
SEPSIS PREDICTION USING

TEMPORAL CONVOLUTIONAL

NETWORK

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTER AND INFORMATION SCIENCES

Supervisor

Assoc. Prof. Jian Yu

Dr. Sam Madanian

July 2021

By

Kaiyuan Zeng

School of Engineering, Computer and Mathematical Sciences



Abstract

Sepsis is one of the leading causes of death in hospitals across the world, and it has

attracted more and more attention in increasingly aging countries. Every year 5.4

million people worldwide die of sepsis. With the development of social life, predicting

sepsis has become more and more important. The main sign of sepsis is multiple organ

failure. In 2016, advances in medicine and technology helped redefine the disease

standards for this disease. This thesis uses the Sepsis-3 standard to study adult patients.

Infected patients with a sequential organ failure assessment (SOFA) score higher than 2

are marked as sepsis patients.

Nowadays, with the advancing at a rapid pace of data mining and artificial intel-

ligence(AI), people’s research on the problem of sepsis prediction has become more

and more in-depth. This thesis mainly focuses on the prediction of the probability of

septicemia among patients in the intensive care unit(ICU). We have developed a deep

temporal convolutional network to predict sepsis. At the same time, a machine learning

model (decision tree) and a deep learning LSTM model have been developed as the test

benchmark model. MIMIC-III is the source database for model development,validation

and testing. Our goal is to use 12-hours observational health data to predict whether

sepsis will occur in following 6 hours. Our innovation is to mark sepsis with the time

of onset instead of the ICD-9 code. The project first used Postgres to extract relevant

data from MIMIC-III, and performed data preprocessing, and then established one

machine learning model for sepsis prediction, Decision tree and two deep learning
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models TCN and LSTM, Decision tree and LSTM model as a benchmark model to

verify the performance of the TCN model. The three models are optimized separately.

The decision tree uses GridSearchCV to automatically adjust the parameters max_depth,

and finally the best max_depth is selected as 5. LSTM and TCN are optimized by

setting epochs, the best model is the model with the highest verification accuracy for 20

iterations. Evaluation metrics (Accuracy, Precision, Recall, F1-score, and AUC-ROC)

will be used to measure the performance of the model. When predicting sepsis 6 hours

before onset on the new reality label, the area under the ROC curve of our proposed

TCN model is 0.944, the accuracy is 0.893. The results show that, compared with

machine learning methods and LSTM, time convolutional networks converge faster and

have better performance. The model is robust and high-precision, and may be used as a

tool for hospital sepsis prediction.
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Chapter 1

Introduction

This chapter consists of four parts. The first part introduces the background and

motivation of this project. The second part puts forward the problems and goals of this

project. The contribution of this work will be introduced in the third part. The last part

introduces the structure of this thesis.

1.1 Background and Motivation

The original definition of sepsis was proposed in 1991 and was called Sepsis-1 (Bone

et al., 1992). Sepsis is defined as the simultaneous presence of systemic inflammation

and infection, as a result, the systemic inflammatory response syndrome (SIRS), see

the literature review below for details. Sepsis-1 was updated to Sepsis-2 through the

expanded diagnostic criteria list in 2001 (Levy et al., 2003), but no alternative was

provided, so the definition of sepsis has not altered. In 2016, a new definition of sepsis,

Sepsis-3, was proposed, which describes sepsis as a life-threatening organ malfunction

induced by an imbalance in the host’s reaction to infection (Rather & Kasana, 2015). In

Sepsis-3, patients with infection quantified by SOFA increase ≥ 2 are defined as sepsis

(Vincent et al., 1996).

12
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Every year, an estimated 31.5 million individuals worldwide contract sepsis, and

sepsis has become one of the major causes of mortality among Intensive Care Unit

(ICU) patients (Vincent, Marshall, Ñamendys Silva & François, 2014). In the United

States,10% of patients admitted to the ICU have sepsis, and roughly 25% of ICU beds

are filled by sepsis patients (Pires, Neves & Pazin-Filho, 2019). The benign stage of

sepsis has a death rate of 17%, whereas the severe form has a mortality rate of 26%

(Fleischmann et al., 2016). Sepsis is an expensive disease in the ICU. In 2013, it cost

23,663$ millions in the United States, accounting for 6.2% of the cost of all hospitals

in the United States (Celeste, Torio & Brian J. Moore, 2013), and increased to 30320$

millions, accounting for 8.8% of the cost in 2017 , and it continues to grow (Celeste,

Torio & Brian J. Moore, 2017).

Given the high death rate of sepsis patients in the ICU, the earlier the risk of sepsis

among ICU patients may be identified, the better. Early and precise detection of patients

at high risk of sepsis can assist ICU clinicians in making the optimal clinical decisions,

resulting in better clinical outcomes. Early therapy has been proven to have a substantial

favorable influence on survival in studies (Angus et al., 2001; Kumar et al., 2006), in

particular, relevant verification shows that for every hour of delay in treating patients

with sepsis, the mortality rate will increase by 7.6% (Nguyen, Corbett, Steele & Banta,

2007). Most of the research now focuses on the prediction of septic shock. Septic shock

is already an aggravation of sepsis and has seriously threatened the lives of patients.

It is more important to detect sepsis early and predict whether the patient is likely to

develop sepsis.

So far, many models for predicting sepsis have been developed. The earliest early

warning of sepsis is based on machine learning, (Thiel et al., 2010; Calvert et al., 2016;

Desautels, Calvert, Hoffman & Jay, 2016). Due to the recent development of artificial

intelligence, many authors have turned to research on the application of neural network

methods in the direction of sepsis prediction (Kam & Kim, 2017; Raghu, Komorowski
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& Singh, 2018). Compared with the machine algorithm, the performance of neural

network algorithm in predicting sepsis has a very obvious improvement. For example,

the logistic regression model based on MIMIC-II (Calvert et al., 2016), such as the

gradient tree boosting model based on non-MIMIC databases (Mao et al., 2018) and the

supervised machine learning model of gradient boosting (Delahanty, Alvarez, Flynn,

Sherwin & Jones, 2019). Another example is the non-MIMIC-based recurrent neural

network (Futoma et al., 2017). However, most of them still use the MIMIC-III data set

(Raghu et al., 2018; Desautels et al., 2016). For a long time, Recurrent neural networks

(RNN) and Long Short Term Memory networks(LSTM) have long been the major

approaches for dealing with prediction issues in deep learning. LSTM can significantly

solve the problem of gradient disappearance as compared to RNN.

Temporal Convolutional Network (TCN) is a new type of neural network with

a fully convolutional structure, which has been proven to be superior to recurrent

networks. And deep learning has been proven to be superior to traditional machine

learning algorithms. TCN puts forward two principles that must be observed. The first

is whether the convolutional structure suffers from spesis at the calculation time t, which

can only involve the feature input before the time t, and there will be no "information

leakage". The other is that the length of sequence data is relatively loose. For spesis

data, patients have more feature points. We can choose the appropriate feature amount

according to our needs. When we need to expand in the future, the model does not

need to be modified. It turns out that TCN is very suitable for processing serialized data

because they only use previous data to generate new data. In addition, SOFA, as an

approximation of the starting time, can be used for the development of time window

forecasts. Therefore, TCN is very suitable for predicting whether sepsis will occur in

the next 6 hours.
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1.2 Research Questions and Goals

The goal of this thesis is to use 12-hours observational health data to predict whether

sepsis will occur in following 6 hours. Use ICU data on MIMIC-III.

This thesis establishes Decison Tree model(ML), LSTM model(deep learning) and

TCN model(deep learning). The benchmark model includes one machine learning

model and one deep learning LSTM model. The decision tree is chosen here because

it is an effective and mature algorithm often used by managers and analysts. It is

a commonly used model in machine learning and can intuitively display the entire

decision-making process. The decision tree may not represent the optimal performance

of the entire machine learning algorithm, but it is simple to implement, is also one

of the commonly used machine algorithms, and can well promote the progress of our

experiment. Another deep learning model, LSTM, is chosen here because LSTM is

an excellent variant of RNN, inheriting most of the characteristics of RNN models,

and at the same time, it solves the vanishing gradient problem caused by the gradual

reduction of the gradient backpropagation process. It has long Time memory function

is very suitable for dealing with timing problems, so to show the advantages of TCN,

we choose LSTM, which has been proven to be a very good model as a benchmark.

The main focus of this thesis is the prediction effect of the TCN model. And

improvements have been made to three models to improve the prediction performance.

The research question is divided into four parts:

1. What features from dataset should be considered?

2. How do we use the three AI methods of TCN, ML, and LSTM to predict sepsis?

3. How to validate the predictive models and select the best performing model in

each model.

4. Which algorithms are effective and can meet the evaluation critetia?

The full process of conducting this research is seen in Figure 1.1.
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Figure 1.1: The full Process of conducting this research

1.3 Research Contributions

This thesis is based on TCN training prediction, using Python language, and the imple-

mentation content is as follows:

• Mark sepsis with the time of onset instead of the ICD-9 code.

• Data preprocessing in scala and python pandas through apache spark.

• Use 12-hours observational health data to predict whether sepsis will occur in

following 6 hours, using the time dependence of sepsis.

• Created one machine learning models and two deep learning models, and use

cross-validation method or epochs method to obtain better performing models.

• Use pytorch to create a TCN-based predictive sepsis model. After scikit-learn

evaluation, it has excellent predictive performance compared with related machine

learning methods and LSTM.

1.4 Research Benefits

This research will benefit ICU clinicians and patients who may suffer from sepsis.
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• For ICU clinicians: Early and accurate detection of patients at high risk of sepsis

can help ICU clinicians make the best clinical decisions and obtain better clinical

results.

• For patients who may suffer from sepsis: early and accurate detection of sepsis

in the next few hours can obtain early prevention, early treatment, prevent the

deterioration of the condition, prevent the development of septic shock, and

improve the survival rate of patients.

1.5 Thesis Structure

Deep learning technology automates the process of feature extraction and selection,

making categorization easier. Therefore, deep learning models are increasingly used

to detect various diseases (Acharya et al., 2018; Yildirim, Baloglu, Tan, Ciaccio &

Acharya, 2001; Oh et al., 2020). In this study, we used a temporal convolutional network

to predict sepsis. The method we proposed can not only predict sepsis quickly, but also

has high accuracy. This thesis has developed two deep learning models, LSTM and

TCN. In order to verify the effectiveness of the deep learning model, a machine learning

model decision was also developed Tree classifier.

Around the above, this thesis is divided into six chapters, each of which is as follows:

Chapter 1 Mainly introduces the research background of the subject, the main re-

search issues, research goals and results. Finally introduce the thesis organiza-

tional structure.

Chapter 2 It is mainly a literature review, reviewing the related literature on sepsis

prediction in the past, and related applications based on deep learning prediction,

as well as the introduction and application of MIMIC-III. Then introduced the

relevant theoretical knowledge to built decision tree, LSTM and TCN models,

and the theoretical knowledge of model evaluation indicators.
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Chapter 3 This chapter first introduces the entire thesis research process. Then mainly

generates three data sets for model training, verification and testing. First intro-

duced two codebases used, one is Spesis-mimic, the other is MIMIC-III. Then it

introduces how to extract sepsis-related data sets from PostgreSQL, and process

the data sets, and finally split them into training set, validation set and test set

according to the ratio of 7:1:2. Finally, the characteristic sequence data set of the

industry is constructed.

Chapter 4 It mainly builds three models of decision tree, LSTM and TCN. Main

implement related models to predict sepsis. First implemented decision tree based

on python’s sklearn.tree.DecisionTreeClassifier, and adjusted the parameters

through GridSearchCV. Then for the Deep learning models LSTM and TCN,

implement related models, and use epochs to select the best model.

Chapter 5 First of all, the performance of the three models is compared, and the focus

is on the performance comparison between TCN and the benchmark model. Then

Mainly discuss the content of this thesis research, and analyze the benefits and

limits.

Chapter 6 Summarize and look forward to the future. This chapter summarizes the

work of this thesis, and proposes future research directions in this field.



Chapter 2

Literature Review

In this chapter, we review the research background in sepsis and its prediction by

consulting the literature, studied the development of deep learning in predicting time

series data, and studied the application of RNN, LSTM, TCN and other deep learning

methods in predicting sepsis. Finally, we introduced MIMIC-III database and its

historical application. And introduced the decision tree classifier we will implement, the

relevant theoretical knowledge of LSTM and TCN models, and the relevant indicators

of model evaluation.

2.1 What is Sepsis?

Sepsis is a clinical syndrome caused by pathogenic bacteria and their toxins invading

the bloodstream. Pathogens are usually bacteria, but can also be fungi or mycoplasma.

Mortality is the main cause of death in ICU (Bone et al., 1992). Despite its high

mortality rate, the cause of sepsis is still unclear. In recent years, people have gained

a new understanding of the pathogenesis of sepsis and the criteria for judgment. In

the study of sepsis, more and more attention is paid to the body’s systemic response to

invading microorganisms and their toxins (Vincent, 1997).

19
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In 1991, the American College of Thoracic Physicians and the Crisis Care Society

defined sepsis as a systemic inflammatory response caused by various infections. The

diagnosis conditions are: there is clinical evidence of infection and evidence of systemic

reaction caused by infection (Gül, Arslantaş, Cinel & Kumar, 2017). Systemic reaction

includes at least the following 2 items:

Table 2.1: Sepsis-1 symptoms

SIRS (Spesis-1)

† 1: Body Temperature > 38 °C or < 36 °C
† 2: Heart rate > 90 beats per minute
† 3: Respiratory rate > 20 breathes per minute or

carbon dioxide partial pressure (PaCO2) < 32
mmHg(4.3 kPa)

† 4: White blood cell count(WBC) > 12,000 cells
per mm3 or < 4,000 cells per mm3

According to spesis-1 in 1991, when a patient shows two or more of the above

clinical manifestations, the systemic inflammatory response syndrome (SIRS) can be

diagnosed, and the patient can be judged to have spesis.

But, SIRS is too broad and has low accuracy and high false alarm rate due to lack

of specificity, and some of the characteristic manifestations of sepsis syndrome are

not based on the onset of critically ill patients and clinical epidemiological studies.

The four indicators of SIRS can only reflect the general severity of the disease, and

cannot be used as specific markers for the expanding inflammatory response in the

body. Sepsis-1 was updated to Sepsis-2 in 2001 (Levy et al., 2003). It points out that

inflammatory response parameters, hemodynamic parameters, organ dysfunction, and

tissue perfusion parameters are four infection parameters, and if two or more of them

are satisfied, it is diagnosed as sepsis. However, due to the complexity of diagnostic

indicators and difficulty in clinical application, the spesis-1 standard is still being used.
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Figure 2.1: The clinical spectrum of sepsis

In 2016, a new definition of sepsis, Sepsis-3, was proposed, which redefines the disease

as a life-threatening organ dysfunction caused by the imbalance of the host’s response

to infection (Rather & Kasana, 2015).

