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ABSTRACT
Predicting vibrations of composite structures such as double-leaf plates is difficult because of the large number of
components. In the low and high frequency ranges, the components may be homogenized, so that a structure becomes
simple enough to be mathematically and computationally tractable. However the vibrations in the mid-frequency range
cannot be predicted using such methods because the wavelengths are comparable to the size of the components and
junctions between components. In this paper a double-leaf plate is modelled using the Kirchhoff plate and Euler beam
theories. The elastic moduli and junctions are allowed to be inhomogeneous. These inhomogeneities are simulated as
smooth random functions rather than discrete random numbers. The random functions are incorporated into the model
using the variational formulation. Response of the plates are studied with various parameters.

INTRODUCTION

This paper shows how to compute vibrations of rectangular
elastic plates with inhomogeneous rigidity. The elastic plates
here include a single plate with various random stiffness distri-
butions and a double-leaf plate (DLP) with irregular junctions
between the plates and the reinforcement beams. Figures 1
and 2 show simple depictions of the structures studied in this
paper. Numerical simulations will be used to study the varia-
tions of the fundamental frequencies of the single-plate when
the plate has different kinds of random rigidity. The DLP will
be studied using the same randomness in addition to the ran-
domness in the junctions. The displacement of the two plates
will be computed, and then the transmission loss between the
two plates will be studied.

Some elastic plates with random material properties such as
rigidity or density have been studied using the theory of ran-
dom matrices. In order to use random matrix theory, a random
parameter must give a stiffness matrix that has independent-
identically distributed random variables as its elements. The
random matrix theory can be rather technical and it usually
deals with distributions of whole eigenvalues of very large ma-
trices, whose elements are identical independent random val-
ues. In this paper the stiffness matrices are small because of
the finite size and the simple rectangular shape of the plates.
Furthermore the elements the matrix are correlated because
the rigidity here can have auto-correlation over the plates and
beams. Figure 1 shows an example of discrete random rigidity
distributed over the grid on the plate. The rigidity Dpg is a ran-
dom variable with some probability density function (PDF).
It is simple to run numerical experiments to confirm that the
eigenvalues or the fundamental frequencies are normally dis-
tributed when Dpq has either a uniformly or a normally dis-
tributed PDF. However the distribution of the fundamental fre-
quencies behaves differently when the rigidity varies smoothly
over the plate with smooth power spectral density.

The number of components in a DLP, which have to be con-
nected in some ways, makes it difficult to construct mathe-
matical model of DLPs. Although DLPs are mathematically
difficult to deal with, they are attractive in real-life. DLPs have
high strength-to-weight ratio, and are used in many lightweight
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Figure 1. Depiction of the randomly distributed rigidity.

constructions. However DLPs usually have poorer sound insu-
lation performance than single-layer heavy plates of equivalent
thickness. A difficulty of modelling a DLP is that components
interact in complex and unpredictable ways. There are various
methods of joining the two component, such as nails and glue,
which are difficult to represent mathematically. An often used
modelling method is the finite element method (FEM), which
requires detailed descriptions of the junction between a plate
and a beam, e.g., nail’s reaction to forces and effects on the sur-
rounding components. In this paper the junctions are modelled
by the amount of energy required for any particular way of de-
formation of the neighbouring components. In other words,
the amount of energy at a junction will be large (or small) if
the bonding is strong (or weak).

In the next section the displacement of the plates is found us-
ing the Fourier expansion of the solution, which is possible
here because of the rectangular shape of the DLP. The Fourier
expansion method requires less computation than FEM. Fur-
thermore the conditions at the junctions, which must be func-
tions of spatial variable(s), can also be included in the varia-
tional formulation as the Fourier expansion. This reduces the
computation time. These reductions of computation time lead
to faster Monte-Carlo simulations using the random functions
for the parameters, which are elasticity modulus of the plates
and junction rigidities. It may be computationally impossible
to use the FEM to perform thousands of Monte-Carlo simula-
tions over a wide frequency range without a super computer.
Whereas all results shown here are produced using MatLab on
an average desktop PC.
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Deterministic models of plates-and-beams can predict the vi-
brations of DLPs of various types as shown in, for example
(Brunskog, 2005; Chung and Emms, 2008; Mace, 1980a,b,c;
Wang et al., 2005). These papers have also shown shortcom-
ings of deterministic models at higher frequencies. There have
been studies of more idealized models, such as periodically
reinforced plate (beam) of infinite extent, or infinite plates
(beams) with slightly randomized stiffeners. As an alternative
to the FEM, the statistical energy analysis (SEA) has been de-
veloped and used often to study the wave propagation through
complex structures. A well used textbook on the subject may
be (Lyon, 1975). In the SEA, a structure is divided into sub-
systems that interact with their neighbouring systems. Two
neighbouring subsystems are related by a loss factor, which is
determined either from experiments or theoretical modelling.
In (Craik, 2000a,b), various types of junctions of DLPs are
considered, and experimental measurements and theoretical
predictions are compared. SEA can predict the high frequency
surface vibration. Some argument against using the SEA in the
low-to-mid-frequency range is given in (Fahy, 1994). An ex-
ample of SEA’s unsuitability in predicting energy propagation
in a DLP is given in (Brunskog and Chung, 2011). The SEA
would be a suitable tool for the vibrations of the frequency
range studied in this paper.

