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Abstract

To improve the performance of Intensive Care Units (ICUs), the field of bio-statistics has

developed scores which try to predict the likelihood of negative outcomes. These help

evaluate the effectiveness of treatments and clinical practice, and also help to identify

patients with unexpected outcomes. However, they have been shown by several studies

to offer sub-optimal performance. Alternatively, Deep Learning offers state of the art

capabilities in certain prediction tasks and research suggests deep neural networks are

able to outperform traditional techniques. Nevertheless, a main impediment for the

adoption of Deep Learning in healthcare is its reduced interpretability, for in this field it

is crucial to gain insight on the why of predictions, to assure that models are actually

learning relevant features instead of spurious correlations. To address this, we propose

two deep convolutional architectures trained for the prediction of mortality using

physiological and free-text data from the Medical Information Mart for Intensive Care

III (MIMIC-III), and the use of concepts from coalitional game theory to construct visual

explanations aimed to show how important these inputs are deemed by the networks. Our

results show our models attain state of the art performance while remaining interpretable.

Supporting code can be found at https://github.com/williamcaicedo/

ISeeU and https://github.com/williamcaicedo/ISeeU2.
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Chapter 1

Introduction

1.1 Introduction

Intensive Care Units (ICUs) have helped to make improvements in mortality, length of

stay and complication rates among patients (A. E. W. Johnson, Ghassemi et al., 2016),

but they are costly to operate and sometimes skilled personnel to staff them seems to

be in short supply (A. E. W. Johnson, Ghassemi et al., 2016). For this reason, research

efforts to better equip ICUs to handle patients in a more cost-effective manner are

warranted.

The field of bio-statistics have produced throughout the years a series of predictive

scores which try to quantify the likelihood of negative outcomes (i.e. death) in clinical

settings. These tools are necessary to evaluate the effectiveness of treatments and

clinical practice, and to identify patients with unexpected outcomes (Rapsang & Shyam,

2014). Scores as the Apache (in its several versions), SAPS, MODS and others have

had moderate success (Rapsang & Shyam, 2014). Although their performance is not

optimal, they have become de facto standards for severity and mortality risk prediction.

These scores have been built using statistical techniques such as Logistic Regression,

which are limited to the modeling of linear decision boundaries, when it is quite likely

15



Chapter 1. Introduction 16

that the actual dynamics of the related biological systems do not respond to such

prior. A reason for limiting the modeling to linear/additive techniques such as Logistic

Regression is that they tend to be readily interpretable, allowing medical staff to derive

rules and gain insight over the reasons why such a score is predicting certain risk or

mortality probability. However, said statistical approaches (APACHE, SAPS, MODS,

etc.), have been shown by several studies to generalize sub-optimally (Huang et al.,

2013; Paul, Bailey & Pilcher, 2013). (Paul et al., 2013) show that over time, fixed

scores performance tends to deteriorate (i.e. APACHE III-j over-predicts mortality in

Australasia), and cite as possible reasons changes in medical practice and better care.

It’s no wonder then, that ICU mortality prediction appears to have reached a plateau

(A. E. W. Johnson, Ghassemi et al., 2016).

1.2 Background

Severity scores represented a step forward for the prediction of ICU patient mortality,

as they allowed practitioners to have an independent estimate of the seriousness of the

patient condition, with less subjectivity than former practices (Rapsang & Shyam, 2014).

The idea behind many of these scoring systems is to use certain information from the

first day of stay to derive a number (the risk score) and the probability of mortality.

The latter is important because dealing in probabilities allows for the comparison of

several predictive scores. As it was mentioned before, the score itself is obtained by a

linear (affine) combination of predictors, and after a logistic transform, a probability is

calculated. Traditional statistical techniques are often used in order to lower the chance

of model misspecification and to obtain predictor coefficients that are warranted from

the data used to create the score. More over care is taken to arrive to a probabilistic

model that is well calibrated (i.e. the predicted mortality probability distribution over

all patients in the sample used to develop the model matches the actual empirical
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distribution), and that has good predictive performance (i.e. its predictions correspond

to the actual outcomes). For the sake of completeness we will discuss relevant details

of some the most widely-known scoring systems.

1.2.1 The APACHE family

APACHE stands for Acute Physiology and Chronic Health Evaluation, and was devised

as a measure of illness for patients in critical care (Knaus, Zimmerman, Wagner, Draper

& Lawrence, 1981). Developed in 1981, 34 predictors from ICU admissions were

used to create the model, with interesting results. In this case, predictors and their

coefficients were chosen by consensus between a group of experienced ICU clinicians,

rather than as the outcome of a data driven or statistical effort. APACHE II (Knaus,

Draper, Wagner & Zimmerman, 1985) is a simplification of the original APACHE score

that only includes 12 physiological variables, measured during the first 24 hours after

admission (the worst measured values for each variable are used to calculate the Acute

Physiology Score - APS), plus age and the existence of certain chronic conditions.

This simplified version of the original APACHE score was validated using a large,

multi-center sample of patients, and results shown that the score’s performance was not

adversely affected. APACHE III (Knaus et al., 1991) is another refinement that used

largely the same predictors from APACHE II but it doesn’t use the Glasgow Comma

Scale to estimate neurological state. APACHE IV (Zimmerman, Kramer, McNair &

Malila, 2006) is a subsequent iteration including new predictors as PO2/FiO2 ratio, the

presence of mechanical ventilation, alongside a few others.

1.2.2 SAPS-II

SAPS-II or Simplified Acute Physiology Score II, is another severity scoring system

that uses measurements from the first 24 hours of ICU stay (Gall, Lemeshow & Saulnier,
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Physiological variable High abnormal range Normal range Low abnormal range
4 3 2 1 0 1 2 3 4

Rectal temperature (°) ≥41 39-40.9 - 38.5-38.9 36-38.4 34-35.9 32-33.9 30-31.9 ≤29.0
Mean arterial pressure (mm Hg) ≥160 130-159 110-129 70-109 50-69 ≤49
Heart rate ventricular response ≥180 140-179 110-139 70-109 55-69 40-54 ≤39
Respiratory rate per minute-non-ventilated or ventilated ≥50 35-490 25-34 12-24 10-11 6-9 ≤5
Oxygen: A-a DO2 or PO2 (Torr)
FiO2 ≥0.5 record A-a DO2 ≥500 350-499 200-349 ≤200 PO2 61-70 PO2 55-60 PO2<55
FiO2 ≥0.5 record only PO2 PO2>70
Arterial pH ≥7.7 7.6-7.69 7.5-7.59 7.33-7.49 7.25-7.32 7.15-7.24 <7.15
Serum HCO3 (mmol/L)-only if no ABGs ≥52 41-51.9 32-40.9 23-31.9 18-21.9 15-17.9 <15
Serum sodium (mmol/L) ≥180 160-179 155-159 150-154 130-149 120-129 111-119 ≤110
Serum potassium (mmol/L) ≥7 6-6.9 5.5-5.9 3.5-5.4 3-3.4 2.5-2.9 ≤2.5
Serum creatinine (µmol/L) ≥350 200-340 150-190 60-140 <60
Hematocrit(%) ≥60 50-59.9 46-49.9 30-45.9 20-29.9 ≤20
White blood cell count (x1,000/mm3) ≥40 20-39.9 15-19.9 3-14.9 1-2.9 <1
Glasgow comma score = 15 minus actual GCS

Table 1.1: Apache II APS components and weights. A-a DO2: alveolar-arterial tension
difference; PO2: arterial oxygen tension; FiO2: fractional concentration of inspired
oxygen; HCO3: Bicarbonate; ABG: Arterial Blood Gas. Additional weighting is given
to the patient age and to the presence of chronic health conditions. Adapted from
(Rapsang & Shyam, 2014)

.

1993). It constitutes an improvement over the original SAPS score developed in 1984

(Andreasen, 1984). The idea behind the development of the original SAPS was to

provide a mortality score that relied on a fewer number of readily available predictors

than competing alternatives (i.e. APACHE), in order to avoid the introduction of bias

when dealing with missing observations. SAPS-II use 17 predictors (12 physiological

plus age, type of admission and presence of three specific conditions) to output a score

between 0 and 163 points, and a subsequent probability of mortality. First described in

1993, validation results showed superior performance when compared to the old SAPS.

SAPS-II predictions were found to be consistent with the observed mortality in the

validation dataset. Finally, a successor to SAPS-II called SAPS-III (Moreno et al., 2005)

was developed in 2005, being comprised of three components: chronic information,

acute information (including the presence of sepsis) and a physiological component.

Observations in SAPS-III were to be made in the first hour of stay.

.
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Physiological variable Score
26 13 12 11 9 7 6 5 4 3 2 0 1 2 3 4 6 7 9 10

HR (beats/min) <40 40-69 70-119 120-159 ≥160
SBP (mm Hg) <70 70-99 100-199 ≥200
Temperature (°C) <39 ≥39
PO2/FiO2 only if VENT or CPAP <100 100-199 ≥200
Urine output (L/day) <0.5 0.5-0.999 ≥1
Urea (g/L) <0.6 0.6-1.7 >1.8
TLC <1 1-19.9 ≥20
Potassium <3 3-4.9 ≥5
Sodium <125 125-144 ≥145
Bicarbonate <15 15-19 ≥20
Bilirrubin (mg/dL) < 40 4-5.9 ≥ 6.0
Glasgow Coma Score < 6 6-8 9-10 11-13 14-15
Age Score Chronic Disease Score Type of Admission Score
< 40 0 Metastatic cancer 9 Scheduled surgical 0
40-59 7 Hematological malignancy 10 Medical 6
60-69 12 AIDS 17 Emergency surgical 8
70-74 15
75-79 16
≥ 80 18

Table 1.2: SAPS-II components and weights. HR: heart rate; SBP: Systolic blood
pressure; PO2: arterial oxygen tension; FiO2: fractional concentration of inspired
oxygen; VENT: ventilation; CPAP: Continuous Positive Airway Pressure; TLC: Total
Leukocyte Count. AIDS: Acquired Immuno-Deficiency Syndrome. Adapted from
(Rapsang & Shyam, 2014)

.

1.2.3 SOFA

The Sequential Organ Failure Assessment Score (SOFA) is a severity score created in

1994 (and later revised in 1996) by the European Society of Intensive Care Medicine

(J. L. Vincent et al., 1996). SOFA tries to quantify severity based on the degree of organ

failure experienced by patients. Something that makes SOFA different to other scoring

systems is that there is no direct nor widely adopted formula for the calculation of

mortality probability from the SOFA score (Rapsang & Shyam, 2014). Also SOFA can

be calculated daily, with evidence suggesting that cumulative SOFA scores are more

helpful to predict mortality (Rapsang & Shyam, 2014). SOFA considers possible failure

in six organs with failure graded from 0 to 4.

Organ System Score
Variable 0 1 2 3 4

Pulmonary Lowest PO2 (Torr) / FiO2 (%) > 400 ≤ 400 ≤ 300 ≤ 200 + respiratory support ≤ + respiratory support
Coagulation Lowest platelet (103 mm3) ≥ 150 100-150 50-99 20-49 < 20
Hepatic Highest billirubin (µmol/L) < 20 20-32 33-101 102-24 > 204
Circulatory Blood pressure/vasoactives ad-

ministered
Mean arterial pressure <
70mmHg

Dopamine dose ≤ or dobutam-
ine any dose

Dopamine dose >5 or epineph-
rine ≤ 0.1 or norepinephrine ≤
0.1

Dopamine dose > 15 or epi-
nephrine > 0.1 or norepineph-
rine > 0.1

Neurologic GCS 15 13-14 10-12 6-9 < 6
Renal Highest creatinine level

(µmol/L)
< 110 110-170 171-299 300-440 > 440

Total urine output (mL/24h) < 500 < 200

Table 1.3: SOFA components and weights. PO2: arterial oxygen tension; FiO2:
fractional concentration of inspired oxygen; GCS: Glasgow Coma Scale. Adapted from
(Rapsang & Shyam, 2014)

.
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1.2.4 Deep Learning for ICU mortality prediction

On the other hand, Deep Learning offers state of the art capabilities in object recognition

and several related areas, and those capabilities can be used to learn to detect patterns

in patient data and predict the likelihood of negative outcomes. A reliable survival

prediction system using Machine Learning concepts such as supervised fine-tuning

(with pre-training that uses data from a related domain) and online learning (keep

learning after deployment) could overcome the degradation problems exhibited by fixed

scores, by being able to learn from the environments where they are being deployed.

This would benefit ICUs everywhere, allowing staff to benchmark ICU performance

and improve treatment protocols and practice (Rapsang & Shyam, 2014).

Machine Learning models depend on data for training, and in the case of Deep

Learning, the amount of data needed to reach adequate performance can be larger than

what traditional Machine Learning models require. However, today there is a deluge of

data coming from various disparate sources, and said data sometimes sit in databases

without much use. In the case of Electronic Medical Records, detailed information

about patients such as visit records and socio-demographic data is stored indefinitely

which could be leveraged to train predictive models that enable precision healthcare.

However, one of the main impediments for widespread adoption of advanced Ma-

chine Learning and Deep Learning in healthcare is lack of interpretability (Che, Pur-

ushotham, Khemani & Liu, 2016; Lipton, 2016). There seems to be a trade-off between

predictive accuracy and interpretability in the landscape of learning algorithms, and in

the case of Deep Neural Networks, models of greater depth consistently outperform

shallower ones in some tasks (He, Zhang, Ren & Sun, 2016; Szegedy et al., 2015;

Urban et al., 2017), at the expense of simpler representations. Crucially, high capacity

Machine Learning models can easily latch onto epistemically flawed correlations and

statistical flukes as long as they help minimize the loss in the training set, because the
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minimization of the associated loss function does not care for causality but merely

for correlation (Lipton, 2016). For instance, in one well-known case a neural network

(Cooper et al., 1997) was trained to predict the risk of death in patients with pneumonia,

and it was found that the model consistently predicted lower probability of death for

patients who also had asthma. There was a counter-intuitive correlation in the training

data that did not reflect any causality whatsoever, just the fact that asthma patients

were treated more aggressively and thus fared better in average. The model in question

performed better than the rest of models considered but it was ultimately discarded in

favor of less performant, but interpretable ones. It is crucial then to offer mechanisms

to gain insight on the why of predictions, i.e. the features our models attend to when

generating an output, to make sure that models are actually learning sensible features

instead of spurious and misleading correlations.

1.3 Research Questions

The limitations of traditional models from bio-statistics (e.g. performance degradation,

inconsistent results) have motivated the use of Deep Learning architectures trained

on clinical data to tackle the problem of mortality prediction inside the ICU. There is

some literature showing the use of Deep Learning for ICU mortality prediction with

various degrees of success. However the issue of interpretability for Deep Learning

models persist, as previous efforts recorded by the literature have focused on either

prediction accuracy, or on offering interpretability at its expense by using surrogate

models. Given the current situation, we have formulated some research questions that

we seek to answer in this work:

• How can we develop a Deep Learning model able to predict, with state-of-the-art

performance, survival-related outcomes in a critical care setting?
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• How can we provide useful explanations for the decisions of the model using

feasible time and computing resources, without resorting to auxiliary classification

models?

1.4 Research Methodology

The study methodology has been designed according to standard practice in Machine

Learning (Shen, Wu & Suk, 2017; Suresh et al., 2017). This entails the following (1.1):

• Construction of a dataset to train, validate, and test the predictive models. Our

datasets are created using the MIMIC-III (A. E. W. Johnson, Pollard et al., 2016)

database. MIMIC-III contains data from ICU stays, including vital signs, lab

measurements, free-text medical notes, and outcomes. We extract data related to

vitals and lab measurements to construct physiological multi-variate time series,

stacking the longitudinal physiological signals, in a way similar to (Suresh et al.,

2017) and (Che, Purushotham, Cho et al., 2016); together with free-text medical

notes written by ICU healthcare professionals involved in the care of patients. To

access this database, a special protocol must be followed, including taking a short

online course on patient privacy and adequate clinical data handling. Initially a

set of entry criteria is defined in order to select a suitable subset of patients for

the task at hand, following guidelines found in related works (Che, Purushotham,

Khemani & Liu, 2016; Lipton, Kale, Elkan & Wetzell, 2015; Suresh et al., 2017).

• Deep Learning library selection. There are a number of popular libraries for Deep

Learning (USENIX Association. et al., 2015; Chollet, 2015; Theano Development

Team, 2016). At this stage, we review the most appropriate options in terms of

expressiveness, ease of use, and performance.

• Execution environment selection. Given the computational-intensive nature of
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Deep Learning, the training and validation process likely needs to be conducted

in GPU-enabled computing instances. We examine the available choices and

decide on the most appropriate to run our experiments.

• Model construction and model selection. Models for interpretable mortality

prediction inside the ICU are constructed using the selected Deep Learning

library/libraries. The datasets are partitioned into training and validation sets.

Models are learned on the training set to predict patient outcome using electronic

medical records data. Model selection, including hyper-parameter selection

and architectural details, is carried out using K Fold cross-validation as guide.

Given the size of MIMIC-III and the fact that Deep Learning models typically

need a great volume of examples to generalize correctly (Goodfellow, Bengio &

Courville, 2016) we anticipated the need for regularization and related techniques,

like Weight Decay (Goodfellow et al., 2016), Early Stopping (Goodfellow et

al., 2016), Dropout (Srivastava, Hinton, Krizhevsky, Sutskever & Salakhutdinov,

2014) and Batch Normalization (Ioffe & Szegedy, 2015). For the evaluation of

model performance, the standard metrics of the field are used (Che, Purushotham,

Khemani & Liu, 2016; Kale et al., 2015; Suresh et al., 2017), including Sensitivity

(Recall), Specificity, and the Area Under the Receiving Operating Characteristic

Curve (AUROC); and our results are compared to the most relevant works using

the same dataset for mortality prediction, in terms of the aforementioned metrics

and other relevant criteria.

• Model interpretability. After successful training of models, extraction of insight

about the models’ predictions is attempted. We construct suitable visualizations

that convey how important are the input features to the models, at prediction time.

Interpretability analysis is performed at the patient level and also at the dataset

level when possible, to further characterize the impact of the input features on
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the predictions of our models, so we can generate effective post-hoc explanations

that help us clarify the predictive behavior of our models.

• Dissemination. Procedures and experimental results are recorded periodically

throughout the course of our research for their dissemination in suitable venues,

including conferences and journals. We also plan to open source our code,

uploading it to a freely available, online source control repository.

Figure 1.1: Research methodology.

1.5 Research Contributions

Mortality prediction inside ICU has plateaued (A. E. W. Johnson, Ghassemi et al., 2016)

but we have more and more data, and the limited feature space commonly associated

with the usual bio-statistical techniques is a possible reason for this paradox. There is

growing evidence that supports the claim that Machine Learning methods over-perform

traditional scores from bio-statistics (Silva, Moody, Scott, Celi & Mark, 2012). This

is further evidenced in our literature review, where most papers present comparisons

and benchmarks that involve traditional risk scores or Logistic Regression stand-ins,
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and results show Machine Learning models finishing on top by a considerable margin,

and Deep Learning models outperforming classical Machine Learning alternatives

(Lipton et al., 2015; Che, Purushotham, Khemani & Liu, 2016; Che, Purushotham,

Cho et al., 2016; Purushotham, Meng, Che & Liu, 2018). Here in our work we present

SAPS-II and Logistic Regression (as a representative for traditional bio-statistics and

Machine Learning) benchmarks in which experimental performance results show our

Convolutional Neural models beating the baseline and alternative models. As motivating

reasons for our choice of Deep Learning architecture we can mention that due to their

architectural nature, Convolutional Neural Networks are easier to parallelize, sometimes

offering superior performance than Recurrent Neural Networks (e.g. our ISeeU2

benchmark results). Also, temporal Convolutions (i.e. 1D convolutions - the kind we

use in our proposed models) have been applied to sequence problems with success

(Liang et al., 2014; Razavian & Sontag, 2015; Razavian et al., 2016; Nguyen et al.,

2017). One of the big realizations of late in the Natural Language Processing and

Speech Recognition fields is that Recurrent Neural Networks are not that necessary to

solve Machine Learning problems with sequential inputs (Zhang, Zou & Gan, 2018;

Van Den Oord et al., 2018; Vaswani et al., 2017).

The relationship of this work with the existing literature and its main contributions

are summarized next. Our work relates to the existing literature in a number of ways.

We use Deep Learning for mortality prediction inside the ICU as it also has been used

by Che et al (Che, Purushotham, Cho et al., 2016; Che, Purushotham, Khemani & Liu,

2016), Grnarova et al (Grnarova et al., 2016) and Purushotham et al (Purushotham et

al., 2018), but our work has key differences compared to the state of the art. We are

presenting two ConvNet architectures for the prediction of ICU mortality, the first of

which uses physiological time series data as input, while the second one uses free-text

medical notes.

Our research contributions are,
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• We are able to show that Deep Learning models called Convolutional Neural

Networks (ConvNets) offer predictive performance comparable to the reported

performance of Recurrent Neural Networks (RNNs) when dealing with physiolo-

gical time-series data from MIMIC-III.

• We show evidence that a deep convolutional architecture can handle both static

and dynamic data from MIMIC-III, making hybrid architectures (feed-forward

plus recurrent) unnecessary for this particular task and performance level.

• We show that a convolutional architecture trained on MIMIC-III nursing free-text

notes from the first 48 hours of patient stay using a standard log loss, can predict

mortality with performance comparable to more involved approaches that use

custom losses or different types of medical notes.

Regarding the problem of interpretability, the works most related to ours are Che et

al (Che, Purushotham, Khemani & Liu, 2016) (physiological time-series inputs) and

(Grnarova et al., 2016) (free-text medical notes inputs). However, in both cases there

are also some important differences, which we highlight next:

• Che et al sidestep the problem of interpreting a deep model directly by using

Mimic Learning with an interpretable student model (Gradient Boosted Trees)

(Ba & Caruana, 2014), while our work focus instead on interpreting directly a

deep model trained to predict ICU mortality, without using any surrogate model.

• Grnarova et al use an auxiliary prediction head in their model to obtain predictions

of mortality using individual sentences. This is introduced as a regularization

mechanism but doubles as a heuristic to provide interpretability by using the

predicted probabilities as a proxy for sentence importance (Grnarova et al., 2016).

