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Abstract New approaches for data provenance and data management (DPDM) are
required for mega science projects like the Square Kilometer Array, characterized by
extremely large data volume and intense data rates, therefore demanding innovative
and highly efficient computational paradigms. In this context, we explore a stream-
computing approach with the emphasis on the use of accelerators. In particular,
we make use of a new generation of high performance stream-based parallelization
middleware known as InfoSphere Streams. Its viability for managing and ensuring
interoperability and integrity of signal processing data pipelines is demonstrated in
radio astronomy.

IBM InfoSphere Streams embraces the stream-computing paradigm. It is a shift
from conventional data mining techniques (involving analysis of existing data from
databases) towards real-time analytic processing. We discuss using InfoSphere
Streams for effective DPDM in radio astronomy and propose a way in which Info-
Sphere Streams can be utilized for large antennae arrays. We present a case-study:
the InfoSphere Streams implementation of an autocorrelating spectrometer, and us-
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ing this example we discuss the advantages of the stream-computing approach and
the utilization of hardware accelerators.

1 Introduction

Started in the 1930s, radio astronomy has produced some of the greatest discoveries
and technology innovations of the 20th century. One of these innovations – radio
interferometry and aperture synthesis – was awarded a Nobel Prize for Physics in
1974 (Martin Ryle and Antony Hewish, 1974). An aperture synthesis radio telescope
consists of multiple receiving elements in an array that observe the same radiating
source(s) simultaneously. Essentially, an array of radio telescopes is used to emulate
a much large telescope with size that of the diameter of the array, enabling a better
angular resolution of the radio source(s) to be obtained. While angular resolution
is determined by the array diameter, another important characteristic is telescope
sensitivity, which is determined by its collecting area. The Square Kilometer Array
(SKA) will be an aperture synthesis radio telescope, scheduled for completion in the
2020s, that will combine both factors, resolution and sensitivity. The total SKA col-
lecting area of one square kilometer (106 m2) will provide sensitivity that is 50-100
times higher than that of the best current radio telescope arrays. Its high angular res-
olution will be provided by distributing the square kilometer of collecting area into
many stations that are spread out on a continental scale (with the baseline between
some antennae over 3000 km).

A radio telescope antenna element detects electromagnetic waves by a current
induced in an antenna receiver system. This can be measured as a voltage s i(t) at
receiver i that is sampled and digitized at regular times t. Whereas a single receiver
can measure the source brightness I(d) in a specific direction d, a pair of receivers
i, j separated by a baseline vector B i j can be used as an interferometer to measure the
difference in phase between the signals si and s j due to the time delay τi j = Bi j ·d/c
between the received signals as illustrated in Figure 1.

The time delay τi j can be roughly approximated by the geometry of the antennae
relative to the source direction (provided by an Ephemerides service), and more
precisely determined by the resulting interference pattern in the cross-correlation
between the signals:

(si � s j)(τ) =
∫ ∞

−∞
si(t)s j(t + τ)dt.

The value Vi j = (si � s j)(τi j) is termed a visibility and gives a source brightness
measurement at a (u,v) point in the Fourier domain determined by the baseline B i j

for that pair of antennae. An array of n antennae has n(n−1)
2 baselines (one per pair of

antennae) and so n(n−1)
2 visibilities can be obtained. However, if readings are taken

over an interval of hours then each baseline changes over time due to the rotation
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Fig. 1 Two-element interferometer

of the Earth. Hence, over time the baselines sweep out elliptical arcs in the Fourier
plane, illustrated in Figure 2.

The Fourier domain coverage of an array is the combination of the (u,v) tracks
from all baselines provided by the array. It shows where the array samples the
Fourier transform of the source image. For high quality imaging, it is desirable
to have the best possible coverage of the Fourier domain, which is effectively the
telescope aperture. A perfect source brightness distribution (the image of the radio
source) could be obtained simply by taking the inverse Fourier transform if all (u,v)
points in the Fourier domain were able to be measured, but this is never the case.
A deconvolution process such as Clean or Maximum Entropy used in any modern
interferometer imaging can be thought of as a scheme for interpolating or extrapo-
lating from the measured (u,v) points to all other points in the (u,v) plane [1].
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Fig. 2 A uv-plot shown for the VLBI array in Australia and New Zealand, including Australian
Long Baseline Array (five radio telescopes), Warkworth (New Zealand), ASKAP (Western Aus-
tralia) and AuScope antennas in Katherine and Yarragadee. The uv-plot results in 36×2 baseline
tracks for a 4 hour observation, 21-cm wavelength and common source declination of −70◦ [2].

Measuring the signals from all n antennae over a period of hours results in an
enormous dataset for a large array and its processing is a very compute intensive
problem. Figure 3 shows the operations that are performed in an array on the digi-
tized signals in a simplified pipeline from raw data through to analyzed data prod-
ucts. Computational power required for these operations can be very significant,
particularly for the Correlation operation which calculates the visibility Vi j for each

of the n(n−1)
2 baselines at each time t via cross-correlations. It also performs an

autocorrelation of each signal as discussed in Section 4, which together with the
visibilities forms the datacube for the array at time t.

It is estimated that LOFAR with its 36 antennae stations can produce over 100
TB/day [3]. For the SKA which will eventually have about 3000 antennae dishes,
the data will increase by at least 5 orders of magnitude [4]. Such a huge amount
of data places very high processing demands and requires a special approach to the
overall organization of how data are processed and stored. It is only feasible to store
the digitized raw signals required for calculating data cubes for small arrays and is
limited to measurements taken over short time periods; in all other cases the data
storage requirements are too large to be practical.

In the next section we introduce the stream computing paradigm and how IBM’s
InfoSphere Streams data management middleware utilizes this paradigm. In Sec-
tion 2 we describe how InfoSphere Streams can be applied to the operational facets
of large radio astronomy telescope arrays to handle the enormous data volumes
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and compute intensive operations. In Section 4 we consider an actual InfoSphere
Streams application that performs streaming autocorrelations of actual radio astro-
nomical observations.

