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Abstract

The topic of time-series prediction has been very well researched in studies of

dynamic systems. However, most studies in the field have focused more on

predicting movement of a single time-series only, whilst prediction of multi-

ple time-series based on the dynamics of interactions between variables has

received little attention. This PhD study is concerned with advances in the

analysis, modelling and prediction of dynamic systems with respect to multi-

ple time-series.

The main objective of this thesis is to develop novel adaptive methods to dis-

cover and model dynamic pattern of interactions in multiple time-series to not

only predict their future values but also to extract knowledge about their joint

movement. Being able to adaptively model dynamic pattern of interactions

between multiple variables is expected to lead to a better understanding of

the dynamic system under evaluation. Additionally, as new patterns of inter-

action emerge intermittently, the models to be developed are also required to

have the ability to evolve and learn incrementally.

To realise these objectives three distinct methods of multiple time-series anal-

ysis are developed based on different concepts of learning (inductive and trans-

ductive reasoning) which are capable of modelling the dynamics of interaction

between variables in a specific setting. As each approach addresses the prob-

lem of multiple time-series analysis and modelling from a different perspec-

tive and since each has its own predictive power, an integrated multi-model

framework that incorporates the different approaches through a dynamic con-

tribution adjustment function is also proposed.

In this study, the proposed methods have been applied for the analysis, mod-

elling and prediction of two real world case studies: (1) multiple interactive

stock markets in the Asia Pacific region and (2) weather conditions at differ-

ent locations in New Zealand. Results from the two case studies suggest that
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(a) the proposed methods are capable of modelling dynamic pattern of inter-

actions between variables and (b) that the idea of including the nature and

strength of relationship between a collection of time sensitive variables (which

are related to each other) into a prediction model appears to be beneficial to

the problem of multiple time-series prediction.

The research is based on three main information processing principles pro-

posed by Prof. Kasabov in the period of 1998-2011: (1) The principle of evolv-

ing, adaptive connectionist systems; (2) The principle of integrated global,

local and personalised modelling; and (3) The principle of dynamic interac-

tion network. Using these three principles 3 new computational methods are

proposed and tested on both synthetic and real data for adaptive incremental

learning and knowledge discovery from multiple time-series data. A software

system was developed to implement the methods. Solutions to two specific

case study problems are proposed and tested - financial time-series prediction;

climate events prediction.



Chapter 1

Introduction

1.1 Motivation and Objective

Previous studies have revealed that dynamic relationships between series exist

in multiple time-series data relating to real world phenomena in the Biological

and Economic domains. It has also been established that being governed by

these interrelationships multiple time-series move together through time. For

instance, it is well known that the movement of a stock market index in a

specific country is affected by the movements of other stock market indexes

across the world or in that particular region (Antoniou, Pescetto, & Violaris,

2003; Chen & Poon, 2007; Chowdhury, 1994; Collins & Biekpe, 2003; Forbes

& Rigobon, 1999; Masih & Masih, 2001). Likewise, in a Gene Regulatory

Network (GRN) the expression level of a gene is determined by its time vary-

ing interactions with other genes (Davidson, 2006; Davidson & Erwin, 2006;

Levine & Davidson, 2005; X. Li, Chen, Li, & Zhang, 2010).

However, even though time-series modelling and prediction have been ex-

tensively researched and some prominent methods have been developed in

the machine learning and data mining arenas such as the multi-layer percep-

tron (MLP) (Azmy, El Gayar, Atiya, & El-Shishiny, 2009; El Dajani, Miquel,

Maison-Blanche, & Rubel, 2003; Koskela, Lehtokangas, Saarinen, & Kaski,

1996; Shiblee, Kalra, & Chandra, 2009; Teo, Wang, & Lin, 2001) and the

Support Vector Machines (SVM) (Camastra & Filippone, 2007; Müller et

al., 1999; Sapankevych & Sankar, 2009; Thissen, Brakel, Weijer, Melssen, &
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Buydens, 2003) little attention has been paid to the dynamics of interactions

between multiple time-series. Furthermore, there has been no significant re-

search so far on developing a method that can predict multiple time-series

simultaneously by considering the existence of dynamic interactions between

them.

Some of the studies that took into account multiple time-series variables

were the following: Han, Fan, and Xi (2005) which adopted the Elman Re-

current Neural Network structure to predict levels of sunspots and run-off

of the Yellow river in China; Zhanggui, Yau, and Fu (1999) performed a

stock price prediction using a pattern classification method; Ankenbrand and

Tomassini (1996) used neural networks to predict multivariate financial time-

series; B. Liu and Liu (2002) proposed a multivariate time-series prediction

with temporal classification; H. Yang, Chan, and King (2002) implemented the

SVM for stock market prediction; T. Kim and Adali (2003) performed multi-

variate time-series approximation using MLP. However, these studies did not

demonstrate an ability of their models to continuously adopt to changing dy-

namics of multiple time-series, to capture and model dynamic relationships

between multiple variables and to predict their future values simultaneously.

Therefore, the task of extracting and modelling interdependencies or pat-

terns of interaction between variables over time has become a challenge, in

particular for research in information science. Being able to accomplish such

missions is expected to lead us to the understanding of how observed variables

in a specific environment move together, inhibit each other, are connected to

each other and how their profile of relationship changes dynamically over time.

Additionally, it will also be of help to identify important variables that have

the most influencing power in governing the state of a system and predicting

variables expression values at future moments.

In relation to this, the objectives of the work conducted in this PhD study

are defined as follows:
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• To develop novel methods for multiple time-series analysis and modelling

in order to discover dynamic patterns of interaction between multiple

variables that can be utilised to predict their future values simultane-

ously. The models are required to have the capability to adapt, evolve

and learn as new observations or problems become available;

• To represent information about interactions between multiple variables

in a form that can be easily understood and helpful to comprehend

further the dynamics of relationship between variables of interest of the

system being observed;

• To propose an integrated multi-model framework that incorporates dif-

ferent methods of multiple time-series analysis and modelling for multi-

ple time-series prediction.

• To assess the value of extracting and exploiting relationships between

multiple variables in prediction when the variables concerned are influ-

encing each other in a dynamic fashion.

• To apply the proposed methods and integrated multi-model framework

to two different case studies of real world phenomena that require these

models. The first case study is the analysis, modelling and prediction of

selected stock markets in the Asia Pacific region, whilst the second case

study is the analysis, modelling and prediction of weather conditions at

different locations in New Zealand.

To realise the objectives outlined above, three distinct models of multiple

time-series analysis are proposed in this thesis. The models are developed

based on different concepts of learning, i.e. the global, local and instance-

based reasoning and are capable of modelling the dynamics of interaction

between variables in a specific setting such as in Finance, Biology, Weather,

etc. Utilising the three distinct models as main building blocks, an integrated
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multi-model framework is proposed and assessed in this study with synthetic

data and two case studies of real world data. The proposed framework inte-

grates different types of knowledge and predictive power of each model.

Additionally, to evaluate the performance of the proposed methods an as-

sessment is to be done by conducting a comparative analysis between the

proposed methods and other methods which have been widely applied on sin-

gle time-series prediction, i.e. multiple linear regression (MLR), MLP, random

walk models, etc., on a pre-generated synthetic data and two different case

studies. Both MLR and MLP offer acceptable degree of time-series predic-

tion accuracy and therefore they are still being widely used and trusted to

solve many real world problems. This actuality serves as the main reason of

choosing these models as the main competitors to the proposed methods.

1.2 Main Contributions

Throughout the completion of the PhD study, six main contributions have

been made:

1. Development of a global model for multiple time-series analysis and

modelling, called here Dynamic Interaction Network (DIN), which is

capable of extracting the dynamics of interaction between variables over

time.

2. Development of a local model, called here Localised Trend Model (LTM),

which constructs a repository of profiles of relationships and recurring

trends from a set of multiple time-series data whose structure will dy-

namically evolve over time, for the analysis and modelling of multiple

time-series.

3. Development of a transductive/nearest neighbour learning model named

Multivariate Transductive Neuro-Fuzzy Inference System (mTNFI) which
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dynamically creates a new model for multiple time-series prediction

whenever a new prediction is required to be made.

4. Development of a multi-model framework named the Integrated Multi-

Model Framework (IMMF) that integrates different types and levels of

knowledge from the proposed global, local and transductive models for

multiple time-series prediction.

5. Implementation of the proposed global, local, and transductive models

and the integrated multi-model framework for the analysis, modelling

and prediction of multiple interactive stock markets in the Asia Pacific

region.

6. Implementation of the proposed global, local, transductive model and

integrated multi-model framework for the analysis, modelling and pre-

diction of weather condition on different sites in New Zealand.

In addition a number of publications including some book chapters, journal

papers and conference papers have also been produced and are listed below:

Book Chapters

1. Widiputra, H., Pears R., Kasabov, N. Dynamic Learning of Multi-

ple Time-Series in a Non-Stationary Environment in Learning in Non-

Stationary Environments: Methods and Applications, edited by Moa-

mar Sayed-Mouchaweh and Edwin Lughofer. Springer, in press.

2. Widiputra, H., Pears R., Kasabov, N. Kalman Filter to Estimate Dy-

namic and Important Patterns of Interaction between Multiple Variables

in Kalman Filtering, edited by Joaquín M. Gomez (2011), pp. 289-320.

Nova Science, New York.
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Journal Papers

1. Widiputra, H., Pears R., Kasabov, N. Dynamic Interaction Networks

versus Localized Trends Model for Multiple Time-Series Prediction. Cy-

bernetics and Systems 42 (2011), pp. 1-24.

2. Widiputra, H., Pears, R., Serguieva, A., and Kasabov, N. Dynamic In-

teraction Networks in Modelling and Predicting the Behaviour of Mul-

tiple Interactive Stock Markets. Journal of Intelligent Systems in Ac-

counting, Finance, and Management, 16 (2009), pp. 189-205.

Conference Papers

1. Widiputra, H., Pears R., Kasabov, N. Multiple Time-series Prediction

Through Multiple Time-Series Relationships Profiling and Clustered Re-

curring Trends. Lecture Notes in Computer Science 6635 (2011), pp.

161-172. Springer Verlaag.

2. Widiputra, H. Building an Integrated Multi-model Framework for Mul-

tiple Time-series Prediction. Proceeding of the 8th New Zealand Com-

puter Science Research Student Conference (NZCSRSC). Victoria Uni-

versity of Wellington, New Zealand (2010).

3. Lukmanto, L., Widiputra, H., and Lukas. Dynamic Interaction Net-

works to Model Interactive Patterns of International Stock Markets.

World Academy of Science, Engineering and Technology 59 (2009), pp.

257-261.

4. Widiputra, H., Kho, H., Lukas, Pears, R., and Kasabov, N. A Novel

Evolving Clustering Algorithm with Polynomial Regression for Chaotic

Time-Series Prediction. Lecture Notes in Computer Science 5864 (2009),

pp. 114-121. Springer Verlaag.
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5. Widiputra, H., Pears, R., Kasabov, N. Personalised Modelling for Mul-

tiple Time-Series Data Prediction: A Preliminary Investigation in Asia

Pacific Stock Market Indexes Movement. Lecture Notes in Computer

Science 5506-Part 1 (2009), pp. 1231-1238. Springer Verlaag.

1.3 Thesis Structure

The thesis is structured as follows:

• CHAPTER 1 presents an introduction to the PhD study and a brief

description of multiple time-series problem of modelling and predicting

simultaneous movements of a collection of time sensitive variables that

are related to each other.

• CHAPTER 2 presents a review of the fundamentals in univariate and

multiple time-series analysis, methods of time-series analysis from the

machine learning and data mining arena, and types of learning process

that are used in time-series analysis and modelling. It also reviews a set

of existing methods that are adopted as part of the proposed models or

which inspired the development of the proposed models.

• CHAPTER 3 presents a global modelling approach of multiple time-

series analysis named the Dynamic Interaction Network and denoted as

DIN. It employs the Kalman Filter and the Expectation-Maximisation

(EM) algorithm to capture and model the dynamics of interaction be-

tween variables. The extracted interaction model is then put in place

for simultaneous multiple time-series prediction. A synthetic data set

that consists of four interrelated time-series was generated and used to

evaluate the performance of the proposed method.
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• CHAPTER 4 presents a local modelling approach of multiple time-

series analysis named the Localised Trend Model and denoted as LTM.

The synthetic data introduced in Chapter 3 is again being utilised in

this chapter to evaluate LTM’s capability to construct and dynamically

maintain a knowledge repository of profiles of relationships and recurring

trends between variables for multiple time-series prediction.

• CHAPTER 5 presents nearest neighbour learning model for multiple

time-series analysis named the Multivariate Transductive Neuro-Fuzzy

Inference System and denoted as mTNFI. The mTNFI was inspired by

and developed further the Neuro-Fuzzy Inference method for transduc-

tive reasoning denoted as NFI proposed by Q. Song and Kasabov (2005).

It was originally designed to work only for single time-series prediction

or to solve classification problems.

• CHAPTER 6 presents an Integrated Multi-Model Framework denoted

as IMMF, for multiple time-series prediction that implements a modi-

fied version of the multi-model framework proposed by Kasabov (2007b).

The integrated framework utilises the proposed global (Chapter 3), local

(Chapter 4) and transductive model (Chapter 5) of multiple time-series

analysis to allow contrasting views on a single problem and the assimi-

lation of different types and levels of knowledge for multiple time-series

prediction.

• CHAPTER 7 presents the implementation of the global (DIN), local

(LTM), transductive model (mTNFI) and the integrated framework

(IMMF), as proposed in Chapters 3, 4, 5 and 6 respectively, for the

analysis and modelling of multiple interactive stock markets in the Asia

Pacific region.

• CHAPTER 8 presents the implementation of the global (DIN), local
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(LTM), transductive model (mTNFI) and the integrated framework

(IMMF), as proposed in Chapters 3, 4, 5 and 6 respectively, for the

analysis and modelling of weather conditions in New Zealand.

• CHAPTER 9 presents the discussion and conclusion of the study and

suggests future work.



Chapter 2

Fundamentals of Time-Series

Analysis and Modelling

2.1 What is Time-Series Data?

Time-series data is a train of numerical data points in sequential order, usually

recorded in uniform intervals. Thus, a time-series consists of a sequence of

numbers collected at regular intervals over a period of time. In statistics, signal

processing, econometrics and mathematical finance, a time-series is described

as a sequence of data points, measured typically at successive times spaced

at uniform time intervals. Time-series data often arise when monitoring any

real world phenomenon, e.g. the global economy conditions, global weather

system, ecological system, etc. Some common examples of time-series are

the daily closing value of an equity market, e.g. the Dow Jones index or the

annual flow volume of the Nile River in Egypt.

An obvious characteristic of time-series data that distinguishes it from

cross-sectional data is temporal ordering (Wooldridge, 2006). For example,

given a time-series data set on employment, the minimum wage, and other

economic variables for a certain country, it is possible to learn that the data

for year 1970 immediately precedes the data for 1971. A basic concept in

analysing time-series data for a real world phenomenon is then to recognise

that the past can affect the future, but not vice versa. Emphasising the

ordering properties of time-series data, Table 2.1 gives a sample of time-series
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Table 2.1

Partial Listing of Data on U.S. Inflation and Unemployment Rates, 1948-2003 (The

Federal Reserve Archival System for Economic Research, 2011)

Year Inflation Unemployment

1948 8.1 3.8

1949 −1.2 5.9

1950 1.3 5.3

1951 7.9 3.3
...

...
...

1998 1.6 4.5

1999 2.2 4.2

2000 3.4 4.0

2001 2.8 4.7

2002 1.6 5.8

2003 2.3 6.0

data of inflation and unemployment rates from the United States of America.

Another difference between cross-sectional and time-series data is more

subtle. The cross-sectional data is viewed as random outcomes, which is fairly

straightforward such as: a different sample drawn from the population will

generally yield different values of the independent and dependent variables.

Yet, how should randomness in time-series data be considered?

Certainly, observations taken from the field of economics meet the basic

requirement of being random variables. For instance, today’s closing value

of an equity market is not known until the end of the trading day. On the

other hand, time-series data of weather conditions also satisfy this intuitive

requirement, as the level of air pressure, wind speed, air humidity, etc. in a
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certain place at 6.00 am tomorrow is not yet known today. Since the outcomes

of these variables are not foreknown, they should clearly be viewed as random

variables.

Formally, a sequence of random variables indexed by time is called a

stochastic process or a time-series process (Wooldridge, 2006; Kirchgässner

& Wolters, 2007). When time-series data is collected, one possible outcome

(or realisation) of the stochastic process is obtained. Only a single realisation

can be observed, since it is not possible to go back in time and start the pro-

cess over again. However, if certain conditions in history had been different,

generally a different realisation for the stochastic process would have been

obtained, and this is why a time-series data set is considered as the collection

of the outcomes of a set of random variables.

2.2 Time-Series Analysis and Modelling

Time-series analysis comprises methods for analysing time-series data in order

to extract meaningful statistics and other characteristics of the data. There

are two main goals of time-series analysis: (a) identifying the nature of the

phenomenon represented by the sequence of observations, and (b) forecasting

(predicting future values of the time-series variable). Both of these goals

require that the pattern of observed time-series data is identified and formally

described. Once the pattern is established, it can be interpreted and integrated

with other data.

Regardless of the depth of the understanding and validity of the inter-

pretation of the phenomenon, the identified pattern can be extrapolated to

predict future events. Time-series forecasting is the use of a model to foresee

future events based on known past events, that is to predict data points before

they are measured. An example of time-series forecasting in econometrics is

predicting the opening price of a stock based on its past performance.
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The essential characteristic of data modelling using methods for time-

series analysis is the following: time-series analysis considers the fact that

data points recorded over time at uniform intervals may have an internal

structure such as autocorrelation, trend or seasonal variation that should be

accounted for in the model (Wooldridge, 2006). In addition, the actuality that

time-series data have a natural temporal ordering makes time-series analysis

distinct from other common data analysis problems, in which there is no nat-

ural ordering of the observations, e.g. explaining people’s wages by reference

to their educational level, where the individuals’ data could be entered in

any order. Furthermore, time-series analysis is also distinct from spatial data

analysis where the observations typically relate to geographical locations, e.g.

accounting for house prices by suburb.

A time-series model will generally reflect the fact that observations closer

together in time will be more closely related than observations further apart.

Therefore, it is essential in time-series analysis to be able to build a model

that can dynamically evolve its structure in relation to current behaviour of

the system. This chapter of the thesis gives a brief overview of some of the

more widely used techniques in the rich and rapidly growing field of time-series

analysis and modelling.

2.3 Univariate Time-Series Analysis

To make a choice from a set of alternatives, decision makers at all structural

levels in different fields often need predictions of variables involved in the

problem. If time-series observations are available for a variable of interest and

the data from the past contain information about the future development of

a variable, it is then plausible to develop a model that can be used to forecast

the future values of the variable and to assist the decision making process.

For instance, being able to forecast the monthly unemployment rate from
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past experience, helps an economy analyst to understand that in some country

or region a high unemployment rate in one month tends to be followed by a

high rate in the next month. Assuming that the tendency prevails in future

periods, prediction models can then be made based on current and past data.

This approach to forecasting may be expressed in a mathematical model as

follows: Let xt denote the value of the variable of interest in period t, then a

prediction for period t+ h, made at the end of period t, may have the form:

x̂t+h = f(xt, xt−1, ...), (2.1)

where f(.) denotes some suitable functions of the past observations xt, xt−1, ....

Equation 2.1 forms the general model of univariate time-series analysis, in

which the upcoming value of a variable of interest is explained only by previous

observations of the variable itself.

One major objective of univariate time-series analysis (Wei, 2005) is to

specify sensible forms of functions f(.). In many applications, linear functions

have been used so that, for example, x̂t+h = v + α1xt + α2xt−1 + ..., where

v is a constant value, while α1, α2, ... are the coefficients that give weight to

current and past observations.

However, in dealing with data from real world phenomenon, often a value of

a variable of interest is being influenced not only by its current and past values

but also by current and past values of other variables. If this is the case, then

the model in Equation 2.1 needs to be generalised to a multivariate model.

This type of modelling is known as the multivariate time-series analysis and

will be outlined in the next section.

2.3.1 Static Models

As in the general context of regression, in a time-series regression model, time-

series analysts deal with stochastic relationships, in which error terms are

included in the specification of the model (Wooldridge, 2006). The simplest
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Figure 2.1. Static Phillips curve (DeLong, 2002).

form of a time-series regression model that explains the relationship between

two variables of time-series data, yt and xt, is called static model :

yt = β0 + β1xt + εt (2.2)

A static model is a simple linear regression model where relationship between

two variables x and y is being modelled simultaneously. Usually, a static

model is postulated when one-unit increase in x at time t is believed to have

immediate effect on y with a size of β1. A static model cannot be written with

lag operators since there are obviously no lagged terms.

An example of a static model is the static Phillips curve (Mankiw, 2006),

given by inf t = β0 + β1unemt + εt, where inf t is the annual inflation rate

and unemt is the unemployment rate. The Phillips curve assumes a con-

stant natural rate of unemployment and constant inflation expectations, and

it can be used to study the contemporaneous trade-off between inflation and

unemployment. Figure 2.1 illustrates the static Phillips curve.
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2.3.2 Finite Distributed Lag Models

A distributed lag model is a model for time-series analysis in which a regression

equation is used to predict current values of a dependent variable based on

both the current values and the lagged (past period) values of an explanatory

variable (Borghers & Wessa, 2011; Wooldridge, 2006). Therefore, unlike in

a static model, in a finite distributed lag (FDL) model one or more variables

are considered to affect y with a certain number of lag as described by this

equation:

yt = α0 + δ0xt + δ1xt−1 + δ2xt−2 + εt (2.3)

This is an FDL of order two. More generally, an FDL model of order q will

include q lags of x as described by this equation:

yt = α0 + δ0xt + δ1xt−1 + ...+ δqxt−q + εt, (2.4)

where δ0 is the immediate change in y due to the one-unit increase in x at

time t, δ0 is usually called the impact propensity or impact multiplier. For a

temporary, one-period change, y returns to its original level in period q + 1.

Equations 2.3 and 2.4 show that just like the static model, FDL also falls

under the category of univariate time-series regression model, in which error

terms are included in the specification of the model.

In FDL models, the sum of the coefficients on current and lagged x, δ0 +

δ1 + ... + δq, is the long-run change in y given a constant increase in x. This

property of the FDL model is called the long-run propensity (LRP) or long-

run multiplier and is often of interest in distributed lag models. An example

of an FDL model for annual data of a real world scenario is: intt = 1.6 +

0.48inf t−0.15inf t−1+0.32inf t−2+εt where int is an interest rate and inf is

the inflation rate. The impact propensity is 0.48, while the long-run propensity

is 0.48− 0.15 + 0.32 = 0.65.
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2.3.3 Autoregressive Model: AR

A common approach for modelling univariate time-series is the autoregressive

(AR) model (Kirchgässner & Wolters, 2007; Wooldridge, 2006). The AR

model is a special case of FDL model, in which the dependent variable is

being explained by the lagged values of itself. The mathematical model of AR

is described as follows:

xt =

p
∑

i=1

φixt−i + εt = φ1xt−1 + φ2xt−2 + ... + φpxt−p + εt (2.5)

where φi represents the autoregression coefficients, xt is the series under in-

vestigation, and p is the order (length) of the model which is generally much

less than the length of the complete observations. The noise term or residue,

εt in the above, is almost always assumed to be Gaussian white noise. The

AR model suggests that the current term of the series can be estimated by a

linear weighted sum of previous terms in the series. Accordingly, the weights

are the autoregression coefficients represented by φ.

An AR(p) model is actually simply a linear regression of the current value

of the series against one or more prior values of the series. The key chal-

lenge in AR analysis is to derive the “best” values for φi given a series xt. To

deal with this issue various methods of parameter estimation, including the

ordinary least square, can be put into place for the analysis of AR models.

Additionally, AR models give a straightforward interpretation. For example,

an AR(1) process is a first-order one process, meaning that only the immedi-

ately previous value has a direct effect on the current value as described by

this equation below:

xt = φ1xt−1 + εt (2.6)

To identify whether an AR model is the appropriate approach to model

the time-series under examination, the autocorrelation plot is put in place.

Autocorrelation plots are a commonly-used tool for checking randomness in a
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(a) US Federal fund effective rate 1955-2010

(Federal Reserve Statistical Release, 2011)

(b) Autocorrelation plot

Figure 2.2. Plot of the United State of America Federal fund effective rate from

1955 to 2010 and its autocorrelation function (ACF).

data set. This randomness is ascertained by computing autocorrelations for

data values at different time lags. If the time-series is indeed random, such

autocorrelations should be near zero for any and all time-lag separations. If it

is non-random, then one or more of the autocorrelations will be significantly

non-zero. When a strong positive autocorrelation is detected in a time-series

data, then it indicates that the data comes from an underlying autoregressive

model, therefore it is assumed that an AR model is the appropriate analysis

tool. An example of data with strong positive autocorrelation is illustrated in

Figure 2.2b.

In addition, partial autocorrelation plot is also a commonly used tool for

model identification in AR models. The partial autocorrelation at lag k is

the autocorrelation between xt and xt−k that is not accounted for by lags 1

through k− 1. Specifically, partial autocorrelation plots are useful to identify

the order of an AR model, p.

The partial autocorrelation of an AR(p) process is zero at lag p + 1, p +
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2, . . . . If the sample autocorrelation plot indicates that an AR model may be

appropriate, then the sample partial autocorrelation plot is examined to help

identify the order of the AR model, by locating a point on the plot where the

partial autocorrelations essentially become zero.

2.3.4 Box-Jenkins Model: ARMA

The Box-Jenkins model refers to the model with p autoregressive terms and

q moving average terms (Box & Jenkins, 1970; Hamilton, 1994; Kirchgässner

& Wolters, 2007; Pankratz, 1983). This model is a combination of the AR(p)

and MA(q) models and therefore is also known as the ARMA(p, q) model

described by this equation below:

xt = φ1xt−1 + ... + φpxt−p + εt + θ1εt−1 + ...+ θqεt−q

= εt +
∑p

i=1 φixt−i +
∑q

i=1 θiεt−i

(2.7)

where εt are white noise, (p, q) is the order of the model, φi are the parameters

or coefficients of the autoregressive part of the model, and θi are the coefficients

of the moving average part.

Different representation of the autoregression coefficients that allows all the

polynomials involving the lag operator to appear in a similar form was used

in Box, Jenkins, and Reinsel (2008). Using this representation, the ARMA

model then can be written in the following form:

(

1−

p
∑

i=1

φiL
i

)

xt =

(

1 +

q
∑

i=1

θiL
i

)

εt (2.8)

where L is the lag operator (see Appendix C).

After the order of the model (p, q) is chosen, the coefficient of both the

autoregressive and moving average part can be estimated using any method of

parameter estimation that minimises the error term, such as the ordinary least

square. Finding appropriate values of p and q in the ARMA(p, q) model can
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be facilitated by plotting the partial autocorrelation functions for an estimate

of p, and likewise using the autocorrelation functions for an estimate of q.

The ARMA model is appropriate for modelling a system whose behaviour

is a function of itself and a series of unobserved shocks. The autoregressive

part (AR) will represent the system own behaviour, whilst the moving aver-

age part (MA) models the influencing unobserved shocks. An example of such

system is illustrated by movement of stock prices, as they exhibit technical

trending and may experience shocks by fundamental information. Neverthe-

less, when looking at long term data, econometricians or financial analysts

tend to opt for an AR(p) model for simplicity.

2.3.5 ARIMA Model

An autoregressive integrated moving average (ARIMA) model (Borghers &

Wessa, 2011; Helfenstein, 2005) is a generalisation of an ARMA model. ARIMA

model is applied to time-series data either to better understand the nature of

the series under observation or to predict its future values. In particular, the

ARIMA model is applicable to some cases in which the data shows evidence

on non-stationarity, where an initial differencing step is applied to remove the

non-stationarity. This process is corresponding to the integrated part (I) of

the model, where the AR and MA part are the autoregressive and moving

average part respectively.

The model is generally referred to as an ARIMA(p, d, q) model where p, d,

and q are integers greater than or equal to zero and refer to the order of the

autoregressive, integrated, and moving average parts of the model respectively.

Additionally, an important part of the Box-Jenkins approach (ARMA) to

time-series modelling is derived from the ARIMA model. Assume that the

polynomial (1−
∑p

i=1 φiL
i) of the ARMA model in Equation 2.8 has a unitary
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root of multiplicity d, then the AR part can be rewritten as follows:

(

1−

p
∑

i=1

φiL
i

)

=

(

1−

p−d
∑

i=1

φiL
i

)

(1− L)d (2.9)

Accordingly, an ARIMA(p, d, q) process then expresses this polynomial fac-

torisation property as follows:

(

1−

p
∑

i=1

φiL
i

)

(1− L)dxt =

(

1 +

q
∑

i=1

θiL
i

)

εt (2.10)

and thus can be thought of as a particular case of an ARMA(p+ d, q) process

having the autoregressive polynomial with some roots in the unity. For this

reason any ARIMA model with d > 0 is not “wide sense stationary”.

Theoretically, ARIMA model is the most general class of models for time-

series prediction which can be stationarised by transformations such as dif-

ferencing and lagging. In fact, ARIMA model can be seen as the fine-tuned

version of the random walk model, in which lags of differenced series and/or

lags of the prediction errors were added to the prediction model to remove

any last traces of autocorrelation from the prediction errors. A special case

of ARIMA model is an ARIMA (0, 1, 0) model given by:

xt = xt−1 + εt (2.11)

which is simply a random walk model.

2.4 Multiple Time-Series Analysis

When dealing with variables from a real world phenomenon such as economic,

weather, ecological, etc., often the value of one variable is not only related to

its prior values but depends on past values of other variables as well. For

instance, consumption expenditures of a household may depend on variables

such as income, interest rates, and investment expenditures. If all of these
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variables are related to the consumption expenditures, it is then logical to

consider their conditions in predicting consumption expenditures. In other

words, denoting the related variables by x1,t, x2,t, ..., xk,t, prediction of x1,t+h

at the end of period t may be represented by the following form:

x̂1,t+h = f1(x1,t, x2,t, ..., xk,t, x1,t−1, x2,t−1, ..., xk,t−1, x1,t−2, ...). (2.12)

Similarly, a prediction for the second variable may be based on past values

of all variables in the system. More generally, a prediction of the kth variable

may be expressed by this equation:

x̂k,t+h = fk(x1,t, ..., xk,t, x1,t−1, ..., xk,t−1, ...) (2.13)

A set of time-series xk,t, k = 1, ..., k; t = 1, ..., t, is called a multiple time-

series and Equation 2.13 expresses the prediction of xk,t+h as a function of a

multiple time-series (Wei, 2005). In analogy with the univariate time-series

analysis, one major objective of multiple time-series analysis is to determine

suitable functions f1, ..., fq that may be used to predict future values of the

variables with good properties.

Additionally, it is also often of interest to learn about the inter-relationships

between a number of variables. For instance, in a system consisting of invest-

ment, income, and consumption one may want to know about the likely impact

of a change in income. What will be the present and future implications of

such an event for consumption and for investment? Under what conditions

can the effect of an increase in income be isolated and traced through the sys-

tem? Alternatively, given a particular subject matter theory, is it consistent

with the relations implied by a multiple time-series model which is developed

with the help of statistical tools?

These and other questions regarding the structure of the relationships

between the variables involved are occasionally investigated in the context

of multiple time-series analysis. Thus, obtaining insight into the dynamic
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structure of a system is a further objective of multiple time-series analysis

conducted in this PhD study.

2.4.1 Multiple Linear Regression

A linear regression process within the time-series context assumes that a de-

pendent time-series, yt, is being influenced by a collection of explanatory or

independent series, x1,t, x2,t, ..., xk,t. This relationship between the dependent

and independent variables can be expressed through the multiple linear re-

gression model as follows:

yt = β0 + β1x1,t + β2x2,t + ...+ βkxk,t + εt (2.14)

where β0, being the intercept of the regression, is a constant, β1, β2, ..., βq are

the regression coefficients and εt is a random error or white noise, ordinarily

assumed to be white with mean zero and variance σ2
ε .

The linear model described in Equation 2.14 can be written in a more

general form by defining the column vector xt = (1, x1,t, x2,t, ..., xk,t)
′ and

β = (β0, β1, β2, ..., βq), resulting in this equation:

yt = βxt + εt (2.15)

In this study, a comparative analysis is conducted of the proposed methods

of multiple time-series analysis and modelling against multiple linear regres-

sion (MLR) as it has been widely used to model and predict real world data.

2.4.2 Vector AR Model: VAR

The vector autoregressive (VAR) model (Kirchgässner & Wolters, 2007;

Wooldridge, 2006; Zivot & Wang, 2006) is one of the most successful, flexible,

and easy to use model from the statistics domain for multiple time-series anal-

ysis. It is a natural extension of the univariate autoregressive (AR) model to
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multiple time-series analysis in the sense that one single dependent variable in

AR xt is now replaced by a vector of dependent variables. The VAR model has

been widely used to describe the dynamic behaviour of economic and financial

time-series (Zivot & Wang, 2006). In addition, it often provides predictions

that are better than those obtained from univariate time-series models and

elaborated theory-based simultaneous equations models. Forecasts from VAR

models are quite flexible because they can be made conditional on the poten-

tial future paths of specified variables in the model.

The VAR model of multiple time-series is described as follows: Let xt =

(x1,t, x2,t, ..., xk,t)
′ denote an (k × 1) vector of time series variables, then the

basic p-lag vector autoregressive (VAR(p)) model has the form:

xt = A1xt−1 +A2xt−2 + ...+Apxt−p + εt (2.16)

where Ai (i = 1, ..., p) are (k × k) coefficient matrices and εt is an (k × 1)

unobservable zero mean white noise vector process (serially uncorrelated or

independent).

One of the computational approaches to multiple time-series analysis and

modelling proposed in this thesis, the DIN, extends further the basic concept

of VAR model by enabling the on-line learning property in the model.

2.4.3 Vector ARMA Model: VARMA

The VARMA model (Box et al., 2008; Reinsel, 1997) extends the standard

finite order VAR model by allowing the error terms, εt, to be autocorrelated

rather than the white noise. The autocorrelation structure is assumed to be

of a relatively simple type so that εt has a finite order moving average (MA)

representation

εt = ut +M1ut−1 + ...+Mqut−q (2.17)

where, as usual, ut is zero mean white noise. A finite order VAR process with

finite order MA error term is called a VARMA (vector autoregressive moving
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average) process.

Allowing finite order VAR processes to have finite order MA instead of

white noise error terms, results in the broad and flexible class of VARMA

processes. The general form of a process from this class with VAR order p

and MA order q is

xt = A1xt−1 + ... +Apxt−p + ut +M1ut−1 + ...+Mqut−q (2.18)

Such a process is called a VARMA(p, q) process. As before, ut is zero mean

white noise.

2.5 Machine Learning Methods for Time-Series

Analysis

Machine learning is a scientific discipline that is concerned with the design and

development of algorithms that allow computers to evolve behaviours based on

empirical data, such as sensor data, observation data or databases. A learner

can take advantage of examples (data) to capture characteristics of interest

of their unknown underlying probability distribution or behaviour. Data can

be seen as examples that illustrate relations between observed variables. A

major focus of machine learning research is to automatically learn to recognise

complex patterns and make intelligent decisions based on data.

The following subsections outline some state-of-the-art machine learning

algorithms that have been used for or closely related to time-series analysis.

2.5.1 Artificial Neural Networks

An artificial neural network simply known as a neural network or connec-

tionist model is a biologically inspired computational model that consists of

processing elements (neurons) and connections (weights) which constitute the
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Figure 2.3. A simple mathematical model for a neuron devised by McCulloch and

Pitts in 1943 (Russell & Norvig, 1995).

neuronal structure with training and recall algorithm attached to it as stated

by Kasabov (1996).

The first mathematical model of a neuron was proposed by McCulloch and

Pitts (1943) and is illustrated in Figure 2.3. The figure depicts that the neuron

model will “fire” when a linear combination of inputs exceeds some threshold.

Based on this initial model, much more detailed and realistic models have

been developed over the years, both for neurons and for larger systems in the

brain, leading to the modern field of computational neuroscience.

The usefulness of neural network models lies in the fact that they can be

used to deduce a function from observations. This is particularly useful in

applications where the complexity of the data or task makes the design of

such a function by hand impractical. The tasks neural networks are applied

to tend to fall within these domains of study:

• Function approximation or regression analysis, including time series pre-

diction (El Dajani et al., 2003; T. Kim & Adali, 2003; Koskela et al.,

1996; Shiblee et al., 2009).

• Classification, including pattern and sequence recognition (Calcagno et

al., 2010; Costa, Filippi, & Pasero, 2005; Isa & Mamat, 2011; Rossi &
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Conan-Guez, 2005).

