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ABSTRACT 

This thesis presents several novel methods to address some of the real 

world data modelling issues through the use of local and individualised modelling 

approaches. A set of real world data modelling issues such as modelling evolving 

processes, defining unique problem subspaces, identifying and dealing with 

noise, outliers, missing values, imbalanced data and irrelevant features, are 

reviewed and their impact on the models are analysed. 

The thesis has made nine major contributions to information science, 

includes four generic modelling methods, three real world application systems 

that apply these methods, a comprehensive review of the real world data 

modelling problems and a data analysis and modelling software.  

Four novel methods have been developed and published in the course of 

this study. They are: (1) DyNFIS – Dynamic Neuro-Fuzzy Inference System, (2) 

MUFIS – A Fuzzy Inference System That Uses Multiple Types of Fuzzy Rules, (3) 

Integrated Temporal and Spatial Multi-Model System, (4) Personalised 

Regression Model.  

DyNFIS addresses the issue of unique problem subspaces by identifying 

them through a clustering process, creating a fuzzy inference system based on 

the clusters and applies supervised learning to update the fuzzy rules, both 

antecedent and consequent part. This puts strong emphasis on the unique 

problem subspaces and allows easy to understand rules to be extracted from the 

model, which adds knowledge to the problem.  

MUFIS takes DyNFIS a step further by integrating a mixture of different 

types of fuzzy rules together in a single fuzzy inference system. In many real 

world problems, some problem subspaces were found to be more suitable for 

one type of fuzzy rule than others and, therefore, by integrating multiple types of 

fuzzy rules together, a better prediction can be made. The type of fuzzy rule 
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assigned to each unique problem subspace also provides additional 

understanding of its characteristics.   

The Integrated Temporal and Spatial Multi-Model System is a different 

approach to integrating two contrasting views of the problem for better results. 

The temporal model uses recent data and the spatial model uses historical data 

to make the prediction. By combining the two through a dynamic contribution 

adjustment function, the system is able to provide stable yet accurate prediction 

on real world data modelling problems that have intermittently changing patterns. 

The personalised regression model is designed for classification problems. 

With the understanding that real world data modelling problems often involve 

noisy or irrelevant variables and the number of input vectors in each class may be 

highly imbalanced, these issues make the definition of unique problem 

subspaces less accurate. The proposed method uses a model selection system 

based on an incremental feature selection method to select the best set of 

features. A global model is then created based on this set of features and then 

optimised using training input vectors in the test input vector‟s vicinity. This 

approach focus on the definition of the problem space and put emphasis the test 

input vector‟s residing problem subspace. 

The novel generic prediction methods listed above have been applied to 

the following three real world data modelling problems: 

1. Renal function evaluation which achieved higher accuracy than all 

other existing methods while allowing easy to understand rules to be 

extracted from the model for future studies.  

2. Milk volume prediction system for Fonterra achieved a 20% 

improvement over the method currently used by Fonterra. 

3. Prognoses system for pregnancy outcome prediction (SCOPE), 

achieved a more stable and slightly better accuracy than traditional 

statistical methods. 
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These solutions constitute a contribution to the area of applied information 

science. 

In addition to the above contributions, a data analysis software package, 

NeuCom, was primarily developed by the author prior and during the PhD study 

to facilitate some of the standard experiments and analysis on various case 

studies. This is a full featured data analysis and modelling software that is freely 

available for non-commercial purposes (see Appendix A for more details). 

In summary, many real world problems consist of many smaller problems. 

It was found beneficial to acknowledge the existence of these sub-problems and 

address them through the use of local or personalised models.  

The rules extracted from the local models also brought about the 

availability of new knowledge for the researchers and allowed more in-depth 

study of the sub-problems to be carried out in future research. 
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CHAPTER 1  INTRODUCTION 

1.1 Motivation and Objective 

Real world data modelling has always been a difficult task. There has not 

been one method that claims to outperform all other method on all problems.  

This is because real world problems are usually highly complex and unique, often 

consisting of a mixture of sub-problems. It is evident by the recent focus on the 

mixture of models approach to achieve higher prediction accuracy (Cevikalp & 

Polikar, 2008; Islam, Xin, Shahriar Nirjon, Islam, & Murase, 2008; Kasabov, 

2007a; Kim, Pang, Je, Kim, & Bang, 2002; Lei, Yang, & Wu, 2006; Minh Ha, 

Abbass, & McKay, 2008; Pang, 2004; Xin & Yong, 1998; Zhou & Jiang, 2003). 

This principle has been applied in many other fields in the world. Take 

consumer product marketing as an example, it may be good to design one 

product that meets the needs of all customers reasonably well but it is better to 

identify groups of customers with slightly different needs and to design a 

specialised solution for each group. This is demonstrated by the number of 

different types of shampoo available in the supermarket. Most well known brands 

offer multiple products targeting different groups of customers that have different 

needs.  

The same applies to data modelling; if one is to predict whether a patient 

will have disease or not, there may be several groups of patients that have the 

same disease but for each group, the cause of the disease may be different for 

each group. There are even more groups of patients that are healthy for different 

reasons.  

There have been many approaches proposed to address some of the 

unique problem subspaces by breaking down a problem into multiple 

sub-problems and to address each one independently. SVM-Tree (Pang, 2004) 

and SVM-ensemble (Kim et al., 2002) are two well known algorithms that adopt 
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this type of approach. There are also a large number of applications that apply 

this approach to solve real world data modelling problems such as breast cancer 

diagnosis (Ü beyli, 2005), glucose monitoring (Kurnik et al., 1999), and motor 

engine fault diagnosis (Sharkey, Chandroth, & Sharkey, 2000).  

A survey of previous literatures shows that there are three types of 

approach to breaking down a problem: 

1. Divide and conquer: if the problem is too difficult for the one model, break it 

down into easier sub-problems recursively until these are easy enough to 

be solved with simple solutions. 

2. Clustering: divide the problem space into various regions using clustering 

techniques, train multiple models for each region and use the best model 

for each region.  

3. Individualised model with transductive reasoning is another way to 

address the issue. It does not break the problem down as the two 

approaches listed above do and instead, it ignores the problem subspaces 

that are irrelevant to the current prediction. This, therefore, simplifies the 

problem and focus only on the sub-problem of concern.  

The objective of this thesis is to address the issue of real life data 

modelling, particularly by addressing problems that consist of a mixture of 

sub-problems using a mixture of local models or a personalised model strategy.  

1.2 Main Contributions 

There are nine main contributions of this thesis: 

1. Comprehensive analysis and review of the real world data modelling 

problems. 

2. A novel generic method: Dynamic Neuro-Fuzzy Inference System 

(DyNFIS), published in the ICONIP 2008 Conference Proceedings. 

Entered in Neural Network Forecasting Competition (NN3) in 2007, 
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achieved 10th place in the 11-time-series datasets among other neural 

networks models.  

3. A novel generic method: neuro-fuzzy inference system with multiple fuzzy 

rules (MUFIS), published in the WCCI 2008 conference proceeding. 

4. A renal function evaluation (GFR) system based on MUFIS.  

5. A novel generic method, an integrated multi-model system using both 

temporal and spatial models for different views. Published in KEDRI / 

Fonterra 2007 technical report. 

6. A milk volume prediction system based on the integrated multi-model 

system. Delivered to Fonterra in 2007.  Published in a commercial, 

confidential technical report.  

7. A generic personalised regression method with incremental feature 

selection for classification problems. 

8. The Data analysis and applying the personalised regression method on 

the Pregnancy outcome prediction case study (SCOPE study). Published 

in a technical report for (SCOPE) study.  

9. NeuCom - A Neuro-computing Decision Support Environment (Hwang et 

al., 2009). This software was primarily developed and maintained by the 

author prior and during the PhD study. It was used in all case studies as an 

aid to: visualise, manipulate, cluster and transform data, rank features 

develop models and measure generalisation errors (see Appendix A for 

more details). The generic methods proposed in this thesis are to be 

included in the next release of NeuCom. 

1.3 Thesis Structure 

The thesis is structured as follows: 

CHAPTER 1 presents an introduction to the PhD study and a brief 

description of the issues related to real world data modelling.  
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CHAPTER 2 presents a critical analysis of the issues related to real world 

data modelling problems and review methods that have been proposed to 

address them.  

CHAPTER 3 presents a review of relevant literatures on data modelling, 

normalisation, feature selection, modelling, clustering and fuzzy inference 

systems. It reviews a set of existing methods that are adopted as part of the 

proposed novel methods.  

CHAPTER 4 presents a generic, novel fuzzy inference system, DyNFIS 

(Hwang & Song, 2008), which improves the original DENFIS algorithm by 

adopting supervised learning on the fuzzy membership function and uses 

Gaussian membership function instead of the triangular membership function. 

This algorithm was validated on the Mackey-glass benchmark dataset and later 

entered in the NN3 competition to compete with other well established algorithms. 

The algorithm achieved 10th place among other 90 competitors in the 

11-time-series competition, without extensive optimisation applied by some of the 

competitors. 

CHAPTER 5 presents a generic, novel fuzzy inference system, MUFIS 

(Hwang, Song, & Kasabov, 2008), which improves DyNFIS by allowing multiple 

types of fuzzy rules to be used in a single fuzzy inference system. This allows 

more suitable consequent function to be used in a fuzzy rule and, therefore, leads 

to better prediction accuracy.   

CHAPTER 6 presents a generic, novel, multi-model system that 

implements a modified version of the multi-model framework proposed by 

Kasabov in 2007 (Kasabov, 2007b) that utilises both temporal and spatial models 

to allow two contrasting views on a single problem.  

CHAPTER 7 presents a case study on a milk production volume prediction 

problem using the methods proposed in chapter 6, allowing the temporal model 

to make a prediction based only on only the recent data and the spatial model to 

make a prediction based only on the historical data only.  
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CHAPTER 8 presents a generic, novel, personalised regression model for 

classification problems. This method focuses on defining the problem space 

through the use of extensive incremental feature selection procedure. The 

process is based on univariate analysis of the data and previous studies on these 

variables, when available. For each prediction, a personalised regression model 

is created dynamically by optimising the global model with local training input 

vectors that are in the vicinity of the test input vector.  

CHAPTER 9 presents a case study on pregnancy outcome prediction 

using the personalised regression method proposed in Chapter 8. 

CHAPTER 10  presents the discussion, conclusion and future work. 
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CHAPTER 2  REAL WORLD DATA MODELLING ISSUES - A 

CRITICAL ANALYSIS 

There are significant differences between real world problem and 

synthetic problem. Synthetic problems are man-made to demonstrate the ability 

of a method to solve a particular problem. For these problems, the focus is on 

highlighting a particular type of problem and how it was solved.  

Real world problems, on the other hand, are real challenges that may 

involve various issues and problems that are beyond the researchers‟ 

imagination.  

There are several issues in, or characteristics of, real world data modelling 

problems that may have an effect on today‟s modelling methods. 

 Evolving problems 

 Unique problem subspaces 

 Noise 

 Outliers 

 Missing values 

 Imbalanced data 

 Irrelevant features 

The details of each issue are discussed below: 

2.1 Evolving Problems 

Many real world problems evolve over time with new patterns emerging 

without precedence. These evolving problems have appeared in many fields, 

including biomedical sciences (Marshall, Song, Ma, MacDonell, & Kasabov, 2005; 

Rodrigo & Learn, 2000), Finance (Widiputra, Pears, Serguieva, & Kasabov, 

2008), online document classification (Z. Chen, Huang, & Murphey, 2007) and 
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Ecology (Damousis, Alexiadis, Theocharis, & Dokopoulos, 2004). There is 

usually a large amount of historical data available and new data is collected on an 

ongoing basis. As the amount of data increases, the resources required to 

develop a model also expands. It is not possible to develop a fixed model that 

works on future data if the problem changes over time. 

The ever increasing amount of data in this type of problem is also an issue 

as some neural network models requires iterative training using all available data 

and, therefore, the more data that is available, the longer the training time. There 

is also the issue of storing the data if more is always coming, in some cases, this 

is impossible.  

Various global and local models with an incremental learning capability 

have been proposed to address this issue (Domeniconi & Gunopulos, 2001; 

Kasabov & Song, 2002; Okamato, Ozawa, & Abe, 2003; Ozawa, Pang, & 

Kasabov, 2008; Wenhua & Jian, 2004; Widiputra et al., 2008), by adding the 

ability to learn knowledge from new data without losing previously learned 

knowledge and to discard most of the data once it has been processed. 

The individualised model with transductive reasoning also addresses part 

of this problem. This type of model is created dynamically based on only the 

relevant data. This reduces the time required to train a model due to smaller size 

of the training data and allows the latest data to be used, but increases the time 

required to search for relevant data in the entire dataset.   

2.2 Unique Problem Subspaces 

A unique problem subspace is defined as a specific region in the problem 

space that has significantly different characteristics from the rest. See Figure 3.2. 

Because of this, a global model may not work well in all these different regions 

since it focus on solving the overall problem.  
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These regions may be identified through clustering processes such as 

k-means (MacQueen, 1967), fuzzy c-means (Dunn, 1973) or hierarchical 

clustering (Johnson, 1967), which assigns input vectors to groups (clusters) 

based on their similarity. The similarity is measured using distance measures 

such as Euclidean and Manhattan distances. These clusters can be treated 

differently or contribute to the output at different levels, based on their 

characteristics.  

Many global and local models (Bishop & Svens én, 2003; Kasabov & 

Song, 2002; Koskela, Varsta, Heikkonen, & Kaski, 1998; Vernieuwe, Verhoest, 

De Baets, Hoeben, & De Troch, 2007) make use of cluster information and apply 

appropriate methods depend on the characteristics of the cluster to achieve 

better prediction accuracy.  

2.3 Noise 

Noise, or measurement error, refers to a difference in value when the 

same object is measured multiple times. It is can be either systematic error or 

Gaussian white noise.  

Systematic error - the measurement is biased and leads to situation where 

the measured value is constantly higher or lower than the actual value. 

Systematic error may be corrected if the amount of bias is known. 

Gaussian white noise or nature process variation - the measurement 

differs from the actual value at random. It may be filtered to remove the noise, but 

it will lead to lose of information in the details.  

Noise is a by-product of the normal data collection process, as most 

measuring equipment carries a certain degree of error. This may be caused by 

the data source, measuring method and/or equipment and usually cannot be 

completely eliminated. The term “noise” used in this thesis refers to Gaussian 

white noise.  
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There is a significant difference in the negative impacts caused by noise 

depends on whether it appears in the input variables or the output. The noise that 

appear in the output data of the dataset is named “Output Noise” and the noise 

that appear in the input variables is named “Input Noise” 

2.3.1 Output Noise 

Output noise refers to the uncertainty in the output values which are 

unpredictable in nature. This limits the performance of the model.  For example, if 

we have 10 patients with identical clinical records and a model is trained to 

predict the risk of these patients to have disease X. In theory, these 10 patients 

should all have the same risk, but in reality, all 10 patients have very different risk, 

it could range between 5% to 15%. If we train a model with all 10 patients, the 

predicted risk will most likely to be 10% for all patients. This is caused by 

inaccurate estimate of risk in the training data, hence the output noise. There is 

no logical way to improve this prediction. 

Output noise has a negative impact on all data modelling problems, 

particularly on classification problems where the values are binary.   

2.3.2 Input Noise 

Input noise has a more complicated influence on the model than output 

noise. Input variables define the problem space. Noise blurs the definition of the 

problem space and is known to increase generalisation error in proportion to the 

amount of noise (Sugiyama, Okabe, & Ogawa, 2004). This can cause 

misperception on the problem and therefore causes incorrect solution to be 

derived. In feature selection methods, input noise causes incorrect evaluation of 

a feature‟s discriminating power. In clustering, it affects the position of data points 

and leads to incorrect clusters to be identified.  
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See Figure 3.4 for an example of input noise affecting a model‟s prediction. 

In a data modelling problem that contains useful patterns, they are likely to be 

masked by the noise and leads to a reduction in the model‟s prediction accuracy. 

2.4 Outliers 

In addition to noise, random and abnormal events sometimes occur in real 

life and they are reflected in the data, appearing as outliers (Ruey, 1988). They 

are often caused by human error, natural events or equipment failure. Outliers 

have a negative influence on the models and should therefore be identified and 

removed. (See Figure 2.1 for an example of an outlier‟s influence) 

 

Figure 2.1 A single outlier in a group of 11 input vectors can 

significantly compromise a model. 

It can be difficult to identify outliers from normal data. One way is to identify 

them during the data collection process when something abnormal happens and 

correct them accordingly based on the type of event. This may be the only way to 

remove outliers that happen to be very similar to normal data. This does require a 

good knowledge of the data domain. 
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Unfortunately this information is available for only a very small number of 

problems when the researcher was aware of possible causes of outliers and has 

a procedure in place to record them as part of the data collection process. If 

outliers are not identified before they are entered into the dataset, removing them 

will be a subjective exercise to decide whether a value is an outlier or not. 

When a suspected outlier is identified, removing it may not be a simple 

process. Some outliers can be transformed to normal data if the cause of the 

outlier is known, which can help improving the quality of the dataset. This is 

particularly important on smaller experiments where every piece of data is 

crucial.   

2.4.1 Identifying Outliers 

Most outlier detection methods are based on mean and standard deviation 

for data with normal distribution, Chauvenet's Criterion (Ross, 2003; Taylor, 1997) 

is an example of this type of method, with the assumption that if a value falls 

outside the acceptable range from the mean, it is likely to be an outlier.  

Scatter plot and histogram are the two commonly used visual aids for 

manually identifying outliers for problems with few variables. For real world 

problems with large numbers of variables, it becomes very difficult, if not 

impossible, to identify outliers. This is due to the fact that many variables may be 

noisy and less relevant to the problem. There is no sure way of deciding whether 

one value is an outlier or an emerging problem subspace.  

2.4.2 Dealing with Outliers 

If a model is trained with data that contains outliers, the model‟s 

performance is likely to be compromised by the incorrect training it has received. 

(See Figure 2.1) 

There are several ways to deal with outliers, as follows: 
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2.4.2.1 Delete the outliers 

If there is only a very small number of outliers in a large dataset, the 

outliers can simply be removed or treated as missing values if they can be 

identified.  

2.4.2.2 Transform the outliers 

 It is possible to transform outliers into normal data without introducing 

significant problem if the cause of the outliers is known.  

Consider this scenario: a farm produces x litres of milk per day and the 

milk is picked up every evening. In one instance, the farm was not able to finish 

the milking on time and therefore some of the milk has to be picked up in the next 

shift. On the milk collection company‟s record, the current day‟s milk pickup 

volume is lower than normal, and the next day‟s pickup volume is higher than 

normal. The input vectors for these two days may be identified as outliers by the 

milk collection company. However, since the cause of this outlier is known, it can 

be transformed to correct value by adjusting the milk volume of these two days 

based on the recent trend.  

2.5 Missing data 

Here missing data is referred to as the missing values in a variable.  

2.5.1 Random Missing (Scheffer, 2002) 

1. Missing completely at random (MCAR) 

For an input vector, if the missing variable is unrelated to other 

variables and the data was collected randomly, this is called 

missing completely at random. This type of random missing may be 

treated through imputation methods.  

2. Missing at random (MAR) 
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“Missing values are not randomly distributed across all 

observations but are randomly distributed within one or more 

subsamples (ex., missing more among whites than non-whites, but 

random within each subsample)” (Garson, 2008) 

This type of random missing may be treated through imputation 

methods taking into relevant variables into consideration.  

3. Not missing at random (NMAR) 

The value of a certain variable in an input vector is missing because of its 

value. For example, low income patients are less likely to provide their 

income details. This type of missing value may not be treated directly. One 

must identify the cause and then treat it manually.  

Here, the data is missing occasionally for a reason. This is different from 

Structure missing, as explained later in this section, where the data is 

missing by design.  

2.5.2 Random Missing Value Treatment 

There are various methods to treat both MCAR and MAR using its relation 

to other variables or its distribution. Commonly used methods are expectation 

maximisation (EM) (Jamshidian & Jennrich, 1997), multiple  imputation (Schafer, 

1999), medium values, minimum value, maximum value and K-Nearest 

Neighbour (KNN) method (Hastie et al., 1999; Qinbao, Martin, Xiangru, & Jun, 

2008) are all often used. 

It is critical to know the cause of the missing value before treating it. For 

example, if the cause of the missing values is due to the fact that the measuring 

equipment is unable to detect any value below 0.5, then the missing values 

should be filled with either the minimum value of the population or zero. If the 

missing values are treated with an inappropriate method such as average of the 

observed individuals, then it will leads to mean of the variable to be higher than 

the actual mean and leads to higher generalisation error. 
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Some models, such as C4.5 decision tree (Quinlan, 1993), K-Nearest 

Neighbour (Dasarathy, 1990) and Weighted K-Nearest Neighbour (Lora, Santos, 

Exposito, Ramos, & Santos, 2007), can work with missing values directly, without 

imputing the values prior to the training process. However, the prediction made 

for input vectors with missing values may not be as trust worthy as the rest.  

2.5.3 Structural Missing 

Structural missing refers to values that are missing for a valid reason and 

therefore should not be treated as random missing values. Take pregnancy 

clinical examinations for example, previous pregnancy details should be missing 

for patients that are in their first pregnancy. This type of missing value may be 

caused by the experiment design and no attempts should be made to fill in the 

missing value in this case.  

2.6 Imbalanced data 

This issue refers to the dataset for classification problems where one class 

has significantly more input vectors than others thereby causing the minority 

class to be “overwhelmed” by the majority class (Japkowicz, 2000b; Kubat & 

Matwin, 1997).  

In many research fields, particularly in biomedical science, prediction of 

any disease with low prevalence will have imbalanced dataset as the number of 

input vectors in the disease class is many times less than the healthy class.  

Preeclampsia is a typical example, only 5% of pregnant women are expected to 

have it in their first pregnancy (Cnossen et al., 2006).  

Most of today‟s modelling methods are designed with the assumption that 

the dataset is balanced between classes since their objective function is overall 

accuracy (Japkowicz, 2000a). When these methods are applied to imbalanced 

datasets, the outcome will be biased toward the class with more input vectors 

since that class contributes more to overall accuracy. 
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In addition, if the problem space is large and/or the input vectors in the 

disease group are few, there may not be enough disease input vectors to cover 

the problem space sufficiently and resulting in an incomplete model. See Figure 

2.2 for an example, most of the problem space is filled with the healthy patients. 