When sepsis is further complicated by organ dysfunction or abnormal hypoperfusion,

severe sepsis will occur (Bone et al., 1992). A subset of severe sepsis is septic shock

(Otero et al., 2006). The clinical spectrum of sepsis is shown in Figure 2.1. It starts

from the initial toxic injury, gradually progresses to the stage of increased inflammation,
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and develops into a process of septic shock.

2.2 Sepsis Prediction

Sepsis prediction is very important, timely prediction of sepsis can save patients’ life.

Looking at the literature, it can be found that most of the research on sepsis is focused

on the hypothesis that sepsis has developed, and then studying the probability of pa-

tient death or the pattern of further deterioration, that is, to deal with the problem of

septic shock. Septic shock is a subgroup of sepsis research in which the underlying

circulatory and cellular abnormalities are severe enough to increase mortality consid-

erably (Singer et al., 2016). Related work mainly includes exploring survival models

(Henry, Hager, Pronovost & Saria, 2015) and hidden Markov models (Ghosh, Li, Cao

& Ramamohanarao, 2017). The Septic Shock Early Warning Model (EWS) was created

by applying multivariable logistic regression to the features such systolic blood pressure,

pulse pressure, heart rate and temperature etc. This model can predict the onset of septic

shock with high accuracy one hour in advance (Shavdia, 2007).

For the early prediction of septic shock, some previous studies used a multivariate

logistic regression model. A model for predicting septic shock developed by the

regression analysis method used by Hug. The data set is 7048 hospitalized patients

with hundreds of candidate variables (including vital signs, long-term trends, baseline

deviations, etc.). The variables of the final model were selected through cross-validation

and other methods, and verified on the data of 3018 patients , The Receiver Operating

Characteristic/Area Under the Curve(ROCAUC) value of the model is 0.880, this

means that the probability that the classifier can accurately identify patients with

sepsis is greater than 88% of patients who do not suffer from sepsis, so the prediction

performance of the model is very good (Hug, 2009). Another report also established

a multiple regression model, which data is selected in MIMIC-II, which variables
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retain hemodynamic data, laboratory test results data and some clinical information. It

studied the mortality of 23 septic shock patients over the next 7 days (Carrara, Baselli

& Ferrario, 2015). Toma et al. used a logistic regression model to predict the mortality

of patients with sepsis (Toma, Abu-Hanna & Bosman, 2007). The model relies on

data collected 24 hours before the patient enters the kindergarten and Sequential Organ

Failure Assessment (SOFA) score data. The model shows that the performance of the

logistic regression model that only uses admission information is better (Toma et al.,

2007). In addition, some previous studies used regression tree models to predict the

risk of septic septic shock in more than 13,000 non-ICU patients (Thiel et al., 2010).

Vieira et al. proposed an improved particle swarm optimization method for feature

selection and optimization of SVM parameters to improve the mortality prediction

performance of patients with sepsis (Vieira, Mendonça, Farinha & Sousa, 2013). They

chose a growing trapezoidal basis function network architecture for the metric variables

generated by classification and rules. They mainly have a detailed understanding of

the various indicators of patients to improve the predictive performance of patients

with sepsis and septic shock (Paetz, 2003). The Septic Shock Early Warning Model

system uses a data set of 250 patients with sepsis, of which 65 patients with sepsis

have developed septic shock. The data set of this system extracts patient characteristics

from the MIMIC database. The model can predict the development of septic shock in

patients with sepsis one hour in advance. The AUCROC of the model is 0.928, and the

predictive performance of this model is still very high, this means that the probability

that the classifier can accurately identify patients with sepsis is greater than 92.8% of

patients who do not suffer from sepsis. Another study used recursive partition and

regression tree (RPART) analysis to develop and predict a model for non-ICU patients

who developed septic shock a few hours before admission to the ICU (Thiel et al., 2010).

The data it uses are those of patients who are hospitalized but not in the ICU. The model

correctly identified 0.55 septic shock patients. However, the practical significance of
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studying septic shock is not great, because the time of septic shock is relatively rare in

clinical practice.

We know that septic shock is already an aggravation of sepsis, which has seriously

threatened the lives of patients. Therefore, it is more important for us to detect sepsis

early, or predict that the patient is likely to develop sepsis, and take measures to prevent

the patient from deteriorating to septic shock. In the study of neonatal sepsis, continuous

heart rate characteristic monitoring was developed to help the early diagnosis of sepsis

in premature infants in neonatal ICU, which has been proved to be effective in the

early diagnosis of sepsis (Moorman, Lake & Griffin, 2006). Griffin studied heart rate

variability before neonatal sepsis, and finally proved that detecting abnormal heart rate

characteristics is effective in the early diagnosis of sepsis (Griffin & Moorman, 2001).

However, it is very unfortunate that this detection method did not extend to adults.

Although some markers provide reasonable efficacy in predicting sepsis in adults, none

or a few can provide early warning of sepsis.

Many literature methods for predicting sepsis are based on machine learning meth-

ods. Calvert et al. proposed a sepsis warning algorithm, InSight, which can predict

the occurrence of sepsis at least 3 hours before the onset of the first 5 hours of SIRS

(Calvert et al., 2016). Another paper predicts sepsis also using a machine learning

classification approach called InSight. It uses multivariate data, including vital signs,

peripheral capillary oxygen saturation, Glasgow coma score and age, but it is based

on Spesis-3 defined to screen sepsis, the model still has a good predictive effect on

sepsis even when data is randomly lost (Desautels et al., 2016). Another document uses

supervised machine learning called gradient boosting to predict sepsis. The difference

is that it uses Rhee clinical monitoring criteria to screen for sepsis (Delahanty et al.,

2019). Another study used recursive partition and regression tree (RPART) analysis to

develop and predict a model for non-ICU patients who developed septic shock a few

hours before admission to the ICU (Thiel et al., 2010).
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Recently, with the development of artificial intelligence neural network algorithms,

which have powerful algorithms and better performance, many authors have turned to

study the application of neural network methods in the direction of sepsis prediction.

One study was based on reinforcement learning to explore better treatments for sepsis

(Raghu et al., 2018). Another study is to develop early detection of sepsis based on

a deep learning model and compare its performance with the Insight model (Kam &

Kim, 2017). Gwadry et al. used the decision tree method to analyze the risk of patients

suffering from sepsis. He optimized the model by using a multimodal analysis method.

The final model achieved a prediction accuracy of nearly 100% for 20 clinical variables

(Gwadry-Sridhar, Lewden, Mequanint & Bauer, 2009). Ho et al. believe that the risk

of sepsis is hidden in clinical measurement indicators, such as gene expression levels.

It uses a combination of missing value interpolation technology and fuzzy prediction

model to improve the accuracy of early warning of sepsis (Ho, Lee & Ghosh, n.d.). Tang

et al. developed the SVM model to classify patients with sepsis into severe sepsis and

SIRS patients. He used principal component analysis (PCA) to reduce dimensionality.

The feature space of SVM uses the first three principal components. Finally, the model

obtained a prediction accuracy rate of 84.62% (Tang et al., 2010). Lukaszewski et al.

proved the effectiveness of using blood sample measurement and miRNA expression

levels as training features. He designed a learning multilayer perceptron model to predict

the risk of patients suffering from sepsis. The final model achieved 83% prediction

accuracy (Lukaszewski et al., 2008).

Although many scholars have conducted research on predicting sepsis, and some

scholars have used deep learning algorithms to predict sepsis, there are few literatures

on the use of TCN to predict sepsis. This article wants to explore whether the TCN

algorithm has advantages over machine algorithms and LSTM algorithms using the

same data set.



Chapter 2. Literature Review 26

2.3 Artificial Intelligence Method to Predict Sepsis

2.3.1 Research on TCN to Predict Sepsis

It is worth noting that many literature models use averaging or forward and backward

interpolation for the processing of missing values (Calvert et al., 2016). This conversion

will produce data artifacts. The absence of data in the medical sector is a deliber-

ate decision made by experts, implying underlying assumptions about the patient’s

condition.

At present, the two famous TCN models for sepsis prediction are MGP-TCN

(BorgwardtLab/mgp-tcn, 2021) and MGP-AttTCN (Margherita, 2021). MGP is Multi-

task Gaussian Process MTGP. AttTCN is attention TCN. The probability distribution is

used by the Gaussian process to represent previous knowledge about the function output,

and builds a model in the functional space. Based on the correlation between the data,

the covariance function is constructed and calculated by Bayesian inference. MTGP

is used to handle the situation where the GPR model has multiple outputs. MTGP

was first proposed in the literature (Williams, Bonilla & Chai, 2008), and another

literature proved the superiority of MTGP in multivariate time series analysis (Dürichen,

Pimentel, Clifton, Schweikard & Clifton, 2015). Attention is proposed to solve machine

translation, which is the translation of text by a computer, with no human involvement

(Bahdanau, Cho & Bengio, 2016).

At present, attention model has become a very important research field in neural

network research. The core idea of attention is to weight all the outputs of the encoder

and input them into the decoder at the current position to affect the output of the decoder.

By weighting the output of the encoder, it is possible to use more context information

of the original data while realizing the alignment of the input and output (Woo, Park,

Lee & Kweon, 2018).
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As shown in Figure 2.2(a), A conventional sequence-to-sequence paradigm has two

parts: encoding and decoding. The encoder usually uses a RNN structure to encode the

input {x1, x2, ..., xT} of the sequence to generate a collection of fixed-length encoding

vectors {h1, h2, ..., hT}. The decoder also uses an RNN structure to read a single input

hT and then output one by one to obtain an output sequence {x1, x2, ..., xT ′}. Where

T represent the length of the input sequence, and and T ′ represent the length of the

output sequence. The hidden states of the encoder and decoder at each location are

represented by t, ht, and st, respectively. This encoding-decoding structure has two

main drawbacks. The encoder must compress all input data into a fixed-length vector

hT for the first reason. When this basic fixed-length encoding is used to represent

longer and more complicated inputs, the input information is frequently lost.Secondly,

such a structure cannot model the correspondence between the input sequence and the

output sequence, and this relationship is crucial in tasks like machine translation and

text summarization. In a sequence task, each position of the output sequence may be

impacted by a particular position of the input sequence, intuitively speaking. However,

the classic decoding structure does not consider this correspondence when generating

output.

Figure 2.2(b) depicts the framework of the model that introduces the attention

mechanism. The function of the attention module is to automatically learn the weights

αij , the goal is to capture the correlation between the hidden state of the encoder hi and

the decoder sj . The learnt attention weights will be utilized to create a context vector c,

which will be sent into the decoder as an input.The context vector cj is generated at each

location of the decoder j by weighted summing of the hidden states of all encoders by

the attention weight, namely: cj =
T

∑

i=1
αijhi. Therefore, this context vector really offers

a way for the decoder to access the whole input sequence and pay attention to certain

important places in the sequence. We name this system the attentiveness mechanism.

A study on sepsis is to input the latent function of the Gaussian process into a deep
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Figure 2.2: (a) Traditional Encoder-decoder structure (b) Encoder-decoder structure of
the model with the attention mechanism
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RNN, and then use backpropagation to train the entire model end-to-end to classify

and predict whether the patient will suffer from sepsis (Futoma et al., 2017). The

other established a TCN model embedded in the framework of a multi-task Gaussian

process(MTGP) adaptor to make it immediately applicable to time series data with

uneven spacing (Moor, Horn, Rieck, Roqueiro & Borgwardt, 2019). The model is

helpful for early sepsis prediction. Compared with MPG-AttTCN, MPG-TCN lacks the

interpretability required by the medical field, so an attention-based neural network is

introduced. Note that it is often used for natural language processing (Yang et al., 2016;

Yu et al., 2018), and it is also used for image analysis (Mnih, Heess & Graves, n.d.;

Schlemper et al., 2019).

There are several studies that integrate attention processes to increase time series

forecasting model performance. To increase the performance of time series prediction,

a model is built on a two-stage attention RNN. At any one moment, the encoding of

such a model comprises information on both the current time point and all prior time

points observed by the recurrent model (Qin et al., 2017). For the diagnosis of myotonic

dystrophy, a model combining attention and TCN is also used. The model is based on

the time-series diagnosis of grip strength, but it only focuses on time points and does not

focus on different characteristics (Lin, Xu, Wu, Richardson & Bernal, n.d.). A study on

the prediction of time series, TCN is created by combining causal convolution, dilated

convolution, residual connection, and fully connected access methods. Handwriting

recognition, audio synthesis, and natural language processing are just a few of the jobs

that TCN has excelled in (Y. Liu, Dong, Wang & Han, 2019).

ICU sepsis prediction is an important and timely issue, timely prediction of sepsis

can effectively improve the survival rate of patients and it is also an active research area.

The above introduces some methods of sepsis prediction, which can be benchmarked

against each other. I will take this idea in this work, develop 1 machine learning models,

develop 2 deep learning models, and compare their performance.
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2.3.2 Research on Other Artificial Intelligence Method to Predict

Sepsis

In 2021, scholars such as Goh developed a new artificial intelligence SERA algorithm

(Goh et al., 2021). The data of this algorithm is a combination of structured data and

unstructured clinical annotation data. They established a new artificial intelligence

model called SERA to predict and diagnose sepsis. The model uses natural language

processing (NLP) analysis of doctors’ clinical notes, and then combines them with

structured EMR data to use rich data resources to improve the performance of the

model for predicting the risk of patients suffering from sepsis. The study included 327

patients with confirmed sepsis, of which 240 patients were used for model training

and verification, and the remaining 87 were used as test samples without verification

samples. In addition, there is another problem. Since only 6.15% of the 327 patients

suffer from sepsis, the researchers used the oversampling technique (SMOTE) that

generates minority samples to achieve a 1:1 balance of data, which is worth learning

from. The SERA model designed by the researchers implements two algorithms. The

diagnosis algorithm first determines whether the patient suffers from sepsis during

the outpatient clinic. If not, the early warning algorithm will determine whether the

patient suffers from sepsis at different time periods, including 4, 6 , 12, 24, 48 hours.

Testing the algorithm through independent clinical annotations, the model achieved a

high prediction accuracy 12 hours before the onset of sepsis, and its AUC was 0.94.

