may impact the overall results for the ECC algorithm. ECC is also used for key

exchange in symmetric encryption systems, through the ECC Diffie-Hellman protocol.

As such, the comparisons between ECC and CME will be based around the efficiency of

performance in the set up process, and the security as it relates to the ease of key

generation, rather than the result of encryption, due to ECC’s use in generating keys for

use in other systems.

It should be noted that the implementation of VC in this study is altered to perform

encryption on binary strings. Typical VC schemes operate on black and white share

images, with each pixel transformed into a subset of black and white subpixels. The

superimposition of these subpixels upon one another then recreates the original pixel. For

the purposes of this research, the pixels are replaced by bits, and each bit is transformed

into a set of bits referred to as a subpixel array during the share creation process. The

secret image and the share images are all therefore replaced by binary strings of bits, and

the share strings can then be combined to recreate the original secret string. The

translation of these VC schemes into binary encryption algorithms is a trivial one, but the

change in domain for the algorithm may possibly affect its results. This alteration should

therefore be kept in mind for the results of the VC algorithm implementation, and in the

following discussion of those results.

In relation to the use of RC4 for comparative purposes, it must be noted that RC4

has been proven insecure, and is no longer recommended for use (Rivest & Schuldt,

2014). However, it is still the best researched and most widely studied stream cipher, and

as it is freely available with no restrictions or patents, it has been chosen as the classical

stream cipher. It is necessary to include a stream cipher comparison in the research, as

CME is classed as a word-oriented, symmetric stream cipher.

Further research opportunities are presented by these limitations, such as a study

of the equivalent hardware implementations of the tested algorithms or of the porting of

the proposed CME system into a low-level hardware implementation for alternative

domains. The limitations also affect the ability to compare results outside the designated

pairs. For example, the results from testing the binary string version of VC will not be

comparable with those of the byte level implementation of AES. The use of a high-level

implementation for the VC algorithm will give results that are unlikely to generalize well

to lower level implementations. These research possibilities and the effect the limitations

 52

had on the raw testing data will be discussed in greater detail in Chapter 6.

3.5 CONCLUSION

In this chapter, the overall design and methodology of the research has been explained,

and the benchmarks for the analysis of each comparative algorithm have been set based

on those set by previous studies in the area of encryption algorithms. The research

questions, hypotheses and motivations have been discussed, and the proposed coordinate

matrix system has been laid out. Limitations of the study design have been discussed, to

ensure the reader is aware of the impact these may have on the resulting data in the

following chapters.

 In the next chapter, the results of the study will be given, and the data reviewed

based on the framework outlined in this chapter. The gathered data will be presented

individually for each algorithm, followed by the comparative results.

 53

Chapter 4
Research Findings

4.0 INTRODUCTION

In Chapter 3, a framework for testing comparable algorithms with regards to efficiency

and security was proposed. This gave standards to evaluate the chosen ECC, VC, AES

and RC4 schemes against, as well as the newly proposed Coordinate Matrix Encryption

scheme.

 In this chapter, the results from the testing framework from Chapter 3 are given,

first individually for each algorithm, and then the overall comparative results. Section 4.1

gives the results for the CME algorithm, followed by the results for AES in section 4.2.

Section 4.3 details the results for ECC, section 4.4 gives the results for VC, followed by

the results for RC4 in section 4.5. Section 4.6 provides the overall comparison between

the different schemes, broken down into efficiency and security components, and finally,

section 4.7 gives the conclusion and a summary of the results.

4.1 COORDINATE MATRIX ENCRYPTION

This section describes the results of testing the Coordinate Matrix Encryption scheme

(CME), proposed in Chapter 3. Section 4.1.1 details the specifics of the implementation

used for the algorithm which operates on binary strings, while 4.1.2 gives the details of

the implementation which is based around byte arrays. Section 4.1.3 describes the results

from the tests derived to evaluate the algorithms’ efficiency. Finally, section 4.1.4 gives

the results for the tests for the algorithms’ security.

4.1.1 Implementation Details for CME on Binary Strings
The implementation for the CME scheme was completed in Java. The scheme utilized 2-

dimensional arrays (referred to hereafter as ‘key matrices’) of a Coordinate Entry class to

achieve the required high-level software implementation. This implementation was

discussed briefly in section 3.2.4, and the specifics of the design are elaborated here.

 The first step of the implementation was the generation of all possible bit strings

 54

for the selected bit length. Once these were enumerated, each string was assigned to an

instance of the Coordinate Entry class. These contained several elements, including a

Boolean isEmpty value, a list of all matrix locations for that string, and the bit string

value.

The key matrix was generated using a pseudo random number generator (PRNG)

to choose multiple different locations for each of the bit strings. The PRNG gave two

pseudo-random numbers, used as x and y coordinates in the matrix, which were then

checked by the algorithm. If the location was empty, the bit string in question was inserted

into that location in the matrix. If not, another location was generated by the PRNG. Once

the matrix had been generated, all blank locations were enumerated in a separate list of

blank entries. The total number of blank entries was assigned to be equal to the number

of all possible bit strings, and then each blank entry was assigned multiple coordinates in

the same method as the bit string entries. Once all blank entries had been assigned the

requisite number of empty coordinates, the key string was calculated. This was a single

binary string containing the first x coordinate for each of the bit strings. Because these

coordinates were randomly generated as part of the key matrix setup, and only the pair of

[x,y] coordinates was required to be unique, the key string gives the equivalent of a PRNG

bit key, of length 2𝑛, where n is the number of all possible bit strings.

The encryption in the CME scheme took the plaintext and converted it into a

binary string if it was not already in binary format. The first operation of the encryption

process was an exclusive-OR, in which the binary encoding of the plaintext was combined

with the binary key string. The key string and plaintext were combined using an

exclusive-OR operation bit by bit, with the key string wrapping around to the start if the

plaintext length exceeds its own. The encryption process moved along the resulting string

in sections of n-bits at a time. A coin toss operation utilizing a PRNG decided if the next

part of the ciphertext was to be an encrypted piece of the message, or a blank padding

coordinate. If the coin toss decided to add a padding character, another PRNG picked a

single blank coordinate pair location from the location list of a randomly chosen blank

entry. If the coin toss chose to encrypt the next bit string of the message, the PRNG chose

a random location from the list of coordinates containing that particular bit string. The

algorithm then added the two randomly chosen [x, y] coordinates in binary representation

to the string of ciphertext. The encryption process continues until all message characters

have been enciphered, and an equal number of padding coordinates have been placed in

the string.

Decryption in the CME scheme is based on entry lookup. For each of the

 55

coordinates in the ciphertext, the algorithm checks the value in the given location in the

key matrix. If the coordinates are empty, that part of the ciphertext is discarded. If the

coordinates contain a bit string value, that value is added to the plaintext. Once all

coordinates have been checked, the recovered string is then combined with the key string

using exclusive-OR. Upon completion of the lookup and application of the key string, the

original plaintext has been recovered. Because the process of decryption is based on look-

up operations, the overall time complexity for decryption in the CME implementation is

theoretically lower than that of encryption.

4.1.2 Implementation Details for CME based on Byte Arrays
The CME scheme described in 4.1.1 allows for the testing of different sizes of bit

schemes, however, as it is a high-level implementation which operates on binary strings,

the overall efficiency of the implementation will automatically be significantly lower than

those inbuilt Java functions for encryption systems such as AES, which perform

operations on arrays of bytes. In order to provide an accurate picture of the comparative

efficiency of the schemes, a version of CME using a fixed 8-bit scheme size was

developed which operates on arrays of bytes, instead of processing binary strings. This

lower level implementation of the CME scheme is therefore able to operate in a fashion

comparable with that of the inbuilt Java functions for encryption using AES and key

generation using ECC.

 The overall CME Byte Array scheme operates in a similar implementation to that

described in 4.1.1. The set of all possible binary strings is stored in a matrix using a

modified version of the Coordinate Entry class, which stores each bit string as its

corresponding byte value. The data to be encrypted does not require padding, as each

UTF-8 character is translated into its corresponding byte value between [-128, 127]. The

ciphertext is then composed of an array of integer values from [0, 255], and every pair of

integer values gives the x and y locations of an entry in the key matrix. Unlike the high-

level implementation, the exclusive-OR operation on the plaintext is done byte-by-byte

while the coordinate encryption process occurs, rather than separately beforehand. The

encryption process moves along the array and either inputs a set of two integer

coordinates for the relevant byte value, or a set of coordinates for a randomly selected

empty padding location. This integer array is then transmitted as the ciphertext.

 The decryption process reverses the encryption by checking the location based on

every two entries in the integer array that composes the ciphertext, with the entries

assigned as x and y respectively. If a byte value exists at the location, it is combined with

 56

the current integer value of the key string, and the result of this exclusive-OR operation

is converted into a byte and added to the byte array which composes the plaintext. Once

all coordinates have been checked, the plaintext byte array is translated back into the

UTF-8 characters encoded by each byte value, and displayed.

 The full source code for both implementations of the CME schemes can be found

in Appendix B.

4.1.3 Efficiency
The efficiency of the CME scheme was measured using several different methods, as per

the research design laid out in Chapter 3. The time for set up and key generation, the time

to encrypt and to decrypt the data, and the overall memory used in the running of the

implementation were measured. Each piece of data was encrypted and decrypted 1000

times in the byte implementation, and 500 times in the bit-string implementation. The

average time and memory for each of these iterations was recorded, and averages for each

data size were then calculated. The testing data used is available in Appendix C. The

UTF-8 encoded plaintext used for testing the byte implementation of CME was taken

from Hamlet (Shakespeare & Ackroyd, 2006) and Pride and Prejudice (Austen, 2006).

Source code for the testing programs is available in Appendix B.

 The time requirements for the byte implementation of CME increased linearly

with the data size, as is to be expected of a stream cipher which operates on a piece of

data byte-by-byte. Table 4.1 gives the mean encryption and decryption times for each of

the tested data sizes.

Data Size Average Encryption (ms) Average Decryption (ms)

304 0.031 0.012

928 0.059 0.023

3024 0.136 0.065

4408 0.173 0.050

8144 0.262 0.093

Table 4.1: Mean encryption/decryption times for byte CME (3d.p.)

The time requirements for the bit-string based implementation were higher, due to the

nature of the operations performed. As the implementation used string variables and

performed various permutation and substitution operations on them, the time taken was

noticeably longer. The mean time requirements as calculated over 500 iterations are

shown in Table 4.2.

 57

Data Size (bits) Average Encryption (ms) Average Decryption (ms)

16 0.020 0.026

32 0.066 0.036

64 0.104 0.060

128 0.214 0.074

256 0.396 0.136

512 1.130 0.328

Table 4.2: Mean encryption/decryption times for 4-bit string CME (3d.p.)

The memory requirements for the byte implementation of CME were tested by

measurement of the total memory occupied within the Java Virtual Machine environment

during each task: set up of the scheme and key matrix; encryption; decryption. The set up

and key generation was tested 100 times, with the memory requirement in megabytes and

the time taken in milliseconds recorded. These mean of these results was then calculated.

Table 4.3 shows the results for the scheme setup.

Memory used (MB): 1.217

Time taken (ms): 80.130

Table 4.3: Mean setup time and memory for byte CME (3d.p.)

The memory requirements for encryption and decryption in the byte version of CME were

measured for each of the data string sizes, over the course of 1000 encryption and

decryption iterations with a single key. Table 4.4 shows the mean results of these tests.

Similarly to the time requirements, the increase is linear with the size of the encrypted

data.

Data Size Average Encryption (MB) Average Decryption (MB)

304 1.244 1.244

928 1.245 1.246

3024 1.251 1.251

4408 1.255 1.255

8144 1.263 1.264

Table 4.4: Mean encryption/decryption memory for byte CME (3d.p.)

The memory requirements for the bit-string version of CME were tested similarly. Setup

 58

time and occupied memory for the JVM were recorded for 100 iterations, and the mean

calculated. Table 4.5 gives these results.

Memory used (MB): 0.448

Time taken (ms): 21.440

Table 4.5: Mean setup time and memory for 4-bit string CME (3d.p.)

As the bit string implementation operated on a four bit scheme size with a 16-by-16 key

matrix, the overall requirements for creating and storing the key were less than that of the

eight bit scheme used in the byte implementation, which utilized a 256-by-256 key

matrix.

 The memory requirements for encryption and decryption in the 4-bit string

implementation were measured over 500 iterations with a single key for each of the

different data sizes of the pseudo-random bit strings. The mean of these results was then

calculated for each data size. Table 4.6 gives these results.

Data Size (bits) Average Encryption (MB) Average Decryption (MB)

16 0.475 0.475

32 0.476 0.478

64 0.476 0.476

128 0.478 0.478

256 0.480 0.480

512 0.484 0.484

Table 4.6: Mean encryption/decryption memory required for 4-bit string CME (3d.p.)

4.1.4 Security
The CME scheme is quantifiably resistant to brute force attacks for implementations

equal to or greater than a given size of bit scheme. This is because of the relative size of

the matrix, and the number of possible values within each location of the matrix. On

average, a brute force attack requires that an adversary attempt ½ of all possible keys.

The number of possible matrix keys for a given bit scheme is shown in Equation 4.1.4.i.

Equation 4.1.4.i 𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ = 2𝑛

 𝑀𝑎𝑡𝑟𝑖𝑐𝑒𝑠 = (𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ + 1)𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ
2

Thus, if an adversary attempted to brute force a 4-bit CME scheme, the number of

matrices that they would be required to try, on average would be:

Equation 4.1.4.ii 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1
2

(17256)

 59

𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈
1
2 (9.883798 × 10314)

 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 4.941899 × 10314

The result of Equation 4.1.4.ii is so large it is impractical to compute with a regular

calculator, as it exceeds the maximum allowable value for an IEEE float. As such, the

variable point integer toolbox in MatLab was necessary to compute the result. For a more

effective implementation, using an 8-bit byte-oriented scheme, the possible matrix keys

are 25765536. The average number of key matrix attempts which a brute force attack

would require to break an 8-bit scheme is given in Equation 4.1.4.iii.

Equation 4.1.4.iii 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1
2

(25765536)

 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1
2

(2.3832557 × 10157937)

 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1.19162785 × 10157937

A side effect of the number of possible matrices is that it is statistically likely that, were

it possible to try all matrix keys for a given scheme, the adversary would likely encounter

more than one key matrix that resulted in an intelligible plaintext. This is further

exacerbated by the exclusive-OR operation which utilizes the first generated x location

for each of the bit-strings/bytes, as an adversary would also be required to try the different

possible key strings for each key matrix. The adversary would then be required to work

out which key was the correct one. The number of possible key strings within each key

matrix for a given bit scheme size is given in Equation 4.1.4.iv.

Equation 4.1.4.iv 𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔𝑠

 𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 = ((22𝑛 2(2𝑛)⁄)2𝑛

For a bit scheme of size 4, the number of key strings an adversary would be required to

try for each attempted key matrix is shown in Equation 4.1.4.v. The adversary would need

to try all key strings for the incorrect key matrices, and approximately half of the key

strings for the correct key matrix. The average number of key string attempts for the

correct key matrix is given for a 4-bit scheme in Equation 4.1.4.vi.

Equation 4.1.4.v 𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 = ((22𝑛 2(2𝑛)⁄)2𝑛

 𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 = ((22(4) 2(24)⁄)24

 𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 = 816

 𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 = 2.814749767 × 1014

 60

Equation 4.1.4.vi 𝐵𝐹𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 ≈ 1
2

(2.814749767 × 1014)

 𝐵𝐹𝑘𝑒𝑦𝑠𝑡𝑟𝑖𝑛𝑔𝑠 ≈ 1.407374884 × 1014

Given the number of possible key strings, the approximate total average number of

operations to attempt to brute force a 4-bit CME scheme is given in Equation 4.1.4.vii.

Equation 4.1.4.viii 𝐵𝐹𝑡𝑜𝑡𝑎𝑙 ≈ (𝑠𝑡𝑟𝑖𝑛𝑔𝑠 ∙ (1
2

∙ (𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠) − 1)) + (1
2

∙ 𝑠𝑡𝑟𝑖𝑛𝑔𝑠)

 𝐵𝐹𝑡𝑜𝑡𝑎𝑙 ≈ (816 ∙ (1
2

∙ (17256) − 1)) + (1
2

∙ (816))

𝐵𝐹𝑡𝑜𝑡𝑎𝑙 ≈ (2.814749767 × 1014) ∙ (4.941899 × 10314 − 1) + (1.407374884

× 1014)

 𝐵𝐹𝑡𝑜𝑡𝑎𝑙 ≈ 1.391020944 × 10329

One of the key features of the algorithm is its diffusion of any statistical properties of the

plaintext, by using multiple locations for each bit string in the matrix and by the exclusive-

OR operation performed prior to the coordinate encryption. The matrix is set up so that

exactly half is blank locations, and the other half is bit strings. During the encryption of

the plaintext, whether the algorithm decides to insert one of the blank locations or one of

the locations for the next bit string to encrypt is decided by a coin toss procedure which

uses a PRNG. Because of this, the likelihood of any particular blank padding location

occurring is approximately equal to the likelihood of any particular bit string location

occurring. The calculation of the number of locations per string is shown in Equation

4.1.1.ix.

Equation 4.1.4.ix 𝑀𝑠𝑖𝑧𝑒 = (2𝑛)2

 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑡𝑟𝑖𝑛𝑔 = 𝑀𝑠𝑖𝑧𝑒
2(2𝑛)

As any given coordinate is equally likely to be an empty padding location as it is a bit

string, even given unlimited computing power, an adversary would be required to guess,

with a ½ chance of guessing correctly for each string, whether a coordinate contained a

part of the message, or was simply padding material. Because of the addition of the

exclusive-OR operation with the key string prior to turning the message into encrypted

coordinates, the frequency information of the original text is not reflected in the result.

The likelihood of correctly guessing for all coordinates of any given string is given in

Equation 4.1.3.x, the binomial probability formula from the Bernoulli Trials.

Equation 4.1.4.x 𝑃(𝑘 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑖𝑛 𝑛 𝑡𝑟𝑖𝑎𝑙𝑠) = (𝑛
𝑘

)𝑝𝑘𝑞𝑛−𝑘

where n is the number of trials, k is the number of successes, (n-k) is the number of

failures, p is the probability of success in one trial, and q = 1-p which is the probability

 61

of failure in one trial. Equation 4.1.4.xi gives the probability of correctly guessing

whether a coordinate is full or blank for all coordinates of a 20 coordinate ciphertext

string in a single attempt.

Equation 4.1.4.xi 𝑃(20) = (20
20

) ∙ (0.5)20 ∙ (0.5)0

 𝑃(20) = 9.536743164 × 10−7

The smallest plaintext string used to test the byte version of CME was 304 bits. This

resulted in a ciphertext of 1216 bits, or 608 coordinates. Equation 4.1.4.xii gives the

probability of successfully guessing for each of the 608 coordinates whether they are

padding or full.

Equation 4.1.4.xii 𝑃(608) = (608
608

) ∙ (0.5)608 ∙ (0.5)0

 𝑃(608) = 9.41374947 × 10−184

The CME scheme avoids frequency analysis through the combination of the exclusive-

OR operation prior to encryption, and the multiple locations assigned to each bit string.

The creation of the list of blank entries, which mirrors exactly that of the list of occupied

coordinates, gives another layer of confusion to the statistics of the resulting data. The

scheme was analysed through a specially developed frequency analysis program, which

took the ciphertext input, as well as the key matrix, and calculated the frequency of

occurrences for each blank and full coordinate. The frequency analysis program then

output the statistics for how many of the singular occurrences were blank coordinates,

how many were full coordinates; how many of the double occurrences were blank or full

coordinates; and so on. The program was run on the CME byte implementation, using the

plaintext strings of differing sizes, and each string was used to generate one thousand

ciphertexts from a single key. The results of the frequency analysis for each of these

ciphertexts were then tabulated, and the averages mapped.

 Of the occurrences, coordinates that occurred once were equally likely to be blank

or full, as were secondary occurrences. Third and fourth occurrences in full versus blank

coordinates were within 10% of one another. Table 4.7 shows the average frequency

information for the largest of the testing data, an English language string of 8816 bits, as

well as the number of times a ciphertext gave that frequency of occurrences within the

thousand tests. The overall frequencies are fairly flat, and as they reflect the statistics of

an already encrypted piece of data, give little to no information on the underlying

plaintext. In addition, the greater the number of times the particular frequency occurred,

the flatter the distribution became. As such, it seems likely that more extensive testing

 62

would result in even flatter distributions.

Frequency Blank Full Times Occurred

1 50.047% 49.953% 1000

2 48.589% 51.411% 1000

3 46.491% 53.508% 308

4 40.000% 60.000% 5

Table 4.7: Frequency analysis of ciphertext from an 8816-bit string. (3d.p.)

The addition of empty padding coordinates helps protect the scheme against known and

chosen plaintext attacks, as knowing what the plaintext message is does not give any

further information about which coordinates in the ciphertext are empty padding, and

which are locations for plaintext strings. The exclusive-OR operation performed on each

bit string or byte assists in stripping statistical properties from the data, and protects the

scheme from frequency analysis. An adversary with unlimited computing power would

still need to venture a guess whether each coordinate was empty or not.

In regards to chosen plaintext attacks, the CME byte scheme gave a similar

distribution when a 4048-bit string of a single repeated character was used. Of the

thousand variable ciphertexts resulting in the encryption process with the same key, only

46 ciphertexts contained coordinates that were repeated more than twice. Table 4.8 shows

the average results for the analysis of the chosen plaintext attack. Because there are so

few repeated coordinates, and blank coordinates also occur in the repetitions, a chosen

plaintext attack would likely give little information about the possible key string or

matrix. Also, any information about the repeated characters within the key string would

not be subject to known frequency information, as the key string is generated randomly.

Frequency Blank Full Times Occurred

1 50.105% 49.895% 1000

2 44.127% 55.873% 1000

3 31.915% 68.085% 46

Table 4.8: Frequency analysis of ciphertext from a 4048-bit chosen plaintext string. (3d.p.)

The results from the encryption of a single string of repeated characters can then be

compared to those results from analysis of ciphertext from a 4408-bit English language

plaintext string, shown in Table 4.9. The overall distributions are similar, and minor

 63

variations may be accounted for by the differing key strings and key matrices.

Frequency Blank Full Times Occurred

1 50.015% 49.985% 1000

2 49.109% 50.891% 1000

3 53.704% 46.296% 54

Table 4.9: Frequency analysis of ciphertext from a 4408-bit string. (3d.p.)

The final measure of security was the avalanche effect of the algorithm. Because the

scheme results in a different ciphertext almost each time the same plaintext is encrypted

by the same key, the CME scheme provides a good avalanche effect, with under 0.5% of

bytes unchanged from the previous ciphertext. The avalanche effect was measured in the

byte implementation by the total percentage of the same bytes occurring, and the

percentage of the same bytes occurring in the same position. For the sake of comparison,

these variables were measured over 1000 iterations of encryption/decryption on data that

varied by a single bit, and over 1000 iterations on the same piece of data. Table 4.10 gives

the results of the changed and unchanged data averaged over these tests.

Data Size Unchanged from Previous 1-bit Altered from Previous

Same Bytes Same Position Same Bytes Same Position

304 44.653% 0.441% 44.839% 0.414%

928 84.064% 0.419% 84.026% 0.388%

3024 99.722% 0.390% 99.713% 0.422%

4408 99.973% 0.400% 99.984% 0.404%

8144 100.000% 0.396% 100.000% 0.395%

Table 4.10: Avalanche effect in byte CME. (3d.p.)

4.2 ADVANCED ENCRYPTION STANDARD

This section discusses the details of the low level software implementation of AES, as

well as the results for efficiency and security based on the testing criteria. Section 4.2.1

gives a detailed discussion of the implementation used. Section 4.2.2 discusses the AES

efficiency, based on the testing data. Finally, section 4.2.3 gives an overview of the AES

security, using the theoretical underpinnings of the algorithm, as well as the practical data

from testing results.

 64

4.2.1 Implementation Details
The implementation for AES encryption utilized the inbuilt standards of the javax.crypto

and java.security packages available as part of the JSE 7. The scheme used the inbuilt

SecureRandom function to generate a random 128-bit key and the Initialisation Vector.

The algorithm took as input a UTF-8 encoded plaintext string, which was then converted

into a byte array and encrypted using Java’s Cipher function, utilizing the parameters for

AES Encryption, CBC mode, and PKCS5 Padding. This function returned a byte array as

the ciphertext. Decryption was then completed using the same parameters with the Cipher

function, and the resulting plaintext byte array was converted back into its UTF-8 encoded

string.

 The mode of encryption was chosen as CBC to provide better security against

methods of statistical analysis, as studies suggest that use of ECB mode can result in

repeated blocks of ciphertext, and it is the least secure mode of operation for AES

implementations (Thakur & Kumar, 2011). CBC mode combines each block of ciphertext

with the next consecutive block of plaintext, and as such prevents the repetition of blocks.

The full source code used for the AES implementation of encryption and decryption

methods can be found in Appendix B.

4.2.2 Efficiency
The efficiency of AES was measured by the time taken to setup the scheme and key,

encrypt the plaintext, and decrypt the ciphertext. The memory occupied in the JVM at

each of these stages was also recorded. The averages were then calculated. This process

was done for each of the different data sizes. The testing data used is available in

Appendix C. The source code for testing programs can be found in Appendix B.

 The time taken for encryption and decryption was measured for each of five data

sizes, with each piece of data encrypted and decrypted 1000 times. The time taken for

each iteration was tabulated. The means are shown in Table 4.11.

Data Size Average Encryption (ms) Average Decryption (ms)

304 0.199 0.170

928 0.142 0.182

3024 0.173 0.179

4408 0.185 0.196

8144 0.148 0.250

Table 4.11: Mean encryption/decryption times for 128-bit AES (3d.p.)

 65

The time taken and memory used for setting up the implementation were also measured.

The scheme setup was completed 100 times, and the results for occupied memory in

megabytes and time taken in milliseconds were recorded. Table 4.12 gives these results.

Memory used (MB): 2.364

Time taken (ms): 409.000

Table 4.12: Mean setup time and memory required for 128-bit AES (3d.p.)

 The memory occupied by the JVM for encryption and decryption were measured over

1000 iterations on each of the different strings of data. Table 4.13 gives the results of

these tests.

Data Size Average Encryption (MB) Average Decryption (MB)

304 1.415 1.393

928 1.416 1.399

3024 1.417 1.414

4408 1.417 1.422

8144 1.419 1.442

Table 4.13: Mean memory required for encryption/decryption in 128-bit AES (3d.p.)

4.2.3 Security
Security in AES was tested using the schema defined in Chapter 3. The operations

required to brute force attack the implementation, vulnerability to known and chosen

plaintext, frequency analysis, and the avalanche effect were examined. This allowed the

analysis of the overall security level of the scheme. The testing data used is available in

Appendix C.

 A brute force attack on AES relies on attempting the different possible keys. 128-

bit AES has a total key space of 2128. A brute force attack in general requires that one

half of all possible keys are attempted. The average number of attempts for a brute force

attack on AES 128 are detailed in Equation 4.2.3.i.