With so few patients with disease, it is very likely that some of other sub-groups 

(types) of disease patients may not be included in the current dataset.  

There is no solution to this problem; no matter how the minority class is 

reinforced or treated. This problem is less severe on large datasets as there may 

be at least a few patients from each sub-group of disease patients.  

 

Figure 2.2 Illustration of low prevalence disease data in two 

dimensional space, 50 healthy patients, 5 patients with the 

disease. 

There are several methods that may be used to address this issue: 

2.6.1 Receiver Operating Characteristic (ROC) Curve (Swets, 1988) 

This evaluation metric aims to introduce carefully controlled bias toward 

the minority class to increase its accuracy at the cost of the accuracy of the other 

class.  
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Figure 2.3 Example of ROC curve. The more area under the curve 

the better the model 

The ROC curve shows the trade off between accuracy in both classes at 

different thresholds and allows the researchers to decide on the best threshold.  

2.6.2 Re-Sampling(Japkowicz, 2000a) 

The objective of this method is to increase the number of input vectors in 

the minority class using random sampling or a focused sampling method to 

create a balanced dataset. The random sampling method re-samples the input 

vectors with added noise for all input vectors in the minority class. The focused 

sampling only re-samples the input vectors close to the boundaries.  

2.6.3 Down-Sizing(Japkowicz, 2000a) 

The objective of this method is to remove random input vectors from 

majority class using either random downsizing or focused downsizing to achieve 

a balanced dataset.  
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The random downsizing method randomly removes input vectors from the 

majority class without regard to position.  

The focused downsizing method removes input vectors that are far away 

from the boundaries in the majority class.  

2.6.4 One-Class Learning 

Instead of creating a classifier to discriminate between classes, this 

approach uses the so called one-class classifier to measure the amount of 

similarity between the input vector and the target class (D. Tax & Juszczak, 2002). 

The one-class classifier has been shown to work better than the two-class 

classifier on imbalanced datasets (Bhavani & Adam, 2004). 

2.7 Relevance of Features 

Many redundant or irrelevant variables are often collected to avoid missing 

out an important predictor that may be crucial to the success of the model. There 

are often too many variables used to describe a problem and this leads to the 

“curse of dimensionality”(Bellman, 1961). This causes significant issues for both 

statistical and neural network models and must be addressed before the data is 

used to train a model.  

This is a very complicated issue and is largely related to classification 

problem such as medical diagnosis (Guyon & Elisseeff, 2003). All distance and 

cluster based prediction methods are severely affected by this due to the fact that 

the distance is measured based on the difference between input vectors in 

m-variables. If an irrelevant variable is used as part of this measurement, it may 

offset the usefulness of other useful variables.  

A large number of studies have been carried out in the past to address this 

issue, with the aim of minimising the number of variables used to define the 

problem space while maximising the prediction accuracy. However, it is still 
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reasonably difficult to obtain a good set of features from datasets with a moderate 

amount of noise.  

Take microarray datasets for example, this type of dataset usually has a 

very small number of input vectors and thousands of variables. Due to a very 

small number of input vectors populating an extremely large problem space, 

there are not enough input vectors to properly represent the problem. Every input 

vector can have a very strong influence on the quality measure of the variables 

and therefore the useful variables may be selected just by chance and will not be 

useful when applied to future data. 

This was evidenced by applying an univariate feature selection method, i.e. 

Signal to Noise Ratio (SNR) (Goh, Song, & Kasabov, 2004), which was used to 

measure variables‟ ability to discriminate input vectors of different classes based 

on their mean and standard deviation, to the lymphoma dataset (Shipp et al., 

2002). This gave us a SNR value for each variable. When 10% of the input 

vectors were removed randomly from the dataset and the SNR was applied again, 

the SNR value for each variable was significantly different and the ranking of the 

variables was changed because of this.  

Feature selection is often included as part of the data modelling algorithm 

as a model include both the features, which defines the problem space, and the 

parameters of the model. There are two commonly used methods: the filter 

method and the wrapper method. An integrated method has recently been 

proposed. These methods are explained as follows:   

2.7.1 Filter Method 

This method selects features without regard to which prediction algorithm 

and parameters are used. This method selects features based on analysis of the 

training data before the model is trained with it.  
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The filter method (Hall, 1999; Koller & Sahami, 1996) has the advantage of 

being less computationally expensive. The filter method allows a subset of 

features to be obtained quickly for problems with a large number of variables. 

2.7.2 Wrapper Method 

This method wraps feature selection around the prediction algorithm. It 

uses cross-validation, explained in next chapter, to evaluate the performance of a 

feature subset on a prediction algorithm and decides whether adding or removing 

feature variable would improve the prediction accuracy.  

For example, consider that we have n features, one could repeat cross 

validation n times, each time remove one feature from the feature set without 

repeat. The feature set that leads to the highest accuracy of the model is kept for 

the next round of feature elimination. Repeat the procedure until only the desired 

number of features remains or desired accuracy is achieved. 

The wrapper method (John, Kohavi, & Pfleger, 1994; Kohavi & John, 1997) 

generally performs better than the filter method as it takes the model‟s 

performance into consideration at the expense of being more time consuming 

due to the iterative process.  

2.7.3 Integrated Method 

A model is a combination of two elements. First, the set of features that is 

used define the problem space. Second, the parameter of the model, for example, 

connection weights between nodes in MLP. However, many neural network 

models has a set of training parameters to govern how the parameters of the 

model is updated given a training dataset and the training parameters also have 

strong influence on the performance of the model.  

The limitation of the wrapper method is that when the model requires a set 

of training parameters, these parameters are not optimised as part of the wrapper 

method.  
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Feature subset A may provide best accuracy for a model with training 

parameter set X, but this may not be the case on model with training parameter 

set Y. It is therefore best to optimise both feature subset and model training 

parameters together to obtain the best combination of both on a given problem. 

This may be seen as a wrapper method that optimises both feature subset and 

model training parameters. It should also use cross-validation to obtain a 

generalised solution.  

The model training parameters and feature subsets may both be 

considered as parameters that need optimising when developing a model. It then 

may be possible to use well known optimisation techniques such as Genetic 

Algorithm and Evolutionary Strategy or the recently proposed “Versatile 

Quantum-inspired Evolutionary Algorithm” (vQEA) (Schliebs, Platel, & Kasabov, 

2008) to handle this task by optimising both the features subset and the model‟s 

training parameter together.  

2.8 Conclusion 

Real world problems are complex and difficult to handle. Most, if not all, of 

the issues stated above will limit the potential of the final model. Issues such as 

noise, missing values, outliers may be addressed prior to the modelling process if 

care is taken to avoid introducing bias, while the others may be addressed as part 

of the modelling algorithm.  

The issue of unique problem subspaces has been recognised in many 

previous studies and is known to have a significant impact on prediction accuracy. 

In the opinion of the author, it would be beneficial to put more emphasis on the 

unique problem subspaces.  

The contribution of this thesis includes four novel and generic methods for 

real world data modelling that aims to address the unique problem subspaces 

issue at different levels.  
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The first method is named “DyNFIS – a dynamic neural fuzzy inference 

system”, which extends the original Dynamic Neural Fuzzy Inference System 

(DENFIS) algorithm (Kasabov & Song, 2002) by adding supervised learning and 

uses a more sophisticated membership function.  This was entered in the NN3 

neural network forecasting competition and achieved 10th place in the 

11-time-series competition.  

The second method is named “MUFIS – a fuzzy inference system that 

allows multiple fuzzy rule types”, which extends DyNFIS by adding the capability 

of using both Takagi-Sugeno and Zedeh-Mamdani rule types in a single fuzzy 

inference system.  

The third method is a multi-model system that integrates both temporal 

and spatial models to provide contrasting views of the problem. 

The fourth method is a generic personalised regression that focuses on 

defining the problem space through extensive incremental feature selection and 

then optimises the global regression model for each test input vector using only 

the part of the dataset that‟s relevant.  

The research and the methods presented in this thesis are a continuation 

of much previous literature and therefore a selection of relevant literatures is 

reviewed in the next chapter.  

  



CHAPTER 3    27 

 

CHAPTER 3  MODELLING TECHNIQUES FOR COMPUTATIONAL 

INTELLIGENCE – A LITERATURE REVIEW 

Kasabov 2007 put predictive models into three different categories 

(Kasabov, 2007b).  

1. Global Model 

A global model is single model that learns from the entire dataset. The 

developed model is then applied on future data.  

2. Local Model 

The local model is a fixed mixture of models trained on the entire dataset. 

However, when it is applied to future data, only one or a subset of the 

relevant models will contribute to the prediction.  

3. Personalised Model 

A personalised model is an individualised model that is created 

dynamically for each prediction, using only relevant input vectors through 

transductive reasoning.  

3.1 State of the Art Global Models 

Most of today‟s predictive models are global (inductive) models, where the 

model learns from the training data and then applied on future data. Linear 

Regression (Tibshirani, Friedman, & Hastie, 2001), Multi-layer Perceptron (MLP) 

(Hornik, Stinchcombe, & White, 1989; Sheng-Sung, Chia-Lu, & Chien-Min, 2006), 

Support Vector Machine (SVM) (Boser, Guyon, & Vapnik, 1992; Hagan, Demuth, 

& Beale, 1996; Kim et al., 2002; Vapnik, 1998), Adaptive-Network-Based Fuzzy 

Inference System (ANFIS)(Jang, 1993; Jang & Sun, 1995; Jang, Sun, & Mizutani, 

1997) and Echo State Network (ESN) are examples of global models. MLP and 

SVM machine learning algorithms were proposed many years ago and are still 

the two most widely used neural network models.  
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Figure 3.1 Illustration of a global model. A single linear 

function is used for all input vectors 

The global model is a single, fixed, reusable model, trained with the entire 

dataset and can then be applied on future data. 

There are a few limitations with this type of model: 

First, if a new pattern emerges in the future, the existing model will not be 

able to handle it as the model has not been trained to recognise this pattern and a 

new model may need to be developed. This can be time consuming depending 

on the model and the complexity of the problem.  

Second, as the model is developed based on all available data with the 

objective of minimising overall prediction error, it will be biased toward the 

majority of the data. A pattern without enough support will have little influence on 

the model.  

This is similar to the issue with interpolation versus extrapolation. If the 

new pattern is similar to some existing pattern, then it is considered interpolation, 

where there is enough support the prediction made for this pattern. However, if 

the new pattern is very different from any of the existing patterns, then it is 
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considered extrapolation, where the prediction made for this new pattern is less 

meaningful and subject to greater uncertainty.  

Recent research in the field of machine learning has focused on model 

ensembles which use a mixture of models to achieve better overall accuracy. 

Several studies have reported that an ensemble of models works better than a 

global model (Cevikalp & Polikar, 2008; Islam et al., 2008; Kim et al., 2002; Lei et 

al., 2006; Minh Ha et al., 2008; Pang, 2004; Xin & Yong, 1998; Yao & Liu, 1996; 

Zhou & Jiang, 2003).  

There are many strategies that are commonly used to create an ensemble: 

bagging (Kim et al., 2002), boosting (Islam et al., 2008) and clustering (Kasabov 

& Song, 2002) are well known strategies. Depending on the strategy used, the 

ensembles generally try to either generate different view of one problem or break 

down the problem into smaller problems and tackle each problem independently 

or sometimes both.  

The final output for this type of model can be categorised by the following 

two methods:  model selection or model fusion.  

3.1.1 Model Selection 

Model selection types of local models uses one or a few, sub-models that 

are deemed most suitable for a given input vector and aggregate the output from 

these sub-models. SVM Tree (SVMT) (Pang, 2004) and Combination of Multiple 

Classifiers (CMC) (Woods, Kegelmeyer, & Bowyer, 1997) are two examples of 

this type of local model. 

3.1.2 Model Fusion 

Model fusion type local models use the weighted average of the output 

from all sub-models (Franco & Nanni, 2009; Freund & Schapire, 1999; D. M. J. 

Tax, van Breukelen, Duin, & Josef, 2000; Tin Kam, Hull, & Srihari, 1994). The 

weight can be fixed, adjustable or dynamically updated.  
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3.2 Local Models 

Local models (Fontenla-Romero, Alonso-Betanzos, Castillo, Principe, & 

Guijarro-Berdiñas, 2002; Kasabov, 2001; Kasabov & Song, 2002; Lei et al., 2006; 

Lucks & Oki, 1999; Poggio, 1994; Song & Kasabov, 2005; Yamada, Yamashita, 

Ishii, & Iwata, 2006a) is a type of model ensemble that breaks down the problem 

into many smaller sub-problems, based on its position in the problem space.   

The sub-problems can be defined through a clustering process such as k-means, 

fuzzy c-means and hierarchical clustering that group similar input vectors based 

on their similarity (distance measure).  

 

Figure 3.2 Illustration of a local model consists of three 

sub-models.  

This type of model assumes that each cluster is a unique problem 

subspace and a sub-model should be developed for it. The quality of the cluster is, 

therefore, the foundation of this type of model.  

The data clustering parameters often need to be adjusted, according to 

the sub-model‟s requirements or the characteristic of the problem. Many models, 

such as linear regression, need the number of input vectors to be significantly 
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greater than the number of variables and, therefore, the clusters must be large 

enough to support this type of sub-model. Hence, local models may require more 

training data than global model to ensure that each sub-model is trained with 

sufficient amount of input vectors. 

In addition, the clustering process is strongly affected by the amount of 

noise in the data of irrelevant or redundant features, as it affects the distance 

measure used by most clustering methods.  

3.3 Individualised (Personalised) Model through Transductive 

Reasoning 

Transductive reasoning (Kasabov & Pang, 2003; Mitchell, 1997; Song & 

Kasabov, 2004; Song & Kasabov, 2006; Song, Ma, & Kasabov, 2006; Vapnik, 

1998) was originally proposed by Vapnik in 1998 to develop an individualised 

model through transductive reasoning for a given input vector without first 

developing a generalised model in the intermediate stage. This approach has 

been widely used to solve various real life problems like text classification (Y. 

Chen, Wang, & Dong, 2003; Joachims, 1999), speech recognition (Joachims, 

2003), image recognition (Li & Chua, 2003) and language translation (Ueffing, 

Haffari, & Sarkar, 2007).  

The main difference here is that transductive reasoning focuses on finding 

a solution for each prediction instead of the creating a generalised solution for the 

problem and then use it for each prediction. 

The model is created dynamically for each prediction, which utilises all 

available data and uses the most suitable parameters, features or model to make 

the prediction. 

“k-nearest neighbour” (Soucy & Mineau, 2001; Yamada, Yamashita, Ishii, 

& Iwata, 2006b), may be considered the most simple form of individualised model 

through transductive reasoning.  
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It takes a subset of training data (neighbours) that is relevant to the current 

test input vector and makes the prediction based on the output of the neighbours.   

 

Figure 3.3 Illustration of a personalised model. A model is 

created on the fly using a subset of training data near the test 

input vector (×) 

Transductive reasoning has the following benefits over global and local 

models: 

1. In a real world problem where the amount of data increases on an 

ongoing basis, an individualised model through Transductive 

reasoning will utilise the latest data but only the part of the data that is 

relevant to the test input vector is used to make the prediction 

2. Since only a relevant subset of the input vectors in the training data is 

used to derive the solution, it may reduce the affects of outliers, or 

incorrect identification of sub-problems.  

The limitation of Transductive reasoning is in its reliance on good definition 

of problem space. A good definition of problem space is important to all models, 

however, it may be more so on individualised model through Transductive 
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reasoning. It is because the definition of problem space affects the performance 

of the similarity function used to identify the neighbourhood, i.e. a subset of input 

vectors in the training data that are relevant to the test input vector. Therefore, 

input noise may have stronger impact on this type of model more than others. 

3.4 Statistical Methods 

3.4.1 Linear Least Square Estimator (Linear LSE)  

Least square methods dates back to the early 1800s. The text in this 

section is based on the book “The Elements of Statistical Learning”(Tibshirani et 

al., 2001). 

For supervised learning from data pairs [xi ; yi] = , where xi is the input and 

yi is the output, yi can be defined by a set of linear functions:  

 

 

(3.1) 

where xij‟s, i = 1, 2, …, m; j = 1, 2, …, q, are input variables and βj‟s, j = 0, 

1, 2, …, q, are the coefficients. 

Using matrix notation, we have the following equation: 

  (3.2) 

where A is a m × (q + 1) matrix: 

 

11 12 1

21 22 2

1 2

1

1

1

q

q

m m mq

x x x

x x x
A

x x x

 
 
 
 
  
   

(3.3) 

β is a (q + 1) × 1 vector: 

 β0 + β1x11 + β2x12 + … + βqx1q = y1, 

β0 + β1x21 + β2x22 + … + βqx2q = y2, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .       

  β0 + β1xm1 + β2xm2 + … + βqxmq = ym,  

 A β  =  y 



CHAPTER 3    34 

 

β = [β0,  β1, β2, …,  βq]
 T

 

and y is a m × 1 vector:  

y = [y1, y2, …, ym]T. 

The ith row of the joint data matrix [A;  y], denoted by [ai ;  yi], is related to 

the ith input-output data pair ([xi1, xi2, …, xiq], yi), through 

ai = [1, xi1, xi2, …, xiq]. 

 [ai
 ; yi] is referred as the ith data pair of the learning data set. 

To obtain β, we modify equation (3.2) by incorporating an error vector e for 

random noise or error as follows: 

  (3.4) 

The search for a β that minimises the sum of squared error can be 

achieved through   

 
 

(3.5) 

 

where e = y – A β is the error vector produced by a specific choice of β.  

The theorem of least square estimator is given as follow: 

3.4.1.1 Least Square Estimator:  (LSE) 

The square error in equation (3.5) is minimised when β = b, called the least 

square estimator (LSE), which satisfies the normal equation 

 ATAb=ATy (3.6) 

 

If ATA is non-singular, b is unique and is given by 

 b= (ATA)-1ATy (3.7) 

  A β + e = y         

                     m 

E (β) =∑ (yi - ai
  
β)

2
 = e

T
e = (y – A β)

T
(y – A β)                            

                   i = 1 
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3.4.1.2 Weighted Least Square Estimator (WLSE)  

LSE assumes that every element of the error vector e has the same weight 

toward the overall squared error. However, each input vector may contribute 

differently in real life applications. To consider this factor, we can construct a 

weighting matrix and have the weighted squared error as 

        
2

 

1

  
m

T

w i i i

i

E w y a y A W y A   


    
 

(3.8) 

where W is a diagonal matrix, which defines the contribution of each input 

vector, it can be defined in different ways depends on the design of the 

experiment. In an example of creating a local function in a cluster centre, the 

weight may be (1-normalised Euclidean distance) between the training input 

vectors and the cluster centre.  

1

2

0 0

0 0

0 m

w

w
W

w

 
 
 
 
 
   

and 0 < wi ≤ 1;  i = 1, 2, …, m. 

with the weighted bw being: 

  
1

   T T

wb A WA A Wy



 (3.9) 

LSE is a very efficient modelling algorithm that provides very fast training 

and prediction. It is most suited for datasets that contain higher levels of noise as 

the linear model generalises the noise and provides a linear function that best fits 

the data as a whole. Figure 3.4 shows a linear problem with a medium level of 

noise. Linear functions like LSE will fit a single line that is very close to the ideal 

solution while noise may affect non-linear functions and produce a compromised 

solution. 
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Figure 3.4 Linear and non-linear model prediction on a noisy 

dataset. 

On the positive side, LSE provides a simple linear function that is stable, 

and easy to use. It is therefore widely used in every field.  

On the negative side, since the model is designed to solve a global 

problem, this algorithm disregards the potentially unique characteristics of the 

problem subspaces and assumes only one solution exists for the entire problem.  

3.4.1.3 Weight Recursive Least Square Estimator (WRLSE) 

The weighted recursive least-square estimator – WRLSE (Tibshirani et al., 

2001), or weighted on-line linear regression, creates a linear function that is 

updated continuously with every new data point. 

The linear function can be expressed as follows: 

 y = β0 + β1x1 + β2x1 + … + βqxq (3.10) 

and for obtaining this function there is a learning data set that is composed 

of p data pairs { ([xi1, xi2, …, xiq], yi), i = 1, 2, …, p}, we can calculate b = [b0  b1  

b2 … bq] 
T, the least-square estimator (LSE) of β  = [β0  β1  β2 … βq] 

T,  by using the 

following formula: 
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  
1

   T T

wb A WA A Wy



 (3.11) 

Where 
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(3.12) 
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(3.13) 

 y  =  [y1  y2  …, yp] 
T (3.14) 

and wj  is the distance between j-th example and the corresponding cluster 

centre, j = 1, 2,… p. 

Here, we rewrite the Equation (3.11) as shown:  

Initial 

Weighted LSE 

1( )T

w

T

w w

P A WA

b P A Wy

 



 (3.15) 

where w is the weight defined in Equation (3.13) and λ is a forgetting factor 

whose typical value is between 0.8 and 1. The initial values of Pw and bw are 

calculated using Equation (3.15) 

Let the k-th row vector of matrix A defined in Equation (3.12) be ak
T = [1 xk1  

xk2 … xkq] and the k-th element of y be yk, then b can be calculated iteratively as 

follows: 

Weighted 

Recursive 

LSE 

1 1 1 1 1 1

1 1 1
1

1 1

( )
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T

k k k k k k k k

T

k k k k k
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b b w P a y a b

w P a a P
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a P a 

     

  


 

   


 
  

 

 

k=n, n+1, ..., p-1 

(3.16) 
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3.5 Artificial Neural Networks (ANN) 

3.5.1 Brief History of Perceptrons 

Frank Rosenblatt published one of the earliest neural networks in 1958 

named “The Perceptron” (Rosenblatt, 1958), which has influenced many artificial 

neural networks since. The basic perceptron is shown in Figure 3.5.  

 

Figure 3.5 Weights are applied to the inputs and 

the weighted sum is then passed through a 

function to produce the final output y 

For an input vector pair [xi, yi], the connection weight wm is updated if the 

output of the perceptron f(x) is different from the yi.  

The single layer perceptron is only capable of learning linear separable 

data as demonstrated by Minsky and Papert in 1969 (Minsky & Papert, 1969). 

