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Abstract

This thesis is involved with the investigation, implementation, verification, validation and
optimization of a purpose built on-chip solution customized for a real world touch screen
application. A Field Programmable Gate Array based application specific controller has been
designed and built in this research as a substitute for a general purpose controller to explore the
feasibility and capability of meeting the required system performance while maintaining the
minimum consumption of system resources. A variety of new mechanisms, approaches and
techniques have been evaluated, developed and applied to different design stages at multiple

levels to achieve an overall optimized system outcome.

A dedicated optical imaging acquisition system has been developed with a concurrent control
mechanism, faster operational speed and lower signal noise; a customized touch information
processing unit has been designed to perform edge detection, object positioning, and touch
motion indication with low system latency and highly parallelism; and a computer interface has
been built to demonstrate the coherent real-time system performance with visualized validation
of results. In the optical based touch screen area, this research presents an original and compact
on-chip solution with a significant number of algorithm and method improvements in terms of
the touch object detection and localization efficiency as well as touch motion analyzing

capability.

The system design has been optimized after establishing the desired functionality to minimize
logic resource and memory storage consumption, based on a wide range of techniques with a
certain amount of architectural restructuring. The overall economic on-chip resource
consumption has been achieved in this research with further consideration for migrating the
design into a more application specific high integration density chip in the future for large

volume manufacture.
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Chapter 1 Background and Introduction

1.1 Background and Requirements Analysis

Conventional Touch Screen Technologies

Touch screen technology has been developed as a popular interactive component in everyday life
to facilitate human-to-machine communication and enrich user experience. There are
conventionally four types of touch screen input devices based on different technologies. They

have been applied to various applications with their own advantages and disadvantages where:

® Resistive based touch screen solution is relatively cost efficient and supports multiple input
means (fingers, gloves, and stylus) but has the drawbacks of image clarity degradation in
public environments and the requirement of periodic calibration.

@ Capacitive based touch technology is considered durable and reliable when applied in harsh
environments (water, dirt and dust) but has disadvantages in input methods capability (most
are restricted to finger input) and scalability (the technical difficulty and high cost of
applying to large formats).

® Ssurface Acoustic Wave (SAW) constructed touch device provides high quality image clarity
and light transmission however with the same restriction in large scale capability and cost
efficiency.

@ Infrared oriented touch technology has the unique integration advantage of being a
completely sealed in device, but is also regarded as having a relatively poor touch function

performance and it is vulnerable to complex environments (contaminants etc).

Optical Imaging Based Touch Screen Technology
The optical imaging based touch screen solution has emerged in recent years as a new
competitive technology which has its own distinct characteristics leading to a significant variety

of advantages over the aforementioned traditional approaches.



In general, it is a compact and efficient image sensor and reflective retro combined solution
designed to realize touch screen functionality with minimum cost and great scalability.

The simplified optical imaging based touch screen system is illustrated below in figure 1:

L]
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Figure 1 Simplified Optical Imaging Based Touch Screen System
Inside the basic optical touch system, there are two Image sensors (each being single line scan
based, one at the left top corner and the other at the right top corner) with a LED positioned on
top of each sensor chip (1). Specific reflective material has been placed along the screen edge
(2). The simplified system mechanism is when there is no object within the active touch screen
area all the infrared light emitted by the two LEDs will be reflected back to the image sensors by

the retro material at the screen boundary; the image sensors receive the full level light reflection

as below in figure 2:

- W w N
.
i
i
T

Figure 2 Left and Right Line Scan Sensors Waveform
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When an object occurs within the touch screen active area, part of the reflection will be blocked

as shown below in figure 3:

Figure 3 Left and Right Line Scan Sensors Waveform with Single Touch



By converting the blocked waveform locations to actual angles from the sensor view points, and
coordinating with the physical screen dimensions, the actual touch point is able to be triangulated
and its position calculated. Moreover, a significant number of advanced methods and techniques
have been evolved based on the basic mechanism as described above to achieve real time high
quality performance. The basic optical imaging control and process unit behind the system is
comprised of a microcontroller which directs the timing sequence of the LED based illumination
subsystem and image sensor subsystem to acquire and transmit the raw touch information. A PC
based processing system abstracts the edges, localizes and finalizes the touch positions, resolves
the occlusions etc. The existing system is relatively accurate, robust and meets the current real
time requirements reasonably well. Nonetheless, a certain number of system limitations and

additional requirements have been identified.

Requirements Analysis

With the ever growing market competition and increasing customer expectations, there are three
new design requirements investigated in this research: Low level system acquisition requirement,

high level processing requirement and system cost requirement on the resource level.

System acquisition requirement

The general-purpose microcontroller based data acquisition unit is a system bottleneck which
relies on a sequential acquisition mechanism with a relatively limited frame rate. Customized
acquisition control logic is urgently required, to execute a concurrent acquisition control
structure where one image sensor is capturing image pixels while the other sensor is
simultaneously digitizing and transmitting the pixels. The significant increase in the touch
information frame rate is required for fast touch activity detection and touch history tracking,

which will play an important role in the subsequent processing module.



Another major problem in the current optical imaging based system is the touch occlusion issue
which is largely caused by lack of sufficient screen imaging information. Furthermore, a
fundamental requirement of the next generation operating system is the supporting of multiple
touches that demands more accurate coverage of screen information from more different camera
view perspectives. Therefore, it is important that the proposed acquisition control logic is not
only able to provide a more efficient concurrent mechanism for improving the frame rate but
should also have the capability and extensibility for handling a larger camera based bandwidth in

a more advanced system.

System processing requirement

In current touch screen systems, the majority of system processing functionality has been placed
on the PC processor with a combined latency of sequential acquisition delay and PC algorithm
operation time. With the potential increase in the number of acquisition sensors and frame rate,
longer latency will occur in the current acquisition engine and more processing load will placed
on the general-purpose CPU which is also shared by other applications within the OS. In order to
reduce the low level system latency under the increasing data rate and computational pressure, it
is necessary that certain processing in the critical path is pipelined and pre-processed with the
acquisition process. Pre-processing operations such as edge detection, ambient subtraction and

pre-touch indication leads to the process-on-the-fly requirement.

System resource requirement

Market and cost considerations are always involved in real product development. A minimum
amount of hardware resources is demanded in this industrial research for realizing the
aforementioned concurrent acquisition engine and pre-processing module. Moreover, a further
interest has been expressed for this project to explore and analyze the feasibility and resource
consumption of a complete on-chip hardware solution achieving basic touch screen functionality

to lower the overall manufacturing cost.



1.2 Objective and Methodology

This is investigative research based on real world touch screen system requirements, which aims
at creating customized logic to acquire touch information and further explore the feasibility of a
complete on-chip hardware solution to realize basic touch screen functionality. There are three

objectives in system research and development according to these requirements:

@ Create a customized and more advanced data acquisition system compared with the existing
platform in terms of its operation mechanism, speed, accuracy and noise level.

@ Research and validate the concept of embedding a complete touch system on a chip with an
incremental design and verification process.

® Optimize the resource utilization without compromising overall system performance.

For the system design methodology, it is necessary and critical to understand the existing system
structure and functionality. Therefore the same functionality is required to be migrated to a new
platform (a field programmable gate array) on the system level with the consideration of
technology differences and the explicit partitioning of different system modules. After that, more
sub-modules are designed, constructed, verified and tested to realize the required system level
functionality with constrained timing requirements. Then all top level modules are integrated and
synchronized to achieve system timing closure with a well organized control flow. In the end, a
number of optimization techniques will be applied to both system level and module level

components to minimize the resource consumption while maintaining the same functionality.

During the development process, there are three design phases:

Phase One: Data Acquisition System

Phase one is a performance oriented design process with the purpose of constructing a high
speed, concurrent data acquisition engine to replace the existing general purpose microcontroller
based acquisition system. It is planned to start by constructing the image sensor timing control
logic with the basic capability of configuring and controlling sensors to acquire analog pixels,
equipped with a LED based illumination subsystem with more complicated timing control

between the shutter and operation modes. After that, an analog-to-digital convertor is added to



digitize the analog signals which will be further transmitted out of the data acquisition system
through a USB module. Each module will operate at the highest possible execution speed by
taking advantage of the pipeline structure. It is acceptable that extra resources are consumed to
reduce overall noise level and a new concurrent timing control mechanism is expected to
maximize system operation efficiency. The data acquisition system is aimed initially to achieve
the highest possible system performance without consideration of resource consumption. At the
end of phase one, a number of tests are required to verify the real time performance is

acceptable.

Phase Two: Processing Unit

The development of the processing unit is considered as an investigation and verification process
using the incremental design methodology [1] where each new module is constructed and then
integrated with the previously verified system. The design objective of the processing unit is to
realize basic touch screen functionality with minimum concern for resource use. Based on raw
touch information collected by the Data Acquisition System, the Processing Unit design process
starts from a proposed memory management unit to store and direct image frames before further
processing. Dedicated logic blocks are required to perform initial edge detection, then touch
position localization and initial touch level detection, then touch motion tracking. Each block
development will go through its own verification and test process [2]. Finally, it is necessary to
have a system master controller synchronizing and organizing all processing modules, to respond
to both the acquisition system and PC through a customized transmission engine. A software
interface is required to demonstrate the correct functionality of the basic touch screen system

during real time user testing.

Phase Three: System Optimization

After successfully establishing the proposed touch screen system, a number of optimization
techniques are applied to the acquisition system and the processing unit on different levels (from
the algorithm level to the logic gate level) to minimize resource consumption without
compromising overall system performance. An optimized on-chip hardware solution with

proven real time performance will be validated as the result of this research.



1.3 System Abstraction and Overview

This research is based on real world touch screen application requirements with specific
investigation, implementation, verification, validation and optimization involved to create a
dedicated on-chip solution. Field Programmable Gate Array based application specific control
logic is proposed and developed in this research not only to investigate the possibility of a
customized acquisition engine with desirable performance but also to explore the feasibility and
capability of an on-chip touch information processing unit with the minimum consumption of
system resources. The abstraction layer of the system is illustrated below before being expanded

and explained in detail in later chapters.

The complete system is comprised of three major modules: Data Acquisition Unit (DAU) which
controls and coordinates the image sensor, illumination and ADC subsystems to consistently
acquire, digitize and transmit the real time touch information to processing logic; Processing
Unit (PU) which performs real time touch detection, object positioning and motion analyzing
with low latency characteristics by taking advantage of a pipeline structure; and a PC monitor

which continuously updates the touch screen optical imaging scope and user touch positions.

The following is the simplified system block diagram on an architectural level:

Data Acquisition Unit Data Processing Unit

Cam Control Engine Edge Detection Unit (EDU)

e

i

PCMonitor

Figure 4 Simplified System Block Diagram



The following paragraphs will concisely introduce the design concept and system flow with an
overview of how the system operates. Brief explanations of the main components integrated

inside the three main blocks are presented here.

Inside this vision (image sensor) based real time touch screen system, the Data Acquisition Unit
(DAU) plays a fundamental role in raw optical imaging information acquisition by controlling
and organizing the Line Scan Sensors, LED based Illumination system, Sensor Support Chip,
ADC Chip, ADC Interface Logic and Digital Clock Manager (DCM). The unit is designed
and partitioned as a self-contained module with the Data Acquisition Control Engine operating

all control signals within the unit so there is no interference with other units.

The Processing Unit is the key block of the whole touch screen system. The digitized image
frames from the Data Acquisition Unit are redirected by Mode Demux to be either stored into
RAM in the Memory Management Unit (MMU) in iunitialization mode or fed into the Edge
Detection Unit (EDU) and Normaliser when in operation mode. The Trigger Logic inside the
MMU adjusts the threshold level for different ambient light environments while the Memory
Address Generator updates both the reading and writing addresses for the MMU. The Edge
Detection Unit (EDU) is constituted of a Level Detection Unit which defines and indicates the
touch action and the EDU Result Register which stores both the rising and falling edges of the

touch for both image frames.

More accurate touch edge positions can be obtained using the Interpolation Data Path inside
the Common ALU module catering for more precise requirements. All touch edges are
translated from image Pixel Ids into real angles in the detection area from both the top cameras’
perspectives, using a pre-calculated Look up Table (LUT) in ROM. After that, the two angles
are triangulated in the Position Localization Unit to calculate the x and y coordinates of the
touch on physical screen. The Triangulation Data Path is involved in localization processing
while the hardware Binary Search Engine is used to optimize the search process by accelerating

the system critical path to a significant extent.



The Normalizing Process inspects and analyses subtle application actions such as pre-touch
using the Level Comparator and Register module inside the Normaliser. This runs in parallel
with the Edge Detection and Localization. As a result, the most recent touch percentage levels
will be stored in registers for further touch history tracking analysis. Finally, both the concurrent
processed results (touch position and tracking history results) are reconstructed in packages by

the Package Constructor in the Transmission Engine and transmitted outside the block.

The Master Controller inside the Processing Unit is the core element of the system operation
which not only directs process flow and organizes control signals to and from sub-modules
simultaneously, but also coordinates and interfaces with the Data Acquisition Unit and PC

monitor to achieve real time system synchronization and coherence.

The PC Monitor receives data transmitted from the hardware touch screen system through a
USB2.0 connection. The software interface is designed for high speed USB transmission with
two GUIs: one for displaying the raw touch screen optical imaging information for development
debugging and data acquisition process validation; and the other for updating actual real time
touch position results based on the hardware processing unit in a visual form for system

demonstration purposes.

All units and modules abstractly aforementioned will be further discussed and illustrated in detail

in the next few chapters.



Chapter 2 -- Literature Review

2.1 Hardware Accelerated Hybrid System

In modern electronic system design, with increasing demands in processing capability and more
stringent requirements for system latency, it is difficult for a real time application to fulfill design
specifications if it is only implemented in software. The hardware accelerated hybrid system [3]
emerged due to this reason in the early 1990s to describe a process where certain parts of the
program’s critical functions are constructed in hardware to meet performance target and timing
constraints while other parts are implemented in software in the processor . It is informed by
multiple design disciplines and approaches based on the characteristics of an application which
can be classified as a software-oriented hybrid system, hardware-oriented hybrid system or

software/hardware co-design system.

2.1.1 Software-Oriented Hybrid System

For software-oriented heterogeneous system design, without violating any application
performance constraints, a significant proportion of system functionality has been implemented
in software with a minimum amount of hardware processing. Most often, software-oriented
design takes advantage of the existing processor or microprocessor structure (either general
purpose or special purpose) with dedicated software programs that allow the user to define the
desired functionality using a specialized language. On the instruction level, as indicated by [4],
programming is achieved by executing on the hardware supported by the existing architecture. It
is considered to be more flexible with a relatively high level of software and lower cost by
implementing major system design into the available structure with very limited extra hardware
cost. Compared with a pure software solution, the software-oriented hybrid system is more

efficient with a hardware acceleration of a small part of the system.
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The software-oriented hybrid system structure is illustrated below redrawn from [3]:

Hybrid System

Software System Hardware
System

Function 1

Customis
ed Logic

Candidate function

for realising in Interface
hardware

Function 2

Function N

Figure 5 Software-Oriented Hybrid System
Low Level Latency Requirements
In most software-oriented hybrid system design, the key processing timing and latency
requirements are less demanding which makes it easy and cost-efficient to implement the major
proportion of system functionality into general processor based software. For example, in Garufi
and Acernese’s hybrid modular control and acquisition system [5], with low sampling and
performance requirements, the complete distributed control algorithm was processed by PC
based software with low cost hardware logic used in the critical acquisition path. Another
example is the control design for swing scanning infrared earth sensor application [6]. The entire
earth wave algorithm has been executed in an embedded ARM processor with necessary

acceleration in obtaining raw data by taking advantage of the hardware structure.

Flexibility and Extendibility

For some other software-oriented systems, the specification requires flexibility and adaptability
because a certain amount of system functionality is to be executed unpredictably and
sporadically. Thus, it is natural to implement the majority of the proposed design into a standard
software core to allow rapid change to a new algorithm. The real-time dark environment vehicle

detection system [7] is a good example. With basic hardware acceleration on pixel-level

11



operation, the main vehicle searching and decision making algorithm has been executed on

processor based software because of the broad variety of possibilities and uncertainties.

Computational Cost and Execution Convenience

Sometimes the system functionality is technically difficult and computationally expensive to be
implemented into pipelined hardware or the required function is already an existing component
of a processor based system. For instance, floating-point arithmetic operations are a basic
element inside numerous algorithms which are widely supported by existing instruction sets
inside conversional PC or processor based systems. And for modern software-oriented platforms
(physical or soft [8] on chip processor core based system) it is also commonly supported. Thus,
from the cost perspective, some applications are best suited to processor based design.
Meanwhile, software-oriented design is considered efficient and convenient in terms of
implementation cycle and requirements for specialized human resources compared with a fully

customized hardware design.

2.1.2 Hardware-Oriented Hybrid System

The aforementioned software-oriented hybrid system design usually has a high speed clock
frequency and relatively powerful sequential computation processing ability. However the
hardware-oriented design is practically application-specific with the characteristic of inherent
parallelism to meet stringent user requirements. Usually, the operational frequency in hardware
dominated design is much slower than PC or processor based system but with a capability to
provide better performance through paralleling more operations, minimizing memory access and

optimizing critical paths.
The hardware-oriented hybrid system structure is illustrated below: the majority of system

functionality has been implemented in hardware logic with tight and multi-level interconnections

between system peripherals and the subsequent processing block.

12



Hardware-oriented hybrid system structure:

Hybrid System

Hardware System Post

System Processing

Customised Logic For
Critical System
Functionality

s|esaydied
suonouny

— ﬁ —

Interface

- |

Figure 6 Hardware-Oriented Hybrid System

High Throughput and Low Latency

In most high performance real-time applications, throughput and latency are two significant
factors affecting the performance and outcome of the system. Morris, Thomas and Luk’s [9]
financial trading system is an example. “The combination of increased message rate and more
complex market feed data format ™ naturally requires a system which has high bandwidth
message processing capability and desired latency in a situation where large bursts of trading
activity occurs. Software-oriented solutions are often unable to keep up with the input data rate
and also have difficulty meeting the latency requirements of sub-millisecond response times.
Under such circumstances, there is a shift during the application design towards a more

hardware-oriented system with an accelerated propagation structure.

Functionality Effectiveness, Compactness and Robustness

With an explicit design specification or clear problem definition, the architecture of a hardware-
oriented system is often constructed in a compact and application-specific manner such as [10]

compared with a general processor software solution. In detail, the hardware dominated solution

usually starts with a straightforward design approach which resolves the problem in a direct way

13



that leads to better efficiency. The hardware oriented structure is usually more tightly
interconnected and integrated with target requirements, which leads to a better solution because
the hardware solution is more convenient for adding concurrent features inside each block and it

is more versatile because it is more easily extensible.

Architecture Parallelism and Reduced Response Time

In safety-critical areas, such as medical instruments, the efficiency and efficacy of equipment
design plays a crucial role in accurate and appropriate problem identification and localization,
which sometimes reduces the instrumentation operation and response time, helping minimize
unintended damage (such as to healthy tissue etc). Minimally invasive image-guided intervention
(IGlIs) is a typical application that benefits from the hardware-oriented design method with a
significant improvement in execution time from hours to a few minutes compared with the
conventional open and invasive procedure. Inside the IGIs workflow, the deformable image
registration is the fundamental and major step, which in Dandekar and Shekhar’s system [11] has
been implemented into a highly pipelined multimodal based hardware architecture to reduce the

procedure time.

In order to maintain the high level calculation accuracy, which is equally important in hardware
occupied medical instrument design to minimize the possibility of complications, there are
commonly two execution alternatives. One is constructing a dedicated floating processor unit at a
high cost of hardware resources, such as plane-sphere intersection in a hardware ray tracing
system [12] having an independent pipeline arithmetic unit for meeting accuracy requirements.
The other alternative often used is the adoption of multiple look up table (LUT) based
polynomial approximation. In Castro-Pareja, Jagadeesh and Shekhar’s system [13], two LUTSs
(Interpolation Weights and corresponding floating coordinates) have been utilized to replace a

standard arithmetic unit while achieving the same operational precision.
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Security and Adaptability

For certain areas, such as military communications, there is a growing concern not only in traffic
speed and bandwidth, but also in network security where a device is required to protect the
intellectual property of a design from attempts to reverse engineer or replicate operation. The
general-purpose processor based software solution is considered relatively unsecure in terms of
concealing internal algorithms since “their reliance on external instruction streams means that
they are susceptible to instruction bus monitoring attacks while operational” [14]. In order to
maintain network security, hardware based solutions are used where the critical function has
been separated and implemented into hard-wired logic in a self-contained manner without
requiring external instruction data. At the same time, by taking advantage of the capability of
run-time reconfiguration of certain hardware devices, new protocols and algorithms are able to
be processed and adopted without compromising performance. The information exchange
security system based on specialized hardware has demonstrated a more capable security
monitoring mechanism and in addition the “reconfigurability and expandability of the solution
provides an apparatus for further improvement and elimination of potential threats that are still to
arise" [15].