Equation 4.2.3.i 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

2128

 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(3.4028237 × 1038)

 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.7014118 × 1038

The number of operations for 128-bit AES as shown in Equation 4.2.3.i is considered to

 66

be impracticably large for an attacker to attempt given current technological standards.

 AES was designed to be resistant to frequency analysis. The multiple round keys

that are added in each of the 12 rounds of 128-bit AES as well as the substitutions and

permutations are employed to destroy the statistical properties of the plaintext. Frequency

analysis was performed on the ciphertext resulting from the AES encryption scheme on

each of the five plaintext strings. Table 4.14 gives the results of frequency analysis on the

ciphertext of a 8144-bit plaintext string, over the course of 1000 encryptions and

decryptions, each with a different key – as AES results in a singular mapping, the same

ciphertext for the same plaintext encrypted with the same key.

Frequency Average # of Bytes Times Occurred

1 18.626 1000

2 37.606 1000

3 50.462 1000

4 50.010 1000

5 39.938 1000

6 26.581 1000

7 15.194 1000

8 7.554 1000

9 3.403 978

10 1.780 749

11 1.271 388

12 1.068 146

13 1.019 54

14 1 18

15 1 4

16 1 1

Table 4.14: Frequency analysis of ciphertext from a 8144-bit string in 128-bit AES (3d.p.)

The distribution of frequencies occurs over a curve, with higher numbers of bytes at the

3rd and 4th frequencies than at the singular and double frequencies. The lowest

occurrences are at the highest three frequencies.

 AES was designed to be resistant to all forms of chosen and known plaintext

analysis. As a measure of this resistance, frequency analysis was also performed on the

ciphertext resulting from a 4048-bit string consisting of a single repeated character over

1000 iterations of encryption and decryption, each with a different key. The number of

 67

occurrences of each frequency were then measured and averaged. Table 4.15 shows the

averaged results of the chosen plaintext attack analysis.

Frequency Average # of Bytes Times Occurred

1 69.115 1000

2 69.620 1000

3 46.234 1000

4 23.054 1000

5 9.207 1000

6 3.070 963

7 1.491 561

8 1.098 184

9 1.026 38

10 1 13

Table 4.15: Frequency analysis of ciphertext from a 4048-bit single character string in 128-bit

AES (3d.p.)

The results of the frequency analysis on the ciphertext of the chosen plaintext string can

be contrasted with the results of testing on the ciphertext from a 4408-bit string of

plaintext data. Table 4.16 gives the frequency analysis results of testing on the ciphertext

of a 4408-bit string.

Frequency Average # of Bytes Times Occurred

1 62.636 1000

2 69.346 1000

3 49.979 1000

4 27.471 1000

5 11.751 1000

6 4.234 990

7 1.794 757

8 1.170 317

9 1.049 81

10 1 16

11 1 1

Table 4.16: Frequency analysis of ciphertext from a 4408-bit string in 128-bit AES (3d.p.)

The final security measurement was that of the avalanche effect of the algorithm. Each

 68

of the plaintext data sizes was altered by one bit for each encryption/decryption iteration,

and the percentage of the same bytes, as well as the percentage of bytes occurring in the

same position were measured over the course of 500 iterations. The results were then

tabulated and the mean calculated. Table 4.17 gives the results of the avalanche testing.

Data Size 1-bit Altered from Previous

Same Bytes Same Position

304 37.767% 24.779%

928 62.777% 38.905%

3024 87.935% 45.857%

4408 94.276% 48.227%

8144 99.100% 48.593%

Table 4.17: Avalanche effect in 128-bit AES (3d.p.)

4.3 ELLIPTIC CURVE CRYPTOGRAPHY

This section gives the details and basis for the implementation of the ECC scheme.

Section 4.3.1 gives a detailed overview of the way the implementation was created,

followed by a discussion of its efficiency in section 4.3.2, based on the test results from

the research design defined in Chapter 3. Section 4.3.3 then discusses the scheme’s

security, based both on the theoretical analysis of the basis of the algorithm, and the

practical data from testing.

4.3.1 Implementation Details
The implementation used for performing the ECC key generation and ECC Diffie-

Hellman key exchange is based on that given by Martinez and Encinas (2013). The

authors describe the use of the inbuilt functions of JSE 7 which allow for the simple

implementation of ECC protocols over predefined curves. The curve used for the

purposes of this research was the Java curve secp192r1, which is given in the standards

for ANSI X9.62 as X9.62 prime192v1, and the NIST FIPS 186-2 standard as NIST P-

192. This curve is defined over a prime field 𝔽𝑝, and has an equivalent security level of

192 bits. The equation for the finite prime field of this elliptic curve, the field polynomial

is given in Equation 4.3.1.i, as specified in NIST (2000).

Equation 4.3.1.i 𝑝 = 2192 − 264 − 1

Martinez and Encinas (2013) provide examples of source code for implementing these

 69

curves in the java.security package included in JSE 7, and this code was modified for use

in the comparative analysis. The full source code used for the ECC protocols can be found

in Appendix B.

4.3.2 Efficiency
The efficiency of the ECC implementation was tested using the schema laid out in

Chapter 3. Time for the ECDH scheme setup and the memory occupied by the JVM

during setup were measured over multiple iterations of the algorithm. These results were

then tabulated.

 The setup time was measured in milliseconds over 100 iterations, and gave the

average time requirement for the ECDH protocol to complete, with the generation of

individual private-public key pairs, and the calculation of a common key. Concurrently,

the total memory requirement was calculated using the occupied memory in the JVM

during this process. Table 4.18 gives the average results of this testing.

Memory used (MB): 1.192

Time taken (ms): 359.500

Table 4.18: Memory and time requirements for execution of ECDH protocol (3d.p.)

4.3.3 Security
The implemented ECDH scheme results in two separate sets of keys: the original public-

private key pair generated for each user from the curve; and the shared symmetric key

generated using the two public-private key pairs during the Diffie-Hellman key exchange.

The generated symmetric key is 128-bits, which gives the symmetric key the same level

of security against brute force attacks as 128-bit AES, as per the average number of

operations calculated in Equation 4.3.3.i.

Equation 4.3.3.i 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

2128

 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(3.4028237 × 1038)

 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.7014118 × 1038

The public-private key pairs are secured by the difficulty of computing discrete

logarithms on elliptic curves. The curve used in the implementation gives a relative

security level of 192-bits. According to Stallings (2014, p. 296) the fastest current method

for solving the elliptic curve discrete logarithm problem is the Pollard rho method, which

gives 192-bit ECC the equivalent security of 1024-bit RSA, and of an 80-bit symmetric

encryption algorithm. The average number of operations to brute force the 192-bit ECC

is given in Equation 4.3.3.ii, and the number of operations using the Pollard rho method

 70

is given in Equation 4.3.3.iii.

Equation 4.3.3.ii 𝐵𝐹𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(2192)

 𝐵𝐹𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(6.2771017 × 1057)

 𝐵𝐹𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 3.1385509 × 1057

Equation 4.3.3.iii 𝑃𝑅𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 280

 𝑃𝑅𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.2089258 × 1024

4.4 VISUAL CRYPTOGRAPHY

This section discusses the details for the implementation of the binary version of the 2-

out-of-2 VC scheme. Section 4.4.1 details how the implementation was created, and the

equivalence to classical VC schemes. Section 4.4.2 then discusses the efficiency of the

scheme, based on the results gained from testing. Finally, section 4.4.3 gives the analysis

of the scheme’s security, both in theory and based on the results of the testing data.

4.4.1 Implementation Details
The implementation for the VC algorithm was based on the 2-out-of-2 scheme originally

proposed by Naor and Shamir (1995) with the particulars of share generation based on

random grid VC as proposed by Kafri and Keren (1988). The implementation designed

for this research took a binary string of plaintext as its input, and then generated two

shares from the string. In an image-based VC scheme, each single pixel is split into

several subpixels, and each subpixel is either black or white. The contrast constraint is

the feature of these schemes that makes the pixel either black or white once the subpixels

in each share are recombined. For the purposes of this research, the contrast constraint

was set to ½, so that for a given bit to be considered ‘white’, represented by a 0, the

recombined set of subpixels must be ½ white, or ½ 0 bits. The subpixels were assigned

six possible states using 4-bit strings of binary digits as representation of a two-by-two

matrix of visual pixels. These possible states are shown in Fig 4.1. A black subpixel was

represented by a 1 bit, and a white subpixel by a 0 bit. For example, the top leftmost

subpixel state in Fig 4.1 would be represented by “1001”, as the top row has a black then

white subpixel, and the bottom row a white then black subpixel. Strings were organized

left to right by column then top to bottom by row.

 71

Figure 4.1: A visual representation of the six possible subpixel states for the implemented VC

scheme.

The six possible subpixel states were all assigned to two separate string arrays, with the

second array containing the states in a different order: the opposite subpixel state was

assigned to the same location as that of the first array, so that if the subpixel states from

the same location in the first and second arrays were combined, the result would be a fully

black pixel – represented in the code by a full string of 1s, “1111”. The pairs of opposite

subpixel states are shown in Fig 4.4.1.i by column – the top leftmost state is the opposite

of the bottom leftmost state, and so on. When transposed one on top of the other, these

opposite states would result in all subpixels being black.

 The encryption process for generating shares advances along the plaintext one bit

at a time. Share generation in the implementation uses a PRNG to pick a subpixel state

from the first array. This state is added into the string for the first share. Then the current

plaintext bit is checked. If the current bit is a 1, the opposite subpixel state is assigned to

share two. If the current bit is a 0, the same subpixel state is assigned to share two. The

share generation continues in this manner until subpixels have been generated for every

bit of the plaintext.

 The decryption process in the implementation revolves around the recombining

of the shares. The algorithm advances along the shares four bits at a time, and checks if

the current four bits of the shares are equal or opposite. If they are equal, a 0 bit is added

to the decrypted plaintext. If they are opposite, a 1 bit is added. Once all subpixel states

have been checked, the decrypted plaintext is returned.

 The complete source code for the VC algorithm implementation of binary

encryption and decryption is available in Appendix B.

 72

4.4.2 Efficiency
The efficiency of the VC implementation was measured using the standards set out in

Chapter 3. The time taken in milliseconds to encrypt and decrypt the data, the time taken

to setup the implementation, the memory occupied by the JVM in setup, encryption and

decryption were all measured and recorded.

 The time taken for encryption and decryption in the VC implementation was

measured for multiple data sizes of pseudo-random bit strings, and each was encrypted

and decrypted over 500 iterations. The mean was then calculated. Table 4.19 gives the

results of this testing.

Data Size (bits) Average Encryption (ms) Average Decryption (ms)

16 0.056 0.010

32 0.080 0.014

64 0.196 0.052

128 0.368 0.088

256 0.868 0.214

512 2.822 0.492

Table 4.19: Mean encryption/decryption times in bit-string VC. (3d.p.)

The memory requirements for encryption and decryption were also measured over 500

iterations of the algorithm. Table 4.20 shows the mean occupied memory in megabytes

in the JVM at the end of each task.

Data Size (bits) Average Encryption (MB) Average Decryption (MB)

16 0.451 1.729

32 0.452 1.729

64 0.450 1.730

128 0.452 1.732

256 0.455 1.735

512 0.461 1.741

Table 4.20: Mean encryption/decryption memory requirements in bit-string VC. (3d.p.)

The time taken and memory required for the setup of the VC scheme was measured over

100 iterations of the algorithm. Because the setup of the scheme required only the

assignment of two string arrays of predefined values, the mean setup time was zero

milliseconds for all trials. Table 4.21 gives the results of the testing.

 73

Memory used (MB): 0.456

Time taken (ms): 0.000

Table 4.21: Mean setup time and memory requirements in bit-string VC. (3d.p.)

4.4.3 Security
The theoretical security of VC schemes rests on the methods by which shares are

generated. Because the first share is assigned random subpixel states, and the second

share’s subpixel states are assigned based on those of the first share, the states used in the

shares do not reflect the encrypted secret image unless recombined. VC schemes operate

on a specific definition of security – that even an adversary with unlimited computing

power, given a single share of the image, would be reduced to guessing for any given

subpixel state: whether the secret image pixel was black or white. This brute force

approach of guessing at possible pixel states may be feasible in small shares, where a

computer can run through all possible alternatives, but quickly becomes too

computationally expensive as the length of shares increases. Because the scheme rests on

the shares for security, longer shares give a stronger encryption strength. The likelihood

of guessing the correct state for all pixels of the secret image is the equivalent of a

binomial probability, as per the Bernoulli trials, the equation for which was given in

Equation 4.4.3.i. Given a secret ‘image’ of length 608-bits, the probability of correctly

guessing for all pixels whether they are black or white is given by Equation 4.4.3.ii.

Equation 4.4.3.i 𝑃(𝑘 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑖𝑛 𝑛 𝑡𝑟𝑖𝑎𝑙𝑠) = (𝑛
𝑘

)𝑝𝑘𝑞𝑛−𝑘

Equation 4.4.3.ii 𝑃(608) = (608
608

) ∙ (0.5)608 ∙ (0.5)0

 𝑃(608) = 9.41374947 × 10−184

A brute force attack on a VC implementation requires prior knowledge of the setup. The

attacker must know the pixel expansion of the scheme, in order to identify the subpixel

arrays, so that the overall size or length of the secret image or plaintext may be

determined. A brute force attack on the scheme would then involve trying all possible

plaintexts or images of that length/size. The number of operations required for this task

is as follows in Equation 4.4.3.iii.

Equation 4.4.3.iii 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 2𝑙 𝑠⁄

In Equation 4.4.3.i, l is the length of the share, and s is the pixel expansion of the scheme.

The number of operations required for a brute force attack is, on average, those required

to try half of all possibilities. The average number of operations for the attacker to recover

plaintext from the VC scheme is described in Equation 4.4.3.iv.

 74

Equation 4.4.3.iv 1
2

(2𝑙 𝑠⁄)

For a share length of 4096 bits, or a secret ‘image’ string of 1024 bits, the average number

of attempts to successfully brute force attack the scheme is given in Equation 4.4.3.v.

Equation 4.4.3.v 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1
2

(24096
4⁄)

 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1
2

(21024)

 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1
2

(1.79769313 × 10308)

 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 8.98846567 × 10307

VC schemes offer non-singular mapping of plaintext to ciphertext, because the first share

is assigned random subpixel states, and the second share is assigned based on the first

share. Each time the same piece of plaintext is encrypted, it is likely to result in two new

shares. This increases its security against outside attacks. However, as the scheme does

not have separate ciphertexts and keys, and the shares are both key and ciphertext, a

chosen plaintext attack would allow for the unknown share to be generated by an attacker,

based on the share that was communicated. This issue is known as cheating, and involves

an adversary who is an authorized participant in the scheme. In this manner, the

implemented VC scheme has a theoretical weakness to known and chosen plaintext

attacks.

 The practical security of the VC scheme was measured by the avalanche effect of

the algorithm. The percentage of individual bits that were altered based on the alteration

of a single bit of the pseudo-random plaintext bit string were measured over all the data

sizes, during the course of 500 iterations. Table 4.22 gives the results of this testing.

Data Size % of Bits Changed

16 49.275

32 50.169

64 50.005

128 49.934

256 49.981

512 50.072

Table 4.22: Avalanche effect in bit-string VC. (3d.p.)

 75

4.5 RC4

This section discusses the results of the tests conducted on the RC4 algorithm. Section

4.5.1 gives an in-depth review of the implementation used in the research. Section 4.5.2

then explores the results of the testing for efficiency, and finally, section 4.5.3 details the

security results.

4.5.1 Implementation Details
The implementation used in the research conducted into RC4 was based around Java’s

in-built cryptographic functions. The JSE 7 Crypto and security libraries were utilized,

along with the Cipher function. The program used the SecureRandom function to generate

an initialization vector, which was then implemented with the KeyGenerator to produce

a 128-bit key. The Cipher object was set to RC4 mode, and encryption and decryption

occurred on arrays of bytes. The encryption function took a single plaintext string as

input, and then returned the encrypted byte array as the ciphertext output. The decryption

function took the ciphertext byte array and returned the decrypted byte array, which was

then converted back into the original plaintext string using UTF-8 encoding.

 The testing programs for frequency analysis and avalanche effect were the same

as those used in the evaluation of the AES algorithm, as both schemes produce ciphertext

byte arrays. The source code for the RC4 implementations can be found in Appendix B.

4.5.2 Efficiency
The efficiency of the RC4 implementation was measured by the time taken to encrypt and

decrypt the data, the average memory required at each stage, and the memory and time

taken during the algorithm set up. The time taken was measured in milliseconds using the

inbuilt CurrentTimeMillis function, which gives the current system time, while the

memory was measured using the current memory occupied by the JVM at each stage

during runtime.

 The result of the testing for the time taken to encrypt and decrypt the different

data sizes is shown in Table 4.23. The times were measured over 1000 iterations on each

data size. The encryption and decryption times do not appear to scale linearly with the

size of the data.

 76

Data Size Average Encryption (ms) Average Decryption (ms)

304 0.014 0.022

928 0.027 0.025

3024 0.023 0.016

4408 0.020 0.045

8144 0.024 0.032

Table 4.23: Encryption and decryption times in RC4 (3d.p.)

The amount of memory and the time taken to set up the implementation were also

measured over the course of 100 iterations. The results are shown in Table 4.24. The time

taken was measured in milliseconds, while the memory requirement was evaluated in

megabytes.

Memory used (MB): 2.340

Time taken (ms): 258.500

Table 4.24: Set up requirements for RC4 (3d.p.)

The memory requirements for encrypting and decrypting the different data sizes were

measured over the course of 500 iterations on each data size. The results of this testing

are shown in Table 4.25.

Data Size Average Encryption (MB) Average Decryption (MB)

304 1.362 1.361

928 1.363 1.362

3024 1.364 1.366

4408 1.364 1.364

8144 1.366 1.369

Table 4.25: Memory requirements for RC4 (3d.p.)

4.5.3 Security
The security of the RC4 algorithm was measured through theoretical and practical

analysis. The avalanche effect, frequency analysis of the output, vulnerablility to known

and chosen plaintext, and the size of the key space were examined to provide an

evaluation of the scheme’s comparative security.

 The number of operations required on average to brute force attack the key space

of 128-bit RC4 is equivalent to that of 128-bit AES, given in Equation 4.5.3.i. On average,

half of all possible 128-bit keys must be attempted before the system is compromised.

 77

Equation 4.5.3.i 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

2128

 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(3.4028237 × 1038)

 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.7014118 × 1038

The result of Equation 4.5.3.i is considered to be impracticably large, and as such RC4 is

considered secure against brute force attacks in this manner.

 RC4 was also tested for vulnerability to frequency analysis, and gave similar

distributions to that of 128-bit AES. Table 4.26 shows the frequency distribution of the

ciphertext outputs of a single 8144-bit plaintext string. Each encryption and decryption

of the string used a different, randomly generated key, as RC4 provides a singular

mapping – the same plaintext input with the same key will always provide the same

ciphertext output. The tests were conducted over 1000 iterations, and then the mean

calculated.

Frequency Average # of Bytes Times Occurred

1 18.875 1000

2 37.987 1000

3 50.649 1000

4 50.299 1000

5 38.588 1000

6 26.575 1000

7 14.693 1000

8 7.395 1000

9 3.207 995

10 1.501 872

11 0.889 488

12 0.792 212

13 0.736 72

14 0.682 22

15 0.429 7

16 1 4

Table 4.26: Frequency analysis of an RC4 encrypted 8144-bit string (3d.p.)

The vulnerability of RC4 to chosen plaintext attacks was examined using a single 4048-

bit chosen plaintext string consisting of a single repeated character. Table 4.27 shows the

output of frequency analysis on the resulting ciphertext.

 78

Frequency Average # of Bytes Times Occurred

1 70.164 1000

2 69.383 1000

3 45.674 1000

4 22.212 1000

5 8.968 1000

6 2.939 989

7 1.242 683

8 0.889 216

9 0.917 48

10 1 5

Table 4.27: Frequency analysis of ciphertext from a 4048-bit chosen plaintext string (3d.p.)

The results in Table 4.27 can then be contrasted with the frequency analysis of ciphertext

from a 4408-bit plaintext string containing typical English language frequency

information. The frequency analysis of the ciphertext output from this 4408-bit string is

given in Table 4.28.

Frequency Average # of Bytes Times Occurred

1 64.449 1000

2 68.749 1000

3 49.360 1000

4 26.736 1000

5 11.407 1000

6 4.002 997

7 1.436 848

8 0.948 362

9 0.855 83

10 0.714 14

11 0.750 4

12 1 1

Table 4.28: Frequency analysis of a 4408-bit string encrypted with RC4. (3d.p.)

The avalanche effect of the algorithm was measured by changing a single bit of the

plaintext data and comparing the change in outputted ciphertext in both the total number

of bytes altered and the number of positions altered. This was repeated over 500

 79

iterations for each data size and the means calculated. Table 4.29 gives the results of this

testing.

Data Size 1-bit Altered from Previous

Same Bytes Same Position

304 97.668% 97.368%

928 99.472% 99.145%

3024 99.940% 99.735%

4408 99.979% 99.819%

8144 99.997% 99.902%

Table 4.29: Avalanche effect in RC4 (3d.p.)

4.6 COMPARATIVE RESULTS

This section gives the comparative results of the different implementations of the tested

schemes. Section 4.6.1 compares the relative efficiency and security of the high-level

software implementations for the 2-out-of-2 VC scheme and the 4-bit CME scheme. This

is followed in section 4.6.2 by the comparison of efficiency and security in the low level

software implementations of AES and 8-bit byte-oriented CME. Finally, 4.6.3 discusses

the comparative results from the byte-oriented CME and the low-level ECC

implementation.

4.6.1 2-out-of-2 VC versus 4-bit CME
The comparison of the 2-out-of-2 VC scheme and the high level software CME 4-bit

scheme was based on the encryption of binary strings. Each scheme was tested on the

same pseudo random bit strings of lengths 16, 32, 64, 128, 256 and 512. Each string was

encrypted and decrypted 500 times, and the average encryption and decryption times, as

well as the resulting ciphertext length were averaged for each bit length.

 The measurements for efficiency, using encryption time, decryption time and

overall time for set up, were gauged in milliseconds. For encryption and decryption time,

the CME scheme out-performed that of the 2-out-of-2 VC scheme, as shown in Table

4.30. As the VC scheme did not require the generation of keys, and the only setup

operation it utilized was to assign the string arrays of possible subpixel values, its overall

time for setup was significantly better than that of the CME scheme, with the VC

implementation taking 0ms where CME took 21.44ms on average. The details of the setup

 80

tests are given in Table 4.31. This difference in setup time was expected, as the CME 4-

bit scheme setup involves the generation of a random 16 by 16 key matrix, as well as the

generation of all possible bit strings of length 4. The difference in encryption and

decryption time was unexpected, as the VC scheme involved fewer operations overall,

and used only one pseudorandom generator. However, the CME scheme appeared to give

a better performance in encrypting and decrypting data over all strings, and this difference

became more pronounced when testing longer bit strings.

Bit String
Length

Encryption (ms) Decryption (ms)

VC 4-bit CME VC 4-bit CME

16 0.056 0.020 0.010 0.020

32 0.080 0.066 0.014 0.036

64 0.196 0.104 0.052 0.060

128 0.368 0.214 0.088 0.074

256 0.868 0.369 0.214 0.136

512 2.822 1.130 0.492 0.328

Table 4.30: Mean encryption and decryption times for differing bit string lengths in the VC and

CME schemes. (3d.p.)

 4-bit CME VC

Memory used (MB): 0.448 0.456

Time taken (ms): 21.440 0.000

Table 4.31: Mean setup for the VC and CME schemes. (3d.p.)

The practical security of both algorithms was tested by the overall avalanche effect of

each when a single bit of the pseudo-random plaintext data was flipped. Both schemes

hover at the 50% mark for the total amount of bits that are unaltered from the previous

ciphertext. Table 4.32 gives the results for the two schemes side by side for each of the

six tested plaintext sizes.

Data Size % of Bits Unchanged

VC CME 4-bit

16 49.275 50.319

32 50.169 50.619

64 50.005 50.499

128 49.934 50.286

256 49.981 50.337

 81

Table 4.32: Avalanche effect for differing bit string lengths in the VC and CME schemes. (3d.p.)

The requirements for brute force attacks on each algorithm were also calculated. The

number of average operations required to brute force a VC scheme is given in Equation

4.6.1.i, where l is the share length and s is the pixel expansion of the scheme.

Equation 4.6.1.i 1
2

(2𝑙 𝑠⁄)

In the utilized implementation, the pixel expansion is equal to four, so s can be replaced

by 4 in Equation 4.6.1.i. The overall length of the shares then determines the level of

security, as the shares within the VC scheme are both ciphertext and key at once. So a

brute force attack on the implementation attempts all possible plaintexts. In contrast, the

operations required for the brute force of a 4-bit CME scheme are shown in Equation

4.6.1.ii.

Equation 4.6.1.ii 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 1
2

(17256)

The results of Equation 4.5.1.ii are too large to practicably compute for most calculators.

To give a result, the MatLab variable point integer toolbox was utilized. The obtained

results are shown in Equation 4.6.1.iii.

Equation 4.6.1.iii 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 1
2

(9.883798 × 10314)

 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 4.941899 × 10314

Comparatively, even a VC scheme that consisted of shares of 4096-bits generated from a

1024-bit secret ‘image’ plaintext would not match this level, as based on Equation 4.6.1.i

the operations required for a brute force attack on a 4096-bit are shown in Equation

4.6.1.iv.

Equation 4.6.1.iv 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 1
2

(24096
4⁄)

 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 1
2

(21024)

 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 1
2

(1.79769313 × 10308)

 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 8.98846567 × 10307

As the result of Equation 4.6.1.iv is seven orders of magnitude smaller than that of

Equation 4.6.1.iii, it can be determined that the 4-bit CME scheme is quantifiably more

resistant to brute force attack than the VC scheme for shares of up to 4096 bits.

 The likelihood of an adversary successfully guessing the secret ‘image’ of the VC

scheme for a 608-bit secret image is approximately equal to probability of an adversary

successfully guessing for 608-bit coordinate ciphertext whether each coordinate is empty

512 50.072 50.120

 82

or full. This probability is given in Equation 4.6.1.v, as per the Bernoulli trials formula.

Equation 4.6.1.v 𝑃(608) = (608
608

) ∙ (0.5)608 ∙ (0.5)0

 𝑃(608) = 9.41374947 × 10−184

4.6.2 AES versus 8-bit CME Byte Scheme
The implementations of the byte-level CME scheme and Java’s inbuilt AES were

compared as per the schema outlined in Chapter 3. The implementation efficiency was

measured by the time taken in milliseconds at each stage, and the total memory required

to complete each stage in megabytes. The security was then measured based on theoretical

resistance to brute force attacks, chosen plaintext attacks, the results of practical

frequency analysis, and the overall avalanche effect of the scheme. Each category was

tested on each of the five different plaintext data strings over many iterations of the

algorithm. The UTF-8 encoded plaintext for testing was taken from Hamlet (Shakespeare

& Ackroyd, 2006) and Pride and Prejudice (Austen, 2006).

 The time and memory requirements for the setup of the scheme were measured

over the course of 100 iterations of the algorithm. The memory in megabytes occupied

by the JVM at the end of the setup stage and the total time taken to complete the setup in

milliseconds were recorded over the tests. Table 4.33 gives the results of the setup

efficiency testing.