Instead, we rely on a robust concept from coalitional game theory called the
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Shapley Value (Shapley, 1953) to offer a more principled approach to feature

importance.

• In the case of our physiological time-series data model, we are able to provide

not only dataset-level interpretability but also patient-level interpretability. For

our free-text model, we provide a way to annotate nursing notes with information

about the words the model interprets as evidence for survival or death, in order to

make notes more useful.

On the other hand, our physiological time series architecture uses multi-scale

convolutional layers and a “channel” input representation, similar to (Suresh et al.,

2017), but for a different task (mortality prediction instead of clinical intervention

prediction). We also note that the use of Shapley Values (Shapley, 1953) or their

approximations for providing interpretability in the ICU setting has not, to the best our

knowledge, been reported by the relevant literature.

1.6 Organisation of Thesis

The thesis is organized as follows: An in-depth revision of the state of the art covering

Deep Learning approaches to diagnostic problems using electronic medical records as

learning substrate can be found in chapter two.

Chapter three introduces MIMIC-III and its structure, together with some explorat-

ory data analysis showing some statistical descriptors and general trends. After this an

introduction to Convolutional Neural Networks is presented. Lastly, we include some

theoretical details from our game theory approach to provide interpretability.

Chapter four contains our experimental results. Details about the training and

validation process are shown, and we present some neural architectures of interest with

their respective performance metrics. Finally we show the application of the Shapley
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Value to the interpretation of our best models, and the visualizations constructed for

explanation purposes.

Chapter five deals with a discussion of the results obtained, and an analysis of our

best model in terms of feature importance via our Shapley Value visualizations.

Finally we present our conclusions and suggested directions for further research.



Chapter 2

Literature Review

2.1 Introduction

According to Mitchell “A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P if its performance at

tasks in T, as measured by P, improves with experience E” (Mitchell, 1997). Machine

Learning is part of the broader area of Artificial Intelligence, which in turn is the

study of intelligent agents and actors (devices, software) that plan a course of action

to maximize their probability of achieving a specific goal (Russell, Norvig & Davis,

2016). It is generally believed that Artificial Intelligence (AI) as a study field in itself

appeared with John McCarthy and the Dartmouth conference in 1956 (Russell et al.,

2016). The field of AI was dominated on its first decades by the symbolic approach,

which sought to replicate the process of human decision making by relying on the use of

propositional and first order logic. This approach called for the specification of human

knowledge in the form of rules and predicates and the use of powerful inference engines.

Systems such as CYC (Elkan & Greiner, 1993), MYCIN (Shortliffe, 1977), DENDRAL

(Lindsay, Buchanan, Feigenbaum & Lederberg, 1993), leveraged this approach and

were introduced as “expert systems” in different domains, able to draw inferences from

29
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facts and answer difficult questions based on their extensive knowledge bases. However,

it was soon noted that these systems were too brittle and did not scale properly to

real-world usage as the effort required to express human (often intuitive) knowledge

was too high (Goodfellow et al., 2016).

This “sub-symbolic” approach of Machine Learning (ML), is different from the

classical rule-based expert systems in that the focus of ML is to learn how to perform

a task without being explicitly programmed to do so. To this end, ML draws heavily

from statistical and probability theory, mathematical optimization, calculus, linear

algebra and computer science (Goodfellow et al., 2016). ML tasks can be loosely

categorized in three main groups: supervised learning, unsupervised learning, and

reinforcement learning. In supervised learning, the learning model is given samples

of correct behaviour, and with enough samples it learns to approximate the mapping

between inputs and outputs. In unsupervised learning, the model tries to figure out on

its own a representation that describes adequately the statistical regularities of a dataset.

In the case of reinforcement learning, the agent is given a reward that is a function of

the quality of the plan it has devised to solve a multi-step task.

One of the many ML algorithms/models is the Neural Network (NN). NNs are

actually a ML family of models inspired (sometimes loosely) in the brain (Goodfellow

et al., 2016). A NN is an arrangement of processing units called neurons, each of

which receives a set of inputs and produces an output according to an internal activation

function (McCulloch & Pitts, 1943). The Multilayer Perceptron (Rumelhart, Hinton

& Williams, 1986), a network composed of multiple layers of neurons connected in a

feed-forward manner, is the quintessential example of such arrangement.

The underpinnings of NNs date at least back to the work of McCulloch and Pitts

(McCulloch & Pitts, 1943) and Rosenblatt’s Perceptron (Rosenblatt, 1957). Interest-

ingly, NN development has enjoyed periods of over-inflated expectations followed by
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disillusion (Goodfellow et al., 2016). These disillusion periods have usually corres-

ponded to what is popularly known as “AI winters” (Crevier, 1993). After the initial

hype consequence of Rosenblatt’s early work, the interest in NNs took it first dip

when Minsky and Papert showed some key shortcomings of the Perceptron (Minsky

& Papert, 1972). Later, the second wave of interest in NNs was spearheaded by the

efforts of the connectionist approach to brain understanding and the development of the

Backpropagation algorithm (Goodfellow et al., 2016). After this second coming, the

appearance of the Support Vector Machine and Kernel Methods among other factors,

led to the view that NNs were outdated (Goodfellow et al., 2016). This attitude against

NNs in the ML scene started to change circa 2008, with the advent of larger datasets

and algorithms capable of training deep (in the sense of having many layers) networks.

The third wave of NN research and development has been called Deep Learning.

Deep Learning is a Machine Learning subfield specialized in creating learning

models that combine data in a hierarchical fashion in order to construct concepts

with ever-increasing complexity. This hierarchical nature has allowed Deep Learn-

ing models to become the state of the art in tasks such as object recognition, facial

recognition, speech recognition, Natural Language Processing, machine translation,

among others (Goodfellow et al., 2016). Different models as the Convolutional Network

(LeCun, Bottou, Bengio & Haffner, 1998), the Long Short Term Memory (Hochreiter &

Schmidhuber, 1997b), Deep Belief Networks (Hinton, Osindero & Teh, 2006) and Deep

Autoencoders (Bengio, Lamblin, Popovici & Larochelle, 2006) are being used by major

firms in various real applications, ranging from voice-enabled search, to pedestrian

detection in images (Goodfellow et al., 2016).
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2.2 Deep Learning for clinical event prediction

Although the most natural application of Deep Learning algorithms to medical diagnosis

is automated medical image diagnosis (Shen et al., 2017), we will concentrate on the us-

age of Physiological Time Series (PTS) and Electronic Medical Record (EMR) data, as

a more general source of data on which machine learning models can be trained. EMRs

are very attractive as a potential data source since their use is widespread, which makes

them abundant and accessible electronically. However, there are certain challenges

associated with their “secondary use” in Machine Learning (A. E. W. Johnson, Pollard

et al., 2016). Despite this, several works have reported the successful use of EMRs

and PTS to train Machine Learning/Deep Learning based models for diagnosis. Now

follows a review of the most relevant literature about Deep Learning applications on

clinical prediction based on EMR and PTS data, and then a review of literature related

to the ICU setting, including mortality prediction. Table 2.1 shows a summary of the

usage of Deep Learning models in the cited literature.

2.2.1 Medical diagnosis and event prediction

Lasko et al (Lasko et al., 2013) used a deep Autoencoder for unsupervised clinical

phenotype discovery from serum uric acid measurements. In machine learning parlance,

a phenotype corresponds to feature detectors (archetypes) and learned transformations

to a feature space. Using these features, pre-trained logistic regression classifiers

were constructed to distinguish between gout and leukemia, showing performance that

rivalled that of a classifier that used features hand-crafted by a domain expert. In order to

account for missing data (uric acid levels were sampled at irregular times, giving rise to

a sparse design matrix), imputation based on Gaussian Process Regression (Rasmussen,

2006) was used.

An Autoencoder (Goodfellow et al., 2016) is a specialized neural architecture
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Model Works
Deep Autoencoders/Deep Belief Networks (Lasko, Denny & Levy, 2013)

(Liang et al., 2014) (Kale et al.,
2015) (Miotto et al., 2016)

Convolutional Neural Networks (Razavian & Sontag, 2015)
(Razavian et al., 2016) (Grnarova
et al., 2016) (Nguyen et al., 2017)
(Suresh et al., 2017)

Recurrent Neural Networks (Lipton et al., 2015) (Che, Pur-
ushotham, Cho et al., 2016) (Choi,
Bahadori, Schuetz, Stewart & Sun,
2016) (Choi, Bahadori, Sun et
al., 2016) (Lipton, Kale & Wetzel,
2016) (Pham, Tran, Phung & Ven-
katesh, 2016) (Razavian et al., 2016)
(Suresh et al., 2017)

Hybrid Models (Esteban et al., 2016) (Che, Pur-
ushotham, Khemani & Liu, 2016)

Table 2.1: Usage of different Deep Learning models on the literature.

which learns an efficient representation of the data in an unsupervised fashion. In

an Autoencoder, the task consists in trying to recover the input from a constrained

representation of it (i.e. minimize some function that captures the discrepancy between

inputs and outputs).

The simplest Autoencoder is composed by three layers. Layers one and two rep-

resent the encoder, and the activations of the middle layer correspond to the latent

representation discovered by the Autoencoder, given by h = g(Wx+ b), where g corres-

ponds to a non-linearity (usually sigmoidal). On the other hand, the decoder outputs the

reconstructed version of the input, x̂ = g′(W ′
h + b

′
) (g′ corresponds to a non-linearity

as well), with W ′
=W T usually. The loss is often expressed as a cross-entropy between

the distributions of the inputs and outputs. In the case of deep Autoencoders (also

known as stacked Autoencoders), a greedy layer-wise approach (Bengio et al., 2006)

is used: at every step, a new feature layer is learned by minimizing the reconstruction

error of the input. Once training has ended, the latent representation found, hi, is used



Chapter 2. Literature Review 34

Figure 2.1: A simple autoencoder.

as the new input to a new Autoencoder, and a new representation hi+1 is discovered by

repeating the training process. After a series of training stages, a set of feature layers,

each with an increased abstraction level, are produced. If such layers are used to build a

supervised classifier, the procedure is called unsupervised pre-training (Bengio et al.,

2006).

Liang et al (Liang et al., 2014) developed a Deep Belief Network (DBN) (Bengio,

2009) to learn to diagnose different diseases, using two clinical EMR datasets. The

first data set contained information about the diagnosis of 21 different diseases, and

the second one had information about hypertension patients and a number of clinical

and para-clinical features. In this study, the DBN acted as a feature extractor, similar
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as how an Autoencoder is used to perform unsupervised pre-training. The DBN was

composed of stacked Restricted Boltzmann Machines, a two-layer undirected graphical

model which uses the Contrastive Divergence algorithm for training (Bengio, 2009)

(Hinton et al., 2006). After this, supervised fine tuning was carried out, using an SVM

as the top classifier. Backpropagation was used to train the DBN and SVM weights.

Diagnosis DBN+SVM SVN decision tree
Arthralgia Syndrome 84.17 74.98 63.04

Acne 86.02 76.68 69.80
Epilepsy 69.67 71.57 68.91

Tinnitus & deafness 86.18 73.15 72.93
Abdominal pain 80.28 72.86 74.19
Allergic rhinitis 69.05 65.84 75.09

Neck & shoulder pain 72.85 71.11 65.52
Cervical spondylosis 78.48 61.42 73.59

Cough 87.11 72.12 73.10
Facial paralysis 87.26 58.64 63.25

Traumatic brain injury 70.31 63.54 62.38
Migraine 87.38 58.92 69.97

Ankylosing Spondylitis 87.10 59.94 79.19
Insomnia 77.19 74.47 66.81
Headache 83.81 71.90 71.71

Flaccidity Syndrome 69.98 64.34 64.48
Stomachache 75.86 77.00 75.03

Asthma 86.23 58.69 65.10
Palpitation 83.64 66.77 70.12

Lumbocrural pain 87.15 65.63 73.98
Urticaria & Rubella 80.77 73.31 77.82

Table 2.2: Results (accuracy) on the first dataset. Best results are in bold (Liang et al.,
2014).

As part of the experiments in (Liang et al., 2014) the DBN + SVM model was

compared to a standard SVM and a decision tree, all trained using the same data.

In both classification tasks, the DBN+SVM model showed superior performance for

almost all classes (table 2.2, table 2.3). According to the authors, for the cases where

the shallow models showed better performance, substantial professional expertise to

handcraft features was required. This suggests that the power of learned hierarchic
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representations is indeed superior to that of shallow models.

DBN+SVM SVN decision tree
Inspection 84.32 81.11 79.40

Tongue 83.29 78.94 78.55
Inquiry 79.57 80.90 78.48

Palpation 79.94 76.34 75.67
Others 80.45 79.02 78.93

Fusional 85.23 82.31 81.08

Table 2.3: Results (precision) on the second data set. Best results are in bold (Liang et
al., 2014).

Miotto et al show the use of Stacked Denoising Autoencoders to build an unsuper-

vised representation called “Deep Patient” using EMR data (Miotto et al., 2016). Deep

Patient used three representation layers learned out from approximately 700.000 patient

records from Mount Sinai Hospital. Miotto et al mention that the use of EMRs as

learning substrate is ridden with difficulties, for instance, inconsistencies in expression

of patient phenotypes (Miotto et al., 2016), their high-dimensionality, the free-text

nature of clinical notes, among others.

The general approach of Miotto et al was unsupervised feature discovery and

representation using EMR as training data, followed by supervised fine-tuning for

prediction of disease. SDAs are trained to minimize the reconstruction error and the top

classifier is trained to minimize the negative log-likelihood (cross-entropy error), similar

as in (Kale et al., 2015). In the experiments reported, the results of this approach over-

perform other common representations as Principal Component Analysis, Gaussian

Mixture Models, K-Means and Independent Component Analysis (Miotto et al., 2016).

Results can be seen in Table 2.4 and Table 2.5. Deep Patient showcases the power of

Deep Learning to deliver great results without resorting to expensive manual feature

design. One interesting characteristic of the approach of Deep Patient is that it is able

to learn compact, general purpose representations, suitable to other medical prediction

tasks, using EMR data as learning substrate; as shown in (Miotto et al., 2016; Kale et
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al., 2015; Liang et al., 2014; Lasko et al., 2013).

Patient representation AUROC Accuracy F-Score
RawFeat 0.659 0.805 0.084
PCA 0.696 0.879 0.104
GMM 0.632 0.891 0.072
K-Means 0.672 0.887 0.093
ICA 0.695 0.882 0.101
DeepPatient 0.773 0.929 0.181

Table 2.4: Comparison of the performance of different representations. Deep Patient
comes on top, with a statistically significant (95% confidence) lead over the second best
performer (Miotto et al., 2016).

Disease RawFeat PCA DeepPatient
Diabetes mellitus with complications 0.794 0.861 0.907
Cancer of rectum and anus 0.863 0.821 0.887
Cancer of liver and intrahepatic bile duct 0.830 0.867 0.886
Regional enteritis and ulcerative colitis 0.814 0.843 0.870
Congestive heart failure (non- hypertensive) 0.808 0.808 0.865
Attention-deficit and disruptive behavior disorders 0.730 0.797 0.863
Cancer of prostate 0.692 0.820 0.859
Schizophrenia 0.791 0.788 0.853
Multiple myeloma 0.783 0.739 0.849
Acute myocardial infarction 0.771 0.775 0.847

Table 2.5: Deep Patient performance (AUROC) per disease. Best results are in bold.
Source (Miotto et al., 2016).

Razavian et al (Razavian & Sontag, 2015) use a Convolutional Neural Network

(ConvNet) trained on lab tests to predict disease onset. ConvNets are Multi-Layer Neural

Networks that use a particular architecture with sparse connections and parameter

sharing (LeCun et al., 1998). They can be thought of performing a discrete convolution

operation between the input (often a two-dimensional image) and a set of trainable

kernels at each layer. The discrete convolution operation, in the context of Deep

Learning and computer vision is defined as

s(i, j) = (x ∗w)(i, j) = ∑
m,n

I(m,n)K(i −m,j − n) (2.1)



Chapter 2. Literature Review 38

where I is a two-dimensional image and K is a two-dimensional kernel. The kernel

is a local feature detector that is displaced all over the image. Each convolution between

the input and a kernel produces a spatial receptive field, also called a feature map. After

the convolution operation, the output of the receptive field is run through a non-linear

activation function which allows the network to work with transforms of the input space

and construct non-linear features. The feature map can be thought as a 2-D tensor

(matrix) of neurons, where the weights of each neuron are the same but shifted spatially

(hence the parameter sharing), and which are not connected to every single pixel of the

input (which also can be seen as having the corresponding weight set to zero). ConvNets

were one the first models to use Gradient Descent with Backpropagation (Rumelhart

et al., 1986) with success (Goodfellow et al., 2016). Convolution based filters are

extensively used to detect features as shapes and edges in computer vision (Shapiro,

2001). However, fixed kernels are used to detect specific features, in contraposition to

ConvNets where kernels are learned from the data.

(Razavian & Sontag, 2015) present a multi-resolution convolutional architecture

which resembles the organizing principles and philosophy behind GoogLeNet and

the Inception module (Szegedy et al., 2015). However, instead of using different

convolution sizes in parallel as part of the same layer/module, Razavian et al use max

pooling with different neighbourhood sizes, which they call, resolution levels (Razavian

& Sontag, 2015), hence a multi-resolution ConvNet. In this fashion, their architecture

is able to deal with both short-term and long-term features, taking into account the

fact that the temporal dynamics of the physiological variables measured, are different

from each other. The dataset used by (Razavian & Sontag, 2015) comes from 298.000

individuals over 8 years, for which 18 lab measurements have been recorded. This data

is used to train the ConvNet to perform early detection (at least three months in advance)

of 171 diseases and conditions. The input representation is similar to the one used by

Lasko et al (Lasko et al., 2013), consisting of stacked physiological time series (lab test
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measurements) from a backward window of 36 months, but in this case, they are fed

to a ConvNet instead of a Deep Belief Network as in (Lasko et al., 2013). The output

labels (i.e. patient diagnostic class) were assigned to patients only if there were two

independent diagnosis annotations of a specific disease in a period of 24 + 3 months

after the backward observation window.

The authors make the point that the utilization signal, i.e. the spacing between lab

measurements is predictive in itself, because it reflects physician intuitions about what

could be wrong with the patient, so they include this signal into the input representation

and perform experiments to find out whether the inclusion of this signal improves the

ConvNet performance.

Figure 2.2: Temporal ConvNet architecture.

In another contribution of (Razavian & Sontag, 2015), the authors propose a novel

method to perform imputation on the dataset. The proposed architecture has a mathem-

atical formulation roughly equivalent to Multivariate Gaussian Processes. It consists of

a differentiable, convolutional, non-parametric kernel regression formulation; where

the kernels are learned from the data using back-propagation (Rumelhart et al., 1986).

Assuming a model x = f(t) + ε, where ε ∼ N (0, σ2), and a set of observed data points
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xt1 , xt2 , . . . , xtn; we can define the regression estimation as

x(tnew) = Ex∼P (x∣t=tnew)[x] (2.2)

Ex∼P (x∣t=tnew)[x] = ∫
x
xP (x∣t = tnew)dx = ∫

x
x
P (x, t = tnew)

P (tnew)
dx (2.3)

Using Kernel Density Estimation to approximate the probability distributions, the

Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964) allows to reformulate the

above as

Ex∼P (x∣t=tnew)[x] =
∑
n
i=1 xtiK(tnew, ti)

∑
n
i=1K(tnew, ti)

(2.4)

where K(ti, tj) is a positive semi-definite kernel function. At this point, using

functional formulations for the data points and time that involve the Dirac Delta (δ), the

authors express the expected value in a convolutional manner,

Ex simP (x∣t=tnew)[x] =
(K ∗ X̂train)(tnew)

(K ∗ I(X̂train∶observed)(tnew)
(2.5)

Here X̂train(t) = ∑
n
i=1 xtiδ(t, ti) and δ(t, τ0) = 1 when t = τ0 and zero for every

other value of t. On the other hand, I(X̂train∶observed) = ∑
n
i=1 δ(t, ti) is a function

that outputs a 1 for every observation ti. As previously said, the Kernel function is

learned using Back-propagation. The authors perform imputation separately before

classification, even though they mention that the differentiable nature of both parts

of the pipeline makes it amenable to end-to end training (Razavian & Sontag, 2015).

Razavian et al extend the former convolutional regression to the 2D case, using the full

matrix of lab observations to impute the value of the missing data, and compare the

performances of both approaches.

The reported results show that the convolutional regression attains lower MSE at

data imputation than the non-convolutional formulation and standard Gaussian Process
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regression, especially in the 2D (multivariate) case. At classification time, the ConvNets

trained on imputed data show a little edge over ConvNets trained on raw (non-imputed

data with missing values set to zero). However, the differences in performance are

not dramatic and don’t seem to warrant the added pipeline complexity. In general, the

ConvNets showed better performance than selected baselines (Multi-layer Perceptron

and Logistic Regression).

Pham et al (Pham et al., 2016) developed DeepCare, a model based on the Long

Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997b) to predict disease

progression, needed interventions (treatment), and future risk (i.e. unplanned admissions

to the hospital). The Long Short-Term Memory, is a specialized Recurrent Neural

Network (RNN) with neurons explicitly designed to make it easier to learn long-term

dependencies (Hochreiter & Schmidhuber, 1997b). The LSTM network and a related

model, the Gated Recurrent Unit (GRU) network (Cho, van Merrienboer, Bahdanau &

Bengio, 2014; Chung, Gülçehre, Cho & Bengio, 2014), belong to the class of Gated

RNNs (Goodfellow et al., 2016). LSTMs capitalize on the idea of creating shorter paths

in time for the gradient to flow more easily. This idea had been previously introduced

in the form of skip connections (Mozer, 1992), where some recurrent connections

bypassed entire time-steps; and Leaky Units (El Hihi & Bengio, 1995), where inside

each neuron of the recurrent state, an inner linear self-connection was maintained in

order to give the neuron a chance to remember important information.

The dataset used in this work was constructed using EMRs from a large regional

hospital in Australia (Pham et al., 2016), including data from a cohort of diabetic

patients and a cohort of mental patients. A language is built around ICD codes for dia-

gnoses, Current Procedural Terminology (CPT) or International Classification of Health

Interventions (ICHI) codes for interventions, and Anatomical Therapeutic Chemical

(ATC) codes for medication. An embedding layer is used to encode the language words

into a vector representation that captures the information of patient hospital visits. Each
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visit is coded as a collection of diagnoses, a collection of interventions, the type of

admission (planned or unplanned), and the time between the last admission and the

current one. Before feeding the admission data to the LSTM, diagnosis vectors are

pooled, and the intervention vectors are pooled as well.

