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Abstract - A new asynchronous early output section-carry 

based carry lookahead adder (SCBCLA) with alias carry output 

logic is presented in this paper. To evaluate the proposed 

SCBCLA with alias carry logic and to make a comparison with 

other CLAs, a 32-bit addition operation is considered. Compared 

to the weak-indication SCBCLA with alias logic, the proposed 

early output SCBCLA with alias logic reports 13.2% reduction in 

area without any increases in latency and power dissipation. On 

the other hand, in comparison with the early output recursive 

CLA (RCLA), the proposed early output SCBCLA with alias 

logic reports 16% reduction in latency while occupying almost the 

same area and dissipating almost the same average power. All the 

asynchronous CLAs are quasi-delay-insensitive designs which 

incorporate the delay-insensitive dual-rail data encoding and 

adhere to the 4-phase return-to-zero handshaking. The adders 

were realized and the simulations were performed based on a 

32/28nm CMOS process.    

 

I. INTRODUCTION 
 

Quasi-delay-insensitive (QDI) asynchronous circuits 

adopt an unbounded delay model for gates and wires with 

the exception of isochronic forks [1], which form the 

weakest compromise to delay-insensitivity. The signal 

transitions on all the isochronic forks, whether they are up-

going or down-going, are assumed to happen concurrently. 

QDI circuits are the practically realizable delay-insensitive 

circuits which are robust to variations in process, supply 

and threshold voltages, and the operating temperature. 

Besides being adaptive and modular [2], QDI circuits are 

self-checking [3] and are naturally resistant to side channel 

attacks in the case of secure applications [4 – 7].  

The main reasons for the robustness of QDI circuits 

are: i) delay-insensitive encoding for binary data 

representation and processing, and ii) adoption of a 4-phase 

handshake protocol for data communication. For delay-

insensitive data encoding, the dual-rail or 1-of-2 code is 

common and is widely used. The dual-rail or 1-of-2 code is 

the simplest member of the family of delay-insensitive m-

of-n codes [8]. According to the dual-rail code, a data wire 

X is represented using 2 wires say, X1 and X0 as shown in 

Figure 1. X = 1 is encoded as X1 = 1 and X0 = 0, and X = 

0 is encoded as X1 = 0 and X0 = 1. These two 

combinations represent the data. X1 = X0 = 0 is referred to 

as the spacer, and X1 = X0 = 1 is said to be invalid since 

the coding scheme is unordered [9]. In this work, we 

employ the dual-rail code for binary data encoding. The 

representation of 1 and 0 by respectively assigning a 1 to 

X1 and X0 on a mutually exclusive basis, and the usage of 

the zero spacer to denote the return-to-zero of all the 

encoded data wires defines the 4-phase return-to-zero 

handshake protocol.   
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Fig. 1. A QDI asynchronous circuit stage correlated with the data 

sender and data receiver analogy for illustration 

  

In general, the 4-phase handshake protocol used for 

data communication in a QDI asynchronous circuit may 

involve either an intermediate return-to-zero [10] or a 

return-to-one [11] phase. In this work, we consider the 4-

phase return-to-zero handshaking which is explained with 

reference to Figure 1 through the following steps. The 

completion of the following four steps signifies the 

completion of one data transaction based on the 4-phase 

return-to-zero handshake protocol, which then paves the 

way for further data transaction(s). In short, the application 

of primary inputs follows the input sequence: data-spacer-

data-spacer, and so forth.  

• The dual-rail data bus shown in Figure 1 is initially 
in the spacer state and ACKIN is 1. The sender can 
now transmit a data which would give rise to up-
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going signal transitions on any one of the 
corresponding dual rails of the dual-rail data bus 

• Next the receiver, after receiving the data sent by 
the sender, would drive ACKOUT to 1 

• Then the sender would wait for ACKIN to assume 
0, after which it would drive the entire dual-rail data 
bus to the spacer state 

• Finally, after an unbounded but a finite and positive 
time duration, the receiver would drive ACKOUT to 
0 which implies ACKIN would eventually assume 
1, and this signals the end of one data transaction 

  