2.1.3 Hardware /Software Co-Design System

The hybrid hardware/software co-design [16] emerged to embrace new design requirements in
the early 1990s to describe a process where part of the program’s functions are constructed in
hardware while the others are implemented in software in a processor. The increasing use of the
co-design method for complex systems stems from a variety of factors. One is “the need for
multi-formalism specification” [17] where most modern embedded systems consist of different
components (analog, digital etc.) and there is no common description or language to cope with
specification variations within the system. Another is the market pressure for real-time products
which demands shorter development cycles and effective design cost. Last but not least, design

reuse is a key issue in complex system design convenience and coherence.
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The hardware/software co-design is the net result of a significant number of research activities in
the embedded area. It is informed by multiple disciplines including software/hardware partition
design, application-oriented hardware circuits design and hardware/software domain interface
design. Compared with the aforementioned hardware-oriented design and software-oriented
design, there is neither an explicit overall performance constraint demanding a complete
hardware solution nor a pure software solution fully satisfying the specification without

acceleration.

Hardware/Software Co-Design Approach:

There are a number of fundamental stages for establishing a complex system following the co-
design approach: from system specification, system profiling, architecture partitioning,
concurrent hardware and software development to the actual run-time system. The general

approach route is illustrated below redrawn from[18] with minor changes:

System
Abstraction
-
r:} SyStem Performance
Profiling Statistics
L™ 2
Architecture
Partitioning
Concurrent
Development
™ 2
Hardware Software
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Run-Time Performance
System Results

Figure 7 Hardware Software Co-design Approach
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System Abstraction
The abstraction of system functionality based on heterogeneous specifications can also be
described as “modeling system functionality and constraints " [18]. It is usually considered as a

high level behavioral description regardless of implementation details.

System Profiling
System profiling refers to the identification of performance in critical regions and the timing
estimation for real time operation using software (for instance C code) without real execution on

the candidate architecture.

Architecture Partitioning

Hardware/Software partitioning aims to determine which parts of the system should be
implemented in hardware and which in software by applying various trade-offs and spectrums
[19]. As further explained by Ismail and Jerraya [20] the architecture is partitioned by assigning
the whole system functionality to concrete parts of the physical system, which will be either
compiled into machine code in a processor or synthesized into a hardware circuit description.
The final system architecture formalizes the result of “several successive trial and error iterations
of this step™ [17] based on the detailed specification, timing constraints and designer’s

experience.

Concurrent Development

During the implementation stage, the hardware compilation and software compilation are
executed simultaneously after the system evaluation and partitioning from previous stages. The
concurrent development follows different design processes where hardware compilation is
composed of hardware behavior description, optimization, synthesis, placing and routing, linking
etc using a modern reconfigurable platform while software compilation generates machine code

for the processor structure.
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Run-Time System
The run-time system is the final operation platform which varies according to applications, such
as a general-purpose CPU with Field Programmable Gate Array, or an application-specific

processor with an application-specific-integrated-circuit.

To conclude, In order to achieve hardware/software co-design success, it is not only critical that
the initial partitioning be made appropriately into hardware and software, but also that the
ensuing system level development proceeds along lines that benefit from an integration of both
hardware and software perspectives. Compared with traditional design, it is more efficient to
plan the design with a more detailed specification available before selecting the final
architecture. It is less costly to modify parts of the system between different partitions at later
stages of development and it is easier to facilitate the final integration between different
technology domains. Alternative system implementations are considered with respect to
performance, physical aspects, reliability, modifiability, maintainability and manufacturing cost

as emphasized by Purvis and Franke [21].

2.2 Image Acquisition and Processing

Vision based systems have been a popular research topic for the last decade where a significant
number of areas have benefited directly or indirectly from it, such as robotics and autonomous
systems [22], surveillance [23] and navigation systems [24]. It is also considered to be the
general research and knowledge background for the proposed touch screen system. Vision
systems aim at enhancing and improving the visual image characteristics for a human viewer
through a variety of techniques and processes depending on applications. The acquisition
capability which refers to large volume data handling, memory bandwidth and real-time
constraints [25] and the processing ability which depends on the efficiency and parallelism of
algorithms, arithmetic and logic operations are two major factors that determine the success of a

vision based system.

There are three critical stages during the vision system design which includes data acquisition,

system pre-processing and high-level processing.
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Image Acquisition

Inside a vision based system, data acquisition is the fundamental image-sensor based integration
control and read-out process to “set the mode of operation, address the pixels and transfer the
data to high-speed local storage” [26]. And the difficulty of designing such an acquisition system
usually lies on the efficiency of the interface which is the bridge connecting the system’s front
end and back end processing [27]. Usually, the image acquisition storage structure is developed

by consideration of the related processing unit which has an impact on data collection.

System Pre-Processing

In recent real-time application development, there is an increasing trend towards the system pre-
processing unit design because of the pressure of larger volume data from multi-inputs and the
stringent performance and latency requirements. In the image processing area, the pre-processing
is usually referred to three major components: image enhancement, feature extraction and
interest segmentation. Image enhancement is a basic restoration approach to make subsequent
analysis easier over environmental variation [25] through a number of techniques such as noise
reduction, contrast or color correction [28] and lens distortion. The second important component
in image pre-processing is feature extraction where typical properties like lines, edges [29],
texture and shapes [30] can be extracted to reduce raw data size in order to reduce the processing
burden on the main system. Last but not least, the interest segmentation step refers to * the
selection of a specific set of points or regions of interest which are the subject for further
processing” [31]. On the pixel level, the image segmentation task functions on the spatial domain
“grouping together neighboured pixels or voxels to homogeneous regions if they can be
considered to be similar according to a common feature” [32]. In general, the purpose of pre-
processing is to robustly abstract typical characteristics and information useful for subsequent

processing from the image to further optimize overall system processing distribution.

High-Level Processing

High-level processing is the critical stage of collecting, analyzing and generating the final system
outputs. The results after advanced processing are likely to be route and movement decisions
from a vision based navigation system [24], or the identification of a person from a face

authentication system [33]. The high-level processing is usually performed by a general or
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specific processor structure because of the variety, flexibility and complexity of the dedicated

algorithms.

On the implementation level, a number of studies have investigated the optimum system

structure partitioning between hardware and software in different applications.

In two dimensional image based vision detection, Alt, Claus and Stechele [7] have built a
vehicle detection system where the image acquisition, spotlight detection and region labelling are
partitioned in a hardware structure while light pair searching and plate searching are executed in
an embedded processor. Pei, Chun and Li [34] have a similar design partition in their departure
warning system with frame acquisition and liquid-crystal display and other peripherals controlled
by hardware. The implementation of a fundamental Gaussian smoothing filter based global edge
detector has been proposed in hardware from their research. In order to meet increasing system
performance requirements in real time, more and more researches have shifted intensive image
processing units from software-executed processors and customised this into more application-
specific logic structures. For example, Bonato, Marques and Constantinides [35] describe a
feature detection system, in which major system processing such as pixel streaming, magnitude
calculation, orientation computing, and key points detection and classifying are constructed in
logic structures and the embedded processor is used to generate descriptors for future feature
extension. Vicente and Munoz [36] describe an object counting and tracking system which is
constituted of critical object and contour detection algorithms constructed in hardware structures

and more flexible classifying and tracking modules implemented in a processor.

Furthermore, in other performance-oriented research applications, more hardware resources are
consumed to achieve design goals. For example, Ishii, Taniguchi and Yamamoto [37] have
developed a high speed (1000fps) real time vision platform where most image processing
algorithms (multi-target colour tracking, feature point tracking, optical flow detection, and
pattern recognition) are accelerated by a hardware pipeline structure. Another example is Yean
and Yu’s [38] Smart Camera system for Gesture Recognition in HCI Applications The complete
Harris keypoint detection algorithm and Kanade-Lucas-Tomasi (KLT) feature tracker algorithm

have been implemented in a logic structure.
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The proposed touch screen system is a line scan image sensor based specific object detecting
application. Ohtani, Baba and Notohara [39] have built an optical measurement system with the
analogue scan unit and ADC conversion controlled by software in a processor while hardware is
responsible for actual spot position calculation from digitized information. In Hussmann and
Ho’s real-time edge detecting system [40], hardware was used for most elements inside the
system including sensor scan circuits, ADC conversion, and low-pass filter. In addition, a simple
edge localization algorithm was constructed in hardware. The processor was used for further
advanced post-processing. From their work, it is suggested that the fundamental architectural,
data-path critical and computationally less complex functions are more efficiently implemented
in hardware while software is preferred to handle more flexible features. These design

considerations will be applied in constructing the touch screen system.

2.3 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAS) are reprogrammable hardware devices that can be
utilized to implement logical functions through a hierarchy of reconfigurable interconnects
among digital blocks. It is the advanced technology having both the execution speed by taking
advantage of the parallel hardware architecture and the implementation flexibility through the
programming approach. In modern designs, there is a growing trend in applying FPG As as
development and product platforms. There are three major types of FPGAs among different
vendors: SRAM based FPGA, Flash based FPGA and Anti-Fuse based FPGA[41].

SRAM FPGA

Static memory technology based Field Programmable Gate Arrays are widely used by major
vendors such as Altera and Xilinx where power is required to be sustained to retain the internal
data during the operation. Usually an external boot device is needed to provide in-system

programming through bit streams.
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The following is the basic logic element structure from an SRAM based Altera Cyclone Il device
[42]:
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Figure 8 SRAM Based Logic Element Structure

The basic logic element is composed of a four-input look-up table (LUT), which is a function
generator that can execute any function of four variables: a programmable register which can be
configured as different logical operations such as D flip flop or T flip flop; a carry chain for
function directing; a register chain for unit cascading; and some other components for controlling

and linking signals.

Flash based FPGA:
Flash-erase EPROM based Field Programmable Gate Arrays are reprogrammable and low-cost
hardware devices. The FLASH based FPGA is able to retain the value after power-off and will

always leave residual charges after being erased.
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The following is the logic cell of a Flash based Actel ProASIC FPGA device[43]:
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Figure 9 Flash Based Logic Cell Structure

The basic cell structure also has a look-up-table (which is a common component in most FPGA
devices) with three inputs that can implement a three-input combinatorial gate or flip-flop with
enable. This flash based Actel device is similar to basic ASIC cells in the sense of its fine

granularity.

Anti-Fuse based FPGA
Anti-Fuse based Field Programmable Gate Arrays are less used due to their limitation of one-
time programmability. However, its less flexible physical structure has relatively high security

that prevents illegal etching and design retrieving.

FPGA Verses ASIC

After establishing a proposed hybrid system with proper considerations on system level
partitioning and module level integration, it is usually required to convert all or part of the
system into an application specific design (ASIC) to lower product cost and increase system
reliability, especially in high volume applications. The ASIC design process and semiconductor
process performance characteristics vary according to different manufacturers. The efficiency of
resource consumption is normally measured as the number of standard cells. Compared with the
traditional ASIC design process which usually has a long design cycle and relatively high NRC

(Nor-Recurring Cost), recently there is a growing trend to create hardware embedded simulations
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to facilitate incremental design verification of ASICs by using FPGA (Field Programmable Gate
Array) devices. With its high flexibility and short time-to-market, as indicated by Selvaraj,
Sapiecha and Dhavlikar [44], this FPGA emulation has emerged as a major ASIC verification

technology.

FPGA Verses DSP and Mobile PC

Compared with a Digital Signal Processor (specialized microprocessor for signal processing) and
a Mobile PC (general purpose processing unit), parallelism is the most significant advantage in
an FPGA which enables Process-On-The-Fly (processing during data acquisition), multiple
operations within one cycle and multiple algorithms processed in a pipeline. The drawback is the
relatively slow operational clock, relatively more expensive cost and much higher design and
verification effort compared with an equivalent implementation running on a DSP or PC [31].
Powerful arithmetic operation processing capability is one well known feature of Digital Signal
Processors, such as multiply accumulate (MACs) which is ideal for mathematical algorithms.
Recent DSP’s supporting of SIMD [45] (single instruction multiple data) featuring the
instruction-level-parallelism through very long instruction words (VLIW) improves execution
time to a great extent. The general processor is renowned for its super fast clock speed and multi-
threading for potential multi-cores. The following figure shows the results of a performance
benchmark of selected vision based algorithms implemented on different high-speed embedded
platforms: Field-Programmable-Gate Array (FPGA) (Altera Stratix- Il families with 133MHz
core), digital signal processor (DSP) (Texas Instruments TMS320C6414 with 1GHz system
clock) as well as mobile PC processor (Intel Mobile Core 2 Duo T7200 with 2GHz clock) [31]:
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Figure 10 Performance Benchmark of Vision Based Algorithms on Different Platforms
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FPGA Verses GPU and CPU

FPGAs have shown very high performance in many applications in image processing. However,
recent GPUs and CPUs also have the potential for high performance for similar applications. A
Graphics Processing Unit (GPU) is designed particularly for intense graphic processing which
usually has a much faster clock than a FPGA and a little slower clock than a CPU, but supports a
significant number of cores (for instance, 240 cores in Nvidia GTX280) running in parallel and
outperforms a CPU. The disadvantage of the GPU is the relatively slow memory access speed
which affects the efficiency of communication and the limited data transfer between grouped
cores fixed by its structure [46]. The following figure shows the relative performance for stereo-
vision and k-means clustering algorithm. As computational complexity increases the
performance of all GPU, FPGA and CPU based solutions decreases. However, the FPGA based

design consistently outperforms both GPU and CPU solutions with the stepwise curve [46].
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Figure 11 Stereo-vision and K-means Clustering Algorithms on Different Platforms

2.4 System on Chip (SoC)

With the rapid advance of electronic design automation and IC fabrication technology, System-
On-Chip (SOC) has become more and more popular in complex system design which integrates
data acquisition, signal conversion, application specific processing and various peripherals into a
single chip. It refers to integrating all system components into a single circuit or chip to reduce

manufacture cost and enable more compact systems.
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Compared with traditional board level design, the System-On-Chip approach has a number of
advantages in terms of higher system integrity, higher operation speed, lower development cost,
more compact chip size and diminishing time to market. A typical SoC device can be a hybrid
module with embedded processors, on-chip memory, versatile general purpose 10 ports, high
speed serial links, standard peripherals and other digital or analogue components[47]. In practice,
external memory chips and various specific peripherals are often needed for different application
requirements. The purpose of System-on-Chip development is to realize the required system

functionality through a single chip resource with minimum external peripherals.

There are two main SoC development methods: Block Based Design (BBD) method and
Platform Based Design (PBD) approach. For block based SOC design, the system is
constructed based on assembling and coordinating a number of hardware blocks under sub-
system functionalities to achieve an overall performance, while for platform based design, the
system is a device integrating a predetermined collection of resources with a more system and
model level focus [48] . Extensive research has explored methodologies and techniques on both
design methods to improve the SOC design overall efficiency. Carloni and Li [49] proposed a
latency-insensitive design (LID) to increase global performance in Block-Based Design. In the
platform based approach, the reuse of intellectual property [50] and pre-designed blocks or

virtual components (VC) [51] have been applied to boost design productivity.

A number of performance criteria have been required from modern industry system applications
according to [52]. These are the demand for high-level integration and density of the target for
the control module; the capability of supporting high-performance control algorithms with
flexibility and modifiability; and “reliability, accuracy, and safety in a harsh environment”. In
order to meet most of the above criteria, recent research studies show that the digital hardware
solution, such as the field-programmable gate array (FPGA), is an appropriate SoC development

and implementation platform compared with other solutions.
The proposed touch screen system is an image sensor based design, using a Field Programmable

Gate Array as a fast and advanced prototyping and implementation platform. In the image sensor

based field-programmable-gate-array-executed detection and tracing system on chip area, within
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the platform based design domain, Kim, Park and Lee’s outdoor scene tracking system[53] has
been designed relying on a platform based approach with a large amount of component reuse,
such as the image encoder. Eun Tack and Kwang Sung have demonstrated an object and distance
tracking SoC system based on field programmable gate array prototyping [54]. The on-chip
system is comprised of processor core (ARM core), 12C control, SRAM control for stereo image
capturing, DMA control, LCD driver and other basic peripherals. The distance and object
trackng algorithm has been partitioned in processor based software. The development is under
the guidance of the platform based approach where a variety of IPs have been adopted from
previous designs such as LCD control IP and SRAM accessing IP. Moreover, the system has

been further organized as a new IP for future platform development purposes.

Since the proposed research aims at providing a system solution for a specific application in a
unique technology domain, it is estimated that most system functions and components are
required to be constructed and customized according to specific application requirements and are
unlikely to be reused as IPs in other designs. Therefore, block based design (BBD) is considered
the most appropriate approach to initiate the design. A block based face detection system[55] is
an appropriate example where the development process has been organized in three phases from
a pre-processing block, detection block to post-processing block design. All key components
have been constructed and verified on the module level, such as the Haar feature generator and
ANN classifier, before being integrated incrementally into the whole system. A PowerPC based

processor was used for memory control and future extension.

The System on Chip design is still a relatively new research field for system development in
terms of high level system partitioning, design methodology and specific hardware level
requirements. The design varies significantly according to different applications and knowledge

of both architecture design and module verification is critical for achieving an optimum result.
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Chapter 3 -- Touch Screen System on Chip Design and Implementation

3.1 Introduction

The proposed touch screen system was originally specified to perform two major system
functionalities, acquiring touch information and processing touch results, with a number of sub-
modules specified by the industry partner, such as an image sensor module and illumination
support chip. A number of other sub-units were considered to be investigative, such as most of
the blocks in the processing part of the system. Therefore, the traditional block based system on
chip design method has been applied to the construction process with each module researched,

implemented and tested separately and integrated incrementally as a complete system in the end.

The system has been partitioned into three main parts defined by the functionality on the top

level:

@ A Data Acquisition System which is designed to configure and control acquisition sub-
modules to consistently collect and update touch screen based vision data.

@ A Processing Unit which is designed to calculate and analyse the object position and touch
motions based on the previous acquisition result.

® A PC module which is planned to handle and update touch positioning and motion results

from the hardware block with data then passed to shared memory for future extension.

Each sub-module inside the acquisition and processing systems is dedicated to implementing one
function. In addition there is a customized Acquisition Controller organizing all sub-units in the
Data Acquisition System and a Master Controller coordinating all sub-modules in the Processing

Unit for system synchronization. More details are presented in following paragraphs.
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3.2 Data Acquisition System

3.2.1 Data Acquisition System Overview

The Data Acquisition System is the fundamental module inside the touch screen system to
continuously acquire and transmit touch information to the next stage, the Processing Unit. The
acquisition system is comprised of three major parts: Acquisition Controller which configures
and directs the cameras and the LED based illumination subsystem through camera support
circuits; ADC Interface which controls the analogue-to-digital converter chip to digitize
analogue pixels from the cameras into digital values; and USB Interface which constructs digital
pixels into packages and drives the USB chip to transmit them correctly.

Inside the Data Acquisition System, all the control units have been constructed in the FPGA with
I/0 signals interfacing with outside physical components such as camera support circuits, two
image sensors mounted on top of the touch screen, the ADC chip (Texas Instrument) and the
USB chip (FTDI) through ribbon cables. The initial block diagram (before optimization) of the

Data Acquisition System is illustrated below:
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Figure 12 Data Acquisition System Block Diagram
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3.2.2 Acquisition Controller

The Acquisition Controller is the central sub-module of the Data Acquisition System, which not
only controls the camera and illumination system but also organizes the communication with
both the ADC and USB modules. Timing control is one of the most significant parts inside the
Acquisition Controller, affecting the system coherence and correct handshaking between sub-
modules. Thus, timing control flow is decoded into a state machine with clear transitions among
different states. Counter modules are constructed for more accurate timing control inside states
in different operations. Meanwhile, pixel and frame counting are required from camera
communication. There is also a group of clock dividers in the Acquisition Controller generating
clocks at different frequencies for different operation modes. As a basic controller design, the
register unit is a necessary element for initialization purposes or restoring intermediate results.
The initial design of the Acquisition Controller is illustrated below with the sub-modules

mentioned above and other separate logic elements:
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Figure 13 Acquisition Controller Block Diagram

3.2.2.1 Acquisition Controller Timing Control Flow

Acquisition timing control has been organized in four phases: Idle, Configuration, Operation and
Transmission with a total number of 23 states describing the flow of the acquisition process. Two
additional states (CAM_Setup_Switch and CAM_Tx_Switch) are decoded to switch between the
two cameras. Each camera goes through the 23 states before the system switches to the other

camera.
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The following table lists all states encoded in the Acquisition Controller state machine:
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Table 1 Acquisition Controller State transition Table

Phase 1 (Idle): All internal and external control signals are set to their default values.

Phase 2 (Configuration): In the configuration phase, the camera clock is switched to the
configuration clock frequency (200 kHz) first, and then the camera mode, camera pixel map,
camera voltage and current level are all set up under the configuration clock.

Phase 3 (Operation): In the operation phase, the camera clock is changed from the configuration
clock to the operation clock and the camera mode is switched to operation mode. The
illumination subsystem is enabled for the camera exposure time (1ms typical), and during this
period, the controller is concurrently configuring the ADC register before the transmission phase
starts.

Phase 4 (Transmission): In the transmission phase, the camera pixels are transmitted at the
transmission clock frequency.

Camera Switching Phase: Camera one and camera two are switched in both configuration and

transmission.
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3.2.2.2 Clock Divider Modules

The system clock is 50 MHz, however, there are three different frequencies required for different
parts of the Data Acquisition System: 200 kHz, 500 kHz and 12.5 MHz. Counter based clock
divider modules are designed to derive lower frequencies from the system clock.