2 IBM InfoSphere Streams and the Stream-Computing
Paradigm

With the vast expansion of data volumes generated in the current information age,
there has been a paradigm shift in data management toward the processing of
streaming data. Stream computing differs from traditional computing in that real-
time data is processed on the fly by relatively static queries that continuously execute
during the lifetime of an application, instead of the data being considered relatively
static and all queries being short lived. This is illustrated in Figure 4.

DataQueries Results

(a)

QueriesData Results

(b)

Fig. 4 (a) Traditional computing techniques versus (b) stream-computing paradigm [5]

In May 2010 IBM released InfoSphere Streams or Streams. Streams is the result
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of several year’s research conducted by the exploratory stream processing systems
group at the IBM T.J. Watson Center. It is a data stream management system mid-
dleware designed to ingest, filter, analyze and correlate enormous amounts of data
streaming from any number of data sources. Streams is designed to facilitate a rapid
response to changing environments leveraging the stream computing paradigm. It
has the following objectives [6]:

• Scale using a variety of hardware architectures as demand for processing power
changes.

• Provide a platform for handling data streams that is responsive to dynamic user
requirements, changing data, and system resource availability.

• Incremental tasking for changing data schemes and types.
• Secure transmission of data streams at all system levels, along with comprehen-

sive auditing of the execution environment.

In the remainder of this paper, we focus on Streams version 1.2 1 which was the
platform used in our exploration.

2.1 InfoSphere Streams terminology and concepts

Streams is designed to be highly scalable, so it can be deployed on a single node or
on thousands of computing nodes that may have various hardware architectures. The
stream processing core distributed runtime environment executes numerous long
running queries, which Streams refers to as jobs [5]. A job can be represented by
a data-flow graph. Each vertex in the graph represents a processing element that
transforms the data, and each connecting edge is a data stream, as illustrated in Fig-
ure 5.

Stream processing elements provide running statistics on their operation. These
statistics are utilized by the stream processing core to dynamically optimize job per-
formance by distributing the load and allocating suitable resources for executing
each job [7]. Note that a processing element that maps to an underlying computing
resource may be changed dynamically by the stream processing core according to
load distribution.

The following is a brief description of the stream processing core’s main archi-
tectural components [8], which is also illustrated in Figure 6:

• Dataflow Graph Manager
The dataflow graph manager is responsible for the data stream links between the
processing elements. Its primary function is to manage the specifications of the
input and output ports.

• Data Fabric
The data fabric provides the distributed facet of the stream processing. It is made

1 The current version is 2.0 with similar philosophy but with changes in the programming language
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Fig. 5 Stream processing core executes numerous long running queries referred to as jobs, which
are represented by data-flow graphs [5]
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Fig. 6 Stream processing core distributed runtime environment [9]

up of a set of daemons that run on each available computing node. The data fab-
ric uses the data stream link specification information from the data-flow graph
manager to establish connections between the processing elements and the under-
lying available computing nodes to transport stream data objects from producer
elements to consumer elements.

• Processing Element Execution Container
The processing element execution container provides the runtime environment
and access to the Streams middleware. Furthermore, it also acts as a security
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fence preventing applications that are running on the processing elements from
corrupting the middleware as well as each other.

• Resource Manager
The resource manager facilitates system analytics by collecting runtime infor-
mation from the data fabric daemons and the processing element execution con-
tainers. The analytics information is used to optimize the operation of the entire
system.

There are three different ways that users and developers can utilize Streams to
process streaming data [10]:

• Inquiry Services Planner
This level is designed for users with little or no programming experience. The
inquiry services planner gives user access to a collection of predefined process-
ing elements that generate underlying data-flow graphs (behind the scenes the
planner generates SPADE applications).

• Stream Processing Application Declarative Engine (SPADE)
SPADE is an intermediate declarative language that enables the construction of
data-flow graphs from predefined and custom stream operators.

• Streams API and the Eclipse Plug-in
This is designed for experienced developers who use programming languages
such as C++ or Java to implement stream applications that run on the processing
elements using the Streams API. Development can be facilitated by using a plug-
in available for Eclipse.

2.2 Data streaming applications with SPADE

Constructing a distributed stream processing application can be a complex process.
The following considerations need to be made:

• What data stream transform operations must be developed. Transform operations
are the building blocks that are combined together to ingest, process, analyze and
produce the desired output data stream.

• How the data stream transform operations can be mapped efficiently to dis-
tributed computing resources.

• The interconnections, network protocols, scheduling and synchronization of op-
erations between the available computing resources.

SPADE is designed to deal with these considerations so that programmers can focus
on the design of a distributed stream processing application. Using SPADE they can
avoid having to develop transform operators as well as face deployment issues that
vary depending on the availability of computing resources, network infrastructure
and specific technologies [9]. SPADE fulfills its design objectives by collaborat-
ing with the stream processing core to provide a dynamic runtime code generation
framework capable of achieving scalability and performance through automatic de-
ployment and optimization. This is illustrated in Figure 7.
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Fig. 7 SPADE’s code generation framework [9]

The source code of a SPADE application is structured into five main parts:

• Application Meta Information
This part contains the application name and optionally the debug/trace level.

• Type Definitions
In this part the name-spaces and aliases used by the application are declared.

• External Libraries
References to external libraries and header files that contain custom user defined
operations are declared in this part. This part is optional.

• Node Pools
In this part pools of computing nodes can be optionally declared. This part is
optional since the SPADE compiler can interact with the resource manager to
discover available computing node resources.

• Program Body
This is the part where the actual SPADE application is written. In SPADE,
streams are considered first class objects where the order of execution is fully
characterized by the resulting data streams.

The SPADE language offers the following relational stream operators, used to
construct long-running queries:
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• Functor
A functor operator is used to carry out tuple level operations such as filtering,
projection, mapping, attribute creation and transformation. A Functor can also
access tuples that have appeared earlier in the input stream.