One can find variations in vibrations of composite structures
that are apparently identical. The discrepancy may come from
the manufacturing inconsistencies or random inhomogeneities
in the components themselves. The unpredictability of the vi-
brations of composite structures have been known for many
years (see (Hodges and Woodhouse, 1986)), and modelled us-
ing various methods, such as perturbation, scattering, asymp-
totic methods. All of these methods assume the irregularities in
the structure to be small compared to the wavelengths. This is
not true for most engineered products, whose components have
the similar dimensions to the wavelengths at mid frequencies.
The random rigidities of the plates and the junctions here are
not limited to small values.

The random parameters that are studied in this paper are rigid-
ity of the plates and the junctions. The random parameters
are simulated as continuous smooth random functions (or pro-
cess) over the length and/or the width of the DLP. The realiza-
tions of the random functions are computed using the predeter-
mined power spectral density (PSD) and PDF. The method of
simulating such random functions (or processes) are borrowed
from the researches in the signal processing community (Kay,
2010). Although it is theoretically possible to generate random
functions with any PDF and PSD, the functions in this paper
are limited to Gaussian distribution for simplicity. The ques-
tion of any dependence on (or lack of them) the PDF and the
PSD of the inhomogeneities is still open.

MODELLING AND MATHEMATICAL FORMULA-
TION

The method of solutions comes directly from Hamilton’s prin-
ciple for elastic plates (see (Shames and Dym, 1991)). The
Lagrangian for the plate is derived from the kinetic and strain
energies of the plate as it vibrates. Hamilton’s principle states
that when there is an external force that causes the plate to
vibrate the total energy (Lagrangian) of the plate satisfies the
following equation for the first variation of the time integral of
the Lagrangian.

δ
(1)
∫ t2

t1
(T −V −U ) dt = 0 (1)

where T , V are the kinetic and strain energies and U is the
work done to the plate by the external force. For simplicity the
simple harmonic oscillation of a thin plate is considered here.
Thus the solution, the vertical displacement of the mid-plane
of the plate, is given by the real function Re

[
w(x,y)eiωt],

where ω = 2πα is the radial frequency for the frequency α in
Hz. Then mathematical formulations can be simplified for the
function w(x,y) because of the linearity of the thin-plate the-
ory. The time integral in Equation (1) is now unnecessary. The
displacement w(x,y) will be defined for (x,y) ∈ [0,A]× [0,B],
which is the size of the rectangular plate here. Hence the terms
in the integral are completely determined by the vertical dis-
placement of the plate. The derivation of the solution that sat-
isfies Equation (1) will be shown in the following.

The strain energy and kinetic energy of a plate with non-
moving boundaries are

V =
1
2

∫ A

0

∫ B

0
D(x,y)

∣∣∣∇2w(x,y)
∣∣∣2 dxdy (2)

T =
ρhω2

2

∫ A

0

∫ B

0
|w(x,y)|2 dxdy (3)

where D(x,y) = E(x,y)h3/
(
12
(
1−ν2)) is the flexural rigid-

ity, and h, E, and ν are the plate thickness, Young’s modulus
and Poisson’s ratio, respectively. Note that the effects of rota-
tion are neglected in T . The work done to the plate is given
by the following integral when the external force is distributed
over the plate by the function p(x,y).

U =
∫ A

0

∫ B

0
p(x,y)w(x,y)dxdy (4)

Some readers may be more familiar with the following partial
differential equation for the displacement resulting from the
equation of motion derived from Equation (1).