They showed that the XOR function cannot be approximated with this method 

and incorrectly conjectured that this applies to networks with multiple layers of 

perceptrons. This leads to a slowdown in research in the field of connectionism 

until the 1980s.  

In 1986, David Rumelhart, Geoffrey Hinton and Ronald Williams 

introduced back-propagation on a multi-layer perceptron network (Rumelhart, 

Hinton, & Williams, 1986). This method remains one of the most widely used 

 

y 
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supervised learning methods, which can be used in either batch or incremental 

learning.  

The learning process of the original back-propagation for batch learning 

can be slow and many new learning methods have been proposed to speed up 

the process (Riedmiller & Braun, 1992; Scott & Christian, 1990).  

In 1989, Hornik showed that a multilayer perceptron is a type of universal 

approximator that can learn virtually any type of function provided enough hidden 

nodes are used (Hornik et al., 1989). 

Later in 1999, Freund and Schapire showed that by using the perceptron 

algorithm in higher dimensional space with kernel functions, non-linear separable 

data can be handled (Freund & Schapire, 1999).  

3.5.2 Multi-Layer Perceptron (MLP)  

MLP (Hornik et al., 1989; Rumelhart et al., 1986) is a feed forward neural 

network model that can learn the input and output relationship of a dataset 

through adjusting layers of perceptrons and their connection weights.  

The weights are adjusted by applying error back-propagation method, 

which minimises the difference between the predicted output and actual output. 
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Figure 3.6 An illustration of the structure of a 

single hidden layer multi-layer perceptron 

network.  

Sigmoid function is the most widely used activation function for the hidden 

layer. Sigmoid or sum function can be used at the output layer level depending on 

the type of problem. The connection weights are initially randomised and then 

optimised through error back-propagation.  

The input of the data is fed forward from the input layer through the hidden 

layer and output layer and the predicted output is then derived. 

If the predicted output differs from the actual output, the error is then 

propagated back through the layers and the connection weights and the 

activation functions are adjusted based on the learning rate to minimise the error. 

Multiple iterations of this procedure on all training data are required until the 

network converges.  

The multi-layer perceptron with back-propagation (MLP-BP) is one of the 

best known models. Figure 3.7 shows an illustration of a MLP-BP with two hidden 

layers. The signal flow for each node is illustrated in Figure 3.8. A version of 

MLP-BP with two hidden layer is shown in Figure 3.7. Detailed algorithm 

description is shown below: 

Input
Layer

Output
Layer

 

 

 

 

  

 

 

 

Hidden
Layer



CHAPTER 3    41 

 

x (p) and t (p) denote the pth training data pair; z (p) denotes the actual output 

of the network; wji
 (l) denotes the weight from neuron i to neuron j, and wkj

 (h) 

denotes the weight from neuron j to neuron k. A sigmoid transfer function (3.18) is 

used as the activation function in the neurons of the hidden layer and the output 

layer. The goal of training is to get the minimum value of error E: 

 
 

(3.17) 

3.5.2.1 Initiation 

Set the maximum error emax; the maximum number of training epochs 

epsmax; the current number of training epochs Eps = 0; the learning rate  ; and 

the initial values of the connection weights.   

3.5.2.2 Input 

Select one data pair [x (p), t (p) ] from the training data set as current input 

and desired output, and set Eps = Eps + 1. 

 

 

Figure 3.7 A structure of a multi-layer perceptron with two hidden 

layers (bias omitted for clarity of the illustration). 
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Figure 3.8 Two basic signal flows in a 

multi-layer perceptron 

 

 

Figure 3.9 A three-layer back-propagation neural network with data feed forward 

through layers.  

Signal feed forward

Error propagate backward
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3.5.2.3 Signal feed forward 

Calculate y (p) and z (p), outputs of the hidden layer and output layer, using 

sigmoid function. 

 
 

(3.18) 

where     

 

 

(3.19) 

3.5.2.4 Error propagate backward - part 1 

Optimise the connection weights w (h) between the hidden layer and output 

layer 

 

 

(3.20) 

3.5.2.5 Error propagate backward- part 2 

Optimise the connection weight w(l) base on the new w(h)  

 

 

(3.21) 

The step above will be repeated to optimise the connection weights for any 

additional layers. 

3.5.2.6 Termination condition 

The training terminates when E < emax or Eps > epsmax, otherwise, repeat 

the steps 3.5.2.2 - 3.5.2.6  

   yj
(p)

  =  f (vj) = 1 / (1 + exp(–vj)) 

   zk
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(l)  + wji
(l)  

 

 



CHAPTER 3    44 

 

3.5.3 Radial Basis Function Network (RBFN)  

Radial Basis Function Network (RBFN) (Lucks & Oki, 1999; Poggio, 1994) 

is a two-layer feed forward neural network that uses Gaussian function in the 

hidden nodes. Each node reacts to input in a small local space near its Gaussian 

function‟s centre. The output node uses a weighted sum function on the output of 

the hidden nodes for prediction problems and a sigmoid function is used for 

classification problems.   

 

Figure 3.10 An illustration of the RBFN architecture with 

three radial basis functions for the prediction problems 

 

Figure 3.10 shows the architecture of a RBFN with three hidden nodes. 

Ri (x) is a Gaussian function as shown below: 

 

 

(3.22) 

where x is the input vector, ui is the centre of a Gaussian function and Ri (x) 

is the activation level of the ith hidden node. Unlike MLP, there is no connection 

weight between the input layer and the hidden layer.  
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The closer the input vectors to the centre of the Gaussian function, the 

higher the output. 

The output is the weighted sum of the output values from each Gaussian 

function as shown below: 

 
 

(3.23) 

where ci is the output value associated with the ith receptive field. It can 

also be explained as the connection weight between the ith receptive field and the 

output unit.  

3.6 Fuzzy Logic Systems 

3.6.1 A Brief History 

In 1965, Lotfi Zadeh introduced the concept of the fuzzy set (Zadeh, 1965), 

which defines the elements in a set with degrees of membership. The idea is that 

it is more efficient to tell the fan to spin faster when the computer gets warm than 

to have a set of rules to set the fan‟s spin speed at each temperature.   

In 1975, Ebrahim Mamdani proposed a fuzzy inference system (FIS) 

(Mamdani & Assilian, 1975) based on Zadeh‟s 1973 fuzzy logic paper (Zadeh, 

1973) to control a steam engine and boiler set using fuzzy set as the consequent 

function of the rule. This type of fuzzy rule has hence been referred to as the 

“Zadeh-Mamdani” (ZM) fuzzy rule.  

In 1985, Takagi and Sugeno proposed a fuzzy inference system that is 

similar to ZM with the same antecedent but the output is a linear function instead 

of fuzzy set. This type of fuzzy rule is here on referred to as “Takagi-Sugeno” (TS) 

fuzzy rule.  

The rules used in FIS can easily be interpreted by researchers and human 

knowledge can also be inserted into the system. This makes FIS an open system 

 H                      H 

d(x) =  ∑   ci wi = ∑  ci Ri (x)    

           
i = 1        i = 1
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that experts can understand and interact with, unlike many neural network 

models that acts like a black box which only allows experts to view the system‟s 

input and output.  

The details of fuzzy set, membership function and fuzzy operation are 

explained below: 

3.6.2 Fuzzy Sets and Membership Functions (Kasabov, 1996; Wang, 

1994) 

If X denotes a universal set, a fuzzy set A is defined by a membership 

function μA: X  [0, 1] which describes the degree of membership of the 

elements of A. Higher value represents a higher level of membership degrees. 

Examples of commonly used membership functions are shown below: 

 

Figure 3.11 Examples of fuzzy membership functions 

 

3.6.2.1 Gaussian membership function  

The Gaussian membership function has two parameters σ (width) and c 

(centre), described as follows: 

 

2( )
( ) exp

x c
x



  
  

   
(3.24) 
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3.6.2.2 Triangular membership function  

Triangular membership function has three parameters, a; b; c, described 

as follows: 

 

The parameters a and c define the edge of the triangle function and the 

parameter b locates the peak.  

3.6.2.3 Trapezoidal membership function  

Trapezoidal membership depends on four parameters, a; b; c; d, given by 

 

The two parameters, a and d, locate the “feet” of the trapezoid and the 

parameters b and c locate the “shoulders”. 

3.6.3 Operations 

Let µA and µB be two membership functions that define two fuzzy sets, A 

and B respectively. Four fuzzy operations are outlined as follows: 

    0  x ≤ a 

 

    x – a 

    ––––   a ≤ x ≤ b 

    b – a 

μ(x) = f(x; a, b, c) = 

    c – x 

    ––––   b ≤ x ≤ c 

    c – b 

 

    0  c ≤ x 

    0  x ≤ a 

 

    x – a 

    ––––   a ≤ x ≤ b 

    b – a 

 

μ(x) = f(x: a, b, c, d) =  1  b ≤ x ≤ c 

 

    d – x 

    ––––  c ≤ x ≤ d 

    d – c 

 

    0  d ≤ x 
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3.6.3.1 Subset 

A is contained in B or A is a subset of B, denoted by  

 A ⊆ B  if µA(x) ≤ µB (x)    ∀x ∈ X  

  or  

 A ⊂ B  if µA(x) < µB (x)    ∀x ∈ X 

3.6.3.2 Complement, Negation 

The membership function µĀ (x) of the complement of A (denoted by Ā ) is 

defined by: 

 µĀ (x) = 1 – µA(x)    ∀x ∈ X 

The relative complement of A with respect to B is defined by: 

µĀB(x) = µB(x) – µA(x)   ∀x ∈ X   if µB(x) > µA(x)  

3.6.3.3 Intersection 

The intersection of A and B is defined by: 

 A ∩ B = {x|x ∈ A ∧ x ∈ B}    ∀x ∈ X 

Extreme operator:  

 µA∩1 B(x) =  µA(x) ∧ µB(x) = min{µA(x), µB(x)} ∀x ∈ X 

Product operator:  

 µA∩2 B(x) =  µA(x) µB(x)    ∀x ∈ X 

3.6.3.4 Union   

The union of A and B is defined by: 

 A ∪ B = {x|x ∈ A ∨ x ∈ B}    ∀x ∈ X 

Extreme operator:  

 µA∪1 B(x) =  µA(x) ∨ µB(x) = max{µA(x), µB(x)} ∀x ∈ X 
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Sum operator:   

 µA∪2 B(x) =  µA(x) + µB (x) – µA(x) µB(x)  ∀x ∈ X 

3.6.4 Fuzzy Relations 

A relation represents the presence or absence of association, interaction 

or interconnection between the elements of two or more sets.  

A fuzzy relation R(x, y) is a fuzzy subset of X × Y  

For membership function µ(x, y) 

  R  = {µ(x, y): X × Y  [0, 1]} 

or 

  R = { (x, y), µR(x, y)} = ∪(x, y) µR(x, y). 

A fuzzy relation R(x1, x2, …, xn) on sets X1, X2, …, Xn, is a fuzzy subset of 

X1 × X2 × … × Xn. 

 R  = {µ(x1, x2, …, xn): X1 × X2 × … × Xn  [0, 1]}. 

or  

 R = ∪{( x1, x2, …, xn) µR(x1, x2, …, xn)}: X1 × X2 × … × Xn  [0, 1]. 

3.6.5 Fuzzy Composition 

A composition relation of fuzzy relations R (x, y) and S (y, z) is a relation C 

(x, z) obtained after applying relations R and S one after another. 

Given: 

 R (x, y),  (x, y) ∈ X × Y , R: X × Y  [0, 1],  

 S (y, z),  (y, z) ∈ Y × Z , S: Y × Z  [0, 1], 

Composition C(x, z) 

Maxmin composition: 
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µc (x, z) = max{min (µR (x, y), µs (y, z))};  x ∈ X, y ∈ Y, z ∈ Z. 

Max product composition: 

µc (x, z) = max{µR (x, y) ∙ µs (y, z)};   x ∈ X, y ∈ Y, z ∈ Z. 

3.6.6 Fuzzy If-Then Rules 

A fuzzy if-then rule assumes the form “if x is A then y is B”, where A and B 

are linguistic values defined by fuzzy sets on universes of discourse X and Y 

respectively. The condition part of the rule, i.e. “x is A”, is called an antecedent or 

and the action part of the rule, i.e. “y is B”, is called a consequence. 

Several types of fuzzy rules have been used up to now. Different fuzzy 

rules will result in different fuzzy inference systems. There are several kinds of 

fuzzy rules including: 

3.6.6.1 Zadeh-Mamdani fuzzy rules: 

A generalised form of the Zadeh-Mamdani fuzzy rules is: 

if x1 is A1 and x2 is A2 and … and xn is An, then y is B, 

where “x1 is A1”, “x2 is A2”, … , “xn is An” are n fuzzy propositions as the 

antecedent of the fuzzy rule; xi, i = 1, 2, …, n, and y is a fuzzy variable defined 

over universes of discourse Xi, i = 1, 2, …, n, and Y respectively; and Ai, i = 1, 

2, …, n, and B are fuzzy sets defined by their fuzzy membership functions µAi: Xi 

 [0, 1], i = 1, 2, …, n, and µB: Y  [0, 1]. 

3.6.6.2 Fuzzy rules with degree of confidence:  

As well as the simple form of Zadeh-Mamdani fuzzy rules described above, 

fuzzy rules having coefficients of uncertainty have often been used in practice.   

3.6.6.3 Takagi-Sugeno fuzzy rules:  

A generalised form of the Takagi-Sugeno fuzzy rules is: 
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if x1 is A1 and x2 is A2 and … and xn is An, then y is f (x1, x1, …, xn). 

if f (x1, x1, …, xn) is C which is a crisp constant, we call it a zero order 

Takagi-Sugeno fuzzy rule; if function f (x1, x1, …, xn) is linear, the rule is called a 

first order Takagi-Sugeno fuzzy rule; and, such rules are called a high-order 

Takagi-Sugeno fuzzy rules if the non-linear function is used as the consequent 

function.   

3.6.6.4 Generalised fuzzy production rules: 

These kinds of rules can be seen as weighted rules, where each of the 

rules contributes to a certain degree to the final decision. Very often the fuzzy 

propositions in the antecedent of the rule are not equally important for the rule to 

infer an output value.  A generalised fuzzy production rule with degrees of 

importance (DIi) of the fuzzy propositions in the antecedent and certainty factors 

(CF) of the validity of the consequence has the form of: 

if x1 is A1 (DI1) and x2 is A2 (DI2) and … and xn is An, (DIn), then y is B (CF) 

3.6.7 Fuzzy Inference Systems  

The Figure 3.12 shows a block diagram of a basic fuzzy inference system, 

which is composed of four functional parts: 

1. Fuzzification 

Fuzzification is a process of finding the membership degrees to which 

input data belong to the fuzzy sets in the antecedent of a fuzzy rule. 

2. Fuzzy rule set 

This set contains a number of „if-then‟ fuzzy rules. 

3. Aggregation 

Aggregation performs a fuzzy reasoning operation by aggregating the 

fuzzy values within the rules with the connective operations. 
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4. Defuzzification  

Defuzzification is a process of calculating a single-output numerical value 

to a fuzzy output variable on the basis of the inferred resulting membership 

function for this variable. 

 

Figure 3.12 A block diagram of a basic fuzzy 

inference system 

There are several types of fuzzy inference systems that have been used in 

various areas. The differences between them lie with the types of fuzzy 

inferences and the fuzzy if-then rules employed. The two most popular types of 

fuzzy inference systems are described as follows: 

3.6.8 Mamdani Inference Engine (Zadeh, 1973) 

Zadeh-Mamdani fuzzy rules are used here. The overall fuzzy output is 

derived by applying the union operation to the qualified fuzzy outputs. Each of the 

fuzzy output is equal to the minimum of the firing strength and the output 

membership function of each rule. 

3.6.9 Takagi-Sugeno Inference Engine 

Takagi-Sugeno (Takagi & Sugeno, 1985) fuzzy rules are used. The 

consequence of the rule is a linear function and the final output is the weighted 

average of the output of all rules. The consequence with higher order functions 

may be used in place of the linear function on more complex problems.  

 Fuzzification
Fuzzy rule

Set

AggregationDefuzzification

Crisp Output

Crisp Input

y

x
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Figure 3.13 Takagi-Sugeno fuzzy inference system with two rules. 

From Jane‟s paper for ANFIS (Jang, 1993) 

3.7 ANFIS: Adaptive-Network-Based Fuzzy Inference System 

ANFIS (Jang, 1993; Jang & Sun, 1995; Jang et al., 1997) is a fuzzy 

inference system that is capable of hybrid learning from both human knowledge, 

in the form of if-then rules, and from the dataset through input-output pairs. This 

model is one of the most widely used fuzzy inference systems and is, therefore, 

used as benchmark in some case studies in this thesis. 

 

Figure 3.14 Illustration of the ANFIS system. From Jang‟s 

ANFIS paper (Jang, 1993). 

ANFIS‟s system architecture has five layers that take crisp input, feeds 

through the layers and generates crisp output. The details of the algorithm are 

explained below:  

z f x y

w

1 = 1( , )

1 = dA1 * dB1

z f x y

w

2 = 2( , )

2 = dA2 * dB2

z = 
w z w z1 * 1 + 2 * 2

w w1 + 2

Rule 1:    IF  is A1 and  is B1 THEN 1 is 1( , )x y z f x y

Rule 2:    IF  is A2 and  is B2 THEN 2 is 2( , )x y z f x y
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3.7.1.1 Layer 1 - Fuzzification 

Every node in layer 1 is a membership function, denoted: 

  (3.25) 

Oi
1  is the membership function of Ai and it specifies the degree of 

membership of x. 

Various type of membership function can be used, the Gaussian function 

is commonly chosen as shown below:  

 
 

(3.26) 

where x is the input, and ci and σi are the  parameters of the Gaussian 

function. 

3.7.1.2 Layer 2 – the П nodes 

This layer multiplies the incoming signal from Layer 1 and sends the 

product out.  

  (3.27) 

3.7.1.3 Layer 3, the N nodes 

The nodes on this layer calculate the ratio of the ith rule‟s activation level to 

the sum of all the rules‟ firing strength. 

 
1 2

, 1,2.i
i

w
w i

w w
 

  
(3.28) 

3.7.1.4 Layer 4 – Consequent layer 

  (3.29) 

𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥) 

μAi
 
(x)=exp[-(

x-Ci

𝜎i

)
2
] 

wi= μAi(x) × μBi(y), i=1,2. 

𝑂𝑖
4 = 𝑤 𝑖𝑓𝑖  
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iw is the output of Layer 3. fi is the consequence of the rule, which is a 

linear function in the case of Takagi-Sugeno type rules.  

3.7.1.5 Layer 5 – Crisp output 

 

5

iO = Overall output = i i
i i

i ii

w f
w f

w



 
(3.30) 

3.7.2 Evolving fuzzy inference systems 

Many fuzzy inference systems (Angelov, 2002; Angelov & Filev, 2002, 

2004; Kasabov, 2001; Kasabov & Song, 2002; Leng, McGinnity, & Prasad, 2005) 

have been proposed to optimise the fuzzy inference system through online 

learning. A review of similar systems was made by M. Watts in 2009(Watts, 2009). 

This type of fuzzy system is capable of adapting to new data without losing the 

knowledge it has gained from prior learning.  

These models are also known as online models. They are capable of 

learning one input vector at a time in a serial fashion and can adapt to new 

patterns. Most of these models are design for problems with data that is collected 

continuously, they usually discard the input vectors after processing and usually 

have low computation requirement. In many cases, the prediction accuracy may 

not be its only requirement, the speed of processing is also very important.  

On contrast, Offline models learn from a set of input vectors at a time, 

sometimes the entire dataset. There are often no computation requirements and 

therefore more complex computation may be carried out to achieve optimal 

prediction accuracy.  

These fuzzy inference systems are usually constructed through a two 

parts operation.  First it defines or identifies the antecedent part of the fuzzy rules. 

This may be set manually to cover the entire problem space (Jang, 1993), or it 

may be based on online clustering such as Evolving Clustering Method (Kasabov 

& Song, 2002), subtractive clustering(Chiu, 1994) or others. Second, it constructs 
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or updates the consequent function through various online learning methods 

such as weighted recursive least square estimator. The system is updated with 

every new data pair [xi yi]. The update may be applied on either both antecedent 

and consequent part of the fuzzy rule or only the consequent part.  

ANFIS, as described earlier in this chapter, is a classic example for 

non-clustering approach to construct its fuzzy inference system. It first populates 

the problem space with fuzzy rules using n membership functions per input 

variable. For each input data pair [xi yi], the consequent function is updated with 

lease-square methods and the membership function is updated using gradient 

descent method. This is called a hybrid learning system, combining both 

least-squares and gradient descent method.  

Evolving Takagi-Sugeno system (eTS) (Angelov & Filev, 2004) is another 

example that uses clustering approach to construct its fuzzy inference system. 

This system is based on a combination of online clustering method called 

subtractive clustering (Chiu, 1994) and Kalman-Filter for its consequent function. 

Unlike ANFIS, where the rule structure is pre-defined, i.e. if grid method is used to 

define its rule structure and we use three fuzzy rules per input variable on a 

problem with 10 input variables, the problem space will be covered with 30 fuzzy 

membership functions. ETS allows the rule structure to be updated when 

necessary and therefore the number of rules may change during the course of 

learning. The number of rules expands as data points that are significantly 

different from existing data enter the system to accommodate new knowledge. 

Two of the main methods proposed in this thesis are based on an existing 

evolving fuzzy inference system named “Dynamic Evolving Neural-Fuzzy 

Inference System”. This algorithm is therefore described below in details. 
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3.7.3 DENFIS: Dynamic Evolving Neural-Fuzzy Inference System 

(Kasabov & Song, 2002) 

DENFIS is a fuzzy inference system that is capable of online and offline 

learning through online clustering.  This paper had over 180 citations on Google 

Scholar at the time of writing.  

DENFIS starts by clustering the data and creates a fuzzy inference system 

that is based on the clusters. A maximum distance-based clustering algorithm, 

Evolving Clustering Method, is used to cluster the input data. Once the clusters 

are derived, a Takagi-Sugeno fuzzy rule is created for each cluster. These rules 

are then optimised through back-propagation method. For each prediction, m 

most activated rules are dynamically chosen to derive the final output. New rule 

sets can be inserted into or extracted from the model. 