• Aggregate
An aggregate operator facilitates grouping of input stream tuples. Tuples can be
grouped in a variety of ways.

• Join
The join operator is used for combining two streams in a variety of ways.

• Sort
The sort operator is used to order tuples.

• Barrier
The barrier operator is used for stream synchronization. It accepts tuples from
multiple input streams and only starts to output tuples when it has received a
tuple from each input stream.

• Punctor
A punctor operator is somewhat similar to a functor operator. The difference
between the two is that a punctor operator performs tuple level operations on the
current tuple or tuples that have appeared earlier based on punctuations inserted
in the data stream.

• Split
A split operator is used to pass input stream tuples to multiple output streams
based on specified user conditions.

• Delay
The delay operator allows a time interval to be specified for delaying a data
stream.

• Edge Adapters
Edge adapters are stream operators that function on the boundaries of the SPADE
application. They allow a SPADE application to obtain and provide streamed data
to applications and entities that are external to the system. There are two types of
edge adapter operators:

– A source operator is used to create an incoming data stream of tuples from
external data sources.

– A sink operator is used to convert tuples to a format suitable for applications
and entities that are external to the system, such as a file system, database, or
external application.

• User Defined Operators (UDOPs)
SPADE allows external libraries to be utilized within the SPADE application.
Functionality of existing operators can also be extended using UDOPs. UDOPs
are developed in C++ or Java using the Streams Eclipse plug-in. UDOPs can be
used to port legacy code from other data management platforms into the Streams
platform. Furthermore, UDOPs can be used to wrap external libraries from other
systems so they can be interfaced with the Streams platform.
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• User Defined Built-in Operators (UBOPs)
Although UBOPs allow users to define customized operators they are restricted
to the scope of the SPADE application that declares them. On the other hand once
defined UBOPs become part of the SPADE language and essentially available for
use with any SPADE application.

SPADE also offers advanced features to extend its capabilities and provide a
richer platform for data stream application developers.

• Matrices, Lists and Vectorized Operations
Lists and matrices plus the capability to carry out operations on them is a core
fundamental feature in many applications such as signal processing, computer
graphics, data mining and pattern classification. SPADE offers native support for
list and matrix data types as well as vectorized operations which operate on them.
Lists or matrices can be created either from external sources via the source op-
erator, functor or punctor operators can be used to create lists or matrices from
incoming tuples, or the aggregate operator can create lists or matrices from multi-
ple tuple streams. Many of the SPADE built-in functions are capable of handling
matrix, list and scalar type attributes.

• Flexible Windowing Schemes
SPADE supports general windowing mechanisms such as sliding and tumbling
windows. SPADE takes these mechanisms further by allowing more sophisti-
cated windowing mechanisms. As an example, an operator can accumulate tuples
in a window to hold prior to processing. When a punctuation symbol is received,
a processing operation is triggered on tuples currently contained in the window,
such as averaging or summing the tuples, and then the window is made to tumble
or slide.

• Per-group Aggregates and Joins
Per-group aggregates and joins are designed to cut the number of computations
required for operating on a large number of tuple groups. SPADE has the ability
to define distinct groupings within a window, so that when a trigger is received
an aggregate or join operation can be applied to the entire window or distinct
groups within the current window.

2.3 Deploying SPADE applications and performance optimization

Discovering the exact optimal mapping (deployment) of a parallelized computer
program to loosely coupled (gridded) computing resources is an NP-hard problem
[11]. However, heuristics techniques can be used as a practical means for determin-
ing an acceptable approximation to an optimal mapping [12]. These heuristics can
be improved over time by collecting running statistics that monitor the utilization
and performance of computing and network resources.

A SPADE application is a parallelized computer program since it consists of
many operators working in parallel towards achieving a common task. InfoSphere
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Streams approaches optimization of mapping a SPADE program to its underlying
computing and network resources in two stages. First, how operators are logically
combined (fused) into processing elements, and second how processing elements
are assigned to physical computing nodes [13].

Info Sphere Streams uses a profiling framework that repeatedly maps processing
elements to physical nodes, collects statics and makes necessary remapping adjust-
ments. At the same time the fusion optimizer uses the collected statics along with a
greedy algorithmic technique to fuse operators into single processing elements.

3 Utilizing InfoSphere Streams to Address Large Antennae
Array Software Architecture

One of the characteristics of radio astronomy is that it often involves very large
volumes of data, particularly when an array of radio telescopes is used for radio
interferometry to obtain greater angular resolution of a celestial object. It also has
involved many ad-hoc techniques for processing and managing the data.

For instance, the Australian Square Kilometre Array Pathfinder (ASKAP) is a
CSIRO-led radio telescope array currently under development at the Murchison ra-
dio astronomy observatory. It will consist of 36 antennae, each with a phased array
feed that supplies 1.9 Tbps of data and requires 27 Tflops processing to extract
a beam visibility. Correlating the resulting 0.6 Tbps data from each antenna is esti-
mated to require 340 Tflops and provide 8 Gbps results for further analysis. ASKAP
will have the following the architectural components as given in Fig. 8, which il-
lustrates components required to control and manage the data pipeline in a radio
telescope array [14]:

Antenna Operations: includes positioning an antenna and setting data acquisition
parameters such as sampling rate, bit resolution and filter bank configuration.

Central Processor: correlates the beam visibility data and performs further anal-
ysis such as image synthesis or spectral line work.