The authors propose an interesting way of feeding the LSTM at each admission

time: only the diagnosis vector is presented as input in a traditional way, whereas the

intervention vector is used to separately influence the LSTM output and forget gates, as

the authors hypothesize that interventions somewhat “erase” disease from the sequence.

Also, the type of admission code (1 for planned, 2 for unplanned) is used separately to

modulate the input gate. Lastly, the time between visits is also modeled as a weight on

the value of the forget gate itself.

Figure 2.3: DeepCare Architecture. The bottom layer is a LSTM RNN, followed by
a multi-scale pooling (attention) layer, and a feed-forward neural network on the top
layer..

All hidden states generated by the LSTM are then pooled by a multi-scale pooling
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layer that resembles an attention mechanism (but without trainable parameters) to

produce a single vector representation that is fed to a feed-forward network to obtain a

prediction. The results reported beat a series of baselines, and show promise for the

three prediction tasks considered.

In (Razavian et al., 2016) Razavian et al propose a refinement of the Convolutional

architecture they had already presented in (Razavian & Sontag, 2015) and a Long Short

Term Memory (LSTM) network (Hochreiter & Schmidhuber, 1997b) for multilabel

prediction of disease onset. This work is essentially an offshoot of (Razavian & Sontag,

2015), given that they use the same input representation, dataset, and define similar

prediction tasks.

The refined ConvNet architecture, which the authors call CNN2, has two layers

which convolve vertically over the different labs, followed by Max-Pooling. Then a

subsequent convolutional layer that acts over time. The output of the last convolutional

layer is max-pooled and fed into the first of two fully-connected layers, followed by

a Softmax. In this way, they attempt to capture not only the time dependent features,

but also the correlation between labs. The authors report the use of Dropout and

Batch Normalization. Test results of this architecture are compared with the original

multi-resolution ConvNet (CNN1) of (Razavian & Sontag, 2015), the LSTM model,

an ensemble of deep models (Ens), and a shallow baseline consisting on a Logistic

Regression (LR) classifier using hand-engineered features, with the CNN2 architecture

narrowly surpassing the rest in most tasks (Table 2.6).

Choi et al (Choi, Bahadori, Schuetz et al., 2016) presented Doctor AI, a Deep

Learning model to predict clinical events (diagnoses, medication orders, time between

visits), trained on time-stamped EMR data from Sutter Health Palo Alto Medical

Foundation. This work is similar to (Lipton et al., 2015), which also use RNNs, and

to (Pham et al., 2016) in the sense that both use longitudinal EMR data to model the

next patient visit events. Each past visit is modeled as a multi-hot vector xi ∈ (0,1)D
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ICD9 Code and disease description LR LSTM CNN1 CNN2 Ens Pos
585.6 End stage renal disease 0.886 0.917 0.910 0.916 0.920 837
285.21 Anemia in chr kidney dis 0.849 0.866 0.868 0.880 0.879 1598
585.3 Chr kidney dis stage III 0.846 0.851 0.857 0.858 0.864 2685
584.9 Acute kidney failure NOS 0.805 0.820 0.828 0.831 0.835 3039
250.01 DMI wo cmp nt st uncntrl 0.822 0.813 0.819 0.825 0.829 1522
250.02 DMII wo cmp uncntrld 0.814 0.819 0.814 0.821 0.828 3519
593.9 Renal and ureteral dis NOS 0.757 0.794 0.784 0.792 0.798 2111
428.0 CHF NOS 0.739 0.784 0.786 0.783 0.792 3479
V053 Need prphyl vc vrl hepat 0.731 0.762 0.752 0.780 0.777 862
790.93 Elvtd prstate spcf antgn 0.666 0.758 0.761 0.768 0.772 1477
185 Malign neopl prostate 0.627 0.757 0.751 0.761 0.768 761
274.9 Gout NOS 0.746 0.761 0.764 0.757 0.767 1529
362.52 Exudative macular degen 0.687 0.752 0.750 0.757 0.765 538
607.84 Impotence, organic orign 0.663 0.739 0.736 0.748 0.752 1372
511.9 Pleural effusion NOS 0.708 0.736 0.742 0.746 0.749 2701
616.10 Vaginitis NOS 0.692 0.736 0.736 0.746 0.747 440
600.01 BPH w urinary obs/LUTS 0.648 0.737 0.737 0.738 0.747 1681
285.29 Anemia-other chronic dis 0.672 0.713 0.725 0.746 0.739 1075
346.90 Migrne unsp wo ntrc mgrn 0.633 0.736 0.710 0.724 0.732 471
427.31 Atrial fibrillation 0.687 0.725 0.728 0.733 0.736 3766
250.00 DMII wo cmp nt st uncntr 0.708 0.718 0.708 0.719 0.728 3125
425.4 Prim cardiomyopathy NEC 0.683 0.718 0.719 0.722 0.726 1414
728.87 Muscle weakness-general 0.683 0.704 0.718 0.722 0.723 4706
620.2 Ovarian cyst NEC/NOS 0.660 0.720 0.700 0.711 0.719 498
286.9 Coagulat defect NEC/NOS 0.690 0.694 0.709 0.715 0.718 958

Table 2.6: Test results of the different classifiers for the top-25 diseases in terms of
ROC-AUC. In bold, diseases for which the proposed models improve the AUC by
at least 0.05 compared to Logistic Regression. Pos refers to the number of positive
examples in the test set for each disease. Source (Razavian et al., 2016).
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where D is the total number of possible diagnosis, medication and procedures codes

that can appear on a particular medical consultation. Given that the dimensionality of

such vectors is high, an embedding layer is used for dimensionality reduction. The

embedding layer was initialized by either 1. using orthonormal matrices, or 2. using

the skip-gram embedding (Mikolov, Sutskever et al., 2013). A sequence of vectors

[h
(1)
i , di] (where h(1)i is the compressed representation of the input generated by the

embedding layer and di is the time elapsed between the last and current visit) represents

the EMR history of a patient. A two-layer deep Gated Recurrent Unit (GRU) based

RNN receives the vector sequence as input, and a Softmax layer uses the deep GRU

layer output to predict the diagnosis, medication and procedure codes of the next visit,

as well as the time until said next visit. Results show Doctor AI outperforming several

baselines such as last visit codes, most frequent codes for a patient, Logistic regression,

and a Multilayer Perceptron, in terms of Recall@k (number of true positives in the

top k predictions divided by the number of true positives). The Recall@10 results are

interesting and promising, but still fall short of a truly usable decision support system.

The authors of (Choi, Bahadori, Schuetz et al., 2016) also show that the features

learnt by Doctor AI can be transferred to different prediction settings (different datasets,

different hospitals). They trained Doctor AI on the MIMIC-II dataset (Saeed et al.,

2011) and reported a sizable performance boost when using the original parameters

of the model obtained on the Sutter Health data set as initial values. This suggests

that the model generalized well and could be deployed across different hospitals with

supervised fine-tuning.

Esteban et al (Esteban et al., 2016) developed a hybrid recurrent + feed-forward

architecture to combine static and dynamic information to predict renal transplant

outcomes (rejection, loss, death) in the next 6 and 12 months. Their network used

a RNN (LSTM (Hochreiter & Schmidhuber, 1997b), GRU (Chung et al., 2014)) to

compute a temporal representation out of the lab measurements taken for each patient
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in their visits to the clinic, and a feed-forward network to compute a representation for

the static data of the patient. Both representations are concatenated into a single vector

which is fed to a Softmax output layer.

Figure 2.4: Hybrid RNN + feed-forward architecture from (Esteban et al., 2016).

Results (Area Under the Precision-Recall curve, Area Under the Receiving Operator

Characteristic curve) show that the hybrid networks outperform several baselines (Table

2.7).

Models AUPRC AUROC
GRU + static info 0.345 ± 0.013 0.833 ± 0.006
LSTM + static info 0.330 ± 0.014 0.826 ± 0.006
RNN + static info 0.319 ± 0.012 0.822 ± 0.006
TLE 0.313 ± 0.010 0.821 ± 0.005
Logistic Regression 0.299 ± 0.009 0.808 ± 0.005
Random 0.073 ± 0.002 0.5

Table 2.7: Results of several models on renal transplant event prediction. TLE (Tem-
poral Latent Embeddings) corresponds to a Multilayer Perceptron. Source (Esteban et
al., 2016).

In (Choi, Bahadori, Sun et al., 2016) Choi et al introduced RETAIN, a new recurrent

architecture based on attention (Bahdanau, Cho & Bengio, 2014) (Cho, Courville &
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Bengio, 2015) to predict diagnoses based on EMR data from patient visits to the doctor

at Sutter Health Palo Alto Medical Foundation. The purpose of the RETAIN network

is very similar to other works listed here that use RNNs (Choi, Bahadori, Schuetz et

al., 2016) (Pham et al., 2016), but RETAIN is an architecture specifically designed

to improve its interpretability. The main difference of the RETAIN architecture with

respect to other RNNs with attention is that, the recurrent mechanism does not operate

on the hidden layer(s) of the network itself, but on the calculation of the attention

coefficients. So, RETAIN can be seen as inverting the traditional RNN plus attention

architecture, as traditional RNNs use feed-forward mechanisms to compute the attention

coefficients and recurrent loops for the hidden activations in each time-step. Another

characteristic of RETAIN’s operation is that the attention coefficients are calculated

going backwards in time, as seen in Figure 2.5.

Figure 2.5: RETAIN architecture.

RETAIN’s architecture use a patient visit representation similar to (Choi, Bahadori,

Schuetz et al., 2016) and a linear embedding to calculate a time-step activation vi for

each patient. Then, two recurrent networks (RNNα, RNNβ) are used to calculate the
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attention coefficients for each vi. RNNα calculates a single scalar attention αi (the

visit-level attention), while RNNβ calculates an attention vector βi (the event-level

attention). Given that the activations vi are computed by a linear embedding Wembxi, it

is straightforward to calculate the contribution not only of each visit, but the contribution

of each clinical event xi,k. In fact, breaking down the relevant equations, the contribution

ω of each clinical event to the predicted outcome yj is given by

ω(yj, xi,k) = αiW (βk ⊙Wemb[∶, k])xi,k (2.6)

where W is the Softmax layer weight matrix. The results 2.8 show that RETAIN

achieves competitive performance with standard RNNs while offering added interpretab-

ility.

Model Test Neg Log Likelihood AUC
LR 0.3269 ± 0.0105 0.7900 ± 0.0111
MLP 0.2959 ± 0.0083 0.8256 ± 0.0096
RNN 0.2577 ± 0.0082 0.8706 ± 0.0080
RNN+αM 0.2691 ± 0.0082 0.8624 ± 0.0079
RNN+αR 0.2605 ± 0.0088 0.8717 ± 0.0080
RETAIN 0.2562 ± 0.0083 0.8705 ± 0.0081

Table 2.8: RETAIN performance (AUC) compared to several baselines. LR is Logistic
Regression, MLP is a single hidden layer Multilayer Perceptron, RNN is a deep (two
hidden layer) GRU-RNN. RNN+αM corresponds to a standard RNN with attention.
RNN+αR is similar to RNN+αM but the attention coefficients are calculated backwards
in time. Best results are in bold. Source (Esteban et al., 2016).

Nguyen et al (Nguyen et al., 2017) proposed a novel Deep Learning pipeline for

disease risk prediction dubbed Deepr, trained on a EMR dataset extracted from a large

hospital chain in Australia. This pipeline is composed as follows: first, a tokenizing

stage encodes a patient’s EMR using ICD-9 codes for representing diagnoses and

procedures pertaining to a particular visit, and special tokens to represent the time

between visits. Sequences of tokens form sentences, and sentences end with a time-

between-visits token. After this, a second stage creates a matrix EMR representation
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by embedding the tokens into a lower dimensional representation (word embeddings)

and stacking them together. This embedding is learned from the dataset and the authors

compare initializing the embedding matrix randomly, and using Word2Vec (Mikolov,

Chen, Corrado & Dean, 2013). The third stage is a convolutional layer, that uses p

kernels with window size 2d + 1. After convolution, the ReLU non-linearity is applied,

with subsequent Max-Pooling (in a somewhat unconventional way, Max-Pooling is

applied not to the elements inside the same receptive field, but to the elements in the

same position through the receptive fields). Then the results of pooling are concatenated

into a p-dimensional vector that serves as input to a softmax classifier. The architecture

is trainable end to end, using Stochastic Gradient Descent and Backpropagation.

3 months 6 months
Method W/o time With time W/o time With time
BoW + LR 0.786 0.797 0.797 0.811
Deepr (rand init) 0.7910.797 0.806 0.814
Deepr (word2vec) 0.795 0.800 0.809 0.819

Table 2.9: Deepr performance against Logistic Regression with a Bag of Words
Representation (BoW + LR). Source (Nguyen et al., 2017).

Nguyen et al test their architecture against a Logistic Regression baseline which used

a Bag of Words (BoW) representation, in a task that consisted in predicting unplanned

readmissions inside three and six-month time windows after initial discharge. In all

tasks, Deepr outperformed the baseline by a slight margin, measured by ROC-AUC.

Results can be seen in Table 15. 2D visualizations constructed using t-SNE (van der

Maaten & Hinton, 2008) show that the Deepr representation is able to separate patients

according to their risk of unplanned readmission, in a much cleaner way than the BoW

representation.

In (Choi, Bahadori, Song, Stewart & Sun, 2016) Choi et al propose the use of

medical ontologies (i.e. ICD-9) formulated as Directed Acyclical Graphs (DAGs)

to regularize deep learning models via an attention mechanism. In such DAGs, the
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leaf nodes correspond to medical conditions that can be observed, and their ancestors

correspond to categories that group related conditions together. Here, an RNN is

trained using different datasets (MIMIC-III, Sutter Palo Alto Medical Foundation), to

learn several tasks (heart failure prediction and prediction of medical conditions to be

observed on the next doctor visit (Choi, Bahadori, Sun et al., 2016)). The visits are

initially represented by a binary vector that encodes the presence or absence of the

different conditions specified by the medical ontology.

In this work attention is used in a way different from the traditional one: instead of

defining a dynamic probability distribution over the hidden activations of an encoder

(RNN, CNN), attention is used to define a probability distribution over a specific

observed medical condition (related to an ICD code) and its ancestors in the ontology,

which in turn is used to compute an embedding vector for each possible observation.

Since each node of the DAG is assigned an embedding vector ei, the attention-generated

embedding vector can be understood as the expected value of the embedding. This

schema works as a regularizer that helps to generalize better when certain conditions

are not observed often in the training data, by leveraging the auxiliary information

that can be extracted from other, more often observed conditions, that belong to the

same ontology subgroup. The set of all embedding vectors form an embedding matrix

G which is used to compute a patient visit representation which is fed to a RNN.

The results in (Choi, Bahadori, Song et al., 2016) show that in simulated data-scarce

scenarios, GRAM regularization indeed helps the network generalize better, compared

to a set of strong baselines.

2.2.2 Mortality prediction inside the ICU

Che et al (Che, Kale, Li, Bahadori & Liu, 2015) proposed a feed-forward deep model

with sigmoidal activations to predict survival into the ICU, trained using data from
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the PhysioNet Challenge 2012 (Silva et al., 2012). This model was also trained for

disease diagnosis using data from a private clinical database. Their work included the

usage of graph Laplacian priors (Weinberger, Sha, Zhu & Saul, 2007) to regularize the

network and improve its performance in the absence of massive datasets, and to make

use of structured domain knowledge. Another interesting contribution of (Che et al.,

2015) was to develop an incremental training procedure to learn networks of increasing

complexity, as a way to tackle the inherent hardness of training deep architectures.

The authors formulated the prediction task as a multilabel classification problem,

where in the case of the PhysioNet Challenge dataset, 4 categories were considered:

mortality, length of stay (LOS) less than 3 days, whether the patient was recovering

from surgery, and whether the patient had a heart-related condition. The PhysioNet

Challenge 2012 dataset contains data from 8000 ICU units in the form of multivariate

time series. Each data point consists of approximately 48 hours of measurements

of over 30 physiological variables. Che et al assume every time series has the same

length and proceed to stack them, creating a matrix representation X for each patient.

Subsequently the matrix is flattened into a vector x and fed into the network, and its

corresponding set of labels is used for supervised training.

The conditional log-likelihood of the output yi given the input xi, parameterized by

Θ; according to the model proposed by (Che et al., 2015) for the K-class multilabel

classification task, can be stated as

logP (yi∣xi,Θ) =
K

∑
k=1

[yiklogσ(β
T
k hi) + (1 − yik)log(1 − σ(β

T
k hi))] (2.7)

where σ is the logistic sigmoid function.

The use of Laplacian priors is interesting as it allows to encode prior knowledge

expressed via graph representations. Given a certain matrix A that captures correlations

between data (i.e. similarity, adjacency etc.), the information it encodes can be leveraged



Chapter 2. Literature Review 52

Figure 2.6: Network structure and the role of Laplacian regularization.

through a regularization term of the form tr(βTLβ), where L is the Laplacian matrix,

defined as L = C −A and C is a diagonal matrix with its non-zero elements given

by C(k, k′) = ∑
K
k′=1

Ak,k′ . β is a matrix with K columns corresponding to parameter

vectors βk whose components weight the un-normalized network predictions for each

class. The regularization effect is more apparent considering that

tr(βTLβ) =
1

2

k

∑
k=1

k

∑
k′=1

Ak,k′ ∣∣βk − βk′ ∣∣
2
2 (2.8)

The regularization term forces the predictions for the different classes to be similar if

the correlation between them is high, according to the prior knowledge. For the disease

diagnosis prediction task (Che et al., 2015) use ICD-9 (international Classification of

Diseases, version 9) hierarchical diagnostic codes to account for similarity between

diseases, by constructing an adjacency matrix representing a graph with edges between
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diagnoses corresponding to the same ICD-9 category. For the PhysioNet data, a co-

occurrence matrix A ∈ RK∗K was used to model priors after the empirical distribution

of the classes. The elements of such matrix can be defined as

Ak,k′ =
1

N

N

∑
i=1

1yik∗yik′=1 (2.9)

where 1yik∗yik′ =1 is the indicator function, which outputs 1 when example i has

labels corresponding to classes k and k’. The authors compare the performance of a

deep feed-forward network with Laplacian Regularization, without regularization, and

an independent baseline classifier. Results show that the deep feed-forward network

model performed impressively for the surgery and cardiac labels even without Laplacian

regularization, while the Laplacian regularized deep network improves substantially

on both the baseline and the un-regularized network result for Mortality and LOS< 3

labels.

Kale et al (Kale et al., 2015) used Stacked Denoising Autoencoders (SDA) trained

on the PhysioNet Challenge 2012 dataset (Silva et al., 2012) and on a dataset extracted

from the EMR system of the Children’s Hospital LA PICU, to predict ICU mortality and

diagnose 17 disease groups (according to ICU-9 hierarchical codes), respectively; using

an input representation similar to (Che et al., 2015). This is followed by the use of causal

inference algorithms to quantify the predictive power of the features discovered by the

SDAs. A Denoising Autoencoder (P. Vincent, Larochelle, Bengio & Manzagol, 2008)

is a regular Autoencoder that uses multiplicative noise to corrupt the inputs, zeroing-out

some of its components randomly as a regularization mechanism. The authors used

a greedy layer-wise unsupervised training procedure to learn multiple representation

features that were later used as part of a Deep Belief Net, essentially in the same fashion

as (Lasko et al., 2013) for the PhysioNet data (but with an SVM on top); and used

supervised fine-tuning of the features, minimizing the negative log-likelihood of the
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whole (SDA layers plus a Logistic Regression classifier on top instead of an SVM) by

gradient descent and using backpropagation, for the PICU data.

AUROC AUPRC Precision@90% Recall
Raw Time Series (R) 0.786848 ± 0.028957 0.407419 ± 0.042878 0.221303 ± 0.017106
Hand-designed Features (H) 0.828652 ± 0.021065 0.467742 ± 0.047852 0.259324 ± 0.049400
NNet(R,3) 0.820760 ± 0.021021 0.444315 ± 0.032367 0.255792 ± 0.030306
H+R 0.822907 ± 0.018251 0.438160 ± 0.035444 0.255608 ± 0.031871
H+NNet(R,3) 0.845015 ± 0.016525 0.486791 ± 0.047373 0.291411 ± 0.033500

Table 2.10: Kale et al Performance on the PhysioNet Challenge 2012 dataset (Kale et
al., 2015).

The main contribution of (Kale et al., 2015) was to show that is was possible to

discover and interpret the causal direction between the input features and model output,

and to quantify the causal power of such features. For the former task, Kale et al use the

Pairwise LiNGAM algorithm (Hyvärinen & Smith, 2013) and for the latter they turn to

fit an auxiliary Logistic Regression classifier using the features selected as most causally

related on the first stage. Informally, they use the L2 norm of the coefficient vector for

the features considered, to measure their total causal power (Kale et al., 2015).

10-fold Cross Validation results on the PhysioNet dataset show the SDA features

achieving better results (Table 2.10) in terms of the Area Under the Receiver Operating

Characteristic curve and Area under the Precision-Recall curve, than those obtained by

using the raw data as input to the SVM. However, the features discovered by the SDA

don’t show any performance advantage over hand designed features that were included

as benchmarks into the experiment. Despite this, when the learned and hand designed

features are used in tandem, the SVM performance improves noticeably, which suggests

that both feature sets are somewhat complementary. Also, the authors report that the

causal power of the learned features was superior to the one of the hand designed

features, which further suggest their validity and value.