∇
2
(

D(x,y)∇2w(x,y)
)
−ω

2
ρhw(x,y) = p(x,y)

The above equation can be useful when an analytical solution
can be considered. In this paper, the integral form is used be-
cause of the irregular structural properties requires a numerical
solution method.

Double-leaf plates

An additional plate joined by parallel reinforcement beams can
be included in the modelling using the same variational formu-
lation. The additional components’ strain and kinetic energies
can be included in the integral form in Equation (3). The junc-
tions between components may also be treated as an additional
energy contribution due to the constraint in the movement of
the components. Thus this model does not consider the plates
and the beams to be simply sitting on top of each other. Figure
2 shows the modelling regime for the DLP.

The displacements of the top and the bottom plates are denoted
by w1(x,y) and w3(x,y), respectively. The displacements of
the beams are denoted by w2(x, j), where j = 1,2, ...,S indi-
cates jth beam located at y = y j. Note that the beams here are
assumed to be always in contact with the plates. It is possi-
ble to add more degrees of freedom to the beams as shown in
(Chung, 2012), though only the lateral slippage between the
plates and the beams is considered here. The kinetic and the
strain energies of the plates have the same formulas as Equa-
tion (3) for w3.
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Figure 2. Depiction of the DLP model. As the plates the beam
bend, there is some slippage along the junction as shown in the
drawing on the right.

The beams will be modelled using the Euler beam theory. Thus
the strain and kinetic energy contributions from the beams are

V2 =
1
2

S

∑
j=1

∫ A

0
D2
∣∣w′′2(x, j)

∣∣2 dx, (5)

T2 =
ρ2h2ω2

2

S

∑
j=1

∫ A

0
|w2(x, j)|2 dx (6)

where D2 is the rigidity of the beam and ρ2 and h2 are the
mass density per unit length and the thickness of the beam,
respectively. Note that the primes on w2 indicate the second
derivative with respect to x. Here D2 is assumed to constant
and calculated using the formula D2 = E2h3

2l/12, where E2,
h2 and l are the Young’s modulus, vertical depth and horizon-
tal width of the beam. All beams are assumed to be identical.
Again the following partial differential equation for the dis-
placement of an Euler beam may be more familiar.

D2
d4w2

dx4 (x, j)−ω
2
ρ2h2w2(x, j) = p1(x)− p3(x) (7)

for j = 1,2, ...,S where p1 and p3 are the forces from the top
and the bottom plates, respectively. It is assumed that the plates
and the beams are in constant contact, and thus the conditions
are w1(x,y j) = w2(x, j) = w3(x,y j).

One can include the energy contributions from the junctions
between the plates and the beams due to the discrepancy in
the displacement of the two components (see Figure 2). This
discrepancy is called the slippage. The energy contribution
from the junctions is given by

P1,2 =
1
2

S

∑
j=1

∫ A

0
σ j (x)

∣∣h1w′1
(
x,y j

)
+h2w′2 (x, j)

∣∣2 dx (8)

where σ is the Hooke’s constants (though it is a function of
x) for resistance for the slippage at the junction. Note that the
amount of slippage is the sum of the lateral displacement of the
two plate because the lateral displacement of a thin plate (and
beam) is determined solely by the vertical displacement of the
mid-plane. Hence the respective surfaces of the plate and the
beam move in the opposite direction as the plate and the beam
bend. The above equation can be simplified using the contact
condition. Then the energy is

P1,2 =
h̃2

2

S

∑
j=1

∫ A

0
σ j (x)

∣∣w′1 (x,y j
)∣∣2 dx (9)

where h̃ = h1 + h2. The contribution from the beams and the
bottom plate have the same formula except that the notation is
P2,3 with the displacement functions w2 and w3. Finally the
modified variational form from Equation (1) is then given by

δ
(1) [T +P1,2 +P2,3−V −U

]
= 0 (10)

Now the terms T and V are the sum of all kinetic and strain
energies of the plates and the beams.

Fourier series solution

The method of solution used for equation (10) in this paper is
the Fourier expansion method because of the rectangular shape
of the structure. The displacement w(x,y) can be expressed
as products of Fourier modes in the x and y directions. Fur-
thermore the boundary of the plate is assumed to be simply
supported. Thus the basis functions are sine-functions, which
further simplifies the derivation of the solution. Different ba-
sis functions must be chosen when the boundary conditions
are different. There are a few example sets of basis functions
shown in (Shames and Dym, 1991) for free or clamped bound-
aries. Whatever the basis functions may be, a linear system of
equations for the coefficients of the expansion will need to be
derived and solved. Hence the method of solution shown here
will be applicable. This section will show the derivation for
the DLP because the single plate case is a simpler version of
the DLP.

