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Abstract—With the fast development of wearable healthcare 
systems, compressed sensing (CS) has been proposed to be applied 
in electroencephalogram (EEG) acquisition. For CS, it is desired 
to build the best-fit dictionary in order to achieve good 
reconstruction accuracy. While most of existing works focused on 
static dictionaries such as Gabor, Fourier and wavelets, the 
dynamic nature of EEG signals motivates us to study learned 
dictionaries, which are supposed to provide better reconstruction 
accuracy and lower computation cost. In this paper, we provide 
the quantitative performance comparison of EEG CS using two 
different types of dictionaries, i.e., the well-known Gabor 
dictionaries versus K-SVD learned dictionaries. The performance 
comparison utilizes the well-established database of scalp EEG 
from Physiobank, which allows researchers in this field to 
compare their work with ours. In addition, it also attempts to 
inspire the systematic study of dictionary learning in EEG CS. 

Keywords—Electroencephalogram signal, compressed sensing, 
compression ratio, Gabor, K-SVD, dictionary learning. 

I. INTRODUCTION 

Compression of electrical biosignals, such as 
electrocardiogram (ECG), electroencephalogram (EEG) [1], 
electromyogram (EMG) has been an interesting research topic 
[2]. Compressed sensing (CS) [3] recently emerged as a 
promising technique that allows for higher compression ratios at 
an acceptable level of distortion, albeit at a low cost of power 
consumption. In addition, with the benefit of minimizing the 
data volume and energy utilization in the sensor node, CS is best 
fitted with mobile and wearable telemedicine systems.  

CS is based on the fundamental fact that sparse signals can 
be represented using only a few non-zero coefficients in a 
suitable dictionary [4].  In the compression stage, the 
compressed signal is obtained as the product of the input signal 
and the sparse sensing matrix. Since the number of compressive 
measurements taken is far less than the number of samples in the 
original signal, the major difficulty is how to reconstruct the 
original signal from the compressed signal. This task is usually 
achieved by convex optimization algorithms such as Basis 
Pursuit (BP) or the Orthogonal Matching Pursuit (OMP) with 
the utilization of the sparse dictionary [5].  

For signals that are not sparse in time domain or transform 
domain, e.g., EEG signals, it is desirable to identify a suitable 
dictionary that is able to sparsely represent the signal before 
applying the optimization solution.   

Among the time-frequency transforms techniques such as 
Fourier and wavelet transforms, Gabor has emerged as the best 
representation of EEG signals in both time and frequency 
domain [6-8]. As a result, most of the current work in EEG 
compressed sensing focus on building a Gabor dictionary [5, 9, 
10] . Given the fact that a Gabor dictionary is an over-complete 
dictionary, it can achieve greater robustness in the presence of 
noise. In addition, it can be sparser and can have greater 
flexibility in matching structure. Consequently, it can achieve a 
more accurate reconstruction [11]. However, a Gabor dictionary 
has difficulty reconstructing complex waveforms such as spike-
and-wave and/or polyspike-and-wave EEG. 

In an attempt to increase the flexibility of the dictionary to 
best fit the natural signals, Tosic and Frossard introduced a novel 
technique that utilized real signals to learn a data-driven 
dictionary [12]. Inspired by their work, dictionary-learning 
methods have been proposed in biomedical signal such as ECG, 
EEG and EMG. While most of the existing works focus on ECG 
[13, 14] signals, there are fewer studies reported using EEG 
signals. Moreover, event-related EEG signals used in Brain-
Computer-Interface (BCI) tend to be the potential candidate 
signals. To the best of our knowledge, there is only one study 
that applied dictionary learning to clinical EEG signals with CS 
[15]. This study considered the signal segments that contain only 
one spike in order to simplify the performance evaluation 
process. Moreover, detailed information about the adopted EEG 
database was missing. 

Enthused by the existing work of dictionary learning on EEG 
compression, we attempt to perform a systematic study of 
dictionary learning in clinical EEG with CS. We start with a 
quantitative performance comparison of EEG CS in two 
different types of dictionaries—well-known Gabor dictionaries 
and emerging K-SVD learned dictionaries. The CHB-MIT scalp 
EEG database [16, 17] is the most popular and its free online 
access makes it easy for worldwide researchers to compare their 
results with ours.  

The rest of this paper is organized as follows. Section II 
revisits the background EEG compression with CS. Section III 
describes our methods to set up the Gabor and K-SVD 
dictionaries. Section IV presents the experimental setup. Section 
V discusses the results and Section VI concludes the paper with 
our findings. 



II. EEG COMPRESSED SESNSING 

Given a sparse signal 1Nx  , it can be compressed by a 
random matrix M NΦ  with compressed sensing: 

y Φx  

where x is the input signal, Φ is the sampling matrix, and y is 
the compressed signal containing M measurements. The 
compression is achieved by setting M ≪	N. 

The measurement matrix Φ must be maximally incoherent 
with the chosen dictionary. Previous works have shown that 
random matrices such as Gaussian, Bernoulli and sparse binary 
sensing matrices satisfy this requirement [9] [11] [18] [19]. 