Array Executive System: responsible for coordinating an observation by the array.
Monitoring Archiver: archives monitoring data generated by the system.
Logging: responsible for logging messages generated by the system.
Data Service: responsible for managing the database storage.
Alarm Management System: manages alarm conditions such as failures.
RFI Mitigation Service: identifies potential sources of radio frequency interfer-

ence in the received signals.
Ephemerides Service: calculates the positions of celestial objects.
Operator Display: a user interface for system control and monitoring.
Observation Preparation Tool: facilitates the setup and pre-planning of observa-

tions.
Observation Scheduler: generates schedules for the execution of observations by

the Executive System.
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Although initially InfoSphere Streams has primarily been applied to the analysis
of financial markets, the healthcare sector, manufacturing, and traffic management,
it is also suited for managing a radio astronomy pipeline. In particular, the ASKAP
architecture in Fig. 8 provides a high level abstracted view of how that data pipeline
will look like within the ASKAP system. That data pipeline could be instantiated
with minimal design effort into streams operators graph, making the transformation
of the data in the pipeline transparent. It also allows for the mapping of stream
operators to processing elements to be dynamically reconfigurable, important for
system scalability, optimizations, and fault tolerance. In fact most of the described
architectural components would benefit from these features.

One straightforward scenario for a streams software design mapping the ASKAP
architecture is to implement two core main streams instances. The first instance runs
at the front-end close to the antennae and is responsible for data conditioning, RFI
mitigation, and visibility production. The second instance runs at the central pro-
cessing unit, and is responsible, among others tasks, for generating images from the
visibilities. These two Streams applications could communicate through the Streams
middleware services and implement a fast, real-time processing scheme for manag-
ing the data from its acquisition all the way through to the analyzed data products.

Other streams jobs could run on the central processing unit. One such job could
be responsible for logging, archiving and storage using sink operators. Another
could communicate with the scheduling system and send control signals for co-
ordination.
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3.1 Data provenance and management capabilities

Radio astronomical artifacts such as visibilities can be characterized by the obser-
vation schedule, station configuration, along with the recording and processing per-
formed on the sampled receiver voltages. This metadata describes how an artifact
has resulted from an observation and so provides important provenance informa-
tion. The common provenance standard for VLBI is the VLBI EXperiment (VEX)
format. A VEX file provides a complete description of a VLBI experiment from the
scheduling and data capture through to the correlations that result in a data cube. It
is designed to be independent of any data acquisition and correlator hardware and
to accommodate new equipment, recording and correlation modes [15]. Every VEX
file starts with a line identifying the file type and VEX version, and is followed by a
number of separate blocks, currently classified as either:

• Primitive blocks which define low-level station, source, and recording parame-
ters, such as antenna configuration and clock synchronization.

• Global block which specifies general experiment parameters.
• Station and mode blocks which define keywords that combined with the global

parameters provide a detailed configuration for an observation at a station.
• Sched block which specifies an ordered list of observations to perform.

For a steady-state radio source the VEX file allows a VLBI experiment to be repro-
duced, which can be valuable in large arrays where it is impractical to store the huge
volumes of raw data. For transient or micro-lensing observations [16, 17] the VEX
file provides a basic audit trail for verifying the origins of the experimental results.

However, data provenance practices are less standard for stages after correlation
processing. Correlated data can be analyzed in a variety of way, such as for image
synthesis or to obtain the power spectral density, and there are not yet standard
formats for defining how the resulting data artifacts are produced. The development
of a set of provenance standards will be essential for the SKA to ensure the origins
of the large number of artifacts produced and for automating their generation.

A radio astronomy system such as ASKAP should be able to provide the follow-
ing characteristics for managing data:

• Adequate end-to-end throughput not hindered by latency due to the processing
elements.

• Intermediate storage capabilities (persistence) to be able to store data summaries
in a storage of choice, such as a database or file.

• High availability: the system should be able to work reliably and if failure occurs,
data recovery services should be available to avoid important and critical loss of
data.

In Streams, adequate throughput can be achieved by a proper architecting of the
operators’ graph (the graph illustrating how processing elements are linked together
to form an application) and by an optimal assignment of processing elements to
nodes. This process can only be done on an application-by-application basis. IBM



DPDM in Radio Astronomy: A Stream Computing Approach 15

InfoSphere Streams facilitates the design and optimization of such a graph. Opti-
mizations can be done at compile time, such as those related to the placement of
processing elements into nodes or the fusion of processing elements into operators,
or at run-time, such as when some nodes get overloaded. Compile-time optimiza-
tion is efficient when workload and underlying resources are static. Offline profiling
of system characteristics prior to deployment is also available, in which case a first
pass (prior to deployment) can provide statistics on the data throughput and a sec-
ond pass (on-deployment) uses those statistics to optimize operators placement and
determine when fusion of processing elements should occur.

Data storage can be achieved by use of sink operators capable of storing data to
a file, database, or url port. In addition, the software supports user-developed sink
operators, useful for custom-based storage needed when sending data to specialized
storage recipients.

High availability can be achieved at the middleware level, the application level,
and the operator level. At the middleware level, various services are provided to
restart a job (potentially on a different node or hardware), replicate name servers
across multiple nodes, and monitor activities by writing log files to transactional
storage recipients. At the application-level (data processing level), Streams provides
checkpointing and automatic restart of processing elements in case of failure. It has
tools to provide partial fault tolerance when data loss is a critical issue by means of
state persistence capability (the capability to save the state of an operator and restore
it).

3.2 Some applications of Streams in radio astronomy

There are several examples where Streams has been utilized in the area of radio
astronomy and space science.

A space weather monitoring system was developed through joint work by LOIS
and IBM Research [18]. It is known that the high-rate, large-volume of near-Earth
space data generated by various satellites (such as those of the European Space
Agency) is a serious challenge for standard techniques for space weather data moni-
toring and forecasting. In particular, mining these data in a store-and-process system
is not amenable. Streams software was used in [18] to develop a real-time streaming
application that measures the intensity, polarization and direction of arrival for sig-
nals in the 10 kHz and 100 MHz frequency bands, and on-the-fly generated signal
summaries that could be used for space weather forecasting and prevision.

A streaming version of the convolution resampling algorithm was developed by
IBM and CSIRO [19] as a prototype imaging application in the Central Processor of
ASKAP as described earlier. The version of the algorithm implemented was the w-
projection algorithm, which included a CPU intensive gridding step (the process of
mapping visibility coordinates into a power of 2 grid). That study showed the flexi-
bility of the streaming software by describing various implementations of streaming
scenarios resulting in significant improvements in gridding time.
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The next section describes a stream-based autocorrelation approach developed
using Streams for data received from a single radio telescope.