Lipton et al (Lipton et al., 2015) use LSTM RNNs (Hochreiter & Schmidhuber,

1997b) for multilabel classification of diagnoses inside Children’s Hospital Los Angeles
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PICU, in what according to the authors is the first work that uses LSTM RNNs in a

clinical prediction setting. In (Lipton et al., 2015), the inputs correspond to multivariate

time-series of physiological data extracted from PICU patients, and the prediction task

involves 128 non-mutually exclusive diagnostics. The multivariate time series involved

measurements of 13 variables sampled irregularly, which led to missing data when

resampling all series to the same (hourly) rate. To fill the gaps, forward and backward

filling was performed (imputing the missing observation with the closest measurement

in time). If a variable had no samples in a one-hour window, a normal value for it

(according to the medical literature) was imputed. When multiple measurements were

available in the same window, a mean measurement was taken. The LSTM was trained

using a convex combination of the mean negative log-likelihood over all labels at each

time-step (the authors call this, sequential target replication) and the mean negative log-

likelihood over all labels at the final time-step. A two-hidden layer LSTM trained with

L2 regularization and dropout outperformed two strong baselines (Logistic Regression,

Multi-layer Perceptron). Although the prediction targets were 128 possible diagnoses,

additional diagnoses were included as prediction targets in the training phase to achieve

an additional regularization effect.

Figure 2.7: Sequential target replication. A loss is computed in each time-step and
their average is pooled into a single loss via convex combination with the loss in the
final time-step.
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In follow-up work (Lipton et al., 2016), the authors treat the missing data problem

from an interesting point of view. As similarly shown in (Razavian & Sontag, 2015),

the patterns of testing in patients convey information in themselves. The authors

explore the benefits of imputation against simple zero-filling, and modelling directly the

missingness of data by concatenating a binary mask to the input at each time-step. The

results show that the LSTM benefits more from zero-filling and the direct modelling

of missingness than from imputed values, which is a surprising finding. Also, the

performance of the LSTM RNN was superior to the other baselines considered.

Figure 2.8: Example of the modelling of missing data with imputation and a binary
mask.

Che et al (Che, Purushotham, Cho et al., 2016) used a RNN based on a modi-

fied version of a Gated Recurrent Unit (GRU) to learn from multivariate time series

with missing values (GRU-D). The authors used data from the MIMIC-III database

(A. E. W. Johnson, Pollard et al., 2016) and the PhysioNet Challenge 2012 (Silva et

al., 2012), as well as synthetic data to show the performance of their model. The

authors note that in their experiments, the pattern of missingness is correlated with

ICU mortality and hypothesize that it could be beneficial to model the predictions as a

function of missing values. The authors also note that, one, the missing values for the

variables tend to be close to some default value if the last observed value occurred a

while ago, and two, the importance of a variable for the prediction diminishes, if its

values have been not recorded for a while. The authors attribute these phenomena to

homeostasis and temporal dependencies, however in our view it is possible that the

missingness pattern instead reflects the opinion of physicians and their approach to tests

and measurements: If the condition of a patient doesn’t warrant the measurement of
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certain variables, those variables will tend to be absent from record more often. Che et al

propose an adaptive (with trainable parameters) imputation schema that model missing

data as a function of the mean of the observations for the corresponding variable, with a

decay term that depends on the time since the last observed value. The equation for the

adaptive imputation schema is

xdt ←md
tx

d
t + (1 −md

t )γxdtx
d
t′ + (1 −md

t )(1 − γxdt )x̃
d (2.10)

where xdt is the value of the variable d in time t, x̃d is the mean value for d, md
t is a

binary mask that indicates if the observationxdt is missing or not (0 missing, 1 present),

and γ is the adaptive decay rate, which in turn is given by

γt = exp(−max(0,Wγδt + bγ)) (2.11)

Wγ and bγ are parameters jointly trained with the rest of the GRU parameters.

Moreover, a similar decay rate is introduced to the network recurrence, and the GRU

equations are altered to include the binary mask vectors for each time-step t. The

network was trained to predict (among other tasks) ICU mortality, together with several

baselines including RNNs with alternative imputation and masking schemas. The results

for the prediction of mortality on MIMIC-III and PhysioNet datasets are shown in Table

2.11.

Grnarova et al (Grnarova et al., 2016) proposed an interesting application of Natural

Language Processing (NLP) to mortality prediction in ICU patients. Their approach

consisted in the use of a ConvNet trained on free-text clinical notes extracted from the

MIMIC-III database (A. E. W. Johnson, Pollard et al., 2016). The ConvNet architecture

has two convolutional layers that operate on the word level, and on the sentence level

respectively. The input to the word level layer comes in the form of 50-dimensional

Word2Vec embeddings. Word2Vec (Mikolov, Chen et al., 2013) is a framework for
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Models MIMIC-III PhysioNet
Logistic Regression - forward filling 0.7589 ±0.015 0.7423 ±0.011
SVM - forward filling 0.7908 ±0.006 0.8131 ±0.018
Random Forest - forward filling 0.8293 ±0.004 0.8183 ±0.015
Logistic Regression - binary missingness mask 0.7715 ±0.015 0.7625 ±0.004
SVM - binary missingness mask 0.8146 ±0.008 0.8277 ±0.012
Random Forest - binary missingness 0.8294 ±0.007 0.8157 ±0.013
LSTM - mean imputation 0.8142 ±0.014 0.8025 ±0.013
GRU - mean imputation 0.8192 ±0.013 0.8195 ±0.004
GRU - forward filling 0.8252 ±0.011 0.8162 ±0.014
GRU - binary missingness mask 0.8380 ±0.008 0.8155 ±0.004
GRU-D 0.8527 ±0.003 0.8424 ±0.012

Table 2.11: Results (AUC score) for ICU mortality prediction. Best results are in bold.
Source (Che, Purushotham, Cho et al., 2016).

efficient generation of vector spaces that allows to create vector representations for large

text corpora. These embeddings are used as input for neural networks in many NLP

applications (Lau & Baldwin, 2016). Typically, in such applications, text sentences

are represented by matrices in which each column corresponds to a word vector. In

(Grnarova et al., 2016) this representation si is used as input to the first layer, which

use 50 kernels of dimension 50 × 5, 50 kernels of dimension 50 × 4, and 50 kernels of

dimension 50×3 (the dimensions of each kernel can be read as ⟨ embedding dimensions

⟩ × ⟨ number of words ⟩). The convolution operation generates receptive fields size

1 × 5, 1 × 4, and 1 × 3; on which a non-linearity is applied element-wise. Max-Pooling

is then performed with neighborhood size equal to the receptive field size. After these

operations, a 150-dimensional sentence representation vector xi is created.

The second layer receives the sentence representations, which concatenated consti-

tute a patient representation. Additionally, each sentence representation is augmented

with a 10-dimensional vector zk that encodes the type of note from which the sentence

came. The notes are grouped in categories, e.g. nursing and social work (Grnarova

et al., 2016). This is done in order to give additional context to the classifier to judge

the relative importance of sentences. The second convolutional layer use 50 kernels
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with size 1 × 3, which are convolved over the concatenated sentence representations to

produce 50 feature maps. A non-linearity is applied element-wise on the feature maps,

followed by Max-Pooling as in the first layer. As a result, a 50-dimensional patient

representation is created. The network architecture is completed by a fully connected

layer and a Softmax classifier on top.

Task LDA doc2vec ConvNet
Hospital 0.930 0.930 0.963
30-day 0.800 0.831 0.858
1-year 0.790 0.824 0.853

Table 2.12: ConvNet performance on the MIMIC-III database. Best results are in bold.
Source (Grnarova et al., 2016).

One interesting feature of the architecture in (Grnarova et al., 2016), is that each

sentence feature is connected directly to a Softmax for mortality prediction, in what the

authors call Target Replication. The losses of these N Softmax classifiers are included

on the total loss as an additional term. This is found to improve substantially the

performance of the whole network (AUC goes from 0.682 to 0.858), as it improves

gradient flow and regularizes the model by forcing it to learn sentence features that are

predictive in themselves. In addition, the inclusion of individual sentences into the loss

directly, allows for quantifying their individual contribution to the prediction, giving

some interpretability to the model. The authors report results of several experiments,

in which they attempted to predict mortality during the ICU stay, within 30 days after

discharge, and within a year after discharge. Performance was compared to several

popular baselines, and results showed that the ConvNet surpassed the baseline models

in terms of the AUROC (Table 2.12).

In (Suresh et al., 2017), Suresh et al use deep networks that leverage demographic

information, physiological time series data and free text clinical notes extracted from

MIMIC-III to predict the onset and weaning of medical interventions (invasive ventila-

tion, non-invasive ventilation, vasopressors, colloid boluses, and crystalloid boluses)
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inside the ICU. Each patient is represented (similarly to (Esteban et al., 2016)) as a

matrix that concatenates the physiological time series data, the static demographic info,

and a Latent Dirichlet Allocation (LDA) (Blei, Ng & Jordan, 2003) topic distribution of

the clinical notes; which is used as input for a deep learning model. The models use a

6-hour data window to predict the onset or weaning of a medical intervention inside a

window of 4 hours, 6-hours into the future.

Figure 2.9: Deep models used for medical intervention prediction in (Suresh et al.,
2017).

The models considered in this work are a ConvNet similar to the one presented in

(Razavian et al., 2016), and a deep Long Short-Term Memory (LSTM) RNN (Hochreiter

& Schmidhuber, 1997b). The best performer was a LSTM deep RNN that used physiolo-

gical words (i.e. the time series were pre-processed and converted to z-scores). Also,

the authors propose the use of occlusion-based sensitivity analysis (i.e. setting inputs to

zero) (Zeiler & Fergus, 2014) to gain interpretability into the predictions of the LSTM,

and perform gradient ascent to find inputs that maximize the probability of the class

labels (Simonyan, Vedaldi & Zisserman, 2013) in the case of the ConvNets. In this way,

they are able to introspect the models and derive interesting insights.
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2.2.3 Interpretable mortality prediction inside the ICU

To the best of our knowledge at the time of this writing, the only work that explicitly

tried to tackle the issue of offering interpretable mortality prediction in the ICU setting

is (Che, Purushotham, Khemani & Liu, 2016). Che et al (Che, Purushotham, Khemani

& Liu, 2016) propose the use of deep models as Deep feed-forward Networks (DNN)

(Rumelhart et al., 1986) and the Gated Recurrent Unit (GRU) (Chung et al., 2014)

to predict ICU outcomes (two different tasks, prediction of mortality and prediction

of ventilator-free days >14). They used data from the Pediatric ICU dataset for acute

lung injury (Khemani, Conti, Alonzo, Bart & Newth, 2009) to train and validate

the performance of the aforementioned models. Data included static variables as

demographic info and diagnosis annotations, and a set of 21 temporal variables, recorded

daily. Results showed the deep models over-performing several baseline classifiers as

Support Vector Machines (SVM), Logistic Regression (LR), Decision Trees (DT) and

Gradient Boosted Trees (GBT) (Table 2.13). The DNN + GRU architecture proposed is

similar to the one found in (Esteban et al., 2016).

Model Mortality Ventilator Free Days
AUROC AUPRC AUROC AUPRC

SVM 0.6437 ± 0.024 0.3408 ± 0.034 0.7251 ± 0.023 0.7901 ± 0.019
LR 0.6915 ± 0.027 0.3736 ± 0.038 0.7592 ± 0.021 0.8142 ± 0.019
DT 0.6024 ± 0.013 0.4369 ± 0.016 0.5794 ± 0.022 0.7570 ± 0.012
GBT 0.7196 ± 0.023 0.4171 ± 0.040 0.7528 ± 0.017 0.8037 ± 0.018
DNN 0.7266 ± 0.089 0.4117 ± 0.122 0.7752 ± 0.054 0.8341 ± 0.042
GRU 0.7666 ± 0.063 0.4587 ± 0.104 0.7723 ± 0.053 0.8131 ± 0.058
DNN + GRU 0.7813 ± 0.028 0.4874 ± 0.051 0.7896 ± 0.019 0.8397 ± 0.018
Best Mimic Model 0.7898 ± 0.030 0.4766 ± 0.050 0.7889 ± 0.018 0.8324 ± 0.016

Table 2.13: 5-Fold Cross Validation results reported in (Che, Purushotham, Khemani &
Liu, 2016). Best results for each task are in bold.

Regarding interpretability, the main point of (Che, Purushotham, Khemani & Liu,

2016) is the use of mimic learning to distill the knowledge gained by the deep models

into a shallow, explainable model. Mimic learning (Ba & Caruana, 2014) is a learning
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technique in which a master model (a deep neural network) is trained until convergence,

and then its “knowledge” is transferred to a shallow net (the student model), by training

the student model on the same data set as the master, but replacing the ground truth

labels with the labels predicted by the master model. In this way, it is possible to achieve

performances that would have been out of reach for the student network, if it were to

be trained on the original data. Instead of using a shallow multilayer perceptron as the

student, Che et al chose to use Gradient Boosted Trees (GBT) (Friedman, 2001) in what

they call Interpretable Mimic Learning (Che, Purushotham, Khemani & Liu, 2016).

GBT is a model part of the Gradient Boosting Machines framework (Friedman, 2001),

in which an ensemble of (weak) learners is built in a greedy fashion, to approximate a

complex classification/regression hyper-surface. At each stage a new learner is trained

to fit the negative gradient of the loss and then added to the ensemble. It can be shown

that this negative gradient corresponds to the residual between the current ensemble

prediction and the ground truth. At inference time, the predictions of the members of

the ensemble are summed and a final prediction is generated. The model at stage M can

be expressed as

FM(X) =
M

∑
i=1

υγihi(X) (2.12)

where υ corresponds to a shrinkage coefficient (regularizer) that is multiplied to

the current model in each stage before adding a new ensemble member hi(X). γi is

a hyper-parameter found by line search to minimize the ensemble loss. In the case of

GBT, the individual members of the ensemble are Decision Trees. Results show that

the distilled GBT performs better than a GBT trained on the ground truth directly. This

suggests that at least some of the knowledge gained by the original model was indeed

transferred to the shallow one.

In order to interpret the decisions of the student model, a number of approaches
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are considered, including Feature Influence (Friedman, 2001), and comparing the top

decision rules used by the most prominent tree in the ensemble.

2.2.4 Recent relevant developments

The results by Grnarova et al have inspired further research into the use of medical

notes for mortality prediction using deep learning. For example, Jo et al (Combining

LSTM and Latent Topic Modeling for Mortality PredictionJo, Lee & Palaskar, 2017)

used a hybrid Latent Dirichlet Allocation (LDA) + Long Short Term Memory (LSTM)

model for ICU mortality prediction trained on medical notes from MIMIC-III, in which

the LSTM used the topic LDA features as input. The authors divided patients stays

into 12-hour segments and grouped all clinical notes in each of them, to attempt the

prediction of mortality at the end of each segment. Multiple recurrent networks were

trained and compared to an LDA baseline, obtaining interesting results. Suchil et al

(Sushil, Šuster, Luyckx & Daelemans, 2018) used stacked denoising autoencoders to

create patient representations out of medical free-text notes, to be used for downstream

tasks as mortality prediction, in a way similar to (Miotto et al., 2016). The evaluation

framework and reported results are similar to those by Grnarova et al. Si et al (Si

& Roberts, 2019) proposed the use of a ConvNet for multitask prediction (mortality,

length of stay), using all available patient medical notes up until time of discharge. The

architecture presented in this work is a so-called multi-level (word level and sentence

level) convolutional architecture, reminiscent of the one used by Grnarova et al for a

similar purpose. Finally, the regularizing effects of multitask learning are studied and it

was found that training the network to jointly perform several tasks (in-hospital, 30-day,

and 1-year mortality prediction) using a shared patient representation provides some

performance gains. Jin et al (Jin et al., 2018) proposed a multimodal neural network

architecture and a Named Entity Recognition (NER) text pre-processing pipeline to
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predict in-hospital ICU mortality using all available types of free-text notes and a set

of vital signs and lab results from the first 48 hours of patient stay, extracted from

MIMIC-III.

On the deep learning-based mortality prediction using physiological time series

front, Ge et al (Ge et al., 2018) propose the use of multiple RNNs (LSTM) to encode

physiological time series into vector representations to be fed to a logistic regression

classifier, together with some static features, for the prediction of mortality. The authors

provide a way to interpret the model by analyzing the weights of the logistic classifier,

finding clinically valid correlations with predictors such as Do Not Resuscitate (DNR)

status, heart failure, and the use of certain medications, among others.

Finally, Purushotham et al (Purushotham et al., 2018) carried out a comprehensive

benchmark of several machine learning and deep learning models trained on MIMIC-III

for various tasks, with results showing deep models consistently outperforming the

rest. A hybrid model combining a recurrent architecture to handle temporal data, and a

feedforward architecture for static data obtained the best result, slightly outperforming

the rest (ROC AUC 0.8783 ± 0.0037) at predicting mortality inside the ICU.

2.3 Conclusion

We have reviewed the relevant literature to provide the context in which our work

is framed. The use of Deep Learning in medicine for clinical event prediction is

a nascent field, which has attracted some interest in the last years. Although there

have been interesting and remarkable results, several challenges as providing model

interpretability and adequate performance in larger, diverse populations remain. We

expect to see continued research in these directions in the short term.
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Interpretable Deep Learning

architectures for mortality prediction

3.1 Introduction

In this chapter we will introduce the characteristics of the dataset used, and the inclusion

criteria for this study. Next we will review the theoretical basis behind our classification

models and describe their architecture. Finally we will board the issue of feature

importance attribution from the perspective of game theory and briefly describe the

DeepLIFT algorithm.

3.2 Participants

We used the Medical Information Mart for Intensive Care III (MIMIC-III v1.4) to train

our deep models. MIMIC III is a database comprised of more than a decade worth of

ICU patient records, including vital signs, laboratory reports, radiology reports, and

therapeutic data, from patients admitted to the Beth Israel Deaconess Medical Centre

in Boston, Massachusetts, freely available for research (A. E. W. Johnson, Pollard et

65



Chapter 3. Interpretable Deep Learning architectures for mortality prediction 66

al., 2016). The median age of adult patients (age > 16 years old) is 65.8 years and the

median length of stay (LOS) in the ICU is 2.1 days (Q1-Q3: 1.2-4.6) (A. E. W. Johnson,

Pollard et al., 2016).

To establish a cohort and build our dataset, several entry criteria were defined: we

only considered stays longer than 48 hours, only patients older than 16 years old at the

time of admission were included, and in case of multiple admissions to the ICU, only

the first one was considered (this is to preserve the independence assumption of the

dataset instances). Application of these entry criteria led to a dataset containing 22.413

distinct patients, which correspond to 58.06 % of the total number of patients in the

database. Median Length of Stay (LoS) was 3.9 days (Q1-Q3: 2.7-7.1). Table 3.1 and

Figure 3.3 show some dataset statistics. Figure 3.1 shows a plot of our LoS distribution.

Figure 3.1: Kernel Density Estimation (KDE)-generated LoS distribution.
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Feature n Mean Std. Min Q1 Q2 Q3 Max Percent of total pop.
Temporal
Bicarbonate 99668 23.296 4.733 5.000 20.000 23.000 26.000 52.000 N/A
Bilirrubin 24765 3.098 6.170 0.100 0.500 1.000 2.900 82.000 N/A
BUN 101133 27.497 22.493 1.000 13.000 20.000 34.000 240.000 N/A
Diastolic BP 1752075 59.648 14.090 1.000 50.000 58.000 68.000 298.000 N/A
FiO2 294740 50.100 20.030 0.400 40.000 50.000 50.000 100.000 N/A
GCSEyes 442646 3.140 1.142 1.000 3.000 4.000 4.000 4.000 N/A
GCSMotor 440486 5.256 1.440 1.000 5.000 6.000 6.000 6.000 N/A
GCSVerbal 441269 3.123 1.902 1.000 1.000 4.000 5.000 5.000 N/A
Heart rate 1755492 87.913 18.951 0.350 75.000 86.000 99.000 280.000 N/A
PO2 160600 149.763 95.724 14.000 87.000 119.000 177.000 763.000 N/A
Potassium 176528 4.192 0.700 0.600 3.700 4.100 4.500 26.500 N/A
Sodium 125440 138.294 5.350 1.210 135.000 138.000 141.000 183.000 N/A
Systolic BP 1755083 118.518 22.973 0.150 102.000 116.000 133.000 323.000 N/A
Temperature 563035 37.007 0.8610 15.000 36.444 37.000 37.600 42.222 N/A
Urine output 947826 113.900 162.357 -4000.000 37.000 70.000 140.000 4800.000 N/A
WBC 94209 12.743 11.377 0.100 8.000 11.200 15.200 528.000 N/A
Static
Age 22413 63.828 15.576 16.016 53.998 67.1016 78.533 80.000 N/A
Elective admission 3618 N/A N/A N/A N/A N/A N/A N/A 14.134%
Surgical admission 8030 N/A N/A N/A N/A N/A N/A N/A 35.827%
AIDS 113 N/A N/A N/A N/A N/A N/A N/A 0.504%
Metastatic cancer 688 N/A N/A N/A N/A N/A N/A N/A 3.069%
Lymphoma 317 N/A N/A N/A N/A N/A N/A N/A 1.414%
Mortality 2185 N/A N/A N/A N/A N/A N/A N/A 9.748%

Table 3.1: Some dataset statistics. FiO2 and PO2 stand for fraction of inspired oxygen
and oxygen pressure in blood, respectively. BUN stands for Blood Urea Level, and
WBC stands for White cell Blood Count.

3.3 Physiological and demographic features

For each patient, we extracted measurements of 22 different concepts/variables during

the first 48 hours of each patient stay. These concepts roughly match the concepts used

by the Simplified Acute Physiology Score II (SAPS-II), used to predict ICU mortality

(Gall et al., 1993). The differences between SAPS-II concepts and our input variable

set are summarized next:

• Type of admission. SAPS-II considers a concept/variable called type of admission,

which has three possible values, i.e. “scheduled surgical", “unscheduled surgical",

and “medical"; and as such is considered a categorial variable. In order for our

models to work correctly we de-composed type of admission into two indicator

variables, surgical admission and elective admission, whose combination models

the original concept. According to SAPS-II original paper, surgeries are con-

sidered scheduled when patients are added to the operating room schedule at
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Figure 3.2: KDE-generated age distribution, grouped by mortality. The large bump
close to 80 years of age reflects our pre-processing.

least 24 hours in advance, while those surgeries scheduled within 24 hours of the

operation are considered unscheduled. Medical admissions refer to patients with

no surgery performed on them within 1 week of admission to the ICU. In MIMIC-

III for each admission a flag in the ADMISSIONS table (ADMISSION_TYPE)

indicates whether hospital admissions were planned in advance or not, and we

use this flag in conjunction with the type of service the patient was admitted to

(table SERVICES).