 AES CME

Time taken (ms): 409.000 80.130

Memory used (MB): 2.364 1.217

Table 4.33: Mean setup requirements for the AES and byte-level CME schemes. (3d.p.)

The encryption and decryption time for each of the implementations were measured over

the course of 1000 iterations of the algorithm on each of the five strings. Table 4.34 gives

the results of mean encryption and decryption time over the testing for each different

tested plaintext. The time requirements for the byte-level CME increase linearly with the

size of the plaintext.

 83

Data Size

Encryption (ms) Decryption (ms)

AES Byte CME AES Byte CME

304 0.199 0.031 0.170 0.012

928 0.142 0.059 0.182 0.023

3024 0.173 0.136 0.179 0.065

4408 0.185 0.173 0.196 0.050

8144 0.148 0.262 0.250 0.093

Table 4.34: Mean encryption/decryption time for the AES and byte-level CME schemes. (3d.p.)

The memory requirements at each stage for encryption and decryption were measured by

the amount of memory in use by the JVM at the end of the stage. These values were

recorded over 500 iterations of the algorithm for each of the plaintext strings. Table 4.35

gives the results of this testing.

Data Size

Encryption (MB) Decryption (MB)

AES Byte CME AES Byte CME

304 1.393 1.244 1.395 1.244

928 1.397 1.245 1.400 1.246

3024 1.396 1.251 1.416 1.251

4408 1.399 1.255 1.424 1.255

8144 1.395 1.263 1.444 1.264

Table 4.35: Mean encryption/decryption memory for the AES and byte-level CME schemes.

(3d.p.)

The security for the two implementations was measured first by theoretical resistance to

brute force attacks. 128-bit AES relies on the strength of its key to prevent brute force

attacks. Equation 4.6.2.i gives the mean number of attempts an adversary would be

required to make on average to correctly identify the key.

Equation 4.6.2.i 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

2128

 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(3.4028237 × 1038)

 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.7014118 × 1038

This result can be compared with that given in Equation 4.6.2.ii, the average number of

attempted key matrices required to brute force the 8-bit byte-level implementation of

CME.

Equation 4.6.2.ii 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1
2

(25765536)

 84

 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1
2

(2.3832557 × 10157937)

 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1.19162785 × 10157937

The result of Equation 4.6.2.ii is 157,899 orders of magnitude larger than that of Equation

4.6.2.i, suggesting that the CME implementation gives a higher level of resistance against

brute force attacks.

 The vulnerability of each algorithm to methods of frequency analysis and chosen

plaintext was explored through a custom-built program that analysed the frequency of the

ciphertext bytes over many iterations of the algorithms. Over the course of 1000

iterations, an 8814-bit string of plaintext data was encrypted into 1000 ciphertexts, and

the frequency with which each byte occurred was measured. For the CME

implementation, the bytes were measured in their coordinate tuples, and the percentage

of those coordinates which were full or empty was calculated. Table 4.36 gives the results

from the analysis of 128-bit AES, while Table 4.37 gives the results from the byte-level

CME.

Frequency Average # of Bytes Times Occurred

1 18.626 1000

2 37.606 1000

3 50.462 1000

4 50.010 1000

5 39.938 1000

6 26.581 1000

7 15.194 1000

8 7.554 1000

9 3.403 978

10 1.780 749

11 1.271 388

12 1.068 146

13 1.019 54

14 1 18

15 1 4

16 1 1

Table 4.36: Frequency analysis for 128-bit AES on ciphertext from an 8814-bit string. (3d.p.)

 85

Frequency Blank Full Times Occurred

1 50.047% 49.953% 1000

2 48.589% 51.411% 1000

3 46.491% 53.509% 308

4 40.000% 60.000% 5

Table 4.37: Frequency analysis for byte-level CME on ciphertext from an 8814-bit string.

(3d.p.)

The security of both schemes was further evaluated by the analysis of the frequencies of

ciphertext resulting from the encryption of a string consisting of a single repeated

character. Table 4.38 gives the results for 128-bit AES, while Table 4.39 gives the results

for the byte-level CME.

Frequency Average # of Bytes Times Occurred

1 69.115 1000

2 69.620 1000

3 46.234 1000

4 23.054 1000

5 9.207 1000

6 3.070 963

7 1.491 561

8 1.098 184

9 1.026 38

10 1 13

Table 4.38: Frequency analysis for 128-bit AES on ciphertext from a 4048-bit chosen plaintext

string. (3d.p.)

Frequency Blank Full Times Occurred

1 50.105% 49.895% 1000

2 44.127% 55.873% 1000

3 31.915% 68.085% 46

Table 4.39: Frequency analysis for byte-level CME on ciphertext from a 4048-bit chosen

plaintext string. (3d.p.)

The final security measure was the overall avalanche effect of the algorithm. This was

tested on the total percentage of bytes that occurred in the previous and current

ciphertexts, changed and unchanged, as well as the total percentage of unchanged bytes

 86

occurring in the same position. Each tested plaintext differed from the previous plaintext

by exactly one bit, and the algorithms were tested over 500 iterations of encryption and

decryption. Table 4.40 gives the comparative results for each of the different data strings.

Data Size Same Bytes (%) Same Position (%)

AES CME AES CME

304 37.767 44.839 24.779 0.414

928 62.777 84.026 38.905 0.388

3024 87.935 99.713 45.857 0.422

4408 94.276 99.984 48.227 0.404

8144 99.100 100 48.593 0.395

Table 4.40: Avalanche effect in 128-bit AES and byte-level CME schemes. (3d.p.)

4.6.3 ECC versus 8-bit CME Byte Scheme
The comparison of ECC and the byte-level CME scheme was performed according to the

schema laid out in Chapter 3. The efficiency of the algorithms was calculated based on

average setup time and the memory required by the JVM to execute the setup. The

evaluation of security in each algorithm was based on the theoretical resistance of the

schemes to brute force attacks.

 The efficiency in setup of ECDH and byte-level CME was measured over 100

iterations of the algorithm, based on the occupied memory in megabytes and the time

taken in milliseconds. Table 4.41 gives the comparative results, which have been

averaged over all trials.

 ECC CME

Time taken (ms): 359.500 80.130

Memory used (MB): 1.192 1.217

Table 4.41: Setup requirements for byte-level CME and ECDH protocols. (3d.p.)

The security of CME and ECDH can be compared based on the resistance to brute force

attacks. Equation 4.6.3.i gives the average number of key attempts required for a brute

force attack on byte-level CME, while Equation 4.6.3.ii gives the average number of

operations key attempts required for the symmetric key resulting from the ECDH

protocol. Equation 4.6.3.iii gives the average number of operations to brute force attack

the 192-bit ECC generated private key.

 87

Equation 4.6.3.i 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1
2

(25765536)

 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1
2

(2.3832557 × 10157937)

 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1.19162785 × 10157937

Equation 4.6.3.ii 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

2128

 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(3.4028237 × 1038)

 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.7014118 × 1038

Equation 4.6.3.iii 𝐵𝐹𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(2192)

 𝐵𝐹𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(6.2771017 × 1057)

 𝐵𝐹𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 3.1385509 × 1057

Based on the results in Equations 4.6.3.1.i through iii, the byte-level CME scheme may

be suggested to be quantifiably more resistant to brute force attacks than the 192-bit

ECDH scheme.

4.6.4 RC4 versus 8-bit CME
The comparison between RC4 and 8-bit CME was completed using the Java

implementations described in sections 4.5.1 and 4.1.2 respectively. The comparison was

completed using the time and memory requirements for encryption, decryption and setup;

the avalanche effect of the algorithm; frequency analysis of the output; resistance to

chosen and known plaintext; and the number of operations required on average to

complete a brute force attack on the key space. Complete source code for both algorithms

can be found in Appendix B. The testing data used for the study was taken from Pride &

Prejudice (Austen, 2006) and Hamlet (Ackroyd & Shakespeare, 2006). The testing data

is available in Appendix C.

 The set up requirements of the algorithms were tested over the course of 100

iterations, using both the time elapsed and the memory occupied by the JVM. These

results were then tabulated and the means calculated. Table 4.42 gives the results.

 RC4 CME

Time taken (ms): 258.500 80.130

Memory used (MB): 2.340 1.217

Table 4.42: Comparative set up requirements for RC4 and 8-bit CME (3d.p.)

The time taken to encrypt and decrypt the different data sizes for each algorithm was

 88

recorded over the course of 1000 iterations. The mean encryption and decryption time in

milliseconds was then calculated in milliseconds for each data size and each algorithm.

The RC4 implementation was significantly faster than the CME scheme in encryption

over all data sizes, and in decryption over all data of 3024-bits and above. Table 4.43

gives the results of the time requirement evaluations.

Data Size

Encryption (ms) Decryption (ms)

RC4 Byte CME RC4 Byte CME

304 0.014 0.031 0.022 0.012

928 0.027 0.059 0.025 0.023

3024 0.023 0.136 0.016 0.065

4408 0.020 0.173 0.045 0.050

8144 0.024 0.262 0.032 0.093

Table 4.43: RC4 versus 8-bit CME encryption and decryption time requirements (3d.p.)

The final efficiency test for the two algorithms was the comparison of memory

requirements during encryption and decryption. Each data size was encrypted and

decrypted over 500 iterations, and the mean for each data size was calculated for each

algorithm. Table 4.44 gives the results of this testing. Over all data sizes, the memory

required for execution of the CME algorithm was lower than that of RC4.

Data Size Encryption (MB) Decryption (MB)

RC4 Byte CME RC4 Byte CME

304 1.362 1.244 1.361 1.244

928 1.363 1.245 1.362 1.246

3024 1.364 1.251 1.366 1.251

4408 1.364 1.255 1.364 1.255

8144 1.366 1.263 1.369 1.264

Table 4.44: RC4 versus CME memory requirements (3d.p.)

The theoretical security of the two algorithms against brute force attack was measured by

the number of operations that would be required on average to successfully recover the

key. The mean number of operations to recover the 128-bit RC4 key is given in Equation

4.6.4.i. The mean number of operations required to recover the key matrix from the 8-bit

CME scheme is given in Equation 4.6.4.ii.

Equation 4.6.4.i 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

2128

 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1
2

(3.4028237 × 1038)

 89

 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≈ 1.7014118 × 1038

Equation 4.6.4.ii 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1
2

(25765536)

 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1
2

(2.3832557 × 10157937)

 𝑀𝑎𝑡𝑟𝑖𝑥 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≈ 1.19162785 × 10157937

The result of Equation 4.6.4.ii is 157,899 orders of magnitude greater than that of

Equation 4.6.4.i. As such, it can be posited that the 8-bit CME scheme offers greater

resistance to brute force attacks than the 128-bit RC4.

The security of the two algorithms was measured using frequency analysis the

ciphertext of strings of plaintext that reflected English language frequencies and a

plaintext string of a single repeated character. The frequency analysis of the English

language plaintext strings gave an indication of what, if any, frequency data from the

original plaintext might be revealed by analysis of the ciphertext. Over 1000 iterations, a

8814-bit string of English language plaintext was encrypted into 1000 different

ciphertexts – using a different randomly generated key for each iteration in the RC4

algorithm – and the frequency distribution of the bytes in each ciphertext was calculated.

The mean distribution was then tabulated. Table 4.45 gives the results of the frequency

analysis on RC4, while Table 4.46 gives the results of the analysis on 8-bit CME. The

distribution of frequencies in the 8-bit CME scheme is significantly flatter than those of

the RC4 algorithm.

Frequency Average # of Bytes Times Occurred

1 18.875 1000

2 37.987 1000

3 50.649 1000

4 50.299 1000

5 38.588 1000

6 26.575 1000

7 14.693 1000

8 7.395 1000

9 3.207 995

10 1.501 872

11 0.889 488

 90

12 0.792 212

13 0.736 72

14 0.682 22

15 0.429 7

16 1 4

Table 4.45: Frequency analysis of ciphertext from an 8814-bit string in RC4 (3d.p.)

Frequency Blank Full Times Occurred

1 50.047% 49.953% 1000

2 48.589% 51.411% 1000

3 46.491% 53.509% 308

4 40% 60% 5

Table 4.46: Frequency analysis of ciphertext from an 8814-bit string in 8-bit CME. (3d.p.)

The resistance of the algorithms to chosen plaintext attacks was tested using a 4048-bit

plaintext string consisting of a single repeated ‘a’ character. Frequency analysis was

performed on the resulting ciphertext of this string over the course of 1000 iterations –

using a different key for each iteration of the RC4 algorithm – and the resulting mean

distribution was calculated. Table 4.47 shows the frequency analysis of RC4, while Table

4.48 shows the frequency analysis of 8-bit CME.

Frequency Average # of Bytes Times Occurred

1 70.164 1000

2 69.383 1000

3 45.674 1000

4 22.212 1000

5 8.968 1000

6 2.939 989

7 1.242 683

8 0.889 216

9 0.917 48

10 1 5

Table 4.47: Frequency analysis of ciphertext from a 4048-bit chosen plaintext in RC4 (3d.p.)

Frequency Blank Full Times Occurred

1 50.105% 49.895% 1000

2 44.127% 55.873% 1000

 91

3 31.915% 68.085% 46

Table 4.48: Frequency analysis of ciphertext from a 4048-bit chosen plaintext in 8-bit CME

(3d.p.)

The final measure of security in the algorithms was the avalanche effect they produced.

Each plaintext was changed by exactly 1 bit for each new iteration, and the avalanche

effect was measured over the course of 500 iterations by the total percentage of bytes that

had remained unchanged from the previous plaintext, and the total number of bytes that

remained in the same position in both ciphertexts. Table 4.49 gives the results of this

avalanche testing. The avalanche effect of the CME algorithm was drastically higher than

that of the RC4 algorithm.

Data Size Same Bytes (%) Same Position (%)

RC4 CME RC4 CME

304 97.668 44.839 97.368 0.414

928 99.472 84.026 99.145 0.388

3024 99.940 99.713 99.735 0.422

4408 99.979 99.984 99.819 0.404

8144 99.997 100 99.902 0.395

Table 4.49: Comparative avalanche effect in RC4 and 8-bit CME (3d.p.)

4.7 CONCLUSION

In this chapter, the test results of the study specified in Chapter 3 were enumerated for

each individual algorithm, and the comparative results for each of the tested schemes

were detailed. The data collected over many iterations of each of the schemes was

averaged and the mean results of the testing were presented. Measures of efficiency and

security were given across each of the algorithms, and used to compare the performance

of each.

 In Chapter 5, the results will be discussed and evaluated, and conclusions about

the original hypotheses and research questions will be drawn.

 92

Chapter 5
Discussion and Analysis of Findings

5.0 INTRODUCTION

In Chapter 4, the results of the study were enumerated and explained, and the four

algorithms evaluated based on their results in each of the testing criteria. The data was

presented, and the sets of algorithms were analysed in pairs for a fairer comparison. The

results provided a clearly detailed, achievable level of security in the graphic-based CME

system.

 In this chapter, the results are explored in depth. Section 1 uses the results of the

study to answer the research questions posed in Chapter 3, and to revisit the hypotheses

with the information gained from testing. Section 2 then discusses the implications of the

results, and their application to real-world problems. Finally, section 3 gives the

conclusions, which suggest that there are real world applications and security benefits to

graphic-based ciphers.

5.1 RESEARCH QUESTIONS AND HYPOTHESES

In this section, the research questions and hypotheses posed in Chapter 3 are answered

with the data from the tests. Section 5.1.1 reiterates the research questions and discusses

the answers gained from the study. Section 5.1.2 then explores the hypotheses using the

new data available from the testing.

5.1.1 Research Question 1: What are the security benefits of graphic based systems
in comparison to classical block ciphers?

The alternative key structures in graphic based systems can provide a comparatively

higher level of security in similarly sized implementations. The proposed Coordinate

Matrix Encryption (CME) scheme offered a high level of security over all tests. In

comparison with the 128-bit AES implementation, the resistance of the CME scheme to

brute force was 157,899 orders of magnitude higher in the number of key attempts

required on average as shown in Equations 4.6.2.i & ii, giving it a far higher theoretical

resistance to brute force attacks. The avalanche effect of the CME scheme also outpaced

 93

that of the implemented AES, with the CME scheme resulting in less than 1% of the bytes

in the ciphertext remaining in the same position after a 1-bit variation in the plaintext

(Table 4.40). In comparison, AES resulted in approximately 25-49% of the ciphertext

bytes remaining in the same position after a single bit change in the plaintext. Frequency

distributions over the ciphertext for both algorithms resulted in little to no information

about the plaintext being communicated (Tables 4.36 to 4.39). The statistical properties

of the plaintext in both algorithms are diffused by the addition of a pseudo-random key,

assisting in creating confusion in the ciphertext. The highest frequency occurrence of the

same byte in the ciphertext resulting from the encryption of a 8814-bit plaintext string in

AES 128 was 16 – a single byte occurring in the ciphertext 16 times (Table 4.36). In

comparison, the same string encrypted with the 8-bit CME scheme resulted in a highest

frequency occurrence of three (Table 4.37).

In comparison to the stream cipher RC4, CME gave again a quantifiably higher

level of security, with a brute force attack on the 8-bit CME being 157,899 orders of

magnitude more expensive than on the 128-bit RC4 as shown in Equations 4.6.4.i & ii.

The avalanche effect of the CME cipher was also drastically higher than that of RC4,

which produced very little variation from one ciphertext to the next (Table 4.49). As the

frequency distribution of RC4 was closely aligned with that of AES, the distribution of

the 8-bit CME was flatter than RC4, with much lower occurrences of high frequencies.

The highest frequency occurring in the ciphertext of an 8814-bit string in CME was three,

while RC4 had a top frequency of 16 (Table 4.45).

These results suggest a higher level of security is given by the graphic-based

alternate cipher, than the Feistel-based AES or the traditional stream cipher RC4. The

alternative structure of the key, and the use of bit string codewords as an alphabet provides

for a much higher number of possible keys than are achievable by a simple binary key

string, which has only two possible options for any one bit of the key.

5.1.2 Research Question 2: What difficulties are faced in the implementation of
graphic based systems?

The implementation of alternative graphic-based systems requires computational

overheads in the creation of the key structure, because these systems rely on complex key

structures for security. The creation and storage of such key structures results in a

computational overhead not necessarily incurred by classical key structures such as bit

keys. The CME method proposed utilizes a large 2-dimensional key matrix, and the

 94

majority of computational overhead in the algorithm lies in this key structure. Because

the security of the algorithm rests particularly on the design of the key, the computational

complexity of the key is relatively high. The 4-bit scheme produces a 16 by 16 key matrix,

roughly equivalent to a 256-bit pseudorandom binary key, however each individual full

coordinate in the matrix contains a 4 bit codeword. As a result, the key matrix requires a

certain amount of memory to be occupied to store it. This result is in keeping with those

ciphers based on special graphs of large girth, such as the Cayley graphs utilized by

Ustimenko (2007), which can encounter large computational overheads due to the graph

size. The unusual key structure of the CME design is not quantified in the manner of

binary keys, where a key size can be simply determined, as in AES, and the particulars

of the structure require that the algorithm find alternative means to store it.

5.1.3 Sub-Questions
Sub-question 1: Does the implementation of the proposed method provide better levels

of security than the comparable algorithms?

Answer: The implemented CME schemes gave a higher level of resistance to brute force

attacks than all tested comparable algorithms. The particular structure of the key matrix

resulted in many orders of magnitude more operations required to brute force the CME

schemes than required for the AES, RC4, VC and ECC schemes. The frequency analysis

resulted in a even distribution of full and empty coordinates across the frequencies (Table

4.37), and the binomial probability of an adversary being successfully able to guess for

any given ciphertext whether each coordinate was full or empty was low enough for the

likelihood to be exceedingly improbable (Equation 4.6.1.v). The avalanche effect of the

algorithm was on par with that of the VC scheme, with an approximate 50% change in

the ciphertext given a 1-bit change in the plaintext (Table 4.32). When compared with the

AES and RC4 schemes, the CME algorithm resulted in fewer than 1% of bytes in the

ciphertext remaining in the same position given a 1-bit change in the plaintext. AES

resulted in approximately 25-49% of bytes remaining in the same position (Table 4.40),

while the RC4 algorithm resulted in approximately 97-99.9% of bytes remaining in the

same position after altering a single bit of the plaintext (Table 4.49).

These results suggest the implemented CME scheme could provide higher levels

of security than given by the other algorithms. This result is in keeping with the basing

of its security on VC models, as well as in keeping with the high levels of security

proposed by studies such as Priyadarsini and Ayyagari (2013), who posited a security

 95

level of 𝑛! could be achieved using Hadamard matrices of size n by n to create Shrikhande

graphs for encoding images. In the method proposed by Priyadarsini and Ayyagari (2013)

the adjacency matrix for the Shrikhande graph operates as the private key. The level of

security achieved by the scheme shows the usefulness of matrices as encryption keys,

though the proposed CME scheme differs from that proposed by Priyadarsini and

Ayyagari (2013) as it does not generate a graph for encryption, and the CME key matrix

utilizes codewords and blank padding spaces.

Sub-question 2: How is the level of security achieved in the proposed method?

Answer: The strength of the CME scheme relies heavily on its particular underlying key

structure. The use of a partially-occupied matrix with a codeword alphabet of bit strings

allows for a higher level of computational complexity. The random nature of the padding

coordinates, and the use of multiple locations for each codeword create a non-singular

mapping, so that each plaintext has many possible ciphertexts. This non-singular mapping

gives a high-level of security against known and chosen plaintext attacks, as well as

frequency analysis. The key matrix is protected from brute force attacks by both its size

and the use of a codeword alphabet. Each entry in the matrix has multiple possible entries,

rather than being either a 1 or 0. This drastically increases the number of possible key

matrices, and therefore the number of operations an adversary would be required to

compute in order to break the scheme successfully, as shown in Equations 4.1.4.i through

4.1.4.iii.

Sub-question 3: What is the reduction in computational overhead in the proposed

scheme from comparable algorithms?

Answer: The comparison of efficiency in the different schemes resulted in CME offering

a faster setup time than AES, RC4 and ECC, though the 2 out of 2 VC scheme gave the

fastest setup time (Table 4.3.1). The CME scheme offered reduced memory requirements

in setup compared to that of the 128-bit AES and RC4 implementations (Tables 4.33,

4.42), though the ECC scheme had lower memory requirements still (Table 4.41). In the

comparison of the 8-bit CME scheme and the 128-bit AES implementation, the

encryption and decryption time increased linearly in CME, where the encryption time for

AES was constant (Table 4.34). Similarly, the RC4 algorithm was significantly faster

than the CME scheme in encryption on all data sizes, and in decryption of the larger data

 96

sizes, both of which remained constant in RC4 (Table 4.43). However, while the CME

scheme required greater time for encryption for the longer plaintext sizes than AES,

decryption in CME was consistently faster than its AES counterpart on all testing data

(Table 4.34). The CME scheme also offered a lower memory requirement in encryption

and decryption than the AES and RC4 implementations (Tables 4.35, 4.44). In

comparison to the VC scheme, the 4-bit CME algorithm offered faster encryption on all

plaintext strings, and faster decryption on the longer plaintext (Table 4.30). The memory

requirements for setup in VC and CME were similar (Table 4.31). These results present

CME as a scheme that is of comparable efficiency in many areas to the tested algorithms,

though further optimisations would be necessary to ensure it is truly competitive.

5.1.4 Hypothesis 1: Graphic-based methods provide a better level of security with
lower overheads than classical encryption techniques

Result: Indeterminate

Explanation: While the overall results for security show that the 8-bit CME scheme gives

a higher level of security than the 128-bit AES and RC4 implementations, the efficiency

in regards to encryption time increased linearly in the CME scheme (Table 4.1). As the

byte implementation of CME could be considered a stream cipher that operated on data

byte by byte, the time complexity of the algorithm is linear, and grows with the size of

the plaintext. The 128-bit AES system operates on set block sizes of data greater than that

of the CME scheme, and as such the AES scheme offers a slower rate of growth in time

complexity than that of the CME scheme (Table 4.34). The RC4 algorithm also gave

better performance with regards to time in the encryption of data than CME, though

required higher levels of memory (Tables 4.43, 4.44). This suggests that the overall

efficiency in encryption of data, and therefore the overheads incurred by encryption may

be higher in the CME scheme than in the AES and RC4 implementations. The results for

the efficiency of AES are supported by the prior studies, such as Jeeva et al. (2012), whose

test results gave AES a high overall efficiency rating. Similarly, the results of testing

RC4, which produced a faster encryption and decryption time on all data than AES are

supported by prior studies such as Singhal and Raina (2011), who tested the comparative

efficiency of RC4 and AES, and found that AES was slower and required more memory

over all the tests. That the higher level of theoretical security provided by CME resulted

in lower efficiency is in keeping with the results of Bhat et al. (2015), who found that

 97

AES was significantly less efficient than DES, as a result of the increased key size and

security requirements. The results of the study in the comparison of the efficiency of ECC

and AES are also in keeping with prior studies, as Prachi et al. (2015) found that ECC

was more efficient than AES, which is reflected in the efficiency results of the

implemented ECDH scheme, which was faster in setup than the implemented AES

algorithm. The comparison between ECC, AES and RC4 do suggest that the efficiency

of the alternative graphic based methods provides for a high level of efficiency that is

comparable with that of more traditional encryption methods. Further experimentation is

required to fully explore and test the hypothesis, and other traditional ciphers such as

Blowfish could be implemented to compare with graphic methods.

5.1.5 Hypothesis 2: The proposed encryption system based around graphic methods
is computationally secure against attacks

Result: Accepted

Explanation: The results of the testing and analysis show that the CME scheme is

computationally secure against brute force attacks. The number of possible key matrices

in schemes of 4-bits or more are many orders of magnitude higher than the number of

possible keys in current systems such as AES and RC4, shown in Equations 4.1.4.ii,

4.6.2.i, and 4.6.4.i. As 128-bit AES and RC4 schemes are considered to be

computationally secure against brute force attacks, and the 4-bit CME scheme is 276

orders of magnitude greater, then the 4-bit CME scheme, and any CME scheme greater

than 4-bits, must also be computationally resistant to brute force attacks. In regards to

chosen plaintext and known plaintext attacks, the diffusion of statistical properties of the

plaintext through the use of a key string, multiple coordinate locations for each codeword,

and the addition of blank padding coordinates result in the CME scheme being

theoretically secure against known and chosen plaintext attacks. The scheme has also

been shown secure against frequency analysis, based on test data gathered in relation to

the occurrences of full and blank coordinates within the ciphertext (Tables 4.7 to 4.9).

The avalanche effect of the scheme also assists in security against chosen plaintext attacks

(Table 4.10). Finally, the non-singular mapping resulting from the design of the algorithm

ensures a high level of security against both known and chosen plaintext attacks, as the

plaintext input of the algorithm gives many different ciphertext outputs for a single key

matrix. As a result, the knowledge of any or all of the plaintext would provide little to no

 98

information about the particular coordinates within the ciphertext, as the adversary would

still need to guess for each coordinate whether it was empty or full.