4 Implementing a Stream-Centric Autocorrelation Data Pipeline
& Utilizing Hardware Accelerators

Cross correlation is a fundamental tool in radio astronomy since it helps with iden-
tifying repeating patterns obscured by the predominant random noise content of
extraterrestrial signals. As these signals are mostly composed of random noise they
can be characterized as stationary stochastic processes where the mean and variance
do not change over time.

An autocorrelation is the cross correlation of a signal with itself. Autocorrelation
is mainly used for single antenna applications and calibration of individual arrayed
antennae. Implementing autocorrelation requires less effort since only one signal is
considered and therefore no time delays are required. As a consequence of its rel-
ative simplicity implementing an autocorrelation pipeline is a logical starting point
for constructing a basic cross correlation pipeline for radio astronomy signal pro-
cessing.

4.1 Autocorrelation and the power spectral density in radio
astronomy

If voltage samples s(t) are obtained from an antenna the energy spectral density
E( f ) of the incident electromagnetic waves can be determined. The energy spectral
density is the energy carried by the incident waves per unit frequency f , which is
given by the Fourier transform:

E( f ) =

∣∣∣∣
∫ ∞

−∞
s(t)e−2π i f t dt

∣∣∣∣
2

.

However, s(t) is a stationary signal and is not square integrable so its Fourier trans-
form does not exist. Instead the Wiener-Khinchin theorem is applied to obtain the
power spectral density (PSD) of the voltage signal from the autocorrelation function
r(τ):

r(τ) =< s(t)s(t − τ)> .

The Wiener-Khinchin theorem states that the PSD P( f ) of the signal s(t) is the
Fourier transform of the autocorrelation function r(τ):

P( f ) =
∫ ∞

−∞
r(τ)e−2π i f t dt.



DPDM in Radio Astronomy: A Stream Computing Approach 17

The PSD P( f ) is the power carried by the incident waves per unit frequency f .

Fourier Transform

Absolute Value
Squared

Autocorrelation

Fourier Transform

v(t)
(Voltage in time)

V(f)
(Voltage in frequency)

R(τ)
(Autocorrelation in time delay)

φ(f)
(Power in frequency)

Fig. 9 Relation between voltage in time and frequency domains with the autocorrelation function
and power spectral density [20]

From Figure 9 the PSD can be obtained by either performing an FX or XF
correlation. An FX correlation is a Fourier transform followed by element-wise
multiplication. An XF correlation is a cross multiplication followed by a Fourier
transform. FX style correlation is preferred for software implementations since it
involves fewer multiplications [21].

4.2 Implementing a PSD pipeline as a stream based application

Analogue voltage signals on the antenna receiver are sampled and digitized by an
analogue to digital converter. The digitized real value data (2-16 bit digitization)
are then streamed in real-time into an FX style pipeline to produce the power spec-
tral density (PSD) of the signal. The FX PSD pipeline illustrated in Figure 10 is
comprised of the following steps:

• Collect digitized signal data into chunks whose size is determined by the amount
of data optimally processed together in the pipeline.

• Channelize each chunk to obtain frequency domain data by applying a Fast
Fourier Transform to obtain single-precision float complex value data chunks.

• Obtain the autocorrelation of the data in the frequency domain by multiplying
each complex value in a chunk by its complex conjugate.

• Integrate and average the data chunks over time to obtain a best PSD estimate of
the signal.
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Fig. 10 FX PSD pipeline data flow

The final stage plays an important role in improving the signal to noise ratio,
hopefully allowing buried coherent signals of interest to emerge from the predomi-
nantly random noise polluted signal.

The entire pipeline can be viewed as a parallel program where each stage of the
pipeline is an independent task. As data flow through the pipeline each stage oper-
ates on the data concurrently. Since the auto-correlation pipeline can be decomposed
into independent stages the pipeline can be easily defined as a Streams application
with appropriate SPADE operators.

Compute intensive tasks can be delegated to specialist hardware accelerators
such as GPUs, PowerCell CPUs or FPGAs. Delegating tasks to various comput-
ing architectures demonstrates Stream’s capabilities to construct and deploy paral-
lel programs to heterogeneous computing clusters. For the PSD pipeline the most
compute intensive task is the Fourier transform, and will be assigned to a hardware
accelerator for processing.

The SPADE application makes use of virtual streams for predefining the various
tuple data structures, known as a tuple’s schema, that are utilized by its underlying
stream operators. Virtual streams contribute towards ease of programming as well
as understandability of the tuple structure flowing between stream operators. The
PSD SPADE application declares the following virtual streams:

RawData(data:ShortList) defines the schema used for creating tuples
arising from ingesting and parsing real value integer radio astronomy antenna
data. The bit resolution used to digitize the antenna analogue signal may vary
from as low as 2 bits up to 16 bits according to the recording system and type
of observation. Essentially, using a ShortList data type satisfies the bit-level
representation requirements for most radio astronomy recording formats.

RawDataChunk(acceleratorID:Integer, schemaFor(RawData))
defines the structure for a data chunk designated to a specific accelerator server
for channelization.

ChannelData(real:FloatList, imag:FloatList) defines the struc-
ture for channelized data chunks that have been channelized by an accelerator
server.

PowerSpectrumData(psd:FloatList) defines the structure for tuples
containing PSD data. This virtual stream’s schema is used by several operators
for producing the different integration stages of the PSD.

Altogether the autocorrelation spectrometer SPADE application uses seven dis-
tinct stream operators. The number of actual operators depends on the number of
accelerators utilized for channelization and integration stages. Figure 11 shows the
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data flow graph for the SPADE PSD application (see Appendix for SPADE code
listing).