For example, the system clock needs to be divided by 100 in order to generate a 500 kHz clock
from the 50 MHz system clock. A counter is applied to count from 0 to 49 (50 counts) and then
reverses the output clock signal from either 0to 1 or 1 to 0.

The following is a circuit level design of the clock divider (from 50 MHz to 500 kHz) which is
mainly made of multiplexers, an adder and a comparator (for incrementing and checking the

count value), and D flip flops used to store counts and synchronize with the reset signal:
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Figure 14 Clock Divider RTL Structure
The same principle has been applied to the 200 kHz and 12.5 MHz dividers which use 125 count

and 2 count based designs respectively.

3.2.2.3 Acquisition Engine Counter Modules

In the original design before optimization, there are six counters in the Data Acquisition System:
two process counters, two frame counters and two pixel counters. The use of counters is common
inside most digital systems and the following is the circuit level design of one process counter

(operation counter) which is 14 bits wide:
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14 bit operation counter design:
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Figure 15 Acquisition Engine Counter Module RTL Structure

In the counter structure, one adder is used to increment the count starting from 14’h0001. When
the counter is enabled, the new incremented result will be selected by the first multiplexer,
otherwise the old result which was previously stored in the D flip flops will be chosen. The

second multiplexer is used to reset the counter value to the default value of zero.

3.2.2.4 Reconfigurable Pixel Map Generator

One important task in the camera configuration process, which is also managed by the Data
Acquisition System, is selecting the active imaging area by configuring pixel maps inside both
cameras. The active imaging area is different for each camera. Thus it is required that the Data
Acquisition System is able to generate all possible combinations in the pixel map to suit each
camera's optimal imaging performance. There are ten cycles to configure the pixel map with
each cycle having ten bits for activating certain vertical rows in imaging area. The design idea of
the Pixel Map Generator is to selectively produce any duty cycle waveforms inside each cycle.
From the hardware point of view, the design idea has been translated into a core having two
comparators: one for indicating the start the duty cycle with the other indicating the end as well
as a counter for adjusting duty cycle accuracy inside the cycle. The initial design is to configure
the cameras by a default setting (bit5 and bit6 high with the other bits all low in the 10 bits)
which represents only the central two rows are activated out of whole ten rows. So in the
hardware structure, a 20% duty cycle is supposed to be generated with adjustable position. The

following structure is designed for default pixel map configuration:
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Pixel Map Generator Structure for default setting:

LessThanl

E—
Generator_reset| B Pixel_Map_Setup_col

PRE
D Q]

Q
PlxeMapWaveform(

ENA LEPSFEtNMap | Waveform_intern_clock~0

FourHdrK_clock >
aveform_clock_on >

Fixel_Map_Setup_count[2|
PRE
D

—P

t-[4..0]

CLR

LESS_THAN

5 ho0--

Figure 16 Pixel Map Generator RTL Structure
For the default setting, the counter has 20 counts and the first comparator (left) is compared with
19 (H*13) while the second comparator (right) is compared with 16 (H’10). This produces a duty
cycle of 20 % (4 out of 20). The start value of the counter is set to 8 to position the pulse in the
middle of the period. Both the start position and duty cycle can be adjusted by modifying the

initial counter value and the two compare values.

3.2.2.5 Shift Register Module

In the Data Acquisition System design, a shift register is used to load voltage and current
configuration settings at the beginning and these are shifted to the camera bit by bit during the

configuration. The following is the D Flip Flop based configuration shift register circuit:
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data_reg[7..0]
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data_ld >
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Figure 17 Acquisition Engine Shift Register RTL Structure
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3.2.4 Analog to Digital Convertor

The analog pixels output from the camera module are required to be converted into digital values
for further processing. An analog-to-digital converter is used to convert the analog values to
digital numbers. In our touch screen system, the analog pixels represented by voltage levels are

to be converted into a digital format so they can be displayed as binary numbers.

3.2.4.1 ADC Chip Selection and Circuit Configuration

There are three considerations in selecting an appropriate ADC chip. The first one is speed. The
camera module is able to transmit analog pixels at a rate up to 1 MHz, so the ideal sampling rate
of the ADC chip is greater than this frequency. The second consideration is resolution. The
previous microcontroller based acquisition system operated at 10-bit resolution, but a higher
resolution is expected in the new system to provide more touch information. The final
consideration is synchronization. The ADC conversion process must be able to synchronize with
an external clock (from the system clock, outside the ADC module) to achieve complete data
acquisition system synchronization.

The ADS 7229 [56] from Texas Instrument has been selected as the ADC chip. This is a low-
power, SAR (Successive-approximation) based analog-to-digital converter. It is able to operate
ata 1MHz sampling rate which meets speed requirement, it is 12-bit which provides more
resolution and the conversion can be programmed to run based on an external clock to achieve
synchronization with the system controller. The internal conversion clock logic is illustrated

below, with options for using either an internal oscillator or external synchronised clock:

CFR_D10

Conversion Clock

(CCLK) Osc

SPI Serial
Clock [(SCLK)

Divider . f

172

Figure 18 ADC Chip Conversion Clock Block Diagram
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Configuration circuit design for ADC 7229:

M
|

Figure 19 ADC Chip Configuration Circuit

Two pairs of decoupling capacitors are added separately for the analog power supply and the
digital power supply to shunt the noise and reduce the effect of the power supplies on each other.
An extra low noise, low drift precision voltage reference (REF5025 [57]) is applied to the ADC
chip to provide a highly accurate conversion reference. Excellent temperature drift
(3ppm/degree) and high accuracy (0.05%) are two main reasons that make this chip ideal for use
in high-precision data acquisition system design. The complete ADC circuit (with reference) is
able to convert analog pixels which range from 0 to 2.5 volts to two byte binary results (12 bits
of value plus 4 bits of extra information). The conversion in the ADC system is synchronized by
the Acquisition Controller through SCLK, with CONVST and FS signals sent from the
Acquisition Controller to indicate start conversion and start transmission of digitized results. The
SDI input is used by the controller to configure the ADC registers and the SDO output is used to
reading digitized data. EOC is the feedback signal to indicate the end of conversion to the

controller.
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3.2.4.2 ADC Interface Overview

In the Data Acquisition system, the ADC Interface sub-module plays an important role in

controlling the ADC chip during the digitization. It responds to the Acquisition Controller for

initiating and completing the configuration or conversion processes. In the initial design before

optimization, the ADC Interface consists of three parts: Control Logic for directing process flow

for configuration and conversion, ADC Counter system for handling accurate SPI transfer

timing, and ADC Register system for shifting configuration settings and shifting out digitized

results.

The ADC Interface block diagram is illustrated below:

ADC Interface

ADC Sync CkGen

Configuration &
Conversion Control Logic

Shift Register

Result Register

Sync Clk Counter

CFR Counter

Conversion Counter

—

Figure 20 ADC Interface Block Diagram

3.2.4.3 ADC Control Flow
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CTRL_COWFIG_ST
CTRL_Idle
CTRL_COMWFIG_STABLE
CTRL_COWFIG_CFR
CTRL_CONWFIG_CFR_ED
CTRL_COMFIG_CFR_ED_2
CTRL_COWYERSION_TSU

el il S S S

Phase 1

CTRL_CONWERSIOM_ST
CTRL_COWVERSION_EOC
0| CTRL_CONYERSIOM_FRM_SETUP_1

—_

11| CTRL_CONVERSION_FRM_SETUP_Z

Phase 2
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15| CTRL_COWVERSION_EMD
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Table 2 ADC Interface State Transition Table

ADC control flow has been organized in two phases: configuration phase and conversion phase.

Phase 1 (Configuration): Configuration phase is the process of ADC register configuration

(which selects power mode, operation mode and others). It operates at the same time as the
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Acquisition Controller exposure which means the Configuration phase does not cost extra system
time.

Phase 2 (Conversion): Conversion phase starts when the analog pixel is available from the
camera and is signaled by a start command from the Acquisition Controller. It takes 36 system
clocks until the conversion process is complete. Then the shift register will be enabled to shift
the 16 bit digitized value from the SDO pin of the ADC chip. The data valid signal will be

generated at the end of shift to indicate completion.

3.2.4.4 ADC Counter Modules
There are two counters in the ADC Interface: one is for configuration timing counts and the other
is for conversion timing control. The counter structure is the same as the operation counter inside

the Acquisition Controller design, apart from differences in the count numbers.

cnt_en =

ey = |

crtf5..0]

PRE
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Mz CLE

clk =
reset =

Figure 21 ADC Counter Module RTL Structure

3.2.4.5 ADC Register Modules

Two registers are used in the ADC Interface: one is a configuration register that loads default
settings at the beginning and shifts the settings out in serial; the other is a result register which
reads the digitised value bit by bit in serial and stores the result temporarilly. A Synchronous

Parallel Load, Serial In, and Serial Out shift register is customized for ADC requirements.

temp[7..0]
FRE

o o =0

M=z

CE

Figure 22 ADC Register RTL Structure 38



3.2.5 Universal Serial Bus 2.0

Universal Serial Bus (USB) is a common communication method for interfacing external devices
with a host controller. In the Data Acquisition System design, a USB2.0 chip FT 245R[58] from
FTDI is selected to consistently transmit camera frames to the real time monitor on the PC side

for testing purposes. The block diagram of the FT 245R is illustrated below:
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Figure 23 USB Chip Block Diagram

The FT 245R handles the entire USB protocol on the chip with integrated EEPROM storing
device descriptions and 1/0O configuration. The USB Protocol Engine is the key unit inside the FT
245R chip which manages the data stream from the device USB control endpoint and also
handles the low level USB protocol requests generated by the USB host controller and the
commands for controlling the functional parameters. The Serial Interface Engine (SIE) block is
the core data conversion engine which performs the parallel to serial and serial to parallel
conversion of the USB data. The USB DPLL cell locks on to the incoming NRZI USB data and
generates recovered clock and data signals for the Serial Interface Engine (SIE) block. One
important feature of this USB structure is the internal buffers on both the transmission and
receiving sides to handle the speed differences between hardware acquisition and the host

processor.
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3.2.5.1 USB Configuration Circuits Design
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Figure 24 USB Chip Configuration Circuit

The circuit configuration for the FT 245R chip is simple because the chip integrates the external

EEPROM, clock circuit and USB resistors onto the device already. The USB circuit is

configured as self powered with decoupling capacitors added for noise reduction.

3.2.5.2 USB Transmission Engine Overview

There are two design requirements for the USB Transmission Engine: One is constructing the
digitized pixel (12-bit value) into a package which has a header structure indicating the
beginning and end of the camera frame to facilitate the synchronization with the software
monitor for display purposes. The other is the control of the USB chip to achieve consistent

transmission. A simple logic structure is designed to meet both specifications.
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The Transmission Engine block diagram is illustrated below:

Transmission Engine

Timing Control

Package
Constructor

USB Register

Figure 25 Transmission Engine Block Diagram

3.2.5.3 USB Interface Package Constructor

There are 528 pixels (including dummy pixels) in one camera frame with each pixel comprised
of 12 bits. The constructor packs 12 bits into 2 bytes (16 bits) with 4 spare bits providing sync

information for the software monitor.

- (@@L T

W

Byee2 @@ S @

Figure 26 USB Package Constructor Structure
The least significant 12 bits of the 2 bytes (6 bits from each byte) are used to store the 12 bit

pixel value. The most significant bits of Byte 1 and Byte 2 are used to represent the beginning
and end of frame: 01 means beginning (first pixel), 10 means end (pixel 528), and 00 is used for
all pixels in between. The other bit in both Byte 1 and Byte 2 is used to indicate Byte sequence: 0
means Byte 1 and 1 means Byte 2.

3.2.5.4 USB Interface Control Flow

The USB Interface Control Flow is relatively straightforward compared with the Acquisition
Controller and the ADC Interface. When pixel data is available from the ADC Interface, a valid
flag will be set and the USB Interface will be activated. It will take two cycles to construct the
package and then check the buffer is not full before pulling the write signal high to the USB chip

to start transmission.
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3.2.6 System FIFO

The FIFO (First In First Out) is a common queue processing technique widely applied to hybrid

system design which has both hardware accelerate logic and a processor. It is used to buffer and

balance the difference in traffic speed between the hardware domain and the host processor

domain. In this touch screen system, a hardware synchronous FIFO is integrated between the

hardware Data Acquisition System and the PC monitor for real time operating purposes. The

hardware FIFO structure is usually made of three parts: Control Logic, Pointer Logic (Read and

Write Pointers) and Storage. The synchronous FIFO [59] integrated in the Data Acquisition

System is illustrated below on the top level:
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Figure 27 System FIFO RTL Structure
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Control Logic:

Control logic has four inputs: clock, synchronous clear, read request and write request. The
availability of the FIFO buffer is evaluated inside the control logic with a FIFO Full flag or FIFO
Empty flag generated as outputs. The unused width of the FIFO is also tracked by the control

logic.

Pointer System:
The counter based pointer system has a read pointer and a write pointer, where one pointer is
incrementing and the other is decrementing, depending on whether a read or write process is

being performed.

Storage:
In FIFO storage, SRAM, flip-flops or latches are frequently used. In this FIFO design, a dual-
port SRAM is created where one port is used for writing and the other is used for reading at the

writing or reading addresses generated from the pointer system.
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3.2.7 PCB Finalization

The following is the finalized PCB layout for the Data Acquisition Board:

Figure 28 Data Acquisition Board PCB Layout
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The following is the physical view for the Data Acquisition Board:
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Figure 29 Data Acquisition Board Physical View

Figure 30 Data Acquisition Board Connected to Dev Board
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3.3 Memory Management Unit (MMU)

3.3.1 Memory Elements Overview

In any large digital system design, the memory unit is always one of the most important parts
during the system operation. The basic concept of memory is the organization of stored
information. Bits are stored in locations specified by an address which is a unique code telling a
digital system how to find data that has been previously stored. The simplest memory device, a
D-type latch, can store one bit. A 0 or 1 is stored in the latch and remains there until changed.
There are a number of types of storage catalogued in terms of volatility, mutability and

accessibility.

One of the most common memory types is random access memory (RAM) which can be written
to and read from in random order. M4K based Block RAM is the main memory used to store
camera pixels in this touch screen system. In read only memory (ROM) data is only able to be
read. In the touch screen system design, ROM is used to store look up tables for triangulation.

These will be introduced later.

There are two other types of memories considered in the first phase of system design, in case the
on-chip memory is insufficient for dealing with extra camera data for potential extended
processing. One is SRAM (Static Random Access Memory) which is bistable latching circuitry
based storage and can operate up to 167 MHz in the current Cyclone 1l based design
platform[60]. The other one is DRAM (Dynamic Random Access Memory) which is cell (one

capacitor and transistor) based storage.

As mentioned, M4k Block based on-chip RAM is selected as the main touch screen system
memory to store a total number of 1056 pixels (528*2). An M4K Memory Block is able to
operate up to 250 MHz with true dual-port operation and supports four modes of operation:
single clock, shared clock, separate clock, and asynchronous. In single clock mode, the read and
write operations are synchronous with the same clock while in shared clock mode, the read and
write operations are synchronous with the same clock but also a separate clock for the output

port.
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In separate clock mode, there are two independent clocks (read clock and write clock) for the
read/write operations respectively. In asynchronous mode, no clock is required. Both the write
operation and the read operation are dependent only on the enable signal.

The basic Read/Write Operation structure is illustrated below:
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Figure 31 Dual-Port Ram Read/Write Operation Structure

3.3.2 Memory Management Unit Control Structure

After reviewing all the storage elements considered in the initial design planning, a memory
management unit control structure is presented below which responds to the master controller to
store a reference camera frame, update the latest camera frame and derive the trigger level. The
core M4K storage operates in asynchronous mode with separate clock control for memory
reading and writing, coordinating with a multiplexer and demultiplexer to switch between the
different camera data and propagating through trigger logic to generate a trigger level for next

step Edge Detection Unit.
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Below is the block diagram of the Memory Management Unit without Updating Logic:
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Figure 32 Memory Management Unit Block Diagram

Since a small number of frames are required to be stored (one frame for nor-constrained MMU,

three frames for MMU with constrained logic), on-chip M4K RAM blocks are capable of storing

the camera pixels for this touch screen system. This RAM also has a high execution speed, using

three processing cycles for a write operation and two processing cycles for a memory read

operation. The abstract circuit level of the MMU structure is illustrated below:
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Figure 33 Memory Management Unit Abstracted Circuit Structure
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The Memory Management Unit (MMU) is involved in the operation of the Initialization mode
and the Operation mode, which are organized by the Master Controller. The access to each
camera’s memory block is switched by Mem Demux and the output of the memory block is

swapped by Mem Mux, both conrolled by the Cam-Sel signal from the Master Controller.

In the initializing process, both cameras’ memories are configured by digitized data from the
Data Acquisition System after stabilization. All writing related control signals (camera one and
two writing clock enable, writing clocks and writing addresses) are enabled, while all reading
related control signals are deactivated. The initialization camera frame is the full camera level

with the ambient light level subtracted to remove environmental effects.

In operation mode, the Memory Management Unit starts functioning first and finishes last. In
detail, when system operation begins, the previous camera pixels and previous trigger values are
required to be read from memory for edge detection purpose. It takes three cycles to retrieve
these from memory with all the reading related control signals (camera one and two reading
clock enable, reading clocks and reading addresses) enabled and all writing related control
signals disabled. At the same time, trigger values are generated through Trigger Logic based on

the full level pixel values from the memory block.

The design of the Trigger Logic is also a highlight of the MMU. The trigger is specified to be
either 75% or 62.5% depending on experimental experience. Creating a floating point unit
processor to calculate the percentage would consume a large number of arithmetic logic
elements, so a resource-efficient adder-register based solution is used with equivalent results. To
generate 75% logic, which is equivalent to ¥, the execution adds itself three times (multiply by
3) with the result shifted 2 bits to the right (divide by 4). To generate 62.5% logic, which is
equivalent to 5/8, the execution adds itself five times (multiply by 5) with the result shifted 3 bits
to the right (divide by 8).
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3.3.3 Constrained Memory Management Unit Structure

During the operation of the real time touch screen system, the trigger level should be updated in
a relatively smooth way without significant increases or decreases. Therefore, a customized
constrain logic is required to set reasonable limits on the top and bottom range of trigger
variations. The design specifications for this constrain logic are that it is one self-contained unit

that does not affect other components and then it is as compact and low latency as possible.

The abstract circuit level of the constrained MMU is shown below:
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Figure 34 Constrained Memory Management Unit Abstracted Circuit Structure
The Top Constrain and Bottom Constrain components are set to make sure the current trigger
level is within a certain range. If the current trigger level is beyond the top limit, an overflow flag
will be generated and an underflow flag is indicated by the comparator if the new trigger level is
below the bottom limit. The Trigger Update Register adjusts the new trigger level based on the
overflow and underflow flags. If either flag is high, which means it is out of normal operation
range, the trigger level will be reset to the reference default trigger value. If the current trigger

value is within the safe range, the trigger level will be updated by averaging previous and current
trigger values.

50



3.4 Edge Localization Unit (ELU)

Once a touch event happens, the touch object blocks part of the reflection seen from one image

sensor while it blocks a different part of the reflection seen from the other sensor:
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The purpose of edge localization is to capture the pixel 1D for both the rising and falling edges of
the touch object, to localize the object on each camera before further triangulated in the next

processing unit.

3.4.1 Edge Localization Unit Overview

Gradient-based edge detection is one of the most well known methods in the field of image
processing. It s a discrete differentiation based technique with the position of the local maximum
of the first derivative considered as the edge point as defined in Yasri and Hamid’s paper [61].
Mathematically, for a 2D image function f(x, y), the gradient magnitude g(x, y) and the gradient

direction O (X, y) are computed as:

E[IJ}F:I — -.;';'!LTE +ﬂ}.2

B{x.y) = arctan fﬁj

The edge gradient is calculated from the difference of the pixels in the horizontal and vertical
directions. G(X, y) (magnitude) is the sum of the magnitudes of the differences, while the

gradient’s direction is the arctangent of the ratio of the differences.
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The basic concept of gradient based edge detection is originally designed for two dimensional
image processing. In order to modify the basic detection idea to this touch screen system using a
single line scan camera, simplification and transformation have been applied to create a one

dimensional gradient based hardware edge detection structure.
In a one dimensional image, gradient based detection can be simplified to searching for the
maximum of the derivative of y in the x direction, which can be further reduced to finding largest

vertical difference since all pixels are equally distributed on the horizontal axis.

The design specification requires localizing and storing the touch edge pixel IDs into registers on

both the rising and falling edges, by locating the largest vertical magnitude changes.

Gradient Based Edge Detection Logic block diagram is illustrated below:
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Figure 36 Gradient Based Edge Detection Block Diagram

The Gradient Edge Detection Logic is made up of a Detection Unit and a Localization Unit:

3.4.2 Edge Detection Unit
The Edge Detection Unit is used to generate the flag when a touch occurs. The derivative is

calculated by subtracting two registers.

52



3.4.3 Edge Localization Unit

The Localization Unit is used to capture the pixel ID at both the maximum rising derivative and

the maximum falling derivative.