2.4 MIMIC-III Database

MIMIC-III (Medical Information Mark for Intensive Care) is an intensive care data

set released (Goh et al., 2021). It was abbreviated as MIMIC-II at the beginning of

its establishment, and upgraded to MIMIC-III in 2016. It contains a total of more
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Figure 2.3: Flow chart of SERA algorithm
Source:(Goh et al., 2021)

than 50,000 patient hospitalization data and nearly 60,000 ICU hospitalization records

who were hospitalized in the ICU from June 2001 to October 2012. It contains two

types of basic data: one type is clinical data extracted from EHR, including patient

demographic information, diagnostic information, laboratory test information, medical

imaging information, vital signs, etc. The other is the waveform data collected by

bedside monitoring equipment and related vital sign parameters and event records. It is

worth noting that the database records the follow-up results of patients, which provides

the possibility for us to carry out prognosis research in the future (A. E. W. Johnson

et al., 2016). A large number of studies at home and abroad show that the database

has now achieved a perfect combination with clinical practice. It is the world’s first

large-scale intensive care unit database that is free and open to the public (Figure 2.4). It

has a wealth of medical data types. According to the data usage agreement, international

researchers can obtain these data widely, and offer high-quality data for clinical research

and data mining, and building a knowledge base (Q. Liu et al., 2019).

The MIMIC-III database is a relational database that supports SQL query, and can

import data sets into large relational databases such as SQL Server, Postgres, MySQL,
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Figure 2.4: Basic structure overview of the MIMIC-III critical care database
Source: (Adapted from A. E. W. Johnson et al., 2016, Figure 1., pp. 160035–3)
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and Oracle for data processing. At the same time, the table data in the data set can be

exported in .csv format, and large statistical software such as Excel, Spss, Matlab can

be used for data processing and statistical analysis guidance research (A. E. W. Johnson

et al., 2016).

The MIMIC-III database contains 26 data tables. Except for the dictionary table,

the tables are connected by subject_id, hadm_id, and icustay_id (A. Johnson, Pollard

& Mark, 2015). The information table is divided into three categories, demographic

information of the patient, information collected during the patient’s ICU hospitalization,

and information collected by the hospital recording system.

Table 2.2: Tables in MIMIC-III

Tables Name Description

†1 1: ADMISSIONS Patient admission
† 2: CALLOUT Instant information when the patient is out of the ICU 2

† 3: ICUSTANYS ICU admission information
† 4: PATIENTS Patient information
† 5: SERVICE Medical services that patients need to receive
† 6: TRANSFERS Patient Turnover Information

†3 7: CAREGIVERS Nursing Staff Information
† 8: CHARTEVENTS Patient observation and recording data
† 9: DATETIMEEVENTS. Patient operation time information
† 10: INPUTEVENTS_CV Intake information recorded using CareVue
† 11: INPUTEVENTS_MV iMDSoft Metavision system input data
† 12: NOTEEVENTS Treatment record
† 13: OUTPUTEVENTS Patient output information
† 14: PROCEDUREEVENTS_MV Metavision system operating system

Continued over page

1demographic information of the patient(1-6).
2“Admission time.” the admission time is more important for us to collect patient information in a

specific time window
3information collected during the patient’s ICU hospitalization(7-14).
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Table 2.2: Tables in. . . (continued)

Tables Name Description
†4 15: CPTEVENTS Patient operation record
† 16: DIAGNOSES_ICD Patient diagnosis ICD9 code
† 17: DRGCODES Patient diagnosis category group 5

† 18: LABEVENTS Patient test items
† 19: MICROBIOLOGYEVENTS Results of microbial pathogen detection
† 20: PRESCRIPTIONS Patient medication records
† 21: PROCEDURES_ICD Patient operation record ICD9

† 6 22: D_CPT Operation record code index
† 23: D_ICD_DIAGNOSES Diagnostic code index
† 24: D_ICD_PROCEDURES Surgical operation code index
† 25: D_ITEMS Record item code index
† 26: D_LABITEMS Test item code index

Most of the sepsis prediction literature we mentioned above are constructed and

tested using the MIMIC database (Desautels et al., 2016; Lin et al., n.d.)

2.5 Using AI Methods

2.5.1 Decision Tree

Decision Tree originated from the Concept Learning System and was proposed by Hunt

et al. in the 1960s (Hunt, Marin & Stone, 1966). The decision tree algorithm can infer

classification rules from a set of unordered and unruly examples, which is equivalent to

a Boolean function.
4information collected by the hospital recording system(15-21).
5Record the patient’s diagnosis category and diagnosis code.
6Dictionary information (22-26).
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Decision tree structure

Decision tree is a tree structure, including root nodes, internal nodes and leaf nodes.

Each internal node represents a test on the property, each branch represents a test

outcome, and the class label (Zhou & Chen, 2002) is stored in the leaf node. After

constructing the decision tree model, the model can be used to classify new samples.

Assuming that a tuple X with an unknown class label is given, and the category of the

tuple is tested, then the tuple X can be matched with a path from the root node to the

leaf node, and the leaf node stores the class prediction of X .

Decision tree attribute selection

The attribute selection of the decision tree needs to be determined according to the

attribute measurement value. Attribute measurement is a heuristic method for judging

how to split the index and dividing the training tuple D of a given class label into

separate classes. Ideally, each partition is pure. The literature shows that there are three

main measurement criteria: information gain, information gain rate and Gini index.

(Olanow, Watts & Koller, 2001; Kotsiantis, 2013). The commonly used measurement

criterion is information gain, and the information gain calculation method of the attribute

A is as follows:

Gain(A) = Info(D) − InfoA(D)

That is, the gain of attribute A is the difference between the expectation of D and the

expectation after dividing the tuple of D by attribute A.
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Figure 2.5: LSTM internal structure
(Elsaraiti & Merabet, 2021)

2.5.2 LSTM Neural Network

Theoretical of LSTM

The LSTM neural network is a form of deep machine learning neural network that is

based on RNN (Hua et al., 2018). RNN is a network structure specially used to process

sequence data, and its connection mode can make it convenient to extract time informa-

tion of sequence data (Sherstinsky, 2020). There is a time-domain connection between

a series of data input by RNN, which takes into account the "memory" information. We

know that the training of the RNN network is achieved through an algorithm called Back

Propagation Through Time (BPTT) (Liao et al., 2019). When the sequence becomes

longer, the problem of gradient disappearance will occur during the back propagation

process. LSTM is put forward by researchers to solve this problem. The structure of

LSTM is shown in Figure 2.5.

The current input xt and the prior hidden state ht−1 are spliced to get [xt, ht−1], as

shown in the diagram, and the spliced vector is subjected to respective operations to
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obtain the four-part output as follows:

ft = σ(Wf ⋅ [
xt
ht−1

] + bf)

it = σ(Wi ⋅ [
xt
ht−1

] + bi)

C̃t = tanh(WC ⋅ [
xt
ht−1

] + bC)

ot = σ(Wo ⋅ [
xt
ht−1

] + bo)

Among them, the activation function σ is the sigmoid function, C̃t is obtained from

the splicing vector through the tanh function, which represents the unit state update

value. ft, it, ot correspond to the three gated states, also called gated switches, ft is

called the forget gate, through which we can know which elements of Ct−1 will be

reserved for calculating Ct. it is called the input gate, which is used to control which

elements of C̃t will be reserved for calculating Ct. ot is called the output gate, which

together with Ct determines the final output ht.

Further calculations are as follows:

Ct = ft ⊙Ct−1 + it ⊙ C̃t

ht = ot ⊙ tanh(Ct)

yt = σ(w
′ht)

⊙ is the multiplication of the corresponding elements of the two matrices.

Through these gated switches, LSTM effectively solves the long-term dependency

problem of RNN networks (Liao et al., 2019). And research has shown that LSTM per-

forms better than RNN in many sequence modeling tasks (Hochreiter & Schmidhuber,

1997).
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Advantages and Disadantages of LSTM model

The birth of LSTM is due to the fact that once an RNN is turned into a super long

conventional neural network, the error will progressively reduce when employing BP

backpropagation, but because the expansion is too long, the error must be assigned to

each layer and each Neuron. This will cause the error to vanish once it has computed

half of the gradient, and the vanishing of the gradient will make the training weight

update change very tiny, causing the entire training process to fail to escape the local

optimum solution (Hochreiter & Schmidhuber, 1997).

Specifically, it is modified based on the RNN, and each neuron in each layer is set

with three gates, which are input gate, output gate and forget gate. It is possible to

selectively forget and partially or completely accept according to the feedback weight

correction number, so that every neuron will not be modified, so that the gradient

will not disappear multiple times, thus the weights of the previous layers can also

be obtained modify, and, the error function drops quicker with the gradient. For the

feedback error attribution of the RNN neural network, LSTM provides a more flexible

learning procedure so that it does not rapidly reach the local optimal solution during the

gradient descent phase. However, in theory, LSTM can’t entirely rule out the possibility

of local optimum solutions (Xie et al., 2019).

2.5.3 Temporal Convolutional Network

Since RNN was first developed, after continuous evolution and iteration, the problem

that was difficult to implement backpropagation was solved by using an improved

model of LSTM, and the GRU developed after LSTM was simplified can basically

maintain a certain degree of goodness. Therefore, RNNs have been the king of solving

sequence problems for a long time (Nan, Trăscău, Florea & Iacob, 2021). However,
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in 2016, some researchers pioneered the first time convolutional network for video-

based action segmentation (Lea, Vidal, Reiter & Hager, 2016). Although convolutional

neural networks (CNNs) are usually associated with image classification tasks, with

appropriate modifications, they have proven to be valuable tools for sequence modeling

and prediction. The thinking mode of recurrent neural networks is outdated. When

modeling sequence data, convolutional networks (Bai, Zico Kolter & Koltun.v., 2018)

should be the first consideration. Research can show that convolutional networks can

achieve better performance than RNNs in the prediction of many time series tasks,

while avoiding common defects of recursive models, such as the problem of vanishing

gradients. In addition, using a convolutional network instead of a recursive network can

improve performance because it allows the output to be calculated in parallel.

TCN is the abbreviation of Temporal Convolutional Network, which consists of

an expanded, causal one-dimensional convolutional layer with the same input and

output length. Before introducing temporal convolution, first briefly introduce the

convolutional network. The core of the convolutional neural network(CNN) is the

convolution operation. the convolution operation refers to the inner product operation

of data and a set of fixed weight filter matrices. Convolutional neural networks are

commonly used in the image field, and with the need for parallel computing and

improvement of RNN networks in the field of time series prediction, the convolutional

network has also been transformed into a time series convolutional network suitable for

the needs of time series prediction (Gu et al., 2017).

One-dimensional convolution

The significance of the one-dimensional convolution used by the TCN network is to

realize the element-level prediction of the sequence (J. Liu et al., 2021). In addition,

the higher the level of convolution operation, the more sensitive to feature changes.

Therefore, TCN uses one-dimensional convolution instead of full connection, so that
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the output and input dimensions are consistent, and the end-to-end prediction effect is

realized. It not only helps to feel the information of the entire input sequence, but also

helps to build long-term memory.

Causal Convolutions

Causal convolution can be visually represented in Figure 2.6. That is, for the value at

time t of the previous layer, it only depends on the value at time t and before in the next

layer. TCN guarantees that when calculating the time step t, only the information of the

time step (t − 1) and the previous time step (t − 1, t − 2, t − 3, ...) will be used. Causal

convolution differs from standard convolutional neural networks in that it cannot see

future data. It is a one-way structure rather than a two-way structure. That is to say,

only the first reason may result in the second. It’s termed causal convolution since it’s

a model with a strong temporal restriction. In form, it is similar to "cutting off" the

second half of one-dimensional convolution. Therefore, it is convenient to process data

related to timing.

Formally, for a one-dimensional input sequenceX = (x1, x2, ..., xT ) and convolution

kernel F = (f1, f2, ..., fK), the causal convolution at xt is:

(F ∗X)(xt) =
K

∑

i=1
fkxt−K+k

Dilated Causal Convolution

The modeling length of time is restricted by the size of the convolution kernel in pure

causal convolution, just as it is in standard convolutional neural networks. We need

to stack several layers linearly if we want to capture longer dependencies. In order

to address this issue, the researchers proposed dilated convolution. Dilated Causal

Convolution is also called hole convolution or expansion convolution, which is the
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Figure 2.6: causal convolution layers (Oord et al., 2016)

operation of the dilation parameter.

TCN expands the receptive field by skipping some existing pixels. The number of

skipped pixels is (dilation-1), which can also be understood as how many zeros are

inserted between every two convolution kernels. This feature ensures that the network

can observe a larger sequence length while the amount of calculation is basically

unchanged.

Figure 2.7 can more intuitively feel the network architecture of TCN, this is a

five-layer neural network, in which the convolution kernel is 4, the first layer is the

input layer, and the dilation of the second hidden layer is 1, which is also a conventional

one-dimensional causality Convolution operation. The dilation size of the latter level

is doubled in turn, that is, a "jump mechanism" is added. By skipping more pixels,

it is ensured that the neurons in the upper layer have a larger receptive field. Here,

the last neuron in the uppermost layer can observe a total of 16 input data, and can

observe all the features of the input data, while the conventional one-dimensional causal

convolution can only observe 8 input data under the same circumstances.

Formally, for a one-dimensional input sequenceX = (x1, x2, ..., xT ) and convolution

kernel F = (f1, f2, ..., fK), the dilated convolution with dilation factor d at xt is:

(F ∗dX)(xt) = xt) =
K

∑

i=1
fkxt−(K−k)d
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Figure 2.7: dilated causal convolution layers(Oord et al., 2016)

In the above formula, d is the dilation coefficient, k is the size of the convolution

kernel, and (K − 1)d + 1 is the receptive field, which indicates which unit of the upper

layer is used when calculating the next layer of neurons.

In addition, it can also be seen that each layer of the network has the same dimen-

sions, which is the structural feature of one-dimensional full convolution.

Residual Connections

The residual network solves the training problem of the deep network through its unique

connection method, and greatly increases the number of layers of the network. In order

to ensure the stability of deep-level TCN network training, the TCN network introduces

a residual network connection method. That is, in the case of high-dimensional input,

TCN uses a residual module to deepen the convolutional network, where the residual

block is connected as shown in Figure 3.4, and the output of the residual block combines

the input information and the output information of the input convolution operation.