• Data processing, including filtering and clustering (Charalampidis &

Muldrey, 2009; Kahla, Faraj, Castanie, & Hoffmann, 1994; H. Lee &

Tsoi, 1995).

• Robotics, including directing manipulators and computer digital control

(Arroyo, Gonzalo, & Moreno, 1991; Sartori, Passino, & Antsaklis, 1992;

Teixeira, Braga, & Menezes, 2000).

There are two main categories of neural network structures: feed-forward

networks and recurrent networks. A feed-forward network represents a func-

tion of its current input; thus, it has no internal state other than weights

themselves.

A recurrent network, on the other hand, feeds its outputs back into its

own inputs. This means that the activation levels of the network form a dy-

namical system that may reach a stable state or exhibit oscillations or even

chaotic behaviour. Moreover, the response of a network to a given input de-

pends on its initial state, that may depend on previous inputs. Hence, recur-

rent networks (unlike feed-forward networks) can support short-term memory

(Kasabov, 1996);(Russell & Norvig, 1995). This makes them more interesting

as models of the brain, but also more difficult to understand.

2.5.1.1 The Perceptron

One of the first models that was developed based on the McCulloch and Pitts

(1943) neuron model was a neural network called the perceptron (Kasabov,

1996; Rosenblatt, 1958; Russell & Norvig, 1995). Originally, the neurons

in the perceptron have a simple summation input function and a hardlim

activation function or linear threshold activation function. Additionally, the

inputs are real numbers while outputs are binary. Therefore, the most common
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Figure 2.4. Illustration of 2-input perceptron.

application of the perceptron is as a binary classifier. A simple structure of

the perceptron is illustrated in Figure 2.4.

In the training phase, a perceptron learns only when it misclassified an

input vector from the training examples. When a misclassification is recog-

nised, the perceptron changes the connection weights in such a way that if the

desired output is 1, while the produced output is 0, the connection weights of

the output neuron is increased and vice versa. A learning algorithm for the

perceptron is given below (Kasabov, 1996):

• Step 1: initialise all connection weights wij where i = 0, 1, 2, ..., n; j =

1, 2, ..., m; and n is the size of input variables and m is the number of

output neuron, to zero or a small random value;

• Step 2: define a learning rate α, where 0 < α < 1;

• Step 3: for input vector x calculate the net input signal uj to each

output neuron j using this equation:

uj =
∑

xiwij ,

where x0 = 1 is the bias;

• Step 4: apply a hardlim activation function to the net input signal
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defined as follows:

oj =











1 if uj > threshold

0 otherwise

Another possibility is to apply a linear thresholding function;

• Step 5: calculate the error for each output neuron as follows:

Errj = yj − oj ,

where yj is the desired output and oj is the output produced by neuron

j;

• Step 6: adjust each connection weight wij using this formula:

wij(t+ 1) = wij(t) + αxi.Errj

• Step 7: repeat Step 3 to 6 until the error vector Err is sufficiently low,

in other words until the perceptron converges.

In 1960, Widrow and Hoff proposed a different formula to calculate the output

error during training (Widrow & Hoff, 1960). This learning algorithm was

then applied to a neural machine called the ADALINE (ADAptive LInear

NEuron).

Using the learning algorithm outlined above, if there are sufficient ex-

amples, the perceptron can learn to approximate the training examples and

converge after a number of training iterations (epochs). However, Minsky and

Papert (1969) discovered an important limitation of the perceptron, that is it

can only be used as classifier to problems with linearly separable classes. In

the case where the problems are not linearly separable, e.g. the XOR problem,

the perceptron fails to converge.

Despite this limitation, perceptrons are still used for solving problems due

to their simple architecture and the unconditional convergence (when dealing

with linearly separable classes).



2.5. Machine Learning Methods for Time-Series Analysis 30

Figure 2.5. Illustration of multi-layer perceptron with a single hidden layer. When

applied to perform time-series prediction, x1, x2, ..., xi represent input variables

xt, xt−1, ..., xt− n while o1, ..., ok represent the predictions i.e. xt+1, ..., xt+m.

2.5.1.2 Multi-Layer Perceptron

To deal with the linear separability limitation of the perceptron, the multi-

layer perceptron (MLP) was introduced. The MLP basic structure consists of

an input layer, at least one hidden (intermediate) layer and an output layer,

in which each neuron from one layer is connected to all neurons in the next

layer. Figure 2.5 illustrates the structure of an MLP with a single hidden

layer.

The MLP (Hornik, Stinchcombe, & White, 1989) is a feed forward neural

network model that is capable of learning the relationships between input and

output of a data set by adjusting the connection weights through layers of per-

ceptrons. The MLP was only put into practice when learning algorithms were

developed. One of them is the well-known backpropagation algorithm whose

full name is the error backpropagation algorithm (Amari, 1990; Rumelhart,

Hinton, & Williams, 1986; Werbos, 1974). When utilising the error backprop-

agation algorithm which minimises the difference between the desired output



2.5. Machine Learning Methods for Time-Series Analysis 31

Figure 2.6. Multi-layer perceptron with backpropagation.

and the predicted one, the connection weights in all layers of the network are

adjusted.

In the MLP the sigmoid function is commonly used as the activation func-

tion for neurons in the hidden layer, while at the output layer either sigmoid

or sum function can be used depending on the type of the problem. When the

network is first constructed, the connection weights are initially randomised

and then adjusted by the error backpropagation algorithm.

Generally, the MLP works by feeding forward the input data from the input

layer through the hidden layer and output layer, before finally the predicted

output is derived. If the result differs from the desired output, the error is

then propagated back through the layers. The connection weights and the

activation functions are then adjusted based on a pre-defined learning rate to

minimise the error. A number of iterations of this process on whole training

samples is performed until the network converges.
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The MLP with backpropagation algorithm (MLP-BP) is one of the most

widely used models for classification or prediction. A detailed learning algo-

rithm for MLP-BP in relation to Figure 2.6 is described below:

• Step 1: initialise the error threshold errmax, the maximum number of

training epochs epmax, the learning rate α where 0 < α < 1 and the

connection weights to zero or randomise small value;

• Step 2: select a data pair (x(p), t(p)) from the training samples where x(p)

is the pth input vector and t(p) is the pth target value, set the training

epochs: ep ← ep + 1 and calculate output of the jth hidden node y
(p)
j

using the sigmoid function as follows:

y
(p)
j = f(vj) =

1

1 + exp(−vj)

and calculate output of the kth output node z
(p)
k as follows:

z
(p)
k = f(uk) =

1

1 + exp(−uk)

where

vj =
∑

i

w
(l)
ji x

(p)
i and uk =

∑

j

w
(h)
kj y

(p)
j

• Step 3: calculate the error for each output neuron as follows:

err
(p)
k = t

(p)
k − z

(p)
k ,

adjust the connection weights between the hidden layer and the output

layer w(h),

δ
(h)
k = err

(p)
k z

(p)
k

(

1− z
(p)
k

)

∆w
(h)
kj = αδ

(h)
k ypj

w
(h)
kj ← w

(h)
kj +∆w

(h)
kj

(2.19)
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afterwards adjust the connection weights between the input layer and

the hidden layer w(l) based on the new w(h),

δ
(l)
j =

(

∑k
1 δ

(h)
k w

(h)
kj

)

y
(p)
j

(

1− y
(p)
j

)

∆w
(l)
ji = αδ

(l)
j xp

i

w
(l)
ji ← w

(l)
ji +∆w

(l)
ji

(2.20)

This process of connection weights optimisation will go further backward

if any additional layer exists in the network structure;

• Step 4: if err < errmax or ep > epmax then the algorithm terminates,

otherwise repeat Step 2 to 4.

In the listed learning algorithm above, i is the number of input variables,

j is the number of hidden nodes and k is the number of output target and

therefore also the number of output neurons.

One of the main features of MLP is that it can be used as a universal

approximator as stated by (Cybenko, 1989; Hornik et al., 1989): An MLP

with one hidden layer can approximate any continuous functions to any desired

accuracy, subject to sufficient number of hidden nodes.

Application of the MLP for univariate time-series prediction and multi-

variate time-series prediction is illustrated in Figure 2.7a and 2.7b. Here, the

predicted value of variable x at future time is based on k previous values of

either only variable x in a case of univariate prediction or both x and y for

multivariate prediction (Kasabov, 1996).

The MLP has been widely used to solve the problem of time-series predic-

tion in real world data. In relation to this, in order to assess the performance

of our proposed methods a comparative analysis of prediction accuracy against

the MLP is also conducted in this study.
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(a) MLP for univariate time-series prediction (b) MLP for multivariate time-series pre-

diction

Figure 2.7. Illustration of implementation of MLP for time-series prediction.

2.5.1.3 Radial Basis Function Network

Radial Basis Function Network (RBFN) is a two-layer feed forward neural

network that employs Gaussian function as the activation function in the

hidden nodes. In the output node, for prediction problems a weighted sum

function is used to aggregate the output from the hidden nodes, whilst for

classification problems a sigmoid function can used. RBFN has been proposed

and used by a number of studies (Lucks & Oki, 1999; Marinaro & Scarpetta,

2000; Poggio, 1994). A general architecture of the RBFN is given in Figure 2.8.

In RBFN’s architecture (as illustrated in Figure 2.8) wi is the activation

level of the ith hidden node defined by

ci = Ri(x) = exp

(

−
0.5 ‖x−mi‖

2

σ2
i

)

, (2.21)

where x is the input vector, mi is the centre of a Gaussian function and σi is

the bandwidth of the ith hidden node. Different to MLP, in RBFN there is no

connection weights between the input layer and the hidden layer. The output

of an RBFN is the weighted sum of the output values from all hidden nodes

as given below:

o(x) =
n
∑

i=1

wici (2.22)
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Figure 2.8. Illustration of Radial Basis Function Network structure.

where wi is the output value associated with the ith hidden node. It can also

be seen as the connection weights between the ith hidden node and the output

node.

When being applied for time-series modelling and prediction, the struc-

tures illustrated in Figure 2.7 can also be implemented by the RBFN. In these

structures the input variables are current or past observations of a time-series

whilst the outputs are predicted values in the upcoming time-points.

2.5.2 Dynamic Evolving Neuro-Fuzzy Inference System:

DENFIS

The Dynamic Evolving Neuro-Fuzzy Inference System denoted as DENFIS

was proposed by Kasabov and Song (2002). DENFIS is a fuzzy inference

systems for adaptive on-line learning and dynamic single time-series anal-

ysis and prediction. DENFIS evolves through incremental hybrid (super-

vised/unsupervised) learning and accommodates new input data, including

new features, new classes, etc. through local element tuning. New fuzzy rules

are created and updated during the operation of the system. At each time
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moment the output of DENFIS is calculated through a fuzzy inference system

based on m-most activated fuzzy rules that are dynamically chosen from a

fuzzy rule set.

DENFIS uses Takagi-Sugeno type fuzzy inference engine (Takagi & Sugeno,

1985). The inference engine used in DENFIS is composed of m fuzzy rules

indicated as follows:






































if x1 is R11 and x2 is R12 and ... and xq is R1q, then y is f1(x1, x2, ..., xq)

if x1 is R21 and x2 is R22 and ... and xq is R2q, then y is f2(x1, x2, ..., xq)

...

if x1 is Rm1 and x2 is Rm2 and ... and xq is Rmq, then y is fm(x1, x2, ..., xq)

where ”xj is Rij”, i = 1, 2, ..., m; j = 1, 2, ..., q, are m × q fuzzy propositions

as m antecedents from m fuzzy rules respectively; xj , j = 1, 2, ..., q, are

antecedent variables defined over universes of discourse Xj , j = 1, 2, ..., q,

and Rij , i = 1, 2, ..., m; j = 1, 2, ..., q, are fuzzy sets defined by their fuzzy

membership functions µRij : Xj → [0, 1], i = 1, 2, ..., m; j = 1, 2, ..., q. In

the consequent parts, y is a consequent variable, and linear or polynomial

functions fi, i = 1, 2, ..., m, are employed.

In DENFIS all fuzzy membership functions are triangular type functions

that depend on three parameters as given by the following equation:

µ(x) = f(x, a, b, c) =



























0, c ≤ x ≤ a

x− a

b− 1
, a ≤ x ≤ b

c− x

c− b
, b ≤ x ≤ c

(2.23)

where b is the value of the cluster centre on the x dimension; a = b−d×Dthr

and c = b + d × Dthr, d = 1 ∼ 2; the threshold value, Dthr is a clustering

parameter.

If the consequent functions are crisp constants, i.e. fi(x1, x2, ..., xq) =

Ci, i = 1, 2, ..., m, such a system is called a zero-order Takagi-Sugeno type
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fuzzy inference system. The system is called a first-order Takagi-Sugeno type

fuzzy inference system if fi(x1, x2, ..., xq), i = 1, 2, ..., m, are linear functions

(Kasabov & Song, 2002). If these functions are non-linear functions, it is called

high-order Takagi-Sugeno fuzzy inference system (Kasabov & Song, 2002).

For an input vector x0 = [x0
1, x

0
2, ..., x

0
q], the result of inference y0 (the

output of the system) is the weighted average of each rule’s output indicated

as follows:

y0 =

m
∑

i=1

wifi(x
0
1, x

0
2, ..., x

0
q)

m
∑

i=1

wi

(2.24)

where

wi =

q
∏

j=1

µRij(x
0
j); i = 1, 2, ..., m; j = 1, 2, ..., q.

2.5.2.1 Learning Processes in DENFIS

In DENFIS, the rules are created and updated at the same time with the

input space partitioning using on-line Evolving Clustering Method (ECM)

that was designed specifically for DENFIS (Q. Song & Kasabov, 2001). Here,

the first-order Takagi-Sugeno type fuzzy rules are employed and the linear

functions in the consequences are created using the weighted linear least-square

estimator denoted as WLS (see Appendix A.2) and updated by the weighted

recursive linear least-square estimator denoted as WRLS (see Appendix A.4)

with learning data. Each of the linear functions can be expressed as follows:

y = β0 + β1x1 + β2x2 + ...+ βqxq. (2.25)

The creation of the first m fuzzy rules in DENFIS is described as follow:

• Step 1: take the first n0 learning data samples from the learning data

set;
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• Step 2: implement clustering using ECM to these n0 data to obtain m

cluster centres;

• Step 3: for every cluster centre Ci, find pi data samples from the learning

data set whose positions in the input space are closest to the centre,

i = 1, 2, ..., m;

• Step 4: to obtain a fuzzy rule corresponding to a cluster centre, create

the antecedents of the fuzzy rule using the position of the cluster centre

and Equation 2.23. Using the weighted linear least-square estimator

(see Appendix A.2) on pi data samples calculate the coefficients of the

consequent function. The distances between pi data samples and the

cluster centre are taken as the weights.

In the above steps, m, n0 and p are the parameters of DENFIS learning model,

and the value of pi should be greater than the number of input variables, q.

As new data samples are presented to the system, new fuzzy rules may be

created and some existing rules are updated. A new fuzzy rule is created if a

new cluster centre is found by the ECM. The antecedent of the new fuzzy rule

is formed using Equation 2.23 with the position of the cluster centre (as a rule

node). However, to construct the consequence function of this new fuzzy rule

a minimum number of samples that belong to this new cluster is required.

The size of minimum number of samples itself relates to dimensionality of

the data set. Yet, as this new cluster will only have one single sample, it is

then problematical to construct the consequence function. To overcome this

issue, an existing fuzzy rule about which rule node is the closest to this new

rule node is then found; the consequence function of this rule is then taken as

the consequence function for this new fuzzy rule. Nevertheless, as more data

samples are presented, and more samples might join this new cluster, both

the antecedent and consequence parts of the fuzzy rule related to this new

cluster will then again be updated.
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For every data sample, several existing fuzzy rules are updated using

WRLS (see Appendix A.4) if their rule nodes have distances to the data

point in the input space that are not greater than 2 × Dthr (the threshold

value, a clustering parameter). The distances between these rule nodes and

the data sample in the input space are taken as the weights. In addition to

this, one of these rules may also be updated through changing its antecedent

so that, if its rule node position (cluster centre) is changed by the ECM, the

fuzzy rule will have a new antecedent.

2.5.2.2 Takagi-Sugeno Fuzzy Inference in DENFIS

DENFIS offers the ability to extract a number of rules that can be easily

understood and used to help predicting the upcoming values of a time-series.

As it was outlined in Section 2.5.2, DENFIS employs the Takagi-Sugeno fuzzy

inference system. However, the Takagi-Sugeno fuzzy inference system utilised

in DENFIS is applied as a dynamic inference system, in which existing rules

could be updated and new rules might be created as new observations are

added to the system.

Additionally, DENFIS dynamically creates specific fuzzy inference system

for each input vector. In DENFIS when a new prediction needs to be made for

an input vector then instead of using all existing rules to construct a Takagi-

Sugeno inference system only m most relevant rules will be activated as used

to create the inference system. The rules are chosen based on the position of

the input vector. Since in DENFIS the rules are updated continuously, two

input vectors with the same values at different time points may have different

inferences as the fuzzy rules may have been updated before the second input

vector entered the system.

An example of a set of 3 activated rules chosen to make a prediction for

an input vector x when DENFIS is applied to the Mackey-Glass data set is
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Figure 2.9. 3 activated fuzzy rules created and chosen by DENFIS to construct a

Takagi-Sugeno inference system when being applied for prediction of the Mackey-

Glass data set. Rules are extracted from DENFIS available in the NeuCom (http://

www.theneucom.com).

presented in Figure 2.9.

2.5.2.3 Evolving Clustering Method

The Evolving Clustering Method denoted as ECM is an evolving, on-line, max-

imum distance-based clustering method developed by Q. Song and Kasabov

(2001) to implement a scatter partitioning of the input space for the purpose

of creating fuzzy inference rules.

There are two possible modes of this method: the first one is usually ap-

plied to on-line learning systems i.e. DENFIS, and the second one is more

suitable for off-line learning systems. The off-line mode of ECM with con-

strained minimisation (ECMc) is an extension of the on-line mode. It takes

the result from the on-line mode as initial values, and afterwards an optimisa-

tion is applied that makes a pre-defined objective function based on a distance

measure to reach a minimum value subject to given constraints.
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On-Line Evolving Clustering Method: ECM

Without any optimisation, the on-line ECM (hereafter is denoted as ECM) is

a fast, one-pass algorithm for a dynamic estimation of the number of clusters

in a set of data samples, and for finding their current centres in the input data

space. It is a distance-based clustering method where the cluster centres are

represented by evolved nodes in an on-line mode. In any cluster, the maximum

distance, MaxDist, between a data sample and the cluster centre, is less than

a threshold value, Dthr, that has been set as a clustering parameter. This

parameter would affect the number of clusters to be created.

In the clustering process, the data samples come from a data stream and

this process starts with an empty set of clusters. When a new cluster is

created, its cluster centre, Cc, is located and its cluster radius, Ru, is initially

set with a value 0. As new samples are presented one after another, new

clusters may be created or some already created clusters will be updated

through changing their centres’ positions and increasing their cluster radii.

Which cluster should be updated and how it should be changed depends on

the position of the current data sample. A cluster will not be updated any

more when its cluster radius, Ru, has reached the special value that is, usually,

equal to the threshold value Dthr.

Figure 2.10 illustrates a brief ECM clustering process in a 2-D space and

details of the ECM algorithm are given below:

• Step 1: create the first cluster C1 by simply using the first sample from

the input data stream and taking its position as the first cluster cen-

tre Cc1, and initially setting the cluster radius Ru1 to a value 0 (Fig-

ure 2.10a);

• Step 2: if all samples from the data stream have been presented, the

clustering process finishes. Else, the current input sample xi, is taken
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(a) (b)

(c) (d)

Figure 2.10. Illustration of ECM clustering process in a 2-D space (Q. Song &

Kasabov, 2001).

and the normalised Euclidean distances d(xi, xj), between this sample

point and all n already created cluster centres Ccj,

d(xi, Ccj) = ‖xi − Ccj‖ , j = 1, 2, ..., n (2.26)

are calculated. A normalised Euclidean distance between two q-element

vectors x and y is defined as follows:

‖x− y‖ =

(

1

q

q
∑

i=1

|xi − yi|
2

)1/2

(2.27)

where x, y ∈ Rq;

• Step 3: if there is a cluster Cm with its centre Ccm; cluster radius Rum;

and a distance value d(xi, Ccm), which is between the cluster centre Ccm
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and the sample xi and defined as follows:

d(xi, Ccm) = min
j

d(xi, Ccj)

= min
j
(‖xi − Ccj‖), j = 1, 2, ..., n

(2.28)

and, d(xi, Ccm) ≤ Rum, it is regarded that the current sample xi belongs

to the cluster Cm. In this case neither a new cluster is created, nor is any

existing cluster updated (e.g. data vectors x4 and x6 in Figure 2.10b).

The algorithm then returns to Step 2;

• Step 4: else not the case of Step 3, then find a cluster Ca, with its

centre Cca; cluster radius Rua and the distance value d(xi, Ca) from all

n existing clusters through calculating the extended distance values:

s(xi, Ccj) = d(xi, Ccj) +Ruj, j = 1, 2, ..., n, (2.29)

and then selecting the cluster Ca with the minimum value s(xi, Cca):

s(xi, Cca) = d(xi, Cca) +Rua

= min
j

s(xi, Ccj), j = 1, 2, ..., n.
(2.30)

• Step 5: if s(xi, Cca) > 2 × Dthr, the sample xi does not belong to

any existing clusters. A new cluster is then created in the same way as

described in Step 1 (e.g. input data vectors x3 and x8 in Figure 2.10c).

The algorithm then returns to Step 2;

• Step 6: if s(xi, Cca) ≤ 2×Dthr, the cluster Ca is updated by moving its

centre, Cca, and increasing its radius value, Rua. The updated radius

Ruanew is set to be equal to s(xi, Cca)/2 and the new centre Ccanew is

located on the line connecting the sample xi to the old cluster centre Cca,

so that the distance from the new centre Ccanew to the sample xi is equal

to Ruanew (e.g. input data points x2, x5, x7 and x9 in Figure 2.10d).

The algorithm then returns to Step 2.
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Through this clustering process, the maximum distance from any cluster

centre to the farthest sample that belongs to this cluster is kept below the

threshold value Dthr, although the algorithm does not keep any information

of passed samples.

Constrained Optimisation and Off-Line Evolving Clustering: ECMc

Ideally a cluster centre should be positioned at the centre of the gravity among

all samples that belong to the cluster, as this is what the term “cluster centre”

means. However, in ECM the cluster centre does not necessarily coincide with

the centre of gravity of a cluster. To address this issue, an off-line version of

ECM was proposed (Q. Song & Kasabov, 2001).

The off-line Evolving Clustering Method, called ECMc applies an optimi-

sation procedure to the resulted cluster centres after the application of ECM

in a way that it moves the resulted cluster centres to the centre of gravity.

The ECMc partitions a data set including p vector xi, i = 1, 2, ..., p, into

n clusters Cj , j = 1, 2, ..., n (using the ECM algorithm), and finds a cluster

centre in each cluster in order to minimise an objective function based on

a distance measure subject to given constraints. Taking the normalised Eu-

clidean distance (Equation 2.27) between the sample vector xk, belonging to

a cluster Cj , and the corresponding cluster centre Ccj, as the measure, the

objection function is defined as follows:

J =

n
∑

j=1

Jj

=

n
∑

j=1

∑

xk∈Cj

‖xk − Ccj‖

(2.31)

where Jj =
∑

xk∈Cj

‖xk − Ccj‖ is the sub-objection function within cluster

Cj, j = 1, 2, ..., n, and the constraints are defined as follows:

‖xk − Ccj‖ ≤ Dthr, (2.32)
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where xk ∈ Cj and j = 1, 2, ..., n.

The clusters are typically defined as a p × n binary membership matrix

U , where the element uij is set to 1 if the ith data point xi belongs to the jth

cluster Cj and to 0 if otherwise. Once the cluster centres Ccj are defined, the

values uij are derived as follows:

uij =











1, if ‖xi − Ccj‖ ≤ ‖xi − Cck‖ , for each j 6= k

0, if ‖xi − Ccj‖ > ‖xi − Cck‖ , for each j 6= k

(2.33)

The ECMc minimising algorithm works in an off-line, iterative mode on a

batch of data repeating the following steps:

• Step 1: initialise the cluster centres Ccj , j = 1, 2, ..., n, which are pro-

duced by the ECM using p vector xi, i = 1, 2, ..., p;

• Step 2: determine the membership matrix U using Equation 2.33;

• Step 3: employ the constrained minimisation method with Equations 2.31

and 2.32 to obtain new cluster centres;

• Step 4: calculate the objective function J according to Equation 2.31.

Stop if the result is below a certain tolerance value, or if its improvement

over previous iteration is below a certain threshold, or if the iteration

number of optimising operation is greater than a certain value. Else,

the algorithm returns to Step 2.

2.5.3 Evolving Neuro-Fuzzy System: EFS

In Angelov (2002) an evolving neuro-fuzzy system framework, namely the

evolving fuzzy systems and denoted as EFS, is introduced. EFS is defined as a

self-developing, self-learning neuro-fuzzy system where both parameters and

structure are self-adapting on-line. The framework can also be represented as

a connectionist architecture illustrated in Figure 2.11 (Kasabov, 2007a).
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Figure 2.11. Neuro-fuzzy interpretation of the evolving fuzzy system. The structure

is not predefined and fixed; rather it evolves ’from scratch’ by learning from data

simultaneously with the parameter adjustment/adaption (Angelov, 2006).

The EFS framework consists of five layers. The first (input) layer serves

to pass the input signal to the respective neurons of each rule corresponding

to the membership functions of fuzzy sets. The second layer represents the

antecedent parts of the fuzzy rules. Inputs to each neuron are equal to the

degree of membership to the respective fuzzy set of every input signal. This

layer produces as output the firing level of the i-th rule. The third layer of

the network takes as inputs the firing levels of the respective rule and gives as

output the normalised firing level. The fourth layer aggregates the antecedent

and consequent parts of the rules that represent the local subsystems. Finally,

the last, fifth layer forms the total output of the evolving fuzzy system per-

forming a weighted summation of local sub-models (Angelov, 2002; Angelov

& Filev, 2004c; Kasabov, 2007a).

EFS with Takagi-Sugeno inference system is called the evolving Takagi-

Sugeno model, denoted as eTS (Angelov & Filev, 2004b). The eTS applies
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a learning algorithm that combines unsupervised learning with respect to

the antecedent part of the model and supervised learning in terms of the

consequent parameters. This concept of learning is similar to the DENFIS

training algorithm presented in Section 2.5.2 (Kasabov & Song, 2002).

The eTS employs an unsupervised clustering algorithm which continu-

ously analyses the input-output data streams and identifies emerging new

data structures (Angelov & Buswell, 2002; Angelov & Filev, 2004b, 2004c).

The algorithm clusters the input-output space into N fuzzy regions which rep-

resent the fuzzy rules. The cluster centres are then projected as the antecedent

part of each fuzzy region; the algorithm also assigns a linear subsystem to each

of the clusters. The learning rules of the eTS to define the antecedent part of

the fuzzy rules apply an evolving on-line clustering approach the eClustering

(Angelov & Filev, 2004a).

The on-line eTS model implements an on-line clustering procedure (Angelov

& Buswell, 2002; Angelov & Filev, 2004b, 2004c) which starts with the first

data point established as the centre of the first cluster. This cluster centre is

then used to form the antecedent part of the first fuzzy rule. Consequently,

the potential of this first data point being the first cluster centre is assumed

equal to 1.

As new data becomes available the potential of each new data point is

calculated recursively by:

Pk(zk) =
k − 1

(k − 1)(ϑk + 1) + σk − 2υk
(2.34)

where

ϑk =

n+1
∑

j=1

(

zjk
)2

,

σk =

k−1
∑

l=1

n+1
∑

j=1

(

zjl
)2

,

υk =
n+1
∑

j=1

zjkβ
j
k; βj

k =
k−1
∑

l=1

zjl .
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When new data are collected in on-line mode, they influence the potentials

of the existing cluster centres that are respective to the focal points of existing

rules since by definition the potentials depend on the distance to all data

points, including the new ones. In relation to this, the potential of existing

cluster centres needs to be updated as well. The recursive equation to update

the potential of existing cluster centres is given by:

Pk(z
∗

l ) =
(k − 1)Pk−1(z

∗

l )

k − 2 + Pk−1(z∗l ) + Pk−1(z∗l )
n+1
∑

j=1

(

djk(k−1)

)2
(2.35)

where Pk(z
∗

l ) is the potential at time k of the cluster centre, which is a pro-

totype of the lth rule; djk(k−1) = zjk − zjk−1 denotes projection of the distance

between two data points (zjk and zjk−1) on the axis zj .

Afterwards, potentials of the new data points are compared to the updated

potential of existing cluster centres. If the potential of the new data point is

higher than the potential of the existing centres then the new data point is

accepted as a new centre, that is a new cluster is formed and a new rule with

a focal point based on the projection of the new cluster centre is created.

However, if in addition to a prior condition the new data point is within a

close range to an existing cluster centre defined as follows:

Pk(Zk)
R

max
l=1

Pk(z∗l )
−

δmin

r
≥ 1 (2.36)

then the new data point is set as the new cluster centre replacing the old

centre.

In the on-line eTS model estimation of the parameters of the consequent

linear model of each rule is recursively calculated through the modified re-

cursive least square algorithm or weighted recursive least square algorithm as

introduced by Angelov and Filev (2004b). Generally, the recursive procedure

for on-line learning of the eTS model is defined as follows (Angelov & Filev,

2004b):
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• Step 1: initialisation of the rule-base structure (antecedent part of rules);

• Step 2: at the next time step reading the next data sample;

• Step 3: recursive calculation of the potential of each new data sample

to influence the structure of the rule-base;

• Step 4: recursive update of the potentials of old centres taking into

account the influence of the new data sample;

• Step 5: possible modification or upgrade of the rule-base structure based

on the potential of the new data sample in comparison to the potential

of the existing rules’ centres (focal points);

• Step 6: recursive calculation of the consequent parameters;

• Step 7: prediction of the output for the next time step by the eTS model.

In (Angelov & Filev, 2004b) the algorithm was tested and applied for the pre-

diction of both the Mackey-Glass data set (a benchmark data set) and data

from a fan-coil sub-system of an air-conditioning system serving a real build-

ing. Results of conducted experiments in (Angelov & Filev, 2004b) suggest

that eTS is able to develop/evolve an existing model when the data pattern

changes and is a reliable method for time-series analysis and prediction.

2.5.4 Instance-Based Learning

In this section some commonly used algorithms of instance-based learning,

namely the k-Nearest Neighbour (kNN), the Weighted k-Nearest Neighbour

(WKNN) and the locally weighted regressions are outlined and explained. The

transductive model of multiple time-series analysis proposed in this thesis im-

plements and extends further the general principles of the methods explained

here.
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2.5.4.1 k-Nearest Neighbour: kNN

The most basic instance-based method is the kNN algorithm (Govindarajan

& Chandrasekaran, 2010; Soucy & Mineau, 2001). This algorithm assumes

all instances (data samples) correspond to points in the q-dimensional space

ℜq. The nearest neighbours of an input vector are defined in terms of the

standard Euclidean distance (Mitchell, 1997). More precisely, let an arbitrary

input vector x be described by the feature vector:

〈a1(x), a2(x), ..., aq(x)〉

where ar(x) denotes the value of rth attribute of input vector x. Then the

distance between two instances xi and xj is defined to be d(xi, xj), where

d(xi, xj) =

(

q
∑

r=1

(ar(xi)− ar(xj))
2

)1/2

(2.37)

In nearest neighbour learning the target function may be either discrete-

valued or real-valued. Let the target function be a discrete-valued of the form

f : ℜq → V , where V is the finite set {v1, v2, ..., vs}. Then, the kNN equation

for approximating a discrete-valued target function is given by:

f̂(xi) = argmax
v∈V

k
∑

j=1

δ(v, f(xj)) (2.38)

where

δ(a, b) =











1 if a = b

0 otherwise

and xi is a new input vector to be classified; x1, x2, ..., xk denote k instances

from training samples that are nearest to xi.

As it can be seen, the value f̂(xi) given by Equation 2.38 as its estimate of

f(xi) is just the most common value of f among the k nearest neighbours of xi.

If k = 1, then the 1-Nearest Neighbour algorithm assigns to f̂(xi) the value of

f(xj) where xj is a single training sample nearest to xi. For larger values of k,
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the algorithm assigns the most common value between the k nearest training

samples.

The kNN algorithm is easily adapted to approximating continuous-valued

target functions. To accomplish this, the algorithm calculates the mean value

of the k nearest neighbour rather than calculate their most common value.

More precisely, to estimate a real-valued target function f : ℜq → ℜ, f̂(xi) is

now defined by:

f̂(xi) =
1

k

k
∑

j=1

f(xj) (2.39)

2.5.4.2 Weighted kNN: WKNN

One obvious refinement to the kNN algorithm is to weigh the contribution of

each k nearest neighbours in relation to their distance to the input vector xi,

assigning greater weight to the closer ones (Mitchell, 1997). This approach is

known as the WKNN algorithm.

To approximate discrete-valued target functions, the contribution of each

neighbour is weighted according to the inverse square of its distance from xi.

This can be accomplished by modifying Equation 2.38 to the following:

f̂(xi) = argmax
v∈V

k
∑

j=1

wjδ(v, f(xj)) (2.40)

while to approximate real-valued target functions, f̂(xi) is calculated as fol-

lows:

f̂(xi) =

k
∑

j=1

wjf(xj)

k
∑

j=1

wj

(2.41)

where

wj =
max [max(d)− (dj −min(d))]

max(d)
.

The vector d = [d1, d2, ..., dk] is defined as the distances between the in-

put vector xi and the k nearest neighbors, dj = d(xi, xj) for j = 1 to k,
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as in Equation 2.37, where q is the number of the input variables. The pa-

rameters max(d) and min(d) are the maximum and minimum values in d

respectively. The weights wj have the values between min(d)/max(d) and 1;

the closest sample to xi will then have the weight value of 1, and it has the

value min(d)/max(d) in case of maximum distance.

Both kNN and WKNN (Dudani, 1976; Tan, 2005) consider only the k near-

est neighbours to classify the input vector. However, once distance weighting

is added, there is actually no harm in allowing all training samples to have an

influence on the classification of xi, since very distant samples will have very

little effect on f̂(xi). The only disadvantage of considering all samples is that

the classifier will run more slowly.

Considering all training samples when classifying a new query instance is

called a global method, while if only the nearest training samples are consid-

ered then it is called a local method. This suggests that the instance-based

learning which is a realisation of the transductive inference falls under the

category of local modelling approach.

2.5.4.3 Locally Weighted Regressions

The nearest neighbour approaches described in Sections 2.5.4.1 and 2.5.4.2

can be seen as approximating the target function f(x) at the single input vec-

tor x = xi. Locally weighted regression is a generalisation of this approach.

It constructs an explicit approximation to f over a local regression surround-

ing xi. Locally weighted regression uses nearby or distance-weighted nearest

neighbour to form this local approximation to f (Atkeson, Moore, & Schaal,

1997; Hwang, 2009; Mitchell, 1997).

The phrase “locally weighted regression” is called local because the function

is approximated based only on data near the query point, weighted because

the contribution of each training example is weighted by its distance from the
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query point, and regression because this is the term used widely in statistical

learning community for the problem of approximating real-value functions

(Mitchell, 1997).

Given a new input vector xi, the general approach in locally weighted re-

gression is to construct an approximation f̂ that fits the training examples

in the neighbourhood surrounding xi (that is a number of nearest neighbours

of xi) by giving greater weight to closer neighbours (as described in Equa-

tion 2.40). This approximation is then used to calculate the values f̂(xi),

which is output of the estimated target value for the query instance. In lo-

cally weighted regression, the target function f is approximated near xi using

a linear function of the form:

f̂(xi) = w0 + w1x
1
i + w2x

2
i + ... + wqx

q
i (2.42)

where xr
i denotes the value of the rth attribute of instance xi.

To find the coefficients w0, w1, w2, ..., wq various methods can be used to

minimise the error in fitting such linear functions to a given set of training

sample, i.e. ordinary least-square estimator (OLS), WLS (see Appendix A)

or gradient descent (see Appendix B).

When being applied to solve the problem of time-series prediction, the

explanatory variables of the linear function in 2.42 are current or past obser-

vations of the time-series being modelled or predicted, i.e. xt, xt−1, . . . , xt−k,

whilst f̂(xi) is the prediction of that particular time-series at a certain time-

point in the future, i.e. xt+n, calculated based on the explanatory variables.

2.6 Methods of Reasoning

As different models of time-series analysis, outlined in previous sections, im-

plement different methods of learning or reasoning, this section of the chap-

ter gives a brief description of two different reasoning methods used in the
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learning process of time-series analysis, i.e. the inductive reasoning and the

transductive reasoning.