The abstracted circuit level is depicted below:
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Process Description:

There are two major units for locating the edge positions on both the rising and falling event: the
Detection Unit and the Localization Unit. Inside the Detection Unit, a comparator is used to
indicate the touch event by issuing a flag calculated on a preset trigger value and the current
camera value. Once the current camera value is below the trigger value, a flag will be generated.
Two registers are involved in the DU module: Cur Reg is applied to record the current camera
value while the other Pre Reg is used to store the previous camera reading. Both register results
will be fetched into the Derivative Unit when triggered by the Master Controller to calculate the

current derivative value.

When the current derivative is available at the Detection Unit, it will be directed into either the
rising branch or the falling branch, determined by the Falling_Rising flag. In the LU
(Localization Unit), both the maximum rising edge and the maximum falling edge derivatives are
stored in the Rising Edge Reg and the Falling Edge Reg respectively. After that, either the rising
or falling comparator may be activated to indicate the current derivative value is the largest
rising or falling value so far in this frame. If either comparator is activated, the largest derivative
value will be maintained with its pixel ID captured simultaneously in the Edge Localization
Register. In the end, both the falling edge pixel ID and the rising edge pixel 1D will be output to

the subsequent processing unit for further processing.

The edge detection and localization unit has a conventional basis, customized for the line scan
based optical touch screen. The architecture is resource oriented with a small amount of parallel
operation. A total of 10 cycles are consumed in the worst case to process a complete edge

detection and obtain localization function results.
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3.5 Position Localization Unit (PLU)

The Position Localization Unit is a unique and fundamental part of the touch screen system,
which processes the final touch coordinates based on the edge positions from the previous Edge
Detection Unit. The Position Localization Unit is customized for the physical layout of the touch
screen which has image sensors (two in a basic system) on the top corners with the reflective
retro glued on the screen frame. Once an object is detected, the middle of the object is calculated
by the Edge Detection Unit, and then the tangent values of the camera view angles are read from
the LUT. Finally the Position Localization Unit processes and finalizes the whole operation

using the results from all the previous modules.

3.5.1 Position Localization Mechanism

Since the Position Localization Unit is constructed in hardware, its mechanism should be
efficient and simple. However, a high level of accuracy is required to meet the minimum design

specification. The object localization mechanism is illustrated below:

’J;

-

C

Figure 38 Position Localization Mechanism Illustration
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When a touch occurs, the object can be seen by the two cameras along the lines represented by

two linear equations in x and y:

y = tan((pi/2* Numacive) * PixEdge1— offset) * x1
y = tan((pi/ 2* Numacive) * PixEdge 2 — offset) * (C — x2)

where Numacive IS the number of active pixels between the start and end pixels of the camera,

(pi/2* Numacive) assumes the 90 degree view is equally distributed among the active pixels,

PixEdgel is the middle pixel of the touch position seen from camera one,
PixEdge 2 is the middle pixel of the touch position seen from camera two,
offset allows calibration for the actual camera placement,

C is the screen width.

After the touch object is seen by both cameras, the coordinates of the touch point are found by
solving these two simultaneous linear equations. In hardware, the object localization can be
performed by searching for the x value that makes these two linear equations have the same
value for y. In a real implementation, the required accuracy is a maximum difference of 1mm

between the two calculated y values.

3.5.2 Position Localization Unit Structure Transformation

In order to design the hardware structure, the localization mechanism has to be converted into a
hardware style description. The transformation process from the original mechanism to the
proposed hardware structure is presented in following stages:

Stage one:

The localization mechanism can be simplified as finding an x value that makes y1 equal to y2 in

the following equations:

y1=tan((pi/2* Numaciv) * PixEdge1—offset) * x1

©
y2 = tan((pi/ 2* Numacive) * PixEdge 2 — offset) * (C — x2)
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Stage two:

The calculation of the tangent value is computationally expensive and is not suitable to be
implemented directly into a hardware structure. As explained in a previous section, a look up
table will be used to perform the tangent calculation. For the position localization structure, both

tangent terms can be replaced by coefficients k1 and k2 from the LUT:

tan((pi/ 2* Numaene) * PixEdgel — offser) * x1 === |tan((pi/2* Nuntanc)* PixEdge2 — offset)* (C — x2)

& <

K1 K2

Stage three:
The searching for the x value solution is realized by constructing a counter incrementing from

zero to the screen width to find the x value that makes the two equations produce the same value

k1% x1 @ k2% (C —x2)
i)
| f

Counter

fory.

After stage three, the basic localization idea is translated into an efficient hardware core with one

multiplier, one adder and one comparator:
K2*C
@ — %
k2 —

Counter
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Stage four:

With a normal up counter, using a 24 inch (532mm width) touch screen as an example, in the
worst case, the localization unit will take 532 system cycles to locate the x and y coordinates.
From the system point of view, 532 cycles does not satisfy the timing specification for the
Position Localization Unit. Thus, customized logic is required to accelerate the x searching
process. In this chapter, a hardware binary search engine based Position Localization Unit

solution is developed for the touch screen application. The main idea is illustrated below:

C

Figure 39 Binary Search Based Object Localization Mechanism

Instead of searching from the beginning of the screen to the end, the search always starts from
the middle of the search region. Then, the next search value will be evaluated using arithmetic
logic to calculate the optimal next search direction. If the search goal is greater than the current
search value, the next search will start from middle of the upper region based on the current
value, otherwise it will start from middle of the lower region. Still using the 24 inch screen as an
example, the binary search based structure will require only 10 cycles in the worst case (because

logz** = 10) which satisfies the system timing requirements.
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3.5.4 Position Localization Unit Structure Overview

The Object Localization Unit was implemented after the transformation from the localization
concept to the hardware description. The three major modules are the Binary Search Engine,
Triangulation operator and Results Register. They have been coordinated to calculate the touch

position in an efficient way by taking advantage of the hardware structure.

Position Localization Unit

Binary Search Engine Triangulation Results Storage

Upper Branch Logic
Search

Number

Generator

: Triangulation Triangulation Results
Lower Branch Logic i Eagicter

Localization Controller Mux

Figure 40 Position Localization Unit Block Diagram

At the beginning of the search process, the Search Number Generator produces the first search
candidate which is the middle value of the default screen width (x axis). The candidate is fed into
the Triangulation module which calculates the corresponding y values from the left and right
cameras’ perspectives. The difference between the two y values is evaluated inside the
Triangulation module. If the difference is within the required accuracy, a touch found flag is
raised to finish the search routine, otherwise a direction flag guides the next search number
generation (the middle of the lower range or the middle of the higher range) by propagating
through the dedicated logic controlled by the localization controller. The Results register is used
to store the final touch location result. This continues until the touch found flag is raised. The
Position Localization Unit (PLU) is designed in a self-contained manner with its own
independent module controller (Localization Controller) coordinated with the system Master
Controller.
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3.5.3 Binary Search Engine

The binary search or half-interval search is a conventional and efficient position localization
process that divides the search space in half on each iteration. The hardware Binary Search
Engine is designed based on the binary search algorithm to optimize the touch position searching
process in order to meet the system timing requirements. It has five sub components contributing
to the binary search process: a search number generator, upper and lower branch logic, a

multiplexer and the binary search controller. The abstracted circuit level is illustrated below:
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Figure 41 Binary Search Engine Abstracted Circuit Structure

When the Binary Search Engine is activated by the Master Controller, the Search Engine
Controller will configure the search value and the search step value inside the Search Number
Generator to the default starting values, which are determined by the application screen size. The
search value is the search attempt to locate the correct x value. If the current search value does
not make the two camera linear functions match, a new optimal search value is derived from the
current value through either the Upper Branch Logic or Lower Branch Logic guided by the
Search Controller. In the hardware design, the Upper Branch Logic is basically an adder that
adds the search step value to the current search value, while the Lower Branch Logic is a
subtractor that subtracts the search step value from the current search value, to rapidly approach
required solution. The search step value is originally set to ¥ of the screen width and is then

right shifted on each search cycle (so its magnitude is half the value of previous step) to generate
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a more and more accurate search attempt. The Multiplexer is directed by the operator evaluation
result to select either the upper search value or the lower search value for next cycle, until the

search goal is achieved.

3.5.4 Triangulation Operator

The Triangulation Operator is the arithmetic unit constructed inside the hardware localization
core and consists of a number of arithmetic operators (introduced in the aforementioned
transformation stage three with one multiplier, one adder and one comparator) to complete the
localization process. Extra arithmetic resources are used here to compare the two y values and
generate a Region-Toward-Flag for the Binary Search Engine. A small difference is allowed in

the linear function results matching, and implementing this also consumes extra resources.

3.5.5 Position Localization Unit Registers

The Position Localization Unit Register is used to capture the current x value when the current
search routine is accomplished. The Search-Finish-Flag and Search-Towards-Flag (which causes
the multiplexer to select either the upper or lower branch value) are both temporarily stored in
the OLU Register which will be read by the Search Engine Controller during the step of the

search operation.
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3.6 System Look Up Table

In system design, a Look Up Table (LUT) is usually built to perform some critical task such as
providing a mathematical function or conversion. Some simple arithmetic operations such as
addition, subtraction or even multiplication can be constructed straightforwardly at a relatively
low computational cost and latency without implementing a look up table. More complicated
arithmetic operations such as division, square root, sine/cosine, and tangent/arc tangent are both
resource-consuming and cycle-consuming and not economical to be implemented directly under

the constrained hardware resources and required latency of this application.

For this touch screen system, both touch edges on the two cameras are required to be converted
to tangent values ranging from 0 to ©/2 for the next stage position localization processing. This
conversion is not only computationally complex but also on the system critical path with
maximum processing cycle limitation. Therefore, a Look Up Table (LUT) is considered to be an

appropriate solution, using a trade-off between logic cells and memory blocks.

Read only memory (ROM) is selected as the memory component for storing a look up table,
since the contents of the LUT are read by the Position Localization Unit (PLU) only after

memory initialization. The block diagram of the look up table is illustrated below:

LUT

LT

Cami LUT
{(ROM Block 1)
Cosf
Mult

Logic

Cam2LUT

(ROM Bicck?2)

Figure 42 Look Up Table Block Diagram
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The abstract circuit level of LUT is illustrated below:

LUT
Cam1 Address Caml Address Cam1 Coef Cam1 Coef
: . o - — C
ROM Rd Clock ROM Rd Clock
—> S
Caml ROM
Cam2 Address Cam2 Address Cam?2 Coef Cam?2 Coef
— — = — >
L @ Equation Result{PLU)
—_—
g /’\
5]
=}
ROM Rd Clock
Cam2 ROM

Figure 43 Look up Table Abstracted Circuit Structure

The design purpose of the look up table (LUT) in the touch screen system is to translate the
camera one and camera two pixel positions (IDs) into tangent values of the real angles
corresponding to the pixel ids. The content of the LUT is pre-calculated using Matlab, and
configured into a memory initialization file (MIF) in hex format. The Look up table is enabled
by activating the ROM Rd CIk signal from the Master Controller, with the specific table element
access determined by either the cam1 or cam2 address. The outputs of the LUT are the
corresponding tangent values of the input camera pixel ids. In addition, one multiplier in the
LUT multiplies one tangent value by C for the following Position Localization Unit (PLU)
structure.

The image sensor used in the touch screen system generally has a 90 degree range of view, and
ideally the 90 degrees would be equally distributed between the start pixel id and the end pixel
id. In the actual implementation, the range between the start pixel and the end pixel is typically
450-500 pixels out of the total 528 pixels per sensor. The Matlab look up table calculation is
based on the ideal case since the proposed system is concept-proofing. A more accurate look up

table could be generated from calibrated measurements.
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X axis is the pixel id (position), Y axis is the tangent value corresponding to the pixel id:
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Figure 44 Look up Table Correspondence Value

We have assumed that the typical value of 450 pixels constitutes the valid range (range between
the start pixel and the end pixel) in this implementation. In addition, both the start pixel and the
end pixel are not used since the tangent value is either zero or infinite at these points. All tangent
values are stored as integers to avoid floating point processing. The stored value is the actual
tangent value multiplied by 1024, and when processing is complete the correct value is obtained

by right shifting the answer by 10 bits, effectively dividing by 1024.
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3.7 Normaliser Unit

The Normaliser Unit is one significant module inside the Processing Unit (PU) which is on a
separate data path and pipelined with the edge and position processing. It is the unit normalizing
the camera waveform into a range between zero and one. There are three reasons in the initial
design phase to construct this unit as a system addition. First is noise cancellation: since the
normalized waveform is obtained from the division of the current camera frame and averaged
reference frame, the noise effects in the current frame will be reduced after the normalization.
Second, the normalized result is within the range between zero and one; a simple threshold based
comparing method could implement the edge detection efficiently which allows for potential
future optimization. Last but not least, it is a necessary supplement to track and record touch
history in order to indicate touch motion (touch-up or touch-down) by weighting the ratio of the
normalized waveform, since the Edge Detection Unit (EDU) on the other data path is only able
to detect a touch event without further in-depth monitoring during the event.

The block diagram of the Normaliser is illustrated below. The Normaliser is comprised of the

Normaliser Operator, Level Detection Unit, Norm Register, Norm Comparator and Gesture

Register.
Normaliser
Norm
Comparator
Normaliser Level Norm
Operator Detection Unit Register
Gesture
Register

Figure 45 Normaliser Block Diagram

3.7.1 Normaliser Operator
The Normaliser Operator is used to calculate the ratio of the normalised waveform (the current
camera pixel is divided by the reference camera pixel at the same position, and then subtracted

from one).
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3.7.2 Level Detection Logic
The Level Detection Logic is made of a group of comparators with parallel comparing value

ranging from 10 to 90 (percentage) to find the match from the previous Normaliser operator.

3.7.3 Normaliser Register

Normaliser Register records ratio result for each pixel comparing at norm wr-enable clock.

3.7.4 Norm Comparator
Norm Comparator consistently compares each pixel ratio result through the whole frame and

records the largest one which is the deepest touch on the screen.

3.7.5 Gesture Register
At the end of the frame, Gesture Register will shift the latest largest ratio result into the gesture

buffer which keeps track of the latest five frames' touch history.

The abstracted circuit level of the Normaliser is illustrated below:
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Figure 46 Normaliser Abstracted Circuit Structure



After a new camera pixel is available from the ADC module and the reference camera pixel is
read from memory, the Normaliser Unit is activated with the Normaliser Operator calculating the
ratio of the current pixel to the reference pixel, and the Level Detection Logic generating a 9-bit
binary number indicating the percentage of the detected touch level. Then the Norm Register is
enabled by the Master Controller to record the normalized result (percentage presented by the
binary number) which is immediately fed into the Norm Comparator to weight and save the
largest ratio value (which means deepest touch level in normaliser). After the whole frame has
been analyzed, the deepest touch level binary result will be stored in the Gesture Register as the
touch level status of the current frame and the oldest touch level result will be shifted out of the
Gesture Register.

The Gesture Register is designed to record the most recent five touch level ratio results. The
touch motion (touch-up and touch-down) can be easily evaluated by reviewing and comparing
the history results with great potential to be extended to other new features. The Normaliser Unit
consumes a total number of 5 processing cycles for the pipeline level detection logic. In the
future, the structure can be optimized by a hardware resource design trade-off with processing

time.

3.8 System Master Controller

The Master Controller is state machine based control logic which directs the system process flow
and organizes all the operations of sub-modules including all the processing units’ functioning
and also the interfaces with the data acquisition system. The states flow in a sequential order
with concurrent control signals generated to activate and deactivate other function units to
perform the required operations. In the worst case, the Master Controller design consumes 22
system cycles to process each sample (pixel) so a total of 0.5 ms is consumed to finalize the

touch position for the whole frame.
3.8.1 System Master Controller Control Flow
There are five major phases in the system control flow with 76 detail states: starting from the

Idle phase, then the Trigger Configuration phase, Trigger Retrieving phase, to the Edge

Processing phase and Position Processing phase. The control flow is illustrated below:
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Simplified system control flow:

Idle Phase

| Idle_1, Idle_2

s

Trigger Config Phase

Cam1_Trigger_Storage_|dle, Cam1_Trigger_Storage_1,
Cam1_Trigger_Storage_Address_Counter_Delay,
Cam1_Trigger_Storage_Address_Demux_Delay,
Cam1_Trigger_Storage_2, Cam1_Trigger_Storage_3,
Cam1_Trigger_Storage_4, Cam2_Trigger_Storage_|dle,
Cam2_Trigger_Storage_1,Cam2_Trigger_Storage_Addr_Cou
nter_Delay, Cam2_Trigger_Storage_Addr_Demux_Delay,
Cam2_Trigger_Storage_2, Cam2_Trigger_Storage_3,
Cam?2_Trigger_Storage_4,

P
P> |
<

Trigger Retrieve Phase

Cam1_Trigger_Reading_ldle, Cam1_Trigger_Reading_1,
Cam1_Trigger_Reading_Address_Counter_Delay,
Cam1_Trigger_Reading_Address_Demux_Delay,
Cam1_Trigger_Reading_2, Cam1_Trigger_Reading_3,
Cam1_Trigger_Reading_4,
Cam2_Trigger_Reading_ldle, Cam2_Trigger_Reading_1,
Cam2_Trigger_Reading_Address_Counter_Delay,
Cam2_Trigger_Reading_Address_Demux_Delay,
Cam2_Trigger_Reading_2, Cam2_Trigger_Reading_3,
Cam2_Trigger_Reading_4,

~

Edge Processing phase

Cam1_Pre_Reg_loading_1, Cam1_Pre_Reg_loading_2,
Cam1_Cur_Reg_loading, Cam1_Touch_Checking,
Cam1_Touch_Record_Writing_Norm_1,
Cam1_Touch_Record_Writing_Norm_2,
Cam1_Touch_Record_Writing_Norm_3,
Cam1_Touch_Record_Writing_1,Cam1_Touch_Record_Writing_2,
Cam1_Touch_Record_Writing_3, Cam1_Interpolation_1,
Cam1_lInterpolation_2,Cam1_lInterpolation_3,
Cam1_Interpolation_4, Cam1_Edge_Output_1,
Cam1_Edge_Output_2, Cam1_Edge_Output_3,
Cam2_Pre_Reg_loading,Cam2_Cur_Reg_loading,
Cam2_Touch_Checking,
Cam2_Touch_Record_Writing_Norm_1,
Cam2_Touch_Record_Writing_Norm_2,
Cam2_Touch_Record_Writing_Norm_3,
Camz2_Touch_Record_Writing_1,Cam2_Touch_Record_Writing_2,
Cam2_Touch_Record_Writing_3, Cam2_Interpolation_Falling_1,
Cam?2_Interpolation_Falling_2, Cam2_|Interpolation_Falling_3,
Cam2_Interpolation_Falling_4,Cam?2_Falling_Edge_CQutput_1,
Cam?2_Falling_Edge_Output_2 Cam?2_Falling_Edge_Output_3,
Cam?2_Interpolation_1,Cam2_Interpolation_2,
Cam?2_Interpolation_3,Cam2_lInterpolation_4,
Cam2_Edge_Output_1, Cam2_Edge_Output_2,
Cam2_Edge_Output_3,

o

Position Processing Phase

Table 3 Master

LUT_Reading_1, LUT_Reading_2, Triangulation_function_1, Controller State
Triangulation_function_2, Triangulation_function_3 Transition Table
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Idle Phase:
There are two idle states in the idle phase, Idle_1 and Idle_2. An asynchronous pulse is generated
from Idle_1 to Idle_2 to set certain units (Normaliser and EDU) to a particular status with all

other control signals set to their default values.

Trigger Configuration Phase:

After the Idle Phase, the Master Controller will activate the MMU (Memory Management Unit)
to store reference camera frames after being indicated as stabilization by the Acquisition
Controller. It takes four states (from Cam1_Trigger_Storage 1 to Caml_Trigger_Storage 4)to
complete the BRAM reading process with propagation delay occurring in Address Generator and

Counter module.

Trigger Retrieve Phase:

After the reference camera frames have been stored in memory in the Trigger Configuration
Phase, the trigger level will be derived repeatedly from the reference camera frames through the
customized trigger logic block before edge localization starts. At the end of the Trigger Retrieve

Phase, all necessary preparations for edge and position processing is complete.

Edge Processing Phase:

Edge processing flow is a critical part of the whole system’s operation. It guides both the ELU
(Edge Localization Unit) and Normaliser Unit to indicate a touch event, calculate edge and sub-
edge locations, and track touch motions (touch-down and touch-up). Once both camera frames
are completely analyzed, system flow will be directed to the Position Processing Phase.

Otherwise, it will flow back to the Trigger Retrieve Phase to start next sample edge detection.

Position Processing Phase:

Position processing is the final stage to calculate the x and y coordinates using the pre-calculated
Look Up Table in ROM and enabling the pipelined position processing controller in the PLU
(Position Processing Unit). When the final touch position is localized, the transmission engine
will be activated and the system will flow back to the Trigger Retrieve Phase to initiate the next

cycle detection and localization processing.
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Chapter 4 -- Touch Screen System on Chip Testing Methods and Results

4.1 Overview

The testing of the hardware touch screen system has been executed in two parts with different
testing focuses: the first part is the testing of the Data Acquisition System where different
modules inside the acquisition system have been tested separately concentrating on acquisition
speed, noise level and the proposed concurrent acquisition mechanism. The second part is the
real time functionality proofing of the Processing Unit which is supported by a number of sub-

module tests.