• Chronic disease. Similarly, SAPS-II includes the concept of chronic disease,

which is another categorical variable that takes the values of “AIDS", “metastatic

cancer", and “hematological malignancy". Again, we decomposed it into three

indicator variables for our models to be able to use this concept correctly. In

MIMIC-III the respective ICD-9 codes are available in the DIAGNOSES_ICD
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Figure 3.3: Distribution of some static variables, grouped by patient outcome (0
represents survival, 1 represents death).

table.

• Glasgow Coma Scale. The Glasgow Coma Scale (GCS) is comprised of three

components, i.e. eyes, motor and verbal. In SAPS-II all components are aggreg-

ated into a single number. We opted for using the three components of the scale

as individual inputs.

• PO2/FiO2. SAPS-II uses the PO2/FiO2 quotient as input if the patient is either

ventilated (VENT) or receiving Continuous Positive Airway Pressure (CPAP).



Chapter 3. Interpretable Deep Learning architectures for mortality prediction 70

We decided to include PO2 and FiO2 as separate input variables, with no regard

to whether the patient is under VENT or CPAP.

• Diastolic blood pressure We added the diastolic blood pressure variable to our

input variable set in order to have a dataset more comparable to some reference

works in the relevant literature (Purushotham et al., 2018).

Table 3.4 shows the correspondence between the SAPS-II input variable set and the

variables considered by our model.

In the case of temporal data, all measurements were extracted and in case of multiple

measurement in the same hour, values were averaged (except urine output which was

summed). Sampling distribution statistics for are shown in Table 3.2 and Figure 3.4.

measurement interval
n Mean Std. Min Q1 Q2 Q3 Max

Feature
Bicarbonate 55273 12.551 7.424 0.017 6.450 10.800 18.600 45.500
Bilirubin 8998 14.154 8.842 0.033 6.600 11.600 22.667 47.450
BUN 56317 12.441 7.312 0.017 6.500 10.767 17.633 44.917
Diastolic BP 1254101 0.810 0.579 0.017 0.500 1.000 1.000 41.833
FiO2 217055 2.203 2.286 0.017 0.567 2.000 3.667 46.750
Glasgow coma scale (eyes) 322848 2.986 1.853 0.017 1.500 3.000 4.000 41.000
Glasgow coma scale (motor) 321212 2.996 1.866 0.017 1.500 3.000 4.000 41.000
Glasgow coma scale (verbal) 321810 2.992 1.872 0.017 1.500 3.000 4.000 41.000
Heart rate 1335396 0.765 0.524 0.017 0.333 1.000 1.000 37.500
PO2 104726 4.124 4.621 0.017 1.350 2.633 5.133 47.317
Potassium 111342 6.918 6.325 0.017 2.200 5.167 9.517 45.600
Sodium 74106 9.859 7.567 0.017 4.033 7.883 13.567 45.600
Systolic BP 1254613 0.810 0.579 0.017 0.500 1.000 1.000 41.833
Temperature 403546 2.349 1.972 0.017 1.000 2.000 4.000 46.850
Urine output 711945 1.334 1.029 0.017 1.000 1.000 1.000 44.367
White cell blood count 50268 13.239 8.245 0.017 6.100 11.367 22.500 46.317

Table 3.2: Distribution of (inter) sampling times in hours for temporal features. Zero
valued intervals corresponding to duplicate measurements have been omitted. FiO2 and
PO2 stand for fraction of inspired oxygen and oxygen pressure in blood, respectively.

To resolve inconsistencies and harmonize sometimes seemingly disparate concepts

(i.e. temperature is reported both in Celsius and Fahrenheit, different codes for the
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Figure 3.4: Boxplot of (inter) sampling times in hours for temporal features. Zero
valued intervals corresponding to duplicate measurements have been omitted. GCSEyes,
GCSMotor, and GCSVerbal stand for Glasgow coma scale (eyes), Glasgow coma scale
(motor), and Glasgow coma scale (verbal) respectively. WBC stands for white cell
blood count. FiO2 and PO2 stand for fraction of inspired oxygen and oxygen pressure
in blood, respectively.

same measurement are used, same or related concepts are present in different tables,

etc), data was pre-processed, measurements merged and renamed, and un-physiological

values were discarded (See Table 3.3 for details of discarded values). For privacy

reasons, MIMIC-III shifts ages greater than 89 years (i.e. patients appear to be 300

years old). To address this, we decided to use the SAPS-II criteria for patient age which

assigns equal weight to all ages over 80 years and clipped all ages greater than 80

years to 80 years (see Figure 3.2). For reproducibility, all of our code is available at

https://github.com/williamcaicedo/ISeeU.

It is understood that there is a trade-off between having more data (and more data

https://github.com/williamcaicedo/ISeeU
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Feature Number of discarded values Exclusion criteria
Blood potassium (mEq/L) 1 value < 0 OR value > 30
Blood sodium (mEq/L) 0 value < 0 OR value > 200
Diastolic blood pressure (mm Hg) 74 value < 0 OR value ≥ 300
FiO2 (%) 869 value < 21 OR value > 100
Glasgow coma scale (eyes) 77616 value < 1 OR value > 6
Glasgow coma scale (motor) 35380 value < 1 OR value > 6
Glasgow coma scale (verbal) 188591 value < 1 OR value > 5
Heart rate (bpm) 2 value < 0 OR value ≥ 300
PO2 (mm Hg) 1 value < 0 OR value > 800
Systolic blood pressure (mm Hg) 6 value < 0 OR value ≥ 400
Temperature (C °) 512 value < 10 OR value > 50
Urine output (mL) 31 value > 5000
White cell blood count (k/uL) 0 value < 0 OR value ≥ 1000

Table 3.3: Discarded values during preprocessing. FiO2 and PO2 stand for fraction of
inspired oxygen and oxygen pressure in blood, respectively.

Feature SAPS-II mapped variable MIMIC-III table
Age Age ICUSTAYS, PATIENTS
Presence of AIDS Chronic disease DIAGNOSES_ICD
Blood bicarbonate Blood bicarbonate LABEVENTS
Blood bilirubin Blood bilirubin LABEVENTS
Blood Urea Nitrogen (BUN) BUN LABEVENTS
Diastolic blood pressure N/A CHARTEVENTS
Systolic blood pressure Systolic blood pressure CHARTEVENTS
Temperature Temperature ≥ 39 C° CHARTEVENTS
Admission to the ICU after surgery Type of admission SERVICES
Elective admission to the ICU Type of admission ADMISSIONS
FiO2 PO2/FiO2 CHARTEVENTS, LABEVENTS
Glasgow coma scale (eyes) GCS CHARTEVENTS
Glasgow coma scale (motor) GCS CHARTEVENTS
Glasgow coma scale (verbal) GCS CHARTEVENTS
Heart rate Heart rate CHARTEVENTS
Presence of lymphoma Chronic disease DIAGNOSES_ICD
Presence of metastatic cancer Chronic disease DIAGNOSES_ICD
PO2 PO2/FiO2 LABEVENTS
Blood potassium Blood potassium LABEVENTS
Blood sodium Blood sodium LABEVENTS
Urine output Urine output OUTPUTEVENTS
White cell blood count White cell count LABEVENTS

Table 3.4: Features extracted from MIMIC-III for each patient, and their mappings to
SAPS-II. FiO2 and PO2 stand for fraction of inspired oxygen and oxygen pressure in
blood, respectively.

could lead to more accurate predictions) and making earlier and possibly more useful

predictions. However, since the advent of the PhysioNet Challenge (Silva et al., 2012)
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in which data from MIMIC-II was used to predict mortality, the use of a 48 hour

patient representation has been a popular choice and different works in the relevant

literature have shown its adequacy (Calvert et al., 2016; Purushotham et al., 2018; Che,

Purushotham, Cho et al., 2016).

Missing data Due to the nature of patient monitoring, different physiological vari-

ables and features are sampled at different rates. This lead to large number of missing

observations, as not all measurements were available in an hourly fashion. Given this

situation, simple data imputation techniques were applied to obtain a 22x48 dense

observation matrix for each patient (static features like age and admission where rep-

licated). Concretely, except for Glasgow Comma Scale (GCS) and urine observations,

forward/backward filling imputation was attempted. Missing GCS and FiO2 values

were imputed to their normal values. On the other hand, when multiple observations

were present in the same hour, values were averaged. In cases where a patient did not

have a single observation recorded, we imputed the whole physiological time series

using mean values. Our data imputation procedure is summarized in table 3.5.

Feature % of missing values Imputation procedure
Bicarbonate 92.79% Forward/Backward filling, mean value imputation
Bilirubin 98.23% Forward/Backward filling, mean value imputation
BUN 92.69% Forward/Backward filling, mean value imputation
Diastolic BP 10.07% Forward/Backward filling, mean value imputation
FiO2 83.04% Forward and backward filling imputation, normal value (0.2)

imputation
GCSEyes 68.30% Normal value (4) was imputed
GCSMotor 68.45% Normal value (6) was imputed
GCSVerbal 68.39% Normal value (5) was imputed
Heart rate 7.53% Forward/Backward filling, mean value imputation
PO2 89.35% Forward filling, mean value imputation
Potassium 88.21% Forward/Backward filling, mean value imputation
Sodium 91.27% Forward/Backward filling, mean value imputation
Systolic BP 10.05% Forward/Backward filling, mean value imputation
Temperature 66.15% Forward/Backward filling, mean value imputation
Urine output 33.15% Zero value imputation
WBC 93.27% Forward/Backward filling, mean value imputation

Table 3.5: Imputation procedure summary.
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3.4 Free-text features

MIMIC-III contains free-text medical notes as part of patient data, comprising nursing

reports, radiology reports, medical evolution reports and physician observations, among

others; which contain a large amount of data that could be used for predictive purposes.

We identified all patients in our cohort with at least one medical note associated to their

stay leading to a sub-sample of n = 21415 patients. Table 3.6 shows the different types

of medical notes included in our dataset together with their respective counts.

Note Type Count Percentage
Nursing/other 83147 36.78%
Radiology 61096 27.02%
Nursing 43790 19.37%
Physician 27789 12.30%
Respiratory 5728 2.53%
General 1775 0.78%
Nutrition 1549 0.68%
Rehab Services 521 0.23%
Social Work 501 0.22%
Case Management 134 0.060%
Consult 40 0.018%
Pharmacy 12 0.0053%
Overall 226082 100%

Table 3.6: Distribution of free-text medical notes in our dataset.

The most prevalent note types are nursing/other, radiology, and nursing. Combined,

all nursing-related note types represent 56.14% of the total (126937 notes). Given their

prevalence and our assumption that nursing notes are more readily available than other

note types, for the remainder of this study we will restrict ourselves to nursing-related

notes, reducing our patient sub-sample to n = 16970, with 1659 recorded deaths (9.78%)

and 15311 patients who survived (90.22%). The mean note length is 1252.59 words,

with a standard deviation of 1087.48. Table 3.7 and figure 3.5 show details about the dis-

tribution of notes’ lengths. The median age of patients with at least one nursing-related
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note is 67.2 years, and the median length of stay is 3.96 days (Q1-Q3:2.8-7.16). Figures

3.6 and 3.7 show the distribution of age and length of stay in our note sub-sample.

Statistic Positive class (survival) Negative class (death) Overall
Count 15311 1659 16970
Mean 1233.3 1430.6 1252.6
Std 1083 1112.4 1087.5
Min 34 144 34
Q1 711.0 890 724
Q2 934 1135 952
Q3 1286 1492 1310
Max 33771 9756 33771

Table 3.7: Length distribution of nursing notes.

Figure 3.5: Estimated nursing notes length distribution.
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Figure 3.6: Histogram of age distribution by outcome. As a result of privacy preserving
measures, MIMIC-III shifts ages greater than 89 years (i.e. patients appear to be 300
years old).

Figure 3.7: Histogram of length of stay distribution by outcome.
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3.5 Deep Learning models

Our prediction models are Deep Convolutional Neural Networks (ConvNets). ConvNets

are Multi-Layer Neural Networks that use a particular architecture with sparse con-

nections and parameter sharing (LeCun et al., 1998). They are specialized in handling

grid-like data as temporal series (1-D grids), images (2-D grids), video (3-D), among

others. Their name references the convolution, a linear operator ConvNets use in-lieu

of traditional matrix multiplication in at least one layer.

The convolution takes two functions as arguments, performs the product of the two

functions as one "slides” over the other and then integrate over the resulting products.

As a motivating example, let’s consider the problem of smoothing out a noisy signal

x coming from some sort of sensor. To do so, it would be convenient to average the

signal intensity over contiguous time steps and try to recover the original readings, by

multiplying the original signal at each time step by a Gaussian function w whose area

integrates to one and its output is zero for negative arguments (i.e. a valid probability

function) and then averaging the result. This can be expressed as

s(t) = ∫
ts

t0
x(a)w(t − a)da (3.1)

In the above, the Gaussian function is first reversed w(−a) and then shifted by

an amount t. The integration over products returns a locally smoothed version s of

the original x, as the Gaussian transforms the values from the original function into

linear combinations with terms weighted according to its spread. This operation we

just performed corresponds to the convolution s(t) = (x ∗w)(t) (given that we make

t0 = − inf and ts = inf).

If we restrict ourselves to functions only defined for a ∈ Z, the discrete version of

the convolution would arise. In this setting, ConvNets can be thought of performing a

discrete convolution operation between the input (often a two-dimensional image) and
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a set of trainable "kernels” (sliding functions) at each layer. The discrete convolution 1

operation, in the context of Deep Learning and computer vision is defined as

s(i, j) = (x ∗w)(i, j) = ∑
m,n

I(m,n)K(i −m,j − n) (3.2)

where I is a two-dimensional image and K is a two-dimensional kernel. The kernel

acts as a local feature detector that is displaced all over the image and its value is only

non-zero in a small region (sparsity). Each convolution between the input and a kernel

produces a spatial receptive field, also called a feature map, in which each kernel-image

multiplication can be thought of as pattern matching, producing an output that is a

function of the similarity between certain image region and the kernel itself. After

the convolution operation, the output of the receptive field is ran through a non-linear

activation function which allows the network to work with transforms of the input space

and construct non-linear features. The feature map can be thought as a 2-D tensor

(matrix) of neuron outputs, where the weights of each neuron are the same but have

been shifted spatially (hence the parameter sharing), and that are not connected to

every single pixel of the input (which also can be seen as having the corresponding

weight set to zero). ConvNets were one the first models to use Gradient Descent

with Backpropagation (Rumelhart et al., 1986) with success (Goodfellow et al., 2016).

Convolution based filters are extensively used to detect features as shapes and edges in

computer vision (Shapiro, 2001). However, in traditional computer vision fixed kernels

are used to detect specific features, in contrast to ConvNets where kernels are learned

directly from the data.

Convolutional layers offer advantages over feed-forward, fully connected layers

used in multilayer perceptrons. One of these advantages is translational equivariance,

1In software implementations it is the discrete cross-correlation operation the one that is implemented,
since the sliding function is not reversed. In practical terms reversing it does not offer any noticeable
performance advantage.
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which refers to the ability of the convolutional layer to shift its response in a way that is

proportional to the shifts in its input. For instance, if an image contains a face and the

position of the face changes, the output of a convolutional layer will change spatially in

the same way.

In ConvNets, the convolution plus non-linear activation operation is often followed

by another transformation called pooling. Pooling is a subsampling operation that

replaces the output of a convolutional layer for some spatial statistic like the maximum

(max-pooling) or average (average-pooling). The introduction of pooling helps to keep

the total number of network parameters in check by reducing the dimensionality of the

layer output, and further helps to attain invariance with respect to some transformations

of the input (Goodfellow et al., 2016). The architecture of ConvNets can be seen as able

to encode an infinitely strong prior that biases the model for local information (use of

convolution with sparse kernels) and to be invariant with respect to small translations

(pooling). Such priors are not easily derived by standard penalized maximum likelihood

or Bayesian inference (Goodfellow et al., 2016).

3.6 Shapley Values and input relevance attribution

The Shapley Value (Shapley, 1953) is a concept from game theory that formalizes the

individual contribution of a player part of a coalition to the attainment of a reward in

a game (Strumbelj, Kononenko & Wrobel, 2010). Shapley Values are the expectation

of such contribution over the set of all possible permutations and values of the player

coalition, taking into consideration all possible interactions between players. Formally,

for a coalitional form game ⟨N,v⟩, where N is a finite set of players and v ∶ 2N → R

describes the worth of a player coalition, we have that
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Shi(v) = ∑
S⊆N∖{i},s=∣S∣

(n − s − 1)!s!

n!
(v(S ∪ {i}) − v(S)) (3.3)

where Shi is the individual contribution of player i to the total worth v(N), i.e. its

Shapley value (Shapley, 1953). The summation runs over all possible subsets of players

S ⊆ N that don’t include player i, and each term involves the difference between the

reward when player i is present and absent, v(S ∪ {i}) − v(S).

This particular definition of player contributions satisfies certain assumptions of

fairness in the distribution of the game reward among its members, which are represented

by the following set of axioms (Shapley, 1953):

Axiom 1 The sum of individual player contributions (represented hereafter by φi) must

be equal to the total worth of the coalition, i.e. ∑i∈N φi(v) = v(N). This is the

efficiency axiom.

Axiom 2 Given two distinct players i and j, if v(S ∪ {i}) = v(S ∪ {j}) for every

subset of players S so that S ⊆ N , then φi(v) = φj(v). This is the symmetry

axiom.

Axiom 3 If v(S ∪ {i}) = v(S) for every subset of players S so that S ⊆ N and i ∉ S,

then φi(v) = 0. This is the dummy axiom.

Axiom 4 For any pair of games v,w it must hold that φi(v+w) = φi(v)+φi(w), given

that (v+w)(S) = v(S)+w(S) for every coalition S. This is the additivity axiom.

Equation 3.3 not only considers the presence of a particular player, but also the

position it occupies in the coalition. This is extremely well-suited to the context of our

study, in which input values are time/order sensitive.

As an illustrative example, consider the case of a coalition comprised of at most,

by two players, p1 and p2. If only p1 participates then the worth of the coalition is
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v({p1}) = 7, whereas if only p2 participates, the worth of the coalition would be

v({p2}) = 10; and finally if both players are present v({p1, p2}) = 21 (notice the

non-linear effects on the coalition worth mediated by the interaction of the players).

Also consider that it is possible for the players to arrive to the coalition in different

order, which affects its relative contribution to the total worth of the coalition: if p1

comes first and then p2, the contribution of p1 would be the aforementioned 7, and the

contribution of p2 would be v({p1, p2}) − v({p1}) = 21 − 7 = 14; while on the other

hand, if p2 arrives first its contribution would be 10 while the contribution of p1 would

be v({p1, p2}) − v({p1}) = 21 − 10 = 11. Furthermore, assume that both orderings have

the same probability of occurrence.

Given this configuration, we have that the expected contribution of p1 to the coalition

is 1
27 + 1

211 = 9, and the expected contribution of p2 is 1
214 + 1

210 = 12. Table 3.8

summarizes the results of the calculations.

Probability Ordering Player 1 contribution Player 2 contribution
0.5 Player 1, Player 2 7 14
0.5 Player 2, Player 1 11 10

Expected contribution (Shapley Value) 9 12

Table 3.8: Shapley values for example coalition players.

Strumbelj et al (Strumbelj et al., 2010) showed that such values can be used to

represent the relevance of each input to a machine learning classifier in order to gain

insight on the patterns it considers important to predict a particular class, and proposed

a feature importance attribution method equivalent to calculating the Shapley Values for

a coalition of players (inputs) that work together to attain a reward (prediction). The

use of Shapley values for importance attribution is particularly advantageous since they

are able to take into account the possible interactions between input features in a way

occlusion-based methods (Zeiler & Fergus, 2014) cannot.

To this end, they propose the concept of prediction difference ∆(S) (Strumbelj et
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al., 2010) to quantity the influence a subset of features S has on the output of a machine

learning classifier. Formally, if only features in S are known, the prediction difference

associated to S is defined as

∆(S) =
1

∣AN∖S ∣
∑

y∈AN∖S
fc(τ(x, y, S)) −

1

∣A∣
∑
y∈AN

fc(y) (3.4)

where AN represents a feature space of dimension N , fc is the component of the

output of a machine learning classifier that corresponds to predicted probability of class

c, and τ(x, y, S) is a masking function defined as

τ(x, y, S) = (z1, z2, . . . , zn), zi =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

xi i ∈ S

yi i ∉ S

(3.5)

Examination of equation 3.5 shows that on the first term the features in S are held

constant while the rest take each one of their possible values. This corresponds to the

prediction the classifier makes, marginalized over the all the features not in S. On the

other hand, the baseline term 1
∣A∣ ∑y∈AN

fc(y) corresponds to the expected prediction

of the classifier, when no features are known. The marginalization over a subset of

features is a classifier-agnostic way to simulate their absence from the feature space,

allowing to compute the contribution of subset S to the prediction.

Given the possible nonlinear nature of fc, methods that rely on feature independence

assumptions to attribute importance can yield erroneous results. Consider for example,

a binary OR function. If examined separately, each input carries zero importance as the

OR value does not change if one input changes, revealing the need to account for feature

interactions. To address this problem and manage interactions properly, Strumbelj et al

explicitly define ∆(S) as a sum of feature interactions

∆(S) = ∑
W⊆S

I(W ) (3.6)
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Notice that all the 2N possible subsets of S are considered. In the above, I(W ) is a

function that quantifies how much each interaction between subsets of S contributes to

prediction difference ∆(S). If we assume that I(∅) = 0, we can manipulate equation

3.6 to obtain a recursive definition of I for any feature subset

I(S) = ∆(S) − ∑
W⊂S

I(W ) (3.7)

Now that the contributions of interactions are formalized, we can define how much

every feature i contributes to prediction difference ∆ as a function of the interaction it

is part of

ϕi(∆) = ∑
W⊆N∖{i}

I(W ∪ {i})

∣W ∪ {i}∣
, i = 1,2, . . . , n (3.8)

So far we have followed (Strumbelj et al., 2010) going from the formalization of the

concept of prediction difference of an input feature set/subset ∆(S), to its alternative

formulation as a sum of feature interactions I(W ), and finally to an expression that

quantifies the contribution of each individual feature to ∆(S), ϕi(∆). At this point

(Strumbelj et al., 2010) introduce the crux of their argument: they show that given

the characteristics of ∆, the problem of importance attribution can be understood as a

coalitional game ⟨N,∆⟩ where the players N are the input features and ∆ maps a set of

input features to an importance value. In this setting ϕ(∆) corresponds to the Shapley

Values of the game (equation 3.3). A formal proof can be found in (Strumbelj et al.,

2010).