Functor Functor

AggregateSource SinkSplit

UDOP

Functor FunctorUDOP

Fig. 11 FX PSD pipeline data flow graph and SPADE operators

The first stream operator in the application is a Source operator which ingests
digitized unsigned integers from the signal. The data are parsed by this operator
according to the format used to digitize and pack samples. The Source operator
builds a tuple according to the RawDataChunk virtual stream schema, reading
into the ShortList data tuple attribute. Each RawDataChunk tuple is assigned
to an accelerator server by assigning a positive integer to the acceleratorID
tuple attribute. The number of tokens contained in the data attribute is given by the
size and number of FFTs to be performed by the channelization stage. A positive
integer value between 0 and the total number of accelerators utilized is assigned to
the acceleratorID attribute in a round robin fashion.

Tuples resulting from a Source operator are ingested by a Split operator. Essen-
tially the Split operator is a multiplexed stream. Each sub-stream in the multiplex
stream carries RawDataChunk tuples according to their respective identifier. Ef-
fectively the Split enables RawDataChunk tuples to be fanned out to several ac-
celerators.

The Streams Processing Core may not be supported on a particular accelerator
architecture, so one way around is to use a UDOP. To enable asynchronous commu-
nication with the accelerator server multi-threaded UDOPs (MTUDOP) are adopted
by the SPADE application. An MTUDOP facilitates uncoupling the processes of re-
ceiving and transmitting tuples. For further versatility the UDOP uses configuration
switches so that the same UDOP can be reused.

The MTUDOP uses three switches allowing the SPADE application to configure
its operation with respect to which accelerator will be used for processing as well as
the communication mode for incoming and outgoing data. During the initialization
phase the MTUDOP extracts configuration information from the switch operators
and establishes incoming and outgoing connections.

Once the connections have been made to a specific accelerator the MTUDOP
runs two processes:

• The input tuple process ingests tuples transmitted by a specific Split operator
sub-stream. The ingested tuples are converted to floats since software implemen-
tations for Fourier transforms require this. Following that some byte reordering
may be necessary depending on the architecture of the accelerator. Once the type



20 M.S. Mahmoud, A. Ensor, A. Biem, B. Elmegreen & S. Gulyaev

conversion and byte reordering are accomplished the data are sent to the acceler-
ator for channelization.

• The output tuple process receives data from the accelerator. Similarly to the
previous process, received data may need byte reordering. The ChannelData
schema is used to define the outgoing tuple structure. The channelized data chunk
received from the accelerator arrives in interleaved complex number format, and
so real and imaginary parts are separated into two FloatList data types. One
FloatList represented by the tuple attribute real holds real values and the
other FloatList represented by the tuple attribute imag holds imaginary val-
ues.

ChannelData produced by the MTUDOP are ingested by a Functor operator
responsible for computing the instantaneous PSD values, multiplying each complex
number by its complex conjugate to produce a real value. The resulting real values
are defined by the PowerSpectrumData virtual stream schema.

Each PowerSpectrumData tuple arising from the first Functor operator con-
tains data for several FFT problems, so the second Functor operator integrates those
results. Effectively the second Functor integrates multiple FFT problems contained
in a single data chunk. To accomplish integration within a data chunk the sec-
ond Functor operator uses customized user-defined logic. Integrations within a data
chunk are performed using a Slice operation that helps with extracting the result of
each FFT problem for summing and averaging. Summing and averaging produces a
FloatList and so the same PowerSpectrumData schema is used to represent
the resultant tuples.

PowerSpectrumData tuples from the second Functor operator are then inte-
grated with an Aggregate operator. The aggregation count is specified by the SPADE
application. Fundamentally the aggregation count is the required integration time.
The longer the integration time, that is the higher the aggregation count, the better
the signal to noise ratio.

Integrated power spectral density tuples produced by the Aggregate operator and
defined by the PowerSpectrumData schema are ingested by a Sink operator.
The Sink operator may either write the integrated PSD strips to disk or possibly
stream them over the network for deeper analysis or visualization.

4.3 Using accelerators (heterogeneous computing)

An accelerator is intended to provide specialized accelerated computing services to
assist with handling compute intensive operations. The objective for utilizing ac-
celerators is to enable real-time data management operations especially for areas
that involve processing large amounts of data. An important consideration that must
be made when using a particular accelerator hardware is the use of its unique per-
formance primitives and libraries. Neglecting this consideration in many cases will
lead to ineffective utilization of the accelerator’s intensive computing capabilities.
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The SPADE PSD application described previously is designed to function with
any type of accelerator. At the time of implementation the PowerCell CPU accelera-
tor was available. In this subsection we describe how the compute intensive Fourier
transform was implemented on the PowerCell CPU using its unique performance
primitives and libraries.

The Fourier transform service is provided by an implementation of the discrete
Fast Fourier Transform (FFT) on a PowerCell QS22 Blade Server. The QS22 Blade
Server comprises of two PowerCell CPUs. Each PowerCell CPU comprises of nine
cores; one 64 bit duo-core PowerPC processor and eight 128 bit RISC processors.

The FFT server program is a multi-threaded application that executes the follow-
ing four threads:

• Applications main thread; responsible for initializing the FFT memory buffers
working area as well as starting the receiving, processing and sending threads.
After initialization the main thread blocks until the application is terminated.

• The receiving thread creates a server socket and listens for a single client connec-
tion. Once a sender client connects, the FFT Server receives data chunks contain-
ing multiple FFT blocks. Each data chunk is written to a specific buffer, which is
then flagged to indicate that it is ready for processing.

• The processing thread performs a real to complex FFT on memory buffers that
have been flagged as fully received by the receiver thread. Consequently since
the FFT is real to complex then ultimately the same amount of data received will
be the same amount sent. The FFT is accomplished using all 16 SPU cores on a
QS22, hence the reason why a single data chunk contains multiple FFT blocks.
Once a single data chunk contained in a given buffer has been processed it is then
flagged by the processor thread to indicate that the results are ready for sending.