4.2 Data Acquisition System Testing Methods and Results

4.2.1 Timing Control Engine Testing Method and Results

Customized timing control logic has been designed in the Data Acquisition System which
replaces the general purpose microcontroller to control both the image sensors and the
illumination system to consistently obtain camera frames. The following testing photo shows the
timing control logic using a 500 kHz data clock which takes about 1ms to complete the

acquisition of one line-scan frame (528 pixels) from an image sensor.

Figure 47 Acquisition Timing
1ms per 500us 1ms per Control Testing Result
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The following testing photos show the hardware timing control engine acquiring ambient frames,
normal camera frames, camera frames when a touch occurs at one position and camera frames
when a touch occurs at another position:

Figure 48 Hardware Timing Control Engine --- Ambient Frames

Figure 49 Hardware Timing Control Engine --- Normal Frames (No Touch)

Figure 50 Hardware Timing Control Engine --- Touch at One Position

Figure 51 Hardware Timing Control Engine --- Touch at another Position

The testing results show the customized hardware timing control engine is able to perform the
same acquisition function as the general microcontroller based system. The response to the touch

position (which blocks the reflection on camera frames) is represented clearly on the two camera
frames.

The image sensor is designed to operate at about 1 MHz data clocking rate. The following testing
photo shows the hardware timing control logic is capable of supporting faster acquisition speeds

(1.8 MHz for example) which is a significant acceleration compared with the existing micro
based acquisition (300 kHz).
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Hardware Timing Control Engine running at 1.8MHz data clock rate:

100us

296us per frame

Figure 52 Figure 36 Acquisition Timing Control Testing Result 900K

The above camera scope is operating at a 1.8 MHz data clock rate which takes approximately

296 us total to transmit one complete frame (528 pixels).

4.2.2 ADC Testing Method and Results

The ADC module is tested separately before being integrated with the verified Timing Control

Logic. A number of constant voltage inputs have been fed into the ADC module to test its

conversion functionality and consistency. The following figure shows the digitized result based

on 1.21 volts input from an adjustable power supply:

Constant Yoltage Testing - 1.21 volts

1211 ‘ |

1210

Strength of Pixel
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Figure 53 ADC Testing Results --- Constant VVoltage Input
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Then the verified ADC module was integrated with the timing controller. At this stage, the main
structure of the hardware data acquisition system has been established with full capability to
acquire touch information and digitize it into a digital format. The following testing photos show

the conversion from analog pixel to digital values based on a range of testing situations:

Analog Camera Scope: Digitised Camera Scope:
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Figure 54 Data Acquisition System Digitization Result

The testing results show the hardware acquisition system (ADC module included) correctly

digitizing ambient frames, normal frames and frames including a touch.

4.2.3 USB Testing Method and Results

During the the Data Acquisition System design and testing, a USB module is implemented in the
system to consistently transmit digitized camera frames to the PC side monitor. By doing this,
any real time touch events occurring on the hardware acquisition engine controlled touch screen

are able to be displayed immediately, providing intuitive testing capability.
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The USB module has been tested separately with an up counter continuously generating testing
inputs to the USB module. The same incrementing numbers should be received on the PC side if
the USB transmission is consistent and coherent. The corresponding testing results have

demonstrated the correct functionality.

After that, the USB module was integrated into the Data Acquisition System demonstrating real
time operation results. The following photo is the real time monitor displaying the hardware

acquisition system operation results, on a custom interface written in C++:

Noise Analysis Window

e e s R
g 2 5] 2
}

BT

Figure 55 PC Monitor Interface

The two camera frames are displayed on the real time interface through the acquisition and

transmission of a complete hardware structure based solution.

4.2.4 Noise Analysis and Results

Low system noise level is one important design specification for the Data Acquisition System.

The existing microcontroller based acquisition system has overall 1.5% noise variation which is
mainly caused by two sources: the image sensors and the internal ADC (the ADC silicon design
itself and interference from the nearby internal USB transmission). The proposed hardware Data

Acquisition System has adopted a high performance external ADC chip with extra low drift and
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a low noise reference voltage chip. Also, the USB module and the ADC module are separated so
they cause minimum interference to each other. The system noise level has been analyzed in

Matlab, running on the new hardware acquisition engine with various image sensor settings.
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Figure 56 Data Acquisition System Noise Analysis Result

The top figure is the image sensor operating at default voltage with a typical noise level of 0.1%
(5 out 0of 4096) and a worst case of 0.2 %. The middle figure is the image sensor running at a
voltage gain of 3 with a typical noise level of 0.3% (13 out of 4096) and a worst case of 0.5%.
The bottom figure shows the normal camera frames. The testing results demonstrate the new

customized hardware acquisition engine has a significant improvement in reducing system noise.

4.2.5 Concurrent Acquisition Mechanism Testing Method and Results
The Concurrent Acquisition Mechanism is a more efficient acquisition control method applied in

the proposed hardware acquisition engine with concurrent access to both shutter and operation

control. The testing results of the new acquisition mechanism are presented below:
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Figure 57 Concurrent Acquisition Mechanism Testing Result

The concurrent acquisition mechanism has an acquisition speed approximately twice as fast as
the sequential acquisition mechanism. The new acquisition method is organized to ensure the
consistency of transmission switching between the two cameras. Moreover, it has the
convenience and potential to be applied to systems containing more than 2 cameras (say 4-24

cameras) to maximize the advantage in acceleration with main structure reuse.

4.3 Processing Unit Testing Methods and Results

The testing priority of the Processing Unit (PU) is to validate and demonstrate correct

functionality without too much consideration of accuracy and efficiency. The Processing Unit is

comprised of sub-modules to perform frame management, edge detection, position localization

and touch motion tracking. All the sub-modules have been verified and tested separately.
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4.3.1 Memory Management Unit Testing Method and Results

The Memory Management Unit is the storage organizer which directs digitized frame writing
into the M4K memory block during the trigger configuration phase and reading from the
memory block during the trigger retrieve phase. It is necessary to ensure the correct procedure
and results in accessing memory. A separate testing circuit has been designed to write particular
camera values at particular addresses with a LED display based on the MMU outputs to confirm
the values by reading from the same memory addresses. The following structure is specifically
built for MMU testing with an adjustable address and camera generator feeding testing inputs
and a visible LED displaying reading results:

Ipm_counter0
up count
—P clock aset ‘addr_demux - Ipm_ram_dp0
I 3 {datallo.0l
chen q[9.0] Address(0.0]  cam1_w_add(9..0] _wr_adi(9..0f
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cam _select %—{— Cam_Sel i g ca cam1_wr_en wren § %
inst5 cam2_rd_add9.0] eyl @ y cam1_rd_add(9..0) ) rdaddress[9..0] g g[15.01]
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—]\ Gam?.rd_add]9. 0] Yt 42001€55(9..0) 3 Q15,01
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reset y wrclocken
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[~ Cam_Gen_En | rdclocken
inst11 Block Type: AUTO

inst6

Figure 58 Memory Management Unit Testing Structure

A group of testing numbers has been applied to the MMU testing module, and the results
displayed on the LED demonstrated the MMU is able to record reference input correctly, which

is a fundamental verification step before running in real time.
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4.3.2 System LUT Testing Method and Results

The test method for the System Look up Table is similar to the MMU module testing. Since both
camera look up tables are pre-calculated and configured in ROM, we know the table value at
each particular address. The LED display is also used in this part to confirm the table accessing.

The LUT testing circuit is illustrated below:

Test_ROM =
address|[8..0 9[19..0] =
zosxg\ = LED Display at Certain Address
~ % E
clock E
inst Block ty pe: AUTO E
LUT
Test_ROM_2 E
address[8..0 0[19..0] E
2 =
: = = LED Display at Certain Address
clock %
inst1 Block ty pe: AUTO g

/

Figure 59 System Look up Table Testing Structure

A number of LUT addresses have been read from ROM and displayed correctly on the LED.

4.3.3 Edge Localization Unit Testing Method and Results

There are two types of testing for the Edge Localization Unit (ELU). One is a purpose built edge
simulator generating different falling-rising edge based camera frames for proving the proposed
logic is able to perform the edge detection algorithm and give correct results. The edge
localization simulation structure is illustrated below with pre-defined rising and falling edges in

the camera frame generator:
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Figure 60 Edge Detection and Localization Units Testing Structure

Typical edge localization testing results has verified the required functionality.

After the functionality of the ELU has been proved in simulation, it is integrated into the system
to detect and localize real touch edges on the actual screen to validate the real time performance.
This testing has been designed with the touch object blocking and moving from the beginning of
the frame to the end of frame, as seen from one camera, and then moving back from the end to

beginning. By doing this, both rising and falling edges of the detected object should be localized
by the ELU as increasing (from frame beginning to end) and then decreasing (from frame end to
beginning). The following are images are from video clips showing the whole real time testing

process and results.

When an object (finger) moves from a low value edge position to a high value edge position, the

ELU processes the edge changes as increasing:

Least Significant Bit

Increasing

Most Significant Bit

Start from low value position 2 3
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Figure 61 Edge Localization Unit Real Time Testing Result (Edge Up)
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When an object (finger) reaches the far end (high value edge position) then the testing continues
by moving the object back to the start point again, and the EL U processes the edge changes as

decreasing as shown below:

Least Significant Bit

Decreasing

Most Significant Bit
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Figure 62 Figure 50 Edge Localization Unit Real Time Testing Result (Edge Down)

The real time testing results have been presented in a real time testing video (on the CD) which

validated the integrated performance of the Edge localization Unit.

4.3.4 Normaliser Testing Method and Results

The Normaliser Unit is used to detect the touch level and then further track the touch motion
(touch-up and touch-down). The LED is used to present the touch level ranging from no touch (1
led) to contacting the screen (9 leds).

Normaliser based motion detection is shown below (Touch-down tracking for this example):
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Figure 63 Normaliser Testing Result (Touch Down)

The testing process of the Position Localization Unit (PLU) is performed in two stages as for the

ELU testing: a Module Simulation Stage and Real Timing operation testing:

PLU Module Simulation:

An extra testing block has been designed for PLU simulation with the PLU function module and
a testing controller which provides the PLU inputs (caml tangent, cam2 tangent and screen
width) and control signals for the PLU module. The PLU processing results are displayed on the

LED. The testing block structure is illustrated below:
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Figure 64 Position Localization Unit Testing Structure

After verification using the simulation, the Position Localization Unit was integrated into the

final system, which should now consistently process x and y coordinates in real time. The final

system testing is presented in section 4.4.

4.4 Complete Real-Time System Testing Results

A number of simple actions have been tested on the complete hardware structure based touch

screen system, such as drawing a straight line, drawing a rectangle and cycles to validate and

visualize the real time performance of the proposed hardware system:
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This column is drawing a straight line:

This column is drawing a rectangle:
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Drawing a straight line: Drawing a rectangle:

Figure 65 Real Time Touch Screen System Testing Results (Drawing Straight Line, rectangle)

The real-time complete system testing has also been presented in a video (on the CD attached).
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Chapter 5 Hardware Touch Screen System Optimization

5.1 System Optimization Overview

The original touch screen system has been developed based on a block based System-On-Chip
design methodology because of the initial uncertainty of the system component level
architecture. The disadvantage of block based design is the lack of consideration of system level
structuring, and inefficiency on the sub-module level in terms of communication and resource
sharing. After establishing a functionally-correct touch screen system, a significant number of
optimization techniques have been applied to the proposed system on the architectural level,
behavioral level (algorithm level), functional level (register transfer level) and physical structural

level (gates and switch) from an overall system perspective.

A unique topology has been designed before implementing system optimization, which targets
chip area consumption by reusing logic resources to a significant extent, and also maintains (or
even improves) the overall system throughput performance while using minimum resources. In
detail, a re-organization on the architectural level has been performed to accelerate the system
operation speed with negligible resource addition; key algorithms have been investigated and
evaluated on the behavioral level to select the solution using least resources; function sharing and
other reduction techniques have been applied on the register transfer level to increase the
resource utilization efficiency and an application specific chip floor planning process has been

executed to improve timing and propagation capability on the physical gates level.

More details are presented in the following paragraphs regarding overall system optimization

results.
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5.2 Top-Level Architecture Optimization

The top level hardware system structure is mainly comprised of a data acquisition part and a
processing part. In the original design, the data acquisition and processing units operate
sequentially with two frames (1024 pixels) acquired, digitized and stored completely into
memory with a time cost of 1ms at a 1 MHz acquisition clock rate. Then, the processing unit has
to retrieve pixel information from memory again and detects, functions and analyses pixel by
pixel with a total time cost of 0.5 ms (22 processing cycles per pixel, 1024 pixels at 50 MHz
processing clock).

The original system flow is illustrated below with a latency of 1.5 ms:

1 ms ( 1M Hz Data Clock) | 1 0.5 ms

L J, Data Acquisition System r Processing System L\
.’r. ;"r.
y

'
¥

Total 1.5 ms

Figure 66 Original Top Level System Flow

It is apparent that, instead of storing complete frames while halting the processing unit, both
units can be arranged in a pipeline with no extra function cost and the addition of minimum
multiplexing logic. The processing unit starts operation as soon as receiving the first pixel from
the data acquisition engine, and completes the single pixel processing before the next pixel is
available, since the data acquisition cycle is longer than the processing cycle. After the
reorganization, the system critical path has been successfully reduced to the data acquisition

cycle, with a significant latency improvement of 33%.

~| Processing System |-

Data Acquisition System L b
.r'f -’f.

Total 1 ms

Figure 67 Optimized Top Level System Flow
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5.3 Behavioral and Functional Level Optimization

5.3.1 Algorithm Evaluation (Alteration)

The highest level of abstraction of a digital design is known as the behavioral level which refers
to the algorithm describing the behavior of a function using abstract constructs. The optimization
and alteration on the algorithm level will significantly contribute to the efficiency of overall
resource consumption. During the development of this touch screen system, edge detection has
been one of the fundamental elements for object tracking, motion analysis and other
requirements. Two different algorithms have been designed, constructed, implemented and tested
to identify the most suitable solution under the system requirements. A number of tradeoffs and
compromises have been made inside each algorithm in terms of speed and area to achieve a

further optimization improvement.

5.3.1.1 Gradient Based Edge Detection Algorithm

Gradient based edge detection is the traditional image processing method which we have

investigated and implemented in chapter 3.

5.3.1.2 Dynamic Linear Approximation Sub-Pixel Detection Algorithm

The proposed touch screen system is built based on line scan cameras with a one dimensional
image, therefore the simplified 2D image processing oriented Gradient Edge Detection is not
likely to be the most efficient solution. The simplified Gradient Edge Detection aforementioned
is only able to provide one-pixel resolution which is not capable of meeting higher system
requirements in a real world environment. An application specific hardware edge detection unit

is required from both a resource consumption and a system requirement point of view.
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The linear approximation sub-pixel detection method was originally proposed in Hussmann and
Ho’s [40] system, as an approach using two linear functions to locate the edge sub-pixel position.
The value of the sub-pixel is determined by the intercept point of two equations, and principle is

illustrated below:
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Figure 68 Linear approximation
0 —© sub-pixel detection of
Hussmann and Ho’s system
- 50 -
0 2 10

Pixel positon
From Hussmann and Ho’s [40] description, taking the rising edge as an example, the first linear

function is derived from the maximum positive gradient which is described as:
fl{‘} = I){".'\,'I:n;'r —I_ (IX - D('M:J(X}B (IJ
X is the pixel position at the maximum positive gradient where Ix is the corresponding intensity

value. The other linear function is an arbitrary horizontal function with intensity value la:

f:_’{.\.') — I{h (2)

By combining equations (1) and (2), sub-pixel intersection position P can be calculated as:

_IH_IX
D

P + X.

EMax

Inside this algorithm, the arbitrary horizontal intensity la is preset through a look up table, which
has the disadvantage of not adapting to real time ambient light intensity variations. Also, the first
linear function is based on the gradient edge detection method we investigated and implemented

previously, and which is not a very efficient solution in terms of hardware resources. Therefore,

a more efficient edge detection method is required to minimize system resources.
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The Dynamic Linear Approximation Sub-Pixel Detection Algorithm is presented in this section.
This is derived from Hussmann and Ho’s [40] work, with two significant modifications
customized for the proposed touch screen system. The look up table based static light intensity la
has been replaced by a dynamic updated trigger level which is calculated from the real time
operation environment. Also, the resource-consuming whole frame based gradient sub-pixel
detection is simplified to level triggered adjacent region based sub-pixel detection. This method
is explained and illustrated below, based on a real camera scope of the touch screen system:
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Figure 69 Dynamic Linear Approximation Sub-Pixel Detection Based on Real Camera Scope

The blue line is the full camera scope with a touch occurring near pixel 220. The red line is the
trigger level which is 75% of the averaged consistent full camera scope. C1 is the camera pixel
value just before the intercept point (where the blue and red lines intersect) while C2 is the pixel

value just after the intercept. T1 is the trigger value just before the intercept point and T2 is the
trigger value just after the trigger point.

In this method, the value of the sub-pixel at the intercept point is calculated from two modified

linear equations. One is the linear function based on pixels C1 and C2 on the blue line:
f 1 xy = C2+ (Ci—C2)(Pia—X) Q)

Pia is the id number of the pixel after the intercept point, x is sub-pixel value.

The second linear function is based on pixels T1 and T2 on the red (trigger) line:
foxy = T2+ (T1—T2)(Pid—X) (2)

By combining equations (1) and (2), the sub-pixel position Pn can be calculated:
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Pn:

Cz _Tz

Mcam — Mtrig

Mcam = C2 - C1 is the magnitude change of the two adjacent pixels in the camera image, while

Mtrig = T2 -T1 is the magnitude difference of adjacent trigger pixel values. A new hardware

detection unit is designed based on this optimized method which is illustrated below:

Trigger Level Based Edge Detection With Interpolation
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Figure 70 Trigger Level Based Edge Localization Block Diagram

The Trigger Level Based Edge Detection Unit is made up of the Level Detection Unit which has

a comparator and register combination to detect and record a touch, the Interpolation Unit which

calculates the sub-pixel positions and Results Storage which stores the edge pixel and sub-pixel

positions for both cameras. The abstracted circuit level is illustrated below:
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When both the camera pixels and the trigger level values are available from the previous
memory module, the previous camera pixel and trigger value will be fetched into the pre-register
pair (Pre-Trigger-Reg and Pre-Cam-Reg) , and then the new camera and trigger values will be
stored in the current register pair (Cur-Trigger-Reg and Cur-Cam-Reg) one cycle later. After
register fetching is complete, the master controller will analyze the touch status based on the
Cur-Touch-Flag from the Touch Comparator and Pre-Touch-Flag from Touch-Record-Reg

(which has been initialized as no touch).

If both flags are high (active low), there is no touch in the current pixel, the current no touch
status will be recorded in Touch-Record-Reg and the Edge Detection Unit will stay inactive until
the next camera pixel is available. If one of Cur-Touch-Flag or Pre-Touch-Flag is low (Falling
edge detected when Pre-Touch-Flag is low and Cur-Touch-Flag is high; Rising edge detected
when Pre-Touch-Flag is high and Cur-Touch-Flag is low), a touch event is detected and the
interpolator will be activated by the master controller. Four outputs (current camera and trigger
values, and previous camera and trigger values) from the Level Detection Unit will be processed
by the interpolation unit to produce more precise sub-pixel edge results. All pixel edges and sub-
pixel edges are demultiplexed explicitly into rising edge, rising sub-pixel edge, falling edge, and
falling sub-pixel edge and stored independently in the camera-one and camera-two registers. The
last possibility, both Cur Touch Flag and Pre Touch Flag are low (active low), means the current
pixel is neither falling edge nor rising edge but within the touch region. The current status will be
updated in Touch-Record-Reg, with both the Interpolator and Results Storage Unit deactivated

since the current pixel is not on the edge.
This Trigger Level Based Edge Detection takes a maximum of seven clock cycles for processing

and storing pixel and sub-pixel results when a touch occurs, and a maximum of four clock cycles

when updating the touch status when no touch is detected.

93



The following is the pipelined data flow of the optimized Edge Detection and Localization Unit

with the Normaliser Unit:
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Figure 72 Pipelined Data Flow of Edge Detection and Localization Unit with Nomaliser

There are three major stages in the illustrated pipeline data path (edge detection, localization
function and normalize function) with concurrent operations executed in each stage. For the edge
detection and localization units, both the trigger registers and camera registers are updated at
stage one as well as the touch event indication (comparison between trigger level and current
camera pixel value). Once the four register values are loaded and the required flags are generated
to the Master Controller, a set of concurrent arithmetic operations are performed to obtain the
more accurate interpolated sub-edge results. For the normaliser unit, a group of sequential and
concurrent operators have been developed to indicate touch depth ranging between 0 and 100
percent. In last stage, the edge register is used to store the processed sub-edge value with the
corresponding edge value on both the rising and falling detection; and the normaliser record

register is used to organize the five latest touch depth histories for further touch motion analysis.
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5.3.2 Memory Resource Reduction

Memory storage is an important constituent in the touch screen system where the reference
camera frames have been stored with extra logic for deriving the trigger level. Memory resource
reduction will have a significant impact on chip resource efficiency, since all storage is in the on-

chip M4K memory block in the proposed system design.