The DENFIS algorithm is described below: 

3.7.3.1 ECM: Evolving Clustering Method (online)  

ECM is a fast one-pass algorithm to find clusters within the input data. The 

algorithm is described below:  

 Step 0: Create the initial cluster C1 and set the position of the first training 

data as a cluster centre Cc1 with the cluster radius Ru1 0. 

 Step 1: If all training data has been processed, terminates the algorithm, 

otherwise calculate the distance between the current training input vector 

xi and the cluster centre Ccj. || ||ij iD x Ccj  , j=1,2,...,n.  

 Step 2: If there is a cluster centre Ccj, where the Dij = ||xi -Ccj||, j=1,2, ..., n, is 

equal to or less than the radius Ruj, then xi is assumed to belong to cluster 

Cm and no new cluster is created and no existing cluster is updated. Go 

back to step 1. 

 Step 3: Find a cluster Ca from all existing cluster centres with Sij = Dij + Ruj, 

j = 1,2, ... , n, and select the cluster centre Cca with the smallest Sia: 
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Sia = Dia + Rua = min{Sij}, j = 1, 2, ..., n. 

 Step 4: If Sia is greater than 2×Dthr, then xi does not belong to any of the 

existing clusters and a new cluster is created as described in Step 0 and 

the algorithm returns to Step 1. 

 Step 5: If Sia is not greater than 2×Dthr, the cluster Ca is updated by 

moving Cca and enlarging the cluster radius Rua. The updated Rua
new is set 

to equal to Sia / 2 and the new cluster centre Cca
new is set as follows: 

 
 / 2

( )
ianew

a i a i

ia

S
Cc x Cc x

D

 
    

   
(3.31) 

5. Repeat Step 1 to 5. 

Dthr is the distance threshold of the cluster, which defines the maximum 

radius of the cluster. Sia defines inverse the level how much the xi belongs to 

cluster centres Ca. The smaller the Sia, the more xi belongs to cluster Ca. 

Note that xi can belong to multiple clusters as there may be overlapping of 

the cluster radius. Euclidean distance is used as the distance measuring method 

in ECM.  
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                          (1)                (2) 

  
 (3)       (4) 

Figure 3.15 Example of ECM Clustering algorithm. Xi: input vector (*), Ccj
k : 

cluster centre, Cj
k : cluster, Ruj

k cluster radius (Kasabov & Song, 2002). 

Figure 3.15 shows the step by step of ECM clustering process.  

 (1)  The initial cluster is created for the first input vector x1. 

 (2)  x2: update cluster 0 1

1 1C C  

 x3: create a new cluster 0

2C  

 x4: belongs to 1

1C , no action required. 

 (3) x5: update cluster 1 2

1 1C C  

 x6: belongs 2

1C , no action required 

 x7: update cluster 0 1

2 2C C  

 x8: create a new cluster 0

3C  

 (4) x9: update cluster 2 3

1 1C C  

ECM processes input vectors in a one-input-vector-at-a-time manner, and 

therefore the order of the input vectors being process affects the final output. This 

is evident in the way the first cluster is created for the first input vector. This 
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design was necessary since ECM is an online clustering method where data is 

made available one input vector at a time. However, this does not prove to be a 

significant problem in practice as the cluster centre may be slightly different 

based on the order of input vectors being process, when inspected closely by 

visualising the input vectors in each cluster, the input vectors were very similar, 

as ECM originally intended. 

3.7.3.2 ECMc: Evolving Clustering Method (Offline)  

Ideally a cluster centre should be positioned at the centre of the gravity 

among all input vectors in the cluster, as it is what the term “cluster centre” 

implies. As shown in Figure 3.15, the cluster centre does not necessarily fall on 

the centre of the gravity of the cluster in ECM online.  

An offline version of ECM (ECMc) was proposed to address the problem of 

cluster centres not positioned at the centre of gravity. It optimises the cluster 

centres after the clusters are derived from the online ECM algorithm and moved 

the cluster centres to the centre of the gravity.  

A constrained optimisation method was applied to the clusters that 

minimise the following objective function: 

 
1 1

|| ||
i j

n n

j i j

j j x C

J J x Cc
  

 
   

 
 

  
 

(3.32) 

where i=1,2, ... ,p. p is the number of input vectors. 

The constraints are defined below: 

 ||xi –Ccj|| ≤ Dthr,    j=1,2, ..., n (3.33) 

Once the cluster centres are updated, the input vectors are reallocated to 

the nearest cluster. 

 

If ||xi-Ccj|| ≤ ||xi-Cck||,    for each j≠k 

xi belongs to Ccj, otherwise xi belongs to Cck 
(3.34) 
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Clustering is one of the most important parts of the DENFIS algorithm, as 

the antecedent of the fuzzy rules is based on the cluster centres.  Once the 

clusters are fully optimised, a fuzzy inference system is then developed. The 

algorithm is described below:  

DENFIS uses the Takagi-Sugeno fuzzy inference engine with triangular 

membership functions composed of m fuzzy rules in the form of:  

 

 

 

 

where xj , j=1, 2, ... q are antecedent that define the universe of discourse. 

Rij , i=1,2,...,m; j=1, 2, ..., q, are fuzzy sets defined by their fuzzy membership 

function µRij: xj → [0, 1], i = 1, 2, ..., m; j=1,2,...,q. y is the consequent variable and 

linear function fi, i = 1, 2, ...,m, is used.  

The triangular membership function is described below: 

 

Figure 3.16 Triangular 

membership function showing the 

three parameters a, b and c. 

if x1 is R11 and x2 is R12 and ... and xq is R1q, then y is f1 (x1, x2, ..., xq) 

if x1 is R21 and x2 is R22 and ... and xq is R2q, then y is f2 (x1, x2, ..., xq) 

⋮  ⋮  ⋮  ⋮  ⋮ 

if x1 is Rm1 and x2 is Rm2 and ... and xq is Rmq, then y is fm (x1, x2, ..., xq) 
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(3.35) 

where b is the value of the cluster centre, a=b-d×Dthr and c=b+ d×Dthr, 

d=1.2-2; Dthr is the distance threshold, a clustering parameter from ECM or 

ECMc for limiting the maximum cluster size. 

For an input vector, 
1 2[ ]qx x x x , the output of the system, y is the 

weighted average of each of the m activated rules as follows: 

 
 1 21

1

,  ,  ...,  
m

i i qi

m

ii

w f x x x
y

w








  

(3.36) 

3.7.3.3 DENFIS online learning process 

The consequence of the Takagi-Sugeno fuzzy rule is created and updated 

by a (weighted) least-square estimator as described in 3.4.1.2 The linear function 

is expressed as follows: 

0 1 1 2 2 q qy x x x       
 

The coefficient β is obtained through the following formula 

0 1[ ]
T

qb b b   

  
1

T Tb A A A y



 (3.37) 

or for the weighted version of the LSE. 

  
1

T Tb A WA A Wy



 (3.38) 

where 
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and  

y=[y1 y2 ... yp]
T 

and W is a diagonal matrix: 

1

2

0 0

0 0

0 p

w

w
W

w

 
 
 
 
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   

Equation(3.37) and (3.38) can be rewritten as  

LSE 

1( )T

T

P A A

b PA y

 



 (3.39) 

Weighted LSE 

1( )T

w

T

w w

P A WA

b P A Wy

 


  
(3.40) 

In the DENFIS online mode, the weighted recursive LSE is used with the 

following equation:  

WR LSE 

1 1 1 1 1 1

1 1 1
1

1 1

( )

)1

T

k k k k k k k k

T

k k k k k
k k T

k k k

b b w P a y a b

w P a a P
P P

a P a 

     

  


 

   


 
  

   

k=n, n+1, ..., p-1 

(3.41) 

The forgetting factor λ is set between 0.8 and 1. 

The DENFIS online model learning procedure is explained below: 

1. Perform ECM clustering on the initial set of data n0 to obtain M clusters 

2. For every cluster Ci, find pi  data points are closest to Ci., i = 1, 2, ..., M; 
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3. Create a fuzzy rule for each cluster. The antecedent of the fuzzy rule is the 

cluster centre. The consequent function is created using equation (3.39) or 

(3.40). The distance between pi and the cluster centre is used to create the 

weight matrix.  

4. The size of pi is a model training parameter. It defines the number of data 

points used to derive the consequent function of the fuzzy rules. 

As new input vector enters the system, new fuzzy rules may be created 

and some rules updated. A new fuzzy rule is created if a new cluster is found in 

ECM. If no new clusters are created, one or more fuzzy rules are updated by 

using equationError! Reference source not found..  

For each input vector, the DENFIS online model dynamically creates a 

Takagi-Sugeno fuzzy inference system using m activated rules. m is a model 

training parameter that should be adjusted based on the characteristic of the 

problem. The rules are chosen based on the position of the input vector. Since 

the rules are updated constantly, two input vectors with the same values at 

different time point may have different inferences as the fuzzy rule may have 

been updated before the second input vector entered the system. 

3.7.3.4 DENFIS offline learning process 

The offline version of DENFIS differs from the online version only in the 

clustering method where the ECM algorithm is replaced with ECMc. Since ECM 

and ECMc are both unsupervised clustering methods, there is no supervised 

learning in the offline version of DENFIS to update the fuzzy rules‟ membership 

function parameters. 

3.8 Generalisation Error Estimation and Model Selection 

Measuring the generalisation error of a model is one of the key 

components in this thesis, as it determines how the model is expected to perform 
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on future data. There are several commonly used re-sampling methods for 

measuring generalisation error. 

3.8.1 Holdout Method 

In this method, the data is randomly split into training and testing data 

once at a fixed ratio p, usually at 66.67% or 50%.  The model is trained with the 

training data and then tested on the test data (McLachlan, 1992). 

This method builds only one model and therefore requires less 

computation than other methods. However, this method reserves a large portion 

of the data to test the model‟s performance and, therefore, if the dataset is small 

or imbalanced, there may not be enough input vectors in the training dataset to 

properly represent the problem. This may lead to an overestimation of the 

generalisation error.  

3.8.2 N-Fold Cross Validation Method  

This method randomly splits data into n pieces of near or equal size 

without replacement, i.e. in each fold, one input vector can only exist in either 

training data or testing data. The training and testing procedure is repeated n 

times, each time one of the pieces is used as the testing dataset and the 

remaining pieces are aggregated as the training data. Different pieces are used 

as the testing dataset each time and the same piece is never reused as the 

testing dataset.  

The prediction error is calculated for each piece and averaged across n 

pieces to obtain the final generalisation error (Kohavi, 1995a). 

3.8.3 Leave-one-Out Cross Validation 

This is an extreme case of n-fold cross validation. Leave-one-Out Cross 

Validation (LOOCV) is equivalent to n-fold cross validation where n is the number 

of input vectors in the dataset (Lachenbruch & Mickey, 1968). 
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This method uses n-1 input vectors for training and the remaining input 

vector for testing. It has the smallest bias (Martens & Dardenne, 1998), making it 

the most suitable re-sampling method for problems with a small number of input 

vectors.  

LOOCV requires n models to be trained using the largest amount of input 

vectors, making it very computationally expensive and, therefore, may not be 

suitable for large datasets.  

3.8.4 Monte Carlo Cross Validation (MCCV)  

This method is the random repetitive version of the holdout method that 

repeats holdout v times and allows the input vectors to be reused(Picard & Cook, 

1984). The data is split v times with the ratio of p (e.g. 1:10) as in the holdout 

method. There is no limit to the number of splits, it can be 10, 100, 1000 or more.  

The 10-fold cross validation method is widely used in this thesis to 

measure the generalisation error for medium to large datasets, primarily due to its 

good balance between computational complexity and level of bias.  

As for small datasets, leave-one-out cross validation is used to ensure 

sufficient numbers of input vectors in the training dataset to avoid over estimation 

of generalisation error.  

3.9 Conclusion 

This chapter reviews methods and techniques that are used or highly 

related to the research in this PhD study. The researches and developments 

carried out in this PhD study are either improvements made on previous studies 

reviewed in this chapter or integrate existing methods in a new way to achieve 

better results.  

DyNFIS and MUFIS both improve on DENFIS offline method to allow more 

emphasis on the problem subspaces. Multi-Model System and the personalised 
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regression model, as proposed in chapter 6 and 8, integrates regression methods 

with other methods to allow better representation of the problem subspaces. 

In the next chapter, a novel method is proposed to address the issue with 

unique problem subspaces by improving the DENFIS offline model to allow 

supervised optimisation on the membership functions and use more complex 

membership function. 
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CHAPTER 4  DYNFIS – AN IMPROVED DYNAMIC NEURAL FUZZY 

INFERENCE SYSTEM FOR LOCAL MODELLING 

4.1 Introduction 

In this chapter, an improved DENFIS offline model, denoted DyNFIS, is 

proposed with the following two improvements over the original DENFIS offline 

model, described as follows: 

4.1.1 Improvement 1: Replace Triangular MF with Gaussian MF 

The triangular MF used in the original DENFIS was chosen for its low 

computational requirements, which was important for an online model, but much 

less so for an offline model as the computational speed is no longer one of the 

primary issues.  

Triangular MF is the simplest form of membership function with just three 

parameters. It has low computational requirements and provides coverage for the 

majority of the space. The peak position and the two feet define the triangular MF 

as shown in Figure 4.1.  The degree of membership decline at a fixed rate as the 

value moves away from the centre and any value outside the triangle has the 

degree of membership of zero.  

                          

Figure 4.1 Triangular membership function replaced with 

Gaussian membership function 
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The Gaussian MF is widely used in many computation methods that 

involve coverage of problem space such as Evolving Self-Organising Map (Da & 

Kasabov, 2000), Radial-Basis Function network(Lucks & Oki, 1999). Its coverage 

of problem space expands infinitely as the degree of membership decreases 

gradually through the bell curve from the peak at different rate depends on the 

parameter of the function and it never reaches zero.  

The use of different membership functions may not have significant impact 

on the model‟s prediction accuracy, but in terms of knowledge discovery, 

Gaussian membership function makes the rules more accurately represent the 

model.  

The fuzzy rule is often written in simplified form to make it easier to read.  

Here is an example of a set of 3 activated rules chosen to make a 

prediction for input vector x. 

Rule 1: 

     if     X1  is about 0.19 and X2  is about 0.07 and X3  is about 0.43 

and X4  is about 0.63 then  

y   =  1.17 +   0.38 * X1 +   0.56 * X2 +   0.03 * X3 +   0.48 * X4 

Rule 2: 

     if     X1  is about 0.21 and X2  is about 0.14 and X3  is about 0.50 

and X4  is about 0.69 then  

y   =  1.19 +   0.46 * X1 +   0.57 * X2 +   0.09 * X3 +   0.39 * X4 

Rule 3: 

     if     X1  is about 0.14 and X2  is about 0.27 and X3  is about 0.62 

and X4  is about 0.69 then  

y   =  1.21 +   0.35 * X1 +   0.62 * X2 - 0.06 * X3 +   0.49 * X4 
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The term “about” is a simplified expression for a degree of membership. It 

simply means two values are similar. When presented using triangular 

membership function, due to its fixed width, the value outside a fixed range is not 

“about” certain value. This range is fixed and therefore loses the part of meaning 

of fuzziness enclosed in the rule. Gaussian MF provides a more accurate 

represents the term “about” in mathematical form as it captures the fuzziness in 

our language.  

4.1.2 Improvement 2: Supervised Learning with Back-Propagation to 

Optimise Both Consequent and Membership Functions 

DENFIS offline model‟s supervised learning is limited to the consequent 

part of the fuzzy rules. The membership functions are fixed once they are created 

based on an unsupervised clustering method (ECM). It seems only logical to 

optimise them with a supervised optimisation method, as the offline module does 

not need to adapt to new data and computational speed is not a critical issue as in 

the online model. By applying additional supervised learning on the membership 

function parameters, the prediction accuracy of the model may be further 

improved. This also allows the rules to better represent the problem as both input 

and output data are used. 

4.2 Algorithm Description 

The DyNFIS offline learning process is outlined as follows: 

1. Cluster the data to find n cluster centres using Offline Evolving Clustering 

Method. 

2. Create a fuzzy rule for each cluster 

a. Antecedent of the fuzzy rule is created based on the cluster centre. 
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b. Consequence of the fuzzy rule is a linear function trained with the 

input vectors that belong to the clusters. (Takagi-Sugeno fuzzy 

rule) 

3. For each training input vector, derive the output from m activated rules 

4. Using back-propagation to minimise the error by adjusting the 

membership function and the consequence of the activated rules using 

equations (4.5) to (4.11) 

Consider data that is composed of N data pairs with P input variables and 

one output variable {[xi1, xi2,…,xij], yi}, i = {1, 2,…,N}, j = {1,2,…,P} M fuzzy rules 

are defined initially through a clustering process (ECM), the ith rule has the form 

of: 

Ri: If x1 is about Fl1 and x2 is about Fl2 … xp is about Flp and then y = f(x) 

 1 1 2 2 ... p py x x x         (4.1) 

Flj are the fuzzy sets defined by the following Gaussian type membership 

function (MF): 
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Using the modified centre average defuzzification procedure, the output 

value of the system can be calculated for an input vector xi = [x1, x2… xp ] as 

follows: 
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 (4.3) 

Suppose DyNFIS is given a training input-output data pair [xi, ti]. The 

system minimises the following objective function: 
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The back-propagation (steepest descent) algorithm is used to obtain 

equation (4.5) - (4.11) for the optimisation of the parameters
ln , 

lj , 
ljm  

lj  and 

l  
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where
m ,

n ,
 ,

 and 
 are the learning rates for updating the 

parameters: 
ln ,

lj ,
ljm ,

lj and
l respectively. 

In the DyNFIS algorithm, the following indexes are used: 

 training data points: i=1,2,…,N 

 input variables: j=1,2,…,P 

 fuzzy rules: l=1,2,…,M 

 training iterations: k=1,2,… 
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4.3 Knowledge Extraction 

The knowledge extracted from DyNFIS is in the form of easy to 

understand fuzzy rules, just like the ones extracted from DENFIS, it identifies 

different groups of input vectors that are unique and should be treated differently. 

E.g. “IF x1 is about a1, x2 is about a2, x3 is about a3 then

0 1 1 2 2 q qy x x x        . The term “about” can be more precisely described 

as the degree of membership.  

In DENFIS, the rules are entirely based on the clustering results of either 

the online or offline ECM. There is no supervised learning applied to these rules 

to adjust their membership functions‟ parameters. DyNFIS, on the other hand, 

applies back-propagation after the rules are created to adjust its membership 

functions‟ parameters to optimise the accuracy of the prediction. Therefore, the 

rules in DyNFIS is expected to fit the data better, due to the use of output data in 

supervised learning and therefore provide more accurate knowledge to the 

researcher.  

4.4 Benchmark Dataset Case Study: Mackey-Glass Dataset 

The DyNFIS was applied to the on Mackey-Glass dataset (Mackey & 

Glass, 1977), which has been widely used as a benchmark in the area of neural 

networks, fuzzy systems and hybrid systems for time series prediction problems. 

The dataset was created with the following differential equation: 

 10

( ) 0.2 ( )
0.1 ( )

1 ( )

dx t x t
x t

dt x t






 

   
(4.12) 

The integer time points for the above equation were obtained using the 

fourth-order Runge-Kutta method. Here we assume that the time step is 0.1;

(0) 1.2x  ; 17  ; and ( ) 0x t  for t < 0. (Hornik et al., 1989; Vapnik, 1998) 
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Figure 4.2 Mackey-Glass dataset with 500 input vectors for 

testing.  

For the t+85 benchmark dataset, 3000 data points, from t = 201 to 3200, 

were extracted as the training data and 500 data points, from t = 5001 to 5500, 

were extracted as the testing data. 

The results are shown in Table 4.1 with other published results for 

comparison. Non-Dimensional Error Index (NDEI) is used as the measure of 

quality, which is equivalent to Root Mean Square Error (RMSE) divided by the 

standard deviation of the training output.  
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Table 4.1 

Prediction accuracy comparison of several offline algorithms on 

t+85 Mackey-Glass dataset 

Methods 
Neurons / 

Rules 
Epochs 

Training 

NDEI 

Testing 

NDEI 

MLP-BP 60 500 0.021 0.022 

ANFIS 81 50 0.032 0.033 

ANFIS 81 500 0.024 0.025 

DENFIS I (TS) 116 2 0.068 0.068 

DENFIS I (TS) 883 2 0.023 0.019 

DENFIS II (MLP) 58 60 0.020 0.020 

DyNFIS (TS) 91 500 0.017 0.018 

Note: Results extracted from (Song, 2001) 

 

As shown in Table 4.1, DyNFIS has no difficulty in solving this difficult 

problem, the t+85 Mackey-Glass prediction.  

DENFIS I (TS), due to lack of optimisation of the fuzzy rules, can finish the 

training in only two epochs since it only needs to optimise the consequences of 

the fuzzy rules. This may be ideal for online applications, but in order to achieve 

better accuracy, it needs to use very large number of fuzzy rules to allow very low 

level representation of the problem subspaces. 

DENFIS II (MLP) uses computationally expensive MLP as its 

consequence, where many iterations, 10s or 100s, of supervised training is 

carried out within the MLP optimisation algorithm in each of the epochs in 

DENFIS. Its performance is still limited due to the un-optimised fuzzy 

membership function parameters, even with the use of MLP consequence.  

Overall, DyNFIS is not much more computationally expensive than other 

algorithms but was able to achieve better prediction accuracy.  
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4.5 Application of DyNFIS in Neural Network Forecasting 

Competition  (NN3) for Time Series Prediction 

The proposed algorithm was entered in the NN3 Neural Network 

Forecasting competition (Crone, 2006). The result was submitted to NN3 under 

the name of DENFIS due to an error, the prediction was really made using 

DyNFIS, not DENFIS.  

NN3‟s time-series data are from homogeneous populations of empirical 

business time series problems.  
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The 11 time-series data and the predicted values are shown below: 

 

 

  

 

 

Figure 4.3 The values of the 11 time-series problems in the NN3 competition. 

Blue lines are the training data and red lines are the predicted values for t+1 to 

t+18. 

The objective of this competition is to predict the next one to eighteen time 

points (t+1 to t+18). The predictions were made with the following setup: 
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1. One model was created for each prediction and therefore 88 (11 

time-series and 8 time points each) models were created for this 

competition.  