In summary, TCN’s typical convolution layer contains one-dimensional full convolu-

tion, causal convolution, and dilated convolution, and every two of these convolutional

layers, as well as identity mapping, is wrapped into a residual block, as illustrated in

Figure 2.9. Finally, a number of such residual blocks can be stacked into a deep TCN
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Figure 2.8: Residual Connections layers

network. Here, the number of residual blocks in the TCN network is N. From top to

bottom, the expansion coefficient of the expansion causal convolution in each residual

module The dilation increases exponentially, dilation = 2i−1, wherei = 1,2, ...,N − 1.

2.5.4 Model Evaluation

Model evaluation is used to evaluate the performance of the model. The training error,

also known as the empirical error, is the mistake that the model makes on the training

set, whereas the generalization error is the error that the model makes on the new sample

(Model Evaluation Metrics in Machine Learning, n.d.).

Our goal is to use 12-hour observational health data to predict whether sepsis

will occur in following 6 hours, which is obviously a binary classification problem.

Regardless of the establishment of a machine learning model or a deep learning model,

the final evaluation of the performance of the model can be regarded as the evaluation

of the classification model. Of course, our ultimate goal is to build a learner that solves

the problem with a small generalization error. However, in practical applications, the

new sample is unknown, so the training error can only be made as small as possible.

Therefore, in order to obtain a model with a small generalization error, when building

a machine model, the data set is usually split into independent training data sets,

verification data sets, and test data sets. During the training process, the validation data

set is used to evaluate the model and update the hyperparameters. After training, use
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Figure 2.9: Residual block(Bai, Zico Kolter & Koltun.v., 2018)

the test data set to evaluate the performance of the final trained model.

Model multiple evaluation indicators

Here a table 2.3 is used to summarize the relevant evaluation indicators of the classifica-

tion model.

Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN

In classification issues, accuracy is the simplest and most straightforward assessment

index, yet it has apparent flaws. For example, when the samples are unbalanced, for

example, the ratio of positive and negative samples is 1 ∶ 9, and the classifier predicts all

samples as negative samples and can obtain an accuracy of 90%.
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Table 2.3: Classification model evaluation index

evaluation index Description
Confusion Matrix

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

Accuracy The percentage of samples that were properly cat-
egorized out of the total number of samples.

Precision The ratio of properly categorized positive samples to
the total number of positive samples determined by
the classifier.

Recall The number of accurately categorized positive
samples divided by the number of actual positive
samples.

F1 Score Precision and recall rates are averaged in a harmonic
way.

ROC Curve receiver operating characteristic curve.
P-R Curve Precision-Recall Curve.

Precision

Precision =
TP

TP + FP

Recall

Recall =
TP

TP + FN

F1 Score

F1 =
2 ∗ Precision ∗Recall

Precision +Recall

ROC Curve The true positive rate (TPR) is shown by the vertical axis of the ROC

curve, while the false positive rate is represented by the horizontal axis (FPR).

TPR =

TP

TP + FN
= Recall
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FPR =

FP

FP + TN

TPR is the recall rate, in fact, FPR is the recall rate of the negative sample angle,

that is, the false call rate.

The magnitude of the area under the ROC curve is referred to as the AUC, and this

number can quantitatively reflect the model’s performance as evaluated by the ROC

curve. The AUC value is calculated by integrating along the horizontal ROC axis. The

AUC value is often between 0.5 and 1 since the ROC curve is frequently above the line

y = x. The larger the AUC, the more likely the classifier is to rank the real positive

samples first, and the better the classification performance. TThe ROC curve should be

as near to the upper left as possible.

P-R(Precision-Recall) Curve The recall rate is on the horizontal axis of the P-R

curve, while the precision rate is on the vertical. For the classification model, Under a

particular threshold, a point on the P-R curve signifies that the model assesses the result

greater than the threshold as a positive sample, and the result smaller than the threshold

as a negative sample, and returns the corresponding result at this time Recall rate and

precision rate. The PR curve should be as near to the upper right as possible.

Classification model evaluation Scikit-learn function We will use the model evalu-

ation index function provided in scikit-learn (Scikit-Learn - Model Evaluation & Scoring

Metrics, n.d.). The classification model evaluation Scikit-learn function is shown in

table 2.4.
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Table 2.4: Scikit-learn function

evaluation index Scikit-learn function
Confusion Matrix from sklearn.metrics import confusion_matrix

Precision from sklearn.metrics import precision_score
Recall from sklearn.metrics import recall_score

F1 from sklearns.metrics import f1_score
ROC from sklearn.metrics import roc
AUC from sklearn.metrics import auc



Chapter 3

Methodology

This thesis plan predicts whether ICU patients will suffer from sepsis at a certain time in

the future. One of the first, we have to decide what research method to use. Therefore,

this chapter first considers the research worldview and philosophical hypothesis methods

(Hu & Chang, 2017), and the worldview and research methods guide the further specific

research process. This thesis first briefly describes the four philosophical worldview

theories, and chooses the worldview that suits our research questions. Then three

research methods are described, and the research method suitable for our problem is

selected. Each method has its own philosophical worldview, which also influences

research methods.

This chapter is composed of seven parts. The first part is the research involved

and is the basis for guiding the entire experiment. The philosophical worldview and

research methods suitable for the research problem have been selected. The second

part introduces the whole experiment process. Then elaborated on the process of data

collection and processing. Use two parts to introduce two code bases, one is the Spesis-

mimic code base, and the other is the MIMIC-III code base. Then introduce how to

install postgreSQL, how to import MIMIC-III database. Then it will introduce how to

extract sepsis-related data from postgreSQL, how to label pivoted vital data, and split it

48
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into three data sets for model training, validation and testing according to 7:1:2. Finally,

the corresponding feature sequence data set is constructed.

3.1 Research Design

Research Design is a research method designed according to the research topic. This

research method is how to collect data, what kind of data to collect, how to analyze the

data, and finally answer our research questions (Tawfik et al., 2019). Research method

is the foundation. Each method has its own philosophical world view. So this module

includes philosophical worldview selection and research method design.

3.1.1 Philosophical Worldview

The philosophical world view is a methodology, a set of basic beliefs that guide actions

(Kingma & Ba, 2015). Creswell mentioned four worldviews in his article, each with its

own characteristics.

• Postpositivist: the purpose of postpositivist research is to use a series of meticu-

lous and rigorous methods to "falsify" the inaccurate appearances and gradually

approach objective reality.

• Constructive: Constructivism believes that learning is the process of generating

meaning and constructing understanding based on the original knowledge and

experience, and this process is often completed in social and cultural interaction.

• Transformative: the most important thing to transformative world view is to

emphasize development.

• Pragmatic: the pragmatic is the discovery of natural laws or constant relation-

ships in facts through observation and experience. This worldview is mainly about

experimenting under controlled conditions, then understanding and constructing.
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Obviously, the worldview suitable for the study of this thesis is the pragmatic

worldview

3.1.2 Research Approach

Research Approach includes three categories (Cohen, Manion & Morrison, 2000):

• Qualitative Research: the purpose of research is to understand a phenomenon

and a problem. It includes Grounded Theory, Phenomenological Research, Action

Research and Case Study.

• Quantitative Research: understand the relationship between various variables

to test a theory or model. There are many quantitative analysis tools, such as

SPSS, R, SAS, etc. Statistical methods are usually used for data analysis.

• Mixed Research Approach: it is a comprehensive method that combines quant-

itative and qualitative methods.

In this thesis, our goal is to use 12-hour observational data to predict the risk

of sepsis in the next 6 hours, so as to prevent or make the best clinical decision in

advance and improve the survival rate of patients. These observational data include

vital signs data, such as heart rate, body temperature, blood pressure, etc., as well as

basic individual data (age, gender, etc.). In the future, we may include experimental

data, but these data are all numerical or categorical. So the most suitable method is

Qualitative Research.

3.2 Experimental Process

The goal of this thesis is to Use 12-hours observational health data to predict whether

sepsis will occur in following 6 hours. Therefore, the entire experiment process is to
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Figure 3.1: Thesis research experiment process
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prepare data, model, and evaluate the model performance. The more detailed process is

shown in Figure 3.1.

First of all, we will implement it based on MIMIC-III, Because MIMIC_III is

clinically real data, covering a wide range, the data is hidden, safe and reliable, and

my associate professor Dr. Samaneh Madanian strongly recommends it. So we need

to download the MIMIC-III database, then install postgreSQL, and then import the

MIMIC-III database. MIMIC-III has 26 tables, and the data we need cannot be achieved

directly by exporting a table. Therefore, drawing on the research of previous scholars,

the relevant codes in the two code bases of spesis3-mimic and mimic-iii are used to

extract data related to sepsis prediction. Then the raw data is processed, including

labeled data, which follows the new definition of spesis-3, and the data is split into

training set, validation set and test set, and finally the three data sets are sequenced.

This is a brief description of the data preparation process.

Then use sequence data modeling, here is a machine learning model built, it is a

decision tree classifier, two deep learning models, they are the LSTM model and the

TCN model. The training set is used to train the model, the validation set is used to

select hyper-parameters or the optimal model, and the test set is used to test the model.

Finally, the three models were evaluated and compared, and the results were dis-

cussed in depth.

3.3 Spesis3-mimic Codebase

This code base compares the sepsis recognition algorithms in five different Mimic-iii

databases, including the Sepsis-3 standard (A. Johnson, 2021). The size and severity

of diseases of all five groups are measured by hospital mortality. Figure 3.2 best

summarizes the results. The comparison results show that the Sepsis-3 standard based on

organ dysfunction has many advantages, such as time dependence and low sensitivity to
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Figure 3.2: The percentage of patients with different criteria for identifying sepsis(the
blue bar is the percentage of patients meeting the criteria, and the red bar is the
percentage of deaths of this size)
(A. Johnson, 2021)

changes in coding practices. In the previous chapters of this project, we also mentioned

using the sepsis-3 standard to identify sepsis, so we learned from the relevant code of

the code base to generate relevant data. The code library interface for MIMIC-III is

shown in Figure 3.3:

3.4 MIMIC-III Codebase

The MIMIC-III codebase collects and organizes clinical diagnosis and treatment in-

formation of real patients in the intensive care unit (A. E. W. Johnson et al., 2016). The

database has a large sample size, comprehensive information, and a long time to track

patients, but we only care about whether patients will suffer from sepsis. The coding

involved in the MIMIC-III process is a challenge for data scientists (non-clinicians).

The MIMIC code base provides an open source code package for analyzing patient char-

acteristics. This code base is a useful tool for researchers to use the MIMIC database.

The code library interface for MIMIC-III is shown in Figure 3.4:
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Figure 3.3: sepsis3-mimic code base interface

The code base is mainly composed of 7 parts (table 3.1), with emphasis on the

content that will be used in this project.

Table 3.1: Code base content and function description

Name Function Description
benchmark
buildmimic Build scripts for each relational database. This

project uses related scripts to construct postgreSQL.
concepts A useful view of the data in MIMIC-III. This project

uses organ failure scores and treatment durations.
notebooks Provides examples of how to extract and analyze

data.
notebooks/aline
tests carry out testing.
tutorials Explain concepts to new users.

The SQL to be used in the research process is mainly concentrated in the buildmimic

and conceptual parts. Buildmimic is mainly used to build a postgres database, and the

conceptual part mainly uses pivot and durations to extract sepsis-related data.

Many scholars are dedicated to the study of sepsis, but the MIMIC-IIII database

does not directly indicate sepsis. Angus and Martin used management data, especially
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Figure 3.4: MIMIC III code base interface

the bill code obtained at the time of discharge, to regressively identify sepsis, and used

a set of codes to define the algorithm for sepsis (Angus et al., 2001). This standard was

verified in a follow-up study by Iwashyna (Iwashyna et al., 2014). These codes can

be downloaded in sepsis in the concept section. This thesis does not use the standard

proposed by Angus. Sepsis is a life-threatening organ malfunction induced by the host’s

uncontrolled infection response (Singer et al., 2016). Within the window of probable

infection, organ dysfunction was defined as a two-point rise in the continuous organ

failure assessment (SOFA). We encode the Sepsis-3 standard in the MIMIC-III data set

according to the pivot and duration codes in the code base.

3.5 Data Extraction

In Sepsis-3, infected patients quantified by SOFA increase higher than 2 are defined as

sepsis (Singer et al., 2016), so the SOFA scoring code is used here to obtain relevant

data. We can find the database code for SOFA scoring under pivoted in the concepts

of MIMIC code library. The purpose of SOFA scoring is to describe the occurrence

and development of multiple organ dysfunction syndrome and evaluate the incidence,
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Figure 3.5: The flow chart of data extraction

quantitatively and objectively describe the severity of organ dysfunction and failure in

groups of patients and even individual patients at different times (Vincent et al., 1998).

The score is specific to the organ function being evaluated. It has nothing to do with

patient source, type of disease, demographic characteristics and other factors, and has

nothing to do with treatment measures. It can distinguish the degree of organ dysfunction

or failure. It is an objective and reliable standard that medical institutions can obtain.

Each medical institution can conduct daily tests by routine methods. Therefore, the use

of SOFA scores in this thesis will have far-reaching practical significance.

First import the MIMIC-III data set into the PostgreSQL database. Then use the

relevant sql code of the mimic code code library to obtain pivoted vital data and pivoted

SOFA scores data. The flow chart of extraction data is seen Figure 3.5.
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3.5.1 Install Database

Download and install PostgreSQL, download MIMIC-III data set. Then import the

MIMIC-III data set into the PostgreSQL database. Follow the official instructions to

import the database, and the corresponding instructions are as follows:

1. DROP DATABASE IF EXISTS mimic;

2. CREATE DATABASE mimic OWNER postgres;

3. \c mimic;

4. CREATE SCHEMA mimiciii;

5. set search_path to mimiciii;

6. \i D:/thesis/mimic-code-master/buildmimic/postgres/

postgres_create_tables.sql;

7. \set ON_ERROR_STOP 1;

8. \set mimic_data_dir ’D:/thesis/

mimic-iii-clinical-database-1.4’;

9. \i D:/thesis/mimic-code-master/buildmimic/postgres/

postgres_load_data_7zip.sql;

First delete the mimic database, in case the mimic database already exists, then

create your own mimic database, establish a connection to the created database, create

a pattern, set the search path, then create tables, set error handling, and set the mimic

data directory, and finally load data into mimic. pgAdmin 4 (pgAdmin - PostgreSQL

Tools, n.d.) is a reliable and comprehensive database design and management software

designed for PostgreSQL. After importing the data, we can see all MIMIC-III tables

in pgAdmin 4, and can also query the specific data in the table and create Views, etc.

(figure 3.6).
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Figure 3.6: MIMIC-III database by pgAdmin 4

3.5.2 Pivoted Vital Data and Infection_time

Run pivoted_vital.sql in pgAdmin 4, this code creates a materialized view pivoted_vital.