3.6.1 DeepLIFT

The computations involved in equations 3.3 and 3.8 have combinatorial complexity,

making them unfeasible for several practical applications, reason why we must resort to
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approximations. In this context, we will discuss a new importance attribution method,

called DeepLIFT. DeepLIFT (Shrikumar, Greenside & Kundaje, 2017) is an importance

attribution method for feed forward neural networks, that is akin to the Layer-wise

Relevance Propagation method (LRP) proposed by (Bach et al., 2015), in the sense

that both use a backpropagation-like approach to the calculation and attribution of

relevance/importance scores to the input features. DeepLIFT overcomes problems asso-

ciated with gradient-based attribution methods (Simonyan et al., 2013; Springenberg,

Dosovitskiy, Brox & Riedmiller, 2014) as saturation, overlooking negative contribu-

tions and contributions when the associated gradient is zero, and discontinuities in the

gradients (Shrikumar et al., 2017). Since the attribution output of LRP was later shown

to be roughly equivalent to a factor of a gradient method’s output (Kindermans, Schütt,

Müller & Dähne, 2016), it follows that LRP suffers from similar problems to those

outlined before.

Figure 3.8: DeepLIFT’s multipliers and chain rule allows the propagation of feature
importances.

To compute feature importance the following procedure is carried out: first a

reference input value must be provided. This reference value can be informed by

domain knowledge or simply be the empirical mean of the input features, and once the

references have been defined the corresponding network output is computed for both the

original input and the reference input. Then the outputs’ difference is backpropagated
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through the network layers using rules provided by DeepLIFT.

More formally, for a target neuron t and a collection of neurons x1, x2, ..., xn

whose outputs are needed to compute the output of t, the method assigns importance

attributions C∆xi∆t subject to the fact that such attributions are additive and must satisfy

n

∑
i=1

C∆xi∆t = ∆t (3.9)

where ∆t = to − tr is the difference between the original and reference outputs of t.

DeepLIFT introduces multipliers m∆xi∆t =
c∆xi∆t

∆x that allow to use a chain-rule to

backpropagate the neuron attributions through a hidden layer. The rule takes the form

m∆xi∆z =∑
j

m∆xi∆yjm∆yj∆z (3.10)

where m∆xi∆z is the contribution of neuron xi to the output of neuron z divided

by the difference in outputs for neuron xi, ∆xi, given a hidden layer of neurons yj

in-between (see figure 3.8). The corresponding contribution c∆xi∆z can be recovered

from equation 3.10 as c∆xi∆z =m∆xi∆z∆x.

For a linear unit, the contribution of the inputs xi to the output difference ∆y is

simply = wi∆xi. To avoid the issues of other methods regarding negative contributions,

DeepLIFT treats separately positive and negative contributions, which leads to ∆y and

xi being decomposed into its positive and negative components

∆y+ =∑
i

1{wi∆xi > 0}wi(∆x
+
i +∆x−i ) (3.11)

∆y− =∑
i

1{wi∆xi < 0}wi(∆x
+
i +∆x−i ) (3.12)

The contributions can be stated then as



Chapter 3. Interpretable Deep Learning architectures for mortality prediction 86

c∆x+i ∆y+ =∑
i

1{wi∆xi > 0}wi∆x
+
i (3.13)

c∆x−i ∆y+ =∑
i

1{wi∆xi > 0}wi∆x
−
i (3.14)

c∆x+i ∆y− =∑
i

1{wi∆xi < 0}wi∆x
+
i (3.15)

c∆x−i ∆y− =∑
i

1{wi∆xi < 0}wi∆x
−
i (3.16)

For non-linear operations with a single input (e.g. ReLU activations), DeepLIFT

proposes the so-called RevealCancel rule, which is able to better uncover non-linear

dynamics (Shrikumar et al., 2017). For this case, ∆y decomposes as

∆y+ =
1

2
(f(x0 +∆x+) − f(x0)) +

1

2
(f(x0 +∆x− +∆x+) − f(x0 +∆x−)) (3.17)

∆y− =
1

2
(f(x0 +∆x−) − f(x0)) +

1

2
(f(x0 +∆x+ +∆x−) − f(x0 +∆x+)) (3.18)

And to satisfy 3.9 we have that ∆y+ = c∆x+i y+ and ∆y− = c∆x−i y− . Given this, the

multipliers for the RevealCancel rule are

m∆x+y+ =
c∆x+i y+

∆y+
=

∆y+

∆y+
(3.19)

m∆x−y− =
c∆x−i y−

∆x−
=

∆y−

∆y−
(3.20)

What makes DeepLIFT especially relevant is that it has been shown by Lundberg et

al (Lundberg & Lee, 2017a) that DeepLIFT can be understood as fast approximation to

the real Shapley Values when the feature reference values are set to their expected values.

It can be seen that the RevealCancel rule computes the Shapley Values of the positive

and negative contributions at the non-linear operations, and the successive application
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of the chain rule proposed by DeepLIFT allows to propagate the approximate Shapley

Values back to the inputs.

3.7 Conclusion

We have described our dataset, built from MIMIC-III data. We also stated an introduc-

tion to Convolutional Neural Networks, the kind of model we have used in our research.

Finally we described Shapley Values and the algorithm we used to approximate them,

DeepLIFT. In the next chapter we will describe our experimental settings and the

characteristics of our Deep Learning architectures, along with our results.



Chapter 4

Experimental results and analysis

4.1 Introduction

As previously mentioned, our research deals with the use of ConvNets for ICU mortality

prediction using physiological time series data and free-text medical note data as inputs.

In this chapter we will give the details about model architecture, hyper parameter

selection, and training/validation results.

4.2 Model development

We built our models using Keras (Chollet, 2015) and Tensorflow (USENIX Association.

et al., 2015). Keras provides an easy to use high-level API that allows rapid prototyping.

At the same time, it is possible to access the Tensorflow lower-level APIs for increased

flexibility, which together with its model serialization and de-serialization capabilities

made it a perfect fit for our research goals.

88
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4.2.1 Physiological time series model

Development of models in machine learning tends to be an iterative process. It is

quite common to set up test runs in which a reduced dataset (e.g. using fewer training

examples or fewer input variables) is used for debugging purposes. Reason being

that, as multiple libraries and are tools involved, it is likely that errors are introduced

in the process of coding a full Machine Learning data pipeline. In this case it was

decided to use a preexisting SQL query as a starting point for the entire pipeline. We

modified this query, available at the MIMIC-III companion repository 1 to generate a

dataset that included only common blood labs and routine measurements (see table

4.1) as input variables, using the same inclusion criteria defined from the beginning

of this research. This dataset was put together initially as a proof of concept and to

investigate the predictive power of common labs tests with little to no pre-processing

other than standardization (µ = 0, σ ≈ 1). Finally all missing values were imputed to

zero (equivalent to imputing the mean) instead of using more sophisticated imputation

approaches.

Our chosen input representation places each feature as an image channel instead of

stacking them as a 2-D input (the latter is natural for ConvNets in Computer Vision),

similar to (Suresh et al., 2017). This allows us to use 1-D temporal convolutions no

matter how many input series we use.

A common trend in deep learning when it comes to search for an appropriate archi-

tecture, is to start with an over-parameterized model (i.e. larger than necessary) and

reduce the number of parameters and/or use regularization, guided by cross-validation

(Goodfellow et al., 2016). Following suit we started with a deep model comprised by

four convolutional and three fully connected layers (Figure 4.1), for a total of 10M

parameters. This model was a standard ConvNet with dropout and batch normalization,

1https://doi.org/10.5281/zenodo.821872.

https://doi.org/10.5281/zenodo.821872
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Feature MIMIC-III Table
Albumin LABEVENTS
Anion gap LABEVENTS
Bicarbonate LABEVENTS
Bilirubin LABEVENTS
Blood Urea Nitrogen (BUN) LABEVENTS
Chloride LABEVENTS
Creatinine LABEVENTS
Glucose LABEVENTS
Hematocrit LABEVENTS
Hemoglobin LABEVENTS
International Normalized Ratio (INR) LABEVENTS
Lactate LABEVENTS
Magnesium LABEVENTS
Oxigen saturation (SPO2) LABEVENTS
Phosphate LABEVENTS
Platelet LABEVENTS
Potassium LABEVENTS
Prothrombin Time (PT) LABEVENTS
Partial Thromboplastin Time (PTT) LABEVENTS
Sodium LABEVENTS
White cell blood count LABEVENTS
Diastolic blood pressure CHARTEEVENTS
Heart rate CHARTEVENTS
Respiratory rate CHARTEVENTS
Systolic blood pressure CHARTEEVENTS
Temperature CHARTEVENTS
Urine output OUTPUTEVENTS

Table 4.1: Variables used in the initial, test dataset.

with no multi-scale design. To quickly get results with fewer parameters to adjust,

we decided to use the Adam optimizer (Kingma & Ba, 2014). Since our dataset is

highly unbalanced with the positive class (death) representing just under 10% of training

examples, we used a weighted logarithmic loss that gives more importance to positive

examples. Performance evaluation was carried out by calculating the area under the

Receiver Operating Characteristic curve (ROC AUC), a standard metric commonly used

in the related literature (Lipton et al., 2015; Che, Purushotham, Khemani & Liu, 2016;

Purushotham et al., 2018). ROC AUC results showed that the model was overfitting
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the training set (0.99 ROC AUC), which was the expected behaviour. On a hold-out

validation set the model performed quite badly (0.587 ROC AUC), which also was the

expected result.

Figure 4.1: Initial test model architecture as given by Keras. The large number of
trainable parameters explain the observed overfitting.

Hyperparameter search space

After this initial run we started searching for a more suitable (and smaller) architecture.

Together with network size we defined a hyper-parameter search space that included

training batch size, dropout probability, class weights, and number of training epochs.

This can be justified as follows:
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• Training batch size. In deep learning, most commonly used optimization al-

gorithms are all based on mini-batch stochastic gradient descent (Goodfellow et

al., 2016). The main idea behind it is to introduce randomness into the gradient

signal after forward propagation, by using only a subset of the training set for its

calculation. In practice it has been found that this help to speed up convergence

(Goodfellow et al., 2016). When selecting the batch size there is a trade-off:

smaller batches introduce more noise and as a result the chance of getting stuck

in bad quality local minima is lower, at the expense of longer training time. On

the other hand a large batch size speeds up convergence but the benefits of a noisy

gradient estimate are largely lost. For this parameter we considered a few popular

values in the literature (16, 32, 64).

• Dropout probability (Srivastava et al., 2014). Dropout is an effective way to

combat overfitting specially in large, overparameterized models (Goodfellow et

al., 2016). It involves zeroing out neural connections randomly during the training

process and compensating for it at inference time. Dropout can be understood as

a way of encouraging the model to be more robust against noise and/or as a cheap

way to create an exponentially large ensemble of models. We considered several

values but in practice we tended to stay close to the originally recommended

value of 0.5.

• Class weights. Setting different misclassification costs for our cost function was

the way to manage our heavily unbalanced dataset. In practice this became much

more of a constant, as after the initial test runs it was apparent that a 1:10 ratio

was more than adequate to get the models to converge. This was heuristically

determined after the fact that the minority class makes about 10% of our dataset.

• Number of training epochs. Setting this parameter involves a tradeoff insofar as

if its value is too low, underfitting the dataset is a possibility, whereas choosing
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a large enough value almost invariably means to overfit. We experimented with

values from 30 to 100 epochs.

With our search space defined this way and using our initial model and setup, subsequent

experimental runs recorded a 0.873 ROC AUC over the training set and a 0.606 ROC

AUC over the validation set, but it was clear that hyperparameter search alone was not

going to be able to improve our results significantly.

Multi-scale architectures

Our input representation is comprised by several physiological time series, some of them

very different from the rest, and the corresponding time scales for events of interest are

consequently different as well. On the other hand, in ConvNets the convolution kernels

act as local feature detectors for which size determines the scale in which patterns

contained in the input features are most relevant. In light of this it is sensible to posit

that by using different kernel sizes at the same layer, the network would be able to pick

up different patterns on different time scales of relevance (similar rationale has been

applied before in related domains with some success (Razavian & Sontag, 2015; Suresh

et al., 2017)).

After switching to a smaller model with a multi-scale architecture, performance

improved considerably. At this point our best model was a multi-scale ConvNet using

convolution kernels with different sizes that concatenated the resulting feature maps

into a single layer output tensor (Figure 4.3). This is followed by ReLU activations,

average-pooling with a window size of 3 and dropout (Srivastava et al., 2014) plus Batch

Normalization (Ioffe & Szegedy, 2015), all of this performed after the concatenation

operation. In this layer we use three temporal scales: Three hours, six hours, and twelve

hours; each represented by a stack of convolution kernels with dimensions 3x1, 6x1,

and 12x1, respectively. This model has 115.601 trainable parameters, two orders of
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magnitude fewer parameters than our original model.

The convolutional layer is followed by a fully connected layer with ReLU activations,

Dropout, Batch Normalization and a final one-neuron layer with logistic activation.

We decided to switch to 5-fold cross validation for a more reliable performance

estimate, and to be able to report a measure of confidence of said performance. Also

we standardized the dataset (µ = 0, σ ≈ 1) calculating fold statistics independently to

avoid data leakage. We opted for heuristically chosen values for the most important

hyper-parameters (dropout probability 0.5, and a batch size of 32). We also switched

our optimizer to Stochastic Gradient Descent with Nesterov Momentum (0.9) (Nesterov,

1983), and learning rate of 0.01 with a 1e − 7 decay. We ran 50 training epochs for each

fold, and picked the best model from each fold to calculate our ensemble performance

metrics. After training, this multi-scale architecture was able to reach a ROC AUC of

0.8070 (±0.0179) for the training set, and 0.7845 (±0.0151) ROC AUC for the cross

validation set.

SAPS-II dataset Our motivation for choosing our main dataset was two-fold: The

variables largely coincide with those used by the SAPS-II risk score (Gall et al., 1993),

which give us a better starting point with a set of predictors that have shown good

correlation with our endpoint of interest. Furthermore, related works use SAPS-II

inputs for the training and validation of deep models, making any comparison between

models easier. Guided by this we created our new SAPS-II based dataset and decided

to train a multi-scale architecture on it. Also, it is worth recalling that we did not

perform any fancy imputation procedures and instead restricted ourselves to basic

forward/backward filling, mean imputation, and in the case of the Urine variable, zero

imputation.

Initial results immediately validated one of our assumptions, namely the fact that the

SAPS-II input set is much more predictive of mortality than our initial blood panel, as it
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Figure 4.2: 27-predictor original model 5-fold cross validated ROC AUC.

Figure 4.3: Multi-scale convolutional architecture for mortality prediction. ReLU
activations, BatchNorm, and Dropout layers, have been omitted for clarity and brevity.
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Figure 4.4: SAPS-II trained multi-scale model parameters and architecture summary
as given by Keras.

represents a great deal of knowledge acquired through continued research and medical

practice. Even though our dataset variables are not exactly the ones used in SAPS-II

(there are hand-engineered features in SAPS-II, while our approach is based on raw

data) its general spirit is kept as most SAPS-II inputs are indeed present. After carrying

our training and optimization procedures, our final model hyper-parameters did not

deviate much from the ones used in our previous experiment (dropout probability 0.45,

and a batch size of 32), and we also used Stochastic Gradient Descent with Nesterov

Momentum (0.9), and learning rate of 0.01 with a 1e − 7 decay. Just as before, we ran

50 training epochs for each fold, and picked the best model from each fold to calculate

our ensemble performance metrics. The model contains 115.601 trainable parameters
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(Figure 4.4), and results show validation figures tracking closely the training ones.

Figure 4.5: 5-Fold training loss history of the main 48-hour model.

Model performance Using this training configuration we obtained a cross valid-

ated Receiver Operating Characteristic Area Under the Curve (ROC AUC) of 0.8933

(±0.0032) for the training set, and 0.8735 (±0.0025) ROC AUC for the cross validation

set (Figure 4.6). Using a 0.5 decision threshold, the model reaches 75.423% sensitivity

at 82.776% specificity. Figure 4.5 shows the loss curves of each cross validation fold.

SAPS-II results as baseline SAPS-II uses data from the first 24 hours of ICU stay

to calculate a score, which in turn is converted into a mortality probability. In order

to compare our approach with SAPS-II predictions and performance, we trained our

convolutional architecture using data from the first 24 hours using similar parameters to

the ones we already used for the 48 hour version (same values except dropout probability

which we set to 0.5). For the comparison we used the SAPS-II implementation provided
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Figure 4.6: ConvNet (48h) 5-Fold cross validated ROC AUC.

by the authors of the MIMIC-III code repository (A. E. Johnson, Stone, Celi & Pollard,

2018). The 24 hour version of our model obtained a 0.8223 (±0.0075) ROC AUC

5-fold cross-validation score, against 0.7372 (±0.0091) for the SAPS-II model. We

also retrained the original SAPS-II model which yielded a 0.7390 (±0.0199) ROC AUC

5-fold cross-validation score. Finally, we used the SAPS-II individual scores to train a

logistic regression classifier, for a 0.7633 (±0.0220) ROC AUC 5-fold cross-validation

score. Figures 4.7 and 4.8 show the corresponding ROC plots for the the 24 hour

ConvNet and the SAPS-II score. Figures 4.9 and 4.10 show the ROC plots for the

retrained SAPS-II versions.

Comparison with related works

This ConvNet model, which we have named ISeeU (Caicedo-Torres & Gutierrez,

2019) shows strong performance on the MIMIC-III SAPS-II based dataset with low
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Figure 4.7: SAPS-II model 5-fold cross validated ROC AUC.

Figure 4.8: ConvNet (24h) 5-fold cross validated ROC AUC.
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Figure 4.9: Validation ROC AUC for the retrained version of SAPS-II.

variability across folds. Also performance over training and validation data are close,

evidencing that our model exhibits signs of good generalization properties, as there

is no serious overfitting occurring (0.8933 (±0.0032) training ROC AUC vs 0.8735

(±0.0025) validation ROC AUC).

Validation performance reaches the state of the art for mortality prediction on

MIMIC-III data and a comparable feature set (95% CI [0.870396, 0.876604] against a

95% CI [0.873706, 0.882894] corresponding to the performance reported by (Purushotham

et al., 2018)). Our results show that a single convolutional architecture is able to handle

both temporal and static MIMIC-III features using simple time replication for the static

inputs, instead of using a recurrent/feedforward hybrid architecture as in (Purushotham

et al., 2018). Table 4.5 shows a comparison with related works in the relevant literature.
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Figure 4.10: Validation ROC AUC for the logistic regression classifier trained on top
of individual SAPS-II scores.

Issues observed in the training process

Training a deep neural network is not an easy task. There is still much to be known

about the intricacies of minimizing a high dimensional, non-convex error surface with

multiple critical points and large valleys. However some of our experiences in this

research project proved themselves illuminating and validated some of the research

findings others have put forth. In other cases our findings deviated somewhat of the

expected or were counter-intuitive.

The context in which these issues were observed is related to data leakage. Data

leakage occurs when information from the training process “leaks" to the validation

set, so the validation results are optimistically biased. This can happen in several ways

such as using samples coming from the same experimental unit in both training and

validation/test sets, or by using the whole dataset to compute a Principal Component
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Model Type Dataset Task ROC AUC
GRU-D (Che, Purushotham,
Cho et al., 2016)

Recurrent MIMIC-III (99 features) ICU mortality 0.8527 ± 0.003

MMDL (Purushotham et al.,
2018)

Hybrid MIMIC-III (20 features) ICU mortality 0.8783 ± 0.0037

GBTmimic (Ba & Caruana,
2014)

Hybrid + Gradi-
ent Boosted Trees

LA Children’s Hospital PICU
(48 features)

60-day mortality 0.7898 ± 0.030

ISeeU (Caicedo-Torres & Gu-
tierrez, 2019)

ConvNet MIMIC-III (22 features) ICU mortality 0.8735 ± 0.0025

Table 4.2: Our results and results reported by related works (all use 48 hour data). ROC
AUC results are mean and standard deviation from a 5-Fold cross validation run, except
for the GBTmimic model (Ba & Caruana, 2014), which averages 5 different 5-Fold CV
runs.

Analysis basis for dimensionality reduction. In our case data leakage came about

because we used the whole dataset to calculate the mean and variance for standardization

purposes. In this way the network was able to improperly leverage information from the

training set to predict the correct class at inference time on the validation set. To resolve

this, we modified the relevant code to calculate the mean and variance using the training

set only, and since we were using 5-Fold cross-validation this implied calculating mean

and variance of each training fold and using them to standardize the remaining folds.

After solving data leakage and re-training the model, performance was drastically

reduced (from 0.88 ROC AUC down to 0.82 ROC AUC), highlighting the dangers

of data leakage. Our efforts to restore the original performance of our model were

successful and allowed us to attain the results reported in the last section. These efforts

included changing the architecture from a two convolutional layer ConvNet to a single

convolutional layer model, but with significantly more parameters on the dense layers.

In the end we were able to go back to the original performance, and during this process

we observed interesting things, some of which are summarized next.

Mean imputation of missing Urine Output worked best As explained before, one

important aspect of this work is that we rely on simple imputation techniques like

mean imputation and forward/backward filling, in lieu of more mathematically involved
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options as adaptive imputation (Che, Purushotham, Cho et al., 2016), Multivariate

Gaussian Processes (Razavian & Sontag, 2015), or adding a binary imputation mask

to the inputs so the network can know which inputs have been imputed (Lipton et al.,

2016).

As part of our strategy we decided that a sensible way to handle missing inputs for

the Urine Output variable was to impute them to zero, under the reasoning that missing

observations could correspond to no urination. It also seemed to make more sense

compared to mean imputation, since it worried us that using mean imputation would

lead to abnormally high Urine Outputs that were not physiologically correct.

We subscribed to that hypothesis for the majority of our experiments, but we decided

to explore mean imputation as part of our efforts to improve model performance.

When switching to mean imputation we observed a gain of approximately 1% in cross

validation ROC AUC (from 0.82 to 0.83), which was significant in the pursue of our

final results. The exact reasons for this improvement are unclear, but we hypothesize

that since not all patients had Urine Output readings the addition of mean Urine Output

instead of zeros could have helped the ConvNet to more adequately identify more

plausible normal values for that feature.