II. QDI ASYNCHRONOUS CIRCUIT TYPES 
 

QDI asynchronous logic circuits are classified as 

strongly indicating [12], weakly indicating [12] or early 

output type [13]. The input-output timing relation of 

strong-indication, weak-indication and early output QDI 

asynchronous circuits is portrayed by Figure 2. A strong-

indication asynchronous circuit [14] will start to process 

the data or spacer to produce the corresponding primary 

outputs only after receiving all the primary inputs. A weak-

indication asynchronous circuit [15] would tend to process 

the data or spacer after receiving just a subset of the 

primary inputs and may produce all but one of the 

corresponding primary outputs. However, a weak-

indication asynchronous circuit would produce all the 

primary outputs only after receiving all the primary inputs 

whether they be data or spacer. An early output 

asynchronous circuit [16] would process the data or spacer 

after receiving just a subset of the primary inputs and can 

produce all the corresponding primary outputs. Supposing 

an early output asynchronous circuit produces the spacer on 

all the primary outputs after receiving the spacer on only a 

subset of the primary inputs, it is said to be of early reset 

type. On the other hand, if an early output asynchronous 

circuit produces all the primary output data after receiving 

only a subset of the primary input data, it is said to be of 

early set type. The early set and reset behaviors of an early 

output asynchronous circuit are depicted through the 

portion encapsulated within the blue and red dotted ovals in 

Figure 2.  

It is important that a QDI asynchronous circuit 

should be devoid of circuit orphans viz. wire and gate 

orphans [17] [18]. Any unacknowledged signal transition 

on a wire is called wire orphan and any unacknowledged 

signal transition on a gate output is called gate orphan [19]. 

The signal transitions should be monotonic throughout the 

circuit i.e. either monotonically increasing or 

monotonically decreasing in a QDI asynchronous circuit to 

ensure proper signal acknowledgment from the first logic 

level up to the last logic level [20] of the QDI circuit. 

Imposition of the isochronic fork assumption on the 

primary inputs to a QDI asynchronous circuit would help to 

avoid the problem of wire orphan(s). This is because the 

completion detector that is present in each asynchronous 

circuit stage, as shown in Figure 1, will guarantee the 

complete arrival of the data and spacer into a QDI 

asynchronous circuit during the respective phases. Gate 

orphans are complicated to resolve than wire orphans and 

may necessitate imposing additional timing assumptions 

into a QDI circuit. Hence, the logic decomposition and 

physical realization of QDI asynchronous circuits have to 

be performed carefully by following safe QDI logic 

decomposition principles as outlined in [21 – 23]. In the 

next section, we present and describe an asynchronous 

early output SCBCLA architecture without and with the 

alias logic.  
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Fig. 2. Input-output timing relation of strong-indication, weak-

indication and early output type QDI asynchronous circuits 

 

III. PROPOSED ASYNCHRONOUS EARLY OUTPUT 

SCBCLA WITHOUT/WITH ALIAS CARRY LOGIC 
 

The SCBCLA is based on the concept of dividing an 

n-bit binary adder into k sub-adder sections (i.e. k sub-

SCBCLA modules) where the size of each adder section is 

m-bits [24]. Mathematically, k = n/m where k, m and n are 

positive integers and are even. Here we consider n = 32 and 

m = 4. Hence a 32-bit SCBCLA is constructed using eight 

4-bit sub-SCBCLA modules as shown in Figures 3a and 

3b. In Figures 3a, 3b, 3f and 3g, (A311, A310) and (B311, 

B310) represent the most significant dual-rail augend and 

addend inputs, and (A01, A00) and (B01, B00) represent 

the least significant dual-rail augend and addend inputs. 

(C01, C00) denotes the dual-rail carry input and (C321, 

C320) denotes the dual-rail carry output. As seen in Figure 

3, carry ripples within an adder section to produce the sum 

outputs, and the lookahead carry generated from an adder 

section is passed to the next section as the carry input.  
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Fig. 3a. 32-bit early output SCBCLA without alias logic
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Fig. 3b. 32-bit early output SCBCLA with alias logic
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Fig. 3c. 4-bit SCBCLG without/with alias logic  
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Fig. 3f. 32-bit early output SCBCLA (without alias logic) and RCA hybrid
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In Figures 3a, 3b, 3f and 3g, it can be seen that there is 

an inter-section propagation of the carry signal based on 

lookahead, and an intra-section propagation of the carry 

signal based on a simple rippling and both these happen 

simultaneously. An SCBCLA uses the SCBCLG, the full 

adder (FA), and the sum only logic (SOL) as the circuit 

building blocks.  