This view is the monitoring data of 8 vital signs within the first 24 hours of the patient’s

hospitalization. The vital signs include Heart rate, Systolic blood pressure, diastolic

blood pressure, Mean blood pressure, Respiration rate, Body temperature, Pulse

oximetry and glucose.

Figure 3.7: sepsis flow
Source: (A. Johnson, 2021)
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We coded the Sepsis-3 standard in the MIMIC-III data set according to the (A. Johnson,

2021) code provided on GitHub. In pgAdmin 4, call the "query/make-tables.sql" script

and generate the "sepsis" table on the database we need.

3.5.3 Pivoted SOFA Scores

Run pivoted_sofa.sql and its dependent view related SQL code in pgAdmin 4. After

the code runs, a table pivoted_sofa is created. This table records sepsis-related organ

failure assessment data. The score is calculated for each hour the patient stays in the

ICU, and the window is 24 hours.

3.5.4 Generate SOFA Timeline Information

After the above two steps, there are pivoted_data view and pivoted_sofa, sepsis3 two

tables, export their respective csv, which is the raw data of this thesis.

pivoted_vital.csv

pivoted_sofa.csv

sepsis3.csv

3.6 Data Preprocessing

After the above data extraction process, pivoted vital data and pivoted SOFA scores data

have been obtained. Then merge the data and label the data , and then filter the data

over 6 hours is the research data of our project. The entire data preprocessing process is

shown in Figure 3.8.

We extract sofa score data where sofa_24hours is not null, and extract sepsis

data where suspected_infection_time_poe is not null. Our processing is based on the

assumption that if one or more SOFA values are missing, we assume that such patients
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Figure 3.8: Data preprocessing process
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Figure 3.9: Index timestamp

are within the healthy norm and have a contribution of 0. This is a major difference

from the literature (Moor et al., 2019) that does not calculate the total score. As

mentioned above, the standard practice of clinicians is to assume the health value of all

unmeasured variables. This is the tacit rule of the medical industry. Because doctors

suspect that a certain variable exceeds the health standard, they usually measure it, so

most Unmeasured variables are healthy by default. We screen patients who live in the

Intensive Care Unit (ICU) and are over 14 years old with valid vital signs.

3.6.1 Get sepsis Onset Time

Retrieve the intensive care unit with sepsis and the corresponding time of onset.

3.6.2 Labeled Pivoted Vital Data

The final data processing is to prepare the labeled pivot important data for model training.

In this part, three data sets are connected, namely pivoted_vital.csv, sepsis_cohort.csv

and pivoted_score.csv data. In feature extraction, we extracted 8 vital signs (heart rate,

body temperature...) and 2 basic variables (age, gender), and marked sepsis for each

record.
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Table 3.2: List the features

Vital Basic Label
heartrate (Heart rate) age sepsis_label.
sysbp(Systolic blood pressure) gender
diabp(Diastolic blood pressure)
meanbp(Mean blood pressure)
resprate(Respiratory rate)
tempc(Body temperature)
spo2(Pulse oximetry)
glucose

Through the above processing, we obtained the important data of markers including

4,647 patients admitted to the ICU with sepsis and 46,850 patients admitted to the ICU

without sepsis. Then filter out the data less than 6 hours and eliminate the possibility of

imbalance, so that 559 people admitted to the ICU with sepsis and a sub-sample of 559

people admitted to the ICU without sepsis are obtained.

Filter out data older than 6 hours.

df = final_df.groupby(’icustay_id’).

filter(lambda x: len(x) > 6)

sel_ids = set(df[’icustay_id’].tolist())

sel_onset_ids = set([int(x) for x in onset_time.keys().

intersection(sel_ids)

3.6.3 Data Split

we divided the data into three sets: training, validation, and test in a 7:1:2 ratio. The

original data was divided into three sets so that the optimal model with the highest effect

accuracy and generalization capacity could be chosen. The training set’s purpose is to

make the model fit. The classification model is trained by adjusting the classifier’s hyper-

parameters. In this thesis, we use the training set to train the decision tree classifier
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model, train the LSTM network model, and train the TCN deep learning network model.

The purpose of validation set is to use each model to forecast validation set data and

record the model’s accuracy in order to determine the best model after training many

models in the training set. The parameters corresponding to the model with the best

effect are selected, which is used to adjust the model parameters. This thesis is mainly

used for the optimization and parameter adjustment of the TCN deep learning network

model. Model prediction is the function of the test set, and it is used to evaluate the

best model’s performance and classification abilities. The test set is a data set used

to test the performance of the model. According to the error (usually the difference

between the predicted output and the actual output), the quality of a model is judged.

The performance comparison indicators between the three models in this thesis include

Accuracy, Precision, Recall, F1-score and ROC-AUC.

3.7 Construct the Features Sequence Data

Most patients are admitted to the ICU with 24 hours of data. Our thesis has an

observation window of 12 hours and a prediction window of 6 hours (see Figure

3.8). This is achieved through a trade-off between performance and window. The case

patient was a patient who developed sepsis during the prediction window, while the

control patient did not develop sepsis.

Through data processing, we have obtained csv files of three data sets, including

training set, validation set and test set. This module needs to do the same processing on

the three data sets to construct the feature sequence data for the prediction model. The

observation window is 12 and the prediction window is 6 feature sequence data.

The key functions for creating a feature sequence are as follows:

Function name: create_seqs_dataset
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Input parameters:

path: The directory path where the original file is located. This function is executed

on the csv of the training set, validation set and test set respectively, so it is the directory

path where the data set is executed at that time. This defines train_path, validation_path,

tes_path in the constant variables of the program.

observation_window=12: Our goal is to use 12-hours observational health data

to predict whether sepsis will occur in following 6 hours, so the observation window is

12. Other values can be used here, and 12 hours is the observation window for weighing

performance.

prediction_window=6: We are predicting whether sepsis will occur in following

6 hours. We are predicting sepsis 6 hours in advance, so the prediction window is 6.

In the same way, other values can be used here. According to the data performance

authority, the larger the value will be obtained. The number of patients with sepsis is

relatively small, so the prediction window of performance is weighed.

Return parameters:

seqs: records sequence data

labels: labels sequence data

Internal processing of the function:

The most important process is to construct features. One is to calculate how long in

advance the patient can be predicted to suffer from sepsis, denoted as index_hours, and

the other is to obtain the data of the construction window to construct the two output

sequences.

Calculate index_hours, which can be divided into two cases: If the patient has sepsis,

the number of hours of the prediction window before the onset time is the index hours

for extracting the predicted sepsis. If the patient does not have sepsis, the last event is

index hours, this time is greater than or equal to 6 hours of the forecast window.
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After processing the three data sets, save them as the following files:

# Train set

sepsis.seqs.train

sepsis.labels.train

# Validation set

sepsis.seqs.validation

sepsis.labels.validation

# Test set

sepsis.seqs.test

sepsis.labels.test

sepsis.seqs.XXX: The independent variable squence data in the XXX data set(xi).

sepsis.labels.XXX: Response variable sequence data in the XXX data set (y)

3.7.1 Model Evaluation Criteria

This thesis predicts whether ICU patients will suffer from sepsis in the next 6 hours. This

problem is a classification problem. From Chapter 2, we know that the classification

algorithm indicators include Accuracy, Confusion Matrix, Precision, Recall, F1 Score

and ROCAUC. These indicators will be output in the evaluation, but the final decisive

indicator for judging the performance of the model is ROCAUC, and other indicators

are only for reference.

Our problems are tendentious ones. Obviously, we are more inclined to identify

patients who will suffer from sepsis in the future. At this time, the importance of judging

that you will suffer from sepsis and actually not suffering from sepsis is different from

that of judging that you will not suffer from sepsis and actually suffering from sepsis.

This cannot be measured by the accuracy index alone.
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The ROC curve is the relationship curve between the false positive rate (FPR) and

the true positive rate (TPR). It represents costs versus benefits. Obviously, the higher

the benefit and the lower the cost, the better the performance of the model. The main

task of diagnosis in the hospital is to find out the people who are sick as much as

possible, so the higher the TPR, the better, and try to reduce the people who are not

ill and misdiagnosed as sick, that is, the lower the FPR, the better. FPR and TPR are

mutually restricted. If the classifier is very sensitive, it will be easy to judge people who

are not sick as being sick. If the TPR is high, the FPR will increase accordingly. It can

be seen from the ROC curve that the point in the upper left corner (TPR=1, FPR=0) is a

perfect classification, that is, this classifier is very good and the prediction is all right.

Therefore, for our problem, ROCAUC is the most important evaluation indicator. The

closer the ROC curve is to the upper left corner, the better the classifier effect, that is,

the larger the area AUC under the ROC, the better the classifier classification effect.

3.7.2 Missing SOFA Processing

We know that for clinicians, the default standard practice is that all measured values

are healthy values. This is because when a doctor suspects that a certain index value

may deviate from the normal value, the doctor will definitely measure it, and for the

unmeasured value, the doctor must be sure that there is no problem. Therefore, in

this article, our treatment of the missing SOFA value means that the patient’s SOFA

is within the healthy standard range, so the missing SOFA value is supplemented to 0.

Our labeling method conforms to standard clinical practice.

3.7.3 Unbalanced Dataset Issues Resolution

After data processing, important marker data of 4,647 patients admitted to ICU with

sepsis and 46,850 patients admitted to ICU with non-sepsis were obtained here. The
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data set here is obviously an unbalanced data set. The number of positive samples is

much smaller than that of negative samples, and the ratio between the two is about 1:10.

Then filter out the data within 6 hours. Here are 559 patients with sepsis who were

admitted to the ICU. We used random under-sampling and selected 559 patients with

non-sepsis who were admitted to the ICU. After this processing, the data is a balanced

data.



Chapter 4

Model Implementation

This chapter mainly introduces the algorithm implementation of the decision tree,

LSTM and TCN models, as well as the experimental process. Our goal is to use

12-hour observational health data to predict whether sepsis will occur in the next

6 hours. The first is to implement decision tree prediction of sepsis based on sk-

learn.tree.DecisionTreeClassifier. Then, based on the pytorch package of python, LSTM

was implemented to predict sepsis. Finally, focus on the deep learning TCN algorithm,

based on the python pytorch package to achieve TCN prediction of sepsis.

4.1 Implementation of Decision Tree

4.1.1 Decision Tree Algorithm

Most decision tree algorithms are greedy and search and traverse in a top-down, divide-

and-conquer recursive manner (Safavian & Landgrebe, 1991). The general algorithm

for generating decision trees is described in Algorithm 1.

2

68
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Algorithm 1 Algorithms for Building Decision Trees
input: Training tuple D, Candidate attribute set Attribute_List
output: A decision tree T

Create decision tree root node N ;
if All tuples in D are of the same category C then

Return N is used as a leaf node and marked as category C
else if Attribute_List is empty then

Return N is the leaf node, and it is marked as the category C with the most
categories in the sample contained in the node;
else

selects an attribute Splitting_criterion with the best classification ability from
the Attribute_list, and marks it as the root node N ;

for each output j in Splitting_criterion do
According to Splitting_criterion = j, a corresponding branch is generated

from the root node;
Suppose the set of array tuples in D that meets the output j is Dj;
if Dj is empty then

Add a leaf node and mark it as the class with the most sample categories
contained in the node;

else
recursively construct the left and right subtrees, and add a node returned

by GDT (D_j,Attribute_list) to N ;
end if

end for
end if
return T ;

4.1.2 Decision Tree in Python sklearn library

Just as the InSight model constructed in several documents can be used as the baseline

for new models, the InSight scoring model is one of some machine learning algorithms

that have passed research and clinical proof-of-concept (Sheetrit et al., 2017; Dremsizov,

Kellum & Angus, 2004; Mao et al., 2018; Bai, Zico Kolter & Koltun.v., 2018). We built

our own machine learning model in this module, here is the decision tree classifier.

The function to build a decision tree is sklearn.tree.DecisionTreeClassifier, which

uses the CART algorithm by default. There are three main decision tree algorithms: ID3,

C4.5, and CART. The ID3 algorithm starts from the root node of the tree, always selects
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the feature with the largest information gain, applies judgment conditions to this feature

to establish child nodes, and proceeds recursively until the information gain is small

or there is no feature. C4.5 uses the information gain ratio to select features, which is

regarded as an improvement of the ID3 algorithm. But these two algorithms will lead to

over-fitting problems and need to be pruned. The pruning of the decision tree is actually

to remove some unnecessary classification features by optimizing the loss function, and

reduce the overall complexity of the model. In the process of CART algorithm spanning

tree, the classification tree adopts the principle of Gini Index minimization, and the

regression tree chooses the principle of minimizing the square loss function. The CART

algorithm also includes tree pruning. The CART algorithm cuts some subtrees from

the bottom of the fully grown decision tree, making the model simpler. The specific

implementation is through the DecisionTreeClassifier class of sklearn.tree.

4.1.3 Gini Index

The Gini index is a measure of the training tuple’s impurity. The calculation method is

as follows:

Gini(T ) = 1 −
m

∑

i=1
P 2

(ui)

In the formula, p(ui) is the probability that the tuple in T belongs to the Ci category,

and is estimated by ∣Ci,T ∣/∣T ∣ value.

Assuming that attribute A divides T into T1 and D2, then the Gini index of T is

calculated as follows:

GiniA(T ) =

T1
T
Gini(T1) +

T2
T
Gini(T2)
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Figure 4.1: Decision tree workflow

The calculation method of impurity reduction caused by the binary division of attribute

A is as follows:

∆Gini(A) = Gini(T ) −GiniA(T )

4.1.4 Decision Tree Workflow

The decision tree workflow of this module is shown in Figure 4.1:

In the process of generating the decision number analyzer model, a 5-fold cross-

validation GridSearch is used. Here we choose the maximum depth parameter max_depth

of the decision tree model, we can traverse the values from 1 to 10, and use the roc-auc

score as the evaluation criterion to search for the most suitable max_depth value. We

only used single parameter tuning here. GridSearch is a parameter tuning method of

exhaustive search. It traverses all candidate parameters, builds the model cyclically,

evaluates the effectiveness and accuracy of the model, and selects the best performing

parameter as the final result.

In this module, we use the GridSearchCV() function in the Scikit-Learn library to

optimize the parameters of the max_depth of the decision tree model (Mujtaba, 2020).
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from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import GridSearchCV

The above code imports the DecisionTreeClassifier() and GridSearchCV() functions

from the Scikit-Learn library.

param ={’max_depth’: range(1, 10, 1)}

The above code specifies the candidate value range of the parameter max_depth to

be tuned in the decision tree model.

model = DecisionTreeClassifier(random_state=123)

The above code builds a decision tree model and assigns it to the variable model.