• The sending thread sends the contents of memory buffers that have been flagged
as processed. Memory buffers that have been sent are flagged to indicate that the
buffer can be reused for receiving.

The application makes use of a multi-buffering scheme for allowing the receiving,
processing and sending threads to operate in an asynchronous fashion. The threads
operate asynchronously as long as there are buffers available. Any contribution to-
wards asynchronous operation between concurrent threads reduces blocking thereby
contributing to a gain in overall performance. Nevertheless mitigating concurrency
between thread access to each individual buffer is still required, and this is accom-
plished via a two-phase locking mechanism. The processing thread makes use of
the SDK for Multicore Acceleration FFT library to efficiently compute a large num-
ber of FFT problems in parallel. The FFT library achieves significant computational
performance gains by exploiting the PowerCell CPU’s vectorized SIMD capabilities
utilizing two main approaches:

• Striping across vector registers
The SPE’s architecture is 128-bit hence its underlying Synergistic Processing
Unit (SPU) registers can be considered as vector registers. In the case of this
implementation the FFTs are performed using 32 bit (single-precision) floating
point values. A single SPU register can therefore hold four individual 32-bit floats



22 M.S. Mahmoud, A. Ensor, A. Biem, B. Elmegreen & S. Gulyaev

and operate on the entire vector of floats using a single instruction. When per-
forming FFT operations rather than loading four values from one FFT problem,
four values are loaded from four problems. This technique is known as striping
multiple problems across a single register. Striping values from four problems
across a register enables these problems to be accomplished in unison, and the
code used for indexing and twiddle calculations can be reused [22].
The FFT algorithm makes extensive use of compute intensive trigonometric
mathematical operations. Fortunately the SIMD Math Library contains vector-
ized versions of common mathematical operations. Utilizing vectorized math
operations along with data stripping across vector registers dramatically reduces
the frequency of their usage. However data striping values across vector registers
is limited since it requires all the values from the FFT problems to be present in
the SPU’s LS, which has maximum capacity of only 256 kB. Hence data striping
across vectors is limited to small point size FFT problems.

• Vector synthesis
To accommodate the memory bound limitations imposed by a SPU’s LS, SPU
shuffle operations can rearrange a large set of FFT problems residing in main
memory into vector form prior to DMA transfer to the SPUs. This rearrangement
of scalar FFT problem values into vector form is known as vector synthesis, and
is illustrated in Figure 12. Subsequently, once the SPUs complete FFT computa-
tions of the large set of problems, the vectorized values must be rearranged back
into scalar form. Naturally the rearrangement of a large data set of FFT problems
into vectors then back to scalars does incur a computational expense. However
since the large data set is prepared for vectorized trigonometric operations then
the gains made in reducing the amount of computational intensive trigonomet-
ric operations greatly outweigh the costs incurred by vector synthesis operations
[22, 23].

Scalar data

Vector data

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Fig. 12 Scalar versus vector data arrangement in a contiguous block of main memory [22]
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To gain further significant performance speed-ups (of almost 10 times) on the
Cell B.E. architecture, the implementation uses the huge translation lookaside buffer
(TLB) file system. Huge TLB page files allocate large pages (16 MB per page)
of contiguous memory. Utilizing huge page files reduces the TLB miss rate and
consequently leads to a gain in performance. The data chunk size mentioned in
Section 4.2 was set to 16 MB to fully utilize an entire huge TLB page.

4.4 Testing the SPADE PSD application

The SPADE PSD application was tested using network streamed data from the AUT
University 12m radio telescope located at Warkworth in New Zealand. An IBM
Blade Center holding x86 HS12 and dual-PowerCell QS22 blades was used to run
the application. The HS12 blade was used to execute the SPADE PSD application.
As the PowerCell FFT library is limited to a maximum size of 8192 points (for real
to imaginary number FFT transforms) each huge TLB page could accommodate 512
FFT problems.

Test data were sampled by the radio telescope from the European Space Agency
Mars Express Orbiter at 60 MHz (32 MHz bandwidth due to Nyquist criterion) using
8-bit digitization. The resulting power spectral density is illustrated in Figure 13.
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Fig. 13 Plot of the PSD results obtained from a 40 second observation of the ESA Mars Express
spacecraft conducted by the AUT 12m radio telescope

The overall shape of the distribution is dictated by the specific telescope and its
receiving system. This shape was also determined independently using a hardware
spectrum analyzer to verify the correctness of the PSD application. Of particular
interest in the spectrum was the 8420.4321 MHz signal detected by the application
which was being emitted by the orbiter at the time of the test.
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On average the application took 8 ms to autocorrelate 512 FFT problems of size
8192 with a just single accelerator, a performance of 30 Gflops. Although greater
performance could also be achieved by either using an FFT implementation tuned
for the specific size or by utilizing more accelerators, the application could already
handle 524 MHz sampling from a single antenna. However, careful attention must
be paid to the networking layers in order to utilize the potential power of any ac-
celerator. During initial testing the QS22 blade accelerators utilized TCP over full
duplex Gigabit Ethernet links and both the average data chunk inter-arrival and inter-
departure times were found to be 0.6 s, limiting the sampling rate to 6 MHz per link.
This limitation can be removed by either utilizing multiple links in a round robin
fashion from an x86 blade, utilizing an alternative protocol to TCP, or employing an
alternative networking technology such as Infiniband.

4.5 Performance and scalability

The results from the previous subsection demonstrate that Streams shows good per-
formance calculating the PSD using a mix of HS12 and QS22 blades with the Pow-
erCell as the accelerator. In particular, the greatest performance limitation was deter-
mined to be inter-blade networking rather than anything associated with the Streams
framework itself, despite Streams being hardware and network technology agnostic.
Streams allows the underlying computer and network technologies to be changed for
best suiting the computations required in a particular application. This enables it to
leverage the performance of new hardware as it becomes available, while reducing
the effort to reengineer software applications.