2.6.1 Inductive Reasoning

Induction or inductive reasoning, sometimes called inductive logic or inductive

learning, is the process of reasoning in which the premises of an argument are

believed to support the conclusion but do not entail it. Induction is a form

of reasoning that makes generalisations based on individual instances. It is

used to either describe properties or relations to types based on a number of

observations, samples or experiences or to formulate laws based on limited

observations of recurring phenomenal patterns. This method is concerned

with the creation of a model (a function) from all available data representing

the entire problem space, e.g. a regression formula, a neural network of MLP,

SVM, etc. Afterwards, the model is applied to solve problems on a newly

collected data set.

2.6.2 Transductive Reasoning

Transductive reasoning or transductive inference, introduced in Vapnik (1998),

is defined as a method used to estimate the value of a potential model (func-

tion) only for a single point of space (that is, a new data vector) by utilising

additional information related to that vector. While the inductive approach

is useful when a global model of the problem is needed in an approximate

form, the transductive approach is more appropriate for applications where

the focus is not on the model, but rather on every individual case. This relates

to the common sense principle which states that to solve a given problem one

should avoid solving a more general problem as an intermediate step (Bosnic,

Kononenko, Robnik-Sikonja, & Kukar, 2003).
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2.7 Conclusion

This chapter outlines methods of time-series analysis and modelling from the

statistics and machine learning domain. These methods are related to the

work of developing the integrated multi-model framework for multiple time-

series analysis and modelling conducted in this PhD study. The researches

and developments carried out in this study are based on methods reviewed in

this chapter.



Chapter 3

Dynamic Interaction Network for

Multiple Time-Series Analysis and

Modelling

3.1 Introduction

This chapter presents a methodology named the Dynamic Interaction Network

(DIN) which utilises first-order differential equations and the Kalman filter

(Komogortsev & Khan, 2008; S. Lee, Lim, Baek, & Sung, 1999; Tsai & Kurz,

1983; Welch & Bishop, 1995; Whittle & Schumann, 2004) in combination with

the EM algorithm (Bi, 2009; Jordan & Jacobs, 1994; Lawrence & Reilly, 1990;

R. Li, Bhanu, & Dong, 2008) to dynamically extract and model the pattern

of interactions between variables from a set of multiple time-series data.

Standard approaches to multivariate data analysis model the relationship

between multiple observed variables in the structure of a single dependent

variable being influenced by several independent variables as follows:

y = β0 + β1x1 + β2x2 + ... + βkxk, (3.1)

where y is the dependent variable; x1, x2, .., xk are the independent variables;

β1, β2, ..., βk are the coefficients of influence; and β0 is a constant value. In

contrast, DIN extracts and models interactions between variables through a

complete, fully-connected network. Additionally, as the process of extraction
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is performed dynamically, knowledge about interactions between variables is

updated on a regular basis as the behaviour of the system changes dynamically

over time.

The DIN model explained in this chapter aims to address the following

research questions relating to the problem of modelling dynamic pattern of

interaction between multiple variables and multiple time-series prediction: (1)

Can a global pattern of interactions between multiple variables be dynami-

cally modelled in a structure that is easily understood? (2) Would dynamically

capturing a global pattern of interactions be of help to reveal new knowledge

about complex interdependencies between multiple variables? (3) Does incor-

porating adaptive knowledge about a global pattern of interactions help to

achieve better results in multiple time-series prediction?

3.2 Fundamentals of Multiple Variables

Interactions Modelling

When studying a physical system, for instance a moving aircraft, a chemi-

cal process, or the national economy, an engineer or a researcher would try

to develop a mathematical model that adequately represents some aspects of

the behaviour of the observed system. In particular, researchers have been

trying to model the interrelationships among variables of interest, inputs to

the system and outputs from the system through physical insights, funda-

mental “laws”, and empirical experiments. It is then expected that with such

mathematical models and the tools provided by system and control theories,

one should be able to investigate and make assumptions about the underlying

structure of the system (Widiputra, Pears, & Kasabov, 2011b).

Based on this concept, given a set of measurements of multiple variables

sampled on a regular or irregular timely basis, a mathematical model that
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explains the relationships, interdependencies or interactions between the vari-

ables could be put in place. Before getting into the details of how such a model

can extract pattern of interactions from multiple time-series, this section of

the chapter will revisit and outline the fundamental theories and concepts that

underpin the process of extraction of pattern of interactions between multiple

variables in a dynamic environment.

3.2.1 A Global Model as the Method of Reasoning

A global model is a realisation of inductive reasoning that builds a single model

by learning from the entire data set or problem space. The developed model

is then applied to new data that arrives in the future (Baruch & Stoyanov,

1995; Y. Lee et al., 1997; Marin, Garcia-Lagos, Joya, & Sandoval, 2002).

Global modelling is the most commonly-used approach for inductive reasoning

(Christou & Papageorgiou, 2007; Hinojosa & Hoese, 2010; Kasabov, 2007b;

Tomic, 1995). A global model is a distinct, fixed, reusable model, and it is very

useful to describe the general underlying behaviour of a stochastic system.

Therefore, most of the research carried out in the field of time-series anal-

ysis and modelling has been based on the concept of global modelling. For

instance, linear regression models (Hastie, Tibshirani, & Friedman, 2003), the

MLP (Hagan, Demuth, & Beale, 1995; Hornik et al., 1989; S. Yang, Ho, &

Lee, 2006), the RBFN (Lucks & Oki, 1999; Marinaro & Scarpetta, 2000),

SVM (Boser, Guyon, & Vapnik, 1992; H. Kim, Pang, Je, Kim, & Bang, 2002;

Vapnik, 1998), the Adaptive-Network-Based Fuzzy Inference System (ANFIS)

(J. Jang, Sun, & Mizutani, 1997; J.-S. Jang, 1993; J.-S. Jang & Sun, 1995) and

the Echo State Network (ESN) (Cernansky & Makula, 2005; X. Lin, Yang,

& Song, 2009) are examples of global models. The MLP and SVM machine

learning algorithms were proposed many years ago and are still the two most

widely used neural network models in the domain of time-series analysis.
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Figure 3.1. Illustration of global modelling to estimate a linear regression function

from a sample data set (Hwang, 2009).

Based on the characteristics of a global model, it is then logical to use

such an approach to gain knowledge about patterns of interactions from a

set of measurements from multiple variables. The idea is simply to use the

set of measurements as learning samples, from which a mathematical model

that explains interdependencies or interactions between variables of interest

is then derived. Therefore, DIN utilises this method of reasoning as its main

modelling method in the learning process.

However, there are also a few limitations to the global model (Hwang,

2009):

1. First, as the model is based on all available data with the objective of

minimising overall prediction error, it will be biased toward the majority

of the data. A pattern without enough support will have little influence

on the model. This is similar to the issue with interpolation versus

extrapolation. If new data exhibits a pattern similar to some existing

pattern, then conceptually a process of interpolation can be used for

pattern extraction, where for this pattern enough support is provided



3.2. Multiple Variables Interactions Modelling 60

by the prediction. However, if the new pattern is very different from

any of the existing patterns, then extrapolation needs to be performed,

which carries a higher degree of uncertainty than interpolation.

2. Secondly, capturing global trends might not be sufficient enough to

model the dynamics of highly volatile time-series which might lead to

poor prediction of its future states. In fact, in an environment where

movements of time-series is volatile, different models at different time

moments might be required.

To deal with such problems, an incremental/online learning system that adapts

to new data and traces its evolution needs to be applied.

3.2.2 Discrete-Time Approximation of First-Order

Differential Equations

The state of interdependencies or interactions between multiple variables of

a dynamic system can be modelled as a discrete-time approximation of first-

order differential equations, given by:

xt+1 = Fxt + εt, (3.2)

where xt = (x1, x2, ..., xk) is the observed measurements at the t-th time in-

terval and k is the number of input variables being modelled, εt is a noise

component with covariance E = cov(εt), and F = (fi,j); i = 1 to k, j = 1 to

k is the transition matrix relating conditions at xt to xt+1. This equation is

related to the continuous first-order differential equation dx/dt = Ψx + e by

F = τΨ + I and εt = τe where τ is the time interval. However, for the ease

of modelling and the need of irregular time-course data processing, discrete

approximation is more likely to be used rather than the continuous model

(Aoki & Shell, 1989; Widiputra et al., 2011b).
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Besides the fact that a discrete time-approximation of first-order differen-

tial equations is a tool widely used for modelling biological processes (Chan,

Kasabov, & Collins, 2006; Jones, Plank, & Sleeman, 2009; Z. Wang et al.,

2008)), there are two advantages in using the first-order differential equa-

tions. First, relations of multiple variables or multiple time-series can be

elucidated from the transition matrix F through choosing a threshold value

(ζ ; 1 > ζ > 0). If |fi,j| is larger than the threshold value ζ , xj,t is considered

to have a significant influence on xi,t+1. A positive value of fi,j indicates a

positive influence and vice-versa. Second, they can be easily manipulated with

a filter, e.g. the Kalman filter, to handle irregularly sampled data, which will

finally allow parameter estimation, likelihood evaluation, model simulation

and prediction.

Yet, there is a main drawback in using differential equations. It requires

the estimation of k2 parameters for the transition matrix F and k(k − 1)/2

parameters for the noise covariance E. To minimise the number of model

parameters, only F is being estimated and E is set to a small value. For

instance, when observing two series, each consisting of only 4 samples, over-

parameterisation may be avoided by setting the value of k to 4, as this is

the maximum number of samples available before the number of parameters

exceeds the amount of training data. Hence the number of model parameters,

the size of F is k2, is limited to the number of training data, k × 4 samples.

To cope with irregularly sampled data, the state-space methodology is put

in place. The actual trajectories are treated as a set of unobserved or hidden

variables called the state variable; a filter can then be applied to compute

their optimal estimates based on the observed measurements. The state vari-

ables that are regular or complete can now be applied to perform parameter

estimations, in particular the F matrix, instead of the observed measurement

that are irregular or incomplete.

This approach is better than the interpolation methods as it prevents false
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modelling by trusting a fixed set of interpolated points that may be erro-

neous. Nevertheless, the use of the state-space methodology is also suitable

for estimating the F matrix when dealing with regularly sampled data.

3.2.3 State-Space Representation

In Section 3.2.2 the term state variable was introduced. The state variables

can be considered as the smallest possible subset of the system variables

that can represent the entire state of the system at any given point in time.

The phrase system state transition function would describe the transfer func-

tion representing the interactions between observed variables occurring at any

given time moment that maps present values of the state variables to their

future values.

The minimum number of state variables required to represent a given sys-

tem, k, is usually equal to the order of the system’s defining differential equa-

tion. If the system is represented in transfer function form, the minimum

number of state variables is equal to the order of the transfer function’s de-

nominator after it has been reduced to a proper fraction. It is important

to understand that converting a state-space realisation to a transfer function

form may lose some internal information about the system, and may provide

a description of a system which is stable, while the state-space realisation is

unstable at certain points.

A mathematical model of a system as a set of input, output and state

variables related by the first-order differential equations is called a state-space

representation (Arslanalp & Tola, 2006; Simaan, Ferreira, Chen, Antaki, &

Galati, 2009). State-space models are a flexible family of models which fits the

modelling of many scenarios. The strongest feature of state-space models is

the existence of very general algorithms for filtering, smoothing and prediction

(Bay, 1998).



3.2. Multiple Variables Interactions Modelling 63

Multiple time-series at a particular time moment are expressed as vectors

and the differential equations are written in a form of a matrix which is most

suitable to be used to map the number of inputs, outputs and state variables

when the dynamical system is linear and time invariant. The state-space rep-

resentation (also known as the “time-domain approach”) provides a convenient

and compact way to model and analyse systems with multiple inputs and out-

puts, suitable to extract patterns of interactions in multiple time-series data.

With p inputs and q outputs, one would otherwise have to write p×q Laplace

transforms to encode all the information about a system. Unlike the frequency

domain approach, the use of the state-space representation is not limited to

systems with linear components and zero initial conditions. State-space refers

to a space whose axes are the state variables, and the state of the system can

be represented as a vector within that space.

To apply the state-space methodology, a model must be expressed in the

following format called the discrete-time state-space representation:

xt+1 = Φxt + wt (3.3)

yt = Axt + vt (3.4)

cov(wt) = Q, cov(vt) = R (3.5)

where xt is the system state; yt is the observed data; Φ is the state transition

matrix that relates xt to xt+1 ; A is the linear connection or interaction matrix

that relates xt to yt; wt and vt are uncorrelated white noise sequences whose

covariance matrices are Q and R respectively. The first equation, called the

state equation, describes the dynamic behaviour of the state variables. The

other equation is called the observation equation and it relates the system

states to the observation.

In order to represent the discrete-time model in the state-space form, the

discrete-time equation:

xt+1 = Fxt + εt, (3.6)
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is simply substituted into the state Equation 3.3 by setting Φ = F , wt = εt and

Q = E. A direct mapping between the system states and the observations is

created by setting A = I. The state transition matrix Φ (functional equivalent

to F ) is the parameter of interest as it relates the future response of the system

to the present state and governs the dynamics of the entire system. However,

in this methodology, the covariance matrices Q and R are of secondary interest

and are fixed to small values to reduce the number of model’s parameters.

3.2.4 The Discrete Kalman Filter

As an introductory section to the Kalman filter, this subsection of the chapter

will first give a brief description of the Kalman filter and its use in computing

the optimal estimates of a state-space model.

In 1960, a paper describing a recursive solution to discrete-data linear

filtering problem was published by R.E. Kalman (Kalman, 1960), this pro-

posed method is known as the Kalman filter. Being one of the most widely

used techniques for modelling stochastic processes, the Kalman filter is a set

of mathematical equations that provides an efficient computational process

to estimate the state of a process in a way that minimises the mean of the

squared error. In effect, the Kalman filter is simply an optimal recursive data

processing algorithm that is also an optimal estimator for a dynamic linear

system (Y. Ho & Lee, 1965; Maybeck, 1972, 1979).

Different studies have revealed that the filter is very powerful in several

aspects: it supports estimations of past, present, and even future states, and

it can do so even when the precise nature of the modelled system is unknown

(Choi & Roy, 2006; Sun, Tian, & Wang, 2008; D. Zhang & Ionescu, 2009).

The optimality aspect of the Kalman filter in this case is of course in respect to

virtually any criterion that makes sense. One aspect of this optimality shows

that the Kalman filter incorporates all information that can be provided to it
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(global modelling) (Brown, 1983). It processes all information, regardless of

their precision, to estimate the current values of the observed variables, with

use of:

• Knowledge of the system and measurement device dynamics;

• The statistical description of the system noise, measurement errors and

uncertainty in the dynamics models;

• Any available information about initial conditions of the observed vari-

ables.

The word recursive mentioned before simply means that unlike other data

processing methods, Kalman filter does not require previous data to be kept

in a memory, therefore it will not reprocess again when new measurements of

observed variables become available. This is a very important characteristic

of a filter implementation.

Figure 3.2 shows how the Kalman filter can be used to find the optimal

estimate of the system state. By associating the system state to how different

time-series interact with each other in a specific system (e.g. stock market

system, weather system, biological system, etc.), the idea is to use a Kalman

filter to estimate or model how these time-series are “connected”, in respect

to how they interact with each other at a specific time moment and how this

connection is changing dynamically over time.

The Kalman filter combines all available measurement data (i.e. stock

prices, stock market indexes, gene expressions value, etc.) plus prior knowl-

edge about the system, to produce an estimate of the system state in such a

manner that the error is minimised statistically.

One may ask, if it is known that the system under investigation is a non-

linear dynamic system then what is the point of implementing the Kalman

filter, being a linear system modelling approach, to estimate the system state.
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Figure 3.2. General concept of the Kalman filter implementation for system state

estimation (Maybeck, 1979).

Answering this, Maybeck in his book (Maybeck, 1979) has pointed out some

basic assumptions in the Kalman filter. One of them is about the justifiability

of the Kalman filter for linear system modelling. Even though in the real world

most systems are non-linear, it is a typical engineering approach to linearise

some nominal points or trajectory to achieve a perturbation model or error

model. Linear systems are desirable in that they are easier to be manipulated

with engineering tools and linear system or differential equation theory is

much more complete and practical than the non-linear equivalents.

The next chapters of the thesis will show that by considering complex

dynamic systems of real world phenomena, i.e. the stock market indexes and

the weather conditions, as linear systems, the proposed methodology is able

to extract important and useful knowledge about interactive patterns between

multiple time-series.

The fact is, there are means of extending the Kalman filter concept to

model non-linear applications which has been done through the development

of the extended Kalman filter (Jeen-Shang & Yigong, 1994; K. Kim, Lee, &
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Park, 2009; Welch & Bishop, 1995). Hence, based on the actuality that most

systems in the real world situation are non-linear, the use of the extended

Kalman filter should then be addressed in future work.

3.2.5 The State-Space Model Estimation through Kalman

Filtering

The Kalman filter estimates the states of a state-space model by using a form

of feedback control. This means that the filter works by estimating the state

at some point in time and then obtains feedback in the form of (noisy) mea-

surement. Therefore, basically there are two important groups of equations

in the Kalman filter formulation. The first one is the group of time update

equations and it is responsible for projecting forward (in time) the current

system state and error covariance estimates to obtain priori estimates for

the next step. The other group of the equations is the group of measure-

ment update equations. These equations act as corrector equations, applied

to the estimated trajectories once the actual measurement value is available.

In this methodology, these forward recursions are used to compute the state

estimates. An example of a forward recursion is the following equation:

xt+1 = Axt +But + wt, (3.7)

where wt denotes the process noise and is ignored in this methodology.

Indeed, the final algorithm resembles that of a predictor-corrector algo-

rithm for solving numerical problems. A general concept of this algorithm

can be seen in Figure 3.3, while the complete mathematical representation of

the Kalman filter operation is given in Equations 3.8 to 3.12.

The specific equations for the time updates are presented below:

x̂−

t+1 = Ax̂t +But (3.8)

P−

t+1 = APtA
T +Q (3.9)
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Figure 3.3. Component of equations in the Kalman filter (Welch & Bishop, 1995).

while the equations for measurement updates are presented below:

x̂t+1 = x̂−

t+1 +Kt+1

(

zt+1 −Hx̂−

t+1

)

(3.10)

Kt+1 = P−

t+1H
T
(

HP−

t+1H
T +R

)

−1
(3.11)

Pt+1 = (I −Kt+1H)P−

t+1 (3.12)

From the equations it can be observed how the time update equations project

the state and covariance estimates forward from time moment t to moment

t+1. The k×k matrix A, where k is the number of time-series being examined,

in Equation 3.8 relates the state at current time moment t to the state at

future moment t + 1. This formula can be associated with the form of the

discrete-time state-space representation in Equation 3.3. The k × 1 matrix

B relates the optional control input u ∈ ℜl where in the discrete-time state-

space representation is considered to be a very small value close to 0, to

the state x. The m × k matrix H in the measurement equations such as

Equation 3.10 relates the states to the observed data (measurements) zt+1.

Here, this formula is also being associated to the discrete-time state-space

representation in Equation 3.4.

The first task during the measurement update is to compute the Kalman

gain, Kt+1, and the next step is to actually measure the process to obtain zt+1,

and then go on to generate a posteriori state estimate by incorporating the

measurement as shown in Equation 3.10. The final step is to obtain a posteri-
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ori error covariance estimate through Equation 3.12. After each measurement

update, the process is repeated with the previous posteriori estimates used

to project or predict the new a priori estimates. This recursive characteristic

is one of the very appealing features of the Kalman filter, where the filter

recursively conditions the current estimate on all of the past measurements.

3.3 Dynamic Interaction Network: DIN

DIN is a global modelling technique for multiple time-series that utilises the

Kalman filter and the EM algorithm to perform a state-space estimation mod-

elling by extracting a transition matrix from the inter-related multiple time-

series data (Widiputra, Pears, Serguieva, & Kasabov, 2009). This transition

matrix is then exploited to construct a relationship model in the form of fully

connected graphs that reveal dynamic interactions between observed vari-

ables. This approach is developed based on a method proposed by Kasabov,

Chan, Jain, Sidorov, and Dimitrov (2004) to identify interdependencies be-

tween genes.

The procedure to extract such a transition matrix to build interaction

network in DIN is outlined as follows:

• Step 1: for i = 1, ..., t of data set X where X = (x1,x2, ...,xi), esti-

mate trajectories of xi+1 with the Kalman filter time update equation

as follows:

ŷi+1
e = Aŷi

u, (3.13)

where ŷi+1
e is the estimated trajectory of xi+1 at time-point i, and ŷi

u is

the updated ŷi
e given the actual measurement of xi.

In this methodology, as the initial value of ŷi
u where i = 1, value of x1

is used as ŷ1
u. Here, ŷi

u is analogous to x̂t+1 in Equation 3.10.

At the beginning of the filtering process, transition matrix A can be set
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to a random n× n matrix or an identity matrix where n is the number

of time-series being observed. In this methodology, the second approach

is used. Afterwards the error covariance of ŷi+1
e is calculated based on

the Kalman filter equation (as in Equation 3.12) as follows:

Pi+1
e = APi

uA
T +Q, (3.14)

where Pi
u is the updated previous error covariance, and Q is an n × n

process noise covariance matrix which in this methodology is set to a

very small value, i.e. 1e−5. In addition, at the beginning of the filtering

process P1
u is also set to a very small value, i.e. 1e−5.

The next process is to make corrections to the estimated trajectory ŷi+1
e

(updating), by taking into account the actual measurement of xi+1 as

follows:

ŷi+1
u = ŷi+1

e +Ki+1(xi+1 −Hŷi+1
e ), (3.15)

Ki+1 = Pi+1
e HT(R+HPi+1

e HT)−1, (3.16)

Pi+1
u = (I−Ki+1H)Pi+1

e , (3.17)

where I is an n× n identity matrix, H is a state matrix that relates the

estimates state and the actual measurement. However, as we assumed

that the estimates state is equal to the actual measurement, then in this

methodology H is defined as an identity matrix.

Additionally, R is the actual measurement noise covariance matrix being

set to a very small value, i.e. 1e−5;

• Step 2: after all estimates of the states ye have been calculated the next

step is to improve the estimates of the states yi
e by incorporating the

actual measurements. This process is known as the Kalman smooth-

ing process (Hartikainen & Sarkka, 2010; Moiseenko & Saenko, 1994;

Sarkka, Vehtari, & Lampinen, 2007). The smoothed estimates of the
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states yi
e is denoted as ŷi

s.

In general, given t actual measurements of x which is denoted by X,

moving backward starting from i = t, t − 1, ..., 2 smoothed values of ŷi
e

and its error covariance are calculated by these equations below,

ŷi−1
s = ŷi−1

u + Ji−1(ŷi
s − ŷi

e), (3.18)

Ji−1 = Pi−1
u AT[P i

e ]
−1, (3.19)

Pi−1
s = Pi−1

u + Ji−1(Pi
s −Pi

e)[J
i−1]T, (3.20)

which is initialised by,

ŷt
s = ŷt

u and Pt
s = Pt

u

The smoothing process described above applies only to the estimated

data and not to the historical empirical data, and concerns only the

state from a single previous step. Therefore, it can be implemented in

an on-line setting.

• Step 3: the next step of the process is the parameters estimation of the

model using the EM algorithm. Since in this methodology our main

interest is the A transition matrix we hold the other parameters of the

Kalman filter model Q,H, and R at their initial value.

Considering the states of yi as hidden variables, while X are the obser-

vations or actual measurements, then based on Welling (2001) the only

sufficient statistics that need to be calculated in the E-step (expectation

step) are:

E[yi
∣

∣X] = ŷi
s i = 1, ..., t (3.21)

E[yiyi
∣

∣X] = Pi
s + ŷi

sŷ
i
s i = 1, ..., t (3.22)

E[yiyi−1
∣

∣X] = Ci
s + ŷi

sŷ
i−1
s i = 2, ..., t (3.23)
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Here Cs is the lag-one covariance smoother of the smoothed trajectories

defined as follows (Welling, 2001):

Ci−1
s = Pi−1

u [Ji−2]T + [Ji−1]T(Ci
s −APi−1

u )[Ji−1]T, (3.24)

which is initialised by:

Ct
s = (I−KtH)APt−1

u . (3.25)

Consequently, total statistics for the complete observations are calcu-

lated as follows:

Stat1 =

t
∑

i=1

E[yiyi
∣

∣X] (3.26)

Stat2 =

t
∑

i=2

E[yiyi−1
∣

∣X] (3.27)

For the M-step (maximisation step) the transition matrix A is then up-

dated to maximise the expectation value of the joint probability density

function over the posterior density using this equation below (Welling,

2001):

Anew = Stat2 × [Stat1]
−1. (3.28)

Alternating E-steps and M-steps will converge to the maximum likeli-

hood estimates of matrix A. By incorporating the recursive property

of the equations, this procedure can be utilised to estimate the optimal

state of a dynamic system in an on-line mode;

• Step 4: the next step of the procedure is the computation of total log-

likelihood of the system based on the model’s parameters estimation.

The total log-likelihood is calculated as follows:

L =
t
∑

i=1

log(det(ζ i)) + [ei]T[ζ ]−1ei, (3.29)
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where

ei = xi −Hŷi
e (3.30)

ζi = HPi
eH

T +R (3.31)

• Step 5: while (A − Anew) > Scr, where Scr is the stopping criteria of

the transition matrix estimation process, the process goes back to Step

1, in which new estimated trajectories will be recalculated, where now

A = Anew. In this methodology Scr is set to a very small value 1e−5

to confirm that the estimation process would only stop when transition

matrix A converges, that is Anew ≈ A.

Another stopping criteria that can be implemented in the parameters

estimation process is the total log-likelihood value, L. However, this

approach requires human or user involvement to decide whether current

total log-likelihood value is sufficient enough for the estimation process

to stop.

Else, the process continues to Step 6;

• Step 6: as the estimated transition matrix A converges, the algorithm

keeps the value of A that represents the interactions between multiple

time-series under examination.

The DIN is useful in detecting influences and evaluating the degree to which

a time-series influences or is being influenced by others. Through captur-

ing dynamic influences among time-series, one should be able to predict the

behaviour of multiple time-series simultaneously.

The construction of a DIN from a transition matrix is illustrated in Fig-

ure 3.4. Here, only the most significant time-series relationships defined by

a threshold value are elucidated from the transition matrix. All transitions

xi,j with values in A that are greater than 0.1 are flagged as positive in Fig-

ure 3.4b, i.e. time-series xi is influencing time-series xj . By analogy, values
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(a) (b) (c)

Figure 3.4. Illustration of interaction network construction in DIN. (a) is the tran-

sition matrix; (b) is the corresponding influence matrix when a threshold of 0.1 is

used; (c) is the interaction network.

Figure 3.5. Illustration of incremental learning in DIN. Transition matrix A is being

re-estimated as new observations become available.

below −0.1 are labelled as negative in Figure 3.4b. The values and direction of

influence are reflected in the directed network diagram depicted in Figure 3.4c.

The ability to capture time varying patterns of inter-relationships between

multiple time-series is an important pre-requisite to predicting the future val-

ues of the series. The DIN meets this requirement as it is able to evolve its

structure dynamically as new data comes. As such a modelling and prediction

process with on-line learning is implemented, whereby the transition matrix

and the DIN model are updated at every time step.

As shown in Figure 3.5, a DIN model is initially trained over a certain

number of time moments, e.g. 50 time-points of data. Afterward, extracted

DIN model is used to predict the next time moment’s values. This DIN model

is then updated at the following time-point with new data arriving whereupon
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the updated DIN model is used to predict values for next time moment and so

forth. This process is performed simply by using the recursive measurement

update property of the Kalman filter and the EM algorithm as outlined in the

algorithm above. The learning process then continues into the future, where

prediction and training operations are interleaved with each other.

3.4 Experiments on Synthetic Data

In order to evaluate the capability of DIN in extracting patterns of dynamic

interactions from a set of multiple time-series data, a synthetic data set con-

sisting of a number of interrelated time-series is constructed in this study. To

accomplish such a task, three different time-series trajectories regulated by

the polynomial functions defined below, are created.

f1(x) =
1

30

(

x6 − 22.5x5 + 189.5x4 − 735.75x3 + 1296.56x2 − 822.66x+ 180
)

f2(x) = 0.08x6 − 1.8x5 + 15.16x4 − 58.86x3 + 103.72x2 − 65.81x+ 8

f3(x) = −0.1x
6 + 2.25x5 − 18.95x4 + 73.5x3 − 129x2 + 85x− 7.5

Trajectories of these three initial series are depicted in Figure 3.6. However,

to increase the complexities of the trajectories and to introduce the component

of interdependency, another four series are generated from these initial three

series. The four series are generated based on the calculations below:

S1 = f1(x)× f2(x)

S2 = f1(x)× f3(x)

S3 = f2(x)× f3(x)

S4 = (f3(x)× S3)/10

(3.32)

These four series are then used in this study to evaluate the ability of

the proposed methodology to extract patterns of dynamic interactions be-

tween multiple time-series. Trajectories of these four series are depicted in
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Figure 3.6. Trajectories of the original polynomial functions used to construct the

synthetic data set consisting of 4 time-series data.
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Figure 3.7. Furthermore, an assessment as to whether the dynamics of inter-

actions between multiple time-series could be used to perform simultaneous

multiple time-series prediction is also conducted.

The experiment is performed by splitting the data set into two different

parts, one for training and the other for testing. The training data set is

utilised to learn and extract the initial transition matrix using the algorithm

explained in Section 3.3. Whereas, the test data set is utilised to evaluate

whether DIN is capable of capturing changes in pattern of interactions between

time-series. Here, the first 35 time-points of the complete data set is used as

the training data set, and the rest of 15 time-points are defined as the test

data set.

Feeding the training data set to DIN produces the initial transition matrix

as shown in Figure 3.8a. Utilising this transition matrix, a graph depicting in-

teraction network between the observed series is then generated as illustrated

in Figure 3.8b. The interaction network model in Figure 3.8 (series are num-

bered according to their node numbers in the graph) shows that during the

first 35 time moments Series #1 influenced Series #2 and Series #3 positively.

This outcome is in agreement with the process of how Series #1, Series #2

and Series #3 were constructed. Both Series #2 and #3 were constructed

based on f3 being multiplied to f1 and f2 which are the two functions used

to construct Series #1. Therefore, it is expected to discover the existence of

positive interactions between the three series.

In addition, the interaction network also shows that Series #3 is being

positively influenced by Series #2. Yet again, this outcome also relates to

the process of how Series #3 was generated. The initial component used

to construct Series #3 and #2 is f3. However, instead of being multiplied

to functions that retain opposite form, to generate Series #2 and #3 f3 is

multiplied to functions that hold similar form, i.e. f1 and f2 respectively.

Therefore, it is reasonable to have an interaction network model which shows
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













0.9057 0 0 0.2002

0.2160 1.1845 0 −0.2243

0.2706 0.3930 0.6895 −0.2683

0 0.1510 0 0.8675


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











(a) The transition matrix

(b) The interaction network

Figure 3.8. Extracted transition matrix and its interaction network from the training

data set, the first 35 points of the synthetic data set.

the existence of positive relationships between the two series.

Furthermore, the graph recognises that Series #4 is the most influencing

series compared to the other three series. Series#4 highly influenced Series#3,

this is again in agreement with the process of how Series #4 was constructed.

Equation 3.32 shows that Series #4 was constructed using Series #3 as one

of its main components, and therefore the existence of strong relationship

between the two series is expected. Additionally, Series #4 also gave a signifi-

cant influence on Series #2. This is again in agreement with the construction
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process that is of Series #4, where f3 (being one of the components used to

construct Series #2) was also used as one of the constructing components in

Series #4.

At the same time, the interaction network also shows that Series #4 was

influencing Series #1 as well. Even though in the construction process Series

#4 did not directly interact with Series #1, an observation of the trajectories

of the four series gives a clear view that in comparison to Series #2 and

#3, Series #4 is trajecting in a more similar shape to that of Series #1. This

actuality suggests that there might exist a positive relationship between Series

#1 and #4 which is recognised by the interaction network model.

Additionally, some rules or understanding that can be extracted and learned

based on the interaction network model for the prediction of upcoming values

of the series under observation are:

• Series #1 received both positive internal and external influence. The

external influence to Series #1 is coming from Series #4. The upcoming

value of Series #1 is expected to increase by 0.9057 when current value

of Series #1 goes up by one and by 0.2002 for a one-unit change in Series

#4. This form of interdependency can be modelled mathematically as

follows:

S1(t+ 1) = 0.9057S1(t) + 0.2002S4(t) (3.33)

• Series #2 received both external positive and negative influences from

Series #1 and #4. Nevertheless, the upcoming value of Series #2 is also

highly dependent to its current value. When current value of Series #2

and Series #1 goes up by one, it is expected that the upcoming value of

Series #2 increases by 0.2160 and 1.1845 while at the same time it will

decrease by 0.2243 for a one-unit change in Series #4. This relationship

can be modelled in a linear equation model as follows:

S2(t+ 1) = 0.2160S1(t) + 1.1845S2(t)− 0.2243S4(t) (3.34)
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• In comparison to the other series, Series #3 is the most influenced series

in the synthetic dynamic system under evaluation. Series #3 received

both external positive and negative influences from the other series. The

upcoming value of Series #3 will increase by 0.2706, 0.3930 and 0.6895

for a one-unit change in Series #1, #2 and itself at current time-point

respectively. Additionally, when Series #4 goes up by one then it is

expected that the upcoming value of Series #3 will decrease by 0.2683.

A linear equation model for the prediction of Series #3 then can be

formed as follows:

S3(t+1) = 0.2706S1(t)+0.3930S2(t)+0.6895S3(t)−0.2683S4(t) (3.35)

• Whilst the upcoming value of Series #4 is being considerably affected

by its current value, it also received a significant external influence from

Series #2. Series #4 is predicted to increase by 0.1510 for a one-unit

change in Series #2 at current time-point and by 0.8675 for a one-unit

change in itself. The upcoming value of Series #4 then can be estimated

with this linear equation model:

S4(t+ 1) = 0.1510S2(t) + 0.8675S4(t) (3.36)

Summarising these findings, we can say that in the training period there

exists a complex form of interdependencies between Series #1, #2, #3 and

#4. However, it is found that in general Series #1 and Series #4 are the

two series that influenced movement of the other series most significantly.

Therefore, these two series can be identified as the main variables that govern

the states of the synthetic dynamic system under evaluation. This conclusion

is drawn from the interaction network model and is consistent with the manner

in which the synthetic data set was constructed.

All of these outcomes indicate that DIN is capable of extracting an impor-

tant and useful pattern of interactions from a set of multiple time-series data.
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(a) Actual versus estimated trajectories of

Series #1.

0 5 10 15 20 25 30 35
−30

−20

−10

0

10

20

30

40

50

60

70
Time−Series #2 Train Data Set Estimated vs Actual Trajectories

Time

V
al

ue

 

 

Actual
Estimated

(b) Actual versus estimated trajectories of

Series #2.
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(c) Actual versus estimated trajectories of

Series #3.
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(d) Actual versus estimated trajectories of

Series #4.

Figure 3.9. Plot of estimated trajectories of synthetic data set by DIN in the training

period.

However, there exists a limitation in the methodology. The key constraint of

DIN is that it is only capable to model interactions between series in a linear

form. Therefore, it is a challenge to be able to extend the methodology to

capture and model non-linear interactions between multiple time-series. This

is a task that needs to be addressed in future research of implementing the

extended Kalman filter to replace the currently used standard Kalman filter.

To evaluate whether the extracted interaction network model can be of

help in predicting upcoming values of the observed series simultaneously, tra-
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(a) The transition matrix

(b) The interaction network

Figure 3.10. Adapted transition matrix and its interaction network after 5 points

from the test data set are added. A new interaction between Series #2 and Series

#3 is represented by a dashed line. Initial transition matrix and its interaction

network is shown in Figure 3.8

.

jectories of the first 35 time moments of the synthetic data set are re-generated

using the transition matrix.

Figure 3.9 illustrates the estimated trajectories generated using the inter-

action network model compared to the actual ones. It is clearly seen that

the estimated trajectories closely match the actual trajectories. This result
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(a) The transition matrix

(b) The interaction network

Figure 3.11. Adapted transition matrix and its interaction network after 10 points of

test data set are added. Identified new interactions are denoted by the dashed-line.

confirms that the interaction network model captures important relationships

between series that is useful in estimating their future states.

Following the capture of the dynamics of interactions between series, new

instances from the test data set are then conferred to DIN. Figures 3.10, 3.11

and 3.12 respectively depict the interaction network model after 5, 10 and 15

points of test data entered the system. In general, these figures show that

even though patterns of interactions between the four series is dynamically

changing, as new interactions are emerging and existing interactions are dis-
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(a) The transition matrix

(b) The interaction network

Figure 3.12. Adapted transition matrix and its interaction network after 15 points

of test data set are added. Identified new interaction is denoted by the dashed-line.

appearing, some interactions between the series remain stable over time.