5.2 DISCUSSION

This section discusses the implications of the results. Section 5.2.1 details the specific

programs created for testing and how their particular functions were determined. Section

5.2.2 looks at how the study has given information about the security benefits, efficiency

trade-offs, and applications of alternative graphic based ciphers. Section 5.2.2 then

explores the refinements and alterations that were made to the proposed system during

the process of testing and optimizing the scheme.

5.2.1 Testing Algorithms
The programs created for the testing of each of the comparable algorithms were designed

to be as thorough as possible. The avalanche effect program utilized in the study was

designed in two sections. The first section was used to test the resulting ciphertext from

the bit-string CME and 2 out of 2 VC schemes. It took two binary ciphertext strings as

input, where the original plaintext used to generate them differed by exactly one bit, and

calculated the percentage of bits that occurred in the same position in both ciphertexts.

This gave a good overview of the avalanche effect in each of these binary algorithms.

The second section of the avalanche analysis program was designed to test the byte

version CME and the 128-bit RC4 and AES. As all three algorithms gave arrays of either

bytes or integers as the ciphertext output, the program looked at both the total percentage

of bytes that occurred in both ciphertexts, and the total percentage of bytes that occurred

in the same position in both ciphertexts. The first test, the percentage of bytes occurring

in both ciphertexts, grows as the length of the ciphertext grows, as there are only 256

bytes total. As the length of the plaintext increases, all algorithms trended towards 100%

for this value, with CME reaching this value more rapidly, as the ciphertext output for the

CME scheme is always four times the length of the plaintext, while AES and RC4 only

give an increase in length from ciphertext to plaintext if padding is required. The second

test, the total percentage of bytes that occur in the same position, gave a better view of

the effect a single bit change in plaintext had on the ciphertext. The results from the CME

algorithm hovered consistently at less than 1% of the total bytes occurring in the same

position, while AES gave a result of 25-49% of bytes occurring in the same position. RC4

resulted in 97-99.9% of bytes occurring in the same position.

 99

 The frequency analysis program developed to examine the occurrences of

particular bytes within the ciphertext output of the schemes was also developed in two

modules. The first module was utilized in the testing of 128-bit AES and RC4, and

checked only the number of occurrences for each individual byte. The results were then

given as the number of bytes that occurred with a given frequency. The second module

was developed specifically to test the byte version of the CME scheme. This module

checked the number of occurrences of each set of coordinates, and then also checked –

based on the provided key matrix – whether the given coordinates were blank padding,

or contained a message character. The results were then given as the number of empty

and full characters which occurred with a given frequency. This enabled the examination

of trends within the algorithm, and gave practical results for the theoretical analysis of

the probabilities with which blank or full coordinate pairs occur.

5.2.2 Benefits and Applications of Graphic Based Ciphers
The use of alternative graphic methods to build ciphers for encryption offers a high level

of security against attacks, both brute force and cryptanalysis. While the particular

structure of the keys can incur higher computational overheads than traditional methods,

the use of these alternative structures for secure communication requires further study.

Use of systems like CME could offer higher levels of security in situations in which a

slight decrease in efficiency was an acceptable trade-off for increased security. With the

advent of quantum computers, and the constant increase in available computational

processing power, traditional ciphers require higher and higher levels of security, which

in most cases is resolved by a longer key length.

 Quantum computing has been posited as a danger to current encryption

technologies. According to the algorithm introduced by Grover (1996), the computational

complexity of a system of 𝑂(𝑁) in classical computing can be translated into one of

𝑂(𝑁1/2) in a quantum computer. This gives 128-bit AES a security level of 264,

equivalent to the now-defunct DES. The 8-bit CME scheme, which offers 25765536

different key matrices, would therefore be reduced to the equivalent security level of

25732768. This would still theoretically offer a sufficient level of security. The currently

recommended AES 256-bit would be reduced to a security level of 2128, and would as

such be many orders of magnitude less that the security of the 8-bit CME scheme. The

alternative structure of the key for the CME scheme therefore offers a high level of

resistance to brute force attacks, even given the advent of quantum computers.

 The use of CME or other alternative graphic based systems as a stream cipher

 100

could offer a theoretical alternative to the now-defunct RC4, which has been proven

vulnerable to several specific cryptanalytic attacks. While other stream ciphers, such as

Spritz (Rivest & Schuldt, 2014), have been proposed to modify RC4 to prevent these

attacks, as yet very little literature is available to provide support for their security.

Because there is currently little standardisation in stream ciphers to replace RC4, the

opportunity exists for an optimized version of CME to assist in this particular space in

applications such as TLS that utilize stream ciphers for encryption on a day-to-day basis.

 The structure of the CME scheme key matrix also allows for expansion into higher

levels of security. The tested algorithm used a single key string of the first x coordinate

for each codeword. As each codeword has (22𝑛

2(2𝑛)) locations, each consisting of an x,y

coordinate pair, the scheme allows for the addition of multiple extra key strings, up to a

final total of 2(22𝑛

2(2𝑛)), to be used in the encryption of the data. The addition of these extra

key strings in stronger schemes can be done without increasing the size of the key matrix,

as the key matrix already contains these generated key strings, and their inclusion would

require only one extra exclusive-OR operation per key string into the encryption and

decryption loops. As such, the number of key strings can be increased without requiring

an increase in the number of communicated keys.

 The security of the proposed CME scheme rests in part on the addition of blank

padding characters. Because each ciphertext contains an equal number of blank and full

coodinates, and both occur even at the highest frequencies within the ciphertext, an

adversary would be required to guess, for each coordinate within the ciphertext, whether

it contained an encrypted message codeword, or was blank padding. Because of the

addition of blank padding characters, the plaintext character locations do not necessarily

match their location in the ciphertext. As such, even were an adversary to successfully

guess a particular coordinate was full, he would only be able to guess at where in the

plaintext that particular coordinate fell.

 The use of alternative or unusual key structures enables graphic-based ciphers to

use simplified algorithms, as the security rests on the structure, rather than the number of

rounds of substitution or permutation. This simplicity of design could be of note in

schemes that utilize stream ciphers for operation, as the CME scheme can operate byte

by byte, and decryption is, as shown in the results, fast and efficient when compared with

industry standards. This high-efficiency in decryption also suggests the proposed system

could be utilized in high-security situations where fast access to encrypted data is of

greater concern than the speed for the encryption and storage of the data.

 101

5.2.3 Difficulties and Optimizations in Implementation
The proposed graphic CME scheme required several iterations of refining to reach an

acceptable result. The testing of the algorithm in regards to frequency analysis, the

binomial probability of successfully locating the full coordinates in a given ciphertext,

and the speed of the algorithm all provided important data for the refining of the scheme.

The original algorithm had failed to account for the overall trends in frequency

within a non-random plaintext string. The addition of the key string to counter this

frequency information was therefore a highly important improvement, as early versions

without the key string proved vulnerable to frequency analysis given large blocks of

ciphertext, where blank coordinates did not occur at higher frequencies. The altering of

the structure for the blank coordinates then further mitigated this effect. The total number

of blank coordinate entries was calculated to equal the total number of codewords. Each

blank coordinate entry was then assigned a list of the same length as each codeword’s

coordinate list, and these blank entry lists were then populated with randomly chosen

empty locations. The algorithm then went through the same process to choose a particular

blank coordinate that was required to choose a given codeword location. A blank entry

was picked at random, and then a location within that blank entry’s list was also picked

at random. This resulted, in conjunction with the addition of the key string, in a flatter

frequency distribution, and both blank and full coordinates occurring at each frequency,

in equal distributions.

The original version of the algorithm also failed to produce a fixed-length

ciphertext output. The number of added padding coordinates was determined randomly,

and as such, the length of the ciphertext was variable. While this assisted in confusing the

plaintext, the possibility existed, however small, that the algorithm would fail to add any

padding coordinates, and the ciphertext would consist only of message coordinates. This

possibility was dealt with by fixing the length of the ciphertext, and ensuring that equal

numbers of padding and codeword coordinates were included in all ciphertext outputs.

This also gave a fixed binomial probability for any ciphertext, that for any one coordinate

the probability of being either blank or full was 1:1.

Early versions of the CME algorithm also suffered in efficiency due to their

programming. Part of the process for refining the algorithm was the editing of the code

to make it more efficient. Several extra loops and operations were discovered within the

code that could be removed without affecting the algorithm, and replaced with simpler

and lower cost operations. This optimization process allowed for the creation of an

 102

algorithm that operated with linear time complexity Ο(𝑛).

5.3 CONCLUSION

This chapter has discussed the results and implications of the study reported in Chapter

4. The research questions and hypotheses were answered and explained, and the findings

explored in depth in relation to the previous studies and literature examined in Chapters

2 and 3.

 The next and final chapter will draw conclusions from the research. It will discuss

the limitations of the study in design and execution, and give recommendations for future

research based on the results.

 103

Chapter 6
Conclusion

6.0 INTRODUCTION

The previous chapter discussed the results of the study, and the implications of these

findings. It explained the difficulties encountered in the development of the

implementations for each of the algorithms, and looked at the benefits and drawbacks of

utilizing graphic-based methods for encryption. The previous chapter also examined the

potential uses of alternative key structures like those proposed in the CME scheme.

 This chapter enumerates the conclusions of the research. Section one discusses in

depth the limitations of the study. Section two then offers recommendations for future

research based on the study conducted in this thesis. Then section three gives the final

summary and conclusions of the research.

6.1 LIMITATIONS OF RESEARCH

During the course of the study, all efforts were made to ensure the results were as even

and unbiased as possible. However, several factors must be taken into consideration when

examining the results. The programming of the different algorithms implementations is

discussed in section 6.1.1, while the comparability of ECC with AES, RC4 and CME is

discussed in 6.1.2. The impact of altering the VC scheme to operate on binary characters

is then discussed in 6.1.3.

6.1.1 Programming Limitations
The nature of the conducted study required that the system have custom implementations

for the different algorithms. It was necessary to insert code to time the functions, and to

measure the currently occupied memory. It was also necessary to insert calls to custom

programs for measuring the ciphertext frequencies and the overall avalanche effect. These

custom implementations may therefore have impacted upon the results of the study.

While every effort was made to ensure the implementations were efficient and accurate,

it is possible that another programmer writing their own implementations would achieve

different results.

 The implementations created for the purpose of the research were also affected by

 104

the algorithms they were being compared with. The implementations for VC and the bit-

string version of CME were created as high level implementations that operated on strings

of input. This meant these implementations were automatically less efficient in memory

and time than the implementations of AES, RC4 and byte-oriented CME, which operated

on arrays of bytes and integers. This is because the byte implementations use primitive

variables, which results in smaller memory requirements and more efficient computation

overall. Strings in Java are a more complex variable type, and any change made to a String

in Java requires the creation and allocation of an entirely new String. This leads to wasted

memory and computation. It also results in the VC and bit-string version of CME test

results being less likely to generalize well enough to give data on the efficiency of low-

level implementations of the same algorithms.

 The implementation of the CME scheme was also affected by its choice of

pseudorandom number generator. Due to the constrained problem domain of this thesis,

only one pseudorandom number generator was implemented, the inbuilt Java function.

Random number generation is a widely researched field in cryptography and security,

and the security of an algorithm which utilizes the generation of random or pseudorandom

numbers relies on the security of these generators. As such, it is necessary to acknowledge

that future research into CME schemes requires exploration of the possible generators,

and their effect on the overall scheme. The use of Java’s inbuilt random number generator

may impede the ability of these results to be more generally compared with stream ciphers

that utilize purpose-built secure random number generators.

 It must be noted that a more efficient comparison between the algorithms would

have utilized schemes with 256 bit or larger keys. However, due to export controls

surrounding the dissemination of strong cryptographic algorithms, standard

implementations for AES and RC4 did not offer key sizes larger than that of 128. The

inbuilt Java functions used to develop the code for these algorithms set a maximum size

of 128 for key generation. The use of 128-bit algorithms in comparison to the

implemented CME scheme results in less generalizable data, as the scheme implemented

would be closer in operation to 256-bit AES.

6.1.2 Comparing Asymmetric and Symmetric Systems
The inclusion of ECC in the study was necessary due to its prevalence as a graphic

encryption system. However, it is important to note that ECC is an asymmetric encryption

algorithm, while the others used in the study are symmetric. This automatically impacts

on the results of comparison with ECC. Jeeva et al. (2012) found the original Diffie-

 105

Hellman protocol slow to execute, and while the ECC version of this protocol is quicker

due to its smaller key size, the execution of asymmetric systems can be computationally

slower than that of symmetric systems. In the results given in Chapter 4, the execution of

the ECDH algorithm was on par with that of the AES setup time. AES 128 took 409 ms

(mean) and ECDH with a 192-bit key took 359.5 ms (mean). It must also be taken into

account that the most efficient algorithm for breaking the 192-bit curve of the

implemented ECDH protocol results in the protocol offering equivalent security to a

symmetric 80-bit key, lower than that of 128-bit AES (Stallings, 2014). In order to

achieve the equivalent security of 128-bit AES, a much larger elliptic curve would be

required. As such, the comparison of the ECDH system is limited by the differences in

the overall architecture, and the way its particular function impacts on its efficiency. The

resulting comparison between the ECDH scheme and the symmetric cipher

implementations therefore is limited in impact and scope, due to the different

architectures and security levels. This results in a lack of generalizability to higher

security ECC schemes, which are more likely implemented in modern technologies.

6.1.3 Binary Implementation of Visual Cryptography
Classical VC schemes operate on images and their pixels. A secret image is split into

shares which contain arrays of subpixels. The comparison between the VC and CME

schemes operated on strings of binary plaintext, and so it was necessary to design an

implementation which operated on strings instead of images. The equivalent VC

implementation for encryption of strings was based on the 2-out-of-2 scheme originally

proposed by Naor and Shamir (1995), and utilized share creation from Kafri and Keren

(1988). The translation of the VC scheme into one which operates in a different domain

was a trivial operation, but may have impacted on the results, as the schemes are designed

for efficiency and security in the encryption of images, not text. As such, the results of

the utilized VC scheme may not necessarily reflect the operational efficiency of a more

standard, classical VC scheme which operates on images.

6.2 FUTURE RESEARCH

The use of alternative key structures and graphic-based ciphers for encryption requires

further study. The results given in Chapter 4 show a high security level with comparable

efficiency to current cryptographic standards. This security level requires further

examination in relation to cryptanalysis. The advent of quantum computing will likely

 106

result in the weakening of current symmetric encryption systems, as well as the

destruction of public-key infrastructures. The quantum algorithm proposed by Grover

(1996) gives a key of size 2𝑛 the equivalent security of a symmetric key size of 2𝑛/2. A

scheme with computational complexity 𝑂(𝑁) then has complexity 𝑂 (𝑁
1
2). This would

render 128-bit AES insecure, as the computational complexity would be reduced to 264,

equal to the 64-bit DES algorithm, depreciated in 2001. The results of Chapter 4 suggest

that alternative key structures could provide a pathway for the development of secure

post-quantum cryptography. The number of possible key matrices for an 8-bit scheme in

CME remains very high, even when subjected to Grover’s algorithm, with a revised

security level of 23732768. The security level of CME opens avenues for further research

into the resistance of CME and other alternative systems to quantum-based attacks. Future

study could examine the particular matrix structure of the CME key scheme, and how this

could be implemented in post-quantum cryptography.

 Further study could also be done in comparison with other stream ciphers that are

currently part of the ESTREAM portfolio such as HC-128 (Wu, 2008), and block ciphers

such as Blowfish (Schneier, 1993). The expanding of comparable algorithms would allow

for the system to be more accurately placed in the current cryptographic landscape. The

research conducted in this study was limited in scope due to algorithm availability, and

as such there are further opportunities to look at the comparison of alternative key systems

such as CME with other well-developed and industry adopted algorithms. Given that

studies such as Thakur and Kumar (2011) suggested that Blowfish gave even better

overall performance than AES, it would be expected that Blowfish would result in a faster

encryption time than CME, but further exploration of the comparative security would

provide a detailed look at the trade-offs between efficiency and security. A comparison

between HC-128 and a byte-level version of CME would give researchers the opportunity

to examine the ways in which the two algorithms differed in efficiency and security, to

further the current comparison between CME and RC4. Because the 8-bit or byte-level

CME scheme is a word-oriented stream cipher, the comparison with other proposed

stream ciphers would give further understanding to how CME could be placed as an

alternative within the current encryption infrastructure. Further investigation could also

examine the avenues for incorporating CME into current stream cipher-based

technologies such as TLS.

 Future research could also explore implementing CME algorithms with multiple

key strings. The addition of differing key strings could provide for higher levels of

 107

security and flatter distributions across the board. The key matrix setup of CME allows

for the use of up to 2(22𝑛

2(2𝑛)) key strings in the encryption process, without communicating

any extra keys. This ability to further adapt and customize the algorithm provides for

research opportunities into the overall effect on security and efficiency when increasing

the number of key strings used.

 Ciphers that provide non-singular mappings of plaintext to ciphertext require

further investigation. The addition of this chaos element adds further layers of obscurity

and obfuscation to the encryption system. The non-singular mapping provides for security

against known and chosen plaintext attacks, as shown in the security analysis of both

CME and VC. Further research should explore other options for encryption systems that

provide these non-singular mappings, particularly within the realm of graphic-based

systems.

 Further study could be done to explore ways in which the CME scheme may be

optimized for greater efficiency. Improvements to the algorithm design and the schema

could allow for a low-level implementation which provided the level of security shown

in this thesis, while also allowing for a higher level of efficiency. The improvement of

CME with regards to efficiency and time complexity would allow for implementations

which could be utilized in domains with limited computing power, such as smart cards,

and for integration into technologies such as TLS, which require high-performance

stream ciphers to function.

 The indeterminate result of Hypothesis 1 opens avenues for further research into

comparisons between graphic-based and traditional cryptographic methods. The results

of this study were unable to conclusively prove that graphic-based methods for encryption

offered higher levels of security with lower overheads than traditional methods. Further

research into this hypothesis would include comparing CME and other graphic-based

systems against a variety of different traditional ciphers, on larger plaintext sizes and

documents. Further research should also compare the performance of traditional and

graphic-based systems in different domains, such as image encryption or incorporation

into email clients.

 The use of 128-bit AES and RC4 in this study was due to cryptographic export

constraints. Further study could explore the comparative results of 256-bit AES with the

8-bit CME scheme, and with recently developed 256-bit stream ciphers. The results of

the efficiency tests between AES and CME suggest that the CME scheme should offer

competitive levels of efficiency with the 256-bit AES scheme. The use of alternative

random number generators could also be explored, to determine the effect different

 108

generators have on the overall efficiency of the algorithm.

 The implementation options for graphic-based systems such as CME should be

further researched. Low-level implementations for hardware such as smart cards could

prove of use in banking situations, as the results of Chapter 4 suggest that CME offers a

high-security scheme with a relatively low memory requirement in comparison to other

schemes. As architecture such as smart cards usually operates on a limited memory

capacity, schemes that can offer reduced memory requirements are of value in this field.

 The possibility of implementing the CME scheme in technologies such as TLS,

which is designed around the use of stream ciphers, and previously utilized RC4, deserves

further exploration. The improvements offered by CME in terms of memory

requirements, avalanche effect, and brute-force resistance make it of relevance to

securing online interactions. The development of a transport layer level scheme for a

high-efficiency implementation could provide an option for addressing the gap left by the

depreciation of RC4.

6.3 CONCLUSION

The research conducted in this study has explored the possibilities offered by alternative

key structures and graphic-based methods for the development of encryption algorithms.

These structures present a significant research opportunity for secure communication, and

require further study and exploration. The results suggest that systems based around

alternative key structures and graphic-methods could offer high levels of security while

remaining competitively efficient in execution. Further research into optimization and

application is required to fully explore these possibilities.

 109

References

Afzal, M., Kausar, F., & Masood, A. (2006, 13-14 Nov. 2006). Comparative Analysis of

the Structures of eSTREAM Submitted Stream Ciphers. Paper presented at the

ICET '06, International Conference on Emerging Technologies, 2006.

doi:10.1109/ICET.2006.335958

Agnarsson, G., & Greenlaw, R. (2007). Graph Thory: Modelling, Applications, and

Algorithms. New Jersey: Pearson Education Ltd.

Akhter, F. (2015, 26-27 Nov. 2015). A novel Elliptic Curve Cryptography scheme using

random sequence. Paper presented at the 2015 International Conference on

Computer and Information Engineering (ICCIE). doi:10.1109/CCIE.2015.73993

14

Amara, M., & Siad, A. (2011, 9-11 May 2011). Elliptic Curve Cryptography and its

applications. Paper presented at the 7th International Workshop on Systems,

Signal Processing and their Applications (WOSSPA), 2011.

doi:10.1109/WOSSPA.2011.5931464

Amounas, F., & Kinani, E. H. E. (2012, 20-21 April 2012). An elliptic curve cryptography

based on matrix scrambling method. Paper presented at the National Days of

Network Security and Systems (JNS2), 2012. doi:10.1109/JNS2.2012.6249236

Anderson, R. (2008). Security Engineering: A Guide to Building Dependable Distributed

Systems (2nd ed.): John Wiley & Sons.

Arumugam, S., Lakshmanan, R., & Nagar, A. K. (2013). Graph access structures with

optimal pixel expansion three. Information and Computation, 230, 67-75.

doi:10.1016/J.IC.2013.07.002

Ateniese, G., Blundo, C., De Santis, A., & Stinson, D. R. (1996). Visual Cryptography

for General Access Structures. Information and Computation, 129(2), 86-106.

doi: 10.1006/INCO.1996.0076

Ateniese, G., Blundo, C., Santis, A. D., & Stinson, D. R. (2001). Extended capabilities

for visual cryptography. Theoretical Computer Science, 250(1–2), 143-161.

doi:10.1016/S0304-3975(99)00127-9

Austen, J. (2006). Pride and Prejudice. London, Great Britain: Headline Review.

Bai, Q.-h., Zhang, W.-b., Jiang, P., & Lu, X. (2012, 11-13 Aug. 2012). Research on

Design Principles of Elliptic Curve Public Key Cryptography and Its

Implementation. Paper presented at the International Conference on Computer

 110

Science & Service System (CSSS), 2012. doi:10.1109/CSSS.2012.310

Bhat, B., Ali, A. W., & Gupta, A. (2015, 15-16 May 2015). DES and AES performance

evaluation. Paper presented at the International Conference on Computing,

Communication & Automation (ICCCA), 2015. doi:10.1109/CCAA.2015.714

8500

Blakley, G. R., & Kabatiansky, G. (2011). Secret Sharing Schemes. In H. A. van Tilborg

& S. Jajodia (Eds.), Encyclopedia of Cryptography and Security (pp. 1095-1097):

Springer US. doi:10.1007/978-1-4419-5906-5_389

Blundo, C., Cimato, S., & De Santis, A. (2006). Visual cryptography schemes with

optimal pixel expansion. Theoretical Computer Science, 369(1–3), 169-182.

doi:10.1016/J.TCS.2006.08.008

Chan-Hyoung, P., Hong-Yeop, S., & Kyu Tae, P. (1998). Existence and classification of

Hadamard matrices. Paper presented at the 1998 Fourth International Conference

on Signal Processing Proceedings, 1998. ICSP '98. doi:10.1109/ICOSP.1998.

770165

Chandra, S., Paira, S., Alam, S. S., & Sanyal, G. (2014, 17-18 Nov. 2014). A comparative

survey of Symmetric and Asymmetric Key Cryptography. Paper presented at the

2014 International Conference on Electronics, Communication and

Computational Engineering (ICECCE). doi:10.1109/ICSEMR.2014.7043664

Chen, Y. C., Horng, G., & Tsai, D. S. (2012). Comment on "Cheating Prevention in

Visual Cryptography". IEEE Transactions on Image Processing, 21(7), 3319-

3323. doi:10.1109/TIP.2012.2190082

Cohn, P. M. (2000). Introduction to ring theory: Springer Science & Business Media.

Davidoff, G., Sarnak, P., & Valette, A. (2003). Elementary number theory, group theory

and Ramanujan graphs (Vol. 55): Cambridge University Press.

De Prisco, R., & De Santis, A. (2014). On the Relation of Random Grid and Deterministic

Visual Cryptography. IEEE Transactions on Information Forensics and Security,

9(4), 653-665. doi:10.1109/TIFS.2014.2305574

Delgosha, F., & Fekri, F. (2006). Public-key cryptography using paraunitary matrices.

IEEE Transactions on Signal Processing, 54(9), 3489-3504.

doi:10.1109/TSP.2006.877670

Deligiannidis, L. (2015, 27-29 May 2015). Elliptic curve cryptography in Java. Paper

presented at the IEEE International Conference on Intelligence and Security

Informatics (ISI), 2015. doi:10.1109/ISI.2015.7165975

Ding, J., Petzoldt, A., & Wang, L.-C. (2014). The Cubic Simple Matrix Encryption

 111

Scheme. Post-Quantum Cryptography, 76.

Ding, J., & Yang, B.-Y. (2009). Multivariate public key cryptography Post-Quantum

Cryptography (pp. 193-241): Springer. doi:10.1007/978-3-540-88702-7_6

Droste, S. (1996). New Results on Visual Cryptography. In N. Koblitz (Ed.), Advances

in Cryptology — CRYPTO ’96 (Vol. 1109, pp. 401-415): Springer Berlin

Heidelberg. doi:10.1007/3-540-68697-5_30

Feng, J.-B., Wu, H.-C., Tsai, C.-S., Chang, Y.-F., & Chu, Y.-P. (2008). Visual secret

sharing for multiple secrets. Pattern Recognition, 41(12), 3572-3581.

doi:10.1016/J.PATCOG.2008.05.031

Fluhrer, S., Mantin, I., & Shamir, A. (2001). Weaknesses in the key scheduling algorithm

of RC4. Paper presented at the International Workshop on Selected Areas in

Cryptography.

Galbraith, S., & Menezes, A. (2005). Algebraic curves and cryptography. Finite Fields

and Their Applications, 11(3), 544-577. doi:10.1016/J.FFA.2005.05.001

Giorgobiani, G., Kvaratskhelia, V., & Menteshashvili, M. (2015, Sept. 28 2015-Oct. 2

2015). Some properties of Hadamard matrices. Paper presented at the Computer

Science and Information Technologies (CSIT), 2015. doi:10.1109/CSITechnol.

2015.7358251

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Paper

presented at the Proceedings of the twenty-eighth annual ACM symposium on

Theory of computing, Philadelphia, Pennsylvania, USA. doi:10.1145/237814

.237866

Hajiabolhassan, H., & Cheraghi, A. (2010). Bounds for visual cryptography schemes.

Discrete Applied Mathematics, 158(6), 659-665. doi:10.1016/j.dam.2009.12.005

Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System

Technical Journal, 29(2), 147-160.

Hosnieh, R., Martin von, L., & Christoph, M. (2013). Cryptography in Electronic Mail

Theory and Practice of Cryptography Solutions for Secure Information Systems

(pp. 406-427). Hershey, PA, USA: IGI Global. doi:10.4018/978-1-4666-4030-

6.ch016

Hou, Y. C., Wei, S. C., & Lin, C. Y. (2014). Random-Grid-Based Visual Cryptography

Schemes. IEEE Transactions on Circuits and Systems for Video Technology,

24(5), 733-744. doi:10.1109/TCSVT.2013.2280097

Hu, C. M., & Tzeng, W. G. (2007). Cheating Prevention in Visual Cryptography. IEEE

Transactions on Image Processing, 16(1), 36-45. doi:10.1109/TIP.2006.884916

 112

Hurley, B., & Hurley, T. (2011). Group ring cryptography. International Journal of Pure

and Applied Mathematics, 69(1), 67-86.