Given that the input signal is sparse in the dictionary 
N PD  , we can represent the signal x as 

1

K

i
   i ix Dθ θ d  

where K is the number of non-zero elements in the coefficient 
vector θ, and the signal x can be represented by a few atoms di 
from the dictionary.  

Thus, the compressed signal can be obtained by: 

 y Φx ΦDθ  

The fundamental idea behind CS is that we can represent 
signals using only a few non-zero coefficients in a sparse 
dictionary. In this paper, we mainly focus on performance of 
compressed sensing in EEG signals using static Gabor 
dictionaries and K-SVD learned dictionaries. 

Given the compressed signal y, the reconstruction stage 
needs to find x in order to satisfy (3). As the length of the 
unknowns x and θ is much larger than the length of y, there are 
infinite solutions for this equation. 

The classical solution for this type of inverse problem is to 
minimize the Euclidean norm of the approximate signal x̂  
subject to satisfying that the product of the measurement matrix 
Φ with the reconstructed signal is equal to the compressed signal 
y. This solution is called least squares minimization or 2  norm 
minimization: 

2
ˆ ˆarg min  s.t.  x x Φx y 

Although this equation has a convenient closed form 
solution given by the normal equation, the solution is almost 
never sparse, resulting in a high reconstruction error. 

As the 2  norm minimization does not usually return a 
sparse vector, alternatives have been sought. One is to directly 
enforce a sparsity constraint on the solution, namely the 0  

norm, to minimize the number of non-zero elements in x̂  as: 

0
ˆ ˆarg min  s.t.  x x Φx y 

However this is computationally unfeasible as it is NP hard.  
The solution is to relax (5) and use the 1  norm, thereby 

minimizing the magnitude of the non-zero elements in x̂ , so (5) 
becomes 

1
ˆ ˆarg min  s.t.  x x Φx y 

The 1  norm has been proved to achieve a unique solution 
under certain conditions. As a result, x can be reconstructed 
exactly from compressed signal y. 

With the constraint that x is sparse and the knowledge of the 
dictionary D, the solution of x is equivalent to finding the best 
fit for the coefficient vector θ. As a result, the problem now 
becomes minimizing the magnitude of the non-zero elements in 
θ: 

1
min  s.t. θ y ΦDθ 

III. METHODS 

As shown in Figure 1, the EEG signal is first segmented into 
non-overlapping sections of length N = 1024 (4-second). The 
mean will be removed before processing to enhance the signal 
sparsity. This mean must be stored for restoring in the 
reconstruction stage.  

 

Figure 1. Flowchart of EEG CS 

A. Compression 

In the compression stage, the choice of sensing matrix 
ensures the maximal incoherent characteristics of the EEG 
signal without the knowledge of dictionary. We selected the 
white-noise Gaussian random matrix [20] as our sensing matrix 
to minimize computation cost. 

B. Reconstruction 

Selecting the best matching atoms from the over-complete 
dictionary to reconstruct the sparse representation is essential in 
solving the 1  norm minimization in (7). Algorithms such as 
Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP) 
and Basic Pursuit (BP) have been proposed to improve the 
reconstruction efficiency [9, 11, 18, 19, 21-23].  



Fauvel and Rabab [24] noted that the Basis pursuit de-noise 
algorithm (BPDN) required fewer measurements than other 
greedy algorithms to achieve a comparable reconstruction 
quantity. Moreover, BPDN is packed in Matlab solver for a 
large-scale one-norm regularized least squares named SPGL1 
[25]. For these reasons, we selected BPDN as our reconstruction 
algorithm. 

BPDN attempts to solve the regularization problem with a 
trade-off between having a small residual  and making θ simple 
in the norm-1 sense: 

2

1 2
min  s.t.  θ y ΦDθ    (8) 

By varying the value of σ and performing the test on a dataset 
of 100 random selection EEG segments as shown in Figure 2, 
we thus chose σ=0.01.  

 
(a) Mean NMSE vs. CR 

 
(b) number of iteration to reach BPDN solution vs. CR 

Figure 2. Performance of BPDN at different CR values 

C. Static Gabor Dictionary Contruction 

Gabor dictionary atoms are parameterized as: 
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where s is the scale of atom, n0 and f0 are the center of atom, 
K(n0, f0, s) is the normalization factor. 

The time and frequency steps decide the size of dictionary 
and play a vital role in the reconstruction stage. Inspired by the 
work of Simon Fauvel et.al [19, 26], we define ݐ௙ and ௙݂ as time 
and frequency factors and obtain the time and frequency step 
base on the following equation:  
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 and B=2 is the base.  

D. K-SVD Dictionary Learning 

Different from a fixed Gabor dictionary, dictionary-learning 
approaches proposed a data-driven method to obtain a signal 
adapted dictionary. The well-known K-SVD dictionary learning 
method [19, 27, 28] based on generalizing the K-mean method 
by extend the sparsity constrains to a linear combination of 
atoms in the dictionary. Initializing with a set of real signals, the 
K-SVD method works by iteratively alternating between sparse 
coding and updating the dictionary atoms with an attempt to fit 
the data. K-SVD is flexible, works well with any pursuit method 
and takes advantage of both the spatial and temporal redundancy 
of multi-channel EEG signals [29]. 