For instance, Figure 3.10 shows that after feeding 5 points of test data,

DIN identifies that Series #3 is no longer being influenced by Series #4 yet

it is now Series #4 who received influence from Series #3. However, it is

also observable that in general pattern of interactions between the four series

remains stable.

Interestingly, a dramatic change happened to the interaction network model

after feeding 10 points of test data, as shown in Figure 3.11. The interaction
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Table 3.1

DIN prediction error rates in RMSE for the synthetic test data set.

No Variable DIN RMSE

1 Series #1 11.9658

2 Series #2 5.5067

3 Series #3 7.4662

4 Series #4 7.6928

network model shows that even though interactions between Series #2, #3

and #4 remain stable, Series #1 now is not connected to the other series and

received influence only from itself. This outcome is in agreement with the

behaviour of the four series being observed. It is observable from the plot of

trajectories of the four series, as depicted in Figure 3.7, that in the testing

period trajectory of Series #1 is shifting towards a different direction that

is of the other series. As Series #1 has now changed its course, it is then

expected that the interaction network model between the four series is also

changing, i.e. Series #1 is now being identified to have no interaction with

the other series.

This condition materialises until the end of the testing period and therefore

a similar interaction network model is discovered at the end of the testing

period as illustrated in Figure 3.12. This outcome confirms DIN ability to

capture the dynamics of interactions between series and then to evolve its

structure based on recent behaviour of the series under examination.

An evaluation of DIN performance when predicting movement of the test

data set is illustrated in Figure 3.13. Additionally, the prediction error rates,

as measured by the Root Mean Square Error (RMSE) are shown in Table 3.1.

Both Figure 3.13 and Table 3.1 confirm the ability of the DIN to predict move-
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(a) Actual versus estimated trajectories of
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(b) Actual versus estimated trajectories of

Series #2.
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(c) Actual versus estimated trajectories of

Series #3.
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(d) Actual versus estimated trajectories of

Series #4.

Figure 3.13. Plot of estimated trajectories of synthetic data set by DIN in the

testing period.

ment of multiple time-series data simultaneously with a reasonable degree of

accuracy.

Furthermore, a comparative analysis of prediction results obtained from

the adaptive DIN model against those obtained from methods applied on

single time-series prediction is also conducted. In this comparative analysis

MLR, MLP, DENFIS and random walk models are put in place to predict

movement of the four time-series individually. The random walk model is a

naive time-series analysis method which assumes that next value of a time-
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series is equal to current value. In the conducted experiments the random

walk without drift model is defined simply by:

xt+1 = xt. (3.37)

Throughout the experiments conducted in this study the adaptive DIN model

was trained with the training data set and then the test data set was utilised

for adaptive training, whilst MLR, MLP and DENFIS are applied as batch

models which were trained with the training data set and then tested on the

test data set with no incremental learning. Additionally, due to its nature (as

defined in Equation 3.37 the random walk model is applied as an incremental

model.

Figure 3.14 depicts the comparison of the actual trajectories to the pre-

dicted trajectories computed by DIN, MLP, MLP, DENFIS and random walk.

Table 3.2 outlines the calculated RMSE for each method. It is clearly seen

that in general DIN performs better than the other methods applied on single

time-series prediction. This outcome indicates that predicting movement of

multiple time-series simultaneously by considering the pattern of interactions

leads to a more accurate result compared to predicting movement of a single

time-series individually.

Nevertheless, it is also observable in Table 3.2 that random walk model in

some cases offers better prediction accuracy compared to the other methods,

including DENFIS and DIN. However, as this model simply assumes that

the next value of a variable being estimated is equal to its current value,

random walk produces a shadow plot of the observed data, lagging exactly

one period behind and providing no useful knowledge related to the observed

system. Therefore, this model can be assumed to have no predictive power

(Widiputra et al., 2011a). Moreover, in the conducted experiments DENFIS

was incapable of performing adaptive learning process as it was applied as a

batch model. This might be the key reason of having prediction results which
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(a) Estimated trajectories of Series #1.
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(b) Estimated trajectories of Series #2.
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(c) Estimated trajectories of Series #3.
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(d) Estimated trajectories of Series #4.

Figure 3.14. Plot of estimated trajectories of synthetic data set by DIN versus

prediction by other widely-used methods applied on single time-series prediction in

the testing period.

show that in general the random walk model is superior to DENFIS.

3.5 Conclusion

Given a set of measurements of multiple time-series, the DIN model is capable

of extracting the dynamics of interactions between these observed variables

by modelling the governing interdependencies as discrete-time approximation

of first-order differential equations.

The methodology treats the actual trajectories or actual observed mea-
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Table 3.2

Comparison of DIN prediction error rates against methods applied on single time-

series: MLR, MLP, DENFIS and Random Walk, in RMSE.

No Variable DIN MLR MLP DENFIS Random Walk

1 Series #1 11.9658 62.0580 15.1441 14.3226 12.6634

2 Series #2 5.5067 43.7277 7.5743 4.6464 4.3419

3 Series #3 7.4662 37.0639 7.6572 6.1003 6.4474

4 Series #4 7.6928 10.1890 8.7729 8.8631 8.4156

surements as a set of unobserved or hidden variables using the state-space

representation, and then applies a reliable and stable estimator algorithm, i.e.

the EM algorithm, to compute the transfer function that maps past system

states to present states. Being a set of mathematical equations, the Kalman

filter provides a rigorous and computationally efficient way of estimating the

future states of given data when the state-space representation is applied to

model the system.

Experiments with synthetic data reveal some insights about the applica-

tions of the Kalman filter and the EM algorithm as the main components of

the DIN:

1. Kalman filter is a robust computing method that can be used to estimate

the actual trajectories of multiple time-series data even when data is only

available at irregular time steps;

2. The transition matrix provides a valuable method of modelling inter-

relationships between multiple variables which can be used to construct

an interaction network model;

3. The interaction network model not only exposes essential relationships;
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it can also be employed to predict future values of observed variables

with an acceptable degree of accuracy.

Additionally, in order to evaluate its capability for dealing with real-world

data, in the upcoming chapters of the thesis, DIN is also implemented to

extract important pattern of interactions from multiple time-series data from

real world applications, such as the finance and environment data sets.

Nevertheless, as DIN is only capable of modelling the dynamics of interac-

tions between multiple time-series in a linear form, an interesting task would

be to explore the possibilities of implementing the extended Kalman filter that

was developed, to estimate systems with non-linear relationships between the

contributing variables.



Chapter 4

Localised Trend Model for

Multiple Time-Series Analysis and

Modelling

4.1 Introduction

The common realisation of inductive reasoning is the construction of global

models that cover the entire problem space, e.g. a regression formula, a neu-

ral network (Calcagno et al., 2010; Popescu, Balas, Perescu-Popescu, & Mas-

torakis, 2009; Rossi & Conan-Guez, 2005), an SVM (Cristianini & Shawe-

Taylor, 2000; Fung & Mangasarian, 2001; Tong & Chang, 2001), etc. Global

models are built using all historical data and thus can be used to predict fu-

ture trends. However, the trajectories that global models produce often fail

to track localised changes that take place at discrete points in time. This is

due to the fact that trajectories produced by global models tend to smooth

localised deviations by averaging the effects of such deviations over a long

period of time (Widiputra et al., 2011a).

In reality, localised disturbances may be of great significance as they cap-

ture the conditions under which a time series deviates from the norm. For

example, financial markets react very favourably when interest rates are cut or

when better than expected Economic fundamentals are announced by a Gov-

ernment under which they operate. To accurately capture such phenomena
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requires a discontinuity in the global trajectory function and this goes against

the fundamental design philosophy behind the construction of global models.

Furthermore, it is of interest to capture similar deviations from a global trajec-

tory that take place repeatedly over time, in other words to capture recurring

deviations from the norm that are similar in shape and magnitude. Such lo-

calised phenomena can only be captured accurately by localised models that

are built only on data that defines the phenomenon under consideration and

are not contaminated by data outside the underlying phenomenon.

In relation to this, recent research in the field of machine learning has

focused on model ensembles that use a mixture of models to achieve better

overall accuracy. Several studies have reported that an ensemble of models

works better than a single global model (Cevikalp & Polikar, 2008; Islam, Yao,

Shahriar Nirjon, Islam, & Murase, 2008; H. Kim et al., 2002; Lei, Yang, &

Wu, 2006; Nguyen, Abbass, & McKay, 2008; Pang, 2004; Yao & Liu, 1998,

1996; Zhou & Jiang, 2003). There are many strategies that are commonly

used to create an ensemble: bagging (Hothorn & Lausen, 2005; H. Kim et

al., 2002; Nanni & Lumini, 2006), boosting (Scholz & Klinkenberg, 2007;

C. Zhang & Zhang, 2008) and clustering (Kasabov & Song, 2002) are well

known strategies. Depending on the strategy used, the ensembles generally

try to either generate a different view of a problem or break down the problem

into smaller problems and tackle each problem independently or sometimes a

mix of both methods are used.

In relation to the idea that a more detailed and accurate behaviour of

the observed data set can be captured by constructing a number of localised

models, a local modelling approach of multiple time-series analysis is proposed

in this chapter, aiming to address the following two research questions: (1)

Would creating sub-models that capture recurring behaviour in different time

localities from multiple time-series result in a better prediction accuracy? (2)

Do these localised models allow a more comprehensive understanding of the
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nature of dynamic relationship between multiple variables of the dynamic

system under observation?

4.2 General Concept of Local Model

Local models (Kasabov, 2001, 2007b; Lucks & Oki, 1999; Poggio, 1994; Ya-

mada, Yamashita, Ishii, & Iwata, 2006) is a type of model ensemble that

breaks down the problem into many smaller sub-problems, based on its po-

sition in the problem space. Local models can be built by grouping together

data that has similar behaviour. For example when the value of a variable

suddenly increases significantly and then maintains the increased value over

a period of time, a natural cluster containing the time points that define this

heightened activity can be defined. Different types of phenomena will define

their own clusters. Models can then be developed for each cluster (i.e. lo-

cal regressions) that will yield better accuracy over the local problem space

covered by the model in contrast to a global model.

In local modelling, individual models are created to evaluate the output

function for only a subset of the problem space, e.g. a set of rules over a

number of clusters or a set of local regressions, etc. Having a set of local

models offers greater flexibility as predictions can be either on the basis of

a single model or, if needed, at a global level by combining the predictions

made by the individual local models (Kasabov, 2007b), For an example see

Figure 4.1. Additionally, it is expected that local models would enable us to

capture recent trends in the data and relate them to similar behaviour from

the past. This is in contrast to a global model that takes into account all

past activity, thus resulting in diluting the effects of recent trends in the data

(Widiputra et al., 2011a).

However, having clustering as the key process in this approach means that

the quality of the clusters is an important foundation for this type of model
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Figure 4.1. Illustration of local modelling to create localised linear regression models

from clusters of sample data set in a 2-D space (Hwang, 2009).

as well. The data clustering parameters often need to be adjusted, according

to the sub-model’s requirements or the characteristic of the problem. Many

models, such as linear regression need the number of input vectors to be

significantly greater than the number of variables and, therefore, the clusters

must be large enough to support this type of sub-model. Hence, local models

may require more training data than global models to ensure that each sub-

model is trained with sufficient number of input vectors.

4.3 Localised Trend Model: LTM

It is interesting to note that most of the research carried out in the field of

time-series modelling and prediction have based their approach on the concept

of inductive reasoning (Holland, Holyoak, Nisbett, & Thagard, 1989), in which

a number of historical data samples are used to construct a single global model

covering the entire training data set space. Nevertheless, as argued previously,

local modelling is needed to cover subsets of the problem space that the global
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model cannot cover with sufficient accuracy. The local model is another type of

realisation of inductive reasoning. A system can be represented by a collection

of local models trained on a given data set. However, when applied to new

data, only one model or a subset of the relevant models will actually contribute

to the solution.

This chapter outlines a methodology for the construction of local models

for multiple time-series containing profiles of relationships between series from

different time localities (Widiputra et al., 2011a, 2011c). The construction of

local models in the proposed methodology consists of two main steps: (1)

the continuous extraction of profiles of relationships between time-series over

time, and (2) the detection and clustering of recurring trends of movement in

time-series when a particular profile emerges.

The principal objective of the methodology is to construct a repository

of profiles and recurring trends whose structure will dynamically evolve as

changes take place in the observed non-stationary environment. This reposi-

tory will then be utilised as a knowledge-base containing a key data resource

to learn and understand the underlying behaviour of the system and to es-

timate future states of the system’s variables; that is to perform a multiple

time-series prediction. To realise such an objective a 2-level local modelling

process is utilised within the proposed methodology.

The first level of local modelling deals with the extraction of profiles of

relationships between series in a sub-space of the given multiple time-series

data in which the methodology utilises a cross correlation analysis to elucidate

the existence of relationships between pairs of time-series that influence each

other. The second level of local modelling is used to capture and cluster recur-

ring trends of movement that take place in time-series when a particular pro-

file is emerging. Here, the methodology employs a non-parametric regression

analysis in combination with the ECM (Q. Song & Kasabov, 2001). Detailed

explanation of this local modelling method, which is termed as the Localised
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Trend Model and denoted as LTM, is outlined in the upcoming sections.

4.3.1 Extracting Profiles of Relationships from Multiple

Time-Series

Most of the work in clustering time-series data has concentrated on sam-

ple clustering rather than variable clustering (Rodrigues, Gama, & Pedroso,

2008). However, one of the key tasks in this methodology is to group together

series or variables, and not samples that are highly correlated and have similar

shapes of movement, as it is considered that multiple local models represent-

ing clusters of similar profiles will provide a better basis than a single global

model for predicting future movements of the multiple time-series.

An example would be predicting the movement of 5 global stock market

indexes i.e. New Zealand, Australia, Hong Kong, Japan and United States. If

one is able to learn that at the current time moment New Zealand and Aus-

tralia are moving together collectively, Hong Kong and Japan are progressing

mutually, while the United States travels by itself, then it would be relevant

to use only data of stock market indexes from the past which possesses the

same profiles of relationships to predict future values of these stock market

indexes, rather than to use the entire data set.

Algorithm 4.1 outlines the scheme for clustering together similar time se-

ries. The first step in extracting profiles of relationships between multiple

time-series is the computation of cross-correlation coefficients between the

observed time-series using Pearson’s correlation analysis. Statistically signif-

icant correlations, which are determined through the use of the t-test with

a confidence level of 95% are used. After the most significant correlations

between time-series have been identified, the Rooted Normalised One-Minus

Correlation (RNOMC) coefficients(R. Kim, Ji, & Wong, 2006; Rodrigues et

al., 2008) (known henceforth as normalised correlation in this chapter) is cal-
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Figure 4.2. The Pearson’s correlation coefficient matrix is calculated from a given

multiple time-series data (TS-1,TS-2,TS-3,TS-4), and then converted to normalised

correlation, Equation 4.1 before the profiles are finally extracted. Figure is extracted

from (Widiputra et al., 2011a, 2011c).

culated to assess the degree of dissimilarity between a pair of time series (a, b).

The normalised correlation is given by:

RNOMC(a, b) =

√

1− corr(a, b)

2
(4.1)

The normalised correlation coefficient ranges from 0 to 1, in which 0 denotes

high similarity and 1 signifies the opposite condition. In LTM, when two or

more series are grouped into the same cluster, then the cluster’s diameter is

expected to show the highest dissimilarity between two series belonging to the

same cluster (as shown in Figure 4.2). Therefore, LTM uses RNOMC in place

of the actual correlation as it represents the degree of dissimilarity between a

pair of time-series. This approach was also applied by Rodrigues et al. (2008)

when performing a hierarchical clustering of time-series data streams.

Thereafter, the last stage of the algorithm is to extract profiles of relation-

ships from the normalised correlation matrix. The methodology used in this
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Algorithm 4.1 Extracting profiles of relationship of multiple time-series

Input: X, where X1, X2, ..., Xn are observed time-series

Output: profiles of relationships between multiple time-series

1: calculate the normalised correlation coefficient [Equation 4.1] of X

2: for each time-series X1, X2, ..., Xn do

3: //pre-condition: Xi,Xj do not belong to any cluster

4: if (Xi,Xj are correlated) AND (Xi, Xj do not belong to any cluster)

then

5: allocate Xi,Xj together in a new cluster

6: end if

7: //pre-condition: Xi belongs to a cluster; Xj does not belong to any

cluster

8: if (Xi,Xj are correlated) AND (Xi belongs to a cluster) then

9: if (Xj is correlated with all Xi cluster member) then

10: allocate Xj to cluster of Xi

11: else if (Xi,Xj correlation > max(correlation) of Xi with its cluster

member) AND (Xj is not correlated with any of Xi cluster member)

then

12: remove Xi from its cluster; allocate Xi,Xj together in a new cluster

13: end if

14: end if

15: //pre-condition: Xi and Xj belong to different cluster

16: if (Xi,Xj are correlated) AND (Xi, Xj belong to different cluster) then

17: if (Xi is correlated with all Xj cluster member) AND (Xj is corre-

lated with all Xi cluster member) then

18: merge cluster of Xi,Xj together

19: else if (Xi,Xj correlation > max(correlation) of Xj with its cluster

member) AND (Xj is correlated with all Xi cluster member) then

20: remove Xj from its cluster; allocate Xj to cluster of Xi

21: else if (Xi,Xj correlation > max(correlation) of both Xi,Xj with

their cluster member) AND (Xi is not correlated with one of Xj

cluster member) AND (Xj is not correlated to any of Xi cluster

member) then

22: remove Xi,Xj from their cluster; allocate Xi,Xj together in a new

cluster

23: end if

24: end if

25: end for

return clusters of multiple time-series
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step is outlined in lines 3 to 24 of Algorithm 4.1. The process of extracting

profiles of relationships is illustrated in Figure 4.2. Basically, the fundamental

concept behind this algorithm is to group multiple time-series with compa-

rable fashion of movement whilst ensuring that all time-series that belong to

the same cluster are correlated and hold significant level of similarity.

The underlying concept behind Algorithm 4.1 is closely comparable to the

clustering algorithm known as Clustering Affinity Search Technique (CAST)

(Ben-Dor & Yakhini, 1999). However, Algorithm 4.1 works by dynamically

creating new clusters, deleting and merging existing clusters as it evaluates the

coefficient of similarity between time-series or observed variables. Therefore,

Algorithm 4.1 is considerably different to CAST which creates a single cluster

at a time and performs updates by adding new elements to the cluster from a

pool of elements, or by removing elements from the cluster and returning it to

the pool as it evaluates the affinity factor of the cluster to which the elements

belong.

After the profiles have been extracted, the next step is to mine and cluster

trends of movement from each profile. This process is explained in the next

section. Additionally, as the time-complexity of Algorithm 4.1 is O(1
2
(n2−n)),

where n is the number of multiple time-series being analysed. In order to

avoid expensive re-computation and extraction of profiles, extracted profiles

of relationships are stored and updated dynamically instead of being computed

on the fly.

4.3.2 Clustering Recurring Trends of a Time-Series

Maintaining profiles of relationships between multiple time-series enables the

method to identify the time-series that influences the most the movement of

other time-series in a particular time locality. However, this type of knowl-

edge by itself does not offer any predictive power to estimate future values of



4.3. Localised Trend Model: LTM 100

multiple time-series.

To predict future values of multiple time-series simultaneously, information

about different shapes of movement across a group of correlated multiple time-

series needs to be acquired and maintained. Therefore, it is necessary to

extract trends of movements from all time-series belonging to a particular

profile, and to utilise them in constructing multiple local models that can be

used to predict future trends.

4.3.2.1 Trends Extraction with Polynomial Regression

The first approach used in LTM is to model trends of movement of a time-

series with polynomial functions calculated by using the polynomial regres-

sion analysis (Freund, William, & Sa, 2006; Widiputra, Kho, Lukas, Pears, &

Kasabov, 2009). Polynomial regression enables a non-linear trend of move-

ment that emerges in a specific time locality to be captured and modelled

appropriately by LTM.

General Principles

The fundamental idea of the technique is to create a number of clusters con-

taining similar recurring trends of movement in different time localities from

each series in the multiple time-series data set being observed. A function to

estimate the upcoming movement of a group of similar and recurring trends is

then obtained by utilising all samples that belong to a particular cluster. Fur-

thermore, as additional knowledge the total number of created clusters would

indicate the number of different trends of movement that exist in a particular

series.

In the clustering process, trends of movement are captured from a stream

of time-series data, and this process starts with an empty set of clusters. When

the first trend becomes available, a new cluster is created; the cluster centre is
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defined by the coefficients of the polynomial function, and its cluster radius is

initially set to zero. When more trends are presented one after another, some

of the created clusters will then be updated through changing their centres

and increasing their radii. Which cluster will be updated and how much it will

be changed depends on the position of the current trend in the input space.

A cluster will not be updated any more when its radius reaches a pre-defined

limit or threshold.

The utilised clustering process was inspired by the ECM (Q. Song &

Kasabov, 2001), see Section 2.5.2.3. However, a crucial modification is made

to the distance measure used by ECM. Defining similarity between objects in

a clustering process is a very important step. Different definitions of similarity

would result in diverse solutions or various groups of samples. In the clustering

process, the Euclidean distance is the most widely used method to measure

distance between objects (Brummer & Strydom, 1997; Mukherjee, Chen, &

Gangopadhyay, 2006; Remy & Thiel, 2005; L. Wang, Zhang, & Feng, 2005).

The Euclidean distance provides an efficient way to calculate distance be-

tween two points or objects simply by calculating distances between variables

or features used to describe the objects. However, this methodology clusters

not objects but sets of polynomial function and we are interested more in

calculating similarity between trends rather than the distance between them.

Therefore, the use of the Euclidean distance is considered to be improper and

a different method of distance measure is used in place of the Euclidean dis-

tance. The method is known as the angular separation or the Cosine distance

(Qian, Sural, Gu, & Pramanik, 2004; Zou & Umugwaneza, 2008).

By using the Cosine distance, similarity between two points or objects is

computed in relation to their magnitudes and directions. Therefore, it can be

considered as an appropriate approach to calculate level of similarity between

two polynomial functions. Let f1 and f2 be two polynomial functions of rth
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degree described as follows:

f1 = β10 + β11x+ β12x
2 + ...+ β1rx

r + ε, and

f2 = β20 + β21x+ β22x
2 + ...+ β2rx

r + ε
(4.2)

Then similarity between these two polynomial functions Sf1,f2 is calculated

using the following equation:

Sf1,f2 =

r
∑

i=0

(β1i.β2i)

√

r
∑

i=0

β2
1i.

r
∑

i=0

β2
2i

, (4.3)

where β1i and β2i are the coefficients of each part of respective polynomial

function f1 and f2, and i = 1, . . . , r.

Learning Algorithm of Trends Clustering

Based on the fundamental idea and principles outlined in the General Prin-

ciples section, a detailed algorithm is used to cluster recurring trends of a

time-series when polynomial functions are employed to model trends of move-

ment. It is described as follows:

• In the procedure of trends clustering in which the trend of movement is

represented by a polynomial function the following indexes are used:

– training data chunks or snapshots: i = 1, 2, ...;

– number of clusters: j = 1, 2, ..., m;

– input variables: n;

– order of polynomial function: s = 1, 2, ..., r.

• Step 1: perform autocorrelation analysis on the time-series data set from

which trends of movement will be extracted and clustered. Number of

lag, as outcome of the autocorrelation analysis where lag > 0, with
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highest correlation coefficient is then taken as the size of data chunk

or snapshot window denoted as n. The process will then progress by

performing a bootstrap sampling process through all data chunks or

snapshots;

• Step 2: create the first cluster C1 by simply taking the trend of move-

ment of the first data chunk or snapshot x1, from the input stream as

the first cluster centre c1, and set the cluster radius R1 to 0.

Estimate a set of polynomial functions or regression models yi, starting

from order 1 to the highest pre-defined order r, through polynomial re-

gression analysis.

Using an rth order polynomial regression would then result in an r num-

ber of polynomial functions or regression models that may explain the

trend of movement as follows,

yi







































f1 (xi) = a10 + a11xi + ε1

f2 (xi) = a20 + a21xi + a22x
2
i + ε2

...

fr (xi) = ar0 + ar1xi + ar2x
2
i + · · ·+ arrx

r
i + εr

(4.4)

where xi = (x
(i)
1 , . . . , x

(i)
n ) and ajk are the coefficients of a polynomial

function.

The best-fit regression model yi which represents the i-th trend of move-

ment is then selected from the system of polynomials yi by finding the

function with the minimum value of sum of square residuals defined by:

SSR =
n
∑

t=1

(

x
(i)
t − f̂s(x

(i)
t )
)2

, (4.5)

where s is the order of the polynomial function or regression model with

the minimum sum of square residuals and f̂s is a particular polynomial

function used to compute the estimated trajectories.
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The coefficients of each part of the best regression model are then used

as features vector describing the trend of movement that exists in that

particular data chunk or snapshot as follows:

as = (as0, as1, as2, . . . , asr) , s ≤ r

where r is the highest degree of the polynomial regression order used to

extract trend of movement from a data chunk or snapshot.

To gain knowledge about upcoming trends of movement when a par-

ticular trend emerges in a locality of time, the algorithm also models

subsequent trajectories from data chunks:

y
(u)
i
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
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











f1(x
(u)
i ) = a10 + a11x

(u)
i + ε1

f2(x
(u)
i ) = a20 + a21x

(u)
i + a22x

(u)2
i + ε2

...

fr(x
(u)
i ) = ar0 + ar1x

(u)
i + ar2x

(u)2
i + · · ·+ arrx

(u)r
i + εr

(4.6)

where x
(u)
i = (x

(i)
1 , . . . , x

(i)
n , x

(i)
n+1).

Utilising the same polynomial regression analysis as explained previ-

ously, the best-fit regression model y
(u)
i is then selected from y

(u)
i by

finding a model with the minimum value of sum of square residuals.

SSR =

n+1
∑

t=1

(

x
(i)
t − f̂s′(x

(i)
t )
)2

, (4.7)

where s′ is the order of polynomial function or regression model for the

upcoming trend with minimum sum of square residual. The coefficients

of each part of the best-fit regression model are then used as a feature

vector describing the upcoming trend of movement as follows:

as′ = (as′0, as′1, as′2, . . . , as′r) , s′ ≤ r

• Step 3: if all data chunks or snapshots of the data stream have been

processed, the algorithm terminates, else current data chunk or snapshot
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xi, is taken. The trend of movement yi is then extracted from this data

chunk or snapshot using the same process as described in Step 2, and

the distances between current trend and all m already created cluster

centres are calculated as follows: Di,j = 1 − CosineDistance(yi, cj), j =

1, 2, ..., m;

• Step 4: find cluster Ca (with centre ca and cluster radius Ra) from all

m existing cluster centres through calculating the values Si,j = Di,j +

Rj , j = 1, 2, ..., m, and then choosing the cluster centre ca with the

minimum value Si,a :

Si,a = Di,a +Ra = min(Si,j), j = 1, 2, ..., m,

where

Di,a = 1− CosineDistance(yi, ca);

• Step 5: if Si,a > 2 × Dthr, current trend of xi, yi, does not belong to

any existing clusters. A new cluster is then created in the same way as

described in Step 2 and algorithm returns to Step 3. As in the ECM,

Dthr is the clustering parameter that would affect the number of clusters

to be created;

• Step 6: if Si,a ≤ 2 × Dthr, current trend of xi, yi, joins cluster Ca.

Cluster Ca is updated by moving its centre ca, and increasing the value

of its radius Ra. The updated radius Rnew
a is set to be equal to Si,a/2

and the new centre cnewa is located at the point on the line connecting

current trend yi, and Ca’s mean trends of movement, represented by the

cluster centre ca. Distance from the new centre cnewa to current trend yi,

is equal to Rnew
a . The algorithm then returns to Step 3.
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4.3.2.2 Trends Extraction with Kernel Regression

Utilising the polynomial regression analysis in modelling trends of movement

of a time-series has an important consequence; that is the estimated model of a

particular trend of movement is highly dependent on a pre-determined type of

a polynomial function. Generally speaking, to represent trends of movement

from different localities of time, the methodology requires a pre-determined

form or function, i.e. rth degree polynomial function, to be provided. This

represents a significant limitation of the methodology.

As trends of movements change dynamically in different time localities,

the use of a fixed single pre-determined function, e.g. a 3rd degree polyno-

mial function, to model every trend of movement might not be adequate.

Using a 3rd degree polynomial function as a pre-determined function offers

the flexibility to model trend of movement in the form of a constant, linear

function, quadratic function, or 3rd degree polynomial function itself (as in

Equation 4.4). However, when more complex trends of movement emerge in

different time localities, then the 3rd degree polynomial function might not

be sufficient any more. Instead, higher degree polynomial functions might be

required to better model these more complex trends of movement.

Therefore, to overcome such limitations this section outlines the use of a

different method of regression analysis that does not require a predetermined

form or function to be presented in modelling trends of movement.

General Principles

The next version of the algorithm to cluster recurring trends of movements

from localised sets of time-series data will use a non-parametric regression

method in place of the polynomial regression which falls under the category

of parametric regression analysis. The nature of non-parametric regression

analysis which does not take a predetermined form or function that relates
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the response to the predictors and does not assume that the observed data

set is drawn from a Gaussian data distribution serves as the core motivation

for this alteration.

Apart from the replacement of the technique to extract and model trends of

movement, the new algorithm employs the same principles as the methodology

of clustering recurring trends with polynomial regression, as explained in the

previous section. Again, the fundamental idea behind the methodology is to

constitute multiple local models that provide knowledge to estimate upcoming

trends of movement of a time-series by clustering recurring trends of movement

from different localities of time in the past.

Kernel Regression

In parametric regression of the form y = f(x)+ e, where f is a known smooth

function, the appropriate form of f has to be pre-determined prior to the re-

gression process. Conversely, in non-parametric regression, f is some unknown

smooth function and is not required to be specified prior to the regression pro-

cess. Instead, a data-driven technique is put into action in determining the

shape of the curve.

Nevertheless, similar to parametric regression, a weighted sum of the y

observations is used to obtain the fitted values. However, instead of using

equal weights as in the ordinary least squares or weights proportional to the

inverse of variance as is often the case in the weighted least squares, a different

rationale determines the choice of weights in a non-parametric regression.

The kernel regression technique is a non-parametric method in statis-

tics used to find a non-linear relation between a pair of random vectors

X = (X1, X2, ..., Xn) and Y = (Y1, Y2, ..., Yn), where n is the number of

input/output variables. The goal of kernel regression is to obtain and use

appropriate weight vector w, in finding a regression function f(x,w), such
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that the function is a best-fit match to the data set (X,Y). Here, x is the

extended smaller value of the original data X at a certain small step dx cal-

culated using a specific kernel function.

For instance, let a Gaussian membership function be the chosen kernel

function; then x is calculated at domain j where j = 1, 2, ..., ( n
dx

+ 1), in a

certain small step dx i.e. dx = 0.1, from the original data X = (X1, X2, ..., Xn)

by the following equation:

xj = K(xj , Xi) = exp

(

−
(xj −Xi)

2

2α2

)

, (4.8)

where xj = dx×(j−1), α is a pre-defined kernel bandwidth and i = 1, 2, ..., n.

To estimate Yj at domain value xj , Nadaraya and Watson proposed one of

the more commonly used kernel regression formulae (Nadaraya, 1964; Watson,

1969), known as the Nadaraya-Watson kernel weighted average (Bierens, 1994;

Georgiev, 1988; Shapiai, Ibrahim, Khalid, Jau, & Pavlovich, 2010) defined as

follows:

Ŷj = fj(xj ,w) =

n
∑

i=1

wiK(xj , Xi)

n
∑

i=1

K(xj , Xi)

. (4.9)

The kernel weights w = (w1, w2, ..., wn) in Equation 4.9, can then be estimated

using a common parameter estimator method, i.e. OLS or WLS, such that

the following objective functions is minimised:

SSR =

n
∑

i=1

(Yi − Ŷj), ∀ Ŷj where xj = Xi. (4.10)

In LTM, kernel regression with the Nadaraya-Watson kernel weighted average

is utilised to estimate the regression function, in the form of a kernel weight

vector that is a best-fit match to the trajectory of a time-series in a particu-

lar time locality. Consequently, the calculated kernel weight vector w as an

outcome of the regression process is used as a feature vector to represent the

trend of movement.
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Learning Algorithm of Trends Clustering

The first step of the learning algorithm is to define the size of data chunk

or snapshot window from which the trend of movement will be extracted.

This is done by applying autocorrelation analysis to the time-series under

examination. The next step is to extract trends of movements by performing

a bootstrap sampling process through all available data chunks or snapshots.

This process of extracting trends of movement is achieved by utilising the

kernel regression method as explained in the previous section of the chapter.

Consequently, as an outcome of the kernel regression analysis, the computed

kernel weight vectors are then used as feature vectors to represent trends of

movements in this methodology.

Thereafter, the algorithm employs a clustering process to group similar and

recurring trends of movement. Recurring trends are grouped by a modified

version of ECM (Q. Song & Kasabov, 2001) in which the Correlation distance

is used in place of the Euclidean distance to measure similarity between a

kernel weight vector and a cluster centre. Additionally, in this methodology

a cluster centre represents the mean of trends of movement calculated as an

average value of all kernel weight vectors which belonging to the same cluster.

As new observations become available, new data chunks or snapshots are

presented to the system. Accordingly, new clusters containing new trends of

movement may be created while some existing clusters are updated. A new

cluster is created when the algorithm recognises that a new non-comparable

trend of movement has emerged. Consequently, existing clusters are updated

when a data chunk or snapshot with recurring trends of movement is identified.

Clusters of trends of movement are then stored in each extracted relation-

ship profile. This information about relationships between series and trends

of movements will then be exploited through the use of a knowledge repository
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to perform simultaneous multiple time-series predictions. The algorithm to

cluster recurring trends of a time-series when the Kernel regression is put in

place to extract trends of movement is outlined below. The algorithm has the

same basic structure as the one in Section 4.3.2.1:

• In the procedure of trends clustering in which trend of movement is

represented by a kernel weight vector the following indexes are used:

– number of data chunks or snapshots: i = 1, 2, ...;

– number of clusters: l = 1, 2, ..., m;

– number of input and output variables: k = 1, 2, ..., n.

• Step 1: perform the autocorrelation analysis on the time-series data set

from which trends of movement will be extracted and clustered. Number

of lags, as an outcome of the autocorrelation analysis where lag > 0,

with highest correlation coefficient, is then taken as the size of data

chunk or snapshot window denoted as n. The process will then progress

by performing a bootstrap sampling process through all data chunks or

snapshots;

• Step 2: create the first cluster C1 by simply taking w1, which is

the trend of movement of the first data chunk or snapshot X(1) =

(X
(1)
1 , X

(1)
2 , ..., X

(1)
n ), from the input stream as the first cluster centre

c1 and set the cluster radius R1 to 0.

In this methodology, the i-th trend of movement represented by the

kernel weight vector wi = (wi1, wi2, ..., win) is calculated using the

Nadaraya-Watson kernel weighted average formula defined as follows:

X̂
(i)
j = fj(x

(i)
j ,wi) =

n
∑

k=1

wikxjk

n
∑

k=1

xjk

. (4.11)



4.3. Localised Trend Model: LTM 111

Here x
(i)
j = (xi

j1, ..., x
i
jk) is the extended smaller value of the original data

X(i) at domain j and certain small step dx where j = 1, 2, ..., ( n
dx

+ 1).

The extended smaller value xj = (xj1, ..., xjk) is then calculated using

the Gaussian MF equation as follows:

xjk = K(xj , k) = exp

(

−
(xj − k)2

2α2

)

, (4.12)

where xj = dx × (j − 1), k = 1, 2, ..., n and α is a pre-defined kernel

bandwidth.

The kernel weight wi is estimated using OLS such that the following

objective functions is minimised:

SSR =

n
∑

k=1

(X
(i)
k − X̂

(i)
j ), ∀ X̂

(i)
j where xj = k. (4.13)

To gain knowledge about upcoming trends of movement when a partic-

ular trend emerges in a locality of time, the algorithm also models the

next trajectory of a data chunk or snapshot by:

X̂
(i)(u)
j = fj(x

(u)
j ,w

(u)
i ) =

n+1
∑

k=1

w
(u)
ik K(x

(u)
j , k)

n+1
∑

k=1

K(x
(u)
j , k)

, (4.14)

where x
(u)
j = dx× (j(u) − 1); j(u) = 1, 2, ..., (n+1

dx
+ 1); k = 1, 2, . . . , n + 1

and the kernel weights w
(u)
i = (w

(u)
i1 , w

(u)
i2 , ..., w

(u)
i(n+1)).