Jaya, Malik, S., Aggarwal, A., & Sardana, A. (2011, 11-14 Dec. 2011). Novel

authentication system using visual cryptography. Paper presented at the 2011

World Congress on Information and Communication Technologies (WICT).

doi:10.1109/WICT.2011.6141416

Jeeva, A., Palanisamy, D. V., & Kanagaram, K. (2012). Comparative analysis of

performance efficiency and security measures of some encryption algorithms.

International Journal of Engineering Research and Applications (IJERA) ISSN,

2248-9622.

Jie, L., & King, B. (2013, 4-7 Aug. 2013). Smart card fault attacks on elliptic curve

cryptography. Paper presented at the IEEE 56th International Midwest

Symposium on Circuits and Systems (MWSCAS), 2013.

doi:10.1109/MWSCAS.2013.6674882

Joseph, S. K., & Ramesh, R. (2015, 16-19 Dec. 2015). Random grid based visual

cryptography using a common share. Paper presented at the 2015 International

Conference on Computing and Network Communications (CoCoNet).

doi:10.1109/CoCoNet.2015.7411259

Joux, A., & Vitse, V. (2012). Cover and decomposition index calculus on elliptic curves

made practical Advances in Cryptology–EUROCRYPT 2012 (pp. 9-26): Springer.

doi:10.1007/978-3-642-29011-4_3

Kafri, O., & Keren, E. (1988). Method and apparatus of encryption of optical images:

Google Patents.

Kamarulhaili, H. (2010, 7-10 Aug. 2010). Generating Elliptic Curves Modulo p for

Cryptography Using Mathematica Software. Paper presented at the Seventh

International Conference on Computer Graphics, Imaging and Visualization

(CGIV), 2010. doi:10.1109/CGIV.2010.22

Kang, I., Arce, G. R., & Lee, H. K. (2011). Color Extended Visual Cryptography Using

Error Diffusion. IEEE Transactions on Image Processing, 20(1), 132-145.

doi:10.1109/TIP.2010.2056376

Klein, A. (2008). Attacks on the RC4 stream cipher. Designs, Codes and Cryptography,

48(3), 269-286. doi:10.1007/s10623-008-9206-6

Klein, A., & Wessler, M. (2007). Extended visual cryptography schemes. Information

and Computation, 205(5), 716-732. doi:10.1016/j.ic.2006.12.005

Klisowski, M., & Ustimenko, V. (2010, 18-20 Oct. 2010). On the implementation of

 113

public keys algorithms based on algebraic graphs over finite commutative rings.

Paper presented at the Proceedings of the 2010 International Multiconference on

Computer Science and Information Technology (IMCSIT).

doi:10.1109/IMCSIT.2010.5679687

Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of computation, 48(177),

203-209.

Kofahi, N. A., Turki, A.-S., & Khalid, A.-Z. (2003, 30-30 Dec. 2003). Performance

evaluation of three encryption/decryption algorithms. Paper presented at the IEEE

46th Midwest Symposium on Circuits and Systems, 2003.

Kotorowicz, J., Romanczuk, U., & Ustimenko, V. (2011, 18-21 Sept. 2011). On the

implementation of stream ciphers based on a new family of algebraic graphs.

Paper presented at the Federated Conference on Computer Science and

Information Systems (FedCSIS), 2011.

Krämer, J. (2015). Why Cryptography Should Not Rely on Physical Attack Complexity.

Singapore: Springer.

Krebs, M., & Shaheen, A. (2011). Expander Families and Cayley Graphs : A Beginner's

Guide. Cary: Oxford University Press.

Leca, C. L., & Rincu, C. I. (2014, 29-31 May 2014). Combining point operations for

efficient elliptic curve cryptography scalar multiplication. Paper presented at the

10th International Conference on Communications (COMM), 2014.

doi:10.1109/ICComm.2014.6866676

Liu, F., & Wu, C. (2011). Embedded Extended Visual Cryptography Schemes. IEEE

Transactions on Information Forensics and Security, 6(2), 307-322.

doi:10.1109/TIFS.2011.2116782

Liu, F., Wu, C., & Lin, X. (2010a). A new definition of the contrast of visual cryptography

scheme. Information Processing Letters, 110(7), 241-246. doi:10.1016/j.ipl.

2010.01.003

Liu, F., Wu, C., & Lin, X. (2010b). Step Construction of Visual Cryptography Schemes.

IEEE Transactions on Information Forensics and Security, 5(1), 27-38.

doi:10.1109/TIFS.2009.2037660

Liu, F., Wu, C. K., & Lin, X. J. (2008). Colour visual cryptography schemes. Information

Security, IET, 2(4), 151-165. doi:10.1049/iet-ifs:20080066

Liu, M., Han, L., & Wang, X. (2011). On the equivalent keys in multivariate

cryptosystems. Tsinghua Science and Technology, 16(3), 225-232.

doi:10.1016/S1007-0214(11)70033-5

 114

Loehr, N. (2014). Advanced Linear Algebra. Bosa Roca: CRC Press.

Lu, S., Manchala, D., & Ostrovsky, R. (2011). Visual cryptography on graphs. J. Comb.

Optim., 21(1), 47-66. doi:10.1007/s10878-009-9241-x

Ma, K., & Wu, K. (2014). Error Detection and Recovery for ECC: A New Approach

Against Side-Channel Attacks. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 33(4), 627-637. doi:10.1109/TCAD.2013.

2293058

Marin, L., Jara, A., & Skarmeta, A. F. (2012, 4-6 July 2012). Shifting Primes: Optimizing

Elliptic Curve Cryptography for Smart Things. Paper presented at the Sixth

International Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing (IMIS), 2012. doi:10.1109/IMIS.2012.199

Martin, K. M. (2012). Everyday Cryptography: Fundamental Principles & Applications.

New York: Oxford University Press.

Martinez, V. G., & Encinas, L. H. (2013). Implementing ECC with Java Standard Edition

7. International Journal of Computer Science and Artificial Intelligence, 3(4),

134.

Masadeh, S. R., Aljawarneh, S., Turab, N., & Abuerrub, A. M. (2010, 16-18 Aug. 2010).

A comparison of data encryption algorithms with the proposed algorithm:

Wireless security. Paper presented at the Sixth International Conference on

Networked Computing and Advanced Information Management (NCM), 2010.

Mehta, S., Varadharajan, V., & Nallusamy, R. (2012). Tampering resistant self

recoverable watermarking method using error correction codes. International

Journal of Information and Computer Security, 5(1), 28-47.

doi:doi:10.1504/IJICS.2012.051089

Menezes, A. J., Okamoto, T., & Vanstone, S. A. (1993). Reducing elliptic curve

logarithms to logarithms in a finite field. IEEE Transactions on Information

Theory, 39(5), 1639-1646.

Miller, V. S. (1985). Use of elliptic curves in cryptography. Paper presented at the

Advances in Cryptology—CRYPTO’85 Proceedings.

Modares, H., Moravejosharieh, A., & Salleh, R. (2011, 12-14 Dec. 2011). Wireless

Network Security Using Elliptic Curve Cryptography. Paper presented at the First

International Conference on Informatics and Computational Intelligence (ICI),

2011. doi:10.1109/ICI.2011.63

Mostaghim, M., & Boostani, R. (2014, 3-4 Sept. 2014). CVC: Chaotic visual

cryptography to enhance steganography. Paper presented at the 11th International

 115

ISC Conference on Information Security and Cryptology (ISCISC), 2014.

doi:10.1109/ISCISC.2014.6994020

Naor, M., & Shamir, A. (1995). Visual cryptography. In A. De Santis (Ed.), Advances in

Cryptology — EUROCRYPT'94 (Vol. 950, pp. 1-12): Springer Berlin Heidelberg.

doi:10.1007/BFb0053419

NIST. (2000). FIPS 186-2: Digital Signature Standard (DSS). Gaithersburg MD: National

Institute of Standards and Technology.

Ontiveros, B., Soto, I., & Carrasco, R. (2006). Construction of an elliptic curve over finite

fields to combine with convolutional code for cryptography. IEEE Proceedings -

Circuits, Devices and Systems, 153(4), 299-306. doi:10.1049/ip-cds:20050117

Pal, S. K. (2007, 5-7 March 2007). Fast, Reliable & Secure Digital Communication Using

Hadamard Matrices. Paper presented at the International Conference on

Computing: Theory and Applications, 2007. ICCTA '07. doi:10.1109/ICCTA.

2007.61

Paszkiewicz, A., Górska, A., Górski, K., Kotulski, Z., Kulesza, K., & Szczepański, J.

(2001). Proposals of Graph Based Ciphers, Theory and Implementations. Paper

presented at the Proceedings of the Regional Conference on Military

Communication and Information Systems. CIS Solutions for an Enlarged NATO,

RCMIS.

Pateriya, R. K., & Vasudevan, S. (2011, 3-5 June 2011). Elliptic Curve Cryptography in

Constrained Environments: A Review. Paper presented at the International

Conference on Communication Systems and Network Technologies (CSNT),

2011. doi:10.1109/CSNT.2011.32

Petit, C., & Quisquater, J.-J. (2012). On polynomial systems arising from a Weil descent

Advances in Cryptology–ASIACRYPT 2012 (pp. 451-466): Springer.

Polak, M., Romańczuk, U., Ustimenko, V., & Wróblewska, A. (2013). On the

applications of Extremal Graph Theory to Coding Theory and Cryptography.

Electronic Notes in Discrete Mathematics, 43, 329-342.

Polak, M., & Ustimenko, V. (2013, 8-11 Sept. 2013). Examples of Ramanujan and

expander graphs for practical applications. Paper presented at the Federated

Conference on Computer Science and Information Systems (FedCSIS), 2013.

Prachi, Dewan, S., & Pratibha. (2015, 21-22 Feb. 2015). Comparative Study of Security

Protocols to Enhance Security. Paper presented at the Fifth International

Conference on Advanced Computing & Communication Technologies (ACCT),

2015. doi:10.1109/ACCT.2015.34

 116

Priyadarsini, P. L. K. (2015). A Survey on some Applications of Graph Theory in

Cryptography. Journal of Discrete Mathematical Sciences and Cryptography,

18(3), 209-217. doi:10.1080/09720529.2013.878819

Priyadarsini, P. L. K., & Ayyagari, R. (2013, 22-25 Aug. 2013). Ciphers based on special

graphs. Paper presented at the International Conference on Advances in

Computing, Communications and Informatics (ICACCI), 2013

doi:10.1109/ICACCI.2013.6637215

Qu, Y., & Hu, Z. (2010, 21-24 May 2010). Research and design of elliptic curve

cryptography. Paper presented at the 2nd International Conference on Future

Computer and Communication (ICFCC), 2010. doi:10.1109/ICFCC.2010.

5497370

Riaz, F., & Ali, K. M. (2011, 26-28 July 2011). Applications of Graph Theory in

Computer Science. Paper presented at the Third International Conference on

Computational Intelligence, Communication Systems and Networks (CICSyN),

2011. doi:10.1109/CICSyN.2011.40

Rivest, R. L., & Schuldt, J. C. (2014). Spritz-a spongy RC4-like stream cipher and hash

function. Proceedings of the Charles River Crypto Day, Palo Alto, CA, USA, 24.

Ross, A., & Othman, A. (2011). Visual Cryptography for Biometric Privacy. IEEE

Transactions on Information Forensics and Security, 6(1), 70-81.

doi:10.1109/TIFS.2010.2097252

Schneier, B. (1993). Description of a new variable-length key, 64-bit block cipher

(Blowfish). Paper presented at the International Workshop on Fast Software

Encryption.

Setiadi, I., Kistijantoro, A. I., & Miyaji, A. (2015, 19-22 Aug. 2015). Elliptic curve

cryptography: Algorithms and implementation analysis over coordinate systems.

Paper presented at the 2nd International Conference on Advanced Informatics:

Concepts, Theory and Applications (ICAICTA), 2015. doi:10.1109/ICAICTA.

2015.7335349

Shakespeare, W., & Ackroyd, P. (2006). The Complete Works of William Shakespeare.

Glasgow, UK: Harper Collins.

Shankar, P. (1997). Error correcting codes. Resonance, 2(3), 33-47.

doi:10.1007/bf02838967

Sharma, M., Garg, R. B., & Dwivedi, S. (2014, 8-10 Oct. 2014). Comparative analysis

of NPN algorithm & DES Algorithm. Paper presented at the 3rd International

Conference on Reliability, Infocom Technologies and Optimization (ICRITO)

 117

(Trends and Future Directions), 2014. doi:10.1109/ICRITO.2014.7014688

Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and

factoring. Paper presented at the 35th Annual Symposium on Foundations of

Computer Science, 1994.

Shyu, S. J., Huang, S.-Y., Lee, Y.-K., Wang, R.-Z., & Chen, K. (2007). Sharing multiple

secrets in visual cryptography. Pattern Recognition, 40(12), 3633-3651.

doi:10.1016/j.patcog.2007.03.012

Silverman, J. H., & Suzuki, J. (1998). Elliptic Curve Discrete Logarithms and the Index

Calculus. In K. Ohta & D. Pei (Eds.), Advances in Cryptology — ASIACRYPT’98:

International Conference on the Theory and Application of Cryptology and

Information Security Beijing, China, October 18–22, 1998 Proceedings (pp. 110-

125). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/3-540-49649-

1_10

Singh, L. D., & Debbarma, T. (2014, 8-10 May 2014). A new approach to Elliptic Curve

Cryptography. Paper presented at the International Conference on Advanced

Communication Control and Computing Technologies (ICACCCT), 2014.

doi:10.1109/CCAA.2015.7148511

Singhal, N., & Raina, J. (2011). Comparative analysis of AES and RC4 algorithms for

better utilization. International Journal of Computer Trends and Technology,

2(6), 177-181.

Stallings, W. (2014). Cryptography and Network Security (6 ed.). New Jersey, USA:

Pearson Education Inc.

Sutter, G. D., Deschamps, J. P., & Imana, J. L. (2013). Efficient Elliptic Curve Point

Multiplication Using Digit-Serial Binary Field Operations. IEEE Transactions on

Industrial Electronics, 60(1), 217-225. doi:10.1109/TIE.2012.2186104

Targhetta, A. D., Owen, D. E., Israel, F. L., & Gratz, P. V. (2015, 18-21 Oct. 2015).

Energy-efficient implementations of GF (p) and GF(2m) elliptic curve

cryptography. Paper presented at the 33rd IEEE International Conference on

Computer Design (ICCD), 2015. doi:10.1109/ICCD.2015.7357184

Tawalbeh, L., Mowafi, M., & Aljoby, W. (2013). Use of elliptic curve cryptography for

multimedia encryption. IET Information Security, 7(2), 67-74. doi:10.1049/iet-

ifs.2012.0147

Thakur, J., & Kumar, N. (2011). DES, AES and Blowfish: Symmetric key cryptography

algorithms simulation based performance analysis. International journal of

emerging technology and advanced engineering, 1(2), 6-12.

 118

Thiranant, N., Kang, Y. J., Kim, T., Jang, W., Park, S., & Lee, H. (2014, 19-21 Dec.

2014). A Design of Elliptic Curve Cryptography-Based Authentication Using QR

Code. Paper presented at the IEEE 17th International Conference on

Computational Science and Engineering (CSE), 2014. doi:10.1109/CSE.2014.

135

Ustimenko, V. (2007). On Graph-Based Cryptography and Symbolic Computations.

Serdica Journal of Computing, 1(2), 131-156.

Ustimenko, V. (2014, 7-10 Sept. 2014). On multivariate cryptosystems based on maps

with logarithmically invertible decomposition corresponding to walk on graph.

Paper presented at the Federated Conference on Computer Science and

Information Systems (FedCSIS), 2014. doi:10.15439/2014F269

Ustimenko, V., & Romańczuk, U. (2013). On extremal graph theory, explicit algebraic

constructions of extremal graphs and corresponding Turing encryption machines

Artificial Intelligence, Evolutionary Computing and Metaheuristics (pp. 257-

285). Heidelberg, Germany: Springer. doi:10.1007/978-3-642-29694-9_11

Vigila, S., & Muneeswaran, K. (2009, 13-15 Dec. 2009). Implementation of text based

cryptosystem using Elliptic Curve Cryptography. Paper presented at the First

International Conference on Advanced Computing, 2009. ICAC 2009.

doi:10.1109/ICADVC.2009.5378025

Wang, R. Z., & Hsu, S. F. (2011). Tagged Visual Cryptography. IEEE Signal Processing

Letters, 18(11), 627-630. doi:10.1109/LSP.2011.2166543

Wang, X., Pei, Q., & Li, H. (2014). A Lossless Tagged Visual Cryptography Scheme.

IEEE Signal Processing Letters, 21(7), 853-856. doi:10.1109/LSP.2014.2317706

Wu, H. (2008). The stream cipher HC-128 New stream cipher designs (pp. 39-47):

Springer. doi:10.1007/978-3-540-68351-3_4

Wu, X., & Sun, W. (2013). Generalized Random Grid and Its Applications in Visual

Cryptography. IEEE Transactions on Information Forensics and Security, 8(9),

1541-1553. doi:10.1109/TIFS.2013.2274955

Xia, L. (2012, 24-27 June 2012). The application of Elliptic Curve Cryptography in

Electronic Commerce. Paper presented at the IEEE Symposium on Electrical &

Electronics Engineering (EEESYM), 2012. doi:10.1109/EEESym.2012.6258715

Yan, S. Y. (2008). Cryptanalytic attacks on RSA. New York, USA: Springer US.

doi:10.1007/978-0-387-48742-7

Ye, L., & Liu, F. (2011, 24-26 Dec. 2011). Overview of scalar multiplication in elliptic

curve cryptography. Paper presented at the International Conference on Computer

 119

Science and Network Technology (ICCSNT), 2011. doi:10.1109/ICCSNT.2011.

6182515

Zhi, Z., Arce, G. R., & Di Crescenzo, G. (2006). Halftone visual cryptography. IEEE

Transactions on Image Processing, 15(8), 2441-2453. doi:10.1109/TIP.2006.

875249

 120

Appendix A: Glossary

Term Definition

Adjacency list A method of implementing graphs in computer
code. Enumerates all nodes which are connected
by an edge.

Adjacency matrix A method of implementing graphs in computer
code. A 2-dimensional matrix where there is a 1
entry if the two nodes are connected by an edge.
Else, there is a 0 entry.

AES Advanced Encryption Standard. Introduced to
replace DES in 2001, through the National
Institute of Standards and Technology (NIST).
Based on the Feistel cipher structure. Allows for
key sizes of 128, 192, or 256-bits. The current
standard for symmetric block ciphers.

Alphabetic Cipher Operates on characters from a given alphabet.
Artificial Intelligence A technological theory and current research area

into the possibility of developing an artificial mind
which has the ability to mimic human
consciousness.

ASCII A character set utilized in most HTML sites.
Based around UTF-8 encoding, and encodes text-
based characters into unique bytes from 0-255.
Stands for American Standard Code for
Information Interchange.

Asymmetric Encryption Also termed Public-key encryption. These
schemes have two keys, a private or secret key,
and a public key. The public key is used to encrypt
the data but cannot be used for decryption. The
private key is used to decrypt the data. These
systems form the basis of many Internet
technologies, and can also be used to create digital
signatures and certificates.

Avalanche effect The resulting change in the ciphertext after
altering a single bit of the plaintext. A high level
of change in the ciphertext is a desirable security
feature of modern ciphers.

Bernoulli trials A series of trials each of which will either succeed
or fail. The probability of n successes in k trials
can be calculated through the binomial probability
formula.

 121

Binary codewords Used in error-correcting codes as introduced by
Richard Hamming (1950). Binary strings of a set
length with a particular Hamming weight that
allows the system to detect errors in transmission.
See also Hamming distance, Error-correcting
codes.

Binomial probability An experiment with only two outcomes: success
or failure. See also Bernoulli trials.

Bit-flipping attack An attack wherein the adversary alters the
ciphertext to give a predictable alteration in the
resulting plaintext.

Block cipher A cryptographic method which operates on
plaintext data block-by-block, usually with a block
size of 64 to 128-bits. See AES.

Brute force attack A simple attack wherein all possible keys are
attempted. On average, a brute force attack
requires that one half of all possible keys be
attempted.

Caesar cipher The earliest known cipher. A substitution scheme
attributed to Julius Caesar, in which a plaintext
message was encrypted by replacing each
character with the letter 3 places to the right. See
symmetric cipher and substitution.

Cayley table A 2-dimensional matrix which gives the result of
the binary operation on each combination of
elements in a set.

CBC mode An encryption mode in AES. Cipher Block
Chaining mode. Each new block of plaintext is
combined with the previous ciphertext block
through an XOR operation prior to encryption.

CFB mode An encryption mode in AES. Cipher Feedback
mode. Turns AES into a stream cipher, but is very
similar in functionality to CBC.

Chosen plaintext attack A cryptanalytic attack wherein a malicious
adversary chooses the plaintext to be encrypted to
take advantage of particular tendencies or features
of a cryptographic system.

Ciphertext The resulting output of an encryption algorithm.
Common share RGVC A version of Asymmetric encryption from Random

Grid VC which creates shares based on a single
key share which becomes the key for the overall
scheme.

 122

Computational complexity The difficulty of completing the required
computations for cracking a particular
cryptographic scheme, usually due to
technological limitations.

Contrast constraints The set delineation in Visual Cryptography
between a pixel that is considered black and a
pixel that is considered white. Defined by the
percentage of subpixels in the recombined pixel
that are black. See also Pixel expansion.

Coordinate Matrix Encryption The proposed symmetric stream cipher which
utilizes matrices and coordinates and blank
padding spaces to encrypt data.

Cryptanalysis The art of forcibly decoding ciphertext messages,
either by exhaustive searches (see Brute force
attack) or by manipulation of known trends and
tendencies within an encryption algorithm (see
Chosen plaintext attack, known plaintext attack,
bit flipping attack).

Decryption Algorithm The method by which the ciphertext is turned into
plaintext.

DES Data Encryption Standard. Developed in 1970s by
Horst Feistel, and was the official standard from
1977 to 2001. Used a key size of 64 bits (56 bits
for computation), which was proven insufficient
for modern technologies. Superceeded by AES.

Dictionary attacks A simple attack in which a given dictionary of
possible keys is tried exhaustively. A variation of
the brute-force attack.

Diffie-Hellman problem See Discrete Logarithm Problem.
Digital certificate Electronic document used to verify online

ownership. See also Asymmetric encryption,
digital signature.

Digital signature A method by which identity can be verified over
the Internet. Uses asymmetric encryption to create
a code which can be verified by anyone with
access to the user's public key, but can only be
created using a private key. See also Asymmetric
encryption, public key, secret key, and Digital
certificate.

Digital watermarks The method of stamping a piece of digital material
with a mark so as to prevent copyright
infringement. Usually involves the use of
steganography.

 123

Discrete Logarithm Problem The computation of logarithms in a finite field. No
general method outside of quantum computing
currently exists which allows this problem to be
solved in polynomial time or less. The DLP is the
one-way function utilized in the security of ECC.
See also Integer Factorization Problem.

Eavesdropping attack A network layer attack. Involves listening to all
transmissions on a network in hopes of capturing
sensitive information.

ECB mode An encryption mode in AES. Electronic Codebook
mode. Each block of plaintext is encrypted
individually.

ECRYPT The European Network of Excellence for
Cryptography.

Elliptic Curve Cryptography An asymmetric encryption system based on the
calculation of affine points on elliptic curves over
finite fields. Allows for the use of smaller key
sizes than that of RSA. See RSA, Asymmetric
encryption.

Encryption algorithm The method of turning the plaintext into
ciphertext.

Error-correcting codes Introduced by Richard Hamming (1950). Allow
for the transmission of data using codewords that
are capable of detecting and correcting errors
within the transmission. See also Hamming
distance, binary codewords.

eSTREAM Project Launched by ECRYPT, a project to standardize
new symmetric stream ciphers for use in
cryptographic protocols. Currently contains seven
stream ciphers for use in either software or
hardware. See ECRYPT and Stream cipher.

Extended VC Visual Cryptography schemes which encode each
share into a specific target image. Requires two
separate contrast constraints.

Feedback with carry shift register Extends the Linear feedback shift register and
implements carry over arithmetic. Used in Stream
ciphers.

Feistel cipher Proposed by Horst Feistel. A cipher that alternates
between permutations and substitutions.

Finite field arithmetic Modular arithmetic. All operationas are
constrained within a set field, for example 28, or
256, meaning that no result of any operation will
be outside the range [0,256].

 124

FMS Attack An attack against RC4 posited by Fluhrer, Mantin
& Shamir (2001). The attack exploits a weakness
in the construction of session keys. See Rivest
Cipher 4.

Frequency Analysis A statistical method of cryptanalysis, using the
statistical properties of the ciphertext to determine
the key.

Galois field See Finite field arithmetic.
Generalized RGVC A version of Random Grid VC which gives

adjustable light transmission, or contrast
constraint.

Graph decomposition The act of deconstructing a graph into smaller sub-
graphs without the loss of any information from
the original graph.

Graph-based EVCS Extended VC based on graphs. The scheme
contains multiple subsets of authorized
participants, each set of which are able to decode a
particular secret. Each participant is designated as
a node on the graph. If an edge exists between two
nodes, then that pair share a given secret.

Graphic-based ciphers Cryptographic technologies that base their design
on topology and graph or group theory. See
Elliptic Curve Cryptography or Visual
Cryptography.

Grover's algorithm A quantum algorithm for the computing of
possible keys within a key space. Reduces the
complexity of symmetric encryption systems from
𝑂(𝑁) to 𝑂(𝑁1/2).

Hadamard code An Error-correcting code derived from a
Hadamard matrix. Capable of producing high-
levels of error correction.

Hadamard matrices A special family of matrices with all entries either
+1 or -1. When the matrix H is multiplied against
its inverse the result is the identity matrix
multiplied by the scalar n.

Hamming distance Also known as the Hamming weight. The number
of bits in the same position that differ between two
binary codewords. The basis for the minimum
distance of an error-correcting code. See also
Error-correcting codes, binary codewords.

HC-128 A stream cipher currently included in the suite of
ciphers resulting from the eSTREAM project.
Developed by Hongjun Wu (2008).

 125

Incidence list A method of implementing graphs in computer
code. Gives all edges that are adjacent to a given
node n.

Incidence matrix A method of implementing graphs in computer
code. A 2-dimensional matrix with all nodes down
one side and all edges along the other. A 1 entry
occurs when a node is adjacent to a given edge.
Elsewhere, the entry is 0.

Index calculus A method of computing discrete logarithms using
probability and field arithmetic. See also Discrete
Logarithm Problem.

Initialisation Vector A sequence used to initialize the state of a
cryptographic function.