The displacement of the top plate can be expressed by

w1(x,y) =
N

∑
m,n,=1

C(1)
mn φm(x)ψn(y) (11)

and the beams by

w2(x, j) =
N

∑
m=1

C(2)
m j φm(x) j = 1,2, ...,S, (12)

where the basis functions are

φm(x) =
√

2/Asinkmx, ψn(y) =
√

2/Bsinκny (13)

The series for the bottom plate w3 is same as Equation (11)
except the sub- and super-scripts are changed from 1 to 3. The
wavenumbers are given by km = πm/A and κn = πn/B. Note
that the basis functions are orthonormal. The positions of the
joists are given by y = y j, j = 1,2, ...,S. The equations for the

coefficients {C(1)
mn ,C

(2)
m j ,C

(3)
mn} are derived by substituting the

series expansions into Eqs. (3), (6), (8) and then into Equa-
tion (10). Note that the number of terms in the series has al-
ready been truncated to N to construct the finite system for the
numerical computation.

The terms in Equation (10) can be expressed using the column
vectors of the coefficients, which are

c1 =
(

C(1)
11 ,C(1)

21 , · · · ,C(1)
NN

)T

c2 =
(

C(2)
11 ,C(2)

21 , · · · ,C(2)
NS

)T

c3 =
(

C(3)
11 ,C(3)

21 , · · · ,C(3)
NN

)T

or simply denoted by the column vector c = (c1,c2,c3). The
superscript ‘T’ denotes the vector transpose. The variational
formulation then becomes

δ
(1)
{

1
2

ctLc−ptc
}
= 0 (14)
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where L is the matrix from the integrals and p is the vector
of the external forcing and the super-script t indicates the vec-
tor transpose. The elements of p are given by the integral in
Equation (4),∫ A

0

∫ B

0
p(x,y)φm(x)ψn(y)dxdy (15)

for m,n = 1,2, ...,N with zero padding for the parts corre-
sponding to c2 and c3 and thus the bottom N2+N×S elements
are zero. In the numerical computations, the forcing will be
set to be a point forcing, that is, p(x,y) = δ (x− x0,y− y0) for
some fixed point (x0,y0), and thus the integrals are unneces-
sary. The coefficients are then found by solving the normal
equation of Equation (14),

Lc = p (16)

Contact conditions between the plates and the
beams

The irregularity in the contact between the plates and the
beams can be included by changing the function σ(x, j) in
Equation (9). Substituting the Fourier series expansion for the
displacements w1 and w2 into Equation (9) gives

P1,2 =
1
2

S

∑
j=1

∫ A

0
σ (x, j)

∣∣∣∣∣h1

N

∑
m,n=1

kmC(1)
mn ϕm(x)ψn(y j)

+h2

N

∑
m=1

kmC(2)
m j ϕm(x)

∣∣∣∣∣
2

dx (17)

where ϕm(x) =
√

2/Acoskmx. The above integral can be sep-

arated into the terms that involving the pairs
(

C(1)
mn ,C

(1)∗
mn

)
,(

C(2)
m j ,C

(2)∗
mn

)
, and

(
C(1)

mn ,C
(2)∗
m j

)
, where ∗ indicates the com-

plex conjugate. The contribution from the junctions are

P1,2 =
1
2

S

∑
j=1

N

∑
m,n,

m′,n′=1

h2
1C(1)

mnC(1)∗
m′n′ψn(y j)ψn′(y j)Jmm′

+
1
2

S

∑
j=1

N

∑
m,m′=1

h2
2C(2)

m j C(2)∗
m′ j Jmm′

+Re
S

∑
j=1

N

∑
m,m′,
n=1

h1h2C(1)
mnC(2)∗

m′ j ψn(y j)Jmm′

where

Jmm′ = kmkm′

∫ A

0
σ(x, j)ϕm(x)ϕm′(x)dx (18)

The above integrals and summations can be rewritten using the
vectors c1 and c2 and a matrix denoted by Lσ ,

P1,2 =
1
2

(
c1
c2

)t
[

Lσ
1 Lσ

1,2
Lσ

2,1 Lσ
2

](
c1
c2

)
(19)

Note that Lσ
1,2 =

(
Lσ

2,1

)∗
. The matrices Lσ ’s will be a part

of the matrix L in Equation (14). Finally the linear system can
be assembled from the energy contributions from all individual
components (Equation (19)). L1 +Lσ

2 Lσ
1,2 0

Lσ
2,1 L2 +Lσ

2 Lσ
2,3

0 Lσ
3,2 L3 +Lσ

3


 c1

c2
c3

= p

The zero parts come from the fact that the effects of the cavity
air is neglected, and thus there is no direct interaction between
the top and the bottom plates.