2. For each prediction, three models were created using following three 

range of data as input:  

a. t-2 to t 

b. t-5 to t  

c. t-8 to t 

3. The model that gives lowest RMSE is then used as input for the prediction. 

4. DyNFIS default parameters were used for each model. No model training 

parameter optimisations were applied during training. 

Due to time and resource limitations, full optimisation for each model was 

not carried out and a single set of parameters was used to train all 88 models. 

The only optimisation done for each model was on the input data where three 

models were trained with data using “t to t-2”, “t to t-5” and “t to t-8” as their input 

variables. The model that had the lowest training error was used for final 

prediction. 

DyNFIS does not have an automatic parameter tuning feature, which was 

available to several better performing methods in NN3 competition, either 

embedded or wrapped around the algorithm. DyNFIS needs to be optimised 

manually in order to achieve optimal prediction results. The current method of 

using a fixed set of features on all time-series data put a significant limit on its 

potential though it was unavoidable due to the scope and limitation of this PhD 

study. The implementation of DyNFIS was not designed for distributed computing 

and, therefore, the use of grid computing facilities was not possible.  

On a single computer, full optimisation of the parameters was not practical 

with the amount of available resources due to the high computational complexity. 

The DyNFIS model has eight parameters and high precision optimisation is 

required for some of these parameters. If we optimise the parameters using the 
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Genetic Algorithm (GA) (Davis & Mitchell, 1991) or Particle Swarm Optimization 

(PSO) (Kennedy & Eberhart, 1995), the search space is simply too wide.  

A rough estimate for GA optimisation, with 100 generations and 24 

populations, showed that this process would create 211,200 models for this 

competition. Each model may take 60 seconds to complete on a single high 

performing computer and therefore it would take approximately 74 days to 

complete the predictions without optimising the input data. It was simply not 

practical at the time of preparing for the NN3 competition. 

Under the circumstances, DyNFIS was still able to outperform most of the 

other prediction algorithms and achieved 10th place among 90 submissions in the 

11 time-series competition in NN3.  This shows that DyNFIS is a stable and 

accurate method, even without in-depth parameter optimisation. 

4.6 Conclusion 

This chapter presents an improved version of DENFIS offline algorithm, 

DyNFIS, which applies additional back-propagation learning on the membership 

functions and replaced triangular MF with Gaussian MF.  

The algorithm composes a Takagi-Sugeno inference system using m most 

activated fuzzy rules to derive the output for a given input vector. The proposed 

system demonstrates superiority when compared with other global models 

including MLP, ANFIS and the original DENFIS offline system on benchmark 

data. It also demonstrated its performance in the NN3 competition with minimal 

optimisation and achieved good result. 

This algorithm addresses the following real world data modelling issues. 

 Unique problem subspaces 

DyNFIS creates fuzzy rules based on clustering and supervised 

learning on the training data to ensure that unique problem spaces are 

well represented.  
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 Outliers 

The outliers are expected to be positioned outside the normal clusters 

since they are expected to be very different from the majority and with 

ECM clustering ensures that input vectors without any support from 

other input vectors will not form a cluster. This minimises the influence 

of outliers for the majority of input vectors since no rule will be created 

for them. 

4.7 Discussion 

DyNFIS allows different linear model to be used in each problem 

subspace and then integrates them together through a fuzzy inference system.  

Each problem subspace is unique and can be very different from another, it is 

likely that the linear model is not suitable for some problem subspaces and 

perhaps non-linear or other models would be better suited.  

The next stage of research is to allow different types of models to be used 

in a fuzzy inference system and allow for more suitable models to be applied 

based on the characteristic of the problem subspace.  

In the next chapter, a novel fuzzy inference system is proposed, which 

extends DyNFIS to allow multiple fuzzy rule types to be integrated in a single 

fuzzy inference system. 
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CHAPTER 5  MUFIS: A NOVEL NEURO-FUZZY INFERENCE 

SYSTEM USING MULTIPLE TYPES OF FUZZY RULES  

In this chapter, a novel fuzzy inference system is proposed, referred to as 

“MUFIS: A Neuro-Fuzzy Inference System Using Multiple Types of Fuzzy Rules”, 

which is an extension of the DyNFIS algorithm. This method was published in 

IEEE International Conference on Fuzzy Systems in 2008 (Hwang et al., 2008). 

The advantage of this method over DyNFIS is that it allows different types of 

fuzzy rules to be aggregated for a single prediction. 

An implementation of this system using both ZM and TS type fuzzy rules is 

demonstrated on the Mackey-Glass benchmark dataset (Mackey & Glass, 1977) 

and then on a real medical dataset for renal function prediction (Levey et al., 1999; 

Levey et al., 2007).  

5.1 Algorithm Description 

MUFIS is a dynamic neuro-fuzzy inference system using both 

Zadeh-Mamdani type fuzzy rules and Takagi-Sugeno type fuzzy rules. Gaussian 

membership functions are used in each fuzzy rule for the antecedent and either a 

Gaussian membership function or a linear function is used for the consequence 

depending on the type of fuzzy inference engine. 

In addition, unlike DyNFIS, where the consequent function is derived using 

input vectors within the cluster, the consequence here is the locally optimised 

global function.  

The general MUFIS algorithm is shown below: 

1. Cluster the data to find n cluster centres. (A number of clustering 

algorithms can be used including but not limited to K-Means (MacQueen, 

1967) and the Evolving Clustering Method (ECM) (Kasabov & Song, 

2002).   
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2. Assign either ZM or TS type fuzzy rules to each cluster, based on the 

cluster‟s characteristic (described later). The cluster centre is used as the 

centre of the fuzzy membership functions. 

3. Create an FIS system 

4. Apply an optimisation algorithm (Steepest descent method / 

back-propagation), to optimise the fuzzy rules.  

5. End of procedure 

Consider the data is composed of N data pairs with P input variables and 

one output variable {[xi1, xi2,…,xij], yi}, i = {1, 2,…,N}, j = {1,2,…,P} M fuzzy rules 

are defined initially through the clustering procedure, the lth rule has the form of: 

For ZM type fuzzy rules: 

Rl: If x1 is about Fl1 an d x2 is about Fl2 … xp is about Flp and then 
ln =Gl 

  

For TS type fuzzy rules: 

Rl: If x1 is about Fl1 and x2 is about Fl2 … xp is about Flp and then 

 
1 1 2 2 ...l p pn x x x             

Flj are the fuzzy sets defined by the following Gaussian type membership 

function (MF): 
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Gl is the Gaussian MF for ZM‟s consequence defined as follows: 
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The coefficients for the TS‟s linear functions are calculated as in the 

following equations: 
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Where  
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Using the modified centre average defuzzification procedure, the output 

value of the system can be calculated for an input vector xi = [x1, x2… xp ] as 

follows: 

For a TS fuzzy inference system 
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(5.5) 

For a ZM fuzzy inference system 
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(5.6) 

ln is the point that has the maximum membership value in the lth output set.  

To allow the integration of both ZM and TS fuzzy rules in the same NFI 

system, a fixed  for each fuzzy membership function was used without updating 

it in the training process. This allows for the removal of from ZM‟s calculation 

and makes ZM‟s defuzzification function the same as for TS‟s one. From past 

experience, a ZM fuzzy inference system‟s performance is not strongly affected 

by using a singleton value instead of Gaussian membership function in every 

fuzzy rule. 

Suppose the MUFIS is given a training input-output data pair [xi, ti]. The 

system minimizes the following objective function: 
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The steepest descent algorithm is used to obtain the equations (5.8)-(5.14) 

for the optimisation of the parameters
ln , 

lj , 
ljm  

lj and 
l  
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Where
m ,

n ,
 ,

 and
 are learning rates for updating the parameters: 

ln ,
lj ,

ljm ,
lj and

l respectively. 

In the MUFIS algorithm, the following indexes are used: 

 training data points: i=1,2,…,N; 

 input variables: j=1,2,…,P; 

 fuzzy rules: l=1,2,…,M; 

 training iterations: k=1,2,…; 
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The procedure for assigning the type of fuzzy rule to each cluster is 

described below: 

1. Create a global linear function for all training data points 

2. For each cluster, make a copy of the function from the step one and 

optimise it with WRLSE using the input vectors in the current 

cluster.  

3. Apply the function to the data points in the current cluster to obtain 

the training prediction output and calculate the root mean square 

error for TS type fuzzy rules (TS-RMSE). 

4. For each cluster, use the mean of the output values as the 

prediction output for each data point. Calculate the root mean 

square error for ZM type fuzzy rules (ZM-RMSE). 

5. If the ZM-RMSE is larger than the TS-RMSE, then create a TS type 

fuzzy rule for this cluster; otherwise create a ZM type fuzzy rule. 

Some clusters can have a very low number of input vectors or the data can 

contain high level of noise, but by optimising the global linear function using local 

input vectors instead of creating a new linear function using only the input vectors 

in the cluster, it allows more stability in prediction while still putting enough 

emphasis on the local cluster.   

It was noted that some TS rules did not perform well in problem subspaces 

where variation of the output value was high. There is a notably positive 

correlation between the number of TS rules under-performing and the level of 

variation in a problem subspace. It can then be reasonably assumed that by 

replacing under-performing TS rules with ZM rules, we can achieve better overall 

accuracy. 

The linear function for each cluster in the procedure above is updated 

using the following formula (Kasabov & Song, 2002) with λ being the forgetting 

factor.  



CHAPTER 5    86 

 

 

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( )

1 ( 1) ( ) ( 1) ( 1) ( )
( 1) ( )

( 1) ( ) ( 1)

T

k

T

T

b k b w k P k a k y k a k b k

w k P k a k a k P k
P k P k

a k P K a k

a A

 

           


    

    
   

   

(5.15) 

w is defined as follows:(Kasabov & Song, 2002) 
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(5.16) 

The steepest descent algorithm (back-propagation) is not expected to 

make drastic changes to the parameters of the Gaussian MF and therefore the 

procedure described above provides a rough estimate of each fuzzy rule‟s 

performance by simulating the prediction process of each cluster for each type of 

fuzzy rule with its initial parameters.  

5.2 Case Study and Analysis 

MUFIS was applied to the Mackey-Glass dataset as described in chapter 

4.  For comparison purposes, the upper limit of the number of rules is set to 60 

and training epochs is set at 200 for MUFIS. 
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Table 5.1  

Prediction results of off-line learning models on Mackey-Glass t+6 training 

and testing data. 

Methods 
Neurons or 

Rules 
Epochs Training NDEI Testing NDEI 

MLP-BP 60 50 0.083 0.090 

MLP-BP 60 500 0.021 0.022 

ANFIS 81 50 0.032 0.033 

ANFIS 81 200 0.028 0.029 

DyNFIS 55 100 0.017 0.016 

MUFIS 51 200 0.015 0.015 

Note: Results extracted from (Hwang & Song, 2008; Kasabov & Song, 

2002) 
 

In the testing phase, m most activated rules are chosen to derive the final 

prediction.  Since ZM fuzzy rule performs better than TS rules when the data 

contains high level of variation, ZM‟s contribution increases for these parts of the 

problem. This is evident in Figure 5.1, as more ZM rules outperform TS rules 

when the data contains higher variance.  

More training epochs were used for MUFIS training because of the use of 

WRLSE to create its initial consequent function. This was designed to minimise 

the impact of potential clusters that were identified due to the noise in data (Noisy 

Cluster). The initial consequent function was the localised version of the global 

function which provides a balance between local function and global function.  

When a fuzzy rule is created for a “Noisy cluster” and its consequent 

function created using input vectors only in this cluster, the function may be 

completely useless and have strong negative impact on the model as a whole.   

By using WRLSE to create the consequent function through optimising the 

global function is using local data, it makes the initial rules slightly less accurate 
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while minimising the impact of the “Noisy Clusters”. It, therefore, requires more 

training iterations to train the model.  

 

Figure 5.1 Number of ZM rules used in high variation regions 

of the problem space. Green line: test data‟s normalised 

output values, blue bar: number of ZM fuzzy rules used. This 

indicates that ZM fuzzy rules are used more often when the 

data contains high variation.  

An example of a MUFIS fuzzy rule set for a given test input vector p is 

shown below in normalised space: 

Rule 1 (ZM) : 

 If 18tx  is about 1.53 and 12tx  is about 1.57 and 6tx  is about  

1.59  and tx  is about 1.79 then  

y = 1.8065 
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Rule 2 (TS): 

 If 18tx  is about 1.42 and 12tx  is about 1.69 and 6tx  is about  

1.68  and tx  is about 1.82 then 

18 12 61.5209 0.2982 -0.1015 -0.4538  0.8854t t t ty x x x x          

Rule 3 (TS):  

If 18tx  is about 1.56 and 12tx  is about 1.61 and 6tx  is about  

1.78  and tx  is about 1.79 then  

18 12 61.1792 0.0011 -0.4304 0.1312  0.6249t t t ty x x x x           

Rule  4 (TS):  

If 18tx  is about 1.60 and 12tx  is about 1.79 and 6tx  is about  

1.70  and tx  is about 1.83 then  

18 12 62.3790 0.4333 -0.1029 0.0747 -0.0659t t t ty x x x x          

In the MUFIS system for this case study with 51 fuzzy rules, 4 of them 

contribute to the prediction of the test input vector p. One of the fuzzy rules is a 

ZM fuzzy rule, which indicates that the region where the test input vector p is 

located may be noisy or contains higher variation and causes TS fuzzy rules to 

perform worse than ZM fuzzy rules.  

For this particular input vector p in Mackey-Glass dataset, the ZM rule 

specifies that when the input is near this fuzzy rule, the predicted output from this 

rule will be 1.8065 and the same applies in TS rules with one major difference. 

The outputs from TS rules are derived on the fly based on the value of the input 

variables.  

In an ideal situation where the dataset provide enough input vectors and 

covers the problem space adequately, ZM will not be used or constructed often 

as the consequent function used in TS are able to derive a meaningful function. 
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However, low quality clusters are often found on real life data modelling problems 

and it is common to see clusters that has very few input vectors or clusters with 

input vectors that has no correlation with the output.  

In those cases, ZM rule should be used as it provides the most stable 

prediction for the input vectors in these kinds of clusters.  

This predicted output from all activated rules will then be combined using 

equation(5.6), which does a weighted average of the outputs based on how close 

the input vector is to the centre of the membership functions of each rules.  

5.3 Real world data modelling case study on renal function evaluation 

The evaluation of renal function is the foundation for all renal research. 

The glomerular filtration rate (GFR) is considered the best index of renal function 

to date. The most accurate way to measure GFR is by the clearance of an 

administered tracer by the kidney. However, this is also very time consuming and 

expensive, making it not suitable for everyday clinical practice. Most clinicians opt 

to estimate the GFR using more easily accessible biological data instead (Levey 

et al., 1999; Song, Kasabov, Ma, & Marshall, 2006).  

Many estimation methods have been proposed in the past to predict the 

GFR value using common laboratory variables (Bjornsson, Cocchetto, McGowan, 

Verghese, & Sedor, 1983; Cockcroft & Gault, 1976; Gates, 1985; Hull et al., 1981; 

Jellife, 1971; Jelliffe, 1973; Levey et al., 2007; Mawer, Lukas, Knowles, & Stirland, 

1972; M. Walser, 1998; Mackenzie Walser, Drew, & Guldan, 1993). Most of the 

methods predict creatinine clearance as a measure of GFR instead of GFR 

directly and therefore can only achieve low accuracy because of the error/noise 

in the translation between creatinine clearance and GFR. The Cockcroft–Gault 

(Cockcroft & Gault, 1976) equation is the most widely used equation for 

predicting creatinine clearance.  
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The Modified Diet and Renal Disease (MDRD) (Levey et al., 1999) 

equation was introduced in 1999 and predicts GFR directly using gender, 

ethnicity, age, diabetes status, cause of renal disease, protein intake and mean 

arterial pressure as input variables. MDRD was able to achieve much higher 

accuracy than all previous equations, about half the error of the Cockcroft–Gault 

equation error in direct comparison.  

The dataset used in this case study consisted of 441 GFR measures from 

141 patients, i.e. more than one measure for each patient, collected from 12 sites 

in Australia and New Zealand. GFR was measured as the renal clearance of 

Cr-EDTA corrected for body surface area (Marshall et al., 2005; Song, Kasabov, 

Ma et al., 2006). 

Comparison of the prediction accuracy of MUFIS and other methods is 

shown in Table 5.2, including the number of neurons and the test RMSE. The 

methods include a set of neural network models: MLP and RBF (S. Chen, Cowan, 

& Grant, 1991; Hornik et al., 1989; Lucks & Oki, 1999; Poggio, 1994), neuro-fuzzy 

inference models: ANFIS (Jang, 1993), DENFIS (Kasabov & Song, 2002)) and 

known formulas: Gates, Jelliffe73, MDRD and Walser (Levey et al., 1999; Levey 

et al., 2007). All experimental results other than MUFIS were extracted from 

KBNN paper (Song, Kasabov, Ma et al., 2006) based on leave-one-out cross 

validation experiments. The result from KBNN model itself is excluded from the 

comparison due to its use of expert knowledge, meaning it cannot be considered 

as a direct comparison. The results from the other methods presented in the 

paper, however, can be as they have the same dataset and experimental design.  
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Table 5.2 

RMSE comparison between various models on GFR 

dataset 

Model 
Neurons / 

Rules 
RMSE 

Gates 

(Gates, 1985) 
- 7.48 

Jelliffe73 

(Jelliffe, 1973) 
- 7.83 

MDRD 

(Levey et al., 1999) 
- 7.74 

Walser 

(Mackenzie Walser et al., 1993) 
- 7.38 

MLP 12 8.44 

ANFIS 36 7.49 

DENFIS 27 7.29 

RBF 32 7.22 

MUFIS 21 7.17 

Note: the results other than MUFIS were extracted from 

(Song, Kasabov, Ma et al., 2006) since the dataset and 

experimental design are the same. 

 

MDRD is the current benchmark on renal function prediction using a linear 

regression model. It derives a linear function using all available data and then 

applies it to future data. There are two main issues with this model. First, the 

MDRD model was developed using data collected in America and when it was 

applied to New Zealand data, the error increases significantly due to the 

difference between the two populations. Second, the use of a linear model 

effectively ignores some potential unique problem subspaces.  
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MUFIS addresses the second issue by identifying these unique problem 

subspaces through a clustering and supervised learning. It allows different 

models to be applied to them dependent upon their characteristics. The 

identification of unique problem subspaces is essentially a profiling procedure 

that allows researchers to identify groups of patients that may be very different 

from the majority for certain reasons and, therefore, should be studied closely to 

see if there is anything special about these groups of patients.   

5.4 Knowledge Discovery 

One of the main advantages of MUFIS is its ability to extract meaningful 

rules that bring new knowledge to the analyst. Being a fuzzy inference system, 

the model developed with MUFIS is a set of easy to understand IF-THEN rules. 

Many neural network models are a black box that is difficult, if not impossible, for 

users to interpret and extract useful knowledge from. 

An example of the rules in its original space from the MUFIS GFR model is 

shown below: 
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Rule 1: ZM Rule 
   

 

IF Age is about 74 
 

and Sex is Male 
 

and 
Serum 

creatinine 
is about 0.57 

 

and Serum urea is about 43 
 

and Race is White 
 

and Serum Albumin is about 35 
 

THEN GFR = 16.4170  

  

Rule 2: TS Rule 
   

 

IF Age is about 49 
 

and Sex is Female 
 

and 
Serum 

creatinine 
is about 0.38  

and Serum urea is about 47 
 

and Race is White 
 

and Serum Albumin is about 35 
 

THEN 
GFR = -0.30*Age-1.48*Sex-42.48* 
Serum creatinine-0.17* Serum 
urea+44.8*Race+ Serum albumin*0.25 

 

 

Take patient „ ‟ as an example. The patient is a 46 year old white female 

with Serum creatinine of 0.31, Serum urea of 13, and Serum albumin of 37. The 

patient is positioned in the problem space as shown below: 
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Figure 5.2 The location of fuzzy membership function 

centres and the patient in the Principle Component Analysis 

(PCA) space using the first two components. The prediction 

for the current patient is made using an integration of the 

three TS fuzzy rules and one ZM fuzzy rule. 

As shown in Figure 5.2, MUFIS dynamically integrates multiple types of 

fuzzy rules based on the position of the current patient in the problem space. This 

shows that ZM fuzzy rules work better than TS fuzzy rules in some problem 

subspaces. TS fuzzy rules are suitable for some patients while a mixture of TS 

and ZM fuzzy rules are suitable for other patients.   

Prediction accuracy is not the only measure of model quality in a real world 

data modelling problem. Sometimes more than one model is able to achieve the 

best or similar accuracy when applied to the same problem. In this case, the 

model with easy to understand rules should be given preference, as it allows for 

further analysis of the problem through analysing the model. MUFIS, due to its 

easy to read fuzzy rules, has advantages in this respect.  

 Fuzzy Rules 

Contributing TS Fuzzy Rules 

Contributing ZM Fuzzy Rules 

Current Patient 
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Each of the rules represents a new knowledge, which highlights a problem 

subspace that is unique and may be worth more in-depth investigation. The 

antecedent of the rule identifies a point in the entire problem space and the 

consequence shows the type of rule used. If a ZM rule is used, it indicates this 

region is more noisy and non-linear. This can be caused by many issues, such as 

a lack of input vectors, excessive noise, or simply means that linear function is 

not a suitable model for this problem subspace. The regions can then be 

inspected further using visualisation tools in 2D or 3D, or other suitable analysis 

tools to find out if there are abnormalities in this region.  

Note that these rules are not the cluster centres as in the first part of the 

algorithm, as they have been optimised through back-propagation on the training 

data with global RMSE as its objective function.  

It is possible for new input vectors to fall outside the problem space 

covered by the existing model. This occurs when the original training dataset was 

incomplete and could not explain the problem fully. When this happen the model 

will still try to make the prediction use the nearest activated fuzzy rules, though 

the prediction made for this input vector will be less accurate than the predictions 

made for input vectors falls in the areas covered by the original training data.  