Stochastic Gradient Descent (SGD) generalized better than adaptive methods

At the beginning of our experimental runs, Adam (Wilson, Roelofs, Stern, Srebro

& Recht, 2017) was chosen as our optimization algorithm given that its use allows

to automatically and adaptively set the learning rate, thus freeing the experimenter

from having to find a suitable value for it (and reducing the hyperparameter search

space, which is always an attractive proposition). We kept using Adam well into our

experimental runs even after identifying the data leakage issue. At some point it was

apparent that merely tuning the hyperparameters was not going to be enough to recover

our original performance and we started looking for alternatives.
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Research has shown that adaptive learning rate optimization algorithms as RMSProp

(Tieleman, Hinton, Srivastava & Swersky, 2012) and Adam (Kingma & Ba, 2014)

find minima with different characteristics compared to minima found by SGD. In

particular it’s been observed that Adam finds “sharp minima" (i.e. narrow valleys) while

SGD prefers flatter ones (Wilson et al., 2017), which in turn affect the generalization

properties of the corresponding models as those sharper minima generalize worse than

the flatter ones (Keskar, Mudigere, Nocedal, Smelyanskiy & Tang, 2017; Hochreiter &

Schmidhuber, 1997a).

Given this we switched from Adam to SGD with Nesterov momentum. The addition

of Nesterov momentum (Nesterov, 1983) allows for a more stable training process.

Subsequent runs offered an improvement of approximately 3% taking our mean cross

validation ROC AUC from 0.83 to 0.85, while the mean training ROC AUC came from

0.90 to 0.89. This is even more remarkable as we did not perform any optimization on

the learning rate value, but instead we used somewhat standard values for the parameters.

This supports the earlier findings about the better generalization properties of minima

found by SGD, this time not in carefully constructed examples as in (Wilson et al.,

2017) but in real-world datasets, used in a real-world application.

Average Pooling worked better than Max Pooling Dimensionality reduction in the

form of pooling is a key component of convolutional architectures. It allows the network

to discard useless and/or redundant information, which in turn helps to attain better

performance and reduces computational cost (Goodfellow et al., 2016). Pooling is often

realized through Max Pooling layers, which downsample the receptive fields generated

by a convolutional layer and create a lower dimensional representation that preserves

the most salient and important features. Pooling usually computes some statistical

measure inside pre-defined neighborhoods in the input, taking the name of Max Pooling

when the max function is used as said statistical measure. Unsurprisingly, when the
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average is used it is called Average Pooling.

Seemingly, Max Pooling tends to be more popular than Average Pooling in the

research literature, especially in Computer Vision, and many times it is the default

choice for ConvNets (some research has been undertaken about which option is best,

with no clear winner (Boureau, Ponce & LeCun, 2010)). As such we used Max Pooling

since the beginning of the experiments, as we did with our chosen optimizer. Given the

issues mentioned earlier we also decided to replace the Max Pooling layers for Average

Pooling layers, which resulted in an approximate gain of 2% ROC AUC (0.85 to 0.87,

roughly). The take-home message in this case is that both pooling techniques should be

tested as part of the model development process.

Model interpretability

Having covered the most remarkable aspects of our training runs and our model perform-

ance, now we turn to the other main component of this work, interpretability. At this

point we had good performance (compared to the relevant literature) and we focused on

making the models more interpretable.

As discussed before we leveraged a fast approximation of the Shapley Values for

interpretability. We used the DeepLIFT implementation provided by its authors to

compute our input feature importances from a model trained on one cross validation

fold. We selected zero (empirical mean) as the reference value. We also computed

importances for individual patients and at the dataset level, and created a series of

visualizations to offer explanations for the predictions of the model.

Visualizations are the crux of our approach to interpretability. In our literature

review it was found that an important issue for the adoption of Deep Learning models

was the absence of a sense of feature importance, which is readily available in models

like logistic regression, for example. As deep neural networks are highly non-linear

and hierarchical, there is no simple way to offer something similar. However as we
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have discussed, Shapley Values offer the marginal importance of the contribution of

every input, and through a fast approximation we are able to compute them and use

them as a form of evidence for/against the model’s decisions. Armed with these values

we created a series of visualizations that show the feature importances at various levels

of aggregation, so the end user can clearly establish which inputs the neural network

considers important, and the nature of their importance (positive or negative).

The proposed visualizations are designed to combine patient features with their

importance towards the predicted probability of death. A crucial feature of our approach

is that these visualizations constitute a form of post hoc interpretability (Lipton, 2016)

insofar as they try to convey how the model regards the inputs in terms of their impact

on the predicted probability of death, without having to explain the internal mechanisms

of our neural network, nor sacrificing predictive performance by using a surrogate

model for predictions.

To highlight the benefits of our approach, we were particularly interested in cases in

which we can compare usual medical expectations about the interpretation of certain

features and their importance, with the feature importances computed by our model.

Because of the cross-validation procedure, the dataset was randomly shuffled and

partitioned into 5 folds using stratified random sampling to preserve class ratios. We

inspected some of the first patients in the last fold (as the model was trained on the first

four folds) and we found an interesting case of a 20 years old patient (mean age of the

cohort is 63.828, with a standard deviation of 15.576). Given our initial motivation, we

wanted to see if the model used age in a way consistent with medical expertise.

We present four types of visualization: Aggregate predictor importance, predictor

importance by hour, positive and negative predictor importance, and dataset-level feature

importance. We will describe the details of each visualization type using a real patient

from MIMIC-III as example.
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Aggregate predictor importance Here we treated the patient tensor representation as

an image and we grouped feature importance attribution semantically (i.e. observations

belong to a particular predictor, as pixels on an image belong to an object) to find

net contributions per predictor. Figure 4.11 shows the feature importances computed

for a single patient (predicted probability of mortality: 0.5764, observed mortality:

1), summed over 48 hours for each individual predictor and then normalized over the

predictor set. As mentioned this visualization shows the importance of each predictor

as a whole, highlighting with red those predictors that contribute to a positive (death)

prediction, and with blue those that contribute to a negative (survival) prediction. Since

hourly importances can be either positive or negative in sign, it is possible that the total

importance might be close to zero (gray background), even if the individual importances

are not. We can clearly see that the network is assigning high positive importance to

the components of the Glasgow Comma Scale - GCS, and high negative importance

to the age of the patient. These are interesting because GCS values are shown to be

abnormal, and the patient is very young (20 years old), and it is plausible that a young

age is negatively correlated with mortality in the ICU.

Predictor importance by hour In this visualization we further de-aggregate import-

ance and show the individual approximate Shapley Values for each input value and hour

(Figure 4.12). We can see evidence for the non-linear dynamics the network has learned,

as values from the same predictor have different importance across the temporal axis.

Positive and negative predictor importance Here we can treat positive and negative

importances separately to have a better sense of how each predictor affects the final

prediction and how it compares to the rest. Figure 4.13 shows a barplot with positive

and negative importance grouped by predictor.
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Figure 4.11: Marginal (total) predictor importance for a single patient.

Figure 4.12: Predictor importance by hour for a single patient.

Dataset-level feature importances Additionally we computed importances for the

validation set to offer interpretability at the dataset level. Table 4.3 and Figures 4.14 and
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Figure 4.13: Negative and positive importance of each predictor for a single patient.
The x axis corresponds to total feature importance.

4.15 show dataset-level statistics for the normalized positive and negative importance of

each predictor.

Discussion

For this particular patient the predictor marginal importance visualization shows that the

model is attending to sensible features to predict mortality. As mentioned previously,

the model is attending to the components of the GCS scale which show abnormal

values and assigns them a positive contribution to mortality. PO2, FiO2, blood sodium

and temperature are also regarded, to various degrees, as evidence favoring predicting

mortality. On the other hand the patient age is regarded by the model as strong evidence
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Figure 4.14: Boxplots for dataset-level negative and positive predictor importance for
the positive class.

Figure 4.15: Boxplots for dataset-level negative and positive predictor importance for
the negative class.
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Negative Importance Score Positive Importance Score
n Mean Std Min Q1 Q2 Q3 Max n Mean Std Min Q1 Q2 Q3 Max

Feature
Age 22413 -0.067 0.082 -0.522 -0.078 -0.034 -0.018 -0.000 22413 0.062 0.047 0.000 0.022 0.054 0.095 0.270
AIDS 22413 -0.010 0.028 -0.426 -0.010 -0.007 -0.005 -0.001 22413 0.007 0.036 0.000 0.002 0.003 0.004 0.531
Bicarbonate 22413 -0.024 0.026 -0.254 -0.033 -0.014 -0.006 0.000 22413 0.046 0.044 0.000 0.015 0.033 0.063 0.412
Bilirubin 22413 -0.005 0.016 -0.441 -0.008 0.000 0.000 0.000 22413 0.008 0.029 0.000 0.000 0.000 0.008 0.521
BUN 22413 -0.023 0.023 -0.384 -0.030 -0.018 -0.007 0.000 22413 0.041 0.044 0.000 0.012 0.029 0.052 0.433
Diastolic BP 22413 -0.048 0.034 -0.336 -0.062 -0.039 -0.024 0.000 22413 0.037 0.024 0.000 0.019 0.031 0.048 0.284
Elective 22413 -0.042 0.054 -0.315 -0.027 -0.022 -0.017 -0.003 22413 0.029 0.033 0.003 0.013 0.017 0.022 0.240
FiO2 22413 -0.053 0.032 -0.352 -0.070 -0.048 -0.030 -0.000 22413 0.050 0.029 0.000 0.028 0.048 0.068 0.230
GCSEyes 22413 -0.113 0.036 -0.263 -0.135 -0.113 -0.090 -0.013 22413 0.085 0.068 0.006 0.042 0.058 0.096 0.509
GCSMotor 22413 -0.090 0.038 -0.305 -0.107 -0.083 -0.067 -0.006 22413 0.063 0.070 0.004 0.026 0.034 0.067 0.481
GCSVerbal 22413 -0.138 0.043 -0.285 -0.170 -0.141 -0.106 -0.014 22413 0.116 0.071 0.005 0.067 0.092 0.153 0.460
Heart rate 22413 -0.059 0.053 -0.401 -0.080 -0.042 -0.022 0.000 22413 0.046 0.034 0.000 0.022 0.036 0.059 0.308
Lymphoma 22413 -0.016 0.034 -0.343 -0.014 -0.010 -0.008 -0.002 22413 0.014 0.050 0.001 0.004 0.005 0.007 0.516
Metastatic cancer 22413 -0.026 0.035 -0.271 -0.024 -0.017 -0.013 -0.002 22413 0.024 0.061 0.001 0.007 0.009 0.011 0.500
PO2 22413 -0.018 0.021 -0.245 -0.026 -0.014 0.000 0.000 22413 0.033 0.038 0.000 0.000 0.023 0.048 0.405
Potassium 22413 -0.022 0.018 -0.176 -0.029 -0.018 -0.010 0.000 22413 0.050 0.036 0.000 0.023 0.041 0.068 0.310
Sodium 22413 -0.021 0.021 -0.267 -0.027 -0.015 -0.007 0.000 22413 0.049 0.041 0.000 0.020 0.038 0.067 0.468
Surgical 22413 -0.056 0.023 -0.155 -0.072 -0.053 -0.038 -0.008 22413 0.074 0.033 0.009 0.047 0.071 0.098 0.217
Systolic BP 22413 -0.042 0.028 -0.265 -0.053 -0.036 -0.024 0.000 22413 0.052 0.036 0.000 0.026 0.042 0.068 0.277
Temperature 22413 -0.039 0.027 -0.259 -0.052 -0.034 -0.020 0.000 22413 0.054 0.042 0.000 0.024 0.042 0.073 0.500
Urine output 22413 -0.051 0.042 -0.730 -0.063 -0.041 -0.026 0.000 22413 0.032 0.032 0.000 0.015 0.024 0.039 0.628
WBC 22413 -0.035 0.036 -0.849 -0.046 -0.027 -0.013 0.000 22413 0.028 0.032 0.000 0.007 0.018 0.039 0.707

Table 4.3: Statistics of predictor importances at the dataset level. GCSEyes, GCSMotor,
and GCSVerbal stand for Glasgow coma scale (eyes), Glasgow coma scale (motor),
and Glasgow coma scale (verbal) respectively. WBC stands for white cell blood count.
FiO2 and PO2 stand for fraction of inspired oxygen and oxygen pressure in blood,
respectively.

against mortality, followed by urine output.

The marginal importance visualization allows us to see something interesting: the

model assigns a negative net contribution to the fact that the patient was admitted

after surgery, this is, the model regards the surgical admission as evidence for survival

(however at the dataset level, median positive importance for surgical admissions are

greater across classes than their negative counterpart, i.e. the model tends to see surgical

admission as evidence for mortality). This could be due to correlations present in the

underlying dataset, or higher order interactions between predictors. The latter is attested

by the predictor plus hour visualization, which shows that for static predictors, different

observations across time of the same predictor are assigned different contributions,

sometimes with different sign. It is also worth noticing that while the patient’s surgical

admission is regarded as evidence for survival, the fact that the surgery was not an

elective surgery is considered as evidence for mortality, which is sensible. However both

input features must not be analyzed separately (i.e. they correspond to a single concept
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in SAPS-II score (Gall et al., 1993)). This is the kind of insight that interpretability

efforts can reveal about black boxes, which is also absent in the majority of related

works (Purushotham et al., 2018) (See table 4.4 for a comparison).

Dataset-level analysis of feature importance shows a high variance in attributed

importance, both negative and positive. GCS components tend to be the features with the

most importance attributed (especially positive importance for patients that eventually

died), followed by age. On the other hand, there are a number of features with both

low positive and low negative mean importance. Presence of AIDS or lymphoma, are

deemed by the ConvNet as not carrying much weight for predicting either survival

or death. Also some of the other predictors have modest mean importances. This

could signal a possibility to simplify the input feature set and get better predictive

performance.

Model Dataset Task Interpretable?
GRU-D (Che, Purushotham,
Cho et al., 2016)

MIMIC-III (99 features) ICU mortality No

MMDL (Purushotham et al.,
2018)

MIMIC-III (20 features) ICU mortality No

GBTmimic (Ba & Caruana,
2014)

LA Children’s Hospital PICU
(48 features)

60-day mortality Yes (dataset
level)

ISeeU (Caicedo-Torres & Gu-
tierrez, 2019)

MIMIC-III (22 features) ICU mortality Yes (patient
and dataset
level)

Table 4.4: Comparison between ours and commonly cited works in terms of patient-
level and dataset-level interpretability.

4.2.2 Free-text medical notes model

After our examination of the usage of our physiological time series dataset for the

creation of ISeeU, we will focus on the free-text medical notes dataset and the construc-

tion of a Natural Language Processing based mortality prediction model. Our second

prediction model, which we have named ISeeU2, is also a convolutional neural network.
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In this case we used Tensorflow v2 as it had been just released and its new capabilities

were worth the switch. The specific architecture of ISeeU2 (figure 4.16) includes a text

embedding layer to convert a bag of words text representation into 10-dimensional dense

word vectors. The output of the embedding layer is then fed to a convolutional layer

with 32 channels and a kernel size of 5x10 (stride 1), followed by ReLU activations and

a max-pooling layer with a pool size of 1x3 (stride 1). The obtained representation is

then fed to a 50x1 dense layer with ReLU activations connected to a one-neuron final

layer with sigmoid activation, which computes the mortality probability.

Figure 4.16: Deep learning model architecture.

As mentioned before, our dataset is highly unbalanced (negative outcomes represent

just 9.78% of training examples), reason why we used again a weighted logarithmic

loss assigning more importance to the positive class, i.e. patients that died in the ICU.

We used 5-fold cross-validation to assess the model performance and place a confidence

estimate on it. We did not perform any substantial hyperparameter optimization other

than conservatively varying the number of channels of the convolutional layer and

the number of neurons of the first fully connected layer of the network. Our choice

of optimizer in this case was Adam (Kingma & Ba, 2014) with default Tensorflow-

provided parameters. One important factor that influenced our optimizer choice was the
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observed instability of Stochastic Gradient Descent (manifested in the frequent collapse

of the model into trivial solutions, i.e. always predicting survival or always predicting

death) and the difficulty to find a suitable value for the learning rate. Our model was

trained for three epochs per training fold, and we kept the lowest loss model of each

run.

Text pre-processing

One of our goals was to develop deep learning models that need little to no input

pre-processing in order for it to be as widely applicable as possible. Keeping with that

we used the NLTK library (Loper & Bird, 2002) to remove English stop-words and the

Tensorflow.keras default tokenizer to vectorize the text notes, keeping the 100k most

frequent words; and no further pre-processing was attempted. The tokenizer was fitted

only on the training folds to avoid data leakage. Finally, we set the maximum note

length to 500, so notes with a larger word count were truncated at the beginning and

those with a smaller word count were padded with zeroes, at the beginning as well.

Model performance and comparison with baselines

Using this configuration we obtained a 5-fold cross validation Receiver Operating

Characteristic Area Under the Curve (ROC AUC) of 0.8629 (±0.0058) as seen in

figure 4.17. Using a 0.5 decision threshold, the model reaches 72% sensitivity at 83%

specificity. It is worth noting that in this case MaxPooling offered better performance

than Average Pooling, supporting our conclusion that there doesn’t seem to be a strictly

superior choice between the two and rather they should be compared on a per-case

basis. Again, we provide some baseline models to compare with our text-based model

to better assess its performance. Concretely, we have included results for the SAPS-II

risk score and a recurrent neural network.
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Figure 4.17: ConvNet 5-fold cross validated ROC AUC.

SAPS-II For SAPS-II, we again used the SAPS-II implementation provided by the

authors of the MIMIC-III code repository (A. E. Johnson et al., 2018) (Given the

results we obtained earlier showing that SAPS-II and its retrained variants were so

similar in terms of ROC AUC performance, we don’t include any retrained variant

in this comparison). On the other hand we kept the parameters of our original model

intact, but only used the first 24 hours worth of patient nursing notes for its training.

The 24 hour version of our text model obtained a 0.8155 (±0.0102) ROC AUC 5-fold

cross-validation score, against 0.7448 (±0.0117) for the SAPS-II model. Figures 4.18

and 4.19 show the corresponding ROC plots for the two models.

LSTM Our second baseline is a recurrent neural network based on the Long Short

Term Memory (LSTM). LSTM is a neural network model designed to handle sequential

input data with temporal dependencies (Hochreiter & Schmidhuber, 1997b), and it

has been used extensively in Natural Language Processing tasks. We trained a deep
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Figure 4.18: SAPS-II model 5-fold cross validated ROC AUC.

Figure 4.19: ConvNet (24h) 5-fold cross validated ROC AUC.
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neural network with a bidirectional LSTM layer with 100 units, followed by an extra

100-unit LSTM layer, a 50-unit dense layer ReLU activation, and a final sigmoid layer.

As we did with our original convolutional model, an embedding layer was used to

create 10-dimensional dense vectors to feed the initial layer of the LSTM and the

same text preprocessing pipeline was used (save for a now 1000-word maximum note

length). Finally dropout with probability 0.5 was applied to control overfitting. With

this particular architecture we were able to obtain a 0.7839 (±0.0076) ROC AUC 5-fold

cross-validation score (Figure 4.20).

Figure 4.20: Deep LSTM 5-fold cross validated ROC AUC.

Model interpretability

Using the DeepLIFT implementation provided by (Lundberg & Lee, 2017b) which

works appropriately with Tensorflow 2 models, we calculated word importances for

our model, using the empirical mean of the input embedding vectors as reference value.
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Using these values we designed and built visualizations to show the importance of each

word in the original nursing note used as input. We have selected some examples at

random from both the training set and the validation set of the last cross-validation run

to show the behavior of the model and the way it regards certain words in the input

notes. Our proposed visualizations include word clouds and text heatmaps (Figures 4.21

and 4.22 ).

Figure 4.21: Top: Word clouds generated for one specific patient in the training set
show the words deemed as most important for both survival (left) and death (right)
prediction. Bottom: Text heatmap showing words, their importance and their context
in sentences, generated for one specific patient in the training set. Red color denotes
evidence for death, and blue color represents evidence for survival. Words with a
gray background are not considered important for the prediction task by the network.
Padding characters are represented by asterisks.

Word clouds are an interesting way to visualize words and their importance at the
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same time, but they don’t capture the context in which words live, potentially leading to

erroneous interpretations. For example, the survival word cloud in Figure 4.21 shows

melena as associated with survival, which is not readily understandable. However, when

the word cloud is combined with the note heatmap, the reason becomes apparent, given

the context of the word (stable present wo melena stool). We also observe that certain

phrases and words are flagged intuitively, e.g. guaic pos heme, and also the fact that

for this particular patient occurrences of Plavix/Clopidogrel in the note are flagged as

evidence for survival. There are other instances in which results are not intuitive and

may point to statistical flukes rather than strong causal features. As an example we can

point to the phrases return baseline bp numerous large clots suctioned, and continue

keep pt family aware, in which the words clot and pt seem to be flagged incorrectly.

Annotation smoothing In order to help ameliorate the sharp changes and inconsist-

encies observed at the sentence level we used a convolution filter to take into account

the effect of the Shapley Values of all words in a particular sentence when generat-

ing the heatmap annotations, and provide a smoother and more intuitive result. Note

that this is approximated since we are intent on using a basic pre-processing pipeline,

without any advanced capabilities (i.e. sentence segmentation). A 5 × 1 convolution

filter [0.1,0.2,0.4,0.2,0.1] allows us to spread out the feature importance of individual

words and to fade out weak importances that are due possibly to noise, while still

keeping the most salient features. Figure 4.22 show our previous training set and a new

validation set note with and without the convolution filter applied.

Note length and mortality probability High capacity machine learning models such

as deep neural networks have the ability to leverage subtle correlations and patterns

to attain very low training error in learning tasks. As shown in Table 3.7 and Figure

3.5, there is a difference in our sample between mean length of patients who survived
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Figure 4.22: Text heatmaps with (right) and without (left) convolution smoothing.
Bottom row corresponds to a nursing note from the validation set.

and those who had a negative outcome. A Mann-Whitney U test supplied further

evidence, as we were able to reject the null hypothesis, i.e. distributions of the length

of nursery notes are the same (p = 0.000), in favor of our alternative hypothesis, i.e.

notes for patients that do not survive are longer. A possible explanation for the observed

difference in length is that patients who are more sick are monitored more constantly

and the written descriptions of their status need more detailed precisely because of their

delicate condition, compared to less sick patients.