• Step 3: if there are no more data chunks or snapshots, the algorithm

terminates; else the next data chunk or snapshot, X(i), is taken. The

trend of movement from X(i) is then extracted as in Step 2, and distances

between current trend and all m existing cluster centres are calculated

by

Di,l = 1− CorrelationCoefficient(wi, cl), (4.15)
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where l = 1, 2, ..., m. If, for an existing cluster Cl, Di,l ≤ Rl, then the

current trend joins cluster Cl and the step is repeated; else continue to

next step;

• Step 4: find a cluster Ca (with centre ca and cluster radius Ra) from all

m existing cluster centres by calculating the values of Si,a given by

Si,a = Di,a +Ra = min(Si,l), (4.16)

where Si,l = Di,l +Rl and l = 1, 2, ..., m.

• Step 5: if Si,a > 2 × Dthr, where Dthr is a threshold that determines

the maximum size of a cluster radius, then current trend of X(i), wi,

does not belong to any existing clusters. A new cluster is then created

in the same way as described in Step 2, and the algorithm returns to

Step 3;

• Step 6: if Si,a ≤ 2 × Dthr, current trend wi joins cluster Ca. Cluster

Ca is updated by moving its centre, ca, and increasing the value of its

radius, Ra. The updated radius Rnew
a is set to Si,a/2 and the new centre

cnewa is now the mean value of all trends of movement that belong to

cluster Ca. Distance from the new centre cnewa to current trend wi, is

equal to Rnew
a . The algorithm then returns to Step 3.

4.3.3 LTM for Multiple Time-Series Modelling and

Prediction

Figure 4.3 illustrates how a repository containing profiles of relationships and

recurring trends (the knowledge repository) is built and maintained. Using

data from the first data chunk or snapshot, the algorithm extracts two pro-

files of relationship in the multiple time-series by creating two clusters. The

first cluster represents a profile whereby time-series #1 and time-series #3
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Figure 4.3. Creation of knowledge repository (profiles of relationships and recurring

trends).

are correlated and moving together, while the second cluster is a profile of

relationship whereby time-series #2 and time-series #4 are progressing in a

similar fashion.

Trends of movement of each time-series that belongs to a particular profile

is then extracted and kept within the profile. As illustrated in Figure 4.3,



4.3. Localised Trend Model: LTM 114

after extracting the trend of movement from each time-series in the first profile

denoted by Cluster-1[TS-1,TS-3], the algorithm creates and stores two other

trends in Cluster-1[TS-1,TS-3], denoted by TS-1 and TS-3. Here TS-1 and

TS-3 represent trends of movement of time-series #1 and #3 when they are

correlated. The same process is then applied to the second profile of time-

series #2 and time-series #4 denoted by Cluster-2[TS-2,TS-4].

As the second data chunk becomes available, the algorithm applies the

same procedure to extract profiles of relationships. As it retains the same

profiles from the second data chunk or snapshot which are [TS-1,TS-3] and

[TS-2,TS-4], the algorithm does not create any new cluster in the knowledge

repository. However, as it extracts trends of movement from each time-series,

the algorithm finds that the second data chunk holds a different type of be-

haviour compared to the first data chunk.

Consequently, the algorithm updates the information about trends of move-

ment of each time-series in all existing profiles. New clusters of trends are then

created and stored in Cluster-1[TS-1,TS-3] as well as in Cluster-2[TS-2,TS-4]

to represent the new behaviour exhibited by the second data chunk or snap-

shot. For Cluster-1[TS-1,TS-3], two instances representing trends are created

to represent a new form of relationship between the pair of time-series #1 and

#3 that differs from the one which existed in the first data chunk, whereas for

Cluster-2[TS-2,TS-4] only a single new instance is created. This is because the

trend of movement for time-series #2 in the second data chunk is comparable

to the existing instance and therefore it joins the cluster on its own.

Additionally, as the algorithm processes the third data chunk or snap-

shot, it realises that within this locality of time the four series are uncorre-

lated and moving individually. As a result, new profiles are created repre-

sented by four new clusters: Cluster-3[TS-1],Cluster-4[TS-2],Cluster-5[TS-3],

and Cluster-6[TS-4] each denoting specific trends of movement. The proce-

dure continues until there is no more data chunks to be processed.
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Figure 4.4. Multiple time-series prediction using profiles of relationships and recur-

ring trends.

The process of constructing the knowledge repository can be considered a

form of spatio-temporal modelling, whereby different shapes of trends (spatio)

are extracted continuously over time (temporal). The repository illustrates

how relationships between observed time-series or variables change dynam-

ically over different time localities, retaining different shapes of movement

(trends).

After the repository has been built, there are two further steps that need to

be performed before prediction can take place. The first is to extract current

profiles of relationships between the multiple series. Thereafter, matches are

found between the current trajectory and previously stored profiles from the

past. Predictions are then made by implementing a weighting scheme that

gives more importance to pairs of series that belong to the same profile and

retain comparable trends of movement. The weight wi,j for given pair i, j of

a series is given by the distance of similarity between them.

The prediction process is illustrated in Figure 4.4, whilst the procedure of

predicting movements of multiple time-series simultaneously using the knowl-

edge repository is outlined as follows:

• Step 1: after the knowledge repository KR has been initialised using
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the training data set and as new data xt = (x
(1)
t , x

(2)
t , ..., x

(i)
t ) becomes

available, a new data set X
′

t is constructed:

X
′

t =

















x
(1)
t−(n−1) x

(1)
t−(n−2) · · · x

(1)
t

x
(2)
t−(n−1) x

(2)
t−(n−2) · · · x

(2)
t

...
...

...
...

x
(i)
t−(n−1) x

(i)
t−(n−2) · · · x

(i)
t

















where n is the size of data chunk, t is the current time step and i is an

index that varies over the time-series;

• Step 2: extract profiles of relationship pt = (p1t , p
2
t , ..., p

k
t ) where 1 ≤

k ≤ i, from current data set using X
′

t as described in previous section;

• Step 3: find profiles pkr = (p1kr, p
2
kr, ..., p

k
kr) from previously constructed

knowledge repository KR where pkr = pt;

• Step 4: for each series x(i) ∈ pkt extract its current trend of movement

w
(i)
t as described in previous section;

• Step 5: for each series x(i) ∈ pkt find j cluster centres of recurring trends

in pkkr, where j = 1, 2, ..., m is the number of series belonging to profile

pkkr by calculating minimum distances between w
(i)
t to all existing cluster

centres of recurring trends in pkkr as follows:

Di,j = 1−max(CorrelationCoefficient(w
(i)
t , clj)), (4.17)

where l = 1, 2, ... is the number of clusters of recurring trends of series

j in pkkr;

• Step 6: calculate next value of x(i) using the j found cluster centres of

recurring trends, by giving more weight w to cluster centres that are

closer to w
(i)
t . Note: in this methodology cluster centres cj of recurring

trends represent trends of movement of time-series in a particular profile.



4.4. Experiments on Synthetic Data 117

The weight wi,j that is assigned to cluster centre j when predicting the

next value of x(i) is calculated as follows:

wi,j =
max(D)− (Di,j −min(D))

max(D)
, (4.18)

where max(D) and min(D) are the maximum and minimum values of

distance vector D = (Di,1, Di,2, ..., Di,j).

In addition, next value of x(i) is given by:

x
(i)
t+1 =

j
∑

m=1

wi,mcm

j
∑

m=1

wi,m

. (4.19)

4.4 Experiments on Synthetic Data

In this section of the chapter, to evaluate LTM’s capability to analyse, model

and predict multiple time-series, a pre-generated synthetic multiple time-series

data set that has been introduced and used in Chapter 3 is once again used.

The synthetic data set (introduced in Chapter 3) was generated in a way

that the series are correlating with each other; in which some of the series

are moving towards the same direction in similar fashion, whilst some other

series are progressing in the opposite way. Since the principal form of correla-

tion between series in the synthetic data set is known priorly, experimenting

with synthetic data should allow us to evaluate whether LTM is capable of

extracting the underlying behavior of multiple time-series data.

As in Chapter 3, the experiment in this chapter is performed by splitting

the data set into two different parts, a training segment and a testing segment.

The training segment is put in place to evaluate LTM’s capability of extract-

ing profiles of relationships from multiple time-series data. Additionally, the

test data set is utilised to evaluate LTM’s capability to incrementally learn

and revise its knowledge repository when new patterns of relationships are
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emerging while maintaining information about past profiles of relationships

that are relatively stable over time. Here, the first 35 time-points of the com-

plete data set is for training, whilst the remaining 15 time-points are used for

incremental learning and evaluation.

Both LTM with polynomial regression (LTM-PR) and LTM with Kernel

regression (LTM-KR) employ the same methodology to extract profiles of

relationships from a set of multiple time-series data. Therefore, identical

profiles of relationships will be obtained when the two methodologies are used

for multiple time-series analysis and modelling. However, LTM-PR utilises a

parametric regression analysis to mine and model trends of movement while

LTM-KR utilises the non-parametric one. As a result, even though both

methods will obtain identical profiles of relationships when applied to the

same set of multiple time-series data, the clusters of trends of movement that

are created will be different. Since prediction is directly dependent on the

composition of the clusters, it is thus necessary to assess the impact of the

different clustering models produced by the two different regression methods

on the accuracy of prediction.

Figure 4.5 depicts profiles of relationships extracted from the first 35 time

moments of the synthetic multiple time-series data set by both LTM-PR and

LTM-KR. The circles in Figure 4.5 represent profiles of relationships cap-

tured from the multiple time-series under observation, where cluster radius

represents the level of dissimilarity between time-series in the same cluster or

profile while relative positioning of the labels indicates the degree of similarity

in behaviour. For instance, in the circle plotted at coordinate (16, 19) Series

#3 is positioned closer to Series #4 than to Series #2. This indicates that

Series #3 is more similar to Series #4 and therefore they have higher degree

of correlation compared to that of Series #2 and Series #3 or Series #2 and

Series #4.

The colour of a circle represents number of occurrences of a particular



4.4. Experiments on Synthetic Data 119

Figure 4.5. Profiles of relationships of the first 35 time-points from a synthetic data

set. The numbers #1, #2, #3 and #4 represent Series #1, Series #2, Series #3

and Series #4 respectively.

profile. Darker colour indicates that a significant number of occurrences has

been detected. Additionally, the exact number of occurrences of a particular

profile is also given by N . The x-axes represents the initial time moment

when a particular profile emerged, whilst the y-axes represents the last time

moment when a particular profile was recognised and captured.
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Table 4.1

List of extracted profiles of relationships from the training set of synthetic data.

No Profiles Occurrence Time Locality

1 [1] 18 1, 2, 3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 26, 27

2 [2] 9 1, 2, 3, 22, 23, 24, 25, 26, 27

3 [3] 4 3, 20, 21, 26

4 [4] 12 3, 9, 10, 11, 12, 13, 14, 15, 22, 23, 25, 26

5 [1; 3] 3 22, 23, 25

6 [1; 4] 5 4, 5, 6, 7, 8

7 [2; 3] 12 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

8 [2; 4] 2 20, 21

9 [3; 4] 3 1, 2, 27

10 [1; 3; 4] 1 24

11 [2; 3; 4] 4 16, 17, 18, 19

12 [1; 2; 3; 4] 4 28, 29, 30, 31

Figure 4.5 reveals that Series #2 and #3 are closely related and that they

are moving together continuously in a significant interval of time moments.

This information is discovered by analysing the circle plotted at coordinate

(4, 15). The circle plotted at (4, 15) represents profile of relationships between

Series #2 and Series #3. The small size of the cluster radius signifies that the

correlation level between Series #2 and #3 is very high. Furthermore, being

plotted at coordinate (4, 15) the circle discloses that this particular profile

started to emerge at time-point 4 and was sustained for the next 11 steps up

to time point 15. This piece of information indicates that in the period under

evaluation, Series #2 and Series #3 are frequently and continuously moving
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in a similar fashion.

This discovery is in agreement with how Series #2 and #3 were con-

structed. As outlined in Section 3.4), Series #2 and #3 were constructed

from the same polynomial functions. Therefore, it can be expected that the

two series have a significant level of correlation. Furthermore, this result is

also in agreement with outcomes from the DIN model (see Section 3.4), which

discover the existence of positive interaction between Series #2 and #3.

Even though Figure 4.5 shows that there is a significant number of episodes

when Series #1 and #4 are moving individually, Figure 4.5 also indicates that

there exists a period when Series #1 and #4 are closely related and moving

together in a similar manner, which is from time-points 4 to 8. Another

discovery from Figure 4.5 is that in general it can be observed that Series

#1 and #4 tend to move mutually with the other series during the period of

evaluation. Yet again, this finding is in agreement with outcomes from the

DIN model which suggests that there is a complex form of interdependencies

between the four series.

Based on the analysis of Figure 4.5 outlined above, some conclusions can

be made as follows:

• Series #2 has a stronger relationship with Series #3 compared to the

other series and is more likely to move in a similar fashion;

• There exists a period at the beginning of the observation period when

Series #1 is moving in a similar course with Series #4. However, there is

also a significant number of episodes (towards the end of the observation

period) when the two series are tend to progress individually;

• The relationships between Series #2, Series #3 and Series #4 are more

significant when compared to the relationship between them and Series

#1 throughout the observation period.
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(a) Actual versus estimated trajectories of

Series #1.
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(b) Actual versus estimated trajectories of

Series #2.
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(c) Actual versus estimated trajectories of

Series #3.
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(d) Actual versus estimated trajectories of

Series #4.

Figure 4.6. Plot of estimated trajectories of synthetic data set by LTM in the

training period.

These inferences are in agreement both with the trajectories of the four series

(as illustrated in Figure 3.7) and the extracted interaction networks given by

DIN (see Section 3.3). These results suggest LTM’s capability to dynamically

capture, model and maintain profiles of relationships of multiple time-series

over time.

To evaluate LTM’s capability of predicting movement of multiple time-

series simultaneously, we exploited the constructed knowledge repository to

estimate movement of the four series in the training period. Figure 4.6 illus-
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Table 4.2

RMSE prediction rates for LTM on the synthetic data set.

No Variable
Train Test

KR PR KR PR

1 Series #1 3.6226 4.0924 7.8696 8.3671

2 Series #2 3.3031 3.4024 4.1942 4.3328

3 Series #3 1.7731 3.1322 4.8642 5.0498

4 Series #4 1.8580 1.6420 5.4827 5.5959

trates the estimated trajectories calculated by both LTM-PR and LTM-KR

against the actual trajectories. It is clearly seen that the estimated trajec-

tories produced by both LTM-PR and LTM-KR match closely with the ac-

tual trajectories. This outcome confirms the capability of both LTM-PR and

LTM-KR to predict movements of multiple time-series simultaneously with a

reasonable degree of accuracy. Yet, analysis of RMSE as outlined in Table 4.2

reveals that LTM-KR performs better compared to LTM-PR when estimating

trajectories of the synthetic multiple time-series in the training period.

This outcome indicates that the use of Kernel regression helps to model

trends of movement of a time-series more accurately which will produce better

prediction compared to the use of polynomial regression. To verify this state-

ment, another evaluation is conducted by presenting the test data to both

LTM-PR and LTM-KR.

The first analysis that needs to be made is to find out how the knowledge

repository has changed in relation to current behaviour of the four series.

Figure 4.7 depicts the state of profiles of relationships after the test data is

conferred to both LTM-PR and LTM-KR. Yet again, as both LTM-PR and

LTM-KR utilise the same methodology to extract profiles of relationships
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Figure 4.7. Profiles of relationships after 15 points of test data set is conferred to

LTM. The number #1, #2, #3 and #4 represent Series #1, Series #2, Series #3

and Series #4 respectively.

from a set of multiple time-series data, an identical structure, as shown in

Figure 4.7, is acquired by both models.

The most significant dynamic in the test data that can be easily spotted

is how Series #2, #3 and #4 are now frequently moving together. This

is encapsulated by the circle plotted at coordinate (16, 46). Previously in
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Table 4.3

List of extracted profiles of relationships from the complete set of synthetic data.

No Profiles Occurrence Time Locality

1 [1] 29 1, 2, 3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 26, 27, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46

2 [2] 9 1, 2, 3, 22, 23, 24, 25, 26, 27

3 [3] 7 3, 20, 21, 26, 36, 37, 38

4 [4] 12 3, 9, 10, 11, 12, 13, 14, 15, 22, 23, 25, 26

5 [1; 3] 5 22, 23, 25, 34, 35

6 [1; 4] 5 4, 5, 6, 7, 8

7 [2; 3] 12 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

8 [2; 4] 7 20, 21, 34, 35, 36, 37, 38

9 [3; 4] 3 1, 2, 27

10 [1; 3; 4] 1 24

11 [2; 3; 4] 12 16, 17, 18, 19, 39,40, 41, 42, 43, 44, 45, 46

12 [1; 2; 3; 4] 6 28, 29, 30, 31, 32, 33

Figure 4.5 this circle showed an insignificant number of only 4 episodes of

occurrence. However, Figure 4.7 shows a dramatic change in the collective

movement of these series. The circle indicates that after time-point 35 these

three series are moving closely together towards the end of the observation

period with a significant number of 12 episodes. Another noteworthy piece of

information that can be learnt is that Series #1 retains its individuality by

consistently moving alone towards the end of the observation period.

Based on these outcomes, a conclusion can be made regarding the testing

period is that Series #2, #3 and #4 are strengthening their relationships and
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(a) Actual versus estimated trajectories of

Series #1.
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(b) Actual versus estimated trajectories of

Series #2.
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(c) Actual versus estimated trajectories of

Series #3.
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(d) Actual versus estimated trajectories of

Series #4.

Figure 4.8. Plot of estimated trajectories of synthetic data set by LTM in the testing

period.

are moving collectively in a similar fashion, whereas Series #1 is moving by

itself in different direction and is uncorrelated with the other series.

These discoveries are again in agreement with the behaviour of the four

series during the testing period, as illustrated in Figure 3.7 and with results

from the DIN model. From Figure 3.7, it can be easily recognised that in

the testing period the trajectory of Series #1 is moving in a different fashion

and in different directions compared to the other three series. Additionally,

this result also confirms LTM’s capability to dynamically learn new profiles
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Table 4.4

Comparison of LTM prediction error rates against methods applied on single time-

series: MLR, MLP, DENFIS and random walk model, in RMSE.

No Variable LTM MLR MLP DENFIS Random Walk

1 Series #1 7.8696 62.0580 15.1441 14.3226 12.6634

2 Series #2 4.1942 43.7277 7.5743 4.6464 4.3419

3 Series #3 4.8642 37.0639 7.6572 6.1003 6.4474

4 Series #4 5.4827 10.1890 8.7729 8.8631 8.4156

of relationships as new observations become available to the system.

Figure 4.8 depicts the performance of both LTM-PR and LTM-KR when

predicting movement for the test data set. The figures clearly show that

predicted trajectories calculated by both LTM-PR and LTM-KR yet again

match closely the actual trajectories as in the training phase. Furthermore,

calculated error rates in RMSE as outlined in Table 4.2 reveal that LTM-KR

slightly outperforms LTM-PR. This discovery supports our previous assump-

tion that states that the use of Kernel regression helps to model trends of

movement of a time-series more accurately and therefore results in a better

prediction accuracy.

As a second task of the experiment, a comparative analysis between LTM

(the one that utilises the Kernel regression to model trends of movements) and

some of the well established methods applied on single time-series prediction,

i.e. MLR, MLP, DENFIS and random walk model, is conducted. Throughout

the experiments the LTM was trained with the training data set and then

utilised the test data set for adaptive training, whilst MLR, MLP and DENFIS

were applied as batch models that were trained with the training data set and

then tested on the test data set with no incremental learning. Additionally,
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(a) Estimated trajectories of Series #1.
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(b) Estimated trajectories of Series #2.
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(c) Estimated trajectories of Series #3.
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(d) Estimated trajectories of Series #4.

Figure 4.9. Plot of estimated trajectories of synthetic data set by LTM versus

prediction by other methods applied on single time-series prediction in the testing

period.

random walk model was applied as an incremental model due to its nature.

Figure 4.9 depicts the comparison of the actual trajectories compared to

the predicted trajectories calculated by LTM, MLR, MLP, DENFIS and ran-

dom walk prediction methods. Plotted trajectories indicate that predictions

by LTM match closely with the actual trajectory when compared to the other

methods applied on single time-series significantly. Consequently, calculated

RMSE as outlined in Table 4.4 confirms that generally LTM is superior com-

pared to methods applied on single time-series. This result indicates that

predicting movement of multiple time-series simultaneously by utilising knowl-
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edge about profiles of relationships and recurring trends leads to much better

results rather than predicting movement of single time-series individually.

4.5 Conclusion

The chapter presented a methodology for constructing local models of multi-

ple time-series which captured recurring behaviour in the data. The recurring

specific behaviour in this methodology is described as recurring relationships

between pairs of time-series that influence each other, and recurring trends of

movement within the series. The localised trend model of multiple time-series

denoted as LTM, reveals that time-varying profiles of significant and strong re-

lationships along with the recurring trends of movement in multiple time-series

can be captured, modelled and maintained. Additionally, the experimenta-

tion on synthetic data set undoubtedly prove that the LTM demonstrates the

ability to:

1. Extract profiles of relationships and recurring trends from multiple time-

series data;

2. Perform simultaneous prediction of multiple time-series with excellent

precision;

3. Evolve, by continuing to extract profiles of relationships and recurring

trends over time when new data samples become available.

A further direction related to the refinement of this methodology is to explore

the use of correlation analysis methods that are capable of detecting non-

linear correlations between observed variables (i.e. correlation ratio, Copula,

etc.) in place of the Pearson’s correlation coefficient when extracting profiles

of relationships in multiple time-series data.



Chapter 5

Multivariate Transductive

Neuro-Fuzzy Inference System for

Multiple Time-Series Analysis and

Modelling

5.1 Introduction

In contrast to learning methods that construct a general, explicit descrip-

tion of the target function when training examples are provided, transductive

reasoning methods simply store the training examples. Generalising beyond

these examples is postponed until a new instance must be classified. A key

advantage of this type of learning method is that instead of estimating the

target function once for the entire instance space, this method is capable

of constructing local and specific estimation models for each new instance

that needs to be classified or predicted (Kasabov, 2007b; Kasabov & Pang,

2003; Mitchell, 1997; Q. Song & Kasabov, 2004, 2005, 2006; Q. Song, Ma, &

Kasabov, 2006; Vapnik, 1998). The kNN (Soucy & Mineau, 2001; Yamada

et al., 2006) and WKNN (Dudani, 1976; Tan, 2005) algorithms, which fall

under the category of instance-based learning, are well-known realisations of

transductive reasoning.

This type of learning offers the following benefits over global and local
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models (Hwang, 2009):

1. In a real world problem where the amount of data increases on an on-

going basis, instance-based learning will utilise the latest data but only

the part of the data that is relevant to the new input vector is used to

build a model or make the decision, and

2. since only a relevant subset of the input vectors in the sample data set

is used to derive the solution, it may reduce the effect of outliers, or

incorrect identification of sub-problems.

The limitation of instance-based learning is in its reliance on a good def-

inition of problem space utilised to build the solution. A good definition of

the problem space is important to any type of reasoning. However, it may

be more so for instance-based learning through transductive reasoning. It is

because the definition of problem space affects the performance of the similar-

ity function used to identify the neighbourhood, i.e. a subset of input vectors

in the training data that are relevant to the new test input vector (Mitchell,

1997).

Despite its limitations, instance-based learning has been widely used to

solve classification problems such as text classification (Joachims, 1999), heart

disease diagnostics (Wu, Bennett, Cristianini, & Shawe-Taylor, 1999), syn-

thetic data classification using graph-based approach (C. Li & Yuen, 2001),

digit and speech recognition (Joachims, 2003), promoter recognition in bioin-

formatics (Kasabov & Pang, 2003), image recognition (J. Li & Chua, 2003)

and image classification (Proedrou, Nouretdinov, Vovk, & Gammerman, 2002),

micro-array gene expression classification (West et al., 2001) and biometric

tasks such as face surveillance (F. Li & Wechsler, 2004).

Furthermore, this reasoning method is also used in prediction tasks such

as finding if a given drug binds to a target site (Weston et al., 2003), eval-

uating prediction reliability in regression (Bosnic et al., 2003) and providing
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additional measures to determine reliability of predictions made in medical

diagnosis (Kukar, 2003). However, the use of this learning method for time-

series analysis and prediction, in particular multiple time-series, has not been

widely studied except for the preliminary study by Widiputra in 2008 which

investigated the possibility of using the WKNN in predicting movement of

multiple stock market indexes (Widiputra, Pears, & Kasabov, 2009).

As multiple data streams consist of various variables producing examples

continuously over time, the basic idea behind the methodology proposed in

this chapter of the thesis is simply to find and model relationships between

these streams of data at a particular time moment and then to search for

similar patterns of relationship from the past. These patterns will then be

utilised to constitute a specific model (i.e. weighted localised linear regression,

localised fuzzy rules, etc.) to predict future values of multiple time-series

simultaneously.

The methodology of transductive reasoning for multiple time-series anal-

ysis proposed in this chapter is named the Multivariate Transductive Neuro-

Fuzzy Inference System (mTNFI). The mTNFI, introduced and explained in

this section is an extension of the Neuro-Fuzzy Inference method for trans-

ductive reasoning denoted as NFI (Q. Song & Kasabov, 2005), in which mod-

ifications were made so that the new methodology is capable of performing

multiple time-series data analysis and modelling.

In addition, the proposed methodology addresses some research questions

as follows: (1) As transductive approaches develop an individual model over

the new input vector instantaneously, would they provide a specific and better

local generalisation compared to methods of inductive inference? (2) Can the

state of relationships between multiple variables at a particular time-point be

utilised to identify a number of samples from the complete training set that are

most relevant in constructing specific and better local model of current input

vector? (3) Does this specific individual local model offer better prediction
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accuracy compared to methods of inductive inference, i.e. MLR, MLP, etc.?

5.2 NFI Model for Transductive Reasoning

Since the proposed transductive approach of multiple time-series analysis and

modelling outlined in this chapter is an extension of previously developed

model of transductive neuro-fuzzy inference system named the NFI (Q. Song

& Kasabov, 2005), then for the sake of completeness this section of the chapter

briefly discussed the general principles behind the NFI and some learning rules

that were applied on it.

Transductive inference is concerned with the estimation of a function at

a single point of the space only. For every new input vector xi, that needs

to be processed for a prognostic task, the nearest neighbours Ni, which form

a sub-data set Di, are derived from an existing data set D and, if necessary,

generated from an existing model M . A new model Mi is dynamically created

from these samples to approximate the function at point xi, see Figures 5.1

and 5.2. The system is then used to calculate the output value yi, for the

input vector xi as in Figures 5.1 and 5.2. The simplest transductive reasoning

method, found yet to be useful, is the kNN algorithm that was outlined and

explained in Chapter 2.

General Principles

The NFI for transductive reasoning is a dynamic neural-fuzzy inference sys-

tem with local generalisation proposed by Q. Song and Kasabov (2005) in

which, either Zadeh-Mamdani (Zadeh, 1965, 1973), or Takagi-Sugeno (Takagi

& Sugeno, 1985) type fuzzy inference is used. The local generalisation means

that in a sub-space of the whole problem space (local area) a model is cre-

ated from Ni training samples that are closest to the input vector xi, which



5.2. NFI Model for Transductive Reasoning 134

Data set D 
for training

New input 

vector xi

Existing 

model M

Local model Mi 

generated for the 

input vector xi

Output yi

Data Di selected from 

D in the vicinity of the 

input vector xi

Data D0,i generated in 

the vicinity of the input 

vector xi

Figure 5.1. Block diagram of a transductive reasoning system. An individual model

Mi is trained for every new input vector xi with the use of samples Di selected from

a data set D, and samples D0,i generated from an existing model (formula) M (if

such a model exists). The data samples in both Di and D0,i are similar to the new

vector xi according to defined similarity criteria (Q. Song & Kasabov, 2005).

performs generalisation in this area.

In the Zadeh-Mamdani type of NFI model, Gaussian fuzzy membership

functions are applied in each fuzzy rule for both antecedent and consequent

parts, while for the Takagi-Sugeno type of NFI model the consequent part

is presented by a linear or non-linear function. A back propagation learning

algorithm (Amari, 1990) is used for optimising the parameters of the fuzzy

membership functions (in both Zadeh-Mamdani and Takagi-Sugeno types).

The distance between two vectors x and y is measured in the NFI model as

the normalised Euclidean distance defined as follows (the values range between

0 and 1):

‖x− y‖ =

(

1

q

q
∑

j=1

(xj − yj)
2

)1/2

(5.1)

where x,y ∈ ℜq and q is number of input variables.

To partition the input space Ni for creating and obtaining initial values of



5.2. NFI Model for Transductive Reasoning 135

x1

x2

D1

D2

Figure 5.2. In the centre of a transductive reasoning system is the new data vector

(here represented by x1 and x2), surrounded by a fixed number of nearest data

samples selected from the training data D and generated from an existing model

M .

fuzzy rules, the ECM (Q. Song & Kasabov, 2001), is applied and the cluster

centres and radii are respectively taken as initial values of the centres and

widths of the Gaussian membership functions (for both Zadeh-Mamdani and

Takagi-Sugeno types). The ECM performs a scatter partition that has rel-

atively small number of clusters covering the space. For the Takagi-Sugeno

type of NFI model, the training samples that belong to a cluster are used for
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creating a linear function as a local model for output function evaluation.

NFI Learning Algorithm

For each new input vector xi, the NFI model for transductive reasoning per-

forms the following learning algorithm:

• In the NFI learning algorithm, the following indexes are used:

– training data samples: i = 1, 2, ..., N ;

– input variables: j = 1, 2, ..., Q;

– fuzzy rules: l = 1, 2, ...,M ;

– learning epoch: k = 1, 2, ...;

• Step 1: search in the training data set based on the input space to find

Ni training samples that are closest to xi. The value for Ni can be pre-

defined based on experience, or optimised through the application of an

optimisation procedure. In the NFI model the former approach is used.

Here Ni can be considered as the number of nearest neighbours in the

k-NN algorithm;

• Step 2: calculate the distances dj; j = 1, 2, ..., Ni between each of these

samples and xi using the normalised Euclidean distance (as in Equa-

tion 5.1). Calculate the weights wj = 1 − (dj −min(d)); j = 1, 2, ..., Ni

where min(d) is the minimum value in the distance vector d = [d1, d2, ..., dNi
];

• Step 3: use the ECM clustering algorithm to cluster and partition the

input sub-space that consists of Ni selected training samples;

• Step 4: create fuzzy rules and set their initial parameter values according

to the clustering results of the ECM; for each cluster, the cluster centre is

taken as the centre of a fuzzy membership function (Gaussian function)

and the cluster radius is taken as the width;
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• Step 5: apply the steepest descent method (back-propagation) to opti-

mise the parameters of the fuzzy rules in the local model Mi following

equations 5.6− 5.15;

• Step 6: calculate the output value yi, for the input vector xi, applying

fuzzy inference over the set of fuzzy rules that constitute the local model

Mi.

The procedure of optimising the parameters in the NFI model (Step 5 in the

above algorithm) is described as follows:

• Consider the system having Q inputs, one output and M fuzzy rules

defined initially through the ECM clustering procedure; the l-th rule

would have the form of

Rl : if x1 = Fl,1 and x2 = Fl,2 and xq = Fl,q then y = Gl (Zadeh-

Mamdani type)

or

Rl : if x1 = Fl,1 and x2 = Fl,2 and xq = Fl,q then y = nl. (Takagi-

Sugeno type)

Here, Fl,q are fuzzy sets defined by the following Gaussian type mem-

bership function,

GaussianMF = α exp

(

−
(x− µ)2

2σ2

)

(5.2)

where µ is the centre of the fuzzy membership function, and σ is the

width. In the NFI model, the centre of the fuzzy membership function is

initially defined by the cluster centre, while the width is defined by the

cluster radius. For the Zadeh-Mamdani type, Gl is of a similar type as

Fl,q, while for the Takagi-Sugeno type, nl is defined by a linear function

as follows:

nl = βl,0 + βl,1x1 + βl,2x2 + ...+ βl,qxq. (5.3)
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where βl,0 is the intercept of the l-th rule, βl,1 is the parameter associated

with x1 of the l-th rule, βl,2 is the parameter associated with x2 of the

l-th rule, and so on.

• Using the modified centre average defuzzification procedure (Bezdek,

1981) the output value of the system can be calculated for an input

vector xi = (xi,1, xi,2, ..., xi,p) as follows:

f(xi) =

M
∑

l=1

Gl

δ2l

Q
∏

j=1

αlj exp

(

−
(xij − µlj)

2

2σ2
lj

)

M
∑

l=1

1

δ2l

Q
∏

j=1

αlj exp

(

−
(xij − µlj)

2

2σ2
lj

)

(Zadeh-Mamdani type)

(5.4)

or

f(xi) =

M
∑

l=1

nl

Q
∏

j=1

αlj exp

(

−
(xij − µlj)

2

2σ2
lj

)

M
∑

l=1

Q
∏

j=1

αlj exp

(

−
(xij − µlj)

2

2σ2
lj

)

(Takagi-Sugeno type)

(5.5)

where µlj and σlj are the centre and standard deviation of the Gaussian

MF of the j-th input variable in rule l derived from the cluster centre and

the cluster radius respectively. In addition, αlj and δl are the parameters

of Zadeh-Mamdani and Takagi-Sugeno type of inference system.

• Suppose the NFI model is given a training input-output data pair (xi, ti),

the system minimises the following objective function (a weighted error

function):

E =
1

2
wi (f(xi)− ti)

2 (5.6)

where wi (computed in Step 2 of the NFI learning algorithm) is the con-

tribution weight assigned to the training input-output data pair (xi, ti).
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The steepest descent algorithm (backpropagation) (Amari, 1990; Wer-

bos, 1974) is used then to obtain the formulas for the optimisation of

the parameters Gl, δl, αlj , µlj and σlj of Zadeh-Mamdani type NFI model

such that the value of E from (5.6) is minimised.

Gl(k + 1) = Gl(k)−
ηG

δ2l (k)
wiΦ(xi)

×
(

f (k)(xi)− ti
)

(5.7)

δl(k + 1) = δl(k)−
ηδ

δ3l (k)
wiΦ(xi)

×
(

f (k)(xi)− ti
)

×
(

f (k)(xi)−Gl(k)
)

(5.8)

αlj(k + 1) = αlj(k)−
ηα

δ2l (k)αlj(k)
wiΦ(xi)

×
(

f (k)(xi)− ti
)

×
(

Gl(k)− f (k)(xi)
)

(5.9)

µlj(k + 1) = µlj(k)−
ηµ

δ2l (k)σ
2
lj(k)

wiΦ(xi)

×
(

f (k)(xi)− ti
)

×
(

Gl(k)− f (k)(xi)
)

(xij − µlj(k)) (5.10)

σlj(k + 1) = σlj(k)−
ησ

δ2l (k)σ
3
lj(k)

wiΦ(xi)

×
(

f (k)(xi)− ti
)

×
(

Gl(k)− f (k)(xi)
)

(xij − µlj(k))
2 (5.11)

where

Φ(xi) =

Q
∏

j=1

αlj exp

(

−
(xij(k)− µlj(k))

2

2σ2
lj(k)

)

M
∑

l=1

1

δ2l

Q
∏

j=1

αlj exp

(

−
(xij(k)− µlj(k))

2

2σ2
lj(k)

)

The steepest descent algorithm (backpropagation) is also used to obtain

the formulas for the optimisation of the parameters βl, αlj, µlj and σlj of
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the Takagi-Sugeno type NFI model such that the value of E from (5.6)

is minimised.

βl0(k + 1) = βl0(k)− ηβwiΦ(xi)

×
(

f (k)(xi)− ti
)

(5.12)

βlj(k + 1) = βlj(k)− ηβxijwiΦ(xi)

×
(

f (k)(xi)− ti
)

(5.13)

αlj(k + 1) = αlj(k)−
ηα

αlj(k)
wiΦ(xi)

×
(

f (k)(xi)− ti
)

×
(

nl(k)− f (k)(xi)
)

(5.14)

µlj(k + 1) = µlj(k)−
ηµ

σ2
lj(k)

wiΦ(xi)

×
(

f (k)(xi)− ti
)

×
(

nl(k)− f (k)(xi)
)

(xij − µlj(k)) (5.15)

σlj(k + 1) = σlj(k)−
ησ

σ3
lj(k)

wiΦ(xi)

×
(

f (k)(xi)− ti
)

×
(

nl(k)− f (k)(xi)
)

(xij − µlj(k))
2 (5.16)

where

Φ(xi) =

Q
∏

j=1

αlj exp

(

−
(xij(k)− µlj(k))

2

2σ2
lj(k)

)

M
∑

l=1

Q
∏

j=1

αlj exp

(

−
(xij(k)− µlj(k))

2

2σ2
lj(k)

) ,

and ηG, ηδ, ηβ, ηα, ηµ and ησ are learning rates for updating the parame-

ters Gl, δl,βl, αlj, µlj and σlj respectively.
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5.3 A Novel Method for Multiple Time-Series

Analysis & Modelling: mTNFI

As it has been explained in the introductory Section 5.1 of this chapter, the

transductive model for multiple time-series analysis and modelling proposed

in this study is an extension of the NFI model for transductive reasoning. The

proposed method is named the mTNFI. The general principles of the proposed

method and its learning algorithm are outlined in the upcoming sections.