The parameter random_state sets the random seed number, which means that the

random seed number generated by np.random is used to obtain the same result for

multiple runs.

grid_search = GridSearchCV(estimators,

param_grid = param,

scoring=’roc\_auc’, cv=5 )

grid_search.fit(X, y)

The above code passes the decision tree model and the candidate value range of

the parameters to be tuned into the GridSearchCV() function, and sets the scoring

parameter to ’roc_auc’, which means that the AUC value of the ROC curve is used

as the evaluation standard, and the cv parameter is set to 5, which means to proceed

5-fold cross-validation.
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4.1.5 Training the Classifier

The data sets between the three models are the same. The final data set includes 1118

ICU patients. The classification ratio of patients with sepsis to patients without sepsis is

1:1. The split ratio of training set, validation set and test set is 7:1:2.

The decision tree classifier of sepsis is a machine learning model. The parameter

max_depth of the classifier is selected using the validation set, the model is trained, and

the evaluation standard is ROCAUC corresponding to different max_depth, and then

the performance of the selected model is evaluated on the test set.

4.1.6 Validation

The validation set is a sample set used to adjust the parameters of the classifier

(Brownlee, 2017). In the decision tree model, the parameter max_depth of the model is

selected using the validation set. Different max_depth corresponds to different training

models. In order to find the best model, each model is used to predict the validation set

and the accuracy of the model is recorded. Select the parameters corresponding to the

best model, and this model is the best model.

The classifier uses GridSearchCV to automatically adjust the parameters. Table 4.1

shows the process of adjusting the parameters. Optimizing the maximum number of

features of the decision tree parameters max_depth, max_depth parameter selection

range: 1-10, step length is 1, five-fold cross-validation selects the best max_depth.

4.1.7 Result

It can be seen from Table 4.1 that the best max_depth is selected as 5, and the accuracy

is 66.51%. Different max_depths have little difference in accuracy. In this thesis, we

only select the optimal parameters for max_depth. Of course, if necessary, other optimal

parameters are also installed with similar steps to search.
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Table 4.1: Using GridSearchCV to select max_depth

max_depth Mean test scores of CV results
1 0.60580864
2 0.62557859
3 0.64481449
4 0.64298507
5 0.65273407
6 0.63272103
7 0.63284729
8 0.62569195
9 0.61699703

10 00.63363817

Figure 4.2: Evaluation metrics of decision tree

Best parameters set:

max_depth: 5

The Evaluation metrics of decision tree see Figure 4.2. The accuracy is 0.665, the

precision is 0.701, the recall is 0.555, the F1-score is 0.619, the ROC-AUC is 0.663.

Receiver operating characteristic (ROC) curve for decision tree see Figure 4.3.

4.2 Implementation of LSTM

Many Python packages, such as pybrain, kears, tensorflow, cikit-neuralnetwork, and

others (Python utilized LSTM time series prediction model analysis(Others-Community),

n.d.), may be used directly to create LSTM models. In this thesis, we use pytorch to

construct LSTM.
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Figure 4.3: Receiver operating characteristic (ROC) curve for decision tree

4.2.1 Model Building

1. Build the network layer, forward propagation forward()

Create an LSTM layer and a linear layer, the LSTM layer extracts features, and the

linear layer is used as the final prediction. The number of features corresponding to

input_size, our paper is 8, that is, 8 features

self.embedding = nn.Linear(in_features=dim_input,

out_features=8)

self.rnn = nn.LSTM(input_size=8, hidden_size=4,

num_layers=2, batch_first=True)

self.output = nn.Linear(in_features=4, out_features=2)

After defining each layer, we finally need to string these together through forward

propagation, which involves how to define the forward function. The task of the forward

function needs to link the input layer, network layer, and output layer to realize the

forward transmission of information. The parameter of forward is the input data, and

the return value is the output data.

2. Instantiate the network and create an object of the LSTM() class. Define the
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loss function and optimizer, and create an instance of the optimizer.

model = MyLSTM(num_features)

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=0.005)

3. Training model, backpropagation backward()

When training the model, you need to put the model in training mode, that is, call

model.train().

for epoch in range(NUM_EPOCHS):

train_loss, train_accuracy = train(model,

device,

train_loader,

criterion,

optimizer, epoch)

The gradient is cumulative by default, you need to manually initialize or clear the

gradient, call:

optimizer.zero_grad()

Instantiate the model:

output = model(input)

In the training process, forward propagation generates the output of the network, and

calculates the loss value between the output and the actual value. Call loss.backward()

to automatically generate the backpropagation gradient, and then use optimizer.step() to

execute the optimizer to propagate the gradient back to each network.

loss = criterion(output, target)
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#’Model diverged with loss = NaN’

assert not np.isnan(loss.item()),

loss.backward()

optimizer.step()

The method of realizing gradient backpropagation is mainly the chain rule of compound

functions. Pytorch provides the function of automatic backpropagation. Using the nn

toolbox, you don’t need to write backpropagation yourself, just let the loss function

call backward(). In backpropagation, the optimizer is very important. This type of

optimization algorithm updates the parameters by using the gradient values of the

parameters.

4. Test and evaluate the model

for epoch in range(NUM_EPOCHS):

valid_loss, valid_accuracy, valid_results =

evaluate(model, device, valid_loader, criterion)

call

model.eval()

to change the model to test or verification mode, and set the training attribute to false to

make the model in the test or verification state.

Then there is the process of forecasting, evaluating, and obtaining relevant evaluation

indicators.

4.2.2 LSTM Model Data

The data sets between the three models are the same. The final data set includes 1118

ICU patients. The classification ratio of patients with sepsis to patients without sepsis is



Chapter 4. Model Implementation 78

1:1. The split ratio of training set, validation set and test set is 7:1:2. creating a feature

sequence data to enter the model.

4.2.3 LSTM Model Basic Parameter Settings

In the experiment, Pytorch is used to implement LSTM. The key steps are mainly data

preparation and model construction. The data uses the same data as machine learning.

In the model construction, use the nn toolbox, and in the training process, calculate the

loss value between the output value and the actual value on the validation set, let’s keep

the model that has the best accuracy. We will train our model with 20 epochs. Of course,

if we want, we can try to use more iterations. We set bath size is 64, At each iteration, it

takes 13 readings to train all the data, and the training time, loss and accuracy will be

printed. The model uses Adam optimizer. Adam optimizer was proposed by Kingma

and other scholars in 2015. Adam optimizer combines the advantages of AdaGrad and

RMSProp optimization algorithms(Kingma & Ba, 2015). The First Moment Estimation

of the gradient, the mean value of the gradient, and the Second Moment Estimation, the

uncentered variance of the gradient are comprehensively considered, and the update

step is calculated.

4.2.4 The Output of LSTM Model

Set epochs to 20 and iterative training 20 times. The training set has more than 700

data. Because the batch_size is 64, each iteration needs to be read 13 times. The output

results printed during the training process are as follows. The final LSTM model is the

model with the highest verification accuracy for 20 iterations.
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Table 4.2: Train and Evaluate epochs output(LSTM)

Epoch Performance

†1 0:[0/13] Time:0.016, Loss:0.2826, Accuracy: 92.188
0:[10/13] Time:0.012, Loss:0.3462, Accuracy: 85.227
Test: Time:0.004, Loss:0.3657, Accuracy: 84.375

† 1:[0/13] Time:0.011, Loss:0.3490, Accuracy: 84.375
1:[10/13] Time:0.011, Loss:0.3191, Accuracy: 82.812
Test: Time:0.004, Loss:0.3667, Accuracy: 84.375

† 2:[0/13] Time:0.011, Loss:0.2960, Accuracy: 89.062
2:[10/13] Time:0.011, Loss:0.3114, Accuracy: 85.938
Test: Time:0.008, Loss:0.3677, Accuracy: 84.375

† 3:[0/13] Time:0.017, Loss:0.3308, Accuracy: 84.375
3:[10/13] Time:0.013, Loss:0.3195, Accuracy: 89.062
Test: Time:0.004, Loss:0.3813, Accuracy: 84.375

† 4:[0/13] Time:0.011, Loss:0.3456, Accuracy: 85.938
4:[10/13] Time:0.010, Loss:0.3646, Accuracy: 84.375
Test: Time:0.004, Loss:0.3718, Accuracy: 84.375

† 5:[0/13] Time:0.010, Loss:0.3633, Accuracy: 82.812
5:[10/13] Time:0.011, Loss:0.4036, Accuracy: 87.500
Test: Time:0.006, Loss:0.3667, Accuracy: 82.812

† 6:[0/13] Time:0.011, Loss:0.2686, Accuracy: 93.750
6:[10/13] Time:0.011, Loss:0.3563, Accuracy: 85.938
Test: Time:0.004, Loss:0.3720, Accuracy: 84.375

† 7:[0/13] Time:0.010, Loss:0.4334, Accuracy: 81.250
7:[10/13] Time:0.012, Loss:0.5354, Accuracy: 75.000
Test: Time:0.004, Loss:0.3687, Accuracy: 85.938

† 8:[0/13] Time:0.016, Loss:0.3699, Accuracy: 85.938
8:[10/13] Time:0.011, Loss:0.3028, Accuracy: 85.938
Test: Time:0.004, Loss:0.3848, Accuracy: 84.375

† 9:[0/13] Time:0.015, Loss:0.2911, Accuracy: 85.938
Continued over page

1demographic information of the patient(1-6).
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Table 4.2: Tables in. . . (continued)

Epoch Performance
9:[10/13] Time:0.012, Loss:0.3823, Accuracy: 84.375
Test: Time:0.004, Loss:0.4000, Accuracy: 84.375

† 10:[0/13] Time:0.010, Loss:0.3377, Accuracy: 84.375
10:[10/13] Time:0.011, Loss:0.2888, Accuracy: 87.500
Test: Time:0.004, Loss:0.3649, Accuracy: 85.938

† 11:[0/13] Time:0.011, Loss:0.3103, Accuracy: 90.625
11:[10/13] Time:0.011, Loss:0.3678, Accuracy: 82.812
Test: Time:0.004, Loss:0.3630, Accuracy: 85.938

† 12:[0/13] Time:0.010, Loss:0.3849, Accuracy: 81.250
12:[10/13] Time:0.011, Loss:0.2469, Accuracy: 92.188
Test: Time:0.004, Loss:0.3822, Accuracy: 84.375

† 13:[0/13] Time:0.010, Loss:0.2190, Accuracy: 90.625
13:[10/13] Time:0.012, Loss:0.3355, Accuracy: 87.500
Test: Time:0.004, Loss:0.3536, Accuracy: 84.375

† 14:[0/13] Time:0.014, Loss:0.3135, Accuracy: 87.500
14:[10/13] Time:0.010, Loss:0.2433, Accuracy: 92.188
Test: Time:0.004, Loss:0.3812, Accuracy: 81.250

† 15:[0/13] Time:0.012, Loss:0.2866, Accuracy: 87.500
15:[10/13] Time:0.016, Loss:0.3394, Accuracy: 87.500
Test: Time:0.004, Loss:0.3755, Accuracy: 84.375

† 16:[0/13] Time:0.010, Loss:0.4375, Accuracy: 82.812
16:[10/13] Time:0.013, Loss:0.2908, Accuracy: 92.188
Test: Time:0.005, Loss:0.3675, Accuracy: 85.938

† 17:[0/13] Time:0.012, Loss:0.2983, Accuracy: 87.500
17:[10/13] Time:0.011, Loss:0.3733, Accuracy: 82.812
Test: Time:0.004, Loss:0.4158, Accuracy: 82.812

† 18:[0/13] Time:0.010, Loss:0.2587, Accuracy: 90.625
18:[10/13] Time:0.011, Loss:0.2884, Accuracy: 90.625
Test: Time:0.004, Loss:0.3821, Accuracy: 84.375

† 19:[0/13] Time:0.011, Loss:0.3300, Accuracy: 85.938
Continued over page
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Figure 4.4: Evaluation metrics on train set (LSTM)

Table 4.2: Tables in. . . (continued)

Epoch Performance
19:[10/13] Time:0.011, Loss:0.3442, Accuracy: 84.375
Test: Time:0.006, Loss:0.3777, Accuracy: 84.375

4.2.5 The result of LSTM model

The Evaluation metrics of LSTM model on train set see Figure 4.4. The accuracy is

0.858, the precision is 0.906, the recall is 0.804, the F1-score is 0.852, the ROC-AUC is

0.927. Receiver operating characteristic (ROC) curve for decision tree see Figure 4.5.

The Evaluation metrics of LSTM model on validation set see Figure 4.6. The

accuracy is 0.8125, the precision is 0.925, the recall is 0.673, the F1-score is 0.779, the

ROC-AUC is 0.927. Receiver operating characteristic (ROC) curve for decision tree

see Figure 4.7.

The Evaluation metrics of LSTM model on test set see Figure 4.8. The accuracy is

0.866, the precision is 0.908, the recall is 0.809, the F1-score is 0.855, the ROC-AUC is

0.935. Receiver operating characteristic (ROC) curve for decision tree see Figure 4.9.
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Figure 4.5: ROC curve on train set (LSTM)

Figure 4.6: Evaluation metrics on validation set (LSTM)

Figure 4.7: ROC curve on validation set (LSTM)
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Figure 4.8: Evaluation metrics on test set (LSTM)

Figure 4.9: ROC curve on test set (LSTM)
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4.3 TCN Model to Predict Sepsis

4.3.1 TCN Model for Predict Spesis

The timing convolution network actually transforms the one-dimensional convolution

into a model suitable for timing problems (Bai, Kolter & Koltun, 2018). Use a multi-

layer network to learn information over a longer time span, and each layer of the network

uses a one-dimensional convolution kernel to scan all data at the current time point.

The sequence information is passed along the network layer by layer, and finally the

prediction result can be obtained. The deeper the network, the longer the information

can be learned.

There are two main differences between time series convolution and ordinary one-

dimensional convolution:

a: Use dilated convolutions, the higher the layer, the bigger the convolution

window and the more holes in it. the dilated convolution can ensure that each

hidden layer is the same size as the input sequence, reducing the calculation

And increase the receptive field so that the model can learn the information

over a longer period of time.

b: Use causal convolution, because time series prediction can only use inform-

ation before time t to predict the value of time t. Causal convolution restricts

the sliding window to ensure that the information after time t will not be

used for prediction.