NUMERICAL COMPUTATION OF SOLUTIONS

Simulating random functions

The previous sections have shown how the inhomogeneous
rigidity and junctions can be included in the model. This sec-
tion shows how to generate random numbers and functions for
these parameters. A simple discrete case is considered when
the plate is divided into the grid as shown in Figure 1 with a
constant rigidity {Dpq}p=1,...,P,q=1,...,Q, assigned for each grid.
These sets of random numbers are assumed to be independent
and have an identical PDF. Hence the values for Dpq can sim-
ply be generated using a random number generator on a com-
puter.

In addition to the discrete rigidity, continuous smooth func-
tions for the rigidity and the slippage are also tested. In other
words, the rigidity D(x,y) in Equation (3) can be rewritten to
have a constant part and a zeros-mean random part. The rigid-
ity is

D(x,y) = D+d(x,y) (20)

where D is the average rigidity and d(x,y) is the random devi-
ation. The slippage resistance function can also be expressed
with the average and random deviation parts,

σ j(x) = σ +S(x) (21)

Note that the index j is omitted because the resistance for all
beams will be randomized in the same way. These functions
must be simulated with some PDF and PSD. A 1-dimensional
random function (process) S(x) is considered first. A parame-
ter function with any PDF can be simulated using the method
given in (Kay, 2010). However here only the Gaussian density
function will used. When the PSD of the parameter function
is given by PS( f ), the realizations of S(x) with PDF pS(x) are
derived by the following procedures. The following derivation
is virtually identical to that of (Kay, 2010), and repeated here
to keep this paper self-contained.

The methods of generating continuous smooth random func-
tions have been studied by the signal processing community
for many years (see (Grigoriu, 1998; Shinozuka, 1971)). Here
the random functions are simulated using the method given in
(Kay, 2010), in which a stationary random process is simulated
using a prescribed PDF and PSD. As an example, the Gaussian
distribution is used for the prescribed PDF here. There are two
reasons for the choice of Gaussian distribution. First, the com-
putation of normally distributed random functions is simple.
Second, the author has not been able to find any measurements
of the PDF of stiffness of timber products and their junctions,
which are the components that make up the DLP here.

Let S(x) be a random function (or random process) for the spa-
tial variable 0 ≤ x ≤ A. It is assumed that S(x) has the proba-
bility p(S ≤ s) and the PDF pS(s) at any x ∈ [0,A]. The PDF
pS(s) is assumed to be identical for any x. In other words S(x)
is a stationary process. It is further assumed that S(x) can be
expressed by

S(x) =

√
2
M

M

∑
i=1

Qi cos(2πFix+Φi) (22)
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where Qi, Fi, and Φi are the random variables with some prob-
ability densities. Here M needs to be sufficiently large, and is
set to 100. The above series makes the mean of S(x) zero for
all x ∈ [0,A]. The procedure given in (Kay, 2010) is followed
to formulate the PDFs for Qi, Fi, and Φi.

First, the amplitudes {Qi} are assumed to be independent and
identically distributed (i.i.d) random variable with PDF de-
noted by pQ(q) for q > 0. The phases {Φi} are also assumed
to be i.i.d and their PDF is given by the uniform distribution in
[−π,π]. The frequencies {Fi} are i.i.d with the marginal first
order continuous PDF denoted by pF ( f ) for 0≤ f ≤V/2.

The PDF of Fi and the PSD of S(x) denoted by PS( f ) are re-
lated by the formula

pF (| f |) =
2

E
[
Q2
]PS( f ) (23)

Setting the variance of S to be ν2 gives E
[
Q2]= ν2. The PSD

function PS( f ) here is chosen to be simple bell shaped, for
example, PS( f ) = K exp

(
−( f −δ )2/2µ2), where K, δ , and µ

will be varied to simulate effects of changing parameters. An
example is shown in Figure 4(left).