5.5 Conclusion 

A novel fuzzy inference system, MUFIS, was proposed in this chapter, 

which allows both ZM and TS fuzzy rules to be integrated into a fuzzy inference 

system. It demonstrated that using a mixture of multiple types of fuzzy rules in a 

fuzzy inference system can lead to better prediction accuracy in some problems. 

In addition, the fuzzy rules extracted from MUFIS model is also more meaningful 

than the one from DyNFIS and DENFIS as it now shows the type of fuzzy rules 

that each problem subspaces is better suited.  

The proposed method addresses the following real world data modelling 

issue: 
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 Unique problem subspaces 

MUFIS creates fuzzy rules based on clustering, suitability of fuzzy rule 

type and supervised learning on the training data to ensure that unique 

problem spaces are well represented. Each problem subspace may be 

assigned with different fuzzy rule types depending on its 

characteristics.  

5.6 Discussion 

The concept of integrating different types of fuzzy rules, or local models, in 

a single fuzzy inference system has shown positive results in benchmark and real 

world data modelling problems. To allow a simpler and more flexible approach to 

integrate different types of models, a multi-model system is proposed in the next 

chapter that aims to allow different types of models to be integrated at a higher 

level, without changing or modifying the underlying model.  
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CHAPTER 6  INTEGRATED TEMPORAL AND SPATIAL 

MULTI-MODEL SYSTEMS 

Temporal model refers to a model that that concerns only with the change 

of values over time. This could be a simple linear regression model that creates a 

trend using recent data only. Since the model concerns only with the change of 

value over time, I refers to this kind of model as temporal model.  

Spatial model look at the problem based on the similarity between recent 

pattern and historical patterns. It is usually based on Euclidean distance between 

patterns, hence the name spatial model.  

A glance at previous studies in neural networks shows that there is no one 

model that works better than others in all real world data modelling problems. 

This is most likely due to the uniqueness of the problems and the way the models 

are applied. Simple regression models can outperform neural network models 

and vice versa depending on the problem.  

Consider a time-series prediction scenario, where the data is continuously 

collected. New patterns occasionally emerge, as often seen in problems related 

to nature, where data is seasonal and repeats existing patterns in general. 

However, new patterns appear occasionally due to changes in the environment, 

e.g. global warming and earth quake. It is not possible to know whether the 

current model‟s prediction will be accurate on new pattern as it is extrapolating, or 

is it able to adapt to the new pattern. It is then logical to consider the ideal of 

integrating multiple types of models that addresses the problem from very 

different angle to increase the possibility that one of these models will work on the 

new pattern. This way, the system can switch to, or adjust the contribution level of, 

the most accurate model on the new pattern.  

In this chapter, a multi-model system framework (MMS) that incorporates 

both spatial and temporal models is proposed to allow two contrasting views on 
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the same problem. The idea is to have a temporal model that make the prediction 

based on only recent data and a spatial model that makes the prediction based 

on historical data only.  

The temporal model sees the problem as change of values over time. This 

kind of model is most suitable for new patterns as the old patterns in historical 

data is forgotten quickly and replaced with new patterns.  

The spatial model, on contrast, look at the similarity between the recent 

pattern and patterns that have occurred in the past. The prediction is made based 

on historical patterns that are identified through the distance between the new 

pattern and historical patterns in the problem space. It most suited for recurring 

patterns as the model can learn from many historical examples to make the most 

accurate prediction.  

In this chapter, a multi-model framework that utilises both a temporal 

model and a spatial model is proposed (Song, Kasabov, Hwang, & Chrystall, 

2006).  

Since patterns shift gradually, the prediction error made by each model 

from earlier predictions can be used as a parameter to adjust the level of 

contribution from each model. 
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Figure 6.1 Multi-Model System framework, provides multiple 

views of the problem and integrates the output from each model 

based on its previous prediction error. Modified from Kasabov‟s 

book on evolving connectionist system in 2007(Kasabov, 2007a).  

The advantage of the above system design is that, when the data has a 

repeated pattern, the spatial model will be able to follow it very well by learning 

from historical data and the temporal model will perform moderately well, as it is 

based on recent data only. When a new pattern appears, the spatial model‟s 

prediction accuracy drops as there is no previous pattern for it to learn from and a 

correct prediction and the temporal model will perform better than the temporal 

model. The contribution from the temporal model will increase until there are 

enough instances of the new pattern in the historical data for the spatial model to 

learn from.  The design ensures that the system will not be chaotic when new 

pattern appears while utilising the high accuracy of the spatial model.  

6.1 Algorithm 

The modified MMS framework consists of three main parts. The first part is 

a linear regression model: a weighted least square regression estimator, which is 

a model that aims to solve linear problems over the entire problem space. The 

second part is a personalised model which aims to solve the problem by 

matching recent pattern with historical patterns and derive the output from only a 

few selected patterns. The third part is the contribution weight adjustment module 
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that adjusts the contribution of each model based on their recent prediction 

accuracy.  

6.1.1 Spatial Model – Transductive Weighted Neuro Fuzzy Inference 

System (TWNFI) 

Any distance based models may be used here. However, TWNFI is 

chosen as the most suitable model. TWNFI (Song & Kasabov, 2006) is a 

personalised fuzzy inference system with feature weight optimisation. The author 

considered it as the most sophisticated personalised model as it has been 

published in major journal and has shown better prediction accuracy than other 

methods. It also has the following characteristics, making it the most model to 

utilise historical data in real world data modelling problems. 

1. Personalised model, only relevant data is used 

2. Fuzzy inference system with input variable weight optimisation. The 

method optimises both the fuzzy system and the variable weighting.  

For each test input vector, it first selects a subset of input vectors and 

creates a fuzzy inference system similar to DENFIS. The fuzzy inference system 

and the input variable weights are optimised together. Due to the change in input 

variables weights, the subset of input vectors used to construct the model also 

changes in each iteration. This process is repeated many times until there are no 

more changes in the subset of data for training as shown in Figure 6.2. 
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Figure 6.2 A block diagram of the TWNFI algorithm.  

This model uses the current pattern, i.e., the past n time points, as the 

selection criteria for selecting a subset of data from the entire dataset. This 

searching process is based on the Euclidean distance between the recent pattern 

and historical patterns. Due to the complexity of the algorithm, the number of 

input variables must be limited.   
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6.1.2 Temporal Model – Weighted Least Square Estimator (WLSE) or 

Weighted Recursive Least Square Estimator (WRLSE) 

Any model that is capable of creating a trend from recent data may be 

suitable temporal model. The idea is to ignore all historical data and concentrate 

on the recent trend. This allows the model to be unaffected by the change of 

pattern as it adepts to the new pattern almost immediately. Both WLSE and 

WRLSE as described in 3.4.1.2  and 3.4.1.3  are considered good candidate for 

temporal model.   

Depends on the characteristic of the data, the amount of data used to 

derive he trend should be adjusted to represent the trend. For example, if the 

problem consists of data collected over the period of 10 years and the pattern 

does not change often, the definition of short term trend may be defined using the 

data from the past 6 months. On contrast, if the problem is to look the price of a 

particular stock and its pattern changes almost once per week. Then the short 

term trend may be defined using data from the past 3-4 days.  

6.1.3 Error Adjustment 

Since both models make a prediction at each time point, it is necessary to 

combine the two models to provide a singular output. This is usually done by 

changing the contribution level or weights between the models.  

In this thesis, the assumption that pattern changes from one to another 

occasionally and gradually and therefore the previous prediction error is 

considered a good indicator on how well each model is and will be performing in 

the near future.  

The method for aggregating the two models is shown below:  

 V =  w1*Vspatial (t0+T) + w2*Vtemporal (t0+T) -  w3* E (t0) (6.1) 

Where: V is the predicted output of the system  
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t0 is the current time 

T is the number of time units ahead to be predicted 

Vspatial is the output of TWNFI model 

Vtemporal is the output of WRLSE model   

E is the prediction error at t0, E (t0) = V (t0) - D (t0);  D is the actual output 

and V is the predicted output on t0 

w1, w2 and w3 are weights for Vspatial, Vtemporal and E respectively 

 w1and w2 are calculated based on the normalised error contribution of 

each model, the higher the error, the lower the weight.   
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(6.3) 

w3 is a fixed weight, which allows gradual adjustment of the error if the 

model is constantly over or under predicting. 

The integration method used in this multi-model system is very simple. It is 

possible to replace it with a more sophisticated learning model to allow the 

weights between the two models to be adjusted through machine learning.  

6.2 Example 

Take the following time-series data as an example, the patterns 

moderately consistent up to the 60th time point and a new pattern emerges after 

that.  
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Figure 6.3 An example scenario of time-series pattern that 

changes over time. Red bar indicates the 53rd time point 

Both spatial and temporal model would perform reasonably well prior to 

the 53rd time point. At the 53rd time point, the new pattern starts, the spatial 

model‟s prediction accuracy declines as it will not be able to find similar input 

vectors in the historical data. The error adjustment module gradually increase the 

contribution of the temporal model, as it uses only recent data and, is therefore, 

less affected by the change of pattern. After a few appearances of the new 

pattern, the spatial model recovers from low prediction accuracy as more 

appearances of the new pattern become available in the historical data. The error 

adjustment module gradually increases the contribution level of the spatial model 

as its prediction accuracy increases.   

6.3 Conclusion and Discussion 

The proposed system uses both temporal and spatial models to create a 

contrasting view of the problem, one concentrate on the recent trend and the 

other concentrate on affects of similar trends in the past and adjust the 

contribution weight between the two models using their recent prediction error as 

an indication.  

The actual models used for temporal and spatial model are not fixed. 

Models like DENFIS or eTS are suitable replacement for TWNFI model as they 

may be less computationally expensive. The temporal model may also be 



CHAPTER 6    106 

 

replaced with simple Lease-square estimator or Kalman-filter. It is entirely based 

on the characteristic of the problem and its requirements.  

The currently employed integration method is based on each model‟s prior 

prediction error as the assumption is that the pattern will only change gradually. 

Other integration methods or different weight adjustment criteria may be used. 

For example, one may use the average error from each model for the last n 

predictions as criteria to adjust the current prediction to allow a more smooth 

adjustment of contribution weights.  

The model aims to address times-series problems where patterns change 

over time but does not switch rapidly between patterns.   

This algorithm addresses or minimises the following issues. 

 Evolving problems (partial) 

Each prediction is made with models dynamically created and 

therefore the proposed method will always take use of the latest 

dataset.  

 Unique problem subspaces 

The use of the spatial model (TWNFI) emphasises on the unique 

problem subspaces of the test input vector. 

In the next chapter, this algorithm is applied to a real world time-series 

case study predicting milk production volume.  
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CHAPTER 7  THE APPLICATION OF THE MULTI-MODEL SYSTEM 

TO SOLVE A REAL WORLD TIME-SERIES DATA MODELLING 

PROBLEM  

The goal of the case study was to develop a model that can provide a 

4-day-ahead (t+4) prediction of milk production volume based on the given data 

for resource management purposes.  

7.1 Data Description 

The farm milk collection data consists of the details of milk pickups from 

575 farms selected from various regions of New Zealand. Information for each of 

the selected farms‟ location and vat capacity was also provided. The data was 

provided in its original form without any pre-processing. 

The following describes some basic understanding of the data: 

1. There are two milkings per day. One in the morning and one in the 

evening. 

2. Production volume between day and night milking is slightly different. The 

average ratio between night milking and day milking is 45/55. The ratio 

varies slightly in different regions of the country (see next section). 
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Table 7.1 

Description of variables used to describe a milk pickup from a farm. 

Variable Name Description 

ID The unique number for each pickup.  

Product The type of milk that has been picked up, either 

Ccolostrums or normal milk.  

Farm The unique number used to identify each farm.  

PickupDate The date the pickup occurred. 

PickupShift The type of the shift of the current pickup, either Day 

or Night 

PriorDate The date of previous pickup. 

PriorShift The type of the shift of the previous pickup, which can 

be either Day or Night 

Actual The actual pickup volume, disregard exception and 

adjustments.  

EstPerDay The predicted daily production volume made by 

Aspire, the company that does the current estimate.  

Adjustment The adjustment made, due to an exception. 

Reason The type of exception that has occurred. 
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Table 7.2  

Description of variables used to describe a farm. 

Variable Name Description 

FarmId The unique number used to identify each farm. 

Scheduling Area Region to which the farm belongs  

Zone Code Zone to which the farm belongs  

Active From When the farm becomes active 

Active To When the farm becomes inactive. 

Address Physical address of the farm 

Shareholding Whether the farm is a company farm or a 

shareholding farm 

VatCap The capacity of the vat. 

Product The type of milk the farm produces 

OffRoad Off-road distance  

oneWay one-way road or two-way road 

Altitude Altitude 

Note Special Notes/instructions by the farm owner 

GPSX GPS data, X-axis 

GPSY GPS data, Y-axis 

Night Shift Ratio Ratio of farm‟s milk volume between day and night 

 

7.2 Data Preparation Process 

The data provided by Fonterra is in its raw form without any processing 

and therefore a lot of unwanted data is embedded in the provided data. It was, 

therefore, necessary to process it before it was used to train the model to ensure 

only relevant data is used for training. 



CHAPTER 7    110 

 

7.2.1 Colostrum Milk Data Removal 

Some farms produce colostrum milk at the beginning of each season. This 

data should not be mixed with normal seasonal data as they have very different 

patterns and the goal of this case study does not include the prediction of 

colostrum milk production. As the milk type is categorised for each pickup, these 

input vectors are therefore accurately removed.   

7.2.2 Season Identification 

The data does not contain any accurate information on when the milking 

seasons begin and end. However, most farms operate based on seasons and it is, 

therefore, necessary to separate the data into multiple seasons.  

In this case study, the seasons are identified using the gap between 

pickups. A season is considered finished when there have been no pickups for 

over thirty days. 

7.2.3 Winter Milking Farm Season Identification 

Some farms are specially contracted to provide milk over winter while the 

majority of the farms cease operation during this period. The identification of the 

beginning and the end of a season for winter milking farms is therefore a difficult 

task. 

A farm is identified as a winter milking farms if the season is longer than a 

year. The data from this farm then needs to be split into multiple seasons using 

the official season start date, which usually are not be the actual farm season 

start date. Because of this, the seasonal data from these farms usually have a flat 

period in the between the official season start date and the real season start date.  
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7.2.4 Remove Exceptionally Short Seasons 

Since the seasons are identified based on the gaps between pickups, 

some seasons are exceptionally short because of the way the farm works or due 

to exceptional circumstances. For example, a farm can start milking for a few 

days and then decide to delay the milking until later if the milk production volume 

does not increase at the expected rate because the cows are simply not ready 

yet.  

All seasons that are shorter than 45 days are removed, as a normal 

season is almost always longer than 90 days. 

7.2.5 Calculate Day/Night Milking Volume.  

Depending on the farms‟ region, the production volume for each milking is 

calculated using the correct day/night shift ratio.  

Consider the case where the previous pickup was a night shift and the 

current pickup is done three milking shifts after the previous pickup. i.e. day 

milking shift (0.55), night milking shift (0.45) and another day milking shift (0.55). 

If the pickup volume is 1,000 litres, the first day milking volume will be 

1,000*0.55/1.55 = 354.84 litres, followed by a night milking: 1,000*0.45/1.55 = 

290.32 litres, followed by another day milking: 1,000*0.55/1.55 = 354.84 litres, 

which totals to 1,000 litres. 

7.2.6 Weight Adjustment Using Exception Data 

Exception data is used to provide importance or weight to each data point. 

The input vector that is labelled with exception data are usually outliers. 

Depending on the cause, the associated pickup volume‟s importance is reduced. 

The weight for a normal pickup data point is 1; it is reduced to 0.8 if it is affected 

by an exception.  
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Not all exceptions affect the pickup volume. The following types of 

exceptions are considered important, affecting one or more pickups. The list 

shows the exceptions that have impact on actual pickup volume and the pickups 

that are affected.   

Let t be the time of the current pickup and t+1 be the following pickup. 
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Table 7.3  

The number of pickups affected by different type of 

exceptions 

Type of Exception Number of Pickups affected 

Added Water  t 

Already Started Milking  t, t+1 

Dumped Milk t 

End of season variance  none 

Herd Change t 

Incorrect Estimate  none 

flood loss t 

Multi-shed farm t 

Non-standard milking cycle none 

Other (add notes) none 

Out of Schedule collection t, t+1 

Pick up remainder in next shift t, t+1 

Production change t 

Pumping problem t 

Scheduled for another tanker  none 

Start of season variance  none 

Still Milking t, t+1 

Volume Adjustment (one-off): t 
 

It was understood that not all exceptions were recorded in the dataset. For 

example, there were outliers detected with patterns similar to the effect of a still 

milking exception, where one pickup volume was very low and the following 

pickup was very high, with the average of the two appearing to be normal. 

However, these outliers were not marked with any exception. 
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7.2.7 Outliers Detection and Treatment 

Outliers are unexplained exceptions from the normal pickup routine which 

if undetected could grossly distort predictions of volume production.  These 

outliers are identified and treated using the following method: 

 

Figure 7.1 Shows an original set of data which was then processed 

to identify outliers using the process described below. 

 

Proposed and implemented method for outlier detection: 

Step 1.  Calculate the five-day moving average of the seasonal milking 

volume (The result for the time series from Figure 7.1 is shown in 

Figure 7.2). 

Step 2.  Calculate the difference between each shift‟s volume and its 

five-day moving average volume (The difference between Figure 

7.1 and Figure 7.2 is shown in Figure 7.3 
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Step 3.  Identify outliers if a shift‟s volume is outside the range of four times 

the mean of the differences (The identified outlier is circled in solid 

red in Figure 7.3. 

Step 4.  Replace the outlier‟s value with the average value of the pickup 

volumes of the pickup before and after the outlier. However, if there 

are two outliers, one followed by another, their values are 

calculated as the average of the two pickups.  

Step 5.  Re-calculate the production volume for each shift that contributes to 

this outlier using the method in step 1-4. 

 

Figure 7.2 Five-day moving average for the season from Figure 7.1. 
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Figure 7.3 The difference between the original milking volume and 

the five-day moving average volumes (from Figure 7.1  and Figure 

7.2)  

The weighting for the treated outlier is set to 0.5 compared to 1.0 for the 

normal data. This is to minimise the impact of artificially generated data as it can 

be wrong. Because there is enough data available, this approach is not expected 

to cause any significant problem. 

7.2.8 Data Feed to the Model 

The pre-processed data is used to train and test the model. The processed 

data contains data from 575 farms and each farm contains between one and four 

seasons of data. For each season, the following information is provided in the 

pre-processed data: Farm ID, season number, unique time ID for each milking, 

volume of each milking, pickup id, original pickup volume and weight for each 

input vector. 
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7.3 Weekly Pattern Analysis 

It was expected that there may be weekly patterns resulting from any 

regular perturbations to the normal weekly schedule. For example, differences in 

milking times to accommodate weekend sport, different milk staff, or even the 

music in the sheds. The method we employed was autocorrelation, which 

measures how well a milk data item matches a time-shifted version of the same 

data.  

This technique is useful only when there is no long term trend in the data 

and unfortunately this was the case in our dataset where the volume increases at 

the beginning, and then gradually decreases.  

Figure 7.4 shows the daily milking volume of a farm. It was necessary to 

remove the trend from the data (de-trend) in order to apply the autocorrelation 

technique on this season to look at the daily variations,  

The trend was calculated using a five-day moving average, which 

appeared as a smoothed line.  

 
Figure 7.4 Daily milking volume in a season 
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Figure 7.5 Five-day moving average of the daily milk volume in a 

season 

The difference between the original volume and the moving average 

volume can then be calculated, which is then analysed with autocorrelation as 

shown in Figure 7.6. 

The correlation value at different time lags (up to nine days) is shown in 

Figure 7.7 
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Figure 7.6 Differences between the daily milking volume and the 

five-day moving average volume  

 

Figure 7.7 Autocorrelation values show the relationship between 

the “today” milk volume (indicated on the x-axis as 0) and previous 

days.  
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Figure 7.7 shows a standard season without very significant weekly 

patterns, as none of the correlation values for the shifted data are significant. A 

little negative correlation is manifested with 3 days back for this particular farm.  

The autocorrelation of all farms and all seasons is shown in Figure 7.8 

which shows the overall trend for the farms. The blue lines show the actual 

correlation value, and the red line shows the mean and standard deviation at 

each time lag.  

Note that correlation value varies slightly depending on the de-trending 

method. When using the five-day moving average method, none of the farms 

have showed a significant weekly pattern. However, it does show that the 

production volume from the day before positively correlates to the current date‟s 

production volume and that in many cases there appear to be moderate 

correlations with the production data four days either side of the day.  There may 

be a half-a week pattern in milk production, though it is not very significant.  
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Figure 7.8 Aggregated autocorrelation result of all farms and seasons. No 

significant average correlation is found, the highest being negative 0.3 at 

5 days‟ back. 

7.4 Farm Zone Analysis 

The following Figures show the normalised daily milking volume of all 

farms in one zone in the third season.  It is important to note that the milk volume 

is normalised and farms with less than four seasons of data are ignored in this 

analysis.  

The red I shape bar shows the mean and standard deviation of a specific 

date. The red „*‟ between the bar is the mean value. The blue dots show the 

maximum and minimum values of the specified time lag.  

The analysis shows similarity in milk volume trends between farms in a 

zone, in some cases – across several zones. For example, Zones 1 and 2 as 
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as shown in Figure 7.11 and Figure 7.12 show less similarity.  We can say that 

farms in a zone do behave similarly in a season.  

We may also say that the trends of the zones are similar, since they 

always increase in the beginning and then gradually drop until the end of season, 

but some significant difference between some zones can be seen.  

 

Figure 7.9 Normalised milking volume for Zone 1 (Mean and 

standard deviation – red; Min-Max volumes – in blue) 

 

Figure 7.10 Normalised milking volume for Zone 2 
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Figure 7.11 Normalised milking volume for Zone 3 

 

Figure 7.12 Normalised milking volume for Zone 4 

There was some similarity between farms in the same zones but the level 

of similarity is not strong enough to show through normal day to day variations. 
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One of the main issues was that the farms start their season on different dates 

and the initial pattern is very difficult to predict and often omitted from the 

seasonal data. For example, some farms may start milking for a few days then 

decided to stop due to the condition of the cows or other management issues. 

The analysis was done for the period where all farms in the zone have correct 

data and therefore some zones are analysed without the beginning or the end of 

the period and make them shorter than other zones. 