Figure 3c shows the gate-level detail of the 4-bit 

section-carry based carry lookahead generator (SCBCLG) 

without/with the alias logic. The SCBCLG is different from 

a conventional CLG in that only one lookahead carry 

output is produced. If the circuit portion shown in red is 

removed from Figure 3c, then the 4-bit SCBCLG produces 

only the lookahead carry output (C41, C40). However, if 

the circuit portion shown in red is retained, then the 4-bit 

SCBCLG produces two pairs of lookahead carry outputs, 

(C41, C40) and (C41alias, C40alias). Note that these two 

dual-rail carry output pairs are logically equivalent. Figures 

3d and 3e show the gate-level details of the early output FA 

and the early output SOL based on [16]. The SOL is 

identical to the FA but does not have a carry output.  

The 4-bit SCBCLG shown in Figure 3c does not 

contain a redundant carry logic when it produces only the 

dual-rail carry output (C41, C40) and not the alias dual-rail 

carry output (C41alias, C40alias). However, when the alias 

dual-rail carry output is also produced by the 4-bit 

SCBCLG, then it is said to contain explicit logic 

redundancy [25]. The logic used to produce (C41, C40) is 

synthesized directly [26] based on deriving the disjoint 

sum-of-products form [27] [28] followed by QDI logic 

decomposition [23]. The carry output logic shown in blue 

in Figure 3e cannot be discarded and (C41alias, C40alias) 

cannot replace the dual-rail carry output (C41, C40) of the 

4-bit SCBCLG due to the gate orphan problem. To explain 

this, let us assume that node N, shown in red in Figure 3c, 

and C01 are 1 during a data phase. In the following return-

to-zero phase if C01 assumes 0 before N could assume 0, 

then C41alias may become 0 before N becomes 0. In this 

case, the late assumption of 0 by N would not be 

subsequently acknowledged by C41alias which results in a 

gate orphan. It may be noted at this juncture that when the 

4-bit SCBCLG produces either (C41, C40) or (C41, C40) 

and (C41alias, C40alias), the presence of a C-element and 

an OR gate with respect to C41 and C40 eliminates the 

problem of gate orphan(s). For example, if C01 and N were 

1 during a data phase, and if C01 assumes 0 before N 

assumes 0 then C41 would not become 0. This is because 

the C-element which has C01 and N as its inputs in Figure 

3c would wait for the arrival of 0 on N. Only after N 

becomes 0, C41 would become 0. However, since node N 

is considered to be isochronic, the arrival of 0 on N would 

be deemed to be acknowledged by both C41 and C41alias.  

When (C41, C40) is sufficient to serve as the 

lookahead carry output of the 4-bit SCBCLG shown in 

Figure 3c, what is the utility of the alias lookahead carry 

output (C41alias, C40alias)? In Figure 3c, it can be seen 

that between C01 and C41, a 2-input C-element1 and a 2-

input OR gate are present, which is the same with respect 

to C00 and C40. However, just a single complex gate viz. 

AO21 is used to connect C01 with C41alias, and likewise 

C00 with C40alias. If A, B, C and D are the inputs to an 

AO21 gate, the output of an AO21 gate, say Y = AB + CD. 

The AO21 gate requires just 10 transistors whereas the 2-

input C-element and 2-input OR gate require 18 transistors. 