Integer Factorization Problem The currently unresolved problem of factorizing
large numbers. In cryptography, the IFP is usually
based around very large prime factors. Currently,
no known polynomial time algorithm exists
outside the realm of quantum computing. This
problem is addressed in Quantum computing by
Shor's algorithm. The IFP forms the basis of
security in RSA. See also RSA, Asymmetric
encryption, Shor's algorithm, one-way function.

Internet of Things The vast and ever-expanding web of networked
technolgoies, such as smart watches, cars, and
appliances.

Java Cryptography Architecture JCA. Inbuilt library of cryptographic functions
available as of JDK 1.1.

Java Development Kit JDK. The released platform version of Java for use
by developers. The current JDK is JDK 8u91.

Key matrix The alternative key structure utilized in the
proposed CME scheme. Each key matrix contains
all possible bit strings of a given length, and is
exactly half-full.

Keyspace The number of possible keys in the system.
Keystream The key used in modern stream ciphers. Usually a

random or pseudo-random string of bits. See
Stream cipher and Rivest Cipher 4.

Known plaintext attack A cryptanalytic attack wherein a malicious
adversary has possession of a plaintext-ciphertext
pair to analyze for clues as to the key.

Linear feedback shift register A linear register wherein the input is the result
from some linear function applied to the previous
state. Used in stream ciphers.

 126

Man-in-the-middle attack An attack in which the communicated key or share
is intercepted by a malicious adversary, who then
creates their own key/share and sends it on to the
intended recipient, thereby compromising all
future communications between the parties.

Matrix An array of elements.
MQ problem The one-way function utilized in multivariate

cryptography. The difficulty of solving many
different quadratic equations over multiple fields
using many variables. See also One-way function.

Multithreading The use of multiple cores in computers to allow
for parallel processing and increased computing
power.

Multivariate cryptography Cryptographic systems based around systems of
multivariate equations.

Non-linear feedback shift register Extends the Linear feedback shift register, and
introduces non-linearity through some given
function. As a result, it provides better protection
against cryptanalysis. Used in stream ciphers.

Non-singular mapping A given plaintext corresponds to multiple
ciphertext outputs for a single key.

NP-complete A problem for which the solution can be checked
in polynomial time, but has no efficient method of
discovering a solution. Referred to as
nondeterministic polynomial time.

OFB mode An encryption mode in AES. Output Feedback
mode. This mode alters AES into a stream cipher,
and uses keystreams for each encryption block.

One-way function A trapdoor computation which is simple to
execute in one direction, and difficult to reverse.
The basis for asymmetric encryption. See
Asymmetric encryption.

Padding characters Blank coordinates used in the CME scheme to add
confusion to the ciphertext output.

Parity check Also known as the parity bit. A single bit of data
added at the end of a sequence of bits to give the
sequence an even number of 1 bits. If there is a
corruption or error in the data transmitted, the
parity check will result in an uneven number of 1
bits. See also Error-correcting codes.

Perfect secrecy A cryptographic scheme that is theoretically
secure. That is, a scheme whose security does not
rest on its computational complexity, and is secure
even against an adversary with unlimited
computing power.

 127

Permutation The order in which elements in the plaintext occur
is altered by some algorithmic means.

Pixel expansion The phenomenon in Visual Cryptography by
which the number of subpixels required to encode
a particular pixel in the scheme increases with the
number of nodes in the scheme. See also Contrast
constraints.

PKCS5 Padding A method by which the plaintext to be encrypted
is padded using modular arithmetic, with mod 8.

Plaintext The message/text/data that forms the input to an
encryption algorithm.

Pollard rho method Developed by John Pollard. There are versions for
factorizing integers, and for calculating discrete
logarithms.

Post-quantum cryptography Cryptographic methods that are resistant to
currently known quantum algorithms for
cryptanalysis. See also Shor's algorithm and
Grover's algorithm.

Pseudorandom number A number that appears random but was generated
through some algorithmic means.

Pseudorandom number generator PRNG. An algorithm that returns a pseudorandom
number. See also Pseudorandom sequence.

Pseudorandom sequence A sequence that exhibits the properties of
randomness, but is generated by some algorithmic
means, is not truly random.

Public-key encryption See asymmetric encryption.
QR codes Quick-response codes. 2-dimensional matrix

barcodes.
Quantum computing The current technological theory and research area

studying the application of quantum theories of
superposition and entanglement to enable
calculations to take place.

Random Grid VC A method of Visual Cryptography which allows
the control of pixel expansion. Uses a binary basis
matrix to select whether a given pixel is black or
white with equal probability. The first share is
created by a random coin toss operation, and the
second share is then created based on the first
share.

Reed Solomon codes Alternative to the Hamming codes introduced by
Richard Hamming (1950). Reed-Solomon codes
operate on bytes rather than bits. See also Error-
correcting codes.

 128

Rivest Cipher 4 (RC4) Developed by Ron Rivest. The most widely used
symmetric stream cipher. Has since been proven
to be insecure. See Stream cipher.

Round keys Utilized in many modern symmetric block ciphers.
The key is expanded and split by some algorithmic
means into a predetermined number of keys which
are used in order in each round of the encryption
and decryption processes.

RSA Named for Rivest, Shamir and Adleman. An
asymmetric encryption system which uses the IFP
as its one-way function. Requires key lengths of
1024 bits or above for security. See also
Asymmetric encryption, Integer Factorization
Problem.

Secret key The key used to decrypt an encrypted message in a
public key/asymmetric system. In a symmetric or
private key system, the secret key is used for both
encryption and decryption.

SecureRandom An inbuilt Java function which allows for the
generation of a secure pseudorandom number.

SET protocols Secure Electronic Transactions. Protocols
implemented in e-commerce.

Shor's algorithm A quantum algorithm for the computing of
discrete logarithms and factorizing integers.
Allows for the completion of such problems in
polynomial time.

Singular mapping A given plaintext maps to exactly one ciphertext
output for a given key.

Sparse matrices A matrix in which the majority of elements are
zero.

Spritz A stream cipher proposed by Rivest & Schuldt
(2014) as an update to the now insecure RC4. See
also Rivest Cipher 4.

SSL Stands for Secure Sockets Layer. The predecessor
to TLS. See TLS.

Steganography The art of hiding messages. Rather than
encrypting a secret message, the existence of the
message is hidden. Often produces undesirable
overheads in computation.

Stream cipher A cryptographic method which operates on data
either bit-by-bit or byte-by-byte. May be defined
as a block cipher with a block size of smaller than
64 bits. Stream ciphers are wither word-oriented
(operating byte-by-byte) or bit-oriented (operating
bit-by-bit). See Rivest Cipher 4.

 129

Substitution An element within the message/data that makes up
the plaintext is swapped for a ciphertext element
by some algorithmic means.

Symmetric Encryption A scheme in which both parties share a single
secret key and algorithm, which is used to encrypt
and decrypt messages/data. The security of the
scheme rests on keeping the key secure.

Systematic codes See Error-correcting codes.
Timing attack A side-channel attack. Involves the timing of the

execution of each stage of the algorithm.
TLS Stands for Transport Layer Security. A protocol

for enabling secure transmission at the network
layer.

Topology The spatial and geometric properties of given
elements.

Transposition See Permutation.
Turing machines Automata that perform operations on sequential

pieces of input based on a predefined set of rules.
UTF-8 Encodes all possible unicode characters in 8-bit

code units. See also ASCII.
Visual Cryptography A secret sharing scheme originally proposed by

Naor and Shamir (1995). Uses a trading scheme
made up of black and white pixels to create shares
of an original secret image, which can then only
be recreated when the authorized participants
recombine their shares. VC makes use of matrices
for share creation.

 130

Appendix B: Source Code

B-1: GENERATION OF PSEUDO-RANDOM BINARY STRINGS
import java.io.Console;

class GenerateBinaryString {

 public static void main(String[] args) {

 Console cons = System.console();

 String length = cons.readLine("Enter length of random binary string : ");

 int stringLength = Integer.parseInt(length);

 int toss;

 String randString = "";

 for (int i = 0; i < stringLength; i++) {

 toss = (int)(Math.random()*2);

 if (toss == 0) { randString = randString+"0"; }

 else { randString = randString+"1"; }

 }

 System.out.println("Random generated string : "+randString);

 }

}

B-2: AES AND RC4 CODE AND ANALYSIS PROGRAMS

B-2i: AES implementation
import java.security.MessageDigest;

import java.util.Arrays;

import javax.crypto.KeyGenerator;

import javax.crypto.SecretKey;

import javax.crypto.spec.SecretKeySpec;

import javax.crypto.spec.IvParameterSpec;

import java.io.Console;

import javax.crypto.Cipher;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

import javax.crypto.*;

 131

import java.security.SecureRandom;

public class AES {

 static String plaintext;

 static String encryptionKey;

 static byte[] initVBytes;

 static SecureRandom pseudoRNG;

 static long megabyte = 1024L*1024L;

 static Console cons;

 public static void main(String [] args) {

 try {

 Runtime running = Runtime.getRuntime();

 running.gc();

 System.out.println("AES Encryption with Randomly Generated Key");

 cons = System.console();

 Boolean keepEncrypting = true;

 int encryptYN = 0;

 long setUpTime, setUpStart, setUpEnd;

 //Generate a random 128-bit key and initialisation vector.

 encryptionKey = "128";

 setUpStart = System.currentTimeMillis();

 KeyGenerator secretKey = KeyGenerator.getInstance("AES");

 secretKey.init(Integer.parseInt(encryptionKey));

 SecretKey randomAESKey = secretKey.generateKey();

 initVBytes = new byte[Integer.parseInt(encryptionKey)/8];

 pseudoRNG = new SecureRandom();

 pseudoRNG.nextBytes(initVBytes);

 setUpEnd = System.currentTimeMillis();

 setUpTime = setUpEnd-setUpStart;

 System.out.println("Set up complete, time taken: "+setUpTime+" ms");

 running.gc();

 long memoryInUse = running.totalMemory() - running.freeMemory();

 System.out.println("Total memory used:

 132

"+((memoryInUse*1.0)/megabyte)+" MB");

 //Encrypt the user entered data.

 while (keepEncrypting) {

 plaintext = cons.readLine("Enter plaintext: ");

 int encryptTimes = Integer.parseInt(cons.readLine("Enter times to

encrypt the data: "));

 byte[] previous = new byte[0];

 System.out.println("plain: " + plaintext);

 for (int i = 0; i < encryptTimes; i++) {

 running.gc();

 long startTime, endTime, encryptTime, decryptTime;

 startTime = System.currentTimeMillis();

 byte[] cipher = encrypt(plaintext, randomAESKey);

 endTime = System.currentTimeMillis();

 encryptTime = endTime-startTime;

 running.gc();

 long encryptMem = running.totalMemory() -

running.freeMemory();

 //The following code measures the change in ciphertext

from the previous output to the current one.

 if (i > 0) {

 AvalancheEffect avEffect = new

AvalancheEffect(cipher, previous);

 double diffBits = avEffect.calculateBits();

 double diffPos = avEffect.calculatePositions();

 System.out.print((i)+",");

 System.out.print((diffBits*100)+",");

 System.out.println((diffPos*100));

 }

 AnalyzeFrequencies freqAnalysis = new

AnalyzeFrequencies(cipher);

 freqAnalysis.displayFrequenciesAES();

 133

 running.gc();

 startTime = System.currentTimeMillis();

 String decrypted = decrypt(cipher, randomAESKey);

 endTime = System.currentTimeMillis();

 decryptTime = endTime-startTime;

 running.gc();

 long decryptMem = running.totalMemory() -

running.freeMemory();

 previous = cipher;

 System.out.println("decrypt: " + decrypted);

 //Print the time taken to encrypt and decrypt the data.

 System.out.print(encryptTime+",");

 System.out.print(decryptTime+",");

 System.out.print((cipher.length*8));

 System.out.println();

 //The following code changes a single bit of one randomly

chosen byte of the plaintext, and is only used when measuring the avalanche effect.

 int toChange = (int)

Math.floor(Math.random()*plaintext.length());

 char temp = plaintext.charAt(toChange);

 String tempStr = temp+"";

 MessageToBinary toBin = new

MessageToBinary(tempStr);

 tempStr = toBin.getBinaryString();

 int toChangeToo = (int)

Math.floor(Math.random()*tempStr.length());

 String changed = "";

 if (tempStr.charAt(toChangeToo) == '0') {

 changed =

tempStr.substring(0,toChangeToo)+"1"+tempStr.substring(toChangeToo+1,tempStr.len

gth());

 } else {

 changed =

 134

tempStr.substring(0,toChangeToo)+"0"+tempStr.substring(toChangeToo+1,tempStr.len

gth());

 }

 byte tmpByte = (byte)(Integer.parseInt(changed, 2));

 temp = (char)(tmpByte & 0xFF);

 plaintext =

plaintext.substring(0,toChange)+temp+plaintext.substring(toChange+1,

plaintext.length());

 //Analyze the frequencies of the ciphertext.

 freqAnalysis.displayFrequenciesAES();

 //The below code checks the overall memory used for the

processes of encryption and decryption.

 running.gc();

 memoryInUse = running.totalMemory() -

running.freeMemory();

 System.out.println((i+1)+","+((encryptMem*1.0)/megabyte)+","+((decryptMem

*1.0)/megabyte));

 }

 encryptYN = Integer.parseInt(cons.readLine("Do you want to

keep encrypting with this key? 1=Y, 2=N : "));

 if (encryptYN == 2) {

 keepEncrypting = false;

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 135

 public static byte[] encrypt(String plaintext, SecretKey secretKey) throws Exception {

 Cipher encryption = Cipher.getInstance("AES/CBC/PKCS5Padding");

 encryption.init(Cipher.ENCRYPT_MODE, secretKey, new

IvParameterSpec(initVBytes));

 return encryption.doFinal(plaintext.getBytes("UTF-8"));

 }

 public static String decrypt(byte[] ciphertext, SecretKey secretKey) throws Exception{

 Cipher decryption = Cipher.getInstance("AES/CBC/PKCS5Padding");

 decryption.init(Cipher.DECRYPT_MODE, secretKey, new

IvParameterSpec(initVBytes));

 return new String(decryption.doFinal(ciphertext),"UTF-8");

 }

}

B-2ii: RC4 implementation
import java.security.*;

import javax.crypto.*;

import java.io.Console;

class RC4 {

 static String plaintext;

 static String encryptionKey;

 static byte[] initVBytes;

 static SecureRandom pseudoRNG;

 static long megabyte = 1024L*1024L;

 static Console cons;

 static SecretKey randomRC4Key;

 static Cipher rC4Cipher;

 public static void main(String[] args) throws Exception {

 Runtime running = Runtime.getRuntime();

 System.out.println("RC4 Encryption with Random 128 bit key");

 cons = System.console();

 long setUpTime, setUpStart, setUpEnd;

 136

 //Initiate setup.

 running.gc();

 setUpStart = System.currentTimeMillis();

 SetUp();

 Boolean keepEncrypting = true;

 int encryptYN = 0;

 setUpEnd = System.currentTimeMillis();

 setUpTime = setUpEnd-setUpStart;

 System.out.println("Set up complete, time taken: "+setUpTime+" ms");

 running.gc();

 long memoryInUse = running.totalMemory() - running.freeMemory();

 System.out.println("Total memory used:

"+((memoryInUse*1.0)/megabyte)+" MB");

 while (keepEncrypting) {

 String plaintext = cons.readLine("Enter plaintext to encrypt: ");

 int encryptTimes = Integer.parseInt(cons.readLine("Enter number

of times to encrypt the data: "));

 byte[] previous = new byte[0];

 for (int i = 0; i < encryptTimes; i++) {

 running.gc();

 long startTime, endTime, encryptTime, decryptTime;

 startTime = System.currentTimeMillis();

 byte[] cipher = encrypt(plaintext);

 endTime = System.currentTimeMillis();

 encryptTime = endTime-startTime;

 running.gc();

 long encryptMem = running.totalMemory() -

running.freeMemory();

 //The following code measures the change in ciphertext

from the previous output to the current one.

 if (i > 0) {

 137

 AvalancheEffect avEffect = new

AvalancheEffect(cipher, previous);

 double diffBits = avEffect.calculateBits();

 double diffPos = avEffect.calculatePositions();

 System.out.print((i)+",");

 System.out.print((diffBits*100)+",");

 System.out.println((diffPos*100));

 }

 AnalyzeFrequencies freqAnalysis = new

AnalyzeFrequencies(cipher);

 freqAnalysis.displayFrequenciesAES();

 running.gc();

 startTime = System.currentTimeMillis();

 String decrypted = decrypt(cipher);

 endTime = System.currentTimeMillis();

 decryptTime = endTime-startTime;

 running.gc();

 long decryptMem = running.totalMemory() -

running.freeMemory();

 previous = cipher;

 System.out.println("decrypt: " + decrypted);

 //Print the time taken to encrypt and decrypt the data.

 System.out.print(encryptTime+",");

 System.out.print(decryptTime+",");

 System.out.print((cipher.length*8));

 System.out.println();

 //The following code changes a single bit of one randomly

chosen byte of the plaintext, and is only used when measuring the avalanche effect.

 int toChange = (int)

Math.floor(Math.random()*plaintext.length());

 138

 char temp = plaintext.charAt(toChange);

 String tempStr = temp+"";

 MessageToBinary toBin = new

MessageToBinary(tempStr);

 tempStr = toBin.getBinaryString();

 int toChangeToo = (int)

Math.floor(Math.random()*tempStr.length());

 String changed = "";

 if (tempStr.charAt(toChangeToo) == '0') {

 changed =

tempStr.substring(0,toChangeToo)+"1"+tempStr.substring(toChangeToo+1,tempStr.len

gth());

 } else {

 changed =

tempStr.substring(0,toChangeToo)+"0"+tempStr.substring(toChangeToo+1,tempStr.len

gth());

 }

 byte tmpByte = (byte)(Integer.parseInt(changed, 2));

 temp = (char)(tmpByte & 0xFF);

 plaintext =

plaintext.substring(0,toChange)+temp+plaintext.substring(toChange+1,

plaintext.length());

 //The below code checks the overall memory used for the

processes of encryption and decryption.

 running.gc();

 memoryInUse = running.totalMemory() -

running.freeMemory();

 System.out.println((i+1)+","+((encryptMem*1.0)/megabyte)+","+((decryptMem

*1.0)/megabyte));

 }

 encryptYN = Integer.parseInt(cons.readLine("Do you want to

keep encrypting with this key? 1=Y, 2=N : "));

 139

 if (encryptYN == 2) {

 keepEncrypting = false;

 }

 }

 }

 public static void SetUp() throws Exception {

 SecureRandom initVector = new SecureRandom();

 KeyGenerator kGen = KeyGenerator.getInstance("RC4");

 kGen.init(128);

 randomRC4Key = kGen.generateKey();

 rC4Cipher = Cipher.getInstance("RC4");

 }

 public static byte[] encrypt(String plaintext) throws Exception {

 rC4Cipher.init(Cipher.ENCRYPT_MODE, randomRC4Key);

 byte[] ciphertext = rC4Cipher.doFinal(plaintext.getBytes());

 return ciphertext;

 }

 public static String decrypt(byte[] ciphertext) throws Exception {

 rC4Cipher.init(Cipher.DECRYPT_MODE, randomRC4Key);

 byte[] plaintext = rC4Cipher.doFinal(ciphertext);

 return new String(plaintext,"UTF-8");

 }

}

B-2iii: AES/RC4 Frequency Analysis Program
class AnalyzeFrequencies {

 private Frequency[] frequencies;

 private int totalValues;

 private int[] occurances;

 140

 public static void main(String[] args) {

 }

 //Takes as input an array of bytes and measures the occurences of each byte.

 public AnalyzeFrequencies(byte[] ciphertext) {

 totalValues = ciphertext.length;

 frequencies = new Frequency[totalValues];

 for (int i = 0; i < totalValues; i++) {

 frequencies[i] = new Frequency("", 0, true, "none", "");

 }

 String temp, xString, yString;

 String actualVal = "none";

 String bitValue = "";

 Boolean exists = false;

 int noOfEntries = 0;

 int x,y;

 byte[] buffer = new byte[1];

 Boolean matrixEntryEmpty = true;

 for (int i = 0; i < ciphertext.length-1; i++) {

 temp = (new Integer(ciphertext[i])+"");

 for (int j = 0; j < totalValues; j++) {

 if (frequencies[j].valueEqual(temp)) {

 frequencies[j].updateOccurances();

 exists = true;

 break;

 }

 }

 if (!exists) {

 noOfEntries++;

 frequencies[noOfEntries].setFreqValue(temp);

 frequencies[noOfEntries].updateOccurances();

 frequencies[noOfEntries].setEmpty(false);

 }

 141

 exists = false;

 }

 }

 public void displayFrequenciesAES() {

 maxOccurBytes();

 for (int i = 1; i < occurances.length; i++) {

 System.out.print(occurances[i] + ",");

 }

 System.out.println();

 }

 public void maxOccurBytes() {

 int max = 0;

 for (int i = 0; i < totalValues; i++) {

 if (max < frequencies[i].getOccurances()) {

 max = frequencies[i].getOccurances();

 }

 }

 occurances = new int[max+1];

 int current = 0;

 for (int i = 0; i < totalValues; i++) {

 current = frequencies[i].getOccurances();

 occurances[current]++;

 }

 }

}

class Frequency {

 private String freqValue;

 private int noOfOccurances;

 private Boolean isEmpty;

 private String actualValue;

 142

 private String bitValue;

 public Frequency(String value, int occurances, Boolean empty, String val, String

bits) {

 freqValue = value;

 noOfOccurances = occurances;

 isEmpty = empty;

 actualValue = val;

 bitValue = bits;

 }

 public void setBitValue(String bits) { bitValue = bits; }

 public String getBitValue() { return bitValue; }

 public void updateOccurances() { noOfOccurances++; }

 public int getOccurances() { return noOfOccurances; }

 public void setEmpty(Boolean empty) { isEmpty = empty; }

 public Boolean isEmpty() { return isEmpty; }

 public void setActualVal(String val) { actualValue = val; }

 public String getActualVal() { return actualValue; }

 public void setFreqValue(String value) { freqValue = value; }

 public Boolean valueEqual(String toCheck) {

 if (toCheck.equals(freqValue)) {

 return true;

 } else {

 return false;

 }

 143

 }

 public String getValue() { return freqValue; }

}

B-2iv: AES/RC4 Avalanche Effect Program
import java.io.Console;

class AvalancheEffect {

 private static int bitsDiffer, positionsDiffer;

 private static byte[] bOne, bTwo;

 public AvalancheEffect(byte[] bytesOne, byte[] bytesTwo) {

 bOne = bytesOne;

 bTwo = bytesTwo;

 }

 public AvalancheEffect() {}

 //Calculate the total number of the same bytes occurring in the two ciphertexts.

 public double calculateBits() {

 int matches = 0;

 double percentMatch;

 for (int i = 0; i < bOne.length; i++) {

 for (int j = 0; j < bTwo.length; j++) {

 if (bOne[i] == bTwo[j]) {

 matches++;

 break;

 }

 }

 }

 percentMatch = ((matches*1.0)/bOne.length);

 return percentMatch;

 }

 144

 //Calculate the total number of bytes occurring in the same positions in the two

ciphertexts.

 public double calculatePositions() {

 int matches = 0;

 double percentMatch;

 for (int i = 0; i < bOne.length; i++) {

 if (bOne[i] == bTwo[i]) {

 matches++;

 }

 }

 percentMatch = ((matches*1.0)/bOne.length);

 return percentMatch;

 }

}

B-2v: AES/RC4 Message to binary string conversion
import java.math.BigInteger;

class MessageToBinary {

 private char[] charSet;

 private byte[] byteSet;

 private static String binaryString;

 public static void main(String[] args) throws Exception {

 MessageToBinary toBinary = new MessageToBinary(args[0]);

 }

 public MessageToBinary(String toConvert) throws Exception {

 byteSet = toConvert.getBytes("UTF-8");

 BigInteger binaryInt = new BigInteger(byteSet);

 binaryString = binaryInt.toString(2);

 }

 145

 public String getBinaryString () {

 return binaryString;

 }

 public String convertToCharacters(String binaryToConvert) {

 BigInteger toHex = new BigInteger(binaryToConvert,2);

 byte[] temp = toHex.toByteArray();

 String toReturn = "";

 try {

 toReturn = new String(temp, "UTF-8");

 } catch (Exception e) {}

 return toReturn;

 }

}

B-3: ELLIPTIC CURVE IMPLEMENTATION

B-3i: Generate EC Key
import java.security.*;

import java.security.spec.*;

class GenerateECCKey {

 private static PublicKey sharedKey;

 private static PrivateKey secretKey;

 public GenerateECCKey(String[] args) throws Exception {

 main(args);

 }

 public static void main(String[] args) throws Exception {

 KeyPairGenerator generate;

 generate = KeyPairGenerator.getInstance("EC", "SunEC");

 ECGenParameterSpec specs;

 146

 specs = new ECGenParameterSpec("secp192r1");

 generate.initialize(specs);

 KeyPair pair = generate.genKeyPair();

 secretKey = pair.getPrivate();

 sharedKey = pair.getPublic();

 }

 public PrivateKey getPrivateKey() { return secretKey; }

 public PublicKey getPublicKey() { return sharedKey; }

}

B-3ii: Complete ECDH protocol
import java.math.BigInteger;

import java.security.*;

import java.security.spec.*;

import javax.crypto.KeyAgreement;

class ECCKeyExchange {

 private static KeyAgreement keyAV, keyAU;

 private static BigInteger secretU, secretV;

 private static long megabyte = 1024L*1024L;

 public static void main(String[] args) throws Exception {

 Runtime running = Runtime.getRuntime();

 running.gc();

 long setupStart = System.currentTimeMillis();

 GenerateECCKey keyPairU = new GenerateECCKey(args);

 GenerateECCKey keyPairV = new GenerateECCKey(args);

 keyAU = KeyAgreement.getInstance("ECDH");

 keyAU.init(keyPairU.getPrivateKey());

 147

 keyAU.doPhase(keyPairV.getPublicKey(), true);

 keyAV = KeyAgreement.getInstance("ECDH");

 keyAV.init(keyPairV.getPrivateKey());

 keyAV.doPhase(keyPairU.getPublicKey(), true);

 secretU = new BigInteger(1, keyAU.generateSecret());

 secretV = new BigInteger(1, keyAV.generateSecret());

 long setupEnd = System.currentTimeMillis();

 long setupTotalTime = setupEnd-setupStart;

 running.gc();

 long memoryInUse = running.totalMemory() - running.freeMemory();

 System.out.println("Secret computed by U: "+

(secretU.toString(16)).toUpperCase());

 System.out.println("Secret computed by V: "+

(secretV.toString(16)).toUpperCase());

 System.out.println("Total time for setup: "+setupTotalTime+" ms");

 System.out.println("Total memory used:

"+((memoryInUse*1.0)/megabyte)+" MB");

 }

}

B-4: VC IMPLEMENTATION

B-4i: 2-out-of-2 VC Encryption scheme
import java.io.Console;

class VisualCryptoBinaryEncryption {

 public static int possibleSubPixelStates = 6;

 public static String randomShareOne, shareTwo;

 private static long megabyte = 1024L*1024L;

 148

 public static void main(String[] args) {

 Runtime running = Runtime.getRuntime();

 running.gc();

 Console cons = System.console();

 long setupStart = System.currentTimeMillis(); //start counter for setup

time.