The scalability features of Streams are valuable for meeting growing computa-
tional demands. The SPADE PSD application can scale to handle greater sampling
rates, higher frequency resolution via a larger FFT point size, or additional anten-
nae. The SPC performs dynamic assignment of processing elements to physical
nodes which enables the SPADE application to dynamically meet the demands of
intensifying computations. This ability to dynamically redeploy a parallel program
during runtime to physical nodes allows Streams to scale effectively.

5 Conclusion

This application successfully demonstrated the viability of implementing a real-
time PSD entirely in software using InfoSphere Streams. The SPADE application
showed good data throughput without being specifically tailored to a specific ac-
celerator, and allowed dynamic reconfiguration to allow more accelerators to be
utilized as necessary or alternative types of accelerators included. Due to the use of
standard SPADE operations the management of the data through the pipeline was
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transparent and the application could be easily extended to provide further analysis
or provenance features.

The operations of an FX style autocorrelating spectrometer pipeline are domi-
nated by the algorithmic complexity n log2(n) of the FFT operation. A single dual-
PowerCell QS22 blade measured 30 GFlops for the FFT operation. In comparison
measuring the performance of the FFT operation utilizing all four cores of a sin-
gle x86 HS12 blade achieved almost 10 times less performance, and was measured
at 3.5 GFlops. Essentially this shows that using various architectures for parallel
computing by utilizing suitable accelerator hardware for specific compute intense
operations can yield significant speed ups. In our case for an FX style autocorrela-
tion pipeline a speed up of almost 10 times was achieved per QS22 blade.

IBM Info Streams proved it’s flexibility to operate using various architectures in
unison. Despite the I/O bound links Streams was capable of maximizing the link
bandwidth as well as manage the data flow without information loss. Implementing
the PSD pipeline in SPADE allowed parameters such as the integration time and
FFT point size to be changed in real-time without compromising the flow of data.

Streams facilitates both implicit and explicit parallelization. Implicit paralleliza-
tion is achieved by fusing operators into processing elements, and explicit paral-
lelization by deployment of processing elements to many physical nodes. Further-
more Streams goes beyond conventional parallelization middleware and frameworks
such as MPI (Message Passage Interface) and OpenMP by allowing dynamic oper-
ator fusing and processing element deployment to physical nodes during runtime.
This degree of dynamic operation enables Streams to provide on demand scalability
to increasing data loads and computations.

In this work we mainly focus on reviewing InfoSphere Streams and its potential
use for Radio Astronomy. In our opinion the Streams approach has shown positive
results to warrant further research and serious consideration for managing DPDM
aspects of large antennae arrays. Further research is required to conduct more formal
and specific comparative analysis between Streams and other middleware such as
MPI and ICE (Internet Connection Engine). Another interesting area that requires
more rigorous investigation is Streams scaling capabilities using a larger cluster of
x86 nodes as well as combining other accelerators such as GPUs, Intel MIC (Many
Integrated Core) architecture and FPGAs.
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Appendix

The following SPADE code listing shows an implementation of an autocorrelation
spectrometer application. Lines 4-7 define the virtual streams used by the applica-
tions stream operators. In lines 8-11 is a user defined source operator responsible
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for receiving network digitized raw antenna data using TCP. In lines 12-15 a split
operator is used to distribute data to the PowerCell accelerators (for simplicity this
listing uses two accelerators). In lines 17-20 an MTUDOP is used to send time series
data and receive frequency domain data to and from the PowerCell accelerators. The
frequency domain data received from a particular accelerator is then autocorrelated
by a functor operator in lines 21-24. Since the accelerators are given a chunk con-
taining multiple FFTs lines 25-41 integrate this chunk. In lines 43-46 an aggregate
operator is used to integrate averaged chunks. In this particular listing the aggregate
operator sends a result to the sink operator in line 47 every time it integrates 523
averaged PSD chunks.

1 [Application]
2 AutoCorrelator
3 [Program]
4 vstream RawData(data : ShortList)
5 vstream RawDataChunk(cellID: Integer, schemaFor(RawData))
6 vstream ChannelData(real : FloatList, imag : FloatList)
7 vstream PowerSpectrumData(psd : FloatList)
8 stream Antenna(schemaFor(RawDataChunk))
9 := Source() ["stcp://thishost:9932/",

10 udfBinFormat="AntennaParser",
11 blockSize=8*1024] {}
12 for_begin @Blade_ID 1 to 2
13 stream QS22@Blade_ID(schemaFor(Antenna))
14 for_end
15 := Split(Antenna)[cellID]{}
16 for_begin @Blade_ID 1 to 2
17 stream FFT@Blade_ID(schemaFor(ChannelData)) :=
18 MTUdop(QS22@Blade_ID)["MT_QS22_FFT"] {
19 switch1="@Blade_ID", switch2="9933", switch3="9934"
20 }
21 stream PSD@Blade_ID(schemaFor(PowerSpectrumData))
22 := Functor(FFT@Blade_ID) [] {
23 psd := apply(pow, real, 2.0) .+ apply(pow, imag, 2.0)
24 }
25 stream IntegrateChunk@Blade_ID(schemaFor(
26 PowerSpectrumData)) := Functor(PSD@Blade_ID)
27 <
28 Integer $count := 1;
29 FloatList $average := makeFloatList();
30 >
31 <
32 $average := slice(psd, 0, 4096);
33 while($count < 512) {
34 $average := $average .+ slice(psd, $count * 4096, 4096);
35 $count := $count + 1;
36 }
37 $average := $average ./ 512.0;
38 $count := 1;
39 >
40 [true]
41 {psd := $average}
42 for_end
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43 stream Integrate(schemaFor(PowerSpectrumData)) :=
44 Aggregate(IntegrateChunk1, IntegrateChunk2 <count(523)>) [] {
45 psd := Avg(psd)
46 }
47 Nil := Sink(Integrate)["file:///../data/spectrum.bin", nodelays

, udfBinFormat="DataFormatter"] {}
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