The characteristic function of the random function S(x) is
given by

ψS(γ) = E
[
eiγS
]

=

[∫
∞

0
pQ(q)J0

(
γq√
M/2

)
dq

]M

(24)

where J0 is the Bessel function of the first kind of order zero.
The PDF for Q is related to the characteristic function of S(x)
by

pQ(q) = q
∫

∞

0

(
ψS(v

√
M/2)

)1/M
J0(qv)vdv

which is the inverse Hankel transform. For the Gaussian
parameter, the characteristic function is given by ψS(γ) =
exp
(
−ν2γ2/2

)
. Hence the inverse Hankel transform gives the

following PDF of the amplitude

pQ(q) = q
∫

∞

0

(
exp
(
−Mν2

4
v2
))1/M

J0(qv)vdv

The above integral has the closed form, which is

pQ(q) =
2q
ν2 exp

(
− q2

ν2

)
(25)

This is a Rayleigh PDF, which can be simulated from the two
Gaussian random variables. For example, when the variance
is ν2 = 2, then the amplitudes are simulated by U1 ∼N (0,1)

and U2 ∼N (0,1), then Q ∼
√

U2
1 +U2

2 . The slippage func-
tion S(x) will be generated using the distribution shown in Fig-
ure 3 and the PSD in Figure 4(left). The standard deviation of
the distribution will be set to be 10% of the average slippage
resistance constant 3× 107 Nm−1. This average value comes
from the experimental measurements in (Chung and Emms,
2008) for the junction between a plywood panel and a timber
joist.

The random rigidity function d(x,y) can be similarly simulated
using the expansion

d(x,y) =

√
2
M

M

∑
i=1

Qi cos(2πFix+2πGiy+Φi)
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Figure 3. The PDF of S(x). The target PDF is shown in dotted
line.

where the coefficients
{

Qi j
}

are random variables with the
Rayleigh distribution, and Φi and Ψ j are uniformly distributed
random values in [−π,π]. The frequencies Fi and G j are also
generated from Equation (23) and Equation (24). In order to
prove that the above expression correctly simulates the random
realization in 2-dimensional space with the correct PSD and
PDF, one needs to extend the derivation given in (Kay, 2010),
which is beyond the scope of this paper. Instead only the sim-
ulated realizations are numerically confirmed here. Again the
PSD of d1 (and d3) is chosen to be a simple bell shaped func-
tion. An example is shown in Figure 4(right). In the numerical
simulations, the standard deviation of the rigidity of the plates
d1(x,y) and d3(x,y) will be set to be 10% of the average stiff-
ness of the plates in the following section.
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Figure 4. Examples of PSDs for the 1 and 2 dimensional ran-
dom functions

Parameters for the computations

The number of terms for the Fourier expansion was set to be
N = 20. All computation results are produced using MatLab
on a standard desktop PC. The parameters for the beams and
the plates are chosen from the well used values for plywood
and timber beams, E1 = E3 = 1010 Pa, E2 = 1.4× 1010 Pa,
m1 = m2 = m3 = 500 kgm−3, A = 1.5 m, B = 2.5 m, h1 =
h3 =0.015 m, h2 =0.1 m, ν =0.3, y j = jB/6, j = 1,2, ...,5,
and the width of the beams is 0.05m. The damping is not
considered. The average slippage constant is 3× 107 Nm−1,
which was determined from the experiments in (Chung and
Emms, 2008). The location of the forcing is (1.07,1.67) with
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f0 = 1000 N. The range of the frequency is from 1 Hz to 1000
Hz with 0.5 Hz intervals.

Eigenvalue analysis

For the single-plate cases, analysing the natural frequencies of
the random plate lets one compare the effects of the random
rigidity. The three cases of random rigidities are considered
here. First, Dpq ∼ U(−1,1), i.e., Dpq has the uniform PDF
in [−1,1]. Second, Dpq ∼N (0,1), i.e., Dpq has the Gaussian
PDF with zeros mean and the standard deviation of 1. For these
two cases {Dpq} are assumed to be uncorrelated. Third, d(x,y)
at any (x,y) has the independent identical Gaussian probability
density function, and the function d has the bell-shaped power
spectral density function over (x,y) ∈ [0,A]× [0,B].