General Principles

Essentially, mTNFI employs the same principles as the NFI model, where a

dynamic neural-fuzzy inference system with Gaussian membership function is

constructed from a set of located nearest neighbours of a new input vector

as illustrated in the block diagram of mTNFI in Figure 5.3. However, as

the mTNFI model is intended to perform multiple time-series analysis and

modelling, some alterations were necessary to the basic NFI model.

The first modification was made in the method used for finding training

samples that are most related to the new input vector. The NFI model con-

siders input vector xi as a feature vector and uses the normalised Euclidean

distance (as in Equation 5.1) to find the closest Ni training samples. Yet, as

previous studies have found that dynamic relationships exists between multi-

ple time-series from a specific setting, the basic idea behind the mTNFI model

is to use the state of relationship in xt, where xt = (x1t, x2t, . . . , xqt)
′ and xqt

is an expression level of time-series q at time moment t as a feature vector

instead of its actual values to locate Ni training samples. This approach has

also been investigated in (Widiputra, Pears, & Kasabov, 2009). It should

be noted that in mTNFI an input vector is denoted as xt instead of xi to

represent the temporal aspects of the data set. Found instances will then be
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Figure 5.3. Block diagram of the proposed mTNFI model inspired by the NFI model

for transductive reasoning.

utilised in constructing a specific inference system to predict future values of

the series under examination.

In the mTNFI model, the state of relationship between multiple time-series

at a particular time point t, is defined by calculating the ratio of first order

rate of changes denoted as RXt
, from multiple time-series under examination

as follows:

RXt
=





















1
x1t − x1(t−1)

x2t − x2(t−1)

· · ·
x1t − x1(t−1)

xqt − xq(t−1)
x2t − x2(t−1)

x1t − x1(t−1)

1 · · ·
x2t − x2(t−1)

xqt − xq(t−1)
...

...
. . .

...
xqt − xq(t−1)

x1t − x1(t−1)

xqt − xq(t−1)

x2t − x2(t−1)

· · · 1





















(5.17)

where RXt
now is the features matrix describing the state of relationship in xt.

Additionally, the process assumes that xi0 = 0; i = 1, 2, ..., q. The methodol-

ogy then employs a feature matrix RXt
to find Nt closest training samples that

form a sub-data set Dt from an existing data set D. Additionally, in place

of the normalised Euclidean distance, mTNFI uses the Correlation Coeffi-

cient distance measure to quantify similarity level between different features
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Figure 5.4. Illustration of finding the nearest neighbours, constructing the fuzzy

inference system, and output calculation in mTNFI.

matrices defined by,

SRXt
RXi

= 1−

q
∑

j=1

q
∑

k=1

(

RXtj,k − RXt

) (

RXij,k − RXi

)

√

√

√

√

(

q
∑

j=1

q
∑

k=1

(

RXtj,k − RXt

)2
q
∑

j=1

q
∑

k=1

(

RXij,k − RXi

)2

)

(5.18)

where

RXt
=

1

q2

q
∑

j=1

q
∑

k=1

RXtj,k,

RXi
=

1

q2

q
∑

j=1

q
∑

k=1

RXij,k,

and i = 1, 2, . . . , t− 1.

As mTNFI is intended to perform multiple time-series analysis and mod-

elling, the second modification made to the NFI model is the replacement of

the linear function in the consequent part of the fuzzy rule by the Takagi-
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Sugeno type of fuzzy rule with a different form of linear function as follows:

f(xt)







































y1t = β0 + β11x1t + β12x2t + ...+ β1qxqt

y2t = β0 + β21x1t + β22x2t + ...+ β2qxqt

...

ypt = β0 + βp1x1t + βp2x2t + ... + βpqxqt

, (5.19)

where p is the number of dependent variables and q is the number of explana-

tory variables. However, in mTNFI p = q as the number of time-series being

explained is the same as the number of the explanatory time-series. Equation

5.19 can be represented in a more general and simplified form:

yt = β0 + βxt (5.20)

where yt is a vector of dependent variables, xt is a vector of independent

variables and β is the coefficients matrix that maps xt to yt. Representing

the consequent part of the fuzzy rule by a linear function with multi dependent

and independent variables gives rise to the ability of modelling interactions

between observed variables and performing multiple time-series prediction at

a particular time point.

Other than the two modifications outlined above, the mTNFI model utilises

the same process as the NFI model. As such, for every new input vector,

the algorithm dynamically constructs a neural-fuzzy inference system with

local generalisation. As in the NFI model, the mTNFI model also employs

the Evolving Clustering Method (ECM) proposed by Q. Song and Kasabov

(2001), to partition the input sub-space that consists of Nt selected training

samples. A local model LMt for input vector xt will then be constituted in

the form of a fuzzy inference system using a set of created fuzzy rules derived

from the clustering process.
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mTNFI Learning Algorithm

For each new input vector xt of multiple time-series, the mTNFI model per-

forms the following learning algorithm:

• In the mTNFI learning algorithm, the following indexes are used:

– training data samples: t = 1, 2, ..., N ;

– input variables: i, j = 1, 2, ..., q;

– fuzzy rules: l = 1, 2, ...,M ;

– learning epoch: k = 1, 2, ...;

• Step 1: construct the ratio of first order rate of changes from input

vector xt to form features matrix RXt
, using Equation 5.17;

• Step 2: search in the training data set based on the input space, Nt

training samples that are closest to xt which form a sub-data set Dt =

(x1,x2, ...,xj); j = 1, 2, ..., Nt, by utilising features matrix RXt
and cal-

culating features matrices RXi
; i = 1, 2, ..., t−1 from all training samples.

Closest training samples in mTNFI are defined using the Correlation Co-

efficient distance measure, as described in Equation 5.18. Additionally,

in mTNFI the value for Nt is pre-defined based on experience, where

Nt can be considered as the number of nearest neighbours when being

related to the k-NN algorithm;

• Step 3: calculate the distances dj ; j = 1, 2, ..., Nt between each of the

training samples in Dt and input vector xt, and calculate the weights

wj = 1 − (dj − min(d)); j = 1, 2, ..., Nt where min(d) is the minimum

value in the distance vector d = (d1, d2, ..., dNt
);

• Step 4: use the ECM clustering algorithm to cluster and partition the

input sub-space Dt, that consists of Nt selected training samples;
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• Step 5: create Takagi-Sugeno type fuzzy rules by representing the con-

sequent part of the rules as a linear function with multiple dependent

and independent variables (as in Equation 5.20), and set their initial

parameter values according to the clustering results of the ECM.

For each cluster, the cluster centre is taken as the centre of a fuzzy mem-

bership function (Gaussian function) µ and the cluster radius is taken

as the width σ.

Consider at time point t the system under examination has q inputs

and outputs, where q is the amount of time-series being observed. As

an outcome of this step, M fuzzy rules are defined initially through the

ECM clustering procedure, and the l-th rule has the form of:

Rl : if x1t = Fl1 and x2t = Fl2 and ... and xqt = Flq, then yt = fl(xt).

Here, Flk are fuzzy sets of xk in cluster l, where k = 1, 2, ..., q, defined

by the following Gaussian type membership function:

GaussianMFl(xk) = αlk exp

(

−
(xk − µlk)

2

2σ2
lk

)

. (5.21)

Additionally, fl(xt) in Rl is represented as linear function with multiple

dependent and independent variables as follows:

fl(xt) =







































y1t = β0 + β11x1t + β12x2t + ...+ β1qxqt

y2t = β0 + β21x1t + β22x2t + ...+ β2qxqt

...

ypt = β0 + βp1x1t + βp2x2t + ... + βpqxqt

.

The M created fuzzy rules are then utilised to constitute the local model

LMt in the form of Takagi-Sugeno inference system;

• Step 6: apply the steepest descent method (back propagation) to opti-

mise the parameters of the fuzzy rules in the local model LMt.
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Suppose the mTNFI model is given a training input-output data pair

(xt,yt), the parameters are being optimised by minimising the objective

function (a weighted error function) as follows,

E =
1

2
wt

q
∑

k=1

(ŷkt − ykt)
2 , (5.22)

where wt is the weight of the input-output training data pair, ŷt = f(xt)

and q is again the amount of time-series being observed.

In mTNFI, the training input-output data pairs used to optimise the

fuzzy rules’ parameters are the Nt selected training samples from Step

2, (x,y) = ((x1,y1) , (x2,y2) , ..., (xj,yj)); j = 1, 2, ..., Nt. The weight of

each input-output training data pair wj, is defined in Step 3;

• Step 7: calculate the output value f(xt), for the input vector xt, apply-

ing fuzzy inference over the set of fuzzy rules that constitute the local

model LMt using the modified centre average defuzzification procedure

as follows:

f(xt) =

M
∑

l=1

fl(xt)

q
∏

j=1

αlj exp

(

−
(xjt − µlj)

2

2σ2
lj

)

M
∑

l=1

q
∏

j=1

αlj exp

(

−
(xjt − µlj)

2

2σ2
lj

) .

The procedure for optimising the parameters βl, αlj, µlj and σlj of the Takagi-

Sugeno type in the mTNFI model (Step 6 in the mTNFI algorithm) is carried

out using the steepest descent method such that the value of E from (Equa-

tion 5.22) is minimised. The optimisation equations for each parameter are
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then defined as follows:

βl0(k + 1) = βl0(k)− ηβwtΦ(xt)

×

(

1

q

q
∑

i=1

(ŷit(k)− yit)

)

(5.23)

β
li,j(k + 1) = β

li,j(k)− ηβxjtwtΦ(xt)

× (ŷit(k)− yit) (5.24)

αli(k + 1) = αli(k)−
ηα

αli(k)
wtΦ(xt)

×

(

1

q

q
∑

i=1

(ŷit(k)− yit)

)

×

(

1

q

q
∑

i=1

(ŷ
lit(k)− ŷit(k))

)

(5.25)

µli(k + 1) = µli(k)−
ηµ

σ2
li(k)

wtΦ(xt)

×

(

1

q

q
∑

i=1

(ŷit(k)− yit)

)

×

(

1

q

q
∑

i=1

(ŷ
lit(k)− ŷit(k))

)

(xit − µli(k)) (5.26)

σli(k + 1) = σlj(k)−
ησ

σ3
li(k)

wtΦ(xt)

×

(

1

q

q
∑

i=1

(ŷit(k)− yit)

)

×

(

1

q

q
∑

i=1

(ŷ
lit(k)− ŷit(k))

)

(xit − µli(k))
2 (5.27)

where

ŷt(k) = f (k)(xt); ŷlt(k) = f
(k)
l (xt),

and

Φ(xt) =

q
∏

i=1

αli exp

(

−
(xit(k)− µli(k))

2

2σ2
li(k)

)

M
∑

l=1

q
∏

i=1

αli exp

(

−
(xit(k)− µli(k))

2

2σ2
li(k)

) ,
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ηβ, ηα, ηµ and ησ are learning rates for updating the parameters βl, αli, µli and

σli respectively.

5.4 Experiments on Synthetic Data

In this section of the chapter, to evaluate mTNFI’s capability in multiple time-

series analysis, modelling and prediction, a pre-generated synthetic multiple

time-series data set is once again utilised. The data set has been introduced

and used in Chapter 3 and Chapter 4. As in Chapters 3 and 4, the experiment

in this chapter is performed by splitting the data set into two different parts,

where the first 35 time-points of the complete data set are used as the training

data set and the rest of the 15 time-points are defined as the test data set.

However, as mTNFI falls under the category of transductive reasoning or

instance-based learning, no training phase is required to construct global or

local models as in DIN (see Chapter 3) or LTM (see Chapter 4). Consequently,

the training data set is put in place as the initial search space. A number of

nearest neighbours that form a sub-data set to construct specific estimation

models will then be located from this search space. Additionally, the exper-

iment employs an incremental testing process, which means that whenever

a new instance arrives the accuracy of predictions is first tested before it is

added to the training set or search space as a training example.

Table 5.1 outlines calculated RMSE of the mTNFI when used to predict

movement of the four series of the synthetic data set. It is clear that the

mTNFI predicts movement of multiple time-series with good accuracy and in

general performs better than the proposed global and local model of multiple

time-series prediction (DIN and LTM). In addition, trajectories of predictions

as plotted in Figure 5.5 show that the predictions made by the mTNFI closely

match with the actual trajectories.

As the mTNFI creates unique sets of fuzzy rules to construct the inference
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Table 5.1

mTNFI (transductive model) prediction error rates in RMSE for the synthetic data

set against DIN (global model) and LTM (local model).

No Variable mTNFI DIN LTM

1 Series #1 7.2361 11.9658 7.8696

2 Series #2 6.3772 5.5067 4.1942

3 Series #3 3.0931 7.4662 4.8642

4 Series #4 1.9668 7.6928 5.4827

Table 5.2

Number of fuzzy rules created by mTNFI during the testing period.

No Time-Point Number of Created Rules

1 1, 4, 6, 7, 12, 13, 15 2

2 2, 3, 9, 10, 14 3

3 5, 8, 11 4

system for every new input vector then when predicting movement of the 15

time moments of the test data set the system actually creates different 15 fuzzy

inference systems. Each of these inference systems contains a different number

of fuzzy rules depending on the results of the clustering process as explained

in the previous section of the chapter. Table 5.2 outlines the number of fuzzy

rules created for each of the 15 points of the test data set. Additionally,

Figure 5.6 describes in detail the set of fuzzy rules created by the mTNFI

when predicting movement of the last time-point of the test data set.

The rules outlined in Figure 5.6 indicate that when Series #1 is moving

towards a different direction that is of Series #2, #3 and #4 while Series #2,

#3 and #4 are moving together in a similar fashion toward the same direction,
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(a) Actual versus estimated trajectories of
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(b) Actual versus estimated trajectories of
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(c) Actual versus estimated trajectories of

Series #3.
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(d) Actual versus estimated trajectories of

Series #4.

Figure 5.5. Plot of estimated trajectories of synthetic data set by mTNFI in the

testing period.

then the upcoming value of Series #1 is positively dependent to its current

value and the current values of Series #2 and #4; and also negatively depen-

dent to current value that is of Series #3. Additionally, the two rules suggest

that interdependencies between Series #2, #3 and #4 are more significant

compared to their interdependencies with Series #1. This understanding can

be acquired by analysing the antecedent and consequent parts of the rules.

The antecedent parts of the rules explain the behaviour of the multiple

time-series being observed. It represents the value of ratio of difference be-
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Figure 5.6. Created fuzzy rules (first-order Takagi-Sugeno type) by mTNFI when

predicting values of synthetic data set at time-point 15 of the testing period.

tween a pair of series (represented by the variable RateOfDiff) which is useful

for determining how different the movements of a pair of series are. A pos-

itive ratio of difference between a pair of series suggests that the two series

are moving toward the same direction (either upward or downward), whilst a

negative value indicates that the two series are moving to different directions.

Therefore, it can be simply understood from the antecedent parts of the rules

that Series #1 is moving towards a different direction while Series #2, #3

and #4 are moving toward the same direction.

The consequent parts of the rules explain the relationship between up-

coming value of a series and current values of all series being considered in

the observation. Generally, the consequent parts of the rules indicate that

the upcoming value of Series #1 is positively dependent to its current value
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Table 5.3

Comparison of prediction accuracy of synthetic data set by mTNFI using different

numbers of k in the testing period.

No Variable k = 5 k = 10 k = 15 k = 20 k = 25

1 Series #1 8.1371 7.3871 7.5033 7.2361 7.1802

2 Series #2 12.1763 8.8682 7.9151 6.3772 6.3811

3 Series #3 29.4776 13.5841 6.4647 3.0931 3.2351

4 Series #4 26.3551 9.0487 4.4351 1.9668 1.9237

and the current values of Series #2 and #4, while at the same time being

considerably affected negatively by current values of Series #3. In addition,

the consequent parts also suggest that upcoming values of Series #2, #3 and

#4 are being affected insignificantly by the current value of Series #1 and are

only mutually dependent to their current values. These analysis of both the

antecedent and consequent parts of the rules forms the understanding outlined

above.

Throughout the conducted experiment, the number of nearest neighbour

k to be found for constructing the fuzzy rules in the mTNFI algorithm is set

manually by hand to 20. The selection of k was made based on the prediction

accuracy of the testing data set produced by a number of trials using different

numbers of k’s. Comparison of prediction accuracy when different numbers

of k’s are selected is outlined in Table 5.3 and illustrated in Figure 5.7.

Having only 20 points to be clustered, it is then appropriate to have only a

small number of created clusters and this explains why the number of created

fuzzy rules for each test data point lies in the range of 2 to 4 rules (as outlined

in Table 5.2). Nevertheless, prediction outcomes of the mTNFI as listed in

Table 5.1 and Figure 5.5 confirm that by using only a relatively small number
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Figure 5.7. Prediction accuracy of synthetic data set by mTNFI using different

numbers of k in the testing period.

of rules the methodology is capable of performing simultaneous multiple time-

series prediction with a high degree of accuracy.

However, despite its capability to predict movement of multiple time-series

with good accuracy, there is a limitation in the proposed methodology. The

main weakness of the proposed methodology is that the computational cost

of mTNFI increases as the size of the search space (samples) increases over

time. This is caused by the nature of the methodology being an instance-

based learning algorithm, which searches through all existing samples to find

a number of nearest neighbours with the most similarity to the input vector.

One approach to prevail over this limitation is to limit the size of the search

space.

Another more sophisticated approach that can be implemented (specifi-

cally for time-series analysis and modelling) is to develop a searching algo-

rithm that is capable of finding nearest neighbours for current input vector by

utilising information of prior input vector’s nearest neighbours. Using infor-

mation about a prior input vector’s nearest neighbours, the search space for
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(a) Estimated trajectories of Series #1.
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(b) Estimated trajectories of Series #2.
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(c) Estimated trajectories of Series #3.
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(d) Estimated trajectories of Series #4.

Figure 5.8. Plot of estimated trajectories of synthetic data set by mTNFI versus

prediction by other methods applied on single time-series in the testing period.

the current input vector can then be reduced to only those within the relative

radius of those nearest neighbours.

A comparative analysis to evaluate the performance of the mTNFI com-

pared to methods applied on single time-series prediction is also conducted in

this study. In the experiments, as in Chapters 3 and 4, MLR, MLP and DEN-

FIS are applied as batch models that were trained with the train data set and

then tested on the test data set with no incremental learning, whilst random

walk model is applied as an incremental model due to its nature. Figure 5.8

depicts the comparison of the actual trajectories compared to the predicted

trajectories produced by mTNFI, MLP, MLP, DENFIS and random walk.



5.5. Conclusion 156

Table 5.4

Comparison of mTNFI RMSE prediction error rates against methods applied on

single time-series: MLR, MLP, DENFIS and random walk model.

No Variable mTNFI MLR MLP DENFIS Random Walk

1 Series #1 7.2361 62.0580 15.1441 14.3226 12.6634

2 Series #2 6.3772 43.7277 7.5743 4.6464 4.3419

3 Series #3 3.0931 37.0639 7.6572 6.1003 6.4474

4 Series #4 1.9668 10.1890 8.7729 8.8631 8.4156

Plotted trajectories indicate that predictions made by mTNFI match the ac-

tual trajectory more closely when compared to the other methods applied on

single time-series prediction.

Consequently, the calculated RMSE as outlined in Table 5.4 confirms that

mTNFI outperforms other methods applied for a single time-series prediction.

This outcome indicates that predicting the movement of multiple time-series

simultaneously by constructing an inference system using only samples with

similar condition as current input vector results in a better accuracy rather

than predicting movement of a single time-series individually.

5.5 Conclusion

The chapter presents a methodology named the Multivariate Transductive

Neuro-Fuzzy Inference System denoted as mTNFI for analysis, modelling and

prediction of multiple time-series data in which a Takagi-Sugeno type fuzzy

model is used to construct a local generalisation over a set of training samples.

The proposed algorithm is inspired by the previously proposed method of NFI

for transductive reasoning (Q. Song & Kasabov, 2005). When compared to

the previously developed inductive inference methods such as MLR, MLP,
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etc., the mTNFI has several advantages:

1. As it develops an individual model over the new input vector (by consid-

ering the state of relationships between multiple time-series in the new

vector to the training samples), mTNFI provides a specific and better

local generalisation;

2. The mTNFI model is an adaptive model, in the sense that input-output

pairs of data can be added to the data set continuously and immediately

made available for transductive inference of local models;

3. By extending the NFI model, the mTNFI model offers the functionality

of multiple time-series analysis and modelling. This is the main charac-

teristic of the mTNFI model which differentiates it to other transductive

inference methods.

However, as the mTNFI method creates a unique sub-model for each input

vector, it usually needs more processing time than inductive models, especially

in the case of large data sets. Furthermore, with the existence of new input

vectors with exactly the same or very similar condition, the mTNFI model

will create the same or similar models repeatedly. It is therefore advantageous

to use both incremental inductive reasoning to reveal a global model (the

“big picture”), and the mTNFI transductive reasoning for accurate localised

inference and decision making.

Time complexity of the method depends mainly on the search algorithm,

employed for similar data to the new input vector from the complete set of data

samples. However, the problem of efficiency of search algorithms is beyond

the scope of this work. Further directions for research include: 1) further

optimisation of the mTNFI system parameters, such as optimal number of

nearest neighbours or samples; 2) investigation on different representations of

relationships between multiple time-series at a particular time moment for the



5.5. Conclusion 158

selection of the neighbouring samples; and 3) development of non-linear local

models for each cluster from selected samples.



Chapter 6

Integrated Multi-Model

Framework for Multiple

Time-Series Analysis and

Modelling

6.1 Introduction

Global models are capable of capturing global trends in data that are valid

for the whole problem space, whereas local models capture local patterns that

are valid for subsets of the problem space. In addition, transductive models

are capable of constructing local and specific estimation models for every new

instance that needs to be classified or predicted. All three approaches are

useful for complex modelling tasks and all of them provide complementary

information and knowledge, learned from the data. Integrating all of them in

a single multi-model system would be a challenging and useful task.

Integrating different types and levels of knowledge about the dynamics of

the relationships in a multiple time-series under examination is an imperative

step in this study. It is expected that by integrating these knowledge types

one should be able to constitute a comprehensive understanding about the

underlying behaviour of the dynamics of the system being investigated. This

would lead to the possibility of getting better results when predicting the
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movement of multiple time-series simultaneously. This idea also relates to

previous studies in neural networks that showed that there is no one model

that always performs better than the others for all real world problems (Gorr,

Nagin, & Szczypula, 1994; S. Ho, Xie, & Goh, 2002; Saad, Prokhorov, &

Wunsch, 1998; L. Wang, Liu, & Wang, 2010). For instance, depending on the

problem, a simple linear regression model might outperform a neural network

model or an SVM, and vice versa.

In relation to this, an integrated scheme to assimilate different types of

knowledge has been introduced by Kasabov in the Bioinformatics domain

(Kasabov, 2007b). In his study, Kasabov stated that every model has their

own power in prediction, and by integrating these models, a powerful model for

time-series prediction can be realised. In addition, Kasabov also proposed an

integrated multi-model system that includes: a global model, a local model,

and a transductive model or so called personalised model as introduced by

Kasabov in 2007 to increase the accuracy and power of prediction in gene

expression data (Kasabov, 2007b).

Nevertheless, no implementation of the proposed integrated framework for

multiple time-series analysis and modelling has been made so far. Accord-

ingly, this chapter outlines a methodology to construct a generic integrated

framework that not only can be implemented with any kind of time-series

data (i.e. financial, biological, weather, etc.), but is also capable of dealing

with multiple time-series data. In general, the integrated framework aims to

utilise the global and local model for inductive reasoning in recognising and

modelling the global trend of multiple time-series interactions along with their

profiles of relationships and recurring trends in different time localities. On

the other hand, transductive reasoning is put into action to estimate move-

ment of multiple time-series in short and chaotic periods. Ultimately, a generic

multi-model framework which integrates complementary knowledge from each

model to perform simultaneous multiple time-series prediction is constructed.
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The conducted experiments and proposed integrated multi-model frame-

work for multiple time-series analysis and modelling outlined in this chapter

intends to address some research questions as follows: (1) Is there any one

single model out of the global (DIN), local (LTM) or transductive (mTNFI)

models that always performs the best by giving the lowest prediction error

over the whole period of examination? If no, (2) can an integrated multi-

model framework capable of assigning different level of trust to each model

based on their performance in predicting movement of multiple time-series be

implemented to increase the overall prediction accuracy?

6.2 Integrated Multi-Model Framework: IMMF

The Integrated Multi-Model Framework (IMMF) proposed in this study utilised

the three methodologies of multiple time-series analysis and modelling out-

lined in Chapters 3, 4 and 5 as the main building blocks. Additionally, as

explained in the Introductory section of this chapter, the aim of such a frame-

work is to assimilate different types and levels of knowledge extracted by each

method to increase the accuracy of predicting movement of multiple time-

series simultaneously.

The key idea in constructing the IMMF is to estimate which model out

of the global, local and transductive models should be trusted more at any

given time-point based on their relative performances in predicting movement

of the series under observation. The overall structure of IMMF is illustrated

in Figure 6.1.

The main component of the IMMF is the accumulator module. The accu-

mulator module will calculate, based on the performance of each model, weight

values that will be associated with each model. The output of the accumula-

tor represented by a, is the final prediction formed by the weighted output of
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Figure 6.1. The integrated framework of global, local and transductive models for

multiple time-series analysis and prediction. n is the number of time-series.

the global, local and transductive models, and is defined by Equation 6.1:

si = wg
i s

g
i + wl

is
l
i + wt

is
t
i, i = 1, . . . , n (6.1)

where sgi , s
l
i, s

t
i represent predictions calculated by the DIN as the global model,

LTM as the local model and the mTNFI as the transductive model respec-

tively, wg
i , w

l
i, w

t
i represent the contributing weights assigned to each model

and n is the number of time-series. Equation 6.1 describes a linear relation-

ship between the values of the input units and the value of the output unit.

Finding the most appropriate weight values to be assigned to each model (rep-
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resented by the weight vector w) now amounts to solving a linear optimisation

problem.

6.2.1 ADALINE Network as the Accumulator Module

The ADALINE network (Frieβ & Harrison, 1999; Labonte, 2002; Shang, 2008;

Widrow & Lehr, 1993) is a single layer neural network developed by Bernard

Widrow and Ted Hoff at Stanford University in 1960 (Widrow & Hoff, 1960).

It is based on the McCulloch-Pitts neuron model (McCulloch & Pitts, 1943).

It consists of a connections weight, a bias and a summation function. The key

difference between the ADALINE and the standard McCulloch-Pitts percep-

tron is manifested in the learning process.

The ADALINE adjusts the connections weight according to the weighted

sum of the inputs, whilst in a different way, the standard perceptron adjusts

the connection weights according to the output of the activation or transfer

function. The structure of the ADALINE network is illustrated in Figure 6.2a,

while a simple diagram of its learning process is illustrated in Figure 6.3a.

The accumulator module is the main component of the IMMF and is con-

structed by utilising the concept of the ADALINE network (its structure and

learning process). By using the output from each model (DIN, LTM and mT-

NFI) as input to the ADALINE network, weight values for each model are

based on their relative performances in predicting movements of multiple time-

series and can then be estimated through the learning process. Consequently,

the weight vector w will represent the trust values given to each model. Ad-

ditionally, by implementing a recursive learning process these weights can

then be recalculated and adjusted based on recent performances of the global

(DIN), local (LTM) and transductive model (mTNFI).

Nevertheless, this methodology considers that there is no external inter-

ference to the system. In relation to that, the bias value b in the ADALINE
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(a) Structure of the ADALINE network (Hagan et al., 1995). purelin is

the linear transfer function in neural networks where the output is equal

to its input with bias (if any is being considered).

(b) Accumulator module of the IMMF based on the ADALINE network.

Figure 6.2. Illustration of the ADALINE network and the accumulator module of

the IMMF.

network structure (as illustrated in Figure 6.2b) is set to 0.

6.2.2 ADALINE Learning Rules

As with the perceptron learning rule, the ADALINE network implements the

least mean square (LMS) algorithm which is a supervised learning process

(I. Lin & Liou, 2007; T. Lin, Yeh, & Liu, 2010; F. Song & Smith, 2000) in

which the learning rule is provided with a set of examples of proper network
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(a) Learning process in the ADALINE

network.

(b) Learning process in the perceptron

neural network.

Figure 6.3. Different learning processes applied to the ADALINE and the perceptron

neural network.

behaviour:

{p1, t1}, {p2, t2}, . . . , {pQ, tQ}, (6.2)

where pq is an input to the network, and tq is the corresponding target output.

As each input is applied to the network, the network output is compared to

the target.

In general, the LMS algorithm adjusts the weights and biases (if any is

being considered) of the ADALINE network in order to minimise the mean

square error, where the error is the difference between the target output and

the network output. In relation to constructing the accumulator module of

the IMMF, this section of the chapter discusses the performance index of the

ADALINE network with just a single-neuron.

For the sake of simplifying the development of the learning rule, all of the

parameters to be adjusted (weights and bias) in the ADALINE network are
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lumped into one vector (Hagan et al., 1995):

x =





1w

b



 . (6.3)

Similarly, the bias input “1” is included as a component of the input vector

z =





p

1



 . (6.4)

Consequently the network output, which is usually written in the form

a = 1w
Tp+ b, (6.5)

can now be written as follows:

a = xTz. (6.6)

This learning rule was introduced by Widrow and Hoff (1960) and therefore

is also widely known as the Widrow-Hoff learning algorithm or the delta rule

(Hui & Zak, 1994; Widrow & Hoff, 1960; X. Zhang, Hang, Tan, & Wang,

1994). The key insight of the learning rule was to estimate the ADALINE

network’s mean square error F (x) defined by:

F̂ (x) = e2(k) = (t(k)− a(k))2 , (6.7)

where the error e in Equation 6.7 is a function of the weights vector w. Con-

sequently, as weights change, the error changes. The objective of the learning

process is then to move in “weight space” down the slope of the error function

with respect to each weight. Nevertheless, the size of the move should be pro-

portional to the magnitude of the slope. Then at each iteration k a gradient

estimate of the form below can be obtained:

∇F̂ (x) = ∇e2(k) (6.8)
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The first R elements of ∇e2(k) are derivatives with respect to the network

weights, (where R is the size of input variables) while the (R+1)st element is

the derivative with respect to the bias. Thus we have

[

∇e2(k)
]

j
=

∂e2(k)

∂w1,j

= −2e(k)pj(k), for j = 1, 2, . . . , R (6.9)

and
[

∇e2(k)
]

R+1
=

∂e2(k)

∂b
= −2e(k) (6.10)

Therefore the gradient of the square error at iteration k in Equation 6.8 can

be written as

∇F̂ (x) = ∇e2(k) = −2e(k)z(k) (6.11)

The term z(k) is the activation of the unit as only active units contribute to

the output and therefore should have their weights adjusted. This differential

can now be used to determine the modification of weights. The above approx-

imation to ∇F (x) can now be used in the steepest descent algorithm, with

constant learning rate α as follow,

xk+1 = xk − α∇F (x)|x=xk

= xk + 2αe(k)z(k),
(6.12)

or

w(k + 1) = w(k) + 2αe(k)p(k) (6.13)

and

b(k + 1) = b(k) + 2αe(k) (6.14)

Equations 6.13 and 6.14 make up the LMS algorithm which is the learning

algorithm for the ADALINE network (also known as the Widrow-Hoff learn-

ing algorithm or the delta rule). The preceding equations can be modified to

handle the case where we have multiple outputs, and therefore multiple neu-

rons. The equations of the LMS algorithm can then be written conveniently

in matrix notation:

W(k + 1) = W(k) + 2αe(k)pT (k) (6.15)
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b(k + 1) = b(k) + 2αe(k) (6.16)

where the error e and the bias b are now vectors.

However, since no bias value is being considered in the integrated frame-

work proposed in this study, what is being estimated through each iteration

are only the weights. Additionally, a single accumulator module in the IMMF

would produce only a single output (as the integrated prediction results from

the global, local and transductive model) and not multiple outputs. Therefore,

in the learning algorithm of the IMMF only Equation 6.13 is used.

6.3 Learning Algorithm of the IMMF

To estimate which model out of the global (DIN), local (LTM) and trans-

ductive (mTNFI) models should be trusted more at a given time-point t, the

IMMF implements a learning algorithm as follows:

• Step 1: for each time-series, by taking previous prediction of each model

as the input vector, the first step of the IMMF learning algorithm is

simply to calculate the performance of each model, by calculating the

absolute error of the predictions;

• Step 2: an initial profile of performance for each time-series is then

created based on the absolute errors. This profile of performance ranks

each model based on their performance in predicting movement of a

particular time-series. The initial profile of performance for time-series

i in this methodology is represented by a vector V initiali defined as

follows:

V initiali = [mi1, ..., min] ,

where mi1 is a model that previously has performed the best, that is the

one with the smallest absolute error, and min is a model with the worst

previous performance respectively;
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• Step 3: a weight vector wit that represents the trust values given to

each model based on their relative performances at time moment t−1 is

then estimated by implementing the ADALINE network and its learning

rules as the accumulator module (as described in previous section of the

chapter).

The initial weight vector in the IMMF is defined based on the absolute

error of previous prediction of each model. Absolute error of predictions

at time-point t−1 are taken and mapped using the Gaussian MF where

the smallest absolute error is used as the centre of the membership

function. Accordingly, a model with the smallest absolute error will

then be given the maximum initial weight value of 1, while the other

models will be assigned with smaller initial weights.

As the ADALINE applies supervised learning rule, previous predictions

of each model (DIN, LTM and mTNFI) and the actual value at time-

point t− 1 are taken as the input vector and the target output to train

the network in finding the best weights with the smallest square error;

• Step 4: a final prediction at time-point t is then made by incorporating

the weight vector, prediction of each model and Equation 6.1. The

absolute error of the final prediction is then calculated;

• Step 5: as new predictions of the global (DIN), local (LTM) and

transductive (mTNFI) models become available for time moment

t, t+ 1, t+ 2, ..., the IMMF re-evaluates performance of each model (as

in Step 1) and creates current profile of performance for each time mo-

ment defined by V currenti (as in Step 2);

• Step 6: WHILE V currenti = V initiali AND absolute error of final

prediction < absolute errors that of global, local and transductive mod-

els, the IMMF maintains current weight vector as the best solution for
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that particular time-series and the algorithm terminates. Otherwise, the

algorithm goes to Step 3.

The learning procedure implements two stopping conditions of the ADA-

LINE learning process when finding the best weights with the smallest square

error. The first stopping condition is the maximum number of iterations or

epochs, while the second one is the tolerance level for the square error. The

ADALINE learning process will stop estimating the weights if either the max-

imum number of epochs is reached or if the tolerance level on square error is

reached.

6.4 Experiments on Synthetic Data

The same set of synthetic data that was used in previous chapters is again

being put in place to evaluate the performance of the proposed IMMF. How-

ever, in this experiment predictions (as outcomes from the global (DIN), local

(LTM) and transductive (mTNFI) models in previous chapters) are used as

input to calculate the final prediction of each time-series.

There are three parameters that need to be set in the proposed IMMF.

These three parameters are those of the accumulator module that uses the

concept of the ADALINE network. The three parameters are the learning

rate α, number of iteration in the learning process or epochs and the tolerance

level for the square error. As explained in the previous section, the last two

parameters are the stopping condition of the learning process in estimating

the weights to be assigned to each of the global, local and transductive model.

During conducted experiments the learning rate is set to 0.1, while number of

epochs is set to 1000 and the tolerance level is set to 1e−5.

Figure 6.4 shows the comparison between trajectories of predictions by

DIN as the global model, LTM as the local model, mTNFI as the transductive
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Table 6.1

Comparison of DIN, LTM, mTNFI and IMMF prediction error rates in MAE and

RMSE.