 String[] subPixelsOne = subPixelStatesOne();

 String[] subPixelsTwo = subPixelStatesTwo();

 long setupEnd = System.currentTimeMillis(); //end counter for setup time.

 long setupTotal = setupEnd-setupStart;

 running.gc();

 long setupMem = running.totalMemory() - running.freeMemory();

 System.out.println("Set up complete. Time taken: "+setupTotal+" ms.");

 System.out.println("Total memory used:

"+((setupMem*1.0)/megabyte)+" MB");

 System.out.println();

 String plaintext = cons.readLine("Enter plaintext to encrypt into shares:

"); //get the binary plaintext string.

 String encryptTimes = cons.readLine("Enter number of times

encryption/decryption should be performed: "); //get the number of repetitions.

 int repetitions = Integer.parseInt(encryptTimes);

 String previousShareOne = "";

 long encryptMem, decryptMem;

 for (int i = 0; i < repetitions; i++) { //perform the repeated encryptions.

 running.gc();

 long encryptStart = System.currentTimeMillis();

 generateRandomShare(plaintext, subPixelsOne, subPixelsTwo);

//split the binary plaintext string into shares.

 long encryptEnd = System.currentTimeMillis();

 long encryptTotal = encryptEnd-encryptStart;

 running.gc();

 encryptMem = running.totalMemory() - running.freeMemory();

 System.out.println("Encryption #"+(i+1));

 System.out.println("Shares generated. Time taken:

 149

"+encryptTotal+" ms."); //display the shares.

 System.out.println("Share one: "+randomShareOne);

 System.out.println("Share two: "+shareTwo);

 System.out.println("Share length: "+shareTwo.length()+" bits.");

 if (i > 0) {

 AvalancheEffect avEffect = new AvalancheEffect();

 double percentSame =

avEffect.stringPos(previousShareOne, randomShareOne);

 System.out.println(i+","+(percentSame*100));

 }

 running.gc();

 long decryptStart = System.currentTimeMillis();

 String combined = recombineShares(randomShareOne,

shareTwo); //recombine the shares into decrypted plaintext.

 long decryptEnd = System.currentTimeMillis();

 long decryptTotal = decryptEnd-decryptStart;

 decryptMem = running.totalMemory() - running.freeMemory();

 System.out.println((i+1)+","+((encryptMem*1.0)/megabyte)+","+((decryptMem

*1.0)/megabyte));

 System.out.println("Shares recombined. Time taken:

"+decryptTotal+" ms.");

 System.out.println("Decrypted plaintext: "+combined);

 Boolean matches = combined.equals(plaintext); //check combined

shares matches original plaintext.

 System.out.println("Decrypted plaintext matches original data:

"+matches);

 System.out.println();

 previousShareOne = randomShareOne;

 //The following code alters the inputted plaintext by exactly one

bit, allowing for measure of the avalanche effect.

 int randPos =

(int)Math.floor((Math.random()*(plaintext.length())));

 String temp = "";

 if (plaintext.charAt(randPos) == '0') {

 150

 temp = plaintext.substring(0,

(randPos))+"1"+plaintext.substring((randPos+1), plaintext.length());

 } else {

 temp = plaintext.substring(0,

(randPos))+"0"+plaintext.substring((randPos+1), plaintext.length());

 }

 plaintext = temp;

 }

 }

 public static String[] subPixelStatesOne() {

 String[] subPixelStringsOne = {"0101", "1010", "1100", "0011", "0110",

"1001"}; //generate the first array of possible subpixel states.

 return subPixelStringsOne;

 }

 public static String[] subPixelStatesTwo() {

 String[] subPixelStringsTwo = {"1010", "0101", "0011", "1100", "1001",

"0110"}; //generate the second array of possible subpixel states.

 return subPixelStringsTwo;

 }

 public static void generateRandomShare(String toSplit, String[]

subPixelStringsOne, String[] subPixelStringsTwo) {

 randomShareOne = "";

 shareTwo = "";

 int randomSubPixel;

 char currentPixel;

 for (int i = 0; i < toSplit.length(); i++) {

 randomSubPixel =

(int)Math.floor(Math.random()*possibleSubPixelStates); //pick a random subpixel state.

 currentPixel = toSplit.charAt(i);

 randomShareOne = randomShareOne +

subPixelStringsOne[randomSubPixel]; //assign the random subpixel state to the first

 151

share.

 if (currentPixel == '1') { //if the pixel equals

1, assign the opposite subpixel state to the second share.

 shareTwo = shareTwo +

subPixelStringsTwo[randomSubPixel];

 } else { //if

the pixel equals 0, assign the same subpixel state to the second share.

 shareTwo = shareTwo +

subPixelStringsOne[randomSubPixel];

 }

 }

 }

 public static String recombineShares(String sOne, String sTwo) {

 String combined = "";

 String tempOne, tempTwo;

 for (int i = 0; i < sOne.length()-3; i+=4) {

 tempOne = sOne.substring(i,i+4);

 tempTwo = sTwo.substring(i,i+4);

 if (tempOne.equals(tempTwo)) {

 combined = combined+"0";

 } else {

 combined = combined+"1";

 }

 }

 return combined;

 }

}

B-4ii: VC Avalanche effect
import java.io.Console;

class AvalancheEffect {

 private static int bitsDiffer, positionsDiffer;

 152

 private static int[] bOne, bTwo;

 private static byte[] byOne, byTwo;

 public AvalancheEffect() {}

 public static double stringPos(String one, String two) {

 int matches = 0;

 double percentMatch;

 for (int i = 0; i < one.length(); i++) {

 if (one.charAt(i) == two.charAt(i)) {

 matches++;

 }

 }

 percentMatch = ((matches*1.0)/one.length());

 return percentMatch;

 }

}

B-5: CME BYTE IMPLEMENTATION

B-5i: CME Byte setup and ByteCE classes

import java.util.*;

import java.io.*;

import java.io.PrintWriter;

import java.util.Arrays;

import java.io.Console;

import java.lang.Math;

import java.math.BigInteger;

class SetUpByteCE {

 public static int totalStrings = 0;

 private static ByteCE[][] matrix;

 public static ByteCE[] bitStrings;

 153

 public static ByteCE[] blankEntries;

 public static int stringLength = 8;

 public static int totalLocations;

 public static int numberOfBlanks;

 public SetUpByteCE(String[] args) {

 main(args);

 }

 public static void main(String[] args) {

 long startTime = System.currentTimeMillis(); //start stopwatch

 Console cons = System.console();

 if (cons == null) {

 System.err.println("No console available.");

 System.exit(1);

 }

 PrintWriter consOut = cons.writer();

 bitStrings = generateBitStrings(stringLength); //generate the array of all

possible bit strings of length n.

 matrix = new ByteCE[totalStrings][totalStrings]; //generate the coordinate

n^4 matrix.

 int numberPerString =(int)

(Math.pow(2,(2*stringLength))/(2*Math.pow(2,stringLength)));

 numberOfBlanks = totalStrings;

 System.out.println("Number of occupied spaces:

"+(totalStrings*numberPerString));

 System.out.println("Number of blank spaces:

"+(totalStrings*numberPerString));

 blankEntries = new ByteCE[totalStrings]; //generate the array of all blank

entries.

 try {

 String currentLine;

 int[] x, y;

 for (int i = 0; i < totalStrings; i++) {

 154

 x = new int[totalLocations];

 y = new int[totalLocations];

 for (int j = 0; j < totalLocations; j++) {

 x[j] =

(int)Math.floor(Math.random()*totalStrings);

 y[j] =

(int)Math.floor(Math.random()*totalStrings);

 while (!(matrix[x[j]][y[j]] == null)) {

 x[j] =

(int)Math.floor(Math.random()*(totalStrings));

 y[j] =

(int)Math.floor(Math.random()*(totalStrings));

 }

 matrix[x[j]][y[j]] = bitStrings[i];

 }

 bitStrings[i].setLocationsX(x);

 bitStrings[i].setLocationsY(y);

 }

 int blanks = 0;

 int randomBlank = 0;

 for (int i = 0; i < totalStrings; i++){

 x = new int[totalLocations];

 y = new int[totalLocations];

 blankEntries[i] = new ByteCE(true);

 for (int j = 0; j < totalLocations; j++) {

 x[j] =

(int)Math.floor(Math.random()*totalStrings);

 y[j] =

(int)Math.floor(Math.random()*totalStrings);

 while (!(matrix[x[j]][y[j]] == null)) {

 x[j] =

(int)Math.floor(Math.random()*(totalStrings));

 y[j] =

(int)Math.floor(Math.random()*(totalStrings));

 }

 155

 matrix[x[j]][y[j]] = blankEntries[i];

 }

 blankEntries[i].setLocationsX(x);

 blankEntries[i].setLocationsY(y);

 }

 consOut.println("Total matrix size:

["+totalStrings+","+totalStrings+"]");

 long endTime = System.currentTimeMillis();

 long timeTaken = endTime-startTime;

 } catch (Exception e) {

 consOut.println("Unknown exception occurred. Operation

terminated. Stack trace below.");

 e.printStackTrace(System.out);

 }

 }

 public static ByteCE[] generateBitStrings(int stringLength) {

 int maxStrings = (int)Math.pow(2.0,((double)stringLength));

 totalStrings = maxStrings;

 totalLocations = (int)

(Math.pow(2,(2*stringLength))/(2*Math.pow(2,stringLength)));

 ByteCE[] bitStrings = new ByteCE[(int)maxStrings];

 byte temp;

 int max = (int)maxStrings;

 int lengthDifference = 0;

 for (int i = 0; i < max; i++) {

 temp = (byte) i;

 bitStrings[i] = new ByteCE(temp, false);

 }

 System.out.println("Total strings: "+maxStrings);

 return bitStrings;

 }

 public ByteCE[][] getMatrix() {

 156

 return matrix;

 }

}

class ByteCE {

 private byte bitValue;

 private Boolean isEmpty;

 private int locationX;

 private int locationY;

 public int[] locationsX;

 public int[] locationsY;

 public static void main(String[] args) {}

 public ByteCE(byte bitVal, Boolean empty) {

 bitValue = bitVal;

 isEmpty = empty;

 }

 public ByteCE(Boolean empty) { isEmpty = empty; }

 public Boolean entryEmpty() { return isEmpty; }

 public byte entryValue() { return bitValue; }

 public int getLocationX() { return locationX; }

 public void setLocationX(int x) { locationX = x; }

 public int getLocationY() { return locationY; }

 public void setLocationY(int y) { locationY = y; }

 public int[] getLocationsX() { return locationsX; }

 157

 public void setLocationsX(int[] x) { locationsX = x; }

 public int[] getLocationsY() { return locationsY; }

 public void setLocationsY(int[] y) { locationsY = y; }

}

B-5ii: CME Byte code
import java.util.*;

import java.io.*;

import java.io.Console;

import java.lang.Math;

class CMEByteFixed {

 private static ByteCE[][] matrix;

 private static ByteCE[] blanks;

 private static ByteCE[] strings;

 private static int totalStrings, noOfBlanks;

 private static SetUpByteCE newMatrix;

 private static Console cons;

 private static String length;

 private static long megabyte = 1024L*1024L;

 private static int[] stringKey;

 public static void main(String[] args) throws Exception {

 //The following code completes the setup of a 256 by 256 key matrix

containing all possible bytes.

 Runtime running = Runtime.getRuntime();

 running.gc();

 long setUpStart = System.currentTimeMillis();

 cons = System.console();

 String[] arg = {"8"}; //Send bit string length as argument to set up.

 newMatrix = new SetUpByteCE(arg); //Create the randomized new matrix

 158

set up.

 matrix = newMatrix.getMatrix(); //Get the matrix pointer.

 blanks = newMatrix.blankEntries; //Get the blank entries.

 strings = newMatrix.bitStrings; //Get the array of bit strings.

 totalStrings = newMatrix.totalStrings; //Get the total number of bit strings.

 noOfBlanks = newMatrix.numberOfBlanks; //Get the total number of

blank entries.

 //Assign the key locations for Exclusive-OR - always the first x coordinate

for each byte. List is the same for each key matrix.

 stringKey = new int[totalStrings]; for (int i = 0; i < totalStrings;

i++) {

 stringKey[i] = strings[i].locationsX[0];

 }

 long setUpEnd = System.currentTimeMillis();

 long setUpTotal = setUpEnd-setUpStart;

 running.gc();

 long memoryInUse = running.totalMemory() - running.freeMemory();

 System.out.println("Total memory used:

"+((memoryInUse*1.0)/megabyte)+" MB");

 System.out.println("Set up complete, time taken: "+setUpTotal+" ms");

 //This code section repeats the encryption process until the user ends it.

 Boolean continueEncrypting = true;

 String continueEncYN;

 int continueYN;

 while (continueEncrypting) {

 performEncryptDecrypt();

 continueEncYN = cons.readLine("Encrypt more data? 1 = Y, 2 =

N : ");

 continueYN = Integer.parseInt(continueEncYN);

 if (continueYN == 1) {

 continueEncrypting = true;

 } else {

 continueEncrypting = false;

 }

 159

 }

 }

 public static void performEncryptDecrypt() throws Exception {

 //Get data and run encryption/decryption.

 Runtime running = Runtime.getRuntime();

 String toEncrypt = cons.readLine("Enter data to encrypt: "); //get the

plaintext.

 int stringLength = toEncrypt.length(); //check plaintext length.

 System.out.println("Entry length: "+(stringLength*8));

 String repeatEncryptions = cons.readLine("How many times do you want

to encrypt and decrypt the data? : ");

 int repeats = Integer.parseInt(repeatEncryptions);

 int[] cipher, previous = new int[0];

 byte[] paddedVersion, plain, bitVersion;

 AnalyzeFrequencies freqOfCT;

 int intLength = stringLength;

 String convertedPT = toEncrypt;

 for (int i = 0; i < repeats; i++) { // complete the encryption/decryption

process as many times as required.

 //Encryption: Time taken & memory in use are measured. String is

converted to bytes.

 //When not measuring memory, gc() calls should be commented

out.

 running.gc();

 long startTime = System.currentTimeMillis();

 bitVersion = convertedPT.getBytes("UTF-8");

 cipher = encrypt(matrix, bitVersion, 8); //encrypt the plaintext.

 long endTime = System.currentTimeMillis();

 long encryptTime = endTime-startTime;

 running.gc();

 long encryptMem = running.totalMemory() -

running.freeMemory();

 160

 //Decryption: Time taken & memory in use are measured. Plaintext

is converted back into a string.

 //When not measuring memory, gc() calls should be commented

out.

 running.gc();

 startTime = System.currentTimeMillis();

 plain = decrypt(matrix, cipher); //decrypt the plaintext.

 try {

 convertedPT = new String(plain, "UTF-8");

 } catch (Exception e) {}

 endTime = System.currentTimeMillis();

 long decryptTime = endTime-startTime;

 running.gc();

 long decryptMem = running.totalMemory() -

running.freeMemory();

 //This prints the time taken for encryption and decryption, and the

resulting ciphertext length.

 System.out.print((encryptTime)+",");

 System.out.print(decryptTime+",");

 System.out.print((cipher.length*8));

 System.out.println();

 //Print out the total memory used for encryption and decryption.

 System.out.println((i+1)+","+((encryptMem*1.0)/megabyte)+","+((decryptMem

*1.0)/megabyte));

 //Analyze the frequencies of bytes occurring in the ciphertext.

 freqOfCT = new AnalyzeFrequencies(cipher, matrix);

 freqOfCT.displayFrequenciesAES();

 //The following section measures the difference in bytes between

the current and previous ciphertexts.

 161

 if (i > 0) {

 AvalancheEffect avEffect = new AvalancheEffect(cipher,

previous);

 double diffBits = avEffect.calculateBits();

 double diffPos = avEffect.calculatePositions();

 System.out.print((i)+",");

 System.out.print((diffBits*100)+",");

 System.out.println((diffPos*100));

 }

 previous = cipher;

 //The following code changes a single bit of one randomly chosen

byte of the plaintext, and is only used when measuring the avalanche effect.

 int toChange = (int) Math.floor(Math.random()*plain.length);

 byte temp = plain[toChange];

 String tempStr = ((char) (temp & 0xFF))+"";

 MessageToBinary toBin = new MessageToBinary(tempStr);

 tempStr = toBin.getBinaryString();

 int toChangeToo = (int)

Math.floor(Math.random()*tempStr.length());

 String changed = "";

 if (tempStr.charAt(toChangeToo) == '0') {

 changed =

tempStr.substring(0,toChangeToo)+"1"+tempStr.substring(toChangeToo+1,tempStr.len

gth());

 } else {

 changed =

tempStr.substring(0,toChangeToo)+"0"+tempStr.substring(toChangeToo+1,tempStr.len

gth());

 }

 temp = (byte)(Integer.parseInt(changed, 2));

 plain[toChange] = temp;

 convertedPT = new String(plain,"UTF-8");

 }

 System.out.println("Original plaintext: " + convertedPT);

 162

 }

 public static int[] encrypt(ByteCE[][] key, byte[] plaintext, int stringLength) {

 int coinToss, location, randomBlank, current, toXOR, currentX, currentY;

 int i = 0, j = 0, k = 0;

 String temp = "";

 int numberPerString = (int)

(Math.pow(2,(2*stringLength))/(2*Math.pow(2,stringLength))); //Get the total possible

locations for each character.

 ByteCE tempByte;

 byte currentByte;

 int blankPadding = (plaintext.length);

 int[] cipher = new int[blankPadding*4];

 while ((j < plaintext.length || k < blankPadding) && i < cipher.length) { //

Ciphertext length should be exactly (plaintext*4).

 coinToss = (int)Math.floor(Math.random()*2.0); //Randomly

distribute enciphered message characters among padding characters.

 //If coin results in heads, insert coordinates for message character.

 if (coinToss == 1 && j < plaintext.length) {

 location =

(int)Math.floor(Math.random()*numberPerString);

 //Exclusive-OR the plaintext character with the next

location of the key.

 toXOR = (stringKey[(j%totalStrings)]);

 current = (plaintext[j] ^ toXOR);

 if (current < 0) { current = current+255; } //If the integer of

a byte is negative, move its range into [0,255].

 cipher[i] = strings[current].locationsX[location];

 cipher[i+1] = strings[current].locationsY[location];

 j++;

 i+=2;

 } else if (k < blankPadding) { //If tails, add empty padding

coordinates.

 randomBlank =

 163

(int)Math.floor(Math.random()*totalStrings);

 location =

(int)Math.floor(Math.random()*numberPerString);

 tempByte = blanks[randomBlank];

 cipher[i] = tempByte.locationsX[location];

 cipher[i+1] = tempByte.locationsY[location];

 k++;

 i+=2;

 }

 }

 return cipher;

 }

 public static byte[] decrypt(ByteCE[][] key, int[] ciphertext) {

 byte[] plaintext = new byte[ciphertext.length/4]; // Plaintext is exactly 1/4

the length of the ciphertext.

 int current = 0;

 int x, y, tempInt, toXOR;

 ByteCE temp;

 for (int i = 0; i < ciphertext.length-1 && current < plaintext.length; i=i+2)

{

 //Decrypt ciphertext coordinates two at a time.

 x = ciphertext[i];

 y = ciphertext[i+1];

 temp = key[x][y];

 if (!(temp.entryEmpty())) {

 //Exclusive-OR the resulting character with the next

position in the key and add the result to the plaintext.

 toXOR = (stringKey[(current%totalStrings)]);

 tempInt = (temp.entryValue() ^ toXOR);

 plaintext[current] = (byte)tempInt;

 current++;

 }

 164

 }

 return plaintext;

 }

}

B-6: CME STRING IMPLEMENTATION

B-6i: CME String setup and Entry classes
import java.util.*;

import java.io.*;

import java.io.PrintWriter;

import java.util.Arrays;

import java.io.Console;

import java.lang.Math;

class SetUp {

 public static int totalStrings = 0;

 private static CoordinateEntry[][] matrix;

 public static CoordinateEntry[] bitStrings;

 public static CoordinateEntry[] blankEntries;

 public static int stringLength;

 public static int totalLocations;

 public static int numberOfBlanks;

 public SetUp(String[] args) {

 main(args);

 }

 public static void main(String[] args) {

 stringLength = 0;

 Console cons = System.console();

 165

 if (cons == null) {

 System.err.println("No console available.");

 System.exit(1);

 }

 PrintWriter consOut = cons.writer();

 String length = args[0];

 try {

 stringLength = Integer.parseInt(length); //turn length into an

integer.

 } catch (Exception e) {

 consOut.println("Error. Enter Numbers only.");

 }

 bitStrings = generateBitStrings(stringLength); //generate the array of all

possible bit strings of length n.

 String fileInput = "MatrixInput.txt";

 String fileOutput = "MatrixOutput.txt";

 BufferedReader br = null;

 BufferedWriter bw = null;

 matrix = new CoordinateEntry[totalStrings][totalStrings]; //generate the

coordinate n^4 matrix.

 int numberPerString =(int)

(Math.pow(2,(2*stringLength))/(2*Math.pow(2,stringLength)));

 numberOfBlanks = totalStrings;

 System.out.println("Number of occupied spaces:

"+(totalStrings*numberPerString));

 System.out.println("Number of blank spaces:

"+(numberOfBlanks*numberPerString));

 blankEntries = new CoordinateEntry[numberOfBlanks]; //generate the

array of all blank entries.

 try {

 String currentLine;

 int[] x,y;

 for (int i = 0; i < totalStrings; i++) {

 x = new int[totalLocations];

 166

 y = new int[totalLocations];

 for (int j = 0; j < totalLocations; j++) {

 x[j] =

(int)Math.floor(Math.random()*totalStrings);

 y[j] =

(int)Math.floor(Math.random()*totalStrings);

 while (!(matrix[x[j]][y[j]] == null)) {

 x[j] =

(int)Math.floor(Math.random()*(totalStrings));

 y[j] =

(int)Math.floor(Math.random()*(totalStrings));

 }

 matrix[x[j]][y[j]] = bitStrings[i];

 }

 bitStrings[i].setLocationsX(x);

 bitStrings[i].setLocationsY(y);

 }

 int blanks = 0;

 for (int i = 0; i < totalStrings; i++){

 x = new int[totalLocations];

 y = new int[totalLocations];

 blankEntries[i] = new CoordinateEntry("", true);

 for (int j = 0; j < totalLocations; j++) {

 x[j] =

(int)Math.floor(Math.random()*totalStrings);

 y[j] =

(int)Math.floor(Math.random()*totalStrings);

 while (!(matrix[x[j]][y[j]] == null)) {

 x[j] =

(int)Math.floor(Math.random()*(totalStrings));

 y[j] =

(int)Math.floor(Math.random()*(totalStrings));

 }

 matrix[x[j]][y[j]] = blankEntries[i];

 }

 167

 blankEntries[i].setLocationsX(x);

 blankEntries[i].setLocationsY(y);

 }

 consOut.println("Total matrix size:

["+totalStrings+","+totalStrings+"]");

 } catch (Exception e) {

 consOut.println("Unknown exception occurred. Operation

terminated. Stack trace below.");

 e.printStackTrace(System.out);

 }

 }

 public static CoordinateEntry[] generateBitStrings(int stringLength) {

 int maxStrings = (int)Math.pow(2.0,((double)stringLength));

 totalStrings = maxStrings;

 totalLocations = (int)

(Math.pow(2,(2*stringLength))/(2*Math.pow(2,stringLength)));

 if (stringLength >= 63) {

 System.out.println("Error. Length must be less than 63.");

 }

 CoordinateEntry[] bitStrings = new CoordinateEntry[(int)maxStrings];

 String temp;

 int max = (int)maxStrings;

 int lengthDifference = 0;

 for (int i = 0; i < max; i++) {

 temp = Integer.toBinaryString(i);

 if (temp.length() != stringLength) {

 lengthDifference = stringLength-temp.length();

 for (int j = 0; j < lengthDifference; j++){

 temp = "0"+temp;

 }

 }

 bitStrings[i] = new CoordinateEntry(temp, false);

 temp = "";

 168

 }

 System.out.println("Total strings: "+maxStrings);

 return bitStrings;

 }

 public CoordinateEntry[][] getMatrix() {

 return matrix;

 }

 public void displayMatrix() {

 for (int i = 0; i < bitStrings.length; i++) {

 for (int j = 0; j < bitStrings.length; j++) {

 System.out.print("[");

 if (matrix[i][j].entryEmpty()) {

 for (int k = 0; k < stringLength; k++) {

 System.out.print("-");

 }

 } else {

 System.out.print(matrix[i][j].entryValue());

 }

 System.out.print("]");

 }

 System.out.println();

 }

 }

}

class CoordinateEntry {

 private String bitValue;

 private Boolean isEmpty;

 private int locationX;

 private int locationY;

 public int[] locationsX;

 public int[] locationsY;

 169

 public static void main(String[] args) {}

 public CoordinateEntry(String bitVal, Boolean empty) {

 bitValue = new String(bitVal+"");

 isEmpty = empty;

 }

 public Boolean entryEmpty() { return isEmpty; }

 public String entryValue() { return bitValue; }

 public int getLocationX() { return locationX; }

 public void setLocationX(int x) { locationX = x; }

 public int getLocationY() { return locationY; }

 public void setLocationY(int y) { locationY = y; }

 public int[] getLocationsX() { return locationsX; }

 public void setLocationsX(int[] x) { locationsX = x; }

 public int[] getLocationsY() { return locationsY; }

 public void setLocationsY(int[] y) { locationsY = y; }

}

B-6ii: CME string code
import java.util.*;

import java.io.*;

import java.io.PrintWriter;

import java.util.Arrays;

import java.io.Console;

 170

import java.lang.Math;

class CoordinateEncryptionAlgorithm {

 private static CoordinateEntry[][] matrix;

 private static CoordinateEntry[] blanks;

 private static CoordinateEntry[] strings;

 private static int totalStrings;

 private static SetUp newMatrix;

 private static int noOfBlanks;

 private static Console cons;

 private static String length, xorString;

 private static long megabyte = 1024L*1024L;

 private static byte[] forXOR;

 public static void main(String[] args) throws Exception {

 Runtime running = Runtime.getRuntime();

 running.gc();

 long setupStart = System.currentTimeMillis();

 cons = System.console();

 length = "4";

 String[] arg = {length}; //Send bit string length as argument to set up.

 newMatrix = new SetUp(arg); //Create the randomized new matrix set up.

 matrix = newMatrix.getMatrix(); //Get the matrix pointer.

 blanks = newMatrix.blankEntries; //Get the blank entries.

 strings = newMatrix.bitStrings; //Get the array of bit strings.

 totalStrings = newMatrix.totalStrings; //Get the total number of bit strings.

 noOfBlanks = newMatrix.numberOfBlanks; //Get the total number of

blank entries.

 forXOR = new byte[totalStrings];

 int temp = 0;

 for (int i = 0; i < totalStrings; i++) {

 temp = strings[i].locationsX[0];

 forXOR[i] = (byte)temp;

 }

 171

 MessageToBinary bin = new MessageToBinary(new

String(forXOR,"UTF-8"));

 xorString = bin.getBinaryString();

 double divisor =

((double)xorString.length()/((double)newMatrix.stringLength));

 if (Math.floor(divisor) != divisor) {

 xorString = padPlaintext(xorString, divisor,

Integer.parseInt(length));

 }

 long setupEnd = System.currentTimeMillis();

 long setupTotal = setupEnd-setupStart;

 newMatrix.displayMatrix();

 running.gc();

 long setupMem = running.totalMemory() - running.freeMemory();

 System.out.println("Set up complete, time taken: "+setupTotal+" ms.");

 System.out.println("Total memory used:

"+((setupMem*1.0)/megabyte)+" MB");

 Boolean continueEncrypting = true;

 String continueEncYN;

 int continueYN;

 while (continueEncrypting) { //Continue encrypting & decrypting until the

user ends the process.

 performEncryptDecrypt();

 continueEncYN = cons.readLine("Encrypt more data? 1 = Y, 2 =

N : ");

 continueYN = Integer.parseInt(continueEncYN);

 if (continueYN == 1) {

 continueEncrypting = true;

 } else {

 continueEncrypting = false;

 }

 }

 }

 172

 public static void performEncryptDecrypt() throws Exception {

 String toEncrypt = cons.readLine("Enter data to encrypt: "); //get the

plaintext.