IV. EXPERIMENTAL SETUP 

A. Database Selection 

Theoretically, any standard EEG signal is suitable for a 
compressed sensing system. However, the diversity in selecting  
EEG databases has made it hard for researchers to compare their 
algorithms with previous approaches. To make it possible for 
worldwide researchers to verify and compare their works, an 
online available EEG database is the best choice. The most 
commonly-used EEG signals are from the Neuroelectric 
Database from PhysioBank [14], EPILEPSIAE database from 
University of Freiburg [30] and the database from the BCI 
Competition [25].  

While the other two databases focus on clinical EEG signals, 
the database from BCI Competition focused on the EEG signals 
corresponding to a specific mental state from healthy subjects.  

The largest and most comprehensive EEG database, which 
is suitable for a broad band of application, is EPILEPSIAE. Up 
to 122 EEG channels from 200 patients with epilepsy was 
collected for a continuous recording time at least 96 hours at a 
sample rate up to 2500Hz. This results with the huge database 
up to thousands of hours in total. Unfortunately, it is not a free 
downloadable database. 

CHB-MIT scalp EEG database, which is freely accessible 
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from PhysioBank is a big database of up to several days 
recording with well-defined seizure notation.  The database was 
collected up to 23 EEG channels at the Children's Hospital 
Boston from 24 paediatric subjects with intractable seizures. 
There are a total of 664 .edf files collected at a sampling 
frequency of 256Hz and a resolution of 16 bits per sample. 

For research purposes, we strongly recommend using the 
CHB-MIT database to check the performance of EEG 
compressed sensing approaches. 

B. Data Collection 

In total, 11,200 non-overlapping segments of 4-second EEG 
signals were randomly chosen from the database. Note that not 
all channels are EEG signals. ECG may simultaneously be 
recorded in conjunction with the EEG and some specific EEG 
channels may be omitted in some cases for diagnosis.  

In this paper, we used 3,200 segments for testing and thus 
left 8,000 segments for the dictionary training. 

C. Performance Metrics 

Given N is the length of original EEG signal, M is the length 
of compressed signal, the compression ratio is defined by 
CR=N/M. The accuracy of reconstruction signal is evaluated by 
the normalized mean square error (NMSE) as  

 
ˆ

ˆ,NMSE



 x

x x
x x

x μ


where x is the original signal, x̂  is the reconstructed signal and 
μx is the mean of x.  

V. RESULTS AND DISCUSSION 

A set of nine Gabor dictionaries were built and nine K-SVD 
dictionaries were learned to check the performance of the testing 
signals at the compression ratio values 2, 4 and 8.  

 
(a) Gabor dictionaries 

 
(b) K-SVD dictionaries 

Figure 3. Mean NMSE vs. size of dictionaries for (a) Gabor and (b) K-SVD 

Figure 3 shows the mean NMSE versus the size of chosen 
dictionaries. It is very clear from the plot that even though the 
NMSE improves by increasing the dictionary size, the effect 
provides diminishing returns, particularly above a Gabor 
dictionary size of 15,938 and the K-SVD dictionary size of 3,000 
atoms.  These two dictionaries seem to be the best choice for 
reconstruction performance whilst minimizing the dictionary 
size, given that the dictionary size will impact on memory 
requirements and reconstruction speed. 

Figure 4 shows the comparison of mean NMSE and the 
reconstruction time versus the compression ratio for the chosen 
Gabor and K-SVD dictionary. It is obviously that with a 5-fold  
size decrease, the K-SVD dictionary still achieves a far better 
NMSE than the Gabor dictionary at CR of 4:1 and above. As a 
result, it is more beneficial to focus on learning a dictionary than 
continuing with a static dictionary. The future work will focus 
on selecting good EEG training sets and optimal parameters sets 
for training. EEG signals with specific clinical condition such as 
seizure will be included to learn the optimal dictionary for EEG 
with a seizure compressed sensing system.  
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(b) Computation cost 

Figure 4. (a) mean NMSE and (b) computation cost vs. dictionaries 

VI. CONCLUSION 

This paper presented a systematic study of the performance 
comparison of EEG compressed sensing using static Gabor 
dictionaries and learned K-SVD dictionaries. Experimental 
results with CHB-MIT scalp EEG database showed that K-SVD 
can help to achieve a better compression ratio, lower 
reconstruction error and lower computational complexity. At a 
compression ratio of 4, the mean NMSE values achieved by K-
SVD and Gabor dictionaries are 0.15 and 0.21, respectively. 
This indicates that learned dictionaries should be further studied 
to achieve better EEG compression performance. Our future 
work on this topic is to investigate how other dictionary learning 
algorithms can help develop EEG compressed sensing for 
mobile telemedicine systems.  
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