Having established that, we decided to investigate if our text model was attend-

ing somehow to that difference in distributions. For this purpose we inspected the

importance score of the padding characters used by our pre-processing pipeline, with

most of them being regarded as evidence for survival, which is consistent with our

original conjecture that the model considers that shorter notes are correlated with a

survival outcome (shorter notes have more padding characters). Figure 4.23 shows the

distribution of approximate Shapley Values for padding characters.
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Figure 4.23: Distribution of approximate Shapley Values for padding characters. The
histogram shows that most padding characters are deemed as evidence for survival by
our model.

Discussion

Our convolutional text model shows interesting performance on the MIMIC-III dataset,

with consistent results across validation folds, showing evidence for good general-

ization. Validation ROC AUC (95% CI [0.855689, 0.867888]) is competitive with

published results in a comprehensive benchmark by (Purushotham et al., 2018) (95%

CI [0.873706, 0.882894] ROC AUC) and our physiological time series model (95% CI

[0.870396, 0.876604] ROC AUC). Moreover, our free-text model bypass some of the

most important difficulties associated with the usage of physiological time series, i.e.

inconsistent sampling times and missing values. On the other hand, the 24-hour version

of our model still manages to surpass comfortably the SAPS-II baseline.

Our results are not directly comparable to those published by Grnarova el al

(Grnarova et al., 2016) given that we restricted our input window to the first 48 hours of

patient stay, instead of using all available notes up until the time of discharge. Results
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published by Jo et al (Combining LSTM and Latent Topic Modeling for Mortality

PredictionJo et al., 2017) show their models performing under 0.84 ROC AUC for

mortality prediction using MIMIC-III data (48 hour mark), which is well below our

results here. On the other hand, the model Vital + EntityEmb reported by (Jin et al.,

2018) uses physiological data and a substantial text preprocessing pipeline that involves

a second neural network for Named Entity Recognition. Table 4.5 shows reported

performance results for relevant models, compared with the performance of our model.

Model Type ROC AUC
Physiological models
GRU-D (Che, Purushotham, Cho et al., 2016) Recurrent 0.8527 ± 0.003
MMDL (Purushotham et al., 2018) Hybrid 0.8783 ± 0.0037
ISeeU ConvNet 0.8735 ± 0.0025
NLP models
LSTM+E+T+D (Combining LSTM and Latent Topic Modeling for Mortality PredictionJo et al., 2017) Recurrent < 0.84
Vital + EntityEmb (Jin et al., 2018) Hybrid (text & physiolo-

gical inputs)
0.8734 ± 0.0019

ISeeU2 (our work) ConvNet 0.8629 ± 0.0058

Table 4.5: Our results and results reported by related works. ROC AUC results are
mean and standard deviation from a 5-fold cross validation run, except LSTM+E+T+D
and Vital + EntityEmb, which report a single result over the test set.

By using text notes as input we are using not the raw physiological data but health-

care workers perceptions and judgement in the form of free-text notes, giving us access

to higher level concepts not present in said physiological data. On the other hand,

MIMIC-III notes are very noisy, with frequent misspellings, typos and a lack of stand-

ardized naming (i.e. writing vancomycin vs vanc), which makes them not an optimal

learning substrate. However, we have been able to show that deep learning models are

able to separate useful signals from such noise, by keeping our pre-processing pipeline

very basic. Another interesting take on the usage of free text notes is that deep models

can leverage meta-data such as note length, as our evidence suggest. This phenomena

is comparable to observations made in (Lipton et al., 2016; Razavian & Sontag, 2015)

regarding the ability of deep neural networks to exploit patterns of missingness in

physiological patient data to attain better predictive performance: Certain physiological

measurements are taken more or less frequently according to the state of the patient,
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providing additional and useful metadata. This kind of flexibility and power is outside

the reach of more traditional statistical modeling techniques as the ones behind risk

scores as SAPS-II.

Our visualization approach allows to easily locate the parts of the notes the deep

learning model is attending to, which can then be compared to clinical expectations.

In this way the potential users can be certain that the reasons behind the predictions

are sound and align properly with medical knowledge, as opposed to being evidence of

statistical artifacts being leveraged by the model. It is interesting to note that our results

suggest our model and text heatmap visualization could be used to annotate medical

notes for, at some point, easier handling by ICU staff. Finally, it’s worth noticing that

our usage of Shapley Values was instrumental to discover how the network regarded the

padding introduced in shorter nursing notes.

4.3 Software implementation

As part of our objectives we planned a software implementation that leveraged a

deep learning model trained on MIMIC-III for interpretable mortality prediction in

the ICU, and this led to the creation of ISeeU and ISeeU2. These are open source

Python packages available on the Python Package index (PyPi) 2 3, that provide the

functionality developed in this research. As such, they can be installed freely on any

machine running Python 3.6+ through the pip command (pip install iseeu,

pip install iseeu2). Sources for the packages are available on GitHub 4 5.

ISeeU exposes an object-oriented API comprised by the following methods:

2https://pypi.org/project/iseeu/
3https://pypi.org/project/iseeu2/
4https://github.com/williamcaicedo/ISeeU
5https://github.com/williamcaicedo/ISeeU2

https://pypi.org/project/iseeu/
https://pypi.org/project/iseeu2/
https://github.com/williamcaicedo/ISeeU
https://github.com/williamcaicedo/ISeeU2
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• predict(patient_tensor) takes a (1, 22, 48) Numpy tensor as in-

put and returns a mortality prediction between zero and one, and a (22, 48)

Numpy matrix that contains the associated feature importances (approximated

Shapley Values).

• visualize_patient_scores(patient_tensor,...) generates a Mat-

plolib visualization similar to Figure 4.12, in which importances are shown

for each individual input at different hours. If no importance_scores are

provided, the method returns a plot of the patient data alone.

• visualize_evidence(importance_scores=scores) returns a barplot

similar to Figure 4.13. This visualization is intended to show the total importance

of each input feature group, plotting their positive and negative contributions

separately.

The ISeeU implementation is completely extensible and since it makes the actual

importance scores available to the end user, further visualizations and explanations can

be created. ISeeU can be used in IPython Notebooks or as a part of another application.

Screenshots of its use inside a Jupyter Notebook can be seen in Figures 4.24, 4.25, and

4.26

ISeeU2 also exposes an object-oriented API, with the following public methods:

• preprocess_notes(notes=patient_notes) takes a Pandas dataframe

with a column named "text" that shall contain the medical notes to be used for

prediction. This method transforms the actual note into a (1, 500) Numpy

tensor that can be used by the predict method.

• predict(patient_note_sequences=sequences) takes a (1, 500)

Numpy tensor as input and returns a mortality prediction between zero and one,
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Figure 4.24: Visualization of patient inputs using ISeeU.

Figure 4.25: Prediction of mortality probability and visualization of hourly feature
importances using ISeeU.

and a list of (1, 500) Numpy matrices that contain the associated word im-

portances (approximated Shapley Values) for each provided note.
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Figure 4.26: Generating the explanation of a prediction by visualizing marginal feature
importances using ISeeU.

• get_word_clouds(patient_note_sequence=sequence,...) gen-

erates a word clouds similar to those in Figure 4.21.

• get_note_heatmap(patient_note_sequence=sequence,...) re-

turns a note heatmap similar to the one in Figure 4.21. This visualization shows

the importance of words in notes and allows to perform convolution smoothing

over word importances for enhanced note annotation.

ISeeU2 also provides the approximated Shapley Values back for further use, and can be

employed inside iPython notebooks or as part of other applications as well. Screenshots

of its use inside a Jupyter Notebook can be seen in Figures 4.27, 4.28.

4.4 Conclusion

Using MIMIC-III data we have been able to train a physiological time series-based Multi-

scale ConvNet and a free-text medical note-based ConvNet to predict patient mortality

inside the Intensive Care Unit. Model performance shows stability across validation

folds and the physiological time series model reaches state of the art performance for
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Figure 4.27: Use of ISeeU2 and generating word clouds for word importance visualiza-
tion.

Figure 4.28: Generating note heatmaps with ISeeU2.
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ICU mortality prediction using MIMIC-III and comparable feature sets. Both ConvNets

have the added benefit of post-hoc interpretability without having to resort to a surrogate,

interpretable model. During the development process we were able to discover evidence

that corroborates certain findings by the literature, allowing us to obtain our reported

performances.

In the next chapter we will consolidate our conclusions and we will discuss the

implications of our findings and how they relate to the more general picture of the use

of Machine Learning for mortality prediction.



Chapter 5

Conclusions and future work

5.1 Research conclusions

Quantification of the likelihood of negative outcomes in patients in Intensive Care Units

is necessary for the evaluation of the effectiveness of treatments and clinical practices.

To this end statistical scores have been created, with various degrees of success. These

scores exhibit certain shortcomings associated to the specific choice of their underlying

models, and to evolving clinical practice. In response to this, the use of more expressive

models has been studied, with interesting results. Amongst alternatives, Deep Learning

shows promise due to its ability to learn complex, non-linear patterns, from a wide

variety of structured and non-structured data. However adoption of Deep Learning

for medical tasks including mortality prediction still faces hurdles due to its reduced

interpretability, which makes it difficult for doctors to trust Deep Learning models in

clinical settings.

The motivation for this work was to answer a set of research questions that have

been posed in order to shed light on the matter of whether it is possible to build Deep

Learning models able to predict mortality inside the ICU, subject to certain constraints,
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namely state-of-the-art predictive performance and the offering of explanations for the

predictions of the model. For completeness, we will state the aforementioned research

questions next. Our questions were:

• How can we develop a Deep Learning model able to predict, with state-of-the-art

performance, survival-related outcomes in a critical care setting?

• How can we provide useful explanations for the model decisions using feas-

ible time and computing resources, without resorting to auxiliary classification

models?

Our research findings allowed to formulate adequate answers to these questions, in

the form of a novel multi-scale convolutional network model for interpretable mortality

prediction inside the ICU, trained on Physiological Time Series (PTS) data; and a novel

convolutional network trained on free-text nursing notes. We showed that our PTS

model offers state of the art performance, and our free-text model offers performance

comparable to that of PTS models and overperforms similar Natural Language Pro-

cessing approaches. Both models accomplish the aforementioned goals while offering

visual explanations based on a concept from coalitional game theory, that express

how important the inputs features are for the model’s output. Such explanations are

offered at the individual patient level (PTS and free-text models) with different levels

of de-aggregation, and at the dataset level (PTS model), allowing for a more complete

statistical understanding of how our models regard input predictors, compared to what

related works have provided so far, and without resorting to auxiliary or surrogate

models. We were able to show that

• Deep Learning offers predictive performance superior to that of traditional statist-

ical techniques for mortality prediction inside the ICU, as attested by results on

MIMIC-III data.
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• A convolutional model can handle both temporal and static features at the same

time without having to resort to recurrent and/or hybrid neural architectures, while

at the same time offering comparable performance with specialized recurrent

architectures.

• Simple imputation techniques offer competitive performance for ICU mortality

prediction with Deep Learning, without incurring in the computational costs

associated with more complex approaches.

• A convolutional model trained on free-text notes from MIMIC-III offers compet-

itive performance to that from PTS models.

• The usage of nursing notes alone offers good predictive performance, compared

to approaches that use the full gamut of medical notes available on MIMIC-III.

Additionally, our experimental framework allowed us to uncover interesting insights,

as the following:

• Adaptive optimization algorithms like ADAM tend to be more stable and easier

to use, but they are still not able to match the performance of Stochastic Gradient

Descent (SGD) (given that SGD maintains stability). Even if the training loss

achieved by both is similar, the generalization gap is smaller for SGD. Our results

support the usual practice of using adaptive methods first to rapidly iterate over

predictors and architectures, and using SGD later (if possible) to get the best

possible performance.

• Even if Max Pooling is the dominant approach for subsampling, it is a good

idea to try Average Pooling as well and compare results. In our experiments, we

found a performance increase of approximately 2% in ROC AUC by switching
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from Max Pooling to Average Pooling. As with many things in Machine Learn-

ing, particularities of datasets end up determining the performance of modeling

techniques and algorithms on a case-by-case basis.

• Deep Learning models are able to leverage training meta-data. In particular,

the length of nursing notes was found to be a feature used by our convolutional

network in order to predict mortality. Padding characters used at the beginning of

the notes after preprocessing are regarded by our model as evidence for survival,

as shown by their associated Shapley Values.

Finally it is worth noting that, with the models developed as part of our research we

have created ISeeU and ISeeU2, two open source programming libraries freely available

for researchers, meant as a stepping stone to kick-start efforts that could eventually lead

to the creation of software solutions able to be used by ICU medical practitioners.

5.2 Limitations

Limitations of our study include the fact that we do not have access to pre-admission

data, and that we are using a retrospective, single center cohort. Also given the moderate

size of our dataset we are only reporting cross-validation results without a proper test

set result. An additional limitation is that although we have strived to include common

parameters and variables, it is still possible that some of them are not routinely recorded

for a non-trivial group of patients, and our approach would suffer from elevated rates

of missing data. An additional limitation is that high-quality nursing notes may not be

available for a substantial number of patients in other critical care settings, which could

hurt the performance of our Natural Language Processing model. Finally, the common

misspellings and other noise present in the medical notes used to train our free-text

model may affect the quality of our explanations, giving rise to counterintuitive results.
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Despite these limitations, the results presented in this thesis support the feasibility of

using Deep Learning for ICU mortality.

5.2.1 Threats to Validity

Following the Campbell tradition (Matthay & Glymour, 2020), we identify the following

threats to validity of the work we have presented in this thesis:

• Internal Threats to Validity: Selection bias as a product of our patient inclusion

criteria and choice of dataset (selection), and software defects in the computational

tools developed in this thesis (instrumentation).

• External Threats to Validity: Results on MIMIC-III cohort may not be generaliz-

able to other ICU populations due to unknown confounders or differing patient

distributions (interaction of the causal relationship with units).

To manage the internal threats we have followed best-practices and a methodology

that is in line with the relevant literature. In the case of the external threat, more research

involving different ICU datasets is needed to validate our findings.

5.3 Future work

This work sets the stage for a series of interesting questions/projects. Some of them are

• One interesting question is whether we can leverage transfer learning in the ICU

domain, i.e. use MIMIC-III pre-trained models and supervised fine-tuning to

predict mortality in institutions with limited data. Since transfer learning has

been used in the Computer Vision and Natural Language Processing domains

with great success, it is reasonable to assume similar success can be enjoyed in
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ICU mortality prediction, but this needs to be properly studied and validated in

multi-center, prospective studies.

• The use of Shapley Values for feature selection is another interesting research

direction this thesis sets up. Our results indicate that certain variables from the

SAPS-II set are not being attended by our model to predict mortality, across the

entire dataset. This is remarkable because SAPS-II (and similar scores) represent

the domain expertise of physicians and health professionals. What does this

mean? Can we use Shapley Values to inform traditional scores as well as to select

features and improve our model’s performance? Also, due to our interpretability

work we have found that note length is helpful to predict mortality. Does this

hold in different centers/settings? Studying this correlation more in depth can

provide an interesting direction for future work.

• One particular strength of Deep Learning is the ability of Neural Network to

leverage different modalities of data for predictive purposes, and our work is

an example of that. An interesting question to be tackled by future work is

whether PTS and free-text data can be used efficiently by a single model as inputs,

and whether this hybrid model could over-perform the individual models or an

ensemble of the two. Can we incorporate other modes of data, such as diagnostic

images, as well?

• Other works have shown the regularization effects of multi-task learning. Evalu-

ating the impact in terms of validation/test performance of jointly training our

models to predict not only mortality but also Length of Stay would be a very

interesting proposition. Accurate prediction of Length of Stay is an open problem

and a pressing need for the efficient planning and management of ICU capacity.

• The question of algorithmic fairness in Machine Learning for healthcare starts
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to become a major concern. Are our predictive models offering consistent per-

formance across diverse ethnicities, demographics and cultures? Using our

current research and development practices, is society at large reaping the benefits

equally? are our datasets diverse enough? if not, what solutions can we devise?

• Finally, the dilemma of more accurate vs more timely predictions deserves to be

studied more in depth. Our experimental results show that the usage of 48-hour

data leads to better predictions, however predictions at the 24-hour mark are

more useful. How is this trade-off relevant for individual institutions and medical

practice, and what can we do to improve results at the 24-hour mark are questions

worth exploring. The question of whether it is feasible to convert our approach

into an early warning system, able to provide real-time mortality prediction is

worth exploring as well.
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Appendix A

Glossary

Activation function In Neural Networks, a mathematical function that defines the

output of a neuron.

AIDS Acquired Immuno-Deficiency Syndrome, a chronic viral disease that targets the

human immune system.

Area Under the Receiver Operating Characteristic Curve A classification metric

that represents the probability that a classifier will assign a higher score to an

randomly chosen instance of the positive class than to a randomly chosen instance

of the negative class.

Batch Normalization A Machine Learning technique that speeds up the training

process by enforcing the normalization of the output of every hidden layer in a

neural network.

Bicarbonate Byproduct of body metabolism, it is exhaled as carbon dioxide by the

lungs.

Bilirubin Byproduct of the breakdown of red cells.

Bun Blood Urea Nitrogen, a bio-marker related to kidney.

Creatinine Waste product produced by the muscles of the body.

Cross-validation A resampling technique to estimate the out-of sample performance
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of Machine Learning models when a test set is not available.

Dopamine A type of hormone and neurotransmitter.

Dropout A regularization technique widely used for Deep Neural Network fitting

where connections inside the networks are zeroed randomly at training time.

Empirical distribution Probability distribution derived from an observed dataset.

Epinephrine Hormone and neurotransmitter produced by the adrenal glands.

Feed-forward architecture A type of Neural Network that does not have feedback

loops.

First order logic An extension to propositional logic that admits the use of variables

and quantifiers.

FiO2 Fraction of inspired oxygen, the fraction of oxygen present in a gas being

inspired.

Game theory Study and modeling of interactions between rational decision makers.

Glasgow Coma Scale A scoring system to quantify the level of consciousness of a

person following traumatic brain injury.

ICD-9 International Classification of Diseases version 9, a system of assigning codes

to diagnoses and medical procedures inside hospitals.

Intensive Care Unit Special hospital facility that provides critical care medicine.

Interpretability The degree to which the decisions made by a Machine Learning

model can be made sense of by humans.

Jupyter Notebook Application that allows the creation of executable files called

notebooks, that combine code, visualizations and narrative text.

Kernel Density Estimation Non-parametric probability density estimation procedure.

Length of Stay Time spent by a in-patient in a healthcare facility.

Lymphoma A type of cancer of the blood.

Matplotlib A Python visualization and graphics library.

Misspecification Situation in which a statistical model posited by a researcher does
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not correspond to the ’true’ model being sought.

Neural Network A class of Machine Learning loosely inspired by the central nervous

system of vertebrates.

Norepinephrine A type of hormone and neurotransmitter.

Numpy A Python library for fast array manipulation.

Overfitting A detrimental state of Machine Learning models in which the training set

has been fit excessively well, leading to bad performance in the training set.

Pandas A Python data analysis library.

Arterial pH Measure of acidity (amount of hydrogen ions) of the blood.

PO2 Partial pressure of oxygen, the amount of oxygen gas dissolved in the blood.

Precision healthcare Approach to medicine in which the individual variability of

each patient is taken into account to tailor treatment.

Principal Component Analysis A dimensionality reduction technique that transforms

a dataset to a new coordinate system of fewer dimensions, while retaining most

of the variability in the original data.

Prior Short for prior belief or prior probability distribution.

Propositional logic A branch of logic that deals with statements, the relationships

between them and their truth values.

Rectified Linear Unit (ReLU) A type of non-linear activation function, widely used

in Deep Learning models.

Recurrent Neural Network A specialized type of Neural Network that uses feed-

back loops to deal with temporal

Regularization A technique in Machine Learning to control overfitting.

Sensitivity Also known as Recall, the fraction of actual positives correctly identified

by a classifier.

Specificity The fraction of actual negatives correctly identified by a classifier.

Underfitting A detrimental state of Machine Learning models in which the training
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set has not been fit sufficiently well.

White cell Blood Count Concentration of white blood cells. White blood cells are

specialized cells that help the body fight infections. dependencies in the input.



Appendix B

Library Usage

B.1 ISeeU

B.1.1 Visualize patient data

1 from iseeu import ISeeU

2 import numpy as np

3 #patient data must be stored in a numpy array

4 patient = np.load(’patient.npy’)

5 patient.shape

6 #(1, 22, 48)

7 predictor = ISeeU()

8 predictor.visualize_patient_scores(patient_tensor=patient

↪ )

9 #see figure B.1

B.1.2 Predict patient mortality

1 prediction, scores = predictor.predict(patient)
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Figure B.1: Visualizing patient data with ISeeU.

2 print(prediction)

3 print(scores.shape)

4 #0.576449

5 #(22, 48)

B.1.3 Visualize feature importances

1 predictor.visualize_patient_scores(patient_tensor=patient

↪ , importance_scores=scores)

2 #see figure B.2

3 predictor.visualize_evidence(importance_scores=scores)

4 #see figure B.3
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Figure B.2: Visualizing predictor evidence by hour with ISeeU.

Figure B.3: Visualizing aggregated evidence with ISeeU.
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B.2 ISeeU2

B.2.1 Predict patient mortality

1 from iseeu2 import ISeeU2

2 patient_sequences = predictor.preprocess_notes(

↪ patient_notes)

3 mortality, scores = predictor.predict(patient_sequences)

4 print(prediction)

5 print(scores[0].shape)

6 #0.09

7 #(1, 500)

B.2.2 Visualize feature importances

1 predictor.get_word_clouds(patient_sequences[0],

↪ shapley_values[0][0])

2 #see figure B.4

3 html_convolved = predictor.get_note_heatmap(

↪ patient_sequences[0], shapley_values[0][0], convolve

↪ =True)

4 from IPython.core.display import HTML

5 HTML(html)

6 #see figure B.5
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Figure B.4: Word clouds generated by ISeeU2.

Figure B.5: Text heatmap generated by ISeeU2.
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