In the original memory unit planning, a capacity of two frames (one frame per camera) was
required for basic processing purposes. Each frame consisted of a full range of 528 pixels
including active pixels and dummy pixels. Two 1024 word M4K blocks (16 bits per word) were
consumed to hold two full range frames with a total cost of 32768 memory bits. During the
optimization, from the system point of view, it was found to be unnecessary to store the full
range of pixels since only 512 active pixels are used in processing. Thus, the Data Acquisition
System has been modified to acquire active pixels only. By doing this, two 1024 word blocks
have been optimized to two 512 word blocks with no effect on system processing. The reduction

of memory storage is illustrated below:
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Figure 73 Memory Resource Optimization Illustration
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5.3.3 Pipeline Rolling and Resource Sharing

Pipeline rolling and resource sharing are two popular techniques usually applied to digital system
optimization. Pipeline rolling is defined as the opposite operation of unrolling a loop to create
concurrent structures [62] . After reviewing the touch screen system design, some modules with
a pipeline structure were able to be re-constructed as repeated loops also meeting the timing
constraint. By doing this, replicating computational structures are reduced and the overall system

performance is not affected.

Resource sharing is another common method in system resource reduction, in which a single
functional block is accessed by several system operations [63, 64]. Resource sharing adds
additional logic levels to multiplex the inputs to implement more than one function. Therefore it
is a more complicated optimization technique which has high requirements on system control
directing and switching. Resource sharing has been applied to a great content in the touch screen
system optimization, with a significant modification and re-construction on both system level

and sub-module level. More details are explained in the following paragraphs.

5.3.3.1 Data Acquisition Control Engine Resource Sharing

The Data Acquisition Control Engine is the key unit of the whole data acquisition system, which
generates control signals to image sensors, the illumination sub-system and the ADC interface. It
consumes a large amount of the hardware resources used by the data acquisition system, which
in total uses 445 logic elements. The optimization of the acquisition controller is extremely
difficult because the whole engine is in the system critical path and it is unlikely to trade speed
into space. At the same time, the acquisition engine deals with low level signals with handshakes
between external physical components in an accurately timed sequence which increases the

complexity of applying any optimization techniques without interfering with its behaviour.
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The following is the original acquisition controller block diagram:

| 400K Clk Gen ” Duty Cycle Gen I

Cam Setting Register
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Output Ctrl Signal Demux
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INIT Clk Gen OperationClk Gen

Cam1 Sub Pixel Counter
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Cam2 Frame Counter Cam2 Sub Pixel Counter

| Oprt Counter |

Figure 74 Data Acquisition Engine Block Diagram without Optimization

Reviewing the design of the original acquisition engine, it consists of three major parts: clock
generators, the timing control state controller and the counter group. Advanced and different
optimization techniques are customized for each part separately. For the clock generator region,
instead of isolating it as local logic only utilized by the acquisition engine, a more efficient
partitioning has been made to relocate the clock generators out of the acquisition engine into the
system level so they can be shared by all other modules that need different clock inputs. For the
timing control state controller, the original state transitions need to stay the same since they
control fixed communication sequences with other components, but minor modifications have
been made in the state controller counter for the initialization and operation modes. The obvious
advantage of sub-module resource sharing is represented in the counter group optimization,
where several counters used to specifically perform certain functions have been reduced to one
counter which is shared by different requirements in different time slices directed by control

logic. The new block diagram of the data acquisition control engine is illustrated below:
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Figure 75 Optimized Data Acquisition Engine Block Diagram
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The following is the abstracted circuit level of the acquisition controller:
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All the clock generators at different frequencies are relocated to the Digital Clock Management

(DCM) region, apart from the Pixel Map Generator which is unique to the Acquisition Engine

Figure 76 Optimized Acquisition Engine Abstracted Circuit Structure
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and used to configure the pixel map for image sensors during initialization. Cam Switch Core is

applied to direct control flow inside the state controller, for either camera, in both the

initialization and operation modes, where the outputs of the controller will be re-multiplexed into

either cam one or cam two depending on the control states. Cam Setting Shift Register is the

component shifting reconfigurable voltage and current settings into the image sensor at the

request of the state controller. Cam Control State Machine remains unchanged with three major

stages: initialization cycle, exposure cycle and operation cycle which are made of a total of 25

states starting from the Cam Init Setup state back to the Idle state in a maximum of 2ms.

Only two counters are required in the engine after optimization: Cam Main Counter which is

shared by both the initialization and operation cycles for timing control and frame counts

(reduced from Init Counter, Operation Counter, Cam1 and Cam2 Frame Counter in the old
design); Sub Pixel Counter (optimised from Cam1 and Cam2 Sub Pixel Counters) which is

activated inside the frame counter to accumulate a number of subpixels for both cameras, and

that cannot be combined with Main Counter because of a time collision.

98



The same low level advanced sub-component resource sharing idea has been applied to the ADC

Interface inside the Data Acquisition System to further reduce logic consumption.

ADC Interface

ADC Sync ClkGen

Configuration &
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Conversion Control Logic
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Configuration & Conversion Counter

Figure 77 Optimized ADC Interface Block Diagram

Using the same principle, Sync Clock Generator has been moved to the DCM region which

generates different clocks at a number of frequencies shared by all system modules. Synchronize

Clock Counter is discarded after the removal of Sync Clock Generator. Configuration Counter

and Conversion Counter are activated in different modes which from a timing sequence point of

view are one after the other. A combined counter has been introduced which is reused by both

configuration and conversion operations.

The sub components resource sharing interface structure is illustrated below:
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Figure 78 Optimized ADC Interface Abstracted Circuit Structure
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All major sub components retain the same functionalities where Control Logic has the same

timing sequence, CFR shift register configures with the same response and Result Register stores

the same conversion results. One concern in this sub-component resource sharing structure is the

clearing of combined counters between different operations to avoid interference.



5.3.3.2 ELU and PLU Resource Sharing (Arithmetic Resource Sharing)

The Edge Localization Unit (ELU) and Position Localization Unit (PLU) are two fundamental
units for edge detection, localization and position triangulation which are also computational ly
expensive in terms of arithmetic operations. A total of 1211 Logic Elements are consumed by
these two units which comprise more than 50% of overall system resources (990 LE in EDU and
221 LE in PLU). Therefore, it is critical and compulsory to review and optimize both units to
improve the system efficiency.

Since both units have arithmetic operators made of adder, subtracter, comparator, multiplier,
divider and abs (absolute value), it is considered that one common arithmetic unit is more
optimal than separate arithmetic processing from a system point of view. Thus, a new general

purpose ALU is constructed which covers both ELU and PLU’s arithmetic operations:
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Figure 79 Arithmetic Resource Sharing Common ALU
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The common ALU has been constructed with separate data paths for interpolation and
triangulation which are selected by multiplexers. It is directed by the master controller for
switching to the correct mode with the interpolated sub-edge or triangulated position fed back to
the Edge Localization Unit or Position Localization Unit.

After the relocation of separate arithmetic operations into one common ALU, further focus has
been placed on high-rank arithmetic operators such as divide, square root, and multiply which
are both cycle-consuming and computationally expensive. In the ALU resource review, it was
found that more than half the hardware resources are utilized by the Divide Operator (650 LE)
inside the interpolation path which is not frequently used and not in the critical path.

Following is an overview of other arithmetic operator resource consumption:
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Figure 80 Comparator Resource Consumption and Adder Resource Consumption
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Figure 81 Multiplier Resource Consumption and Absolute value operator Consumption

5.3.4 Iterative Approach and Time-Division-Multiplexing (TDM)

From 5.3.3.2, an alternative approach is further required to replace the Divider while performing
the same functionality. An iterative optimization method is inspired from Hussmann and Ho’s
system[40], which transformed a signed divider into an Up/Down Counter and Minimum
Detector based iterative structure at the expense of latency. The result from the interpolator
ranges from 0 to 1000 which represents an accuracy of one thousandth of the interpolation. In
[40]’s iterative structure, in the worst case it will take exactly the maximum counter counts to
complete the iterative process (in our case by applying the same structure, the worst case would
be 1000 system cycles to obtain the interpolated result). The maximum latency allowed by the
system for interpolation is 50 cycles which means the iterative approach mentioned above

requires further modification and improvement to achieve timing closure with low resource cost.
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An original Iterative Approach with a Timing-Division-Multiplexing structure is presented here
to perform interpolation with a maximum 12 processing cycles that completely meets the timing
closure, and a minimal additional cost of one ALU flag unit and one iterative multiplexer, by
reusing the binary search engine inside the Position Location Unit. The use of the binary search
engine has been explained and illustrated in detail in a previous chapter and it is mainly used by
the Position Location Unit to process the touch position. In this proposed optimized structure, the
binary search counter is also accessed by the Interpolation Unit during a different timing division
to accelerate the iterative process. Both the interpolation path and the triangulation path inside
the ALU have access to the binary search engine at different time divisions, leading to the

elimination of the Divide operator.

Resource Sharing of Binary Search Engine

Binary Search Engine
Interpolation Iterative A Upper Branch Logic
—
Approach Search
Number
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coordinate search b Binary Search @
Controier s

Figure 82 Resource Sharing of Binary Search Engine

The Common ALU has been optimized to a new divider-free structure:
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Figure 83 Divider Free Arithmetic Logic Unit

The optimised Common ALU has three major parts: the ALU operator part which is made up of

the Interpolation Data Path and Triangulation Data Path; the Mode Select part which is signalled
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by the master controller to switch between interpolation and triangulation and the ALU Flag part
which is a necessary unit to signal outside the binary search engine for iterative implementation.

The abstracted circuit level of the optimized common ALU is illustrated below:
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Figure 84 Common ALU Abstracted Circuit Structure
Both the Interpolation and Triangulation Data Paths are comprised of computationally simple
operators. The Interpolation Data Path has four inputs (previous pixel, previous trigger, current
pixel and current trigger) propagating through the data path in three cycles, and has Interpolation
Iterative Goal (used as the numerator of a divide) and Interpolation Iterative Attempts (used as
the denominator of a divide) as outputs. The Triangulation Data Path has three inputs (screen
width, cam2 angle tan and cam1 angle tan) propagating through the data path in two cycles, and
has Triangulation Iterative Goal (which is the screen width) and Interpolation Iterative Attempts
(addition of multipliers of both angle tan with search value) as outputs. The Iterative Goals and
Iterative Attempts are directed by the Mode Multiplexer into the binary search engine to
calculate the result with the accuracy determined by the offset. After each cycle, the Flag Unit
will generate Iterative Done when a sufficiently accurate answer is found or Iterative Towards
Flag to guide the binary search engine to move towards required answer. Worst case latency is
12 cycles for interpolation arithmetic processing (3 cycles for propagation and 9 cycles
maximum for iteration) and 11 cycles for triangulation (2 cycles for propagation and 9 cycles

maximum for iteration).
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5.3.5 Retiming and Register Balancing

Retiming and register balancing are common techniques applied to register level optimization
which are based on the principle of balancing out negative and positive slacks throughout the
design structure. The worst-case delay will be minimized between any two register stages based
on this method by relocating flip flops around logic.

The concept of retiming and register balancing is illustrated below from [65] and [66]:
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Figure 85 Retiming and Register Balancing Illustration

Some research such as [67] has proposed improving the general retiming procedure by applying
a novel polynomial time algorithm with forward retiming to minimize the clock period. In our
touch screen system optimization, since timing is not the high priority, instead of manually
manipulating numerous registers at a very low level with the new algorithm, an optimization
option provided by the design vendor in the synthesis tool is adopted, with a robust ability for

redistributing logic.
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Retiming and register balancing option is offered in the Quartus EDA tool [68]:
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Figure 86 Retiming and Register Balancing Option

The optimization results of retiming and register balancing will be presented in a later section.

5.3.6 Multiplexer Resource Reduction

Multiplexers are fundamental digital components used in building structures for a number of
applications such as a processor, function switch and many others. It is estimated that more than
25% of an FPGA design area is constituted of multiplexers, from Altera Benchmark
analysis[69]. In this proposed touch screen system, a larger amount of multiplexer based
resources are utilized by the Processing Unit (PU) which is heavy in both arithmetic processing
and function switching. Therefore, the optimization of multiplexer based hardware resources is

expected to have a significant impact on overall system efficiency.

A multiplexer restructuring algorithm has been researched by a group of engineers [70] to reduce
LUT based multiplexer resource consumption by an average of 18%. The optimization across
busses of multiplexers is the core part of this new method which allows area reduction to be

made in every part of the bus at the cost of additional control logic.
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There are two basic elements of this new algorithm: One is compression, the other is balancing.
Compression:

The compression process in Metzgen and Nancekievill’s [70] algorithm converts groups of 2:1
multiplexers into the more area efficient 4:1 multiplexer: the following is the illustration from
[70]:
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Figure 87 Multiplexer Restructuring Algorithm Compression
Balancing:
Balancing is a restructuring process used because some structures cannot be clustered after

compression. A minimal amount of restructuring has been performed by balancing to achieve

better performance. The concept of balancing is illustrated below from [70]:

Figure 88 Multiplexer Restructuring Algorithm Balancing

This algorithm has been integrated in synthesis tools as an optimization option [68]:

Multiplexer Restructuring Statistics (Restructuring Performed)

Multipleser | Bus Baseline |Area i Saving if
Inputs Width | Area Restructured | Restructure:

Example Multiplexer

d Reqistered Output

The optimized results will be presented in the Results chapter.
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5.3.7 State Machine Optimization

There are three possible encoding styles that can be used in constructing a state machine:
Sequential, Gray and One-shot. A sequential state machine is normally used in designs when
area is the highest priority instead of timing; The Gray encoding style should be glitchless, where
only one flip flop changes during a transition; A One-shot state machine provides the best
performance and shortest clock-to-output delay, but consumes more resources than sequential

encoding.

In the proposed touch screen system design, since most control signals to or from the state
machines have significant timing requirements, all three state machines (in the Acquisition
Controller, Position Localization Controller and Master Controller) have been chosen to be one-
shot encoding during the optimization. Nonetheless, Liu, Sun and Zhao [71] have considered the

potential unreliability of using one-shot encoding, which needs further investigation in the future.

State Machine - |LPM_RAM_TESTING | P9_Timing_Ckrkinst4 | next_state

Encoding Type: One-Hat

State Machine - |LPM_RAM_TESTING | state_controller:iinst13 | next_state
Encoding Type: One-Hot

State Machine - |LPM_RAM_TESTING | triangulation_block:inst9 | triang_controller:iinst26 | next_state

Encoding Type: One-Hot

Two optimization techniques are implemented manually on the design level since a few areas are
not considered and covered by the automatic synthesis tool appropriately: one is removal of
unreachable states and the other is separation of control path and data path.

Removal of unreachable states:

The purpose of this technique is to increase the reliability of the circuit design with extra “safe

mode” logic added to cover all states, even if they are unreachable through normal operation.
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Separation of control path and data path inside the state machine:

The data path refers to the channel carrying data from the the inputs of system to the outputs,
while control path refers to state transitions in the state machine which generate control signals
that further configure the data path for various operations. The original design of the state
machines in the touch screen system had control and data paths mixed, which caused a
discrepancy between their timing requirements, because the control path has slower timing
requirements. In order to achieve a high system throughput, inspired by Synplify’s design
methodology [72], the data path has been manually separated from the control path with
necessary connections to control signals. The following example shows this technique applied to
the Acquisition Controller state machine:

Original flow:

Combined control Combined control
and data path .. . and data path
Acquisition Controller State Machine

State Flow Counters Switch

Figure 89 Original Acquisition Controller Data and Control Path

Optimized flow:

Control path Acquisition Controller State Machine Control path

|:> State Flow |:>

¢

Data path Cam Stitch ~= Datapath

Pixel —_—
Counter

R — Main
Counter

Figure 90 Optimized Acquisition Controller Data and Control Path
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5.4 Floor Planning

Floor planning is an important placement technique applied on the physical logic gate level to
achieve timing closure and high data throughput by reorganizing the routing delays. Since FPGA
device densities are large (millions of gates), a number of placement tools have been provided by
the EDA vendor to facilitate the floor planning process. In the proposed touch screen system
development, an integrated Chip Editor[73] has been used to modify and optimize the post

timing and netlists. The following is the original touch screen system on the physical chip view:
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Figure 91 Physical Chip Overview
On the field view, the touch screen system is constructed based on 1/0 pins which control and

respond to outside chip components, the DSP block which is particularly used to process
arithmetic functions (such as operators in the Common ALU), M4K Memory which stores all
camera frames and Logic Elements (LE) which are the smallest unit inside the FPGA chip with
efficient logic utilization. Each LE contains a 4-input LUT, programmable register and carry
chain and interconnects to organize a large number of LEs to perform more advanced

functionalities. The detail inside each logic element is illustrated below:

Figure 92 Logic Element Configuration
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Most optimizations for floor planning will be handled by the Chip Editor automatically based on
a few methodologies developed by the tool vendor. One of the most important floor planning
techniques has been implemented manually in the touch screen system optimization to achieve a

better result.

Floor plan Partitioning

Instead of completely relying on automatic tools, a significant number of modifications have
been made manually to clearly define partitions according to functionalities and the
interconnections between partitions. There are two major parts in the touch screen system: one is
the data acquisition system and the other is the processing system. The original design is not
partitioned appropriately with a number of interferences between processing sub-modules and

the acquisition system. The original design partition is illustrated below:

Original System Partition

Localization Unit

Data
Acquisition
System

Memory Memory
Management Management
Unit Unit

Figure 93 Original System Partition Design
In the optimized version, the interconnections between the two major partitions have been
combined with all processing sub-modules placed tightly on the chip to reduce routing delay.

The optimized design partition is illustrated below:

Optimized System Partition

Data
Acquisition
System

Figure 94 Optimized System Partition Design
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5.5 Reducing Power Dissipation

The proposed touch screen system is constructed based on a 90-nm Cyclone Il FPGA with a

number of techniques for lowering power consumption in silicon such as decreased core voltage,

increased transistor length, lower 1/0 pin capacitance and a power efficient clocking structure.

The following is the typical static power consumption of the latest Cyclone Il FPGA[74]:

Power (W)
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Device
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Figure 95 Programmable Chip Power Consumption

The figure shows the static power consumption of different Cyclone devices at 85 degree

junction temperature. The most powerful Cyclone device consumes as little as 238 mW static

power. During system power reduction, the integrated tool PowerPlay[75] is used to optimize

power consumption at both synthesis and routing stages.
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Figure 96 Power Optimization Options

Normal compilation has been selected as the optimization option where low compute effort

integrated algorithms are applied to minimize power through netlist optimizations, as long as

they are not expected to reduce design performance. By applying the power-driven techniques

integrated in the automatic tool, power consumption could be reduced.
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Chapter 6 Touch Screen System Optimization Results

The proposed touch screen system has been optimized through different versions with different
orientations. The system hardware consumption is comprised of two major sources: Logic
Elements which are the smallest logic units for constructing functionality and Memory bits
which are the basic storage element. Two versions have been implemented, focusing on memory
reduction and logic element reduction respectively with techniques introduced in the previous

chapter.