Since variation was high and part of the data was omitted in this analysis, 

the zone data was not used to train the prediction model. 

7.5 Data Smoothing 

The volume of milk shows considerable day to day variation (Figure 7.13). 

Pre-processing is required to remove daily variations and therefore a data 

smoothing algorithm is applied.  

The smoothing method called „Second-order Linear Smoothing Method‟ 

was used, which is commonly used for smoothing time series data. This is 

illustrated in Figure 7.14. 

This smoothing method produces a smoother line, which may be better for 

the training than the earlier method used in the data processing. 
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Figure 7.13 Pickup volume across seasons  

 

Figure 7.14 Data smoothing illustration  
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Figure 7.15 Pickup volume data smoothed using the second-order 

linear smoothing method 

Suppose the data set has data xi, i = 1, 2, …, Nd. 

For obtaining smoothed data yi a linear function Funi is created on data xj, 

j = i-n1, i- (n1+1, …, i, i+1, …, i+n2);  

 yi = [1, n1+1] *  Funi  (7.1) 

where: n1 = min (i-1, Ns)  and  n2 = min (Nd-i, Ns). Ns is a parameter of the 

smoothing method which defines the number of pickup data to be used before 

and after the current date; Ns = 3 in Figure 7.15. The min function is required for 

smoothing values at the beginning and the end of the season where there may 

not be enough input vectors as specified in Ns.  

 Funi = inv (Xi'* Xi) * Xi'* Yi (7.2) 

where “inv” is the function for matrix inversion. 

 Xi = [ones (n1+ n2+1,1), [1:n1+ n2+1]‟] (7.3) 

where “ones” is a function that creates a matrix of ones. 
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 Yi = xj = x (i-n1: i+n2) (7.4) 

The „Second-order‟ means such a smoothing method is applied twice to 

provide a higher smoothing effect. The result of this second order smoothing of 

the raw data in Figure 7.13 is shown in Figure 7.15. 

7.6 Multi-Model System (MMS) 

The final system is a multi-model system based on the one proposed in 

CHAPTER 6  that integrates both temporal and spatial models using a model 

contribution optimisation module as shown below: 

 

Figure 7.16 The system architecture. The online model is self-improving 

through correction of the two models contribution weights toward the final 

output. 

7.6.1 Spatial Model - TWNFI 

TWNFI is one of the two models combined to constitute the multi-model 

system that performs the 4-days-ahead prediction. In this system, TWNFI uses 

eight days‟ production volumes (PVD(t-7:t)), to perform its prediction of the 12th 

days volume (PVD(t+4)).  

The TWNFI model is trained with the data from the last two seasons‟ 

smoothed data where PVD (t-7:t) is used as the inputs and PVD (t+4) is used as 
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the output. It is therefore unable to provide a prediction for where data is 

insufficient, in the beginning of the season prior to the 8th day‟s volume. 

Once the model is trained, it is then applied on the latest eight days 

production volume data to predict the production volume in four days time. 

Whenever a new production volume is available from the new season, it is 

smoothed with the new season‟s data and then included as part of the training 

data for the next prediction. 

7.6.2 Temporal Model - WRLSE 

WRLSE creates a linear function with the first eight days‟ production 

volume PVD(1:8) and then modified with the subsequent data online. For every 

modification the production volume data from the past 8 days are used and such 

data are smoothed with the method described in 7.5 . The weights, 0.65 – 1.0 

with 0.5 intervals are taken for data PVD (t-7:t) respectively and 0.9 is set up as 

the forgetting factor.  

7.6.3 Error Measurements 

The following error measurements were used to evaluate the system and 

they were also used for comparing the multi-model system with a linear 

regression model  
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In the above formulas, i = 1, 2, 3, …, n, n is the number of predicted data; 

forecast (i) is the ith forecasting volume and Actual(i) is the ith actual volume.  

The prediction accuracy from each model varies during the season, but 

MMS was the most accurate model across the entire season.   

 

Figure 7.17 Absolute error from each model in MMS across one 

season. TWNFI and WRLSE performs very differently, each can be 

significantly better than the other at different time. The MMS 

framework allows better overall prediction accuracy to be achieved 

than using either system alone. 

7.7 Experimental Results and Comparison 

Twelve farms were randomly selected; each of them has at least three 

seasons‟ data. For each farm, the data from the first two seasons were used for 

training and the third season was used for both training and testing. 

The MMS system was applied to predict one, two, three and four days. 

The training data for the TWNFI model consists of two parts: one is the first and 

second season‟s data and the other is the data from the first day to the current 

day (1: t0) in the third season‟s data. The WRLSE model uses the previous eight 

days‟ volumes (t0 – 7: t0) with their weights. The prediction results with 
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comparison to a general linear regression model (LR) are shown in Table 7.4, 

Table 7.5 and Figure 7.18. The average errors of the four-day-ahead predictions 

on the whole 575 farms‟ data are listed in Table 7.6. Figure 7.19 shows the actual 

daily production volumes and 4-day-ahead prediction volumes produced by MMS 

on the 3rd season of a selected farm. The prediction errors (MAE) on such data 

are shown in Figure 7.20 (for MMS) and Figure 7.21 (for LR). 

 

Figure 7.18 A comparison between the MMS and Linear 

Regression. Average MAE of 1 to 4 day-ahead prediction 

results on 12 randomly selected farms.  

 
Figure 7.19 Predicted and actual daily production volumes 

of a random farm (3rd season) (Dotted line: Actual Volumes;   

Solid line:  MMS Predicted Volumes) 
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Figure 7.20 ME of predicted volumes by MMS (the 3rd 

season) 

 

Figure 7.21 ME of predicted volumes by LR (the 3rd season) 

Mean Error is used to see whether the model is constantly under or over 

predicting.  

Table 7.4  

Comparative analysis of the 1 to 4 days ahead daily prediction error 

between the proposed MMS and the currently used LR models on 12 

farms’ data (averaged) 

 

ME MAE StdE 

Days MMS LR MMS LR MMS LR 

1 11 9 136 176 219 270 

2 18 13 188 225 297 345 

3 21 19 223 267 351 413 

4 26 24 255 308 402 480 

 

The table above shows that MMS  

The overall prediction error is not the only performance measure in this 

case study. For practical use, the chosen model needs to be stable and must not 

seriously over or under predicting the output.  
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The two figures and the table above show the prediction error of both MMS 

and LR at every time point. The mean error should be around zero, which 

indicates that the models are not over or under predicting the output values.  

Mean Error (ME), indicates whether the model is over or under predicting 

the output. Positive values mean the model is over predicting and negative 

values means the model is under predicting. The results show that both models 

are slightly over predicting the output with MMS a little more so. 

Mean Absolute Error (MAE), indicates the how well the model performs. 

The result shows that MMS performs better than LR.  

Standard Deviation of Error (StdE) indicates the variation of error. Lower 

variation is better since it means less reserve space is needed to ensure all milk 

gets picked up.  
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Table 7.5  

4-day ahead prediction error on 12 randomly selected farms’ data 

 ME MAE StdE 

Farms MMS LR MMS LR MMS LR 

1 103 90 473 578 702 829 

2 23 38 356 426 456 537 

3 22 16 141 181 227 322 

4 22 24 142 188 195 250 

5 12 13 103 136 130 167 

6 10 6 62 73 84 99 

7 7 5 63 63 80 82 

8 -2 17 519 603 686 788 

9 68 27 320 406 402 518 

10 -5 14 360 422 461 550 

11 18 19 165 196 215 251 

12 8 7 162 185 208 242 

Average 26 24 255 308 402 480 
  

Table 7.6  

Four days ahead prediction error (average) on 575 farms’ data 

ME MAE StdE 

MMS LR MMS LR MMS LR 

32 33 331 405 528 650 

The results from MMS shows that it is suitable for the task, as it provides 

consistently better prediction accuracy and adaptability to new data for each 

individual farm.  

Comparing MMS with the currently used LR method on the whole set of 

575 farms, MMS is about 22% more accurate than LR. The StdE of the MMS is 

also lower, which that indicates that MMS is more stable and reliable.  

Overall, MMS performs better than LR in respect to the requirements of 

the case study, making it a better solution.  
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7.8 Conclusions 

This chapter details the data analysis and modelling process for a milk 

production volume prediction problem. The proposed model results in 22% 

increase in accuracy than the currently used LR model and constitutes a more 

stable and reliable predictor. In event of a change in pattern across the season, 

the multi-model approach allows dynamic weight adjustment based on previous 

prediction error.  

Overall, the proposed MMS model and prototype software system have 

several advantages when compared to the LR model: 

 The MMS model is a more accurate and stable predictor 

 The MMS model is adaptive to any new data and new variables.  
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CHAPTER 8  PERSONALISED REGRESSION MODEL WITH 

INCREMENTAL FEATURE SELECTION 

Global regression models such as linear regression have been widely 

used in real world biomedical classification problems due to their simple 

equations and their ability to work well in problems with input noise, which is often 

the case for many clinical data that involves patient opinion, feelings and 

behaviour. 

One of the issues with global regression models is that unique local 

problem subspaces may be treated as noise if they do not fit the global pattern. 

However, in some biomedical problems, it is logical to assume that there are 

various subgroups of patients who may be disease free or have a disease for 

different reasons to the majority, but they may not contribute to the solution if 

there are not enough other patients of the same group.  

In the previous chapters, the emphasis has been put on the local “mixture 

of models” approach to create multiple models, with each model being able to 

contribute at different levels depending on the location of the test input vector 

within the global problem space. The above approach may not work in a 

biomedical problem because the definition of the problem space may not be 

sound due to the great number of irrelevant or less important variables in a 

problem with hundreds or thousands of variables. 

 Feature selection must be applied to create a subset of variables that are 

relevant to the problem. Even so, the noise in these variables is likely to be high 

and the variables may be only partially relevant to the problem.  

In this chapter, a personalised regression model is proposed that creates 

a personalised model dynamically for each prediction by optimising the global 

model to a reasonable degree using input vectors that are relevant to the 

prediction at hand (Kasabov & Hwang, 2008). This hybrid approach maintains the 
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stability provided by the global model, while putting emphasis on the problem 

space nearest to the test input vector. If the variables selected to define the 

problem space are reasonably good, this approach should be able to increase 

the accuracy of the global model for the test input vector.  

8.1 Algorithm 

The algorithm for the personalised local regression model can be briefly 

described below: 

1. Perform univariate analysis on the variables to rank the variables based 

on their discriminating power using appropriate statistical test for the 

variable type. 

2. Perform incremental feature selection to obtain a best set of variables that 

allows the global regression model M to achieve the highest accuracy. The 

quality of the regression model is based on the Area Under ROC curve 

(AUC) (explained later in this chapter) 

3. For each input vector (i) 

a. Select k neighbours (nbr) from training input vectors using only the 

selected set of variables from step 2. 

b. Use the global regression model as the base model and optimise its 

coefficients using (nbr) to obtain the local regression model (L) for 

the current input vector (i) 

c. Perform the prediction on the current input vector (i) with the local 

regression model (L) 

The size of the neighbourhood is a parameter of the algorithm. When the 

size is small, the solution derived will be very specific to the testing input vector. 

When the size is large; the solution will be more general and closer to a global 

model.  

In real world data modelling problems with imbalanced dataset, one may 

want to increase the size of the neighbourhood to obtain at least some coverage 
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of input vectors from all classes. On contrast, if all classes are equally well 

presented in the problem space and are reasonably separated, then perhaps 

only the nearest few input vectors will be sufficient to solve the problem.  

8.2 Feature Ranking 

As for all distance based algorithms, it is important to define the problem 

space using only the variables that are relevant to the problem.  

It is, however, difficult to know which of the variables should be removed. 

Univariate analysis can be used to identify how each individual variable can be 

used to discriminate between two classes but it is possible for two variables with 

moderate univariate discriminating power to perform better than a single variable 

with high discriminating power (Guyon & Elisseeff, 2003) as demonstrated in 

Figure 8.1. 

 

Figure 8.1 Synthetic data with two classes and two 

variables. Univariate analysis shows both variables 

have moderate discriminating power but when 

combined, the discriminating power increases 

significantly, copied from an overview of feature 

selection issues (Guyon & Elisseeff, 2003). 
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The safest method to identify the best combination of variables that obtain 

the highest discriminating power is to do an exhaustive search of every possible 

combination of variables and measure how the model performs. This approach is 

often not practical on problems with a number of variables that is large, e.g. 

microarray datasets (Shipp et al., 2002).  

Univariate analysis nevertheless provides a rough estimate of which 

variable may have high discriminating power when combined, as the variable 

should at least be moderately useful in univariate analysis if it is to be potentially 

useful in multivariate analysis.  

Previous studies on the variables should also be taken into account during 

the variable ranking process, especially when the number of input vectors is not 

sufficiently large. However, it should not be used as an exclusion criterion as 

there may be new discoveries on the use of these variables and the variables that 

were not found to be useful in the previous studies may still contribute to the 

current study on their own or combined with new variables previously 

unavailable. 

In this implementation, the variables are ranked as follows 

1. Sort variables based on their p-values, the lower the p-value the higher 

the rank and call this Variable Set 1 (Set1) 

2. Highlight the variables that were identified as having high 

discriminating power and put them in Variable Set 2 (Set2), sort these 

based on their p-values from the previous univariate analysis. 

3. Remove variables that exists Set 2 from Set 1 and join Set 2 with Set 1 

to form a final variable set. (fset) 

8.3 Incremental feature selection 

The goal here is to identify a subset of features F that gives the highest 

accuracy to the global model. The procedure is described as follows: 
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1. Set the desired baseline accuracy b and increment threshold t., F is 

empty at this stage.  

2. Starting with the highest ranked variable, f (i) 

a. Create a model with combined Variable Set F and f (i).  

b. If the AUC on the training data is above 0.5 and the current AUC 

(i) is higher than the best AUC by threshold t, then keep the 

variable by adding f (i) to F, otherwise move on to the next 

variable.  

c. When the last variable is reached, start again with the highest 

ranking variable that has not yet been selected. 

d. Repeat a - c until AUC does not increase using every 

unselected variable. 

3. End of procedure. F is the final subset of variables that gives the 

highest accuracy to the global model. 

8.4 Personalised regression Model 

The best performing feature subset F provides a level of confidence that 

the problem space defined by this set of variables is meaningful. The next step is 

to optimise the global model by adjusting its coefficients to minimise the RMSE 

on training input vectors that are similar or close to the test input vector 

(neighbours) using back-propagation optimisation.  

The details of the optimisation algorithm are shown below: 

Consider the data is composed of n data pairs with m input variables and 

one output variable {[xi1, xi2,…,xij], yi}, i = {1, 2,…,n}, j = {1,2,…,m}  

The global linear regression model M is in the form of  

 0 1 1 2 2i i i m imy a a x a x a x      (8.1) 

The constant and coefficients are updated with equations (8.2) and (8.3) to 

minimise the following objective function(8.4) 
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where  

 learning rate:   

 predicted output: 
it  

 training iteration: k=1, 2, ... 

The end of this procedure provides a local model L, which gives the 

highest prediction accuracy on the input vectors that are similar to the test input 

vector. The model L is then used to derive the output for the test input vector. 

Since every test input vector has different set of neighbours, the local model for 

each of them is also different.  

8.5 Error Measure 

In prediction problems as in earlier chapters, the model‟s accuracy is 

determined by the difference between the predicted value and actual value; 

mean absolute error (MAE), root mean square error (RMSE) and 

non-dimensional error index (NDEI) are the most commonly used methods for 

measuring error in prediction problems. However, in case of classification 

problems, the predicted output of the model is risk and the actual output is binary; 

whether a patient has the disease or not. It is therefore not appropriate to 

compare models using the difference between the predicted output and actual 

output. For example, two patients A and B are both diagnosed with lymphoma, 

patient A has been predicted to have a risk of 15% and patient B has been 

predicted to have a risk of 20% with a prediction model before they were 

diagnosed. If a model considers all patients with a risk factor above 30% as 
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having the disease, then patient A and patient B have the same incorrect 

prediction: “healthy” and the errors for both patients are the same at 100%. If this 

is measured with using RMSE, the RMSE for patient A would be much higher 

than for patient B, which is not meaningful here in classification problems. 

In order to compare the prediction accuracy of the model, it is necessary to 

convert the risk factor to a classification outcome using a threshold. The Receiver 

Operating Characteristic (ROC) curve (Fawcett, 2004; Hanley & McNeil, 1983) is 

a commonly used technique that shows the true positive and false positive rate at 

different thresholds. Researchers or Doctors can look at the curve and then 

decide where the threshold for the true positive and false positive rates is most 

appropriate to the problem. 

The greater area under the ROC curve means better potential overall true 

positives and less false positives rate at any conversion ratio and, therefore, a 

better model. The area under the ROC curve (AUC) is then used for comparing 

the performance of the models.  

Low RMSE can usually be translated to high AUC in most cases but the 

translation is not very precise. If there are two models that give similar RMSE, it is 

not possible to identify which one would give higher AUC without actually 

calculating it based on its predictions. 
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Figure 8.2 Correlation plot between RMSE and AUC during 

training. Low RMSE can be translated to high AUC but the 

translation is not 1 to 1. Minor changes in RMSE may not affect 

AUC and vice versa. 

It is not possible to use AUC as the objective function in back-propagation 

optimisation. AUC is constructed based on the shift of the cut-off threshold 

between true positive (TP) and false positive (FP) on a set of predicted risks, 

therefore the changes in prediction does not always immediately translate to 

changes in AUC, even though they are highly correlated (see Figure 8.2). 

However, some other optimisation algorithms may be used to optimise the 

global function with AUC as its objective function. Genetic Algorithm (GA) and 

Particle Swarm Optimisation (PSO) are the two optimisation algorithms that may 

be used. However, these two algorithms are computationally expensive, 

non-deterministic and the results may not be repeatable, they are, therefore, not 

used in this method.  
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8.6 Conclusion 

The proposed method is designed especially for problems with high 

dimensionality, high noise and an average size of data. It can, however, be 

applied to any classification problem. The emphasis is on defining a sound 

problem space through extensive feature ranking and selection using the 

wrapper method. Once the problem space is defined, the global model is then 

optimised for each test input vector using training input vectors in the 

neighbourhood.  

The proposed method addresses or minimises the following real world 

data modelling issues: 

 Unique problem subspaces 

The personalised regression model puts emphasis on the problem 

space close to each patient.  

 Outliers 

The final model is optimised for the local space only. Outliers are 

not likely to be similar to a normal input vector and most likely to be 

left outside the neighbourhood.  

 Imbalanced data 

The ROC curve is used as a model fitness measure instead of 

RMSE, therefore minimising the impact of imbalanced data. 

 Irrelevant features 

Extensive feature ranking and incremental feature subset selection 

reduce the chance of using features that do not contribute to the 

model.  

In the next chapter, this method is applied to a real world case study – 

pregnancy outcome prediction to validate the usefulness of this method with 

minor modifications, to make use of additional information from the data.  
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CHAPTER 9  PERSONALISED REGRESSION MODELS FOR 

PREGNANCY OUTCOME PREDICTION BASED ON SCOPE DATA 

9.1 Problem Overview 

The overall goal of the SCOPE study (http://www.scopestudy.net or see 

Appendix B for a brief introduction to the study) is to produce a clinically useful 

screening test for three late pregnancy conditions: preeclampsia (PE), small for 

gestational-age (SGA) and spontaneous preterm birth (sPTB). The project 

targets women in their first pregnancy and collects comprehensive clinical and 

biological data at 15-weeks and 20-weeks. The data source is not limited to the 

mother; the father and the grandparents are included in the study as well. 

“Preeclampsia is a disorder that occurs only during pregnancy and the 

postpartum period and affects both the mother and the unborn baby. Affecting at 

least 5-8% of all pregnancies, it is a rapidly progressive condition characterized 

by high blood pressure and the presence of protein in the urine. Swelling, sudden 

weight gain, headaches and changes in vision are important symptoms; however, 

some women with rapidly advancing disease report few symptoms. 

“ (Preeclampsia, 2008) 

“SGA refers to a fetus that has failed to achieve a specific biometric or 

estimated weight threshold by a specific gestational age. Various thresholds 

(2.5th, 3rd, 5th, 10th, 15th and 25th centiles and 1.0, 1.5 or 2.0 standard 

deviations below the population average) are used for various fetal measures. 

The commonly used threshold is the tenth centile for abdominal circumference 

and estimated birth weight.” (Coomarasamy, Gee, Marlow, & Walkinshaw, 2002)  

Preterm birth refers to the delivery of the baby before 37 completed weeks 

of gestation. Most mortality and morbidity affects very preterm infants. (Tucker & 

William McGuire, 2005) 

http://www.scopestudy.net/
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Each one of these pregnancy disease is a significant research field on its 

own and therefore this thesis is limited to the problem of predicting preeclampsia 

(PE) only using the 15-week clinical dataset. 

9.2 Data Description 

The project has enrolled 2,512 women from New Zealand and Adelaide, 

Australia, who are in their first pregnancy. Patients who have had more than two 

abortions are excluded from the study. 

Patient history, paternal data, parental data and 15-week patient clinical 

data are included in the dataset. The data involves a wide range of variables, 

from standard pregnancy check up variables to other possibly relevant variables 

such as diet, exercise, stress and working conditions.  

Many neural networks and statistical methods do not work well with 

unordered categorical variables and table data and therefore these variables are 

converted into one or more binary, ordinal or continuous variables.  

After significant variable merging and purging performed with extreme 

care by the SCOPE team, which consists of medical doctors, statisticians, 

bioinformaticians and neural network researchers, the number of variables was 

reduced to 524, which was then used as the final dataset for modelling purposes. 

The output for the dataset is either 1 or 0 where 1 indicates the patient has the 

disease and 0 means the patient did not have the disease. 

Each variable is given one of the following levels of importance based on 

previous studies in the field.  

 Level 1: Variable showed consistent increase or decrease in obstetric risk 

in two or more studies 

 Level 2: Variable showed small increase or decrease in obstetric risk in 

one or more studies. 
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 Level 3: studies performed but no significance found or the findings were 

inconsistent across multiple studies. 

 Level 4: No previous studies identified. 

This information is used as part of the feature selection process to improve 

the variable rank based on their type. Level 1 being the most important followed 

by Level 2 and then Levels 3 and 4. 