The propagation delay of an AO21 gate is less than the sum 

of the propagation delays of the 2-input C-element and the 

2-input OR gate. Excepting the least significant 4-bit sub-

SCBCLA, in the remainder of the sub-SCBCLAs, the inter-

section carry propagation will be governed by the sum of 

the propagation delays of the 2-input C-element and the 2-

input OR gate in the case of Figure 3a (32-bit SCBCLA 

without alias carry output logic). But in Figure 3b (32-bit 

SCBCLA with alias carry output logic), the inter-section 

carry propagation will be dictated by the propagation delay 

of just the AO21 gate. Hence a faster inter-section carry 

propagation is feasible in the case of Figure 3b compared to 

Figure 3a. This is an advantage of the alias carry output 

logic. Also, a faster return-to-zero can be facilitated by the 

alias carry output logic in the case of Figure 3b, while the 

return-to-zero in the case of Figure 3a would encounter the 

worst-case latency as for data processing.  

Figures 3f and 3g portray two example hybrid 32-bit 

adders involving the SCBCLA and the ripple carry adder 

(RCA). Figure 3f shows an example 28-bit early output 

SCBCLA without alias logic which is combined together 

with a 4-bit early output RCA that is present in the least 

significant nibble position. Figure 3g shows an example 

28-bit early output SCBCLA with alias logic that is joined 

to a less significant 4-bit early output RCA. The 

introduction of a RCA to replace the sub-SCBCLA or the 

sub-RCLA in the less significant adder positions was found 

to reduce the latency, area, and average power dissipation 

of a CLA and RCA hybrid in [26] and [29]. This shall be 

discussed in conjunction with the simulation results which 

shall be presented in the next section. The hybrid 

SCBCLA-RCAs shown in Figures 3f and 3g are only 

examples which are considered here to demonstrate their 

relative merits over the regular CLA counterparts.  

 

IV. SIMULATION RESULTS AND DISCUSSION 
 

32-bit SCBCLAs without and with alias carry output 

logic and 32-bit hybrid SCBCLA-RCAs without and with 

alias carry output logic which correspond to weak-

indication and early output types, and a 32-bit early output 

RCLA and a RCLA-RCA hybrid were all physically 

realized in semi-custom ASIC style using the standard cells 

of a 32/28nm CMOS process [30]. The 2-input C-element 

was alone custom designed using 12 transistors, and was 

                                                 
1 The C-element outputs 1 if all its inputs are 1, and outputs 0 if all its 

inputs are 0. If its inputs are different, the C-element would maintain its 

existing steady-state. The C-element is symbolized by the circle with the 

marking ‘C’.    



made available to realize the various asynchronous CLAs. 

The size of the carry lookahead generator used in all the 

CLAs is 4-bits. For the hybrid SCBCLAs and RCLAs, a 4-

bit least significant RCA was used. Only the minimum size 

cells of a standard digital cell library [30] were used for the 

physical synthesis to enable a straightforward comparison 

between the synthesis results of different CLAs. Note that 

all the CLAs mentioned in Table I are QDI designs.  

 
TABLE I 

AVERAGE POWER DISSIPATION, (WORST-CASE) LATENCY, AND 

AREA PARAMETERS OF VARIOUS 32-BIT ASYNCHRONOUS CLAS, 

ESTIMATED USING A 32/28NM CMOS PROCESS 

 

Results 

group 

CLA or CLA-RCA 

hybrid adder type 

Power  

(µW) 

Latency  

(ns) 

Area  

(µm2) 

References [26] [31]: Weak-indication 

 

 

 

Group1 

 

 

 

 

SCBCLA 

(Without alias logic) 

2191 3.31 2951.88 

SCBCLA-RCA 

hybrid 

(Without alias logic) 

2189 3.08 2845.14 

SCBCLA 

(With alias logic) 

2192 2.46 2992.55 

SCBCLA-RCA 

hybrid 

(With alias logic) 

2190 2.38 2880.72 

References [26] [32]: Weak-indication 

 

 

 

Group2 

SCBCLA 

(Without alias logic) 

2188 3.14 2915.29 

SCBCLA-RCA 

hybrid 

(Without alias logic) 

2186 2.93 2807.02 

SCBCLA 

(With alias logic) 

2190 2.32 2955.95 

SCBCLA-RCA 

hybrid 

(With alias logic) 

2187 2.25 2842.60 

References [29] [16]: Early output 

 

Group3 

RCLA 2177 2.75 2569.65 

RCLA-RCA hybrid 2175 2.53 2455.80 

Proposed: Early output 

 

 

 

Group4 

SCBCLA 

(Without alias logic) 

2178 3.13 2524.92 

SCBCLA-RCA 

hybrid 

(Without alias logic) 

2175 2.92 2416.66 

SCBCLA 

(With alias logic) 

2179 2.31 2565.58 

SCBCLA-RCA 

hybrid 

(With alias logic) 

2177 2.23 2452.24 

 

Approximately 1000 random input vectors were 

identically supplied to all the CLAs through a test bench at 

time intervals of 20ns to perform the functional simulations 

and also to capture their respective switching activities. 