6.1 Resource Optimization Results --- Original Version

The original hardware touch screen system, without any optimization techniques applied,
consumes 2407 logic elements and 52224 memory bits. In the logic consumption, two dividers
inside the Position Localization Unit (PLU) and Edge Localization Unit (ELU) constitute a large
part of the logic resource with certain key controller structures (acquisition control, ADC
control) consuming a considerable part of the other resources. Meanwhile, memory resources
are consumed by storage for two camera images. The detailed resource analysis for each system

module is listed below:

Entity | Logic Cells | Dedicated Logic Registers | 140 Registers | Memory Bits [Maks [DSP Elements [DSP 953 [DSP 1818 [ Pins [itual Pins [LUT-Only LCs | Register-Only LCs | LUT/Register LCs |
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% Ipm_ram_dpd:inst] o[ o[ 0o 16384 4 0 ] 0 0 o 0o 0o o[
3, Ipm_ram_dpiinste o[ o[ Y] 16384 4 i 0 0 0 o 0o 0o o[
“ I musiinst3 16 (0] 0(0) 0[0) 1] 1] 1] 1] 0 0o o 16 (0) 0[0) 01
2 Trigger_Logic_THinstd 4100 00 00 0 a 0 a 0 0 0 26 (0) o) 15 (1)
i Clock_Diveinst1 2(21 2(21 0(0) 0 0 0 0 0 0 o 0(0) 0(0) 2121
e TIADC_Interfaceringt2 88 (28] 46 (46] 0[0) 0 0 0 0 0 0o o0 42 (42] 0[0) 45 (46]
- o H245rinst3 137(137) |61 (61] 0[0) 0 0 0 0 0 0o o0 76 [76] 309) 58 (36]
o P3_Timing_Chilirestd 445 [445) 1155 [155] 0[0) 0 0 0 0 0 0o o0 290 (290] 0[0) 155 (155]
1§, lprn_counterl:ingts 10(0) 10(m 0(d) 0 o o s a Ll 00 0m 100
e demuxinst? 24 [24) 00 0[0) 0 0 0 0 0 0o o0 18018 0[0) B (6]
Cam_coef_LUT:instd 1[0 0 0[0) 19456 3 4 0 2 0o o0 110 0[0) o
Test_ROM:inst 0 0 0[0) a728 3 0 0 0 0o o0 0[0) 0[0) o
+ Test_ROM_2instl 0 0 0[0) 728 3 0 0 0 0o o0 0[0) 0[0) o
S lom_mul24:inst2 nmojom o0 0 ! 0 2 0 [o 110 o) om
tiangulation_block:instd 526 (0) 50(0) o[ 0 ] 12 ] E oo 458 (0] o[ B3 (0]
-2be fiangulation_reg:inst 12012 12(12) o[ o a o a 0 0 o o[ o[ 12(12)
Ipm_mult7-inst1 10 o[ 0o 0 ] 4 ] 2 0 o 110 0o o[
%, Ipm_add_subB:instZ 23[0) o[ Y] i 0 i 0 i 0 o 2910) 0o o[
1, Ipm_compare] Zinst3 290 o[ 0[0) 0 ] 0 ] 0 o o 2310 L} oim
b pivel_gerinstd 20 (20) 13019 0[o) 1] ] 1] ] 0 0o o m 0[o) 153019

112
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Table 4 Original System Resource Analysis Table

6.2 Resource Optimization Results --- Memory-Oriented Optimization

Memory-oriented optimization has focused on system memory reduction, based on the memory

optimization techniques applied in the previous chapter. Full range pixel (including dummy
pixels) based frame storage has been reduced to active pixel based efficient frame storage. An
approximate 32% improvement from 52224 memory bits to 35840 memory bits has been
achieved, based on the previous optimization method. The detail memory resource analysis is

listed below:
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6.3 Resource Optimization Results --- Logic Elements-Oriented Optimization

6.3.1 Algorithm alteration based logic optimization

The algorithm alteration based technique is the optimization method applied on the system level,

where the gradient based edge detection algorithm has been evaluated and replaced in the

previous chapter by a more efficient dynamic linear approximation detection algorithm. An

approximate 15% improvement has been achieved on the pixel edge level from
117LE+110LE=227LE to 197LE. The new algorithm based detection structure is also further

optimized on the sub-pixel edge level in following paragraphs. The detailed optimization list is

shown below:

Gradient based edge detection algorithm resource list:
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Table 6 Gradient Based Edge Detection Algorithm Resou

Dynamic linear approximation detection algorithm resource list:
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Table 7 Dynamic Linear Approximation Detection Algorithm Resource Analysis Table

6.3.2 Resource sharing, iterative approach and TDM based optimization results
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In the previous chapter, a significant effort has been put into the optimization of two key blocks,
the Edge Localization Unit (ELU) and the Position Localization Unit (PLU). Complicated and

mixed optimization techniques have been applied to the original system to re-build an optimal

computational system with a less expensive structure, based on the previously introduced
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resource sharing, iterative and time-division-multiplexing methods. A common ALU module has

been created to be shared by both the ELU and PLU arithmetic operations, the resource-

consuming divide operator has been replaced by a counter based iterative approach and the

binary search engine is accessed at different times by both the edge localization and position

localization units. In the original ELU and PLU block resource analysis, a total of 1211LE was

consumed in the design.
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Table 8 Original Edge and Position Localization Units Resource Analysis Table
The optimized edge and position localization blocks structure is made of 588 LE in total,
resulting in a 52% logic reduction based on optimization techniques.
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Table 9 Optimized Edge and Position Localization Units Resource Analysis Table
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Based on the resource sharing technique, further optimization has been applied to key control
modules (acquisition controller, and ADC interface) on a sub-module level. The original
acquisition controller and ADC interface resource analysis results are listed below, with 88 LE
for the ADC and 445LE for the acquisition controller:
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Table 10 Original Acquisition Controller and ADC Interface Resource Analysis Table

The optimized acquisition engine has a reduction of 55% resource consumption from 445 to
202LE.
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Table 11 Optimized Acquisition Engine Resource Analysis Table

The optimized ADC interface has a reduction of 11% resource consumption from 88 to 79LE
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Table 12 Optimized ADC Interface Resource Analysis Table
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6.3.3 Multiplexer restructuring algorithm based logic reduction results

The wide range of optimization methods implemented in the previous chapter have a significant
impact on system logic element optimization. Based on the multiplexer restructuring algorithm,
the number of multiplexers has been reduced in many system modules: the acquisition controller,

ADC controller, memory management unit and so on. The details are listed below:

Multiplexer BL,!S Baseline |Area if Saving if Fiegistered Example Multiplexer
Inputs Width |Area Restructured | Bestructured Clutput
'I_ 31 7hitz [14LE:z |¥LEs 7LEs Yes ILPM_RaM_TESTIMGITIADC_ Interface:inst|CFR_count[0]
12 [ 3 Ghitz: |10LEsz |GLE= 5LE=s ez ILPt_Rak_TESTINGIPA_Timing_Ctilkinstd TwoHdik_clock_count]3]
3_ 31 Abitz [10LEz |5LEs B LEs Yes ILPM_Rar_TESTINGIFI_Timing_Ctrkinst40p_clock_count[4]
4 | 3 12 hitz |24 LEz  |[12LEs 12 LE= ez ILPk_Réskd_TESTIMGITIADC_Interface:inst2|Temp(11]
5_ 31 4 bitz |BLEs 4LE= 4LEs ez |LPH_Ratd_TESTIMGIPA_Timing_Ctikinstd|FourH dik_clock_count[1]
6 | 41 Thitz |[14LEz |7LEz TLEz ez |LPk_Rskd_TESTIMGITIAD C_Interfaceinst2|Caor_count[0]
Z 41 30 bitz |BOLEs 30LEs 30LEs ez |LPH_Ratd_TESTIMGITIADC Interfaceingt2lConfig[2]
g |51 Thitz |21LEs |FLE: 14 LEs ez |LPk4_Riéskd_TESTIMGltriangulation_block:instlriang_contrallerinst26Cucle_Count{0]
5 |51 20bits |EOLEs | 20LEs 40LEs Yes ILPM_R&M_TES TING 245 inst Hinput_reg[19]
1o &1 Thitz |28LEs |7LE: 21 LEs e ILPM_Rak_TESTINGkriangulation_black:inst3ltriang_contrallerinst 2510 aunt[0]
l B:1 19 bits |76 LEs 19LEs 57 LEs ez |LPM_Réatd_TESTIMGIPI_Timing_Chikinstd|pizel_count2[0]
112 &1 19bitz |76LEs |19LE: 57 LEs e |LP_Rakd_TESTINGIPA_Timing_Ctilinztdlpixel_count][5]
113 B 2bits  |BLEs 41Es 41Es Yes |LPR_Rak_TESTIMNGIPA_ Timing_Ctilkinstd|CAk_Status[1]
14 &1 10bitz |50LEs: |10LE: A0 LE= ez |LPH_Rakd_TESTINGIPA_Timing_Ctilinztdlzamp_ote_count[0]
E 81 10bits |BOLE: |10LEs 40 LEs Yes |LPR_Rak_TESTINGIPI_Timing_Ctilkinstdlsamp_two_count[8]
E 16:1 Ghitz: |BOLE: |24 LEs 36 LEs Yes ILPM_RaM_TESTIMNGIE245rinst Atemp_reg[a]
17| 161 2bits |20LEs |ELEs 14 LEs Yes |LPR_Fak_TESTIMGI245rinst 3termp_reg[0]
E 171 9bitz: |99LE: |18 LEs 891 LEs Yes |LPM_Rak_TESTIMNGI245rinst 3\protocalwait_count[7]
19 181 13bits [156LEs |13LEs 143LEs Yes |LPR_Fak_TESTIMGIPA_Timing_Ctilinstdlcount[8]
ﬂ 31 21 bits |42LEz |42 LEs OLEs Mo ILPt_Rak_TESTIMNGMem_tanagement: instimenm_demusinstCamZ_mem[11]
2] 12 hitz |24 LEz |24 LEs 0OLEz Mo ILPt_Rak_TESTINGIMem_tanagement:instimem_demusinstCarnl_mem(13]
E 121 1E kit [128LEs |32LEs 96 LE= Mo |LPH_Ratd_TESTIMNGIPI_Timing_Ctikinztdlop_count
E 231 4 bits |76LEz |BBLEs ALEs Ma |LPR_Rak_TESTIMGIPA_Timing_Ctilinstd|Selectar! 23

Table 13 Multiplexer Restructuring Results Table

6.3.4 Retiming and Register Balancing based optimization results
The Retiming and Register Balancing technique aims at re-organizing negative and positive

system slacks which will not reduce hardware resources but will increase system structure

reliability.
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The following table shows a number of registers inside different modules that have been

modified, deleted and retimed to balance slacks:
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Table 14 Retiming and Register Balancing Results Table
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Retimed Register
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Retimed Register
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Retimed Register
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6.4 Resource Optimization Conclusion

To conclude, an approximate 32% improvement from 52224 memory bits to 35840 memory bits

has been achieved after applying the aforementioned memory optimization techniques:

Memory Reduction

50000 o
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H Memory Reduction
20000

4

Original ) —
Optimized

Figure 97 Memory Resource Reduction Result

For logic resources, using optimization methods on different levels such as algorithm alteration,
pipeline rolling, resource sharing, iterative approach, Timing-Division-Multiplexing and register

balancing, an approximate 40% improvement has been made from 2403 logic elements to 1445
logic elements without affecting overall system performance:

logic Elements Reduction

| T — M |ogic Elements Reduction
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Figure 98 Logic Resource Reduction Result
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6.5 Optimized Chip Floor Planning Result

After manually re-designing the system partition (connection between Data Acquisition System
and Processing Unit) and adapting certain automatic floor planning tools, a more throughput-
efficient floor planning result has been achieved. In the original version, key modules inside the
Processing Unit such the master controller, edge localization unit and position localization unit
are decentralized on the physical chip causing considerable interference with the data acquisition
system partition. After optimization, all processing units are organized tightly with each other,
having minimal cross-function timing delay. Meanwhile, there is only one interconnection
between the acquisition partition and the processing partition to minimize possible interference.
Dedicated DSP blocks and memory blocks are arranged close to processing units to achieve a

low overall system propagation delay. The physical chip floor planning is illustrated below:
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Figure 99 Original Chip Floor Planning Result
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Chapter 7 Discussion and Conclusion

7.1 Conclusion

This research project has successfully created a complete system on programmable chip (FPGA)
solution customized for a touch screen system with a real time proven performance. There are
three significant outcomes achieved in this research: first, having established an on-chip
hardware based touch screen acquisition engine with a more efficient control mechanism, higher
speed and lower noise level compared with the existing general microcontroller based acquisition
system; second, having constructed all basic touch screen functionalities into on-chip hardware
blocks and realized a basic real-time operational touch screen; and third, having optimized
system resource consumption to a substantial extent on different levels to lower manufacture

cost, without compromising overall system performance.

Instead of a general purpose microcontroller structure, a customized acquisition engine has been
built in this research with more efficient resource usage, a more flexible design mechanism and
improved performance. All logic structures and components in the customized acquisition
system are indispensable, compared with the general microcontroller structure where some of the
structure resources are redundant in the acquisition operation. Thus, the tailored on-chip
acquisition design is more efficient in resource consumption from a system point of view. By
taking advantage of the on-chip pipeline structure, a new concurrent acquisition mechanism has
been developed in this research, with a pipelined configuration and transmission capability for
controlling a two image sensor based acquisition system. Testing has proved that the acquisition
speed is approximately twice as fast on the concurrent acquisition mechanism compared with the

sequential mechanism.

Furthermore, the acquisition engine architecture has been developed in a modular and self-
contained manner, bearing in mind future expansion where more image sensors can be used by
the same control mechanism for a multi-touch system. Without the system limitation of a fixed
structure microcontroller, the programmable chip based acquisition design has the flexibility

required for meeting newly emerging and updated requirements. In the customized acquisition
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design, the data clock has been accelerated up to 1 MHz which is three times faster than the
existing system and a high performance conversion chip with a low drift low noise reference
voltage has been added to improve digitization accuracy to 12 bits and reduce the noise level by
approximate 50% from the previous microcontroller based system. The design result has fully
satisfied the first design objective where a general-purpose acquisition structure has been
replaced with a customized concurrent acquisition engine with faster execution speed, more
accurate digitization, lower signal noise and robust capability in optical imaging system

expansion.

After establishing an on-chip data acquisition system which has better performance validated by
test results, the touch screen processing modules have been constructed incrementally in this
research, aiming to achieve a complete on-chip real time touch screen solution. The design
started from the memory management unit (MMU) which stores reference frames and derived
trigger levels. Then the edge localization unit (ELU) was constructed, where two algorithms
were implemented and evaluated with the application specific dynamic linear approximation
edge detection method being selected. This method was found to have less latency and was a
more resource-efficient solution and has the capability of more accurate sub-pixel edge
localization. Then, after consideration of system resources, the computationally expensive
operations (tangent, for instance) have been pre-calculated in system look up tables, for

converting the edge location to the tangent of the angle before position localization.

In touch screen system design, the position localization unit (PLU) is the core unit, localizing the
touch x and y coordinates based on all previous processing results. In this research, an original
position localization structure has been created and demonstrated with a clear and compact
transformation process from the application requirement to a resource-efficiency oriented
hardware block. Most important, for the first time a hardware binary search engine based
localization approach has been applied to the touch screen application with a significant
acceleration compared with the existing sequential localization method. Meanwhile, a normaliser
based touch motion tracking system has been implemented and executed concurrently with the
aforementioned localization processing on a separate data path. During tested this has shown the

capability of recording subtle motion variations, which is critical in pre-touch detection. Finally,
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a master controller has been designed to integrate and synchronize all processing modules to
achieve the complete touch screen functionality with a transmission engine and corresponding
PC interface demonstrating the real time operation performance. The resulting on-chip touch
screen processing unit is the first and original all-functionalities-in-one-chip system prototype
and is unique in the optical imaging based touch screen industry, with a number of extra features
(such as support for pre-touch recognition) customized for real world design requirements. The
real time testing has successfully demonstrated the processing design output and made the results

visible.

A significant effort has been put into system optimization, after proving the correct functionality
of the on-chip touch screen in real time. Numerous optimization techniques have been applied to
the system on different layers with different focuses. By reducing the full range pixel frame to
active range frame, 32% of memory space has been saved compared with the original version.
The logic optimization process was more complicated since the system architecture design,
module and sub-module interconnection design have a critical impact on overall system resource
consumption. A large number of system modules and sub-modules have been manually
restructured using algorithm alteration, pipeline rolling, resource sharing, iterative approach,
Timing-Division-Multiplexing and register balancing techniques. An approximate 40%
improvement in logic consumption has been achieved without affecting overall system
performance, in consideration of resource and manufacturing cost. Physical chip floor planning

has been implemented resulting in a more efficient and higher throughput.

In conclusion, this research has investigated, implemented and validated a complete functional
real time touch screen system on-chip solution with a customized high performance touch
imaging acquisition engine, and a fully capable basic touch localization and motion tracking

system, with an economic amount of overall resource consumption.
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7.2 Future Work

This investigative project has achieved significant research outcomes with an advanced multi-
level solution satisfying and exceeding the specified requirements and expectations from
different perspectives. Nonetheless, there are a number of developments that could be

implemented in future for further improvement.

First and foremost, a greater optical imaging coverage is considered to be an important factor for
supporting multiple touches, as specified by the latest industry requirements. The concurrent
acquisition mechanism inside the system solution has been designed based on two image sensors,
but with the capability to be adapted to accommodate more sensors without changing the main
structure. In future development, such as a six-sensor touch screen as illustrated below right,
more dedicated counters and registers are required in the acquisition block with modified module

timing flow and increased imaging bandwidth.

Cam Control Engine
'y \.\} ‘ Ic.m.mcm..l | SubPixet Counter | ;
4
<
Digital Clock Manager
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ADC Chip Q
I Configuration & Conversion Counter I
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Figure 101 More optical imaging coverage

The increase in optical imaging bandwidth leads to higher requirements for subsequent touch
information processing ability. And the potential demand for more user-touch recognition in the
future further increases the complexity of the processing unit. As well as considering the
conventional approach of sharing post-processing on the PC side, it is planned to use an
embedded solution with the addition of an on-chip compact processor core that is independent of

the PC operating system.

125



The established processing unit inside the on-chip solution has aimed at integrating all
elementary and fundamental touch related functionalies on-the-fly with the acquisition process.
With the increasing processing pressure, it is not efficient to further customize dedicated logic in
a dynamic enviroment for potential flexible requirements in the future. Based on the existing
work, a simple soft processor core can be added to handle relatively complicated and uncommon
algorithms and features. Most existing modules will still play a critical role in flow acceleration
and basic function processing with a foreseeable path to improve and optimize module-to-
module and module-to-processor core interconnections and partitions. The proven system
functionalities are able to be reorganized and reformed as new IPs for reuse for further

development purposes. A potential soft processor core for the system is illustrated below:

Figure 102 More robust processing handling

Finally, from a manufacturing cost perspective, the on-chip solution in this research has been
implemented in a Field Programmable Gate Array with a minimum number of outside chip
components and circuits. For high volume production, it is expected to achieve higher integration
density on the chip level. Compared with standard-cell solutions, the Hardcopy ASIC approach
is preferred in the future, with a seamless migration capability based on the existing design from

this research, because of its low cost and time-to-market pressure.

Figure 103 SoC Design Figure 104 FPGA Chip Figure 105 Migrated ASIC Chip
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Because of confidential issue, a restricted amount of design files and source codes are selectively

attached below:
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The following is the top layer schematic of Gradient Based Edge Detection Unit (EDU Method 1):

Gradient Based Edge Detection

Block diagram: —>

‘ Derivative Unt ‘

comparator

Actual implementation of EDU Method One on Register-Transfer-Level (RTL):

Detection Unit; Localization Unit:
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The following is the top layer schematic of Dynamic Linear Approximation Based Edge Detection Unit (EDU Method 2):

Edge Detection Unit (EDU)
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Actual implementation of EDU Method Two on Register-Transfer-Level (RTL):
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The following is the Majority of top layer schematic of Position Localization Unit (PLU):

Block diagram:

Actual implementation of PLU on Register-Transfer-Level
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All the other system module RTL schematics and the corresponding VHDL codes are not presented as they are confidential.
There are three major design program sources (code): one is VHDL code for all major components and sub-components (with corresponding test
bench simulation code as well); another is Matlab code for offline system performance analysis (noise analysis) and look-up-table (LUT) pre-

calculation; the last is Borland C++ based user interface code for real-time demonstration (which can be seen in the demonstration videos).

Most source code will not be attached however selected VHDL code is shown as an example: this is the timing control code inside the Camera

Control Engine which is a sub-module of the Data Acquisition Unit.