No Variable
MAE

DIN LTM mTNFI IMMF

1 Series #1 10.494 7.3493 6.8040 4.0223

2 Series #2 4.7268 3.3804 5.3793 2.0034

3 Series #3 6.6364 3.9227 2.6342 1.9908

4 Series #4 6.3847 3.5696 1.5934 1.2783

RMSE

DIN LTM mTNFI IMMF

1 Series #1 11.9658 7.8696 7.2361 4.7752

2 Series #2 5.5067 4.1942 6.3772 2.6854

3 Series #3 7.4662 4.8642 3.0931 2.3477

4 Series #4 7.6928 5.4827 1.9668 1.5778

model and the proposed IMMF. Table 6.1 summarises the prediction error

rates in Mean Absolute Error (MAE) and RMSE during the testing period

for each model. It should be noted that the plots of trajectories have only 14

time moments. This is different compared to the plots of trajectories during

the testing period of DIN, LTM and mTNFI in Chapter 3, 4 and 5, which have

15 time moments. The reason for this difference is because the first outcomes

of prediction from each model are being utilised to calculate the first weights.

Therefore, the first prediction made by the proposed IMMF will start from

the second time-point of the testing period resulting in a shorter period then

the original one.

Figure 6.4 shows that the trajectories of predictions calculated by the
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(a) Actual versus estimated trajectories of

Series #1.
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(b) Actual versus estimated trajectories of

Series #2.
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(c) Actual versus estimated trajectories of

Series #3.
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(d) Actual versus estimated trajectories of

Series #4.

Figure 6.4. Plot of estimated trajectories of synthetic data set by DIN, LTM, mTNFI

and the proposed IMMF in the testing period.

proposed IMMF are in general matching the actual trajectories more closely

than those calculated by DIN, LTM and mTNFI. In accordance with these

outcomes the calculated error rates as outlined in Table 6.1 reveal equal ac-

tuality. This results indicate that integrating outcomes of prediction from

various models of time-series analysis might be of help to increase total pre-

diction accuracy.

Figures 6.5 to 6.8 illustrate how the weights assigned to each model are

dynamically adjusted over time. In addition, Figures 6.5 to 6.8 depict the
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Figure 6.5. Assigned contributing weights to DIN, LTM and mTNFI when predict-

ing movement of Series #1.
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Figure 6.6. Assigned contributing weights to DIN, LTM and mTNFI when predict-

ing movement of Series #2.

calculated absolute error of prediction for each of the global (DIN), local

(LTM), transductive (mTNFI) models and the proposed IMMF during the

testing period. From these plots it can be seen that the weights assigned to

each model at time-point t differs from the weights assigned at time-point t−1

if the absolute error of the IMMF is greater than the absolute error of any

of the global, local and transductive model, or if the profile of performance

between DIN, LTM and mTNFI at time-point t − 1 has changed from that

of t − 2. This observation confirms the ability of the proposed IMMF to

dynamically adjust its level of trust given to each model of multiple time-
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Figure 6.7. Assigned contributing weights to DIN, LTM and mTNFI when predict-

ing movement of Series #3.
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Figure 6.8. Assigned contributing weights to DIN, LTM and mTNFI when predict-

ing movement of Series #4.

series analysis over time.

Figures 6.5 to 6.8 also reveal that most of the time mTNFI performs

better than the other two models and therefore was given higher weights more

frequently. However, there are also moments when LTM or DIN performs the

best and therefore the weights assigned to each model are adjusted accordingly.

This finding suggests that having different models for multiple time-series

analysis is essential, as each model might perform better than the other at

different points in time.

Interestingly, plotted absolute errors of the global (DIN), local (LTM),
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transductive (mTNFI) models and the proposed IMMF show that the IMMF

does not always give the best prediction results when compared to the other

three models. It is noticeable that there are moments when mTNFI, LTM or

even DIN gives better results (in terms of absolute error) than the proposed

IMMF.

The proposed IMMF makes the final prediction for time-point t by calcu-

lating the weighted sum of predictions given by the global, local and transduc-

tive models, in which the contributing weights assigned to the three models

are determined from their prior performance (time-point t−1). This method-

ology comes with one key limitation, that is: it assumes that current profile of

performance between the models is the same as at a previous time moment.

However, as the performance of these models varies over time (as illustrated in

Figures 6.5 to 6.8), there is always a possibility that the contributing weights

based on prior predictions are currently no longer suitable to produce the best

prediction. This might lead to the condition where the final predictions of the

IMMF are less accurate compared to those produced by the global, local or

transductive models individually as found in the conducted experiment.

Nevertheless, it is impractical to eliminate this limitation as it is impossi-

ble to assess the current performance of the models prior to having the actual

values of the series being analysed. Therefore, to maintain the level of predic-

tion accuracy, what can be done is to apply a learning process that enables

the IMMF to dynamically adjust the contributing weights (to be assigned to

each model in the next prediction) according to the last profile of prediction

accuracy produced by the contributing models. This learning process has been

implemented in the proposed IMMF as explained in the previous section.

In addition, Figures 6.5 to 6.8 disclose that in general, the proposed IMMF

produces a more stable and lower level of absolute error over the testing pe-

riod compared to the other models. Furthermore, calculated error rates over

the testing period (in MAE and RMSE) as outlined in Table 6.1 indicate that
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Table 6.2

Comparison of IMMF prediction error rates against methods applied on single time-

series: MLR, MLP, DENFIS and random walk model, in RMSE.

No Variable IMMF MLR MLP DENFIS Random Walk

1 Series #1 4.7752 62.0580 15.1441 14.3226 12.6634

2 Series #2 2.6854 43.7277 7.5743 4.6464 4.3419

3 Series #3 2.3477 37.0639 7.6572 6.1003 6.4474

4 Series #4 1.5778 10.1890 8.7729 8.8631 8.4156

on average the proposed IMMF outperforms the other three models. This

observation indicates that the proposed IMMF dynamically adjusts the con-

tributing weights. This dynamic adjustment in turn enables the framework

to attach more importance to the model type that is producing more accu-

rate results at the given time points thus enhancing overall accuracy. Having

smaller error rates over the testing period also gives the indication that the

proposed IMMF is more suitable to be implemented when the objective of the

work is to continuously predict movement of dynamic systems over extended

period of time and not just for one-off prediction tasks.

Additionally, calculated error rates of the proposed IMMF against other

methods applied on single time-series prediction (as performed in previous

chapters: Chapters 3, 4 and 5), outlined in Table 6.2, confirms that the pro-

posed IMMF of multiple time-series prediction is superior.

6.5 Conclusion

This chapter proposed an integrated framework named the IMMF that aims

to increase the accuracy of multiple time-series prediction by incorporating

different models of multiple time-series analysis. In the proposed integrated
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framework three different models of multiple time-series analysis (as outlined

and proposed in previous chapters) are utilised as the main building blocks.

Additionally, an accumulator module to determine the contributing weights

of each model in calculating the final prediction result is applied.

The three models of multiple time-series analysis use different type of

learning processes to create contrasting views of the problem. The global

model (DIN) focuses on the extraction of global trend, the local model (LTM)

concentrates on the effects of recurring profiles of relationships and similar

trends in the past, and the transductive models (mTNFI) contemplates only

recent trends. The proposed IMMF adjusts the contributing weights between

the three models using their recent performance in predicting movement of

multiple time-series as an indication.

The proposed IMMF applies the concept of the ADALINE network as

the accumulator model to estimate the contributing weights assigned to each

model in relation to their performance in predicting movement of multiple

time-series. The assigned weights represent a given level of trust which will

then determine the level of contribution when calculating the final prediction.

Outcomes of conducted experiments with the synthetic data set can be

summarised as follows:

1. The absolute error between the global, local and transductive models

vary and there is no one single model that always performs better than

the others and therefore the contributing weights are dynamically ad-

justed over time in relation to prior performance (prediction error) of

the global, local and transductive model;

2. Prediction trajectories produced by the proposed IMMF (as the sum of

weighted contribution of each model) match closely the actual trajec-

tories compared to the prediction trajectories produced individually by

each model resulting in smaller error rates;
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3. Even though plots of absolute error reveal that there are moments when

predictions made by the DIN, LTM or mTNFI are better than the ones

made by the proposed IMMF, calculated error rates over the testing

period in general indicate the proposed IMMF gives better prediction

accuracy compared to the global, local and transductive models.

Point 1 confirms the ability of the proposed IMMF to dynamically adjust the

contributing weights between the global, local and transductive model over

time. Point 2 confirms that integrating knowledge from different models that

treat a problem from different perspectives allows for a more comprehensive

understanding of the problem. In the case of multiple time-series prediction

this leads to the possibility of achieving better prediction accuracy. In addi-

tion, point 3 suggests that the use of the proposed IMMF is more suitable

when the objective of the work is to perform continuous time-series analysis

and prediction over a relatively longer period of time.

Currently, the proposed IMMF employs an integration method that bases

the calculation of the contributing weights only on prior prediction errors. For

future direction another integration method that allows a smoother adjust-

ment of the contributing weights can be applied, for instance the use of the

average error from each model for the last n time moments in calculating the

contributing weights. Furthermore, the use of the ADALINE network to con-

struct the accumulator module in the proposed IMMF can be replaced with

other machine learning or parameter optimisation algorithms.



Chapter 7

Case Study 1: Analysis and

Modelling of Global Stock Market

Indexes in the Asia Pacific Region

7.1 Introduction

The globalised security markets of today are characterised by interdependen-

cies, and often demonstrate contagious behaviour in periods of crisis. Inter-

action between stock markets have been researched in the past few years.

Globalisation has brought interdependence among stock markets around the

world, in which a change in one stock market affects other stock markets. An

increasing number of studies are addressing the effects of such interrelation-

ships, along with the challenge of relationship identification and modelling

within a globalised environment.

A study by Phylaktis and Ravazzolo (2005) found that the relationship

between international stock markets is stronger than in the preceding years,

due to the relaxation of foreign ownership restrictions. Some other researchers

also found that local stock markets are generally influenced by major stock

markets in the world (i.e. Europe, Africa, Australia, U.S. and Asia) (Adam

& Tweneboah, 2008; Beelders, 2002; Drew & Chong, 2002; Glezakos, Merika,

& Kaligosfyris, 2007; Isakov & Parignon, 2000; Y. Liu & Sun, 2008; Psillaki

& Margaritis, 2008). Consequently a number of studies that applied the co-
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integration analysis method to find the correlation between the stock markets

have also been conducted (Brahmasrene & Jiranyakul, 2007; Clout & Willett,

2009; Okunev, Wilson, & Zurbruegg, 2000).

Chiang and Doong (2001) considered stock returns and volatility in their

study and found that four out of seven Asian markets present a significant

relationship between stock returns and unexpected volatility. In research con-

ducted by the French, German and UK indexes, and the corresponding stock

index future markets, Antoniou et al. (2003) signified that the behaviour of

a domestic market was influenced by foreign markets. Collins and Biekpe

(2003) further studied contagion and interdependence in the African markets

and found evidence for contagion from the most traded markets, i.e. Egypt

and South Africa, while Serguieva, Kalganova, and Khan (2003); Serguieva

and Wu (2008) , who focused their studies on Asia during the time of cri-

sis, suggested that investigating the characteristics of financial contagion will

contribute to recognising at an earlier stage financial crises which potentially

destabilise cross-market linkages (Serguieva et al., 2003; Serguieva & Wu,

2008).

However, these studies do not appear to simultaneously capture multiple

dynamic relationships between interactive markets. This task serves as the

main reason to why this study is looking at the possibility of implementing

the computational intelligence approaches (global, local and transductive) to

extract such relationships. Furthermore, to meet the challenge of analysing

and modelling dynamic interactive multiple markets in predicting their fu-

ture values, it is essential to capture their interactive behaviour in a dynamic

fashion.

In this chapter of the thesis, financial data of stock market indexes in the

Asia Pacific region is used as a case study to examine the performance of

DIN, LTM, mTNFI and IMMF for the analysis, modelling and prediction of

multiple time-series data.
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7.2 Interactive Stock Markets Analysis and

Modelling

The main objective of the work outlined in this chapter is to evaluate perfor-

mance of DIN, LTM, mTNFI and IMMF in predicting movement of multiple

stock market indexes in the Asia Pacific region. Additionally, an analysis of

the dynamics of interactions, profiles of relationships in different time locali-

ties and the recurring trends of movement between the stock markets under

observation is also conducted.

7.3 Data Description

The financial data set used in this study includes time-series indexes of 10

stock markets in the Asia Pacific region (Yahoo! Finance, 2010), spanning

155 weeks from July 2007 to June 2010. The weekly aggregated values of the

stock market indexes are considered here. The 10 selected equity markets (in

alphabetical order) are: Australia AORD, Hong Kong HSI, Indonesia JSX,

Malaysia KLSE, South Korea KOSPI, Japan Nikkei 225, New Zealand NZ50,

Shanghai China SSX, Singapore STI and Taiwan TSEC. Figure 7.1 depicts

the trajectories of the 10 stock markets in the period of examination.

Throughout the conducted experiment the data set is divided into two

different parts: the training part and the testing part. The training part con-

sists of the first 110 points of the weekly stock market indexes. Consequently,

the testing part consists of the remaining 45 points from the complete set of

155 points. The experiment employs an incremental testing process, which

means that whenever a new instance arrives, a prediction is first made for the

new instance before it is added to the training set as an additional training

example.
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Figure 7.1. Weekly index of 10 stock markets in the Asia Pacific region spanning

155 weeks from July 2007 to June 2010.

7.4 Experimental Results and Comparison

In order to evaluate the performance of the proposed models in predicting

movement of a number of time-series simultaneously, scatter plots of absolute

error of prediction from each model are used to illustrate the distribution of

error. Additionally the RMSE is used as the error measurement.

Figures 7.2 and 7.3 are the scatter plots of errors produced by DIN, LTM,

mTNFI and IMMF when predicting movement of weekly 10 stock market

indexes in the Asia Pacific region. The scatter plots reveal that the prediction

accuracy from each model varies during the testing period and there is no

one single model that always works better than the others across the testing

period. For instance, even though the scatter plots show that in general

DIN gives the worst performance compared to the other methods, there are

moments when DIN performs the best and outperforms the other models.

Similar situations are also found for LTM, mTNFI and IMMF as it is depicted
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(a) Prediction error of Australia AORD
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(b) Prediction error of Hong Kong HSI
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(c) Prediction error of Indonesia JSX
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(e) Prediction error of South Korea KOSPI
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(f) Prediction error of Japan Nikkei N225

Figure 7.2. Prediction error of Australia, Hong Kong, Indonesia, Malaysia, South

Korea and Japan stock market indexes.
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(c) Prediction error of Singapore STI
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(d) Prediction error of Taiwan TSEC

Figure 7.3. Prediction error of New Zealand, Shanghai China, Singapore and Taiwan

stock market indexes.

by the plots.

However, Figures 7.4 and 7.5 show that the predictions made by the three

models and the integrated framework closely match with the actual trajecto-

ries. In addition, plots of prediction error (as illustrated in Figures 7.2 and

7.3) indicate that the integrated framework is often the most accurate model

when predicting movement of the stock market indexes across the whole pe-

riod of examination. Table 7.1, which outlines the RMSE of predictions made

by each model, is in compliance with this actuality.

Figures 7.6 to 7.10 illustrate how the contributing weights of DIN, LTM
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Figure 7.4. Prediction of Australia, Hong Kong, Indonesia, Malaysia, South Korea

and Japan stock market indexes.
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Figure 7.5. Prediction of New Zealand, Shanghai China, Singapore and Taiwan

stock market indexes.

and mTNFI defined by IMMF to calculate the final prediction are chang-

ing dynamically in relation to movement of the absolute error of each model.

These plots indicate that the integrated framework is capable to adjust the

contribution weights assigned to each contributing model to maintain its ac-

curacy level of prediction over time.

To validate if forecasting movements of multiple time-series simultaneously

offers better prediction accuracy, a comparative analysis with MLR, MLP and

random walk methods applied on single time-series is conducted in this study.

The random walk model is a time-series analysis that assumes that next value
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Table 7.1

Error rates in RMSE of DIN, LTM, mTNFI and IMMF when predicting movement

of weekly stock market indexes in the Asia Pacific region.

No Stock Market DIN LTM mTNFI IMMF

1 Australia AORD 68.8629 60.5921 36.7233 25.1345

2 Hong Kong HSI 330.4391 254.4411 258.9914 156.3394

3 Indonesia JSX 47.6129 29.3084 21.1106 19.8513

4 Malaysia KLSE 12.4014 9.3991 9.0178 5.2856

5 South Korea KOSPI 28.0342 20.2284 15.4878 13.5639

6 Japan Nikkei 225 156.0617 149.4570 105.9573 61.8075

7 New Zealand NZ50 38.1143 27.1600 17.8022 8.8974

8 Shanghai China SSX 56.5567 48.1407 40.4320 30.7801

9 Singapore STI 50.8090 27.2544 24.8119 16.1047

10 Taiwan TSEC 112.3427 94.7727 89.0169 57.3583

of a time-series is equal to current value. Here the random walk without drift

model defined simply by Equation 7.1 is used.

xt+1 = xt (7.1)

The random walk model in some cases might offer better prediction ac-

curacy (in terms of sum squared residual). However, this model produces

a shadow plot of the observed data, lagging exactly one period behind and

providing no knowledge on the observed system as it simply assumes that the

upcoming value is exactly the same as current value. Therefore, it can be

considered that this model is actually have no predictive power.

Table 7.2 shows the much smaller RMSE of the IMMF in comparison to

the other methods applied for single time-series prediction. This outcome

clearly indicates the value of extracting and exploiting relationships between
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Figure 7.6. Assigned contributing weights for prediction of Australia and Hong

Kong stock market indexes.
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Figure 7.7. Assigned contributing weights for prediction of Indonesia and Malaysia

stock market indexes.
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Figure 7.8. Assigned contributing weights for prediction of South Korea and Japan

stock market indexes.
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Figure 7.9. Assigned contributing weights for prediction of New Zealand and Shang-

hai China stock market indexes.
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Figure 7.10. Assigned contributing weights for prediction of Singapore and Taiwan

stock market index.
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Table 7.2

Comparison of the IMMF RMSE prediction error rates against single time-series

prediction methods: MLR, MLP, and random walk model.

No Stock Market IMMF MLR MLP Random Walk

1 AORD 25.1345 171.7993 88.5213 85.7106

2 HSI 156.3394 460.3831 428.6957 320.0959

3 JSX 19.8513 77.3591 41.7204 47.5735

4 KLSE 5.2856 36.4490 26.6499 22.5799

5 KOSPI 13.5639 47.6204 28.5997 27.3852

6 Nikkei 225 61.8075 311.8844 293.4835 220.9357

7 NZ50 8.8974 126.1689 48.9904 46.8238

8 SSX 30.7801 175.5635 105.7773 113.7639

9 STI 16.1047 75.2957 60.7475 57.2612

10 TSEC 57.3583 198.6822 141.3183 108.3788

multiple variables in prediction when the variables concerned are influencing

each other in a dynamic fashion.

7.5 Knowledge Discovery and Discussion

Figure 7.11a and 7.11b presents the mathematical model of interaction be-

tween the 10 stock markets under investigation extracted from the training

data set which cover the period of 110 weeks starting from July 2007 and the

interaction network model which is the graphical representation of the math-

ematical model itself. The mathematical model of interaction between the 10

stock markets was constructed from the transition matrix discovered during

the learning process of DIN. The same mathematical model of interaction was

also used to predict index values of the 10 stock markets for time-point 111,
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(a) Mathematical model of interaction between multiple time-series

(b) Interaction network model

Figure 7.11. Mathematical model of interaction and its interaction network model

between the 10 stock markets obtained from the training data set for the period of

110 weeks.

which is the first point of the test data set.

The interaction network model (as the graphical representation of the

mathematical model of interaction between the 10 stock markets) extracted

from the training data (as illustrated in Figure 7.11) shows how the 10 stock

markets in the Asia Pacific are connected to each other exposing both posi-
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tive and negative influences. This network model indicates that there is not

a single market that moves by itself, not being affected by the conditions

of any other markets in the region. The network model suggests that index

movement of a stock market is always either affecting or being affected by

the other stock markets. This discovery supports findings from previous stud-

ies that analysed the existence of interdependencies in global stock markets

(Chowdhury, 1994; Lucey & Muckley, 2010; Lukmanto, Widiputra, & Lukas,

2009; Shabri, Kameel, & Azmi, 2008).

The mathematical model of interaction between the 10 stock markets and

its interaction network model in Figure 7.11 clearly shows how the two leading

markets in the Asia Pacific, the Hong Kong HSI and Japan Nikkei 225, are

affecting the other markets significantly. Interestingly, the interaction network

model also shows that movement of the Shanghai China SSX is affected by

most of the other markets in the region as shown by this equation below which

is derived from the mathematical model in Figure 7.11a:

SSXt+1 = 0.44HSIt − 0.83JSXt + 0.65KLSEt + 0.55N225t + 0.70SSXt

−0.63STIt + 0.63TSECt

This finding is in agreement with results from a previous study by Widiputra

et al. which extracted the dynamics of interaction of stock markets in the

Asia Pacific region during the period of February 2006 to November 2008

(Widiputra, Pears, Serguieva, & Kasabov, 2009). The study outlined that

the explanation to the discovery has a strong relation with China’s strategic

approach to its Asian neighbours as follows:

1. China has become one of the largest traders and investors with many

Asian countries;

2. China exports primarily consumer goods to most countries in the Asia

Pacific;
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3. China is more than just a trading partner, as it also invests extensively

in the region (e.g. China recently became one of the largest investors in

Indonesia buying into oil and gas interests);

4. China is the largest foreign investor in some of the smaller economies in

the South East Asia.

By proposing to negotiate a free trade agreement with the ASEAN (Associa-

tion of South East Asia Nations) countries, China offered to share the benefits

of its economic growth, while reminding the region of their growing reliance

on China. All these contribute to the unique position of China, and to the

number of vertices involved in the interaction network diagram.

Furthermore, the network model also identifies the existence of interaction

between Australia AORD, Hong Kong HSI, South Korea KOSPI, Singapore

STI, and Taiwan TSEC, which is in agreement with previous findings by Masih

and Masih (2001) in their research on the dynamics of stock market interde-

pendency in 1998 which found that the 5 stock markets are interdependent

with each other. These equations, derived from the mathematical model of

interaction between the 10 stock markets as shown in Figure 7.11a, support

this finding as well:

AORDt+1 = 0.70HSIt − 0.27KOSPIt + 0.70N225t − 0.85STIt

HSIt+1 = 0.90HSIt + 0.82N225t

KOSPIt+1 = 0.40HSIt + 0.24KLSEt + 0.38KOSPIt − 0.59STIt

+0.99TSECt

STIt = 0.45HSIt − 0.34JSXt0.55STIt

TSECt = −0.85AORDt + 0.80HSIt − 0.21STIt + 0.82TSECt

Though their results are based on the period from 1982 to 1994, the outcome

of the DIN modelling advises that the relationships among these countries per-

sist in the more recent period. Therefore, for some of the leading economies

with relatively stable economic infrastructure, consistent relationships exist
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between their stock markets (Widiputra et al., 2011a; Widiputra, Pears, Ser-

guieva, & Kasabov, 2009).

Throughout the testing period of 45 weeks, the interaction network evolves

as new observations on new behaviour of interaction become available over

time. Consequently, a new mathematical model of interaction between the 10

stock markets and a new structure of the interaction network were obtained

at the end of the testing period as illustrated in Figure 7.12a and 7.12b. The

mathematical model of the interaction and the interaction network model

obtained at the end of the testing period reveals that the structure of inter-

dependencies between markets has changed.

However, it is also observable that some markets retain their connections

with the other markets even though the level of interaction (denoted by the

weight of the connection between vertices) is changing. For instance, it is

clear that Hong Kong HSI and Japan Nikkei 225 are still the most influential

markets in the region, whilst Shangai China SSX is still the most affected

market as shown by this equation below,

SSXt+1 = 0.31HSIt − 0.30JSXt + 0.59KLSEt − 0.30KOSPIt − 0.44N225t

+0.31NZ50t + 0.58SSXt − 0.40STIt + 0.25TSECt,

and that Australia, Hong Kong, South Korea, Singapore and Taiwan maintain

the existence of interaction between them as it is confirmed by these equations:

AORDt+1 = 0.45AORDt + 0.63N225t

HSIt+1 = 0.31N225t

KOSPIt+1 = 0.57HSIt − 0.23KLSEt + 0.66KOSPIt + 0.30TSECt

STIt = −0.25HSIt + 0.25TSECt

TSECt = −0.43AORDt + 0.63HSIt + 0.65TSECt

As it has been stated previously, this finding yet again suggests that even

though the pattern of interaction between globalised stock markets is chang-

ing dynamically over time, consistent relationships exist between the stock
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(a) Mathematical model of interaction between multiple time-series

(b) Interaction network model

Figure 7.12. Mathematical model of interaction and its interaction network model

between the 10 stock markets obtained from the training data set for the period of

110 weeks.

markets of countries with relatively stable economic conditions.

Figure 7.13 illustrates the state of the LTM knowledge repository after

110 points (that is 110 weeks) of stock market indexes of the 10 selected

stock markets in the Asia Pacific region are conferred to LTM. Figure 7.13

shows the existence of strong relationship between Australia AORD, Hong
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Figure 7.13. Profiles of relationships of LTM after 110 weekly indexes of 10 stock

markets. The 10 stock markets are denoted as follows: NZ50 (1), AORD (2), HSI

(3), JSX (4), KLSE (5), KOSPI (6), N225 (7), SSX (8), STI (9) and TSEC (10).

Kong HSI, South Korea KOSPI, Singapore STI, and Taiwan TSEC. Extracted

profiles of relationships in the knowledge repository reveal that these five stock

markets are grouped together frequently. This outcome is in agreement with

the interaction network model produced by DIN (as explained previously) and

again with a previous study (Masih & Masih, 2001).

In addition, extracted profiles of relationships of LTM reveal that the sig-
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nificant interaction of Shanghai China SSX with the other markets is also

being recognised. LTM confirms that SSX exists in almost all profiles of rela-

tionships with substantial number of participants. This outcome is compara-

ble to results from previous work by Widiputra et al. (2011a). The discovery

suggests that generally SSX has always been progressing with most of the

other markets in the region. This result indicates that SSX maintained its

level of interaction with the other markets in different periods of time local-

ities. Even more, this finding might suggest that Shanghai China SSX has

actually become an important “market player” in the Asia Pacific region, and

that its index movement could highly influence the movement of the other

stock markets in the region.

Additionally, in Figure 7.13 cluster diameter represents the farthest cor-

relation between time-series in the same cluster while relative positioning of

the labels indicates the degree of similarity in behaviour. For instance, in the

cluster of NZ50, HSI, JSX, KLX, KOSPI, N225, STI, TSEC; South Korea

KOSPI is positioned closer to New Zealand NZ50. This indicates that sim-

ilarity between KOSPI and NZ50 is higher compared to similarity between

KOSPI and the other markets. This initial result confirms LTM’s capability

to capture the existence of diverse profiles of relationships that exist in the

globalised security markets.

Figure 7.14 illustrates the state of the knowledge repository after the whole

data set of 155 weekly indexes of the 10 stock markets was entered in the

system. It is observable that some new profiles of relationships have emerged

in the repository and the existing profiles have been updated (in terms of the

cluster diameter). This result confirms that LTM is able to perform dynamic

learning of multiple time-series by capturing the dynamics of relationships

between the series in different time localities.

As mTNFI constructs a specific solution for every input vector, different

fuzzy inference systems are then constructed for input vectors corresponding
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Figure 7.14. Profiles of relationships of LTM after 155 weekly indexes of 10 stock

markets. The 10 stock markets are denoted as follows: NZ50 (1), AORD (2), HSI

(3), JSX (4), KLSE (5), KOSPI (6), N225 (7), SSX (8), STI (9) and TSEC (10).

to different time points. Figure 7.15 outlines the fuzzy rules created by mT-

NFI using the 80 nearest samples from the 110 weeks training data set when

calculating output for input vector at time-point 111. Throughout the exper-

imentation, the number of selected nearest samples in mTNFI is set by hand

(based on experience) to a fixed value of 80 samples. Figure 7.15 outlines only

3 fuzzy rules from the complete set of 6 created rules, that help to build the

inference system for the prediction of stock market indexes at time-point 111

of the evaluation period.
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Figure 7.15. Extracted fuzzy rules (first-order Takagi-Sugeno type) from the Multi-

variate Transductive Neuro-Fuzzy Inference system (mTNFI) when predicting up-

coming indexes of 10 stock markets in the Asia Pacific based on data from week

111.

However, when estimating the output for input vectors at different time

moments mTNFI reconstructs new fuzzy inference systems consisting of differ-

ent set of fuzzy rules. For instance, Figure 7.16 represents 2 fuzzy rules (from

the complete set of another 6 created rules) that took part in constructing

the new fuzzy inference system when estimating the output for input vector
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Figure 7.16. Extracted fuzzy rules (first-order Takagi-Sugeno type) from the Multi-

variate Transductive Neuro-Fuzzy Inference system (mTNFI) when predicting up-

coming indexes of 10 stock markets in the Asia Pacific on week 120.

at time-point 120. These observations indicate mTNFI’s capability to dy-

namically construct specific individual local models for each new input vector

produced by the stream of multiple time-series under evaluation.

By constructing different inference systems for every new input vector, the

mTNFI is expected to be able to predict simultaneously the movement of mul-

tiple time-series of a non-stationary environment with a reasonable degree of

accuracy. This expectation has been realised in this study based on outcomes

of conducted experiments outlined in Section 7.4 (see Table 7.1).
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7.6 Conclusion

This chapter presents an application of the global (DIN), local (LTM), trans-

ductive model (mTNFI) and the integrated framework of the three models

(IMMF) for analysis, modelling and prediction of 10 interactive stock mar-

kets in the Asia Pacific region. The selected stock markets are: AORD of

Australia, HSI of Hong Kong, JSX of Indonesia, KLSE of Malaysia, KOSPI

of South Korea, Nikkei 225 of Japan, NZ50 of New Zealand, SSX of Shanghai

China, STI of Singapore and TSEC of Taiwan. The data used in the exper-

iments conducted in the study are the aggregate weekly index of the stock

markets, spanning 155 weeks from July 2007 to July 2010.

Results of conducted experiments show that the three models of multiple

time-series prediction produced good prediction accuracies. It is also found

that there is no single model out of the global, local and transductive model

that always performs the best throughout the period of examination. Out-

comes of experiments also reveal that generally, the integrated framework

which assimilates predictions from the global (DIN), local (LTM) and trans-

ductive model (mTNFI) has effectively delivered the best accuracy across the

whole period of examination. This was accomplished by dynamically changing

the contributing weights assigned to each model based on their prior perfor-

mance in predicting movement of the stock market indexes.

A comparative analysis with methods applied on single time-series predic-

tion suggests that predicting movement of multiple interactive stock markets

by considering the interactions and profiles of relationships between them

results in a more accurate prediction. Overall, the proposed global (DIN),

local (LTM), and transductive (mTNFI) models of multiple time-series anal-

ysis and the proposed integrated framework (IMMF) have several advantages

compared to MLR, MLP and random walk model, that are outlined below:

• DIN, LTM and mTNFI predict movement of multiple time-series si-
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multaneously by taking into account the interactions between variables

globally (DIN), in different localities of time (LTM) or at a specific time

moment (mtNFI);

• The three models adapt to new data and are capable to evolve their

structure (DIN and LTM) or to construct a new local model for ev-

ery new input vector (mTNFI). Additionally, the integrated framework

of DIN, LTM and mTNFI is able to dynamically assign contributing

weights to each model based on their prior prediction performance;

• Based on the two main characteristics listed above, DIN, LTM, mT-

NFI and IMMF are more accurate time-series prediction methods in

comparison with MLR, MLP and random walk.



Chapter 8

Case Study 2: Analysis and

Modelling of New Zealand’s

Weather Condition

8.1 Introduction

The word “weather” can be defined as the state of the atmosphere when mea-

sured on a scale of hot or cold, wet or dry, calm or stormy, clear or cloudy.

Different from climate, which is the term for the average atmospheric con-

ditions over longer periods of time, weather generally refers to day-to-day

temperature, air pressure, wind movement (speed and direction) and precipi-

tation activities. Weather occurs due to density (in terms of temperature and

moisture) differences between one place and another. These differences can

occur due to the sun angle at any particular spot, which varies by latitude

from the tropics. The strong temperature contrast between polar and tropical

air gives rise to the jet stream.

One of the most important factors that governs or has the greatest influ-

ence on circulating the weather systems is the wind, as it directs movement

of the air in a certain velocity. Wind is caused by differences in air pressure

levels between locations. When a difference in pressure exists, the air is ac-

celerated from higher to lower pressure. On a rotating planet the air will be

deflected by the Coriolis effect (Barry & Chorley, 2003; Lofting, Dougherty, &
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Southwood, 1997; Trefil, 2003), except exactly on the equator. Globally, the

two major driving factors of large scale winds (the atmospheric circulation)

are the differential heating between the equator and the poles (difference in

absorption of solar energy leading to buoyancy forces) and the rotation of the

planet.

The atmosphere or the weather system is a dynamic system, therefore

small changes to one part of the system can grow to have large effects on the

system as a whole. This makes it difficult to accurately predict weather more

than a few days in advance, though weather forecasters are continually working

to extend this limit through the scientific study of weather, meteorology. It

is theoretically impossible to make useful day-to-day predictions more than

about two weeks ahead, imposing an upper limit to the potential for improved

prediction (Barry & Chorley, 2003; Mailier, 2010).

Based on the fact outlined above, it would be of interest to observe vari-

ables of the atmosphere in order to extract and model how they are related to

each other and how they will behave as a system. Therefore, in this chapter

a weather data set collected from various sites in New Zealand is utilised as

another case study to examine the performance of DIN, LTM, mTNFI and

IMMF for the analysis, modelling and prediction of multiple time-series data.

8.2 Analysis and Modelling of Air Pressure Level

The main objective of this chapter is to present the application of DIN, LTM,

mTNFI and IMMF for the analysis and modelling or air pressure levels in dif-

ferent locations collected on a daily basis. Additionally, the chapter evaluates

the performance of DIN, LTM, mTNFI and IMMF when utilised for the pre-

diction of movement of air pressure levels in different geographical locations.

Finally, an analysis is carried out of the dynamics of interaction, profiles of
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relationships in different time localities and the recurring trends of movement

between air pressure levels collected at various sites.

8.3 Data Description

Daily air pressure data collected from various locations in New Zealand by the

National Institute of Weather and Atmosphere (National Insitute of Weather

and Atmosphere, 2010) constitutes the data set used in this study. The data

covers a period of almost three years, ranging from the beginning of April

2008 to the end of December 2010. Findings from a previous study on global

weather systems that argued that small changes to one part of the system

led to a complete change in the weather system as a whole (Vitousek, 1992,

1994)) was the key motivation for experimenting with such data. The spatial

coordinate was used to define the multiple variables, with the air pressure

at four different locations in New Zealand (Auckland, Hamilton, Paeroa and

Reefton) comprising the multiple variables.

Trajectories of observed air pressure data are illustrated in Figure 8.1. It

should be noted that even though in general the four trajectories of air pressure

level look alike, a closer look would reveal that the first three trajectories are

exposing a more similar shape compared to the last one. This is expected as

the first three trajectories were collected by three observation stations that

are considerably close to each other: Auckland, Hamilton and Paeroa (within

a diameter of 100 kilometres, part of the North Island of New Zealand), while

the last trajectory of air pressure data was collected in Reefton (in the South

Island of New Zealand).

Throughout the conducted experiment the data set is divided into two dif-

ferent parts: the training part and the testing part as depicted in Figure 8.1.

The experiment conducted in this work employs an incremental testing pro-

cess, which means that whenever a new instance arrives a prediction is first
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Figure 8.1. Trajectories of air pressure level collected on a daily basis at four different

locations in New Zealand.
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(c) Prediction error of Paeroa
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(d) Prediction error of Reefton

Figure 8.2. Prediction error of Auckland, Paeroa, Hamilton and Reefton air pressure

level.

made for that new instance before it is then added to the training set as

additional training example.

8.4 Experimental Results and Comparison

Similarly to Chapter 7, where DIN, LTM, mTNFI and IMMF are applied for

the analysis, modelling and prediction of multiple interactive stock markets

in the Asia Pacific region, in this chapter scatter plots of error of prediction

and RMSE are used to measure the quantitative performance of the proposed

methods.
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Table 8.1

Error rates in RMSE of DIN, LTM, mTNFI and the IMMF when predicting move-

ment of air pressure level in Auckland, Paeroa, Hamilton and Reefton.

No Location DIN LTM mTNFI IMMF

1 Auckland 1.9874 1.1011 1.0077 0.6411

2 Paeroa 1.9723 1.0987 0.9758 0.5965

3 Hamilton 1.9602 1.1073 1.0164 0.6501

4 Reefton 2.4644 1.3063 1.0482 0.6453

The scatter plots clearly show that the prediction error of each model

varies over time and there is no one single model that works the best all the

time across the period of examination. However, the plots also show that

the prediction errors produced by the IMMF during the testing period are

generally distributed closer to 0 compared to the other models. This fact

indicates that by assimilating predictions from DIN, LTM and mTNFI, the

IMMF is capable of producing more accurate results in predicting movements

of multiple time-series.