The value change dump files generated through the 

functional simulations were then used for average power 

estimation using Synopsys tools. The worst-case latency 

i.e. the critical path delay and the area occupancy of the 

CLAs were also estimated using Synopsys tools. An 

appropriate wire load model (parasitic) was included while 

estimating the design metrics, which are given in Table I. 

The optimized design parameters are highlighted in bold-

face in Table I. Since the input registers and completion 

detector of the various CLAs are identical, the differences 

between their design metrics is attributable to the 

differences between their respective function blocks.  

The simulation results corresponding to various CLAs 

are split into four groups, labeled as Group1 to Group4 in 

Table I, for the sake of discussion. Group1 corresponds to 

regular and hybrid SCBCLAs without and with the alias 

carry output logic, which are weakly indicating. With 

respect to Group1, the 4-bit SCBCLG was realized based 

on a direct synthesis [26], and the FA and SOL are realized 

based on [31]. Since the FA and SOL of [31] are weakly 

indicating, the regular and hybrid SCBCLAs corresponding 

to Group1 also conform to weak-indication. Reference [32] 

presented a latency optimized weakly indicating FA design. 

This FA and the associated SOL was used to replace the 

FA and SOL components of the regular and hybrid 

SCBCLAs in Group 1, which yielded the Group2 results. 

Since the FA of [32] is more optimized compared to the FA 

of [31], therefore Group2 results are better compared to 

Group1 results as seen in Table I. The weak-indication FA 

of [31] occupies 41.17µm2 of silicon, and the weak-

indication FA of [31] occupies a reduced area of 39.65µm2. 

The SOL based on [31] or [32] is the same and occupies 

34.56µm2 of silicon.  

Group3 comprises a regular RCLA based on [29] and 

a RCLA-RCA hybrid based on [29] and [16]. The 4-bit 

RCA employed in the RCLA-RCA hybrid is composed of 

4 FA modules, and the FA is based on [16]. Since the sub-

RCLAs and the RCA are early output type, therefore the 

RCLA and the RCLA-RCA hybrid also correspond to early 

output type. There is no possibility for introducing an alias 

carry output logic in the case of the RCLA or the RCLA-

RCA hybrid. This is because the lookahead carry output of 

one sub-RCLA directly serves as the carry input for the 

successive sub-RCLA. In the regular or hybrid SCBCLAs 

however, the lookahead carry output generated from one 

sub-SCBCLA serves as the carry input for the next 

SCBCLG and also as the carry input for the sub-RCA 

embedded within the successive sub-SCBCLA. Due to the 

supply of two dual-rail carry inputs to a sub-SCBCLA, the 

alias carry output logic was able to be introduced to 

achieve significant optimization in the latency at the 

expense of meagre increases in area and average power 

dissipation due to the redundant carry output logic.  

Group4 comprises the proposed regular and hybrid 

SCBCLAs without/with the alias carry output logic, which 

corresponds to early output type. This results from the use 

of the early output 4-bit SCBCLG without/with the alias 

carry output logic, the early output FA, and the early output 

SOL. The early output plain 4-bit SCBCLG requires 

113.35µm2 of silicon, and the silicon requirement increases 



to 118.43µm2 with the introduction of the alias carry output 

logic. The early output FA and SOL require reduced areas 

compared to the weak-indication FA and SOL of [32] of 

just 27.45µm2 and 22.36µm2 of silicon respectively. Since 

the early output asynchronous circuits are more relaxed 

compared to their strong- and weak-indication circuit 

counterparts, simple and complex logic gates of a digital 

cell library can be widely used compared to the C-element. 