Figure 5 shows the mean fundamental frequencies αn, n =
1,2, ...,100 and their variance computed from the eigenvalues
of the stiffness matrix. The mean of αn is computed for the
discrete and smooth rigidities. The PDFs of the discrete rigid-
ity made little difference, whereas the smooth rigidity diverges
as the frequency increases. The amount of variance of the fun-
damental frequencies increases linearly for both uniformly and
normally distributed rigidity as n increases. The smooth rigid-
ity gives larger variance compared to the discrete cases when
the standard deviation is the same 10% of the average rigidity.
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Figure 5. On the left, the mean of the fundamental frequencies
for the discrete (solid) and the smooth (dashed) random rigidi-
ties. On the right, the standard deviation of the fundamental
frequencies for uniformly distributed (dotted), normally dis-
tributed (dashed) and the smooth (solid) random rigidities. The
standard deviation of all three cases is 10% of the average
rigidity D.

Figure 6 shows the PDFs of α50 for the uniform, normal and
smooth rigidities. The other {αn} had the similar distribu-
tion. The fundamental frequency due to the discrete rigidities
is normally distributed. Whereas α50 due to the smooth ran-
dom rigidity has a skewed distribution. A set of examples are
shown in Figure 6. The skewness (always negative) increases
as n increases.

Figures 7 and 8 show the fundamental frequencies when
the slippage σ j and the stiffness d1 and d3 are random-
ized. Because of the multiple components, there are more
fundamental frequencies than the single-plate case. The
mean fundamental frequencies shows no difference be-
tween the two random functions. However, the slippage
affects the fundamental frequencies more than the rigid-
ity. In both cases, the deviation does not grow linearly
as the single-plate case shown in Figure 5. The differ-
ence in the effects of the slippage and the rigidity is also
shown in the transmission-loss studies in the next section.
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Figure 6. The PDF of 50th fundamental frequency for the
uniform distribution (right), normal distribution (center) and
smooth rigidity (right).

20 40 60 80 100 120 140 160 180 200

200

400

600

800

1000

1200

1400

n

α
n
(H

z)

Figure 7. The mean of the fundamental freqeuncies of the
DLP.
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Figure 8. The standard deviation of the fundamental freqeun-
cies when slippage is randomized (left) and the rigidity of the
plates is randomized (right).

Transmission-loss analysis

This section shows the behaviour of the DLP using the
transmission-loss (TL) between the top plate and the bottom
one. The root-mean-square velocity (RMSV) of the plates are
computed from the displacement w1 and w3, and then the TL
of the DLP for various cases of random parameters are com-
pared. The TL in this case is a simple log-ratio between the
RMSV of the top and the bottom plates.

The linearity of the system leads to the velocity of the plate
by v1(x,y) = iωw1(x,y) (or i2παw1(x,y)) and same for v3.
Hence the RMSV can be computed by√

〈|v|2〉= 1√
AB

[∫ B

0

∫ A

0
ω

2 |w(x,y)|2 dxdy
]1/2

The above integral can be obtained using the simple Riemann
sum once the displacement w1(x,y) and w3(x,y) have been
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computed. Here the TL is defined as the energy-loss ratio
that occurs as the vibration travels from one plate to the other
plate in an surface averaged sense. The usual calculation of the
transmission loss includes the ratio of the mass densities of the
plates and requires the plates to be homogeneous, which is not
the case here. The term ‘TL’ is used for its convenience. The
TL is a function of frequency α , which is computed by

T L(α) = log10

[√
〈|v1|2〉

/√
〈|v3|2〉

]
(26)

Note that the mass density of the two plates are equal here.
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Figure 9. The mean of the TL (top). The variance of the TL
when the slippage alone is randomized (top second), rigidity
alone is randomized (top third) and both the slippage and the
rigidities are randomized (bottom).

Here two cases are considered when the slippage alone is ran-
domized and both the slippage and the rigidity (both the top
and the bottom plates) are randomized. The standard deviation
of the slippage S(x) in Equation (21) is set to be 30% of the
average slippage constant σ . The random rigidities d1(x,y)
and d3(x,y) are the same as before, which are set at 10% of
the average rigidity. The TL and the variance of the TL are
shown in Figure 9. The mean of the TL changed little regard-
less of the randomization, and thus the smoothness of the rigid-
ity made no difference to the mean TL. The variance of the
surface velocity itself was much smaller than the single-plate
cases shown in the previous section. The variance of the TL
increases as the random rigidity is introduced the DLP, though
the variance has appreciable values mostly at the maxima of
TL. The random rigidity affects the TL over a wider frequency
range than the random slippage does.