Plots of prediction trajectories produced by DIN, LTM, mTNFI and the

IMMF as illustrated in Figure 8.3 show that the proposed global, local, trans-

ductive model and the integrated framework closely match the actual trajecto-

ries. This outcome is in agreement with results of the analysis and modelling

of the multiple interactive stock markets outlined in Chapter 7, and therefore

suggests that including the nature and strength of relationships into a predic-

tion model leads to improving the accuracy of prediction of given variables

involved in the system under observation.

Figures 8.4 and 8.5 illustrate how the contributing weights of DIN, LTM

and mTNFI that are defined by the IMMF to calculate the final prediction of
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Figure 8.3. Prediction of Auckland, Hamilton, Paeroa and Reefton air pressure

level.

air pressure levels in the four locations are changing dynamically in relation to

the movement of the absolute error of each model. These plots indicate that

the IMMF is able to adjust the level of trust given to each model (in the form

of contributing weights) to maintain the level of its accuracy of prediction over

time.

As a quantitative performance comparison, prediction of air pressure levels

in the four observation locations using methods applied on single time-series

prediction such as MLR, MLP and the random walk model is conducted and

the outcomes are compared to results from the IMMF. Generally, error rates
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Figure 8.4. Assigned contributing weights for prediction of Auckland and Hamilton

air pressure level.
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Figure 8.5. Assigned contributing weights for prediction of Paeroa and Reefton air

pressure.
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Table 8.2

Comparison of the IMMF RMSE prediction error rates against methods applied on

single time-series: MLR, MLP, and random walk model.

No Location IMMF MLR MLP Random Walk

1 Auckland 0.6411 3.5236 3.0371 1.6340

2 Paeroa 0.5965 3.4257 3.1592 1.6868

3 Hamilton 0.6501 3.7263 3.4958 1.8316

4 Reefton 0.6453 4.1725 3.9125 2.4708

of prediction in RMSE outlined in Table 8.2 reveal that the proposed IMMF

is superior to MLR, MLP and random walk model. Interestingly, random

walk being the simplest model of all also outperforms MLR and MLP. The

explanation to this outcome was discussed previously.

In Chapters 3 and 7 it was explained that the random walk model works

simply by assuming that next value of a time-series is equal to its current value

and therefore this model often gives better statistical results (in terms of sum

squared of residual). However, this quantitative superiority is deceptive as

the random walk model produces a shadow plot effect, and therefore despite

of its capability to produce small RMSE in time-series prediction, it actually

provides no predictive power.

8.5 Knowledge Discovery and Discussion

The initially extracted DIN model from the training data as illustrated in

Figure 8.6 reveals that in the period of observation, there are significant in-

teractions between air pressure levels in Auckland, Hamilton, Paeroa and

Reefton. This outcome is in fact in agreement with the trajectories of air

pressure level in these four locations (as depicted in Figure 8). The plots
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(a) Mathematical model of interaction between multiple time-series

(b) Interaction network model

Figure 8.6. Mathematical model of interaction and its interaction network model

between air pressure levels in Auckland, Paeroa, Hamilton and Reefton from the

training data set.

of trajectories show that there is a similar shape of air pressure level move-

ment in Auckland, Hamilton, Paeroa and Reefton during the period of eval-

uation. Therefore, having an interaction network model which describes the

relationships between the four locations in a form of fully-connected graph is

expected. Additionally, this finding also suggests that even though Reefton is

located distantly from Auckland, Hamilton and Paeroa, in general movement
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Figure 8.7. Mathematical model of interaction and its interaction network model

between air pressure levels in Auckland, Paeroa, Hamilton and Reefton at the end

of the testing period.

of air pressure levels in these four locations exhibit similar manner and are

influencing each other. Based on this discovery, it can be proposed that one

should consider taking into account information about weather conditions in

distant places when forecasting weather condition in a particular location as

there might exist direct on indirect interactions between variables of interest

in those places.
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When more data ranging from the beginning of October to the end of

December 2010 (the test data set) is added to the DIN model, the interac-

tion network model in general remains stable, as depicted in Figure 8.7. It

is observable that the interactions between Auckland, Hamilton, Paeroa and

Reefton generally stay in a similar manner. This outcome suggests that pat-

terns of interactions between air pressure level at different locations in New

Zealand are considerably stable over the period of evaluation.

Nevertheless, the adapted interaction network model (extracted at the

end of the testing period) also shows that the strength of interactions be-

tween variables of interest has changed when compared to the ones from the

training period. This finding suggest that the state of the weather system is

actually changing over time and therefore the state of existing interactions

are also changing dynamically, i.e. new interactions are emerging or existing

interactions are disappearing.

Extracted profiles of relationships as shown in Figure 8.8 reveals that in

the period of observation there is a significant number of episodes when Auck-

land, Hamilton and Paeroa are moving together (N = 437; where N is the

exact number of occurrences of a particular profile) while Reefton moves inde-

pendently (N = 516). This discovery indicates that the relationships between

Auckland, Hamilton and Paeroa are stronger compared to their relationship

with Reefton. In regards to this finding, DIN model (see Figure 8.6) is in

general agreement with the LTM.

Additionally, Figure 8.8 also reveals that in the same period air pressure

trajectories in Auckland, Paeroa, Hamilton and Reefton were frequently cor-

related with each other. This can be observed from the number of occurrences

N , and the cluster diameter of the cluster to which these four locations were

allocated together. The four sites were clustered together 365 times which was

a considerably large number of co-occurrences during the examination period.

The cluster diameter has a value of 0.0542, confirming that the air pressure
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Figure 8.8. Profiles of relationships of LTM in the period of April 2008 to September

2010 of air pressure levels in Auckland (A), Paeroa (P), Hamilton (H) and Reefton

(R).

level in these four observed locations progresses in a comparable fashion at

certain periods of time. In LTM, cluster diameter represents maximum nor-

malised correlation coefficients between time-series that belong to the same

cluster. It ranges from 0 to 1, where 0 denotes high similarity and 1 signifies

the opposite condition.

Consequently, the interaction network model as illustrated in Figure 8.6 in-

dicates comparable actuality as it reveals the existence of fully interdependent

relationships between air pressure level at the four locations.
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Figure 8.9. Profiles of relationships of LTM in the period of October to December

2010 of air pressure levels in Auckland (A), Paeroa (P), Hamilton (H) and Reefton

(R).

The existence of a strong relationship between Auckland, Hamilton, Paeroa

and Reefton was also being recognised by DIN after the data ranging from

the beginning of October 2010 to the end of December 2010 is conferred (as

illustrated in Figure 8.7). This result is again in agreement with the out-

come from the LTM as during this period of examination it also recognised

that Auckland, Hamilton, Paeroa and Reefton are progressing together in a

significant number of episodes as depicted in Figure 8.9.

Figures 8.10 and 8.11 outline two sets of fuzzy rules that constructed the
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Figure 8.10. Extracted fuzzy rules (first-order Takagi-Sugeno type) from mTNFI

when predicting last time point of test data. (Rule 1 - Rule 3)

inference system when mTNFI predicted the air pressure level at time-point

992 of the whole data set (the last point of the testing data set). As in

previous experiment with the multiple stock market indexes, here the number

of selected nearest samples used by mTNFI to build the inference system is

again set to a fixed value of 80 samples. Figures 8.10 and 8.11 show that for

the 90th-point of the test data, 5 rules were created, indicating that the 80

nearest samples were grouped into 5 clusters in the modelling process.

The consequent parts of the fuzzy rules outlined in Figures 8.10 and 8.11,
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Figure 8.11. Extracted fuzzy rules (first-order Takagi-Sugeno type) from mTNFI

when predicting last time point of test data. (Rule 4 - Rule 5)

indicate that the upcoming air pressure level in a particular location is de-

pendent on the air pressure level in other observed locations. In addition,

the fuzzy rules also signify that there is a complex form of interdependencies

between air pressure levels in different locations. For instance, each created

rule indicates that the upcoming air pressure level in Auckland is being signifi-

cantly influenced by Paeroa and Hamilton, while Reefton gave only a relatively

small contribution compared to those of Paeroa and Hamilton. In addition,

the rules also indicate that Reefton is being influenced more by Auckland,

Paeroa and Hamilton rather than by itself, and so forth.

Furthermore, all created fuzzy rules are in line with findings from the DIN

model and LTM, suggesting that movements of air pressure levels in Auckland,

Hamilton, Paeroa and Reefton are frequently inter-correlated and influencing

each other.
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8.6 Conclusion

This chapter presented an application of DIN, LTM, mTNFI and IMMF for

the analysis, modelling and prediction of a weather data set from different

locations. As a case study daily air pressure levels collected at four different

sites in New Zealand are used. Results from conducted experiments show that

the DIN, LTM, mTNFI and the IMMF are capable to perform simultaneous

multiple time-series prediction with a considerably high accuracy.

It was also found that during the period of examination, the performance

of DIN, LTM, mTNFI and IMMF varies and no one single model was found

to always perform the best across the whole testing period. However, the cal-

culated RMSE suggests that the IMMF is a better and more stable prediction

model. This finding yet again confirms that every model has their own power

in prediction, and by integrating these models a powerful model for multiple

time-series prediction can be realised.

Conclusively, outcomes from the comparative analysis of the proposed

IMMF against MLR, MLP and random walk again clearly indicate the value

of extracting and exploiting relationships between multiple variables, when

the variables concerned are influencing each other in a dynamic fashion.



Chapter 9

Conclusion and Further Research

9.1 Dynamic Interaction Network: DIN

The first method for multiple time-series analysis and modelling introduced

in this thesis is the Dynamic Interaction Network denoted as DIN, which was

developed based on a method proposed by Kasabov et al. (2004) to identi-

fying interdependencies between genes. DIN is a global modelling technique

for multiple time-series that utilises the Kalman filter and the EM algorithm

to perform a state-space estimation modelling by extracting a transition ma-

trix from the inter-related multiple time-series data. Extending the method

proposed by Kasabov et al. (2004), DIN employs an on-line learning process

with the ability to capture time varying patterns of inter-relationships be-

tween multiple time-series. Therefore it is able to evolve its structure as new

forms of relationship between variables emerge over time.

Results from experiments with synthetic data show that DIN as a global

model for multiple time-series analysis and modelling is useful in capturing

global trends of dynamic interactions between variables. Additionally, out-

comes from experiments using multiple interactive stock markets in the Asia

Pacific region and weather data from New Zealand suggest that extraction of

DIN models (interaction network) reveals important and complex interdepen-

dencies among observed variables. Furthermore, it was also confirmed that

interaction network model was not just limited to exposing essential relation-

ships; it could also be employed to predict future values of observed variables
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with an acceptable degree of accuracy.

9.2 Localised Trend Model: LTM

There is an understanding that the trajectories produced by global models

often fail to track localised changes that take place at discrete points in time

due to the fact that trajectories tend to smooth localised deviations by av-

eraging the effects of such deviations over a long period of time. It is then

logical to develop localised models that are built only on data that define the

phenomenon under consideration and are not contaminated by data outside

the underlying phenomenon.

A local model for multiple time-series analysis and modelling was then in-

troduced in this research. The principal objective of the methodology, named

Localised Trend Model or LTM, is to construct a repository of profiles and

recurring trends whose structure will dynamically evolve as changes take place

in the observed non-stationary environment over time. Results of conducted

experiments with synthetic data, stock market indexes in the Asia Pacific re-

gion and the New Zealand’s weather data suggests that LTM is capable of

capturing more detail and localised patterns of relationship between variables

and therefore in general offers better prediction accuracy compared to DIN.

9.3 Multivariate Transductive Neuro-Fuzzy

Inference System: mTNFI

Both global and local models are realisations of the inductive reasoning ap-

proach, in which they are concerned with the creation of models (functions)

from all available data or a number of local models, representing the entire

problem space. Transductive inference, introduced in Vapnik (1998), is de-
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fined in contrast as a method used to estimate the value of a potential model

(function) only for a single point of space (that is, a new data vector) by

utilising additional information related to that vector. A key advantage of

this type of learning method is that this method is capable of constructing

local and specific estimation model(s) for each new instance that needs to be

classified or predicted (Kasabov, 2007b; Mitchell, 1997).

As multiple data streams consist of various variables producing examples

continuously over time, the basic idea behind the proposed transductive model

for multiple time-series analysis and modelling, named the Multivariate Trans-

ductive Neuro-Fuzzy Inference System (mTNFI), is simply to find and model

relationships between variables that produce these streams of data at a par-

ticular time moment and then to search for similar forms of relationships from

the past. Found instances will then be utilised to constitute a specific model

of inference system to predict future values of the variables being observed.

The mTNFI is an extension of the NFI model for transductive reason-

ing (Q. Song & Kasabov, 2005). Modifications were made so that the new

methodology is now capable of performing multiple time-series data analysis

and modelling. As it develops an individual model over the new input vector,

mTNFI provides a specific and better local generalisation and therefore offers

a better prediction accuracy compared to DIN and LTM.

This conclusion is made based on results from experiments using synthetic

data, multiple stock market indexes in the Asia Pacific region and the New

Zealand’s weather data.

9.4 Integrated Multi-Model Framework: IMMF

DIN is capable of capturing global trends of interaction in multiple time-series,

while LTM captures local patterns of relationship between variables from dif-

ferent time localities, and the mTNFI is capable of constructing local and
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specific fuzzy inference system for each new input vector. All three models

are useful for complex modelling tasks, providing complementary informa-

tion and knowledge and have their own predictive power. To allow multiple

models with different approaches to the problem, and to extract knowledge

with different predictive power to be integrated, a mixture of models in an

integrated multi-model framework named the IMMF for multiple time-series

analysis and modelling is proposed in this thesis.

The IMMF means to utilise the global and local model of inductive rea-

soning in recognising and modelling global trends of multiple time-series in-

teractions along with their profiles of relationships and recurring trends in

different time localities. On the other hand, the transductive reasoning is put

into action to estimate movement of multiple time-series in short and chaotic

periods. Integrating the three models through a weights adjustment module

that regulates the contributing weight or level of trust given to each model

based on its prior prediction error is expected to allow better prediction to be

made than any single model alone.

The proposed integrated framework was evaluated using synthetic data

and applied to two different case studies, which are the prediction of mul-

tiple stock market indexes in the Asia Pacific region and the prediction of

air pressure level at different locations in New Zealand. Outcomes of con-

ducted experiments with synthetic data and the two case studies reveal that

the integrated multi-model framework is capable of dynamically adjusting the

contributing weight assigned to each model and generally produces predictions

with better accuracy compared to those of the global (DIN), local (LTM) and

transductive model (mTNFI). Additionally, comparison with single time-series

prediction methods such as MLR, MLP and random walk model confirmed

that the proposed IMMF is superior.
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9.5 General Discussion

The PhD study suggests that the dynamics of relationship between a set

of related time-series variables from a specific setting can be modelled and

utilised for simultaneous prediction of multiple time-series with a consider-

ably high accuracy. In addition, comparison with outcomes from single-time

series prediction models clearly indicates the value of extracting and exploit-

ing relationships between multiple variables in prediction, when the variables

concerned are influencing each other in a dynamic fashion.

Results from the two case studies indicate that the extraction of the dy-

namics of relationship between variables can be of help to predict their future

values. Additionally, utilising the proposed methods the existence of impor-

tant and complex interdependency in both multiple interactive stock markets

in the Asia Pacific region and the state of air pressure level at different loca-

tions in New Zealand was revealed.

It can then be summarised that the idea of including the nature and

strength of relationships between variables into a prediction model appears

to be beneficial to the multiple time-series problem of modelling and predict-

ing simultaneous movements of a collection of time sensitive variables which

are related to each other. It allows the identification of complex dynamic in-

teractions between variables that may lead to further studies, and allows for

better accuracy in multiple time-series prediction.

Nevertheless, for some methods i.e. the LTM, the granularity of data

snapshots is critical to the accuracy of the model, as different size of snapshot

window might cause the extraction of varied information and understanding.

Therefore, a careful selection or further analysis of how this granularity of

data snapshots should be determined needs to be conducted.
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9.6 Future Research

The work and research conducted during this PhD study is limited by time,

yet there is much work to be done to extend this research and improve the

performance of all proposed methods. Some possible future directions for this

topic of research are proposed and discussed in the following three sections.

9.6.1 Modelling Non-Linear Relationships

Currently interaction between time-series is modelled in a linear form which

is a simplified representation of more complex relationships between variables

related to real world phenomena. In relation to this, one of the future direc-

tions of the study is to extend the proposed methods to allow the modelling of

non-linear relationships between contributing variables in multiple time-series

data.

To realise this, the extended Kalman filter (Welch & Bishop, 1995) which

is capable of modelling non-linear relationships between variables can be used

in place of the discrete Kalman filter in DIN. Also, in order to capture the

existence of functional correlation between variables LTM can employ the cor-

relation ratio (Roche, Malandain, Pennec, & Ayache, 1998) to replace the cur-

rently used Pearson’s correlation. Additionally, a high-order Takagi-Sugeno

fuzzy inference system that models relationships between variables as non-

linear functions can be used in mTNFI to model more complex and non-

linear relationships between contributing variables rather than the first-order

Takagi-Sugeno fuzzy inference system.

9.6.2 Incorporating a Forgetting Function in LTM

As multiple data streams produce large amount of samples over time, the

growth of the knowledge repository of the LTM will be immense. Nevertheless,
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there is always some possibilities that certain profiles of relationships in the

knowledge repository might became obsolete after sometimes. In relation to

this possibility, a forgetting function that removes those configurations which

have not been used for a certain period should be incorporated into the LTM.

This functionality will help to eliminate the pressure of the repository growth

of the LTM.

9.6.3 Parameter Optimisation

One of the challenges in the proposed local, transductive model and the inte-

grated framework is parameter optimisation. These algorithms have several

parameters that have significant impact on the performance. For instance, in

both LTM and mTNFI the distance threshold affects the number of created

clusters, which in turn sets the number of clusters of recurring trends in LTM

or fuzzy rules in mTNFI used for prediction. Another example of a parameter

that needs to be optimised in mTNFI is the number of nearest neighbours,

which will affect the reliability of constructed models/rules. Additionally, in

the integrated framework the learning rate and the number of training itera-

tions are also important factors that have an effect on the prediction accuracy

and the convergence of the learning process.

The parameters in LTM, mTNFI and IMMF are currently being set by

hand based on the prediction accuracy of the training data without any op-

timisation. The logical next step of the study is optimisation of parameters

with the widely-used evolutionary optimisation algorithm, known as genetic

algorithm (GA) (Chafekar, Shi, Rasheed, & Xuan, 2005; Medeiros, Amaral, &

Campello, 2006; Shoenauer & Xanthakis, 1993), or with the state-of-the-art

optimisation algorithms developed in the Knowledge Engineering and Discov-

ery Research Institute of AUT (http://kedri.info) known as the Versa-

tile Quantum Inspired Evolutionary Algorithm (vQEA)(Platelt, Schliebs, &
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Kasabov, 2007; Schliebs, Platel, Worner, & Kasabov, 2009).

9.6.4 Computational Load Assessment of the Proposed

Methods

Currently the main objective of the PhD study is to capture and model dy-

namic patterns of interactions between multiple time-series to discover new

knowledge and improve our understanding about the behaviour of a dynamic

system related to the real world problems. Additionally, the study also aims

to perform simultaneous multiple time-series prediction by utilising knowledge

about the dynamic of interactions between variables over time. Therefore, no

assessment of computational load of the proposed methods i.e. DIN, LTM,

mTNFI and IMMF has been done.

However, prior to implementing the proposed methods in a production

stage, assessments of the computational performance of the proposed methods

need to be conducted as a future task of this study.

9.6.5 peSNN Reservoir for Multiple Time-Series

Analysis

In recent years, triggered by the need to better understand and mimic the

brain’s capability to process information, the development of more complex

and biologically plausible neural network or connectionist models named spik-

ing neural networks (SNN) became known (Gerstner & Kistler, 2002; Maass

& Bishop, 2001; Vreeken, 2003). Different to the widely-known and used neu-

ral network models, i.e. perceptron or MLP, SNN models use trains of spikes

to represent the input signals rather than continuous variables. Many studies

have attempted to use these models to solve complex real world problems,

and some of them demonstrated very promising results. As an extension to
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SNN models, an evolving spiking neural network (eSNN) architecture which

is capable of modifying the structure and connection weights of the network

during the training process was proposed in Kasabov (2009). The eSNN em-

ploys a supervised learning methodology and is mainly used as a classifier

that learns the mapping from a single data vector to a specified class la-

bel and is therefore very suitable for the classification of time-invariant data

(Sichtig, Schaffer, & Riva, 2010; Soltic, Wysoski, & Kasabov, 2008; Wysoski,

Benuskova, & Kasabov, 2010).

Nevertheless, most of today’s data volumes are continuously updated over

time, adding an additional time dimension to the data sets resulting in a

spatio/spectro-temporal data which the eSNN is not capable of dealing with.

In relation to this, an extension of eSNN that enables the processing of

spatio/spectro-temporal information is proposed in Schliebs et al. (2010). The

main idea of the proposed architecture is to add an additional layer to the net-

work architecture that transforms the spatio/spectro-temporal input pattern

into a single high-dimensional network state (see Figure 9.1). For a classifi-

cation task, the mapping of this intermediate state into a desired class label

can then be learned by any of the classifiers in the output layer, for instance

the eSNN.

In their study, Schliebs et al. (2010) employed the concepts of the reser-

voir computing paradigm (Verstraeten, Schrauwen, D’Haene, & Stroobandt,

2007) to realise the spatio/spectro-temporal filter, in which the reservoir is rep-

resented by a large recurrent neural network whose topology and connection

weight matrix is fixed. The main functionality of the reservoir in the proposed

architecture is to project the network inputs into a high-dimensional space in

order to enhance their separability. Here, Schliebs et al. (2010) introduced

the use of probabilistic evolving spiking neural network (peSNN) (Kasabov,

2009, 2010) when constructing the spatio/spectro-temporal filter. Based on

their experimental results in Schliebs et al. (2010), it was found that proba-
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Figure 9.1. Extended evolving spiking neural network (Schliebs et al., 2010).

bilistic neural models are principally suitable reservoirs that have furthermore

the potential to enhance the separation ability of spatio-temporal data. Ad-

ditionally, due to the use of recurrent networks, the state of the reservoir

can incorporate temporal information present in the input signals. Thus, the

reservoir approach is very suitable to process spatio/spectro-temporal data.

As streams of multiple time-series data relating to real world phenomena

can be considered as spatio/spectro-temporal data, it then would be inter-

esting to investigate whether the reservoir computing based architecture pro-

posed in Schliebs et al. (2010) can be implemented for multiple time-series

analysis and modelling. The nature of the spiking neurons used to construct

the reservoir, which is capable of capturing not only the spatio/spectro but

also the temporal information of the input signals is the main appealing feature

of the framework. Being able to store the information of both spatio/spectro

data and the temporal aspect, it is expected that the peSNN reservoir com-

puting is a suitable approach for multiple time-series analysis and modelling.

Furthermore, as the spatio/spectro-temporal filter transforms the input sig-

nals to a single high-dimensional network state it would also be interesting

to study if this high-dimensional network state actually represents new infor-
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mation or knowledge related to the system under examination, such as the

interactions between series over time.

However, as the initial aim of the proposed architecture in (Schliebs et al.,

2010) is to solve classification problems, some alterations need to be made

before it can be implemented for multiple time-series analysis and modelling.

The main modification that needs to be made to the proposed architecture

(as shown in Figure 9.1) would be the replacement of the classification module

with multivariate time-series analysis models.



Appendix A

Parameter Estimation

This appendix derives various results for least squares estimation of the mul-

tiple linear regression model using matrix notation and matrix algebra.

A.1 Ordinary Least-Square Estimator

Throughout this appendix, the t subscript is used to index observations and an

n to denote the sample size. It is useful to write the multiple linear regression

model with k parameters as follows:

yt = β0 + β1xt1 + β2xt2 + ...+ βkxtk + εt, t = 1, 2, ..., n, (A.1)

where yt is the dependent variable for observation t, and xtj , j = 1, 2, ..., k, are

the independent variables. As usual, β0 is the intercept and β1, ..., βk denote

the slope parameters.

For each t, define a 1 × (k + 1) vector, xt = (1, xt1, ..., xtk), and let β =

(β0, β1, ..., βk) be the (k+1)× 1 vector of all parameters. Then, we can write

Equation (A.1) as

yt = xtβ + εt, t = 1, 2, ..., n. (A.2)

Equation (A.2) can be written in full matrix notation by appropriately defining

data vectors and matrices. Let y denote the n×1 vector of observations on y:

the tth element of y is yt. Let X be the n× (k + 1) vector of observations on

the explanatory variables. In other words, the tth row of X consists of vector
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xt as it is written out in detail:

X =

















x1

x2

...

xn

















=

















1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

1 xn1 xn2 · · · xnk

















Finally, let ε be the n×1 vector of unobservable errors or disturbances. Then,

Equation (A.2) for all n observations can be written in matrix notation:

y = Xβ + ε. (A.3)

Estimation of β proceeds by minimising the sum of squared residual. De-

fine the sum of squared residuals fuction for any possible (k+1)×1 parameter

vector b as

SSR(b) ≡
n
∑

t=1

(yt − xtb)
2. (A.4)

The (k+1)×1 vector of ordinary least squares estimates, β̂ = (β̂0, β̂1, ..., β̂k)
′,

minimises SSR(b) over all possible (k + 1) × 1 vectors b. This is a problem

in multivariable calculus. For β̂ to minimise the sum of squared residuals, it

must solve the first order condition

∂SSR(β̂)/∂b ≡ 0 (A.5)

Using the fact that the derivative of (yt − xtb)
2 with respect to b is the

1× (k + 1) vector −2(yt − xtb)xt, (A.5) is equivalent to
n
∑

t=1

x′

t(yt − xtβ̂) ≡ 0. (A.6)

This first order condition can be written as
n
∑

t=1

(yt − β̂0 − β̂1xt1 − ...− β̂kxtk) = 0

n
∑

t=1

xt1(yt − β̂0 − β̂1xt1 − ...− β̂kxtk) = 0

...
n
∑

t=1

xtk(yt − β̂0 − β̂1xt1 − ...− β̂kxtk) = 0
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which are often called ordinary least-square (OLS) (Wooldridge, 2006) first

order conditions. It is meaningful to write these in matrix form to make them

easier to manipulate. It is observable that Equation (A.6) is equivalent to

X′(y −Xβ̂) = 0 (A.7)

or

(X′X)β̂ = X′y (A.8)

It can be shown that Equation (A.8) always has at least one solution. Mul-

tiple solutions provide no help, as what is being looked for is a unique set of

OLS estimates given a data set. Assuming that the (k + 1) × (k + 1) sym-

metric matrix X′X is nonsingular, both sides of (A.8) can be premultiplied

by (X′X)−1 to solve estimator β̂:

β̂ = (X′X)−1X′y (A.9)

This is the critical formula for matrix analysis of the multiple linear regression

model. The assumptions that X′X is invertible, is equivalent to the assump-

tion that rank(X) = (k + 1), which means that the columns of X must be

linearly independent.

The n× 1 vectors of OLS fitted values and residuals are given by

ŷ = Xβ̂,

ε̂ = y − ŷ = y −Xβ̂.
(A.10)

The matrix approach to multiple regression can be used as the basis for a

geometrical interpretation of regression.

A.2 Weighted Least-Square Estimator

The method of least square can be extended by assigning different weights

to the data points. This methodology is known as the weighted least-square
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(Weisberg, 2005). If w1, w2, ..., wn denote the weighted assigned, the weighted

sum of squares (WSS) is minimised, instead of the sum of squares residual:

WSS(b) ≡

n
∑

t=1

wt(yt − xtb)
2. (A.11)

This includes ordinary least squares as the special case where all the weights

wt = 1.

The (k+1)×1 vector of weighted least squares estimates, β̂ = (β̂0, β̂1, ..., β̂k),

minimises WSS(b) over all possible (k + 1)× 1 vectors b. For β̂ to minimise

WSS, it must solve the first order condition

∂WSS(β̂)/∂b ≡ 0 (A.12)

The derivative of wt(yt − xtb)
2 with respect to b is the 1 × (k + 1) vector

−2wt(yt − xtb)xt, Equation (A.12) is equivalent to

n
∑

t=1

x′

twt(yt − xtβ̂) ≡ 0. (A.13)

Let W denote the n × n diagonal matrix with elements w1, w2, ..., wn which

are the weights for the unobservable errors or disturbances. The weighted

sum of squared (A.13) is equivalent to

X′W(y−Xβ̂) = 0 (A.14)

or

(X′WX)β̂ = X′Wy (A.15)

It can be shown that Equation (A.15) always has at least one solution. Again,

multiple solutions should provide no help, as what is being looked for is a

unique set of OLS estimates given a data set. Assuming that the (k+1)×(k+1)

symmetric matrix X′WX is nonsingular, both sides of Equation (A.15) are

premultiplied by (X′WX)−1 to solve estimator β̂:

β̂ = (X′WX)−1X′Wy (A.16)
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Application of the weighted least square method requires the knowledge of

the weights, wt. Sometimes prior knowledge, experience, or information from

the theoretical model can be used to determine the weights. In some cases it

is necessary to guess the weights, perform the analysis, and then re-estimate

the weights based on the results. Several iterations may be necessary.

A.3 Recursive Least-Square Estimator

This section explains a recursive method to compute least squares estimation

solution known as the recursive least-square (Vu, 2007). The previous section

shows that the least squares estimation has the solution as in Equation A.9.

Since we have t observations, we can attach the parameter vector with the

subscript t to indicate that the parameter vector has been estimated with t

observations, or it has been estimated at the time labelled t. We can write

Equation A.9 as follows

β̂t = PtX
′

tyt (A.17)

where

Pt = (X′

tXt)
−1

The initial value of β̂n can be calculated from Equation A.17 by using the

first n observations from the learning data set.

Now, when the observation t+ 1 is available, we want to find the relation

between β̂t+1 and β̂t. By using a matrix identity of the inverse of the sum of a

matrix and an outer product of two vectors, known as the Sherman-Morrison
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formula, we can write

Pt+1 =
(

X′

t+1Xt+1

)

−1

=
(

X′

tXt + x′

t+1xt+1

)

−1

= (X′

tXt)
−1 −

(X′

tXt)
−1

x′

t+1xt+1 (X
′

tXt)
−1

1 + xt+1 (X′

tXt)
−1

x′

t+1

= Pt −
Ptx

′

t+1xt+1Pt

1 + xt+1Ptx
′

t+1

(A.18)

and therefore we can write

β̂t+1 =
(

X′

t+1Xt+1

)

−1
X′

t+1yt+1

=

(

Pt −
Ptx

′

t+1xt+1Pt

1 + xt+1Ptx
′

t+1

)

(

X′

tyt + x′

t+1yt+1

)

=

(

It −
Ptx

′

t+1xt+1

1 + xt+1Ptx
′

t+1

)

Pt

(

X′

tyt + x′

t+1yt+1

)

=

(

It −
Ptx

′

t+1xt+1

1 + xt+1Ptx
′

t+1

)

(

β̂t +Ptx
′

t+1yt+1

)

= β̂t +
Ptx

′

t+1

1 + xt+1Ptx
′

t+1

(

yt+1 − xt+1β̂t

)

= β̂t +Pt+1x
′

t+1

(

yt+1 − xt+1β̂t

)

(A.19)

The estimated parameter β̂t+1 in recursive form as in the above equation has

many advantages. We can see right away that it makes the problem of matrix

inversion in successive calculation disappear. Also, we can see the effect on

the parameter vector of the new observation. This is so convenient for process

control because the parameter vector is updated in real time.

A.4 Weighted Recursive Least-Square

Estimator

The previous recursive least square estimation weighs each observation equally.

The method can be extended by assigning weights to each observation. Since

we have t observations, we can write Equation A.16 as follows

β̂t = PtX
′

tWtyt (A.20)
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where

Pt = (X′

tWtXt)
−1

The matrix Wt is the weighting matrix

Wt =

















w1 0 · · · 0

0 w2 · · · 0
...

...

0 0 · · · wt

















(A.21)

The solution for weighted recursive least squares estimator with forgetting

factor is defined as follows (Kasabov, 2007a; Vu, 2007):

β̂t+1 = β̂t + wt+1Pt+1x
′

t+1

(

yt+1 − xt+1β̂t

)

(A.22)

Pt+1 =
1

λ

(

Pt −
wt+1Ptx

′

t+1xt+1Pt

λ+ xt+1Ptx
′

t+1

)

(A.23)

where λ is a forgetting factor, its value is usually chosen between 0.8 and 1.

This means the most recent data have the greatest weight.



Appendix B

Optimisation Algorithm

The objective of this Appendix is to outline an algorithm to optimise a per-

formance index F (x). This means to find the value of x that minimises F (x).

The optimisation algorithm that will be discussed is iterative. We begin from

some initial guess, x0, and then update our guess in stages according to an

equation of the form

xk+1 = xk + αkpk (B.1)

or

∆xk = (xk+1 − xk) = αkpk (B.2)

where the vector pk represents a search direction, and positive scalar αk is the

learning rate, which determines the length of the step.

B.1 Gradient Descent

One of the simplest network training algorithms is gradient descent, some-

times also known as steepest descent (Boyd & Vandenberghe, 2004; Hagan

et al., 1995). Nevertheless, it remains one of the more popular deterministic

approaches.

When we update our guess of the optimum (minimum) point using Equa-

tion (B.1), we would like to have the function decrease at each iteration, as

follows

F (xk+1) < F (xk) (B.3)
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Algorithm B.1 Steepest descent method.

Input: a guess point x = x0.

repeat

Compute the steepest descent direction p

Line search. Choose a step, α.

Update. x := x+ αp.

until stopping criterion is satisfied.

Consider the first order of Taylor series expansion of F (x) about the old

guess xk:

F (xk+1) = F (xk + δxk) = F (xk) + gT
k∆xk (B.4)

where gk is the gradient evaluated at the old guess xk:

gk = ∇F (x)
∣

∣

x=xk
(B.5)

To achieve the objective of Equation (B.3), the second term on the right-hand

side of Equation (B.4) must be negative:

gT
k∆xk = αkg

T
k pk < 0 (B.6)

Any vector pk that satisfies this equation is called a descent direction. If

we take a small enough step (αk that is small, but greater than zero) in this

direction, the function will decrease most rapidly when gT
k pk is most negative.

This is an inner product between the gradient and the direction vector. It will

be most negative when the direction vector is the negative of the gradient.

Therefore a vector that points in the steepest descent direction is

pk = −gk (B.7)

Using this in the iteration of Equation (B.1) produces the method of steepest

descent as follows

xk+1 = xk − αkgk (B.8)

For steepest descent there are two general methods for determining the learn-

ing rate, αk. One approach is to minimise the performance index F (x) with
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respect to αk at each iteration. In this case we are minimising along the line

xk − αkgk (B.9)

The other method for selecting αk is to use a fixed value (e.g., αk = 0.02), or

to use variable, but predetermined values (e.g., αk = 1/k).



Appendix C

Lag Operator

In time series analysis, the lag operator (Hamilton, 1994; Verbeek, 2008) op-

erates on an element of a time series to produce the previous element. For

example, given some time series X = {X1, X2, ...} then

LXt = Xt−1, for all t > 1 (C.1)

where L is the lag operator. Note that the lag operator can be raised to

arbitrary integer powers so that

L−1Xt = Xt+1

and

LkXt = Xt−k

C.1 Lag Polynomials

Also polynomials of the lag operator can be used. For example,

εt = Xt −

p
∑

i=1

φiXt−i = (1−

p
∑

i=1

φiL
i)Xt

specifies an AR(p) model.

A polynomial of lag operators is called a lag polynomial so that, for ex-

ample, the ARMA model can be concisely specified as

φXt + θεt
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where φ and θ respectively represent the lag polynomials,

φ = 1−

p
∑

i=1

φiL
i

and

θ = 1 +

q
∑

i=1

θiL
i

C.2 Difference Operator

In time series analysis, the first difference operator ∆ is a special case of lag

polynomial.

∆Xt = Xt −Xt−1

∆Xt = (1− L)Xt

(C.2)

Similarly, the second difference operator

∆(∆Xt) = ∆Xt −∆Xt−1

∆2Xt = (1− L)∆Xt

∆2Xt = (1− L)(1− L)Xt

∆2Xt = (1− L)2Xt

(C.3)

The above approach generalises to the ith difference operator

∆iXt = (1− L)iXt (C.4)
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