Many variables are also highly correlated due to the design of the study. 

There can be more than ten questions relating to the same topic. For example, 

there are several variables describing whether the patient is overweight. These 

can be weight, height, body mass index, arm circumference, neck circumference 

and waist size. These variables are designed to measure the same characteristic 

of the patient. If they are treated as independent variables, this characteristic is 

literally given more importance than other characteristics, such as cardiovascular 

fitness and stress. Because of this, the variables are placed into 139 groups 

based on their intended purpose and only one variable per group can be used in 

the final model.  

9.3 Imbalanced Dataset on Personalised Model 

Preeclampsia is a low prevalence disease with only 5% of patients being 

in the disease group. This translates to about 126 patients having the disease in 

the entire dataset. With the disease positive input vectors sparsely positioned in 

the problem space, it is highly likely that some high risk disease regions are not 

well supported.  

This issue causes problems in all types of models, especially in local and 

personalised models. If the distance threshold is set too small, the clusters or the 

neighbourhoods may miss out a disease input vector that falls just outside the 

radius and become a zero-risk region when it should be a low or medium risk 

region instead. In reality, it is not possible for one person to have zero-risk of 

these diseases in any case. 
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One way to minimise the impact of this issue is to enforce a certain 

number of disease input vectors in the training data by increasing their radius. 

This minimises the probability of having a high disease risk region labelled as 

100% healthy due to a lack of disease input vectors to support it, while reducing 

the use of non-relevant input vectors in the training of the model.   

9.4 Method Application 

The personalised regression method proposed in the previous chapter is 

applied in this case study with minor modifications to the feature selection 

process to make use the variable groups and variable correlation that are specific 

to this case study.  

Ten-Folds Cross Validation (CV) (Kohavi, 1995b) was used to measure 

the generalisation error of the model and AUC is used to measure the 

performance of the model. 

In the Ten-Folds Cross Validation method, for each fold, the data is split 

into a training dataset and a testing dataset with 90% for training and 10% for 

testing. The test input vector is never reused in the subsequent folds.  

The details of the algorithm are described below: 

9.4.1 Data Normalisation 

The input variables are different ranges and this may leads to over 

emphasis on the variables with wider range and letting them overpwer other 

variables. 

The following data normalisation method is applied.  
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This procedure first noramlises the range of the each variable to be 

between 1 and 2 to ensure equal weight between variables. This is done by 

shifting the lowest value in the variable to 0 and then divide the all values to the 

maximum value of the variable after the shift. The normalised values are then log 

transformed to minimise the affect of potential outliers.  m is the number of 

variables. max is the function to obtain the maximum value in a vector. min is the 

function to obtain minimum value in a vector. The resulting variable will be in the 

range of 0 and log2. 

9.4.2 Variable Ranking 

The variables need to be ranked prior to the incremental feature selection 

process so it can start with the most important variables. The ranking method 

takes into account univariate analysis and previous studies. 

The details of the variable ranking procedure are described below: 

1. Identify variables that have approximately zero standard deviation in either 

class and have the same value. Remove these variables from the variable 

list (FLIST). This step removes variables that have no usefulness in model 

building. 

2. Calculate p-values for the variables in the FLIST by applying t-test 

(Holtsberg, 2000), Chi-Square test (Weisstein) or Fisher‟s exact test 

(Trujillo-Ortiz et al., 2004) depending on variable type. 

3. Sort FLIST based on the p-values.  

4. Calculate correlation between variables to identify a group of variables 

that are highly correlated or identical (p>0.95). Keep the variables with the 

lowest p-value and remove the rest from the FLIST.  

5. Create the following sets of variables 

a. Variable Set 1 = Variable level 1 followed by Level 2 

b. Variable Set 2 = Variables with p-values below 0.05 

c. Variable Set 3 = Intersect between Variable Set 1 and 2. 
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d. Remove variables in Variable Set 3 from Variable Set 1 and 2. 

e. Variable Set 4 = Variable Set 3 + 1 + 2 (in this order) 

The rational for step 5 is to rank variables with low p-value and shown 

significance in prior studies on the top of the list, followed by variables that shown 

significance in prior studies and then the rest of the variables ranked by their 

p-values.  

Variable Set 4 is the set of variables that will be passed on to the 

incremental feature selection algorithm. 

9.4.3 Incremental Feature Selection 

A threshold based incremental feature selection method is applied to the 

training dataset to reduce the number of variables in Variable Set 4. The goal is to 

ensure that only variables that benefit the model by an acceptable margin are 

selected. 

This part of the algorithm defines the problem space and therefore has 

direct impact on the selection of the subset of training input vectors for a given 

test input vector, which is the basis of the individualised model or personalised 

model when applied on clinical patient data. 

The details of the algorithm are described below: 

1. Create an empty Variable Set 5. 

2. Go through variables in Variable Set 4 from the ones ranked highest to 

lowest, one at a time, add current variable to Variable Set 5 and do the 

following.  

a. Build a linear regression model on the training dataset using only 

variables in Variable Set 5. 

b. If the AUC is above 50% and increment of AUC higher than 0.5% of 

the total area, keep this variable in Variable Set 5 and remove this 
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variable from Variable Set 4. Otherwise, remove this variable from 

Variable Set 5. 

3. Repeat step 2 until the last variable in Variable Set 4 has been processed.  

4. Repeat step 2 and 3 until no more variables have been added to Variable 

Set 5. 

The algorithm starts by including the highest ranked variable that is able to 

achieve an AUC above 50% and then adds the subsequent variables if the 

combination of the variables can achieve an AUC 0.5% higher than the previous 

AUC. 

9.4.4 Model and Prediction 

A personalised model is created by optimising the global model using a 

subset of input vectors that are near the test input vector. 

1. Perform linear regression on the training data with Variable Set 5 to create 

a global model, M 

2. For each test input vector, t, select a subset of training input vectors to be 

the training data, Ht 

f. All training input vectors within the distance between the test input 

vector and the 10% percentile of disease positive input vectors is 

selected as the training data. 

3. Update M using the steepest descent method to minimise error produced 

by the input vectors in the neighbourhood, to generate model Mt. 

4. Apply Mt on t to obtain the prediction. 
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9.5 Results 

With the proposed personalised model, the following results were 

obtained: 

Table 9.1  

Result of the proposed personalised 

model. 

Personalised Model 

PET: AUC 10-Fold CV 

Folds Test 

1 67.19% 

2 68.52% 

3 70.56% 

4 65.38% 

5 67.61% 

6 75.69% 

7 64.29% 

8 69.88% 

9 75.34% 

10 77.70% 

Average 70.22% 

Std. 4.59% 
 

Since the test input vectors are never reused in the 10-fold cross validation, 

a prediction has been made for every input vector. Hence the predicted output 

can be aggregated and plotted as follows: 
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Figure 9.1 Prediction accuracy at different threshold including class 

1 accuracy (disease), class 2 accuracy (healthy), overall accuracy, 

ROC curve and area under the ROC curve. 

For comparison purposes The statistics group in the SCOPE team use a  

logistic regression model with incremental feature selection using Akaike's 

Information Criterion (AIC) (Akaike, 1974) with an identical 10-fold cross 

validation. 
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Table 9.2  

Results of the logistic regression model with AIC 

feature selection. 

Logistic Regression with AIC 

PET: AUC 10-Fold CV 

Folds Training Test 

1 78.00% 58.50% 

2 76.30% 68.00% 

3 73.90% 66.00% 

4 74.40% 65.20% 

5 71.60% 71.50% 

6 75.50% 83.80% 

7 76.20% 70.50% 

8 76.70% 73.90% 

9 75.20% 67.90% 

10 73.60% 68.10% 

Average 75.10% 69.30% 

Std. 1.74% 6.22% 
 

The results in Table 9.1 and Table 9.2 shows that the personalised 

regression model is more accurate than the logistic regression model and the 

variations in prediction accuracies across the folds are significantly lower.  This 

means the personalised model is, in fact, more stable. This is likely to be caused 

by the optimisation of the global model with input vectors located in each test 

input vector‟s residing problem subspace.  

9.6 Chapter Conclusion and Discussion 

In this chapter, a linear regression based personalised model with 

embedded incremental feature selection is proposed. 

The algorithm consists of two parts: 
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1. In the first part: 

The best set of features is identified through an incremental feature 

selection utilising both univariate analysis and variable importance from 

previous studies. A good set of variables is critical for personalised 

modelling in the second part, as it defines the problem space for the test 

input vector and its neighbourhood.  

2. In the second part: 

A baseline global linear model is created from the training data, 

which is then optimised based on the subset of training input vectors that 

are in the vicinity of the test input vector. If the feature set has been 

defined well in the first part of the algorithm, the selected subset of training 

input vectors should be highly relevant to the test input vector and 

therefore allow a better model to be built.  

The proposed method, with a simple personalised approach to the 

problem, was able to achieve slightly better results than the logistic regression 

approach with AIC method. 

The clinical data used in this study contains a lot of noise, possibly due to 

the fact that many questions cannot be answered with precision. The amount of 

stress, for example, is subject to personal judgement.  It will be ideal to include 

biological data, such as protein or gene data, from all patients as part of the study, 

as they may have less noise and bias from human perception.  

The blood sample from each patient was collected at their first visit to the 

clinic. It is, therefore, possible to obtain the Protein or DNA data and include them 

to the analysis, which may add value to the overall prediction accuracy. It is 

however, impractical due to the high cost involved. A series of small pilot studies 

of up to 24 patients using protein data was conducted, but with such a small 

sample size, it is difficult to reach any conclusive outcome. If such data becomes 

available from all patients in the future, it would be ideal to include them in the 

study. 
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Additional data may also help improving the model‟s prediction accuracy. 

An additional clinical dataset of 1,000 patients has been made available just 

before the submission of this thesis and therefore cannot be included.  
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CHAPTER 10  CONCLUSION AND FUTURE RESEARCH 

Real world data modelling problems are evidently chaotic and 

unpredictable, consists of issues that are difficult to manage. Most of the issues 

can limit the performance of a prediction model and they can only be addressed 

through careful experimental design and an in-depth understanding of the causes 

of the issues. Four methods were proposed, two improve on existing methods, 

and the other two are new ways of applying existing methods. Four case studies 

on real world data modelling problems were carried out.  

10.1 DyNFIS – Dynamic Neuro-Fuzzy Inference System 

The first proposed method, “DyNFIS” improves the existing method, 

“DENFIS” - a fuzzy inference system that utilises clustering information, by using 

a more sophisticated fuzzy membership function and additional supervised 

learning on the fuzzy rules‟ membership functions and leads to better prediction 

accuracy. This method was first tested on Mackey-Glass benchmark dataset and 

then entered in the NN3 11-time-series competition where it achieved 10th place 

among 90 competitors, even without automated parameter optimisation. DyNFIS 

is therefore considered to be a generalised and stable method for various 

problems.  

In addition to higher accuracy, DyNFIS also allows better knowledge to be 

extracted in the form of if-then rules. They represented the data more accurately 

than DENFIS due to the additional supervised learning and the use of Gaussian 

membership function allows better linguistic representation of the rules to be 

made. 
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10.2 MUFIS: A Novel Neuro-Fuzzy Inference System Using Multiple 

Types of Fuzzy Rules  

With the understanding that many problem subspaces are unique and 

some problems are better suited for one type of model than others, it was only 

logical to develop the next method to allow different types of fuzzy rules to be 

used in a single fuzzy inference system. This method, called MUFIS, was able to 

outperform DyNFIS on the Mackey-Glass benchmark data and also in a real 

world case study of renal function prediction (GFR).  

The current implementation of MUFIS allows both Takagi-Sugeno and 

Zadeh-Mamdani type fuzzy rules to be used together in a single fuzzy inference 

system. The analysis of the suitability of fuzzy rule types for each cluster also 

gives us additional information on problem subspaces. The assignment of the 

type of rules highlights the characteristics of the problem subspace. 

Takagi-Sugeno type fuzzy rule is usually assigned to problem subspaces that are 

linear. Zadeh-Mamdani type fuzzy rule is usually assigned to problem subspaces 

that are more chaotic, due to the lack of input vectors or the presence of noise. 

10.3 Multi-Model System – Temporal and Spatial 

To allow multiple models with different points of view of the problem to be 

integrated, a “mixture of experts” multi-model system seemed like a logical next 

step. A multi-model system (MMS), using both temporal and spatial models was 

proposed to allow contrasting views of the problem. The temporal model 

addresses the problem using only recent data, looking at changes of patterns to 

make the prediction. The spatial model uses current patterns as an example and 

searches historical data for similar patterns to make the prediction. By combining 

the two through a contribution adjustment module that regulate the contribution 

from each module based on its prior prediction error allows better prediction to be 

made than any single model alone.  
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 The multi-model system was applied to a real world seasonal time-series 

case study in milk production volume prediction. In this case study, WRLSE was 

used as the temporal model and was responsible for providing the prediction 

using only recent data and the TWNFI was used as spatial model and made the 

prediction based on historical data similar to the recent data.  

The results of the case study showed that the multi-model system 

performed significantly better than the linear regression model that is currently 

adopted by Fonterra.  

10.4 Personalised Regression Model 

One of the issues with local and distance-based models is that they 

require good definition of the problem space in order to perform properly, which 

can be difficult in many biological modelling problems as they often involve a 

large number of noisy variables. In order to apply local or personalised models to 

this type of problem, an in-depth analysis of the features is necessary. 

A personalised regression model with incremental feature selection was 

proposed in this thesis. This method applies incremental feature selection on 

variables that were ranked using univariate analysis and results from previous 

studies. This set of variables was then used to define the problem space and 

identify the relevant subset of data for each prediction. The global regression 

model is then optimised with this subset of training data to put a focus on the test 

input vector‟s residing problem subspace.   

The method described above was applied to a real world case study on 

pregnancy outcome prediction. It performed slightly better and was more stable 

than the logistic regression model using AIC incremental feature selection on the 

problem of predicting the risk of having preeclampsia using only the 15-week 

clinical data.  
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10.5 Summary 

This PhD study shows that specially designed models may solve or 

minimise the negative impact caused by issues such as outliers, missing values, 

evolving processes and unique problem subspaces. However, many of the 

issues cannot be addressed without an in-depth understanding of the causes of 

these issues. In a real world data modelling problem, the data analysis and 

pre-processing may be as important as the modelling if not more so.  

The idea of focusing on the unique problem subspaces appeared to be 

beneficial to the data modelling problems. It allows identification of sub-problems 

and allows further studies on them.  

10.6 Future Research 

The research conducted in this thesis is limited by time and resources 

available during the study and there is much work to be done to further this 

research and improve the performance of all proposed generic methods. A list of 

future work is outlined below: 

10.6.1 Automated Parameter Tuning 

One of the challenges in both DyNFIS and MUFIS is parameter 

optimisation. The algorithms have several parameters that have significant 

impact on the performance.  For example, the distance threshold affects the 

number of clusters, which in turn sets the number of fuzzy rules used to solve the 

problem.  

The parameters are currently optimised manually based on the prediction 

accuracy of the training data. 
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10.6.2 Online Learning 

DyNFIS and MUFIS may both be further developed as online models. This 

may be done by using online ECM clustering and slight modification of the 

existing method. 

10.6.3 Improvements to the Multi-Model System 

The farm milk production prediction case study shows that most farms 

follow similar patterns. This indicates that the historical data of farms that are 

similar may also be useful to the prediction.  

The current implementation uses both global and personalised model 

trained with the current farm‟s current and historical seasonal data only. The 

logical next step is to add a local model to the system that specifically looks at the 

relationship between farms, or between farms‟ seasonal data. 

10.6.4 Additional Data in SCOPE Study 

Additional clinical data or biological data should be included in the study 

when it is made available. Larger dataset allows better coverage of the problem 

space, particularly for disease patients, and better feature selection; both have 

strong impact on the prediction accuracy of the personalised regression model. 

As described in chapter 9, the features used to define the problem space 

are crucial to the success of a personalised regression model. The inclusion of 

biological data may provide certain useful variables that lead to better definition of 

the problem space and, therefore, better accuracy.  

10.7 NeuCom 

All novel and generic methods proposed in this thesis should be added to 

the NeuCom software so it can be utilised easily by the research community all 
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over the world and further validate its performance on other data modelling 

problems not covered in this thesis. 

10.8 Future Publications 

DyNFIS, as proposed in Chapter 4, MuFUS, as proposed in Chapter 5, 

integrated temporal and spatial multi-model systems, as proposed in Chapter 6 

and the personalized regression model, as proposed in Chapter 8, are all 

planned for journals publication in the near future. 
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APPENDIX A NEUCOM - A NEURO-COMPUTING DECISION 

SUPPORT ENVIRONMENT 

 

NeuCom is a generic data processing platform that can facilitate 

researchers in understanding their data (Hwang et al., 2009). This software is 

freely available at http://www.theneucom.com for non-commercial use.  

NeuCom was originally designed to facilitate the comparison between 

prediction methods based on Evolving Connectionist System principle and other 

prediction methods. It was later expanded into a full fledge data analysis and 

modelling software package.  

NeuCom provides many useful tools and methods that are commonly 

used by researchers to perform the following tasks: 

1. Data Visualisation 

 2D Visualisation  

http://www.theneucom.com/
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 3D Visualisation 

 

 Surface Plot 
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2. Data Transformation 

 Principle Component Analysis 

 Linear Discriminant Analysis 

3. Feature Selection and Analysis 

 Correlation Coefficient Analysis 

 

 Signal-To-Noise Ratio 
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4. Clustering 

 K-Means 

 
 

 Evolving Clustering Method 

 

 Bi-Clustering 

5. Modelling 

 Linear Regression 

 Support Vector Machine 

 Radial Basis Function Network 
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 Evolving Classification Function 

 Evolving Clustering Method for Classification 

 K-Nearest Neighbour 

 Dynamic Evolving Neuro-Fuzzy Inference System 

 

 Evolving Fuzzy Neural Network 

6. Optimisation 

 Genetic Algorithm 
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 Evolutionary Strategy 

7. Cross Validation 

 K-Fold Cross Validation with feature selection (Filter Method) 
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8. Other tools for data manipulation 

 Split 

 Transpose 

 Normalise 

 Eigen transform  
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APPENDIX B INTRODUCTION TO SCOPE STUDY 

(from official scope study website http://www.scopestudy.net) 

Introduction 

Preeclampsia, fetal growth restriction (undernourished baby) and 

spontaneous preterm birth are the major complications of late pregnancy. They 

are leading causes of illness and death in mothers and newborn babies. In the 

developed world, in almost half the cases either the mother and/or baby require 

admission to an intensive care unit. Every year, an estimated $41 billion is spent 

on healthcare costs related to these pregnancy diseases. 

Pregnancy Problems 

Preeclampsia is a severe high blood pressure condition where the mother 

can develop kidney or liver problems, stroke and seizures. It affects 5% of first 

time mothers. Each year, the number of maternal deaths from preeclampsia is 

equivalent to the loss of 170 jumbo jets of pregnant women. A quarter of the 

babies born to mothers with preeclampsia are growth restricted and a third are 

premature.  

Fetal growth restriction is usually due to placental problems leading to 

inadequate nutrition of the baby and overall affects 1 in 10 pregnancies.  

One of the greatest risks to a baby's health is the premature birth. 

Premature babies are 10-times less likely to survive. Two-thirds of all premature 

births are caused by spontaneous premature labour.  

All three conditions can have lifelong consequences for the child. The child 

may have problems with brain development that can result in mild learning 

difficulties through to severe disabilities. Being born growth restricted 

predisposes the child to high blood pressure, heart attacks and diabetes as an 
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adult. The social consequences and lifelong economic costs resulting from these 

conditions are enormous. Prevention of these health problems is of paramount 

importance to future mothers, fathers and children. 

Prenatal Care Today 

Currently, there is no screening test that accurately predicts which first 

time mothers will develop these late pregnancy diseases. Prenatal care consists 

of a series of consultations during pregnancy with a doctor or midwife. One of the 

main reasons for these checks is to detect early signs of these pregnancy 

complications. Unfortunately, these problems often present suddenly themselves. 

The standard intervals between prenatal visits may result in delays in diagnosis 

with an increased chance of severe complications. If at risk, first time mothers 

were able to be identified in early pregnancy, known therapies could prevent 

almost a third of cases. 

Predict to Prevent 

Identification of first time mothers at risk for these conditions is the first 

step to effective intervention and prevention. Through SCOPE, we expect to 

develop an early pregnancy screening test that will offer first time mothers 

accurate risk assessment for each disease. The intensity of prenatal care could 

then be matched to each woman's personal risk profile and preventative 

therapies offered to those at high risk. The majority of women at very low risk 

could be reassured and medical intervention in their pregnancy care minimized. 

Aims 

The SCOPE study is establishing a unique, international pregnancy 

biobank that will serve as a platform to: 
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 Identify novel molecular markers that predict early pregnancy women who 

will subsequently develop late pregnancy complications.  

 Test and validate combinations of key clinical, known and novel molecular 

markers to predict each disease.  

 Develop predictive tests that offer first time mothers an accurate, 

personalised risk rating for each disease. 

Research 

The SCOPE study arises from the knowledge that there are a number of 

potential clinical and molecular markers (certain proteins, fats and small 

molecules in blood) for these complications. None of these candidate markers 

are useful as individual predictive tests, but combinations of markers are likely to 

result in clinically useful screening tests. Further, recent advances in proteomic 

and metabolomic technologies and bioinformatics (advanced mathematics) allow 

us to discover and map differences in molecules circulating in the blood of 

women who later develop these conditions. This has created the opportunity to 

develop effective methods of predicting these diseases, with the potential to 

dramatically improve maternal and infant health worldwide. 

 

Various types of data used to develop the predictive tests. (From 

www.thescopestudy.net) 
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Clinical Dataset 

The clinical data collected for SCOPE study contains the following topics: 

 Demography History 

 Maternal History 

 Family History 

 Current Pregnancy 

 15-week Clinical Examination 

 15-week Lifestyle Questionnaires 

 Partner Data 

 20-week Clinical Examination 

 20-week Lifestyle Questionnaires 

 Ultrasound 

 Outcome 

The questions covered in each topic are highly comprehensive and 

significant amount of work was done to minimise missing values to ensure high 

quality database. This comes to over 400 questions for each patient.  