 String original = toEncrypt;

 Boolean isAlpha;

 String alphaYN = cons.readLine("Is the text in binary format? Y/N: ");

 alphaYN = alphaYN.toUpperCase();

 MessageToBinary toBin = new MessageToBinary();

 if (alphaYN.equals("N")){

 toBin = new MessageToBinary(toEncrypt);

 toEncrypt = toBin.getBinaryString();

 isAlpha = true;

 }

 else { isAlpha = false; }

 int stringLength = toEncrypt.length(); //check plaintext length.

 System.out.println("Entry length: "+stringLength);

 double divisor =

((double)stringLength/((double)newMatrix.stringLength)); //check if plaintext requires

padding.

 String repeatEncryptions = cons.readLine("How many times do you want

to encrypt and decrypt the data? : ");

 int repeats = Integer.parseInt(repeatEncryptions);

 System.out.println("Divisor: "+divisor);

 String cipher, paddedVersion;

 String plain = "";

 Boolean padded;

 AnalyzeFrequencies freqOfCT;

 long padStart = System.currentTimeMillis();

 long encryptMem, decryptMem;

 Runtime running = Runtime.getRuntime();

 if (Math.floor(divisor) == divisor) {

 System.out.println("Entry does not require padding.");

 padded = false;

 paddedVersion = toEncrypt;

 } else {

 173

 paddedVersion = padPlaintext(toEncrypt, divisor,

Integer.parseInt(length));

 padded = true;

 }

 long padEnd = System.currentTimeMillis();

 long padTotal = padEnd-padStart;

 int intLength = Integer.parseInt(length);

 String converted = paddedVersion;

 String previous = "";

 for (int i = 0; i < repeats; i++) { // complete the encryption/decryption

process as many times as required.

 //Encryption: Time taken & memory in use are measured.

 //When not measuring memory, gc() calls should be commented

out.

 running.gc();

 long startTime = System.currentTimeMillis();

 paddedVersion = toBin.xor(converted, xorString,

Integer.parseInt(length));

 cipher = encrypt(matrix, paddedVersion, intLength, intLength);

//encrypt the plaintext.

 long endTime = System.currentTimeMillis();

 long encryptTime = endTime-startTime;

 running.gc();

 encryptMem = running.totalMemory() - running.freeMemory();

 //Decryption: Time taken & memory in use are measured.

 //When not measuring memory, gc() calls should be commented

out.

 running.gc();

 startTime = System.currentTimeMillis();

 plain = decrypt(matrix, cipher, intLength); //decrypt the plaintext.

 converted = toBin.xor(plain, xorString, Integer.parseInt(length));

 endTime = System.currentTimeMillis();

 long decryptTime = endTime-startTime;

 running.gc();

 174

 System.out.println("Plaintext:");

 System.out.println(plain);

 System.out.println("Ciphertext:");

 System.out.println(cipher);

 decryptMem = running.totalMemory() - running.freeMemory();

 //This prints the time taken and memory in use for encryption &

decryption.

 System.out.println((encryptTime+padTotal)+"

"+(decryptTime+padTotal)+" "+cipher.length());

 System.out.println((i+1)+","+((encryptMem*1.0)/megabyte)+","+((decryptMem

*1.0)/megabyte));

 //The following measures the frequencies of the characters in the

ciphertext.

 freqOfCT = new AnalyzeFrequencies(cipher, intLength, matrix);

 freqOfCT.displayFrequencies();

 //This section measures the avalanche effect of the algorithm,

comparing the current and previous ciphertexts.

 if (i > 0) {

 AvalancheEffect avEffect = new AvalancheEffect();

 double percentSame = avEffect.stringPos(cipher,

previous);

 System.out.println(i+" "+(percentSame*100));

 }

 previous = cipher;

 //This section changes the plaintext by exactly one bit. It is only

used when measuring the avalanche effect.

 int randPos = (int)Math.floor((Math.random()*(plain.length())));

 if (plain.charAt(randPos) == '0') {

 toEncrypt = plain.substring(0,

(randPos))+"1"+plain.substring((randPos+1), plain.length());

 175

 } else {

 toEncrypt = plain.substring(0,

(randPos))+"0"+plain.substring((randPos+1), plain.length());

 }

 }

 plain = toBin.xor(plain, xorString, Integer.parseInt(length));

 if (padded) {

 plain = removePadding(plain, divisor, Integer.parseInt(length));

 }

 if (isAlpha) {

 plain = toBin.convertToCharacters(plain);

 }

 String convertedPT = "";

 System.out.println("Decoded binary string matches original input:

"+(plain.equals(original)));

 }

 public static String encrypt(CoordinateEntry[][] key, String plaintext, int

stringLength, int length) {

 String ciphertext = "";

 int coinToss = 0;

 String temp = "";

 int location, lengthDifference, randomBlank, blankX, blankY;

 String xBit, yBit;

 int i = 0;

 int j = 0;

 int blankPadding = plaintext.length();

 while (i < plaintext.length() || j < blankPadding) {

 coinToss = (int) Math.floor(Math.random()*2.0);

 if (coinToss == 0 && i < plaintext.length()) {

 temp = temp + plaintext.substring(i, i+length); //get the

next n bits of the string.

 location = Integer.parseInt(temp, 2); //find the int

equivalent of the bit string

 if (location < 0) { location+=255; }

 176

 int chosenLocation = (int)

Math.floor(Math.random()*newMatrix.totalLocations);

 xBit =

Integer.toBinaryString(strings[location].locationsX[chosenLocation]);

 if (xBit.length() != stringLength) { //make sure the bit

string for location x is nbits long.

 lengthDifference = stringLength-xBit.length();

 for (int k = 0; k < lengthDifference; k++){

 xBit = "0"+xBit;

 }

 }

 yBit =

Integer.toBinaryString(strings[location].locationsY[chosenLocation]);

 if (yBit.length() != stringLength) { //make sure the bit

string for location y is nbits long.

 lengthDifference = stringLength-yBit.length();

 for (int k = 0; k < lengthDifference; k++){

 yBit = "0"+yBit;

 }

 }

 ciphertext = ciphertext+xBit+yBit; //update ciphertext with

new piece of string, bit strings for location x & y.

 temp = ""; //clear temp for next bit section.

 i = i+length; //move ahead to next bit section.

 location = 0;

 } else if (j < blankPadding) {

 randomBlank =

(int)Math.abs(Math.random()*noOfBlanks);

 int chosenLocation = (int)

Math.floor(Math.random()*newMatrix.totalLocations);

 blankX =

blanks[randomBlank].locationsX[chosenLocation];

 blankY =

blanks[randomBlank].locationsY[chosenLocation];

 xBit = Integer.toBinaryString(blankX);

 177

 if (xBit.length() != stringLength) { //make sure the bit

string for location x is nbits long.

 lengthDifference = stringLength-xBit.length();

 for (int k = 0; k < lengthDifference; k++){

 xBit = "0"+xBit;

 }

 }

 yBit = Integer.toBinaryString(blankY);

 if (yBit.length() != stringLength) { //make sure the bit

string for location y is nbits long.

 lengthDifference = stringLength-yBit.length();

 for (int k = 0; k < lengthDifference; k++){

 yBit = "0"+yBit;

 }

 }

 ciphertext = ciphertext+xBit+yBit; //update ciphertext with

new piece of string, bit strings for location x & y.

 j=j+length;

 }

 }

 return ciphertext;

 }

 public static String decrypt(CoordinateEntry[][] key, String ciphertext, int

stringLength) {

 String plaintext = "";

 int i = 0;

 int x,y,j;

 String xBit, yBit;

 String temp = "";

 while (i < ciphertext.length()) {

 temp = ciphertext.substring(i,i+stringLength);

 i=i+stringLength;//update i for next location.

 178

 x = Integer.parseInt(temp, 2);//get integer value for binary string.

 temp = ""; //clear temp for next location.

 temp = ciphertext.substring(i,i+stringLength);

 i = i+stringLength; //update i for next location.

 y = Integer.parseInt(temp, 2); //get integer value for binary string.

 temp = ""; //clear temp for next location.

 if (!matrix[x][y].entryEmpty()) { //test if entry is padding or

message

 plaintext = plaintext+matrix[x][y].entryValue(); //if

message, add value to cipher text.

 }

 }

 return plaintext;

 }

 public static String padPlaintext(String plaintext, double divisor, int length) {

 int padding = (int) (Math.ceil(divisor)*length);

 padding = padding-plaintext.length();

 for (int i = 0; i < padding; i++) {

 plaintext = plaintext + "0";

 }

 return plaintext;

 }

 public static String removePadding(String ciphertext, double divisor, int length)

{

 double padding = (divisor*length);

 int paddingToRemove = (int) ((Math.ceil(divisor)*length)-padding);

 System.out.println("Amount of padding to remove:

"+paddingToRemove);

 String temp = "";

 for (int i = 0; i < (ciphertext.length()-paddingToRemove); i++) {

 179

 temp = temp+ ciphertext.charAt(i);

 }

 return ciphertext = temp;

 }

}

B-7: CME ANALYSIS PROGRAMS

B-7i: Frequency analysis
class AnalyzeFrequencies {

 private Frequency[] frequencies;

 private int totalValues, noOfEntries;

 private int[] blankOccur, fullOccur, bytesOccur;

 private String[] mostOccurances;

 public static void main(String[] args) {

 }

 public AnalyzeFrequencies(String ciphertext, int valueLength,

CoordinateEntry[][] matrix) {

 totalValues =

(int)Math.abs(Math.ceil(ciphertext.length()/(valueLength)));

 frequencies = new Frequency[totalValues];

 for (int i = 0; i < totalValues; i++) {

 frequencies[i] = new Frequency("", 0, true, "none", "");

 }

 String temp, xString, yString;

 String actualVal = "none";

 String bitValue = "";

 Boolean exists = false;

 noOfEntries = 0;

 int x,y;

 180

 byte[] buffer = new byte[1];

 Boolean matrixEntryEmpty = true;

 for (int i = 0; i <= (ciphertext.length()-(valueLength*2));

i=i+(2*valueLength)) {

 temp = ciphertext.substring(i,i+(2*valueLength));

 xString = temp.substring(0, (valueLength));

 yString = temp.substring((valueLength), temp.length());

 x = Integer.parseInt(xString, 2);

 y = Integer.parseInt(yString, 2);

 if (!(matrix[x][y].entryEmpty())) {

 matrixEntryEmpty = false;

 bitValue = matrix[x][y].entryValue();

 }

 for (int j = 0; j < totalValues; j++) {

 if (frequencies[j].valueEqual(temp)) {

 frequencies[j].updateOccurances();

 exists = true;

 break;

 }

 }

 if (!exists) {

 frequencies[noOfEntries].setFreqValue(temp);

 frequencies[noOfEntries].updateOccurances();

 frequencies[noOfEntries].setEmpty(false);

 frequencies[noOfEntries].setBitValue(bitValue);

 noOfEntries++;

 }

 exists = false;

 bitValue = "";

 }

 }

 181

 public void displayFrequencies() {

 maxOccurances();

 for (int i = 1; i < blankOccur.length; i++) {

 System.out.print(blankOccur[i]+","+fullOccur[i]+",");

 }

 System.out.println();

 }

 public void maxOccurances() {

 int maxBlank = 0;

 int maxFull = 0;

 for (int i = 0; i < noOfEntries; i++) {

 if (!(frequencies[i].bitEqual("")) && (maxFull <

frequencies[i].getOccurances())) {

 maxFull = frequencies[i].getOccurances();

 } else if (frequencies[i].bitEqual("") && (maxBlank <

frequencies[i].getOccurances())) {

 maxBlank = frequencies[i].getOccurances();

 }

 }

 int largest = Math.max(maxBlank,maxFull);

 blankOccur = new int[largest+1];

 fullOccur = new int[largest+1];

 int current = 0;

 for (int i = 0; i < noOfEntries; i++) {

 current = frequencies[i].getOccurances();

 if (!(frequencies[i].bitEqual(""))) {

 fullOccur[current]++;

 } else if (frequencies[i].bitEqual("")) {

 blankOccur[current]++;

 }

 }

 }

 public AnalyzeFrequencies(int[] ciphertext, ByteCE[][] matrix) {

 182

 totalValues = ciphertext.length;

 frequencies = new Frequency[totalValues];

 for (int i = 0; i < totalValues; i++) {

 frequencies[i] = new Frequency("", 0, true, "none", "");

 }

 String temp, xString, yString;

 String actualVal = "none";

 String bitValue = "";

 Boolean exists = false;

 noOfEntries = 0;

 int x,y;

 int[] buffer = new int[2];

 Boolean matrixEntryEmpty = true;

 int i = 0;

 while (i < (ciphertext.length-1)) {

 x = ciphertext[i];

 y = ciphertext[i+1];

 temp = x+","+y;

 i+=2;

 for (int j = 0; j < totalValues; j++) {

 if (frequencies[j].valueEqual(temp)) {

 frequencies[j].updateOccurances();

 exists = true;

 actualVal = "none";

 break;

 }

 }

 if (!(matrix[x][y].entryEmpty())) {

 actualVal = ""+(char)(matrix[x][y].entryValue()&

0xFF);

 } else {

 actualVal = "none";

 }

 if (!exists) {

 frequencies[noOfEntries].setFreqValue(temp);

 183

 frequencies[noOfEntries].updateOccurances();

 frequencies[noOfEntries].setEmpty(false);

 frequencies[noOfEntries].setActualVal(actualVal);

 noOfEntries++;

 }

 exists = false;

 }

 }

 public void displayFrequenciesAES() {

 maxOccurBytes();

 for (int i = 1; i < blankOccur.length; i++) {

 System.out.print(blankOccur[i] + ","+fullOccur[i]+",");

 }

 System.out.println();

 }

 public void maxOccurBytes() {

 int maxBlank = 0;

 int maxFull = 0;

 for (int i = 0; i < totalValues; i++) {

 if ((!(frequencies[i].valEqual("none"))) && (maxFull <

frequencies[i].getOccurances())) {

 maxFull = frequencies[i].getOccurances();

 } else if (frequencies[i].valEqual("none") && (maxBlank

< frequencies[i].getOccurances())) {

 maxBlank = frequencies[i].getOccurances();

 }

 }

 int largest = Math.max(maxBlank,maxFull);

 blankOccur = new int[largest+1];

 fullOccur = new int[largest+1];

 mostOccurances = new String[largest+1];

 int current = 0;

 184

 for (int i = 0; i < noOfEntries; i++) {

 current = frequencies[i].getOccurances();

 if (!(frequencies[i].valEqual("none"))) {

 fullOccur[current]++;

 mostOccurances[current] =

mostOccurances[current]+frequencies[i].getActualVal()+",";

 } else if (frequencies[i].valEqual("none")) {

 blankOccur[current]++;

 }

 }

 }

}

class Frequency {

 private String freqValue;

 private int noOfOccurances;

 private Boolean isEmpty;

 private String actualValue;

 private String bitValue;

 public Frequency(String value, int occurances, Boolean empty, String val, String

bits) {

 freqValue = value;

 noOfOccurances = occurances;

 isEmpty = empty;

 actualValue = val;

 bitValue = bits;

 }

 public void setBitValue(String bits) { bitValue = bits; }

 public String getBitValue() { return bitValue; }

 185

 public Boolean bitEqual(String check) {

 Boolean toReturn = (check.equals(bitValue));

 return toReturn;

 }

 public void updateOccurances() { noOfOccurances++; }

 public int getOccurances() { return noOfOccurances; }

 public void setEmpty(Boolean empty) { isEmpty = empty; }

 public Boolean isEmpty() { return isEmpty; }

 public void setActualVal(String val) { actualValue = val; }

 public String getActualVal() { return actualValue; }

 public Boolean valEqual(String check) {

 Boolean toReturn = (check.equals(actualValue));

 return toReturn;

 }

 public void setFreqValue(String value) { freqValue = value; }

 public Boolean valueEqual(String toCheck) {

 Boolean toReturn = (toCheck.equals(freqValue));

 return toReturn;

 }

 public String getValue() { return freqValue; }

}

B-7ii: Avalanche effect
import java.io.Console;

 186

class AvalancheEffect {

 private static int bitsDiffer, positionsDiffer;

 private static int[] bOne, bTwo;

 public static void main(String[] args) {

 Console cons = System.console();

 String sOne = cons.readLine("Enter ciphertext one: ");

 String sTwo = cons.readLine("Enter ciphertext two: ");

 double posChanged = stringPos(sOne, sTwo);

 System.out.println("Bits same: "+(posChanged*100)+"%");

 }

 public AvalancheEffect(int[] bytesOne, int[] bytesTwo) {

 bOne = bytesOne;

 bTwo = bytesTwo;

 }

 public AvalancheEffect() {}

 public double calculateBits() {

 int matches = 0;

 double percentMatch;

 for (int i = 0; i < bOne.length; i++) {

 for (int j = 0; j < bTwo.length; j++) {

 if (bOne[i] == bTwo[j]) {

 matches++;

 break;

 }

 }

 }

 percentMatch = ((matches*1.0)/bOne.length);

 return percentMatch;

 }

 187

 public double calculatePositions() {

 int matches = 0;

 double percentMatch;

 for (int i = 0; i < bOne.length; i++) {

 if (bOne[i] == bTwo[i]) {

 matches++;

 }

 }

 percentMatch = ((matches*1.0)/bOne.length);

 return percentMatch;

 }

 public double stringBits(String one, String two) {

 int matches = 0;

 double percentMatch;

 for (int i = 0; i < one.length(); i++) {

 for (int j = 0; j < two.length(); j++) {

 if (one.charAt(i) == two.charAt(j)) {

 matches++;

 break;

 }

 }

 }

 percentMatch = ((matches*1.0)/one.length());

 return percentMatch;

 }

 public static double stringPos(String one, String two) {

 int matches = 0;

 double percentMatch;

 for (int i = 0; i < one.length(); i++) {

 if (one.charAt(i) == two.charAt(i)) {

 matches++;

 188

 }

 }

 percentMatch = ((matches*1.0)/one.length());

 return percentMatch;

 }

}

B-7iii: CME UTF-8 string to binary conversion
import java.math.BigInteger;

class MessageToBinary {

 private char[] charSet;

 private byte[] byteSet;

 private static String binaryString;

 public static void main(String[] args) throws Exception {

 MessageToBinary toBinary = new MessageToBinary(args[0]);

 }

 public MessageToBinary(String toConvert) throws Exception {

 byteSet = toConvert.getBytes("UTF-8");

 BigInteger binaryInt = new BigInteger(byteSet);

 binaryString = binaryInt.toString(2);

 }

 public String xor(String one, String two, int stringLength) {

 String toReturn = "";

 for (int i = 0; i < (one.length()); i++) {

 if (one.charAt(i) == two.charAt((i)%two.length())){

 toReturn = toReturn+"0";

 } else {

 toReturn = toReturn+"1";

 }

 }

 return toReturn;

 189

 }

 public MessageToBinary() {}

 public String getBinaryString () {

 return binaryString;

 }

 public String convertToCharacters(String binaryToConvert) {

 BigInteger toHex = new BigInteger(binaryToConvert,2);

 byte[] temp = toHex.toByteArray();

 String toReturn = "";

 try {

 toReturn = new String(temp, "UTF-8");

 } catch (Exception e) {}

 return toReturn;

 }

}

 190

Appendix C: Testing Data

C-1: DATA USED IN COMPARISON OF AES, RC4 AND CME
[The following test data was taken from Austen (2006), p.3]

Data Size: 304

IT is a truth universally acknowledged

Data Size: 928

IT is a truth universally acknowledged, that a single man in possession of a good fortune

must be in want of a wife.

Data Size: 3024

IT is a truth universally acknowledged, that a single man in possession of a good fortune

must be in want of a wife. However little known the feelings or views of such a man may

be on his first entering a neighbourhood, this truth is so well fixed in the minds of the

surrounding families, that he is considered as the rightful property of some one or other

of their daughters.

[The following test data was taken from Shakespeare & Ackroyd (2006), p. 1100]

Data Size: 4408

HAMLET: To be, or not to be--that is the question/Whether 'tis nobler in the mind to

suffer/The slings and arrows of outrageous fortune/Or to take arms against a sea of

troubles/And by opposing end them. To die, to sleep--/No more--and by a sleep to say we

end/The heartache, and the thousand natural shocks/That flesh is heir to. 'Tis a

consummation/Devoutly to be wished. To die, to sleep/To sleep--perchance to dream: ay,

there's the rub/For in that sleep of death what dreams may come/When we have shuffled

off this mortal coil/Must give us pause.

Data Size: 8144

HAMLET: To be, or not to be--that is the question/Whether 'tis nobler in the mind to

suffer/The slings and arrows of outrageous fortune/Or to take arms against a sea of

troubles/And by opposing end them. To die, to sleep--/No more--and by a sleep to say we

 191

end/The heartache, and the thousand natural shocks/That flesh is heir to. 'Tis a

consummation/Devoutly to be wished. To die, to sleep/To sleep--perchance to dream: ay,

there's the rub/For in that sleep of death what dreams may come/When we have shuffled

off this mortal coil/Must give us pause. There's the respect/That makes calamity of so

long life/For who would bear the whips and scorns of time/Th' oppressor's wrong, the

proud man's contumely/The pangs of despised love, the law's delay/The insolence of

office, and the spurns/That patient merit of th' unworthy takes/When he himself might his

quietus make/With a bare bodkin? Who would fardels bear/To grunt and sweat under a

weary life/But that the dread of something after death/The undiscovered country

[The following data was used to measure the effect of a chosen plaintext attack.]

Data Size: 4048

aaa

aaa

aaa

aaa

aaa

aaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

C-2: DATA USED IN COMPARISON OF CME AND VC (PSEUDORANDOM
BINARY STRINGS)
[The following test data was generated using the program detailed in Appendix B-1.]

Data Size: 16 bits

1101000110111011

Data Size: 32 bits

11000111111010101011000010010101

Data Size: 64

0011011100110111110001111000011101100110011010000111110100011110

Data Size: 128

 192

1100100101001100011111110110001110101101111111101111001111100011001100

1011110001110100101110010001111011011001101011010111101011

Data Size: 256

0100101001000110100101111011101011101101000110100111110010101011011110

0110001100111001001100101000100010000100000110000110101100011100111011

0000110011100110100110101101010001100111001011111100100010001000000101

1000101110100000011010101011110011101100000000

Data Size: 512

0100010100000100000100100111101011101101111011001110011100100111001000

1000101100000011011110000010010010001001100100110110101100111111111101

1001000010011000110111010110000011000110101001100010110110111101001100

0000110010110110101011000101011111110000001001100100101101010000101111

0101000101111101001000010010011100111110100111100110010101010001010111

0000010000010101111110010001010011110101100011100100010111110011010011

0011000011110101110011011100101010011101010000101001010100010101010111

1100111110010001101000

 193

Appendix D: Example Results

D-1: EXAMPLE RESULT FROM AES

AES Encryption with Randomly Generated Key
Set up complete, time taken: 202 ms
Total memory used: 3.6447067260742188 MB
Enter plaintext: IT is a truth universally acknowledged
Enter times to encrypt the data: 1
plain: IT is a truth universally acknowledged
37,5,
decrypt: IT is a truth universally acknowledged
10,0,384
37,5,
1,1.4362640380859375,1.3887176513671875
Do you want to keep encrypting with this key? 1=Y, 2=N : 2

D-2: EXAMPLE RESULT FROM RC4

RC4 Encryption with Random 128 bit key
Set up complete, time taken: 783 ms
Total memory used: 2.3383026123046875 MB
Enter plaintext to encrypt: IT is a truth universally acknowledged
Enter number of times to encrypt the data: 1
33,2,
decrypt: IT is a truth universally acknowledged
5,0,304
1,1.3647308349609375,1.3632888793945312
Do you want to keep encrypting with this key? 1=Y, 2=N : 2

D-3: EXAMPLE RESULT FROM ECDH

Secret computed by U:
1F41B47533CF7128ED4B0C12335A8AD7F96850EB3A704B83
Secret computed by V:
1F41B47533CF7128ED4B0C12335A8AD7F96850EB3A704B83
Total time for setup: 157 ms
Total memory used: 1.19158935546875 MB

D-4: EXAMPLE RESULT FROM VC

Set up complete. Time taken: 0 ms.
Total memory used: 0.40460205078125 MB

Enter plaintext to encrypt into shares: 1101000110111011
Enter number of times encryption/decryption should be performed: 1
Encryption #1
Shares generated. Time taken: 1 ms.
Share one:

 194

0101110001101010100101100011011011000110100101101001100110011010
Share two:
1010001101100101100101100011100100110110011010010110100101100101
Share length: 64 bits.
1,0.44730377197265625,1.7277297973632812
Shares recombined. Time taken: 0 ms.
Decrypted plaintext: 1101000110111011
Decrypted plaintext matches original data: true

D-5: EXAMPLE RESULT FROM BYTE CME

Total strings: 256
Number of occupied spaces: 32768
Number of blank spaces: 32768
Total matrix size: [256,256]
Total memory used: 1.2040176391601562 MB
Set up complete, time taken: 74 ms
Enter data to encrypt: IT is a truth universally acknowledged
Entry length: 304
How many times do you want to encrypt and decrypt the data? : 1
0,0,1216
1,1.2431411743164062,1.2433090209960938
38,38,
Original plaintext: IT is a truth universally acknowledged
Encrypt more data? 1 = Y, 2 = N : 2

D-6: EXAMPLE RESULT FROM BIT-STRING CME

Total strings: 16
Number of occupied spaces: 128
Number of blank spaces: 128
Total matrix size: [16,16]
Set up complete, time taken: 24 ms.
Total memory used: 0.43534088134765625 MB
Enter data to encrypt: 1101000110111011
Is the text in binary format? Y/N: Y
Entry length: 16
How many times do you want to encrypt and decrypt the data? : 1
Divisor: 4.0
Entry does not require padding.
Plaintext:
0011000100011011
Ciphertext:
0001101010100001011100000001001100100011001010001011110100110011
0 0 64
1,0.47379302978515625,1.7539520263671875
4,4,
Decoded binary string matches original input: true
Encrypt more data? 1 = Y, 2 = N : 2