Cam Control Engine

| PixallizpGan

e ( The hardware description code for the camera timing control sub-component is attached

Cam Control 1:
State Machine J Signal

bel Demux

Cam Main Counter

Sub Pixel Counter
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
B
34
5
36
37
38
5
40
41

library leee;

use ieee.std logic 1164.all;
use ieee.numeric std.all;
use work.pkg constants.all;

--1/12 us 1is

Eentity P9 Timing Ctrl is

port (

end P9 Timing Ctrl;

clk in 12M

clk in 400K
clk in 200K

reset
start

Thk clk sync

Fhk clk sync
sync _clock one
sync_clock two
data video clock

LED En
52

51

50
CFR_Config
ADC Start
CAM Status

CAM]1 Frame St
CAM1 Frame Fn
CAM2 Frame St
CAM2 Frame Fn
Stablization Indicator

)

in

in

in

in

in

out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out

marchitecture behavioral of P8 Timing Ctrl is
type state list is (Idle, CEM Int Tsu, CAM Int Clk Svync,
CEM Int Pixel Map Config, CEM Int Volt Curr Setup, CEM Int Reset To Idle,

CEM Int Idle 1, CRM Int Idle 2,CAEM Operation Tsu, CAEM Operation Clk Sync,

CEM Operation Mode Sel Tsu, CEM Operation Mode Sel, CEM Operation LED En,

CEM Operation Exposure, CEM Operation Exposure CFR Config, CAEM Operation EZ,

CEM Operation E2 Idle, CAM One Transmission, CBEM One Transmission Idle,

CEM Two Transmission, CAM Two Transmission Idle, CAM Setup Switch, CBEM Tx Switch ):

assumed as minimum interval received from outside clock

std logic;
std logic;
std logic;
std logic;
std logic;
std logic;
std logic;
std logic;
std logic;
std logic;
std logic;
std logic;
std logic;
std logic;
std logic;
std logic;

std logic vector(l downto 0);

std logic;
std logic;
std logic;
std logic;
std logic

CEM Int Mode Sel, CAEM Int Pixel Map Tsu,
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43
44
45
46
47
48
49
50
il
32
53
54
55
56
5T
58
59
60
6l
62
63
64
65
66
67
68
69
70
71
72
13
T4
e
16
77
78
79
80
81
g2
83
84
85
86
87
88
89
80
91
g2
83
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

11 c

signal current state, next state

state list;

= --signal Pixel Map Waveform clock on : std logic;
--signal TwoHdrK clock count integer rangs 0 to 30;
--signal FourHdrK clock count integer range 0 to 15;
--signal FiveHdrK clock count integer range 0 to 25;
--signal Op_clock count integer range 0 to 30;
--signal Pixel Map Setup count integer range 0 to 19;
—— 200K clock sync signal
—— Pixel Map generator signals
signal Ctrl Generator Reset std logic;
signal Ctrl Pixel Map Waveform clock on : std logic;
signal Ctrl Pixel Map Waveform clock std_logic;
-- System counter signals
signal Ctrl Sys Cnt Rst std logic;
signal Ctrl Sys Cnt En std logic;
signal Ctrl Sys _Cnt Cut std logic_vector (13 downto 0);
—— Sub Pixel counter signals
signal Ctrl Sub Pixel Cnt Rst std logic;
signal Ctrl Sub Pixel Cnt En std logic;
signal Ctrl Sub Pixel Cnt Out std logic_vector (4 downto 0);
—— Cam switch counter signals
signal Ctrl Switch Cnt Rst std logic;
signal Ctrl Switch Cnt En std logic;
signal Ctrl Switch Cnt Flag std logic;
—-— Voltage and current shift register 51gnals
signal Ctrl_Int Shift Reg Ld std_logic;
signal Ctrl Int T shift _Reg Default std logic vector (7 downto 0);
signal Ctrl Int " shift _Reg En std logic;
signal Ctrl Int " Shift _Reg_Out std logic;
—— Cam clock demux signals
signal Ctrl Sync Clk std logic;
signal Ctrl Sync Clk Sel std logic;

= —— LED control signal
-- signal LED En std logic;

. KKRAKXKKKRKAKRKAKRKKRKRAXXY COOMPONENT DECLARATIONS ¥ ARk d Ak d kR Ak Rk A XK AR R AR KA KR A KR KA N KR KX

—— Component:

Pixel Map Generator

=component Pixel Map Generator

Eport(

FourHdrK clock
Generator rese
Pixel Map Wave
Pixel Map Wave

)i

end component;

—-— Component: System C
Ecomponent System Count
Eport(

clk
reset
cnt_en
gout

Vi

end component;

in
t : in
form clock_on in

form clock

ounter
er

in
in
in

out std_logic_vector(lB downto

STD LOGIC;
STD LOGIC;
STD_LOGIC:

out STD LOGIC

(Data and Video Cycle)

STD LOGIC;
STD LOGIC;
STD LOGIC;
0]



116 —— Component: Cam Switch Counter
117 =component Cam Switch Counter

118 =mport(

119

120 clk : in STD LOGIC;

121 reset : in STD LOGIC;

122 qout : out STD LOGIC

123

124 )i

125 end component;

126

127 —— Component: Sub Pixel Counter

128 ®=component Sub Pixel Counter

125 m=Eport(

130

131 clk : in STD LOGIC;

132 reset : in STD LOGIC;

133 cnt_en : in STD_LOGIC:

134 gout : out std logic vector (4 downto 0)
135

136 ¥

137 end component;

138

139 —— Component: Shift register for wvoltage and current setting (Data Cycle)
140 =component SHIFTS

141 m=mport(

142

143 clk : in STD LOGIC;

144 data 1d : in STD LOGIC;

145 data in : in STD LOGIC VECTOR (7 downto 0);
146 shift en : in STD LOGIC;

147 shift out : out STD LOGIC

148

149 )i

150 end component;

151

152 —— Component: Sync clock demux

153 =Ecomponent Cam Clk Demux

154 =port ( -

155

156 clk : in STD LOGIC;

157 sel : in STD LOGIC;

158 clk 1 : out STD LOGIC;

159 clk 2 : out STD LOGIC

160 B B

16l )i

162 end component;

163

164 begin

165

166 _ kkkkkkEkkkkkhkkkkkEkkkkkkdkd COMPONENT DEFINITIONS *kkdkkkkdkkdhkhkhdhkhhdhhdhhhdhkhw
167

168 =-- Component: Pixel Map Generator (EMG)

169 —-— Pixel Map Setup Waveform

170 —-— 20% duty cycle, fed by 200k signal and start generating from position 8 out of 20
171 —- Giving exact waveform as is supposed to be

172 EMG: Pixel Map Generator

173 = port ﬁap T

174 FourHdrE clock =» clk in 400E,

175 Generator reset => Ctrl Generator Reset,
176 Pixel Map_Waveform clock on => Ctrl Pixel Map_Waveform clock on,
177 Pixel_Map_Waveform_clock_ => Ctrl_Pixel_Map_Waveform_clock_
178 ) : T - - T -
179

180 =-- Component: System Counter (SysCnt)

181 -— Either Initialization or Operation counting

182 S5ysCnt: System Counter

183 = port map T

184 clk => clk in 12M,

185 reset => Ctrl S§5 Cnt Rst,

186 cnt en => Ctrl_Sys_Cnt_En,

187 qouE => Ctrl_Sys_Cnt_Out

188 ) : T
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190
191
192
193
1594
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

231
232
233
234
235
236
2317
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

—— Component: Cam Switch Counter (CamSwint)

CamSwCnt: Cam Switch Counter

= port map
clk => Ctrl Switch Cnt En,
reset => Ctrl Switch Cnt Rst,

)r

gout => Ctrl Switch Cnt Flag

—— Component: Sub Pixel Counter (SPCnt)

SPCnt: Sub Pixel Counter

= port map
clk => clk in 12M,
reset => Ctrl Sub Pixel Cnt Rst,
cnt_en =» Ctrl Sub Pixel Cnt En,
qout => Ctrl Sub Pixel Cnt Out

)i

=-— Component: shift register (SHIFTH)

—— Voltage and current setting
Shifter: SHIFTS

= port map (
clk => clk _in 200K,
data 1d =»> Ctrl Int Shift Reg ILd,
data in =»> Ctrl Int Shift Reg Default,

shifE_en => Ctrl:Int_Shift_Reg_En,
shift out =»> Ctrl Int Shift Reg Out

)i

—— Component: Cam clock demux (Demux)

Demux: Cam Clk Demux

= port map
clk =>» Ctrl Sync Clk,
sel =>»> Ctrl Sync Clk S5el,
clk 1 =>» sync clock one,

)r
———————————————————— State Machine
=process(clk_in_12M, reset, start)

clk 2 => sync clock two

E-—variable CAM setup count : integer RENGE 0 TO 10;
--variable CEM Tx count : integer RAENGE 0 TO 10;
--variable samp one count : integer RANGE 0 TO 1000;
--variable samp two count : integer RANGE 0 TO 1000;

BEGIN
= IF reset = '0' THEN

Thk clk sync <= '0';
Fhk clk sync <= '0';

Ctrl Generator Reset <= '0';
Ctrl Pixel Map Waveform clock on <=

Ctrl Sys Cnt Rst <= '0';
Ctrl Sys Cnt En <= '0';

Ctrl Sub Pixel Cnt Rst <= '0';
Ctrl Sub Pixel Cnt En <= '0';

Ctrl Switch Cnt Rst <= '0';
Ctrl Switch Cnt En <= '0';

Ctrl Int Shift Reg Ld <= 'l';
Ctrl Int Shift Reg En <= '0';



258
259
260
26l
262
263
264
265
266
267
268
2685
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
2594
295
296
298
299
300
301
30z
303
304
305
3086
307
308
309
310
311
31z
313
314
315
31é
317
318
319
320
321
322
323
324
325
326
327

Ctrl Int Shift Reg Default <=

Ctrl Sync Clk <= '0'";
Ctrl Sync Clk Sel <= '0';

data video clock <= '0';
LED En <= '0';

52 «=
51 <=
50 <=
CEM Status <= "00";

CFR_Config <= '0';

BDC Start <= '0';

CEM1 Frame St <= '0';

CEM1 Frame Fn <= '0';

CAM2 Frame St <= '0';

CAM2 Frame Fn <= '0';
Stablization Indicator <= '0';
next state <= Idle;

IGI;
IGI;
IOI;

"go1iio0"&m00O";

ELSIF clk in 12M'EVENT AND clk in 12M='1"' THEN

CASE current state IS

WHEN Idle =>

Thk clk sync <= '0';
Fhk clk sync <= '0';

Ctrl Generator Reset <="1l"';
Ctrl Pixel Map Waveform clock on <='0';

Ctrl Sys Cnt Rst <= '1";

Ctrl Sys Cnt En

<= "0"':

r

Ctrl Sub Pixel Cnt Rst <= 'l1';
Ctrl Sub Pixel Cnt En

<= 10';

Ctrl Switch Cnt Rst <= '1';
Ctrl Switch Cnt En <=

Ctrl Int shift Reg Ld <= '0';
Ctrl Int shift Reg En <= '0';

Ctrl Sync Clk <=

0T ;

Ctrl Sync Clk Sel <= '0

LED En <= '0';

52 <= "0";
51 <= "0";
S0 <= "1";

CBM Status <= "00";
data_video_clock <= '0';

CFR_Config <= '0';

ADC_start <= '0';

r

IOI'.

T
v

CBEM1 Frame St <= '0';
CBEM1 Frame Fn <= '0';
CBM2 Frame St <= '0';
CBM2 Frame Fn <= '0';
Stablization Indicator <= '0';
IF start = '1' THEN
next state <= CEM Setup Switch;
ELSE
next state <= Idle;
END IF;
WHEN CEM Int Tsu =>
set up time before start signal (2.5

.5u

5



328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

Ctrl sync Clk <= CLOCK HIGH;

data video clock <= CLOCK HIGH;

ctrl Switch Cnt En <= CLOCK LOW;

IF (Ctrl Sys Cnt Out = INT OPRN TSU) THEN
next state <= CAM Int Clk Sync;

END IF;

WHEN CAM Int Clk Sync =>

—-— sync 200k clock
Thk clk sync <= CLOCK HIGH;
next state <= CAM Int Mode Sel;

WHEN CAM Int Mode Sel =>

———————————————————— start signal and mode select (1lOus) --—————————-——-—————
Thk clk sync <= CLOCK LOW;
Ctrl Sync Clk <= clk in 200K;
data wvideo clock <= CLOCK HIGH;
IF ctrl Sys Cnt Out = SETUP_INT MODE SEL THEN
next state <= CAM Int Pixel Map Tsu;
END IF;

WHEN CAM Int Pixel Map Tsu =>

——————————————— One instruction cycle to turn on Pixel map generator (0.083us) —-----—-—

Fhk clk sync <= CLOCK HIGH;
Ctrl Pixel Map Waveform clock on <= CLOCK HIGH;
next state <= CAM Int Pixel Map Config;

WHEN CAM Int Pixel Map Config =>
————————————————————— PM 1 to PM 100 Setup (500us) -—-————-—-————------——-—--——

Fhk clk sync <= CLOCK LOW;
Ctrl sync Clk <= clk in 200K;
data video clock <= Ctrl Pixel Map Waveform clock;
IF Ctrl Sys Cnt Out > SETUP INT PMC THEN
Thk clk sync <= CLOCK HIGH;
data video clock <= CLOCK LOW;
Ctrl Pixel Map Waveform clock on <= CLOCK LOW;
next state <= CAEM Int Volt Curr Setup;
END IF;

———————————————————— Voltage and Current Setup (40us) —————————-—

WHEN CAM Int Volt Curr Setup =>

Thk clk sync <= CLOCK_LOW;

Ctrl Sync Clk <= clk _in 200K;

ctrl Int Shift Reg En <= CLOCK HIGH;

data video clock <= Ctrl Int Shift Reg Out;

IF Ctrl Sys cnt_out = SETUP_INT VOLT CURR THEN
next state <= CAEM Int Reset To Idle;

END IF;

———————————————————— Reset to Idle (1l0us) -—-————————————————————————————————
WHEN CAM Int Reset To Idle =>

Ctrl Sync Clk <= clk _in 200K;
data video clock <= CLOCK LOW;
IF Ctrl Sys Cnt Out > SETUP_INT RST TO IDLE THEN
next state <= CAM Int Idle 1;
END IF;
————————————————————— Idle --—-——————————————
WHEN CAM Int Idle 1 =>

Ctrl sync Clk <= CLOCK_LOW;
data video clock <= CLOCK LOW;

-- reset system counter to switch from Int to operation
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Ctrl Sys_Cnt _Rst <= '0';
Ctrl 5ys Cnt En <= '0';
next state <= CEM Int Idle 2;

WHEN CAM Int Idle 2 =>

Ctrl Sync Clk <= CLOCK LOCW;
data video clock <= CLOCK LOW;
Ctrl 5ys Cnt Rst <= '1';
Ctrl sys Cnt En <= '0';

-— re-sync 200k clock before entry into Video cloc

Thk clk sync <= CLOCK_LOW;
next state <= CBEM COperation Tsu;

——————— set up time before operation start-————————————-—
WHEN CEM Operation Tsu =>

Ctrl Sys Cnt En <= CLOCK HIGH;

Ctrl Sync Clk <= CLOCK LOW;

data video clock <= CLOCK HIGH;

IF Ctrl Sys Cnt Out = INT OPRN TSU THEN
next state <= CAM Operation Clk_Sync;

END IF;

WHEN CEM Operation Clk Sync =>

—— re-sync 200k clock
Thk clk sync <= CLOCK HIGH;
next state <= CAM Operation Mode Sel;

——————— set up time before mode select-——-——————————————————
WHEN CAM Operation Mode Sel Tsu =>

Thk clk sync <= CLOCK LOW;
Cctrl sync Clk <= clk in 200K;
data video clock <= CLOCK HIGH;

IF Ctrl Sys Cnt Out = OPRN MODE SEL TSU THEN

next state <= CAM Operation Mode Sel;
END IF;
—————— mode select stage ——————————————————————————————————
WHEN CAM Cperation Mode Sel =>

ctrl Sync Clk <= clk in 200K;

data video clock <= CLOCK LOW;

IF ctrl Sys Cnt Out = OPRN MODE SEL THEN
next state <= CAM Operation LED En;

END IF;

—————— LED enabled when shutter signal starts (7.5us)--—--—-———————-
WHEN CAM_Operation_LED_En =

ctrl Sync Clk <= clk in 200K;

data video clock <= CLOCK LOW;

LED En <= CLOCK HIGH;

IF Ctrl Sys Cnt Out = OPRN LED THEN
next state <= CEM Operation Exposure;

END IF;

—————— Exposure Time (1000us) (Testing purpose 100us)-————-—————-———

WHEN CAM_Operation_Exposure =

Ctrl Sync Clk <= CLOCE_LOW;
IF Ctrl Sys Cnt_Out = OPRN_EXPOSURE THEN

next state <= CAM Operation Exposure CFR Config;

END IFE;
Start CFR Configuration while still exposuring(l6 cycles at 25M
WHEN CAM Cperation Exposure CFR Config =>

Ctrl Sync Clk <= CLOCKE_LOW;

CFR_Config <= CLOCK HIGH;

IF Ctrl Sys Cnt_Out = OPRN EXPOSURE_CFR THEN
next state <= CAM Operation E2;

END IF;

9 cycles
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-- stop CFR configuration and Turn off LED at the end of E2 ——

WHEN CAM Operation E2 =>

CFR _Config <= CLOCK LOW;

LED_En <= CLOCK_LOW;

IF Ctrl Sys Cnt Out = OPRN EXPOSURE E2 THEN
next_state <= CAM Operation E2 Idle;

END IF;

WHEN CEM Operation EZ Idle =>

WHEN CAM One Transmission

CFR Config <= CLOCK LOW;
LED En <= CLOCK LOW:

-- reset systerr:ounte:
Ctrl Sys _Cnt Rst <= '0';
Ctrl Sys Cnt En <= '0';
ctrl_Sub_Pixel Cnt Rst <= '0';
Ctrl Sub Pixel Cnt En <= '0';
next_state <= CAM Tx Switch;

to switch from operation to transmission

IF Cctrl Sys_Cnt_Out >= TX ST AND Ctrl Sys Cnt_Out <= TX FN THEN

CAM_Status <= "01";

IF Cctrl_Sys Cnt_Out >= TX ST AND Ctrl Sys_Cnt Out <= TX_ST_FLAG THEN

CAM1 Frame St <= 'l';
CEM1_Frame Fn <= '0';

ELSIF Ctrl Sys Cnt_Out >= TX_FN FLAG_1 AND Ctrl Sys Cnt_

CAM1 Frame Fn <= 'l';
CEM1_Frame St <= '0';
ELSE
CAM1 Frame St <= '0';
CAM1 Frame Fn <= '0';
END IE;
IF ctrl Sub Pixel Cnt Out <= TX SUB PX ST THEN

ADC Start <= '0';
next_state <= CAM One_Transmission;

ELSIF Ctrl_Sub_Pixel_Cnt_Out > TX_SUB_PX_ST AND Ctrl_Sub_Pixel Cnt_Out <= TX SUB_PX AD

ctrl_sync Clk <= '0';
RDC Start <= '1';
next state <= CAM One Transmission;

ELSE
Ctrl_sync Clk <= '0';
BDC_Start <= '0';
next_state <= CAM One_Transmission;

END IF;

ELSE

ctrl Sys Cnt Rst <= '0';

Ctrl Sys_Cnt_En <= '0';

ctrl sub Pixel Cnt Rst <= '0';

Ctrl_Sub_Pixel Cnt_En <= '0';

next state <= CAM One Transmission Tdle;
END IF;

WHEN CAM One_Transmission_Idle =>

Ctrl_sSys Cnt_Rst <= '1';
ctrl_Sys Cnt En <= '0';
ctrl_Sub_Pixel Cnt_Rst <= '1';
ctrl sub Pixel Cnt En <= '0';
next_state <= CEM Setup_Switch;

WHEN CAM Two Transmission =>

CAM Two Transmission(528 cycles) —-—-——————————————————————————

IF Ctrl Sys Cnt Out »>= TX ST AND Ctrl Sys_Cnt_Out <= TX FN THEN

CAM Status <= "10";

out <= TX FN FLAG 2 THEN

IF Ctrl Sys Cnt_Out »= TX ST AND Ctrl Sys Cnt_Out <= TX_ST_FLAG THEN

CBM2 Frame St <= '1';
CAM2 Frame Fn <= '0';
ELSIF Ctrl Sys Cnt out >= TX FN FLAG 1 AND Ctrl Sys Cnt Out <=
CRM2_Frame Fn <= '1';
CRM2 Frame_St <= '0';
ELSE
CBM2_Frame Fn <= '0';
CBM2_ Frame_St <= '0';
END IF;

IF Ctrl Sub Pixel Cnt Out <= TX SUB PX ST THEN
Ctrl sync_Clk <= '1';
ADC_Start <= '0';
next state <= CAM Two Transmission;

ELSIF Ctrl Sub_Pixel Cnt_Out > TX_SUB_PX_ST AND Ctrl_Sub_Pixel i

Ctrl Sync Clk <= '0';
BDC_Start <= '1';
next_state <= CAM Two_Transmission;

ELSE
Ctrl_sync_Clk <= '0';
BDC_start <= '0';
next state <= CAM Two Transmission;

END IF;

ELSE

Ctrl Sys_Cnt Rst <= '0';

Ctrl Sys Cnt En <= '0';

Ctrl Sub Pixel Cnt Rst <= '0';

Cctrl sub_Pixel Cnt En <= '0';

next state <= CAM Two_Transmission TIdle;
END IE;

WHEN CAM Two_Transmission TIdle =>

TX_FN_FLAG 2 THEN

Cnt_Out <= TX_SUB_PX_ADC



586
587
588
589
290
591
592
593
594
595
596
597

599
600
601
602

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

A273
624

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

642
643
644
645

Ctrl_Sys_Cnt_Rst <= 'l';
Ctrl_Sys Cnt En <= '0';

Ctrl Sub Pixel Cnt Rst <= '1';
Cctrl_Sub_Pixel Cnt En <= '0';
next_state <= Idle;

WHEN CAM Setup Switch =>
-- Selecting signal for Cam 1

IF ctrl_switch Cnt_Flag = CLOCK_LOW THEN
Ctrl Sync Clk_Sel <= '0';

50 <= "1";

ctrl switch Cnt_En <= CLOCK_HIGH;
CtrlfSysicrxtiEn <= CLOCK_HIGH;
next state <= CARM Int Tsu;

-- Selecting signal for Cam 2

ELSE
Cctrl Sync Clk Sel <= 'l1';
52 <= '0";
51 <= '"0";
S50 <= "'1";

ctrl switch Cnt_En <= CLOCK_HIGH;
CtrlfSySicrLtiEn <= CLOCK_HIGH;
next state <= CRM Int Tsu;

END IF;

WHEN CBEM Tx Switch =>
IF Ctrl Switch Cnt Flag = CLOCK HIGH THEN
Ctrl Sys Cnt Rst <= '1';
Ctrl Sys_Cnt En <= '1';
Ctrl sub_ Pixel Cnt_Rst <= 'l';
Ctrl Sub Pixel Cnt En <= '1';
next_state <= CAM One Transmission;

ELSE
Ctrl Sys Cnt _Rst <= '1';
Ctrl Sys Cnt En <= 'l';
Ctrl_sub_Pixzel Cnt_Rst <= 'l';
ctrl_Sub_Pixel Cnt_En <= '1';
next state <= CEM Two_Transmission;

END IF;

WHEN OTHERS =>
next_state <= Idle;
END CRSE;
END IF;
current_state <= next_state;
END process;

END behavioral;
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