

System on Chip (SoC):

A Real Time Touch Screen System on Programmable Chip

Stephen Xu

A thesis submitted in fulfillment of the requirements for the degree