From the above summary, we can see that time series convolution is only a structural

innovation of one-dimensional convolution. The time series convolution model is

proposed to solve the problem that the RNN model cannot be operated in parallel, and

to obtain faster calculation speed. It has comparable performance with RNN in time
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Figure 4.10: Architecture of the TCN model (Bai, Kolter & Koltun, 2018)

series prediction (Kechyn, Yu, Zang & Kechyn, 2018). This thesis uses TCN and LSTM

for comparison.

Figure 4.10 shows our TCN model, where l is equal to input_length, k is equal to

kernel_size, b is equal to dilation_base, k ≥ b, and n is the minimum number of residual

blocks for complete historical coverage (Bai, Kolter & Koltun, 2018).

n = ⌈logb(
(l − 1) ⋅ (b − 1)

(k − 1) ⋅ 2
+ 1)⌉

4.3.2 TCN Model Data

The data sets between the three models are the same. The final data set includes 1118

ICU patients. The classification ratio of patients with sepsis to patients without sepsis is

1:1. The split ratio of training set, validation set and test set is 7:1:2. creating feature

sequence data to enter, train, validate and test the model.

However, it should be noted that the TCN data cannot be a variable-length sequence,

and the same sequence must be entered. Therefore, when processing the data, the
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maximum length is 13, which is 12 hours of historical data and a current data.

batch_seq, batch_label = zip(*batch)

num_features = batch_seq[0].shape[1]

seq_lengths = list(map(lambda patient_tensor:

patient_tensor.shape[0], batch_seq))

max_length = 13

4.3.3 Pytorch Implements TCN

The TCN of this thesis is implemented based on pytorch, import related packages.

import torch

import torch.nn as nn

Implement causal convolution

The class that implements causal convolution inherits from the class nn.Module. Then

use forward propagation to turn the tensor into a form of continuous distribution in

memory, and tensor.contiguous() will return the same tensor with contiguous memory.

class Chomp1d(nn.Module):

def _init_(self, chomp_size):

...

def forward(self, x):

return x[:, :, :-self.chomp_size].contiguous()

Implement the residual module

The class that implements residual module inherits from the class nn.Module.
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class TemporalBlock(nn.Module):

def _init_(self, n_inputs, n_outputs, kernel_size,

stride, dilation, padding, dropout=0.2):

Parameter description:

n_inputs: the number of input channels

n_outputs: the number of output channels

kernel_size: convolution kernel size

stride: stride, generally 1

dilation: expansion coefficient

padding: padding factor

dropout: dropout ratio

Define the convolutional layer, and implement causal convolution according to the

output of the convolutional layer and the padding size, crop the extra padding part,

and maintain the output time step. Then add the activation function and dropout to the

previous output to complete a convolution. In this way, multiple convolutional layers

can be defined.

self.conv = weight_norm(nn.Conv1d(n_inputs, n_outputs,

kernel_size, stride=stride,

padding=padding, dilation=dilation))

self.chomp = Chomp1d(padding)

self.relu = nn.ReLU()

self.dropout= nn.Dropout(dropout)

Time convolutional network architecture

The class that implements TCN also inherits from the class nn.Module.
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class TemporalConvNet(nn.Module):

def_init_(self, num_inputs, num_channels,

kernel_size=2, dropout=0.2):

Parameter description:

num_inputs: the number of input channels

num_channels: the number of hidden_channels in each layer.

kernel_size: convolution kernel size

dropout: drop_out ratio

4.3.4 TCN Model Basic Parameter Settings

In the experiment, Pytorch is used to implement TCN. The key steps are mainly data

preparation and model construction. The data uses the same data as machine learning

and LSTM. In the model construction, use the nn toolbox.

When training the model, we only specify the first part of the training series as

target_series, because we don’t want to predict the assistant time series we added earlier.

We tried several different hyper-parameter combinations, but most of the values were

chosen arbitrarily. finally

epochs=20,

input_size=13,

output_size=2,

num_channels = [32, 64, 128]

dropout=0.2,

kernel_size=2,
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During the training process, the loss value between the output value and the actual

value on the validation set is calculated, allowing us to maintain the model with the

best accuracy. We will train our model with 20 epochs. We set the bath_size to 64, and

each iteration requires 13 readings to train all the data, and the training time, loss, and

accuracy will be printed out. The model uses Adam optimizer.

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=0.005)

4.3.5 The Output of TCN Model

Same to LATM , TCN also iterative training 20 times. The output results printed during

the training process are as follows. The final TCN model is the model with the highest

verification accuracy for 20 iterations.

Table 4.3: Train and Evaluate epochs output(TCN)

Epoch Performance

†2 0:[0/13] Time:0.030, Loss:0.3899, Accuracy: 84.375
0:[10/13] Time:0.027, Loss:0.4046, Accuracy: 79.688
Test: Time:0.007, Loss:0.3438, Accuracy: 84.375

† 1:[0/13] Time:0.026, Loss:0.3684, Accuracy: 82.812
1:[10/13] Time:0.020, Loss:0.3979, Accuracy: 85.511
Test: Time:0.007, Loss:0.3454, Accuracy: 85.938

† 2:[0/13] Time:0.020, Loss:0.3912, Accuracy: 89.062
2:[10/13] Time:0.021, Loss:0.2704, Accuracy: 87.500
Test: Time:0.008, Loss:0.3659, Accuracy: 84.375

† 3:[0/13] Time:0.020, Loss:0.3004, Accuracy: 87.500
Continued over page

2demographic information of the patient(1-6).
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Table 4.3: Tables in. . . (continued)

Epoch Performance
3:[10/13] Time:0.022, Loss:0.3355, Accuracy: 75.000
Test: Time:0.007, Loss:0.3374, Accuracy: 85.938

† 4:[0/13] Time:0.024, Loss:0.3045, Accuracy: 89.062
4:[10/13] Time:0.020, Loss:0.3471, Accuracy: 85.938
Test: Time:0.007, Loss:0.3891, Accuracy: 82.812

† 5:[0/13] Time:0.027, Loss:0.2480, Accuracy: 90.625
5:[10/13] Time:0.020, Loss:0.2812, Accuracy: 89.062
Test: Time:0.007, Loss:0.3864, Accuracy: 82.812

† 6:[0/13] Time:0.022, Loss:0.2821, Accuracy: 85.938
6:[10/13] Time:0.021, Loss:0.3265, Accuracy: 87.500
Test: Time:0.008, Loss:0.4050, Accuracy: 84.375

† 7:[0/13] Time:0.021, Loss:0.3992, Accuracy: 82.812
7:[10/13] Time:0.023, Loss:0.3124, Accuracy: 89.062
Test: Time:0.007, Loss:0.3318, Accuracy: 84.375

† 8:[0/13] Time:0.023, Loss:0.3486, Accuracy: 84.375
8:[10/13] Time:0.020, Loss:0.3593, Accuracy: 84.375
Test: Time:0.007, Loss:0.3582, Accuracy: 81.250

† 9:[0/13] Time:0.020, Loss:0.3395, Accuracy: 82.812
9:[10/13] Time:0.020, Loss:0.3119, Accuracy: 85.938
Test: Time:0.007, Loss:0.3682, Accuracy: 81.250

† 10:[0/13] Time:0.020, Loss:0.2992, Accuracy: 87.500
10:[10/13] Time:0.021, Loss:0.2829, Accuracy: 89.062
Test: Time:0.008, Loss:0.3545, Accuracy: 84.375

† 11:[0/13] Time:0.022, Loss:0.2995, Accuracy: 87.500
11:[10/13] Time:0.020, Loss:0.2020, Accuracy: 92.188
Test: Time:0.007, Loss:0.3473, Accuracy: 82.812

† 12:[0/13] Time:0.020, Loss:0.2584, Accuracy: 89.062
12:[10/13] Time:0.025, Loss:0.3184, Accuracy: 85.938
Test: Time:0.007, Loss:0.3115, Accuracy: 81.250

† 13:[0/13] Time:0.024, Loss:0.2679, Accuracy: 90.625
Continued over page
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Table 4.3: Tables in. . . (continued)

Epoch Performance
13:[10/13] Time:0.022, Loss:0.3830, Accuracy: 85.938
Test: Time:0.008, Loss:0.3536, Accuracy: 81.250

† 14:[0/13] Time:0.020, Loss:0.2881, Accuracy: 92.188
14:[10/13] Time:0.025, Loss:0.2785, Accuracy: 89.062
Test: Time:0.007, Loss:0.3694, Accuracy: 82.812

† 15:[0/13] Time:0.021, Loss:0.3129, Accuracy: 84.375
15:[10/13] Time:0.021, Loss:0.3012, Accuracy: 84.375
Test: Time:0.007, Loss:0.3578, Accuracy: 82.812

† 16:[0/13] Time:0.020, Loss:0.2579, Accuracy: 85.938
16:[10/13] Time:0.020, Loss:0.2990, Accuracy: 87.500
Test: Time:0.007, Loss:0.3992, Accuracy: 79.688

† 17:[0/13] Time:0.021, Loss:0.2962, Accuracy: 87.500
17:[10/13] Time:0.019, Loss:0.3350, Accuracy: 87.500
Test: Time:0.008, Loss:0.3778, Accuracy: 84.375

† 18:[0/13] Time:0.020, Loss:0.2806, Accuracy: 89.062
18:[10/13] Time:0.021, Loss:0.3633, Accuracy: 84.375
Test: Time:0.008, Loss:0.3527, Accuracy: 84.375

† 19:[0/13] Time:0.021, Loss:0.4143, Accuracy: 76.562
19:[10/13] Time:0.021, Loss:0.2290, Accuracy: 92.188
Test: Time:0.007, Loss:0.3529, Accuracy: 84.375

4.3.6 The result of TCN model

The Evaluation metrics of TCN model on train set see Figure 4.11. The accuracy is

0.850, the precision is 0.932, the recall is 0.841, the F1-score is 0.884, the ROC-AUC is

0.938. Receiver operating characteristic (ROC) curve for decision tree see Figure 4.12.

The Evaluation metrics of LSTM model on validation set see Figure 4.13. The

accuracy is 0.813, the precision is 0.905, the recall is 0.691, the F1-score is 0.784, the

ROC-AUC is 0.841. Receiver operating characteristic (ROC) curve for decision tree
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Figure 4.11: Evaluation metrics on train set (TCN)

Figure 4.12: ROC curve on train set (TCN)

see Figure 4.14.

The Evaluation metrics of TCN model on test set see Figure 4.15. The accuracy is

0.893, the precision is 0.913, the recall is 0.864, the F1-score is 0.888, the ROC-AUC is

0.944. Receiver operating characteristic (ROC) curve for decision tree see Figure 4.16.

Figure 4.13: Evaluation metrics on validation set (TCN)
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Figure 4.14: ROC curve on validation set (TCN)

Figure 4.15: Evaluation metrics on test set (TCN)

Figure 4.16: ROC curve on test set (TCN)



Chapter 5

Discussion

This chapter first compares the three models of decision tree, LSTM, and TCN to predict

the performance of sepsis on the test data set. Then discusses the results in depth and

analyzes the advantages and limitations of the TCN model.

5.1 Model Performance Comparison

We compared the performance of the TCN model with the performance of the decision

tree classifier algorithm (machine learning) and the LSTM algorithm (deep learning).

The three methods apply the same labeling data. Table 5.1 shows all the performance

index values of the decision tree, LSTM and TCN models. However, in Chapter 3, in

the selection of model evaluation indicators, we choose ROCAUC as the decisive factor

for evaluating the pros and cons of the model. So the ROC curve in Figure 5.1 of the

three models is drawn.

We mainly use the area under the AUC-ROC characteristic curve to express the

performance of the model. The specific meaning of AUC-ROC can be seen in Appendix

A. Performance comparison can draw the following conclusions:

94
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Figure 5.1: model ROC curve comparison
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Table 5.1: Comparison of results for all models

Decison Tree LSTM TCN
Accuracy 0.6652 0.8661 0.8929
Precision 0.7011 0.9082 0.9135
Recall 0.5545 0.8091 0.8636
F1-score 0.6193 0.8558 0.8879
AUC-ROC 0.6632 0.9348 0.9443

• Among 3 classifiers, TCN performs best while Descision Tree performs worst.

• Machine learning methods can help predict the onset of sepsis.

• The TCN and LSTM model believes that the time dependence of sepsis will lead

to significantly higher predictors.

• The TCN model is more optimized than LSTM.

The decision tree algorithm is based on a heuristic algorithm, with a small amount

of calculation, and the constructed tree structure is also easy to understand, which

can show which features are more important. But decision trees tend to ignore the

correlation between data. Our data is time series data, the value is measured every

1 hour, and there is a time sequence between the data. Therefore, the decision tree

classifier performed relatively poorly on our data set.

LSTM is an excellent variant of RNN, it is very suitable for dealing with timing

problems, so the LSTM model also shows high performance. TCN is a new type of

algorithm that can be used to solve time series prediction. TCN solves the concurrency

problem of LSTM. In our model, TCN beats the LSTM model by a relatively small

advantage. The accuracy of deep learning depends on the amount of data, and the

amount of data here is not particularly large. Compared with LSTM, the speed of TCN

has been greatly improved, and the performance is better than LSTM, which is more

suitable for production environment use.
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5.2 Discussion

In this study, we used 8 vital sign variables, 559 ICU with sepsis and 559 ICU without

sepsis. After data splitting, the data of 780 patients were used as training data. The data

set is not particularly small data set. It can be seen from Table 5.1 that the TCN model

we proposed achieves an accuracy of 94.4%, which is better than the machine learning

and LSTM models implemented by this thesis, but further performance optimization is

required. Moor et al. first proposed the use of the TCN model to predict sepsis (Moor et

al., 2019). Although we have also established a TCN-based predictive sepsis model, our

model is different from the model proposed by Moor. Our classifier is not based on a

multi-task Gaussian process, nor does it use a dynamic time warped k-nearest neighbor

classifier. We all use data from MIMIC-III, but the labels and patient data used are

different. We both do early warning analysis to compare different prediction ranges in

the hours leading up to sepsis onset. Therefore, in the next analysis direction, we mainly

optimize the TCN, focusing on the comparison of the MPG-TCN model proposed by

Moor, in order to achieve better classification performance than previous researchers.

It is worth noting that the data set we use is a balanced data set, and the AUC-ROC

indicator can be used directly to measure the model. However, there are many previous

studies. The data set used by their model is an unbalanced data set. The ROC graph

cannot reflect the real classification performance of the classifier of the unbalanced data

set, because this will lead to a misleading interpretation of the sensitivity of the model

(Futoma et al., 2017). Therefore, in the comparison with the first, we cannot simply

compare the accuracy and ROC-AUC, we need to consider the overall data set. For

unbalanced data sets, we use AUC-PRC. The PRC chart gives a more precise forecast

of the model’s future classification performance because it calculates the proportion of

true positives in the positive prediction (Futoma et al., 2017).