SUMMARY

The simulations of the vibration of elastic plates with random
parameters have been carried out using the variational princi-
ple and the Fourier series expansion method. A single plate
and a DLP have been considered. For the single plate, dis-
crete and smooth rigidities are used to simulate their effects
on the fundamental frequencies. The smooth rigidity gives
larger variations in the fundamental frequencies than the dis-
crete ones. Furthermore the distribution of the fundamental
frequencies is skewed when the smooth rigidity is used. On

the other hand, the discrete rigidities give normally distributed
fundamental frequencies. The model for the DLP includes the
inhomogeneous junctions between the beams and the plates.
The random slippage and the random rigidity are simulated
from a pre-assigned PDF at each location and a PSD over ei-
ther the beam or the plate. The TL is then used to study the
effects of the randomness. The computational cost of comput-
ing the whole displacement and the average velocity is kept
small using the Fourier series solutions and the variational for-
mulation. The simulations of the eigenvalues and the TL show
that the random d1(x,y) (and d3) affects the DLP much less
than it does the single plate. The mean of the TL remains the
same regardless of the varying randomness in the slippage and
the rigidity. The slippage affects narrower range of frequencies
than the rigidity does.

REFERENCES

Brunskog, J 2005, ‘The influence of finite cavities on the sound
insulation of double-plate structures’, Journal of the Acous-
tical Society of America, vol. 117, no. 6, pp. 3727–3739.

Brunskog, J & Chung, H 2011, ‘Non-diffuseness of vibration
fields in ribbed plates’, Journal of the Acoustical Society of
America, vol. 129, no. 3, pp. 1336–1343.

Chung, H 2012, ‘Vibration field of a double-leaf plate with
random parameter functions’, Acoustics Australia, vol. 40,
no. 3, pp. 203–210.

Chung, H & Emms, G 2008, ‘Fourier series solutions to the
vibration of rectangular lightweight floor/ceiling structures’,
Acta Acustica United With Acustica vol. 94, no. 3, pp. 401–
409.

Craik, R 2000, ‘Sound transmission through double leaf
lightweight partitions. Part I: airborne sound’, Applied
Acoustics, vol. 61, pp. 223–245.

Craik, R 2000, ‘Sound transmission through double leaf
lightweight partitions. Part II: structure-borne sound’, Ap-
plied Acoustics, vol. 61, pp. 247–269.

Fahy, F 1994, ‘Statistical energy analysis: A critical
overview’, Philosophical Transactions of the Royal So-
ciety of London. Series A: Physical and Engineering Sci-
ences, vol. 346, no. 1681, pp. 431–447.

Grigoriu, M 1998, ‘Simulation of stationary non-gaussian
translation processes’, Journal of engineering mechan-
ics, vo. 124, no. 2, pp. 121–126.

Hodges, C & Woodhouse, J 1986, ‘Theories of noise and vi-
bration transmission in complex structures’, Reports On
Progress In Physics vol. 49, no. 2, pp. 107–170.

Kay, S 2010, ‘Representation and generation of non-Gaussian
wide-sense stationary random process with arbitrary PSDs
and a class of PDFs’, IEEE Trans. Signal Process-
ing, vol. 58, no. 7, pp. 3448–3458.

Lyon, R 1975, Statistical energy analysis of dynamical sys-
tems: theory and applications, New York: MIT Press.

Mace, B 1980, ‘Periodically stiffened fluid-loaded plates, I:
Response to convected harmonic pressure and free wave
propagation’, Journal of Sound and Vibration, vol. 73, no. 4,
pp. 473–486.

Mace, B 1980, ‘Periodically stiffened fluid loaded plates, II:
Response to line and point forces’, Journal of Sound and
Vibration, vol. 73, no. 4, pp. 487–504.

Mace, B 1980, ‘Sound radiation from a plate reinforced by
two sets of parallel stiffeners’, Journal of Sound and Vibra-
tion, vol. 71, no. 3, pp. 435–441.

Shames, I & Dym, C 1991, Energy and finite element methods

Australian Acoustical Society 7



Proceedings of Acoustics 2013 – Victor Harbor 17-20 November 2013, Victor Harbor, Australia

in structural mechanics (SI units ed ed.). New York: Taylor
& Francis.

Shinozuka, M 1971, ‘Simulation of multivariate and multidi-
mensional random process’, Journal of the Acoustical Soci-
ety of America, vol. 49, no. 1, pp. 357–368.

Wang, J & Lu, T & Woodhouse, J & Langley, R & Evans,
J 2005, ‘Sound transmission through lightweight double-
leaf partitions: theoretical modelling’, Journal of sound and
vibration, vol. 286, no. 4, pp. 817–847.

8 Australian Acoustical Society