As a result, the early output asynchronous circuits 

generally facilitate optimizations in the design metrics 

compared to the strong- and weak-indication asynchronous 

circuits. This is the primary reason for the Group4 results 

being more optimized compared to the synthesis results of 

Group1, Group2 and Group3.  

Three important observations can be made from Table 

I. Firstly, the SCBCLAs with alias logic report a substantial 

reduction in latency compared to the SCBCLAs without 

alias logic, and due to the redundant logic introduced in the 

case of the former their area and power metrics are 

marginally more expensive compared to the latter. On 

average, the SCBCLAs with alias carry output logic which 

correspond to Group1, Group2 and Group4, whether they 

are regular or hybrid variants, report 24.6% reduction in 

latency and 1.4% increase in cells area with negligible 

power increase (0.1%) compared to the averaged design 

metrics of the regular and hybrid SCBCLAs which have no 

alias carry output logic. This implies the SCBCLAs 

featuring the alias carry output logic achieve significant 

reduction in latency with almost no increase in the area and 

power metrics. In general, the power dissipation values of 

the CLAs mentioned in Table I do not vary significantly. 

This is because the function blocks of all the CLAs satisfy 

the monotonic cover constraint [10], which signifies the 

activation of a unique signal path from a primary input to a 

primary output. In general, the monotonic cover constraint 

is inherent in QDI circuit designs.  

Secondly, the SCBCLA-RCAs hybrid and the RCLA-

RCA hybrid enable additional optimizations in the design 

metrics compared to the regular SCBCLAs and RCLA. On 

average, the SCBCLA-RCAs hybrid without alias logic and 

the RCLA-RCA hybrid report a 7% reduction in latency 

and a 4% reduction in area with no power increase 

compared to the regular SCBCLAs without alias logic and 

the regular RCLA. Likewise, the SCBCLA-RCAs hybrid 

with alias carry logic, on average, report a 3% reduction in 

latency and a 4% reduction in area without any power 

increase compared to the regular SCBCLAs with alias 

logic. The area reduction is mainly because a sub-SCBCLA 

without/with the alias carry logic and a sub-RCLA are 

more area expensive than a similar size RCA. For example, 

the areas of the proposed early output 4-bit SCBCLAs 

without and with the alias carry logic and the 4-bit RCLA 

[29] are 218.06µm2, 223.14µm2 and 223.65µm2 

respectively. In contrast, the area of the early output 4-bit 

RCA is just 109.8µm2. The critical path delay of the least 

significant 4-bit SCBCLA with alias carry logic (Figure 3b) 

is governed by the sum of the propagation delays of a 4-

input AND gate, two 4-input OR gates, four 2-input C-

elements and an AO21 gate. On the other hand, the least 

significant 4-bit RCA shown in Figure 3g encounters the 

sum of the propagation delays of five AO22 gates. Hence, 

Figures 3f and 3g will exhibit reduced latencies than 

Figures 3a and 3b. Thus using a small RCA to replace the 

sub-SCBCLAs or the sub-RCLA in the least significant 

positions is beneficial for reducing the area, latency and 

power parameters, which is substantiated by the results 

given in Table I. Nevertheless, the optimum size of the 

least significant RCA which may be cascaded along with a 

CLA (i.e. SCBCLA or RCLA) to effect optimizations in 

the design metrics should be determined based on static 

timing analysis since the use of a larger size RCA may 

negatively impact the latency metric.  

Thirdly, it is clear from Table I that the proposed 32-

bit SCBCLA-RCA hybrid incorporating the alias carry 

output logic features the least latency and is preferable. It is 

slightly more expensive in area than the 32-bit SCBCLA-

RCA hybrid with no alias carry output logic by just 1.5% 

and the power increase is negligible (0.1%).  

 

V. CONCLUSIONS 
 

This paper has presented a new asynchronous early 

output SCBCLA architecture without/with the alias carry 

output logic. The 32-bit binary addition was considered as 

the case study and the proposed SCBCLA with alias carry 

output logic reports optimized design metrics compared to 

the other SCBCLAs and RCLA proposed earlier. It was 

shown that further optimization in the design metrics could 

be achieved by opting for a SCBCLA-RCLA hybrid.  
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