For the other models mentioned in the literature review, our TCN also has an
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absolute advantage if we look at the ROC-AUC value alone, but this comparison is

of little significance. Because different documents use different data sets, and the

experimental scenarios are different. It is for this reason that this thesis not only

developed the TCN model, but also the decision tree and LSTM two benchmark models.

The three models are trained on the same data set, the best model is selected with the

same verification set, and the performance is tested on the same test set to compare

performance.

Our research has some advantages and limitations, which are discussed as follows:

5.2.1 Benefits

• Three models with different methods are established. The training data and test

data used by the models are the same, so the performance comparison of the three

models can reflect the advantages of the model itself.

• Data set localization, including patient’s vital signs data set and SOFA labeled

data.

• Patient warning can extend the window of meaningful clinical intervention.

5.2.2 Limitations

• The current data features only include vital signs (vitals), without considering

the result data (labs) of laboratory tests, which is a very important part of data in

medicine.

• The current model is basic, and only a simple hyper-parameter selection is made.

Further new technologies will be introduced to improve the performance of the

model, such as attention.



Chapter 6

Conclusion

This chapter summarizes the entire thesis research, and looks forward to the future, and

proposes future research directions in this field.

6.1 Conclusion

Sepsis is a disease in which a person’s immune system produces a significant amount

of inflammatory chemicals in order to combat infections caused by microorganisms.

Fluid can build in the tissues as a result of a significant number of chemicals being

released, leading to organ dysfunction. In Sepsis-3, infected patients with SOFA score

higher than 2 are identified as sepsis patients. Sepsis is one of the main causes of

mortality in hospitals around the world. Studies have shown that the earlier treatment

can significantly improve the survival rate, therefore, prediction is more important than

detection. If ICU patients can be accurately predicted to develop sepsis in the next few

hours, it can help ICU doctors make the best clinical decisions, thereby improving the

clinical outcomes of patients with high-risk sepsis and increasing the survival rate of

patients. Early and accurate prediction can prevent the lasting effects of sepsis on the

patient’s body. The goal of our thesis is to use 12-hours observational health data to

99
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predict whether the sepsis will occur in following 6 hours, which is a classification

problem.

So far, people have done in-depth research on the problem of sepsis prediction, and

many models for predicting sepsis have been developed. These models include machine

learning models and some basic deep learning models. These models are based on

MIMIC database, and some are based on other data sources. With the development

of deep learning models, deep learning models have increasingly replaced machine

learning models. In the research of this thesis, we used a deep time convolutional

network to predict sepsis, and established a benchmark model, a decision tree machine

learning model and a basic LSTM deep learning model. This thesis has completed

several tasks:

• This thesis first investigated the background of sepsis prediction and found that

early and accurate prediction of sepsis is very important to reality. Then we also

investigated the development of the definition of sepsis. In this thesis, we use

the spesis-3 standard proposed in 2016 to quantify whether a patient has sepsis.

In addition, we also investigated the current development of sepsis prediction

models, which mainly include machine learning models and deep learning models.

Most of the models are based on the MIMIC database, and more of them are

based on the MIMIC-III database. So what we have achieved in this thesis is

to build a deep learning TCN model based on the MIMIC-III database using 12

hours of observation to predict whether sepsis will occur in following 6 hours.

• By consulting the literature, we learned about the development of researchers in

the field of sepsis prediction. The focus is on the application of deep learning

models in predicting sepsis. Finally, the development of MIMIC-III database and

its table structure are investigated. This part of the content provides the direction

for our research in this thesis. We will establish a TCN deep learning model to
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predict sepsis, and establish two benchmark models for model evaluation.

• Learned the theoretical knowledge related to ML(decision trees), LSTM and

TCN, and learned the related theoretical knowledge of model evaluation. This

part of the content provides a strong theoretical foundation for the establishment

of the three models.

• It has been achieved to obtain sepsis-related data from MIMIC-III, and construct

a characteristic sequence model for the model. First, import the MIMIC-III

database file into the postgreSQL database, and use pgAdmin4 to manage it,

use MIMIC-III code base and Spesis-mimic code base to generate sepsis-related

data tables, including pivoted_vital, pivoted_score, spesis3 and other database

tables, export csv for data processing raw data. Then generate SOFA timeline

information and retrieve sepsis in ICU and the corresponding onset time, extract

relevant features and mark the data formed as a cleaned data set, and then process

the data into serialized data for training, verifying and testing the model.

• In feature extraction, we extracted 8 vital signs (heart rate,body temperature,Systolic

blood pressure,Diastolic blood pressure,Mean blood pressure,Respiratory rate,Pulse

oximetry and glucose) and 2 basic variables (age, gender), and marked sepsis for

each record.

• Implements a machine learning benchmark model, decision tree. Experiments

have shown that we can use machine learning models to predict sepsis, and the

data set is also serialized data. Different max_depths have little difference in

accuracy. The best max_depth is selected as 5, and the accuracy of test dataset is

66.52%, the ROC-AUC is 66.32%.

• Implements a deep learning benchmark model, LSTM. The model uses Adam

optimizer. Set batch_size to 64. We will train our model with 20 epochs. Use

sequence data to train, verify and test the model, and finally achieve a relatively

high level of training data set, validation data set and test data set Accuracy. The
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accuracy and ROC-AUC of test sets are 88.61% and 93.48%.

• Temporal convolutional networks can handle serialized data well, and only use

previous data to generate future data. Therefore, TCN is very suitable to predict

whether sepsis will occur in the next 6 hours. First, the cleaned data set obtained

by data processing was used to construct feature serialized data, and then in

this study, we used a deep time convolutional network to predict sepsis. The

acquired feature sequence data is input into the model. For patients, relatively

high accuracy and ROC-AUC of 89.3% and 94.4% were achieved respectively.

• Evaluate the Accuracy, Precision, Recall, F1-score and AUC-ROC of each model.

Experiments demonstrate that the model we offer is a useful tool that can be used

to predict sepsis in an automated diagnostic tool.

6.2 Future Work

In this thesis, a machine learning model (decision tree classifier) and two deep learning

models (LSTM and TCN) are designed to predict the possibility of patients in the in-

tensive care unit suffering from sepsis in the next 6 hours. The MIMIC code repository

and the Spesis-mimic code repository provide many benefits in terms of source code

distribution and enhanced reproducibility. As a result, we obtained data related to sepsis

prediction from the postgreSQL database where MIMIC-III data was deployed, labeled,

split, constructed sequence data, and trained different models. And through comparison

with each other, it is proved that the TCN-based deep learning model algorithm can

effectively improve the performance. Although the research has achieved initial results,

there is still much room for improvement.

For our future work, we need to improve both the data set and the model.

1. For our current data, we want to explore how to improve the predictive performance
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of predicting sepsis when the amount of data is small. This part explores how

to improve the prediction performance by improving the model algorithm. The

TCN model in this paper is the most basic realization of TCN theory. Next, I

will explore the introduction of Multitask Gaussian Process (MGP) to the TCN

model. MGP is a non-parametric Bayesian model. Given an hourly interval

time series and an irregularly sampled medical time series, the MGP layer may

produce a set of posterior predictions for each feature, which can subsequently be

fed into the classification model (Moor et al., 2019). MPG uses an approximate

Bayesian algorithm to estimate a set of accurate posterior distributions through

prior distributions. The posterior distribution data is used as the data set of the

training model, which can improve the performance of the classification model.

In addition, we also plan to introduce the attention mechanism into the TCN

model (Liang, Ke, Zhang, Yi & Zheng, 2018; Guo, Lin, Feng, Song & Wan,

2019), which can effectively identify dynamic dependencies, and provide early

warning of sepsis with more precision and high interpretation.

2. In addition, we intend to increase the model’s performance by training it with a

bigger data set. In order to do this, we need to explore other solutions for missing

items in the MIMIC-III data. As well as explore other solutions for the problem

of highly imbalanced data sets. For data imbalance, I plan to explore the use of

random resampling to solve the problem of data set imbalance.

3. Then we will consider more features, such as drug records, laboratory records,

etc. Our current labeling data includes 8 vital signs and 2 basic demographic

characteristics. MIMIC-III includes patient demographic information, diagnostic

information, laboratory test information, medical imaging information, vital signs,

etc., Two major feature clusters stand out: vital signs (vitals) and laboratory results

(labs). MIMIC-III has a wealth of data resources, and we only pay attention to

vital signs, not other data such as laboratory results. So we can use more features
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to strike a better balance between accuracy and recall. Better feature selection

can help us better grasp the properties of the data and enhance the model’s

performance.

4. Use different combinations of observation windows and prediction windows. Our

goal in this thesis is to use 12-hours observational health data to predict whether

sepsis will occur in following 6 hours. The observation window is 12 hours,

and the forecast window is 6 hours. In future explorations, we will test different

combinations, weigh performance and window size, and choose the best window

combination.

5. In addition, we plan to computerize the TCN-based sepsis prediction tool to predict

the future risk of sepsis in ICU patients and integrate it into the current ICU

information system, enabling early warning and clinical decision support. In

future studies, I will prospectively evaluate the efficacy of predictive models

and systems and examine whether it can improve clinical practice. MIMIC-III

is linked to the social security database, allowing it to track patient follow-up

time and outcomes, which is extremely important for us to carry out long-term

prognosis research.
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Appendix A

Glossary

TCN Temporal Convolutional Networks. TCN is a new type of algorithm that can

be used to solve time series forecasting. It can take a series of arbitrary lengths

and output them as the same length. In the case of using a one-dimensional fully

convolutional network architecture, causal convolution is used.

MIMIC-III Medical Information Mart for Intensive Care. It is a critical care medicine

database. MIMIC III has collected data on cases hospitalized in Beth Israel

Deaconess Medical Center for more than 10 years. These data have been sorted

into csv data, a total of 26 tables, which we can import into a database or other

tools to view.

ICD-9 code ICD (International Classification of Diseases) is a system that classifies

diseases according to certain characteristics and rules, and uses coding methods

to represent them. The ninth revision is ICD-9.

LSTM Long Short-Term Memory. It is a kind of RNN that is capable of learning

long-term dependent information..

Benchmark Model In order to discuss the influence of the factors of concern on the

equilibrium, we usually need a benchmark model. In this paper, we are concerned

about the advantages of the TCN model, so we established two benchmark models:
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decision tree and LSTM model.

AUC-ROC Area Under Curve. AUC-ROC is to reflect the TP rate (TPR) and FP rate

(FPR) obtained under different thresholds.

SOFA Sequential Organ Failure Assessment. Dynamic detection of SOFA score can

better reflect the degree of organ damage and treatment effect in critically ill

patients, and has a very reliable guiding significance for key treatment. When the

SOFA score >= 2, it can be considered that the patient has OD (organ failure),

that is to say Spesis3.0 = Infection + SOFA >= 2, this paper adopts Spesis3.0

version.

Machine learning Machine learning is a phrase that refers to a group of algorithms

that seek to extract hidden rules from huge amounts of historical data and apply

them to prediction or categorization. Machine learning models are divided into

regression and classification models. This paper establishes a decision tree

classification model.

Deep learning First here, input is the known information, and the output is the final

result of cognition. The explanation of "learning" is the process of obtaining

cognition from existing information through calculation, judgment and reasoning.

The learning effect is different because of the different learning strategies. The

"neural network" is constructed by academia imitating the neural network of the

human brain. The interpretation of "depth" is the depth of the hidden layer, and

the total number of layers experienced from the "input layer" to the "output layer"

is the depth of the neural network. The more hidden layers, the deeper the neural

network.

MGP | MTGP multi-task Gaussian processes. The Gaussian process uses the prob-

ability distribution to represent the prior knowledge of the function output, and

builds a model in the functional space. It constructs a covariance function based

on the correlation between data, and calculates it through Bayesian inference.
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MTGP is an extension of GP. Its key is to identify the correlation of multiple

outputs by using the following new covariance kernel function:

KMTGP (i, i
′, s, s′) = kc(s, s′) ∗ kt(x,x′)

s, s′ ∈ {1,2, ...,m} represents the index of the two sequences.

kc and kt respectively model the relationship between multiple outputs and the

covariance in a single sequence.

i and i′ represent the time index of tasks s and s′.
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Additional information here

B.1 Appendix Arrangements

The contents of each appendix are arranged as follows

Appendix A: Glossary

Appendix B: Appendix Arrangements

Appendix C: Ethics

a) Data Ethics

b) Ethics Approval

Appendix B: Tools

a) PostgreSQl,pgAdmin4

b) python

c) scala,Intellij IDEA
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Ethics

C.1 Data Ethics

In the MIMIC-III database, subject_id is used to represent the identity of the patient.

Sensitive information such as the patient’s name and unique identification number is

hidden. That is, the MIMIC-III database itself has processed information related to

personal privacy, which meets the ethical requirements of privacy protection.

Looking at the time recorded in the table in the MIMIC-III database, we find that

there is a year like "2181". This is because MIMIC-III does not directly use real time

due to data ethics requirements. It offsets the time and randomly adds or subtracts some

ancient numbers. Events handled include time of admission, time of birth, time of death,

etc.

C.2 Ethics Approval

In order to gain access to the MIMIC-III database, I first registered on the physionet

website (registration URL: https://physionet.org/pnw/login) and filled

in my real information. Then I took the ethics exam on the CITI website (URL:
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Figure C.1: CITI Ethics Exam Pass Certificate

https://about.citiprogram.org/en/homepage/) and passed the exam.

CITI issued me a certificate of qualification (see Figure C.1 ). Then upload the certificate

on physionet to get the MIMIC permission. So I use the MIMIC-III database because

the data is ethically approved, and I use it for academic research without commercial

behavior. After obtaining the database usage permission, the next thing I have to do is

to download the data to the local computer, and use the Postgres software to install and

import.

https://about.citiprogram.org/en/homepage/
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Tools

D.1 Database Tools

PostgreSQL Install postgreSQL database, import MIMIC-III database

pgAdmin4 pgAdmin 4 is a reliable and comprehensive database design and manage-

ment software designed for PostgreSQL. It allows you to connect to a specific

database, create tables and run various SQL statements from simple to complex.

D.2 Code Tools

python a) Environment: Google Golab

b) Libraries: scikit-learn and pytorch

Scala Intellij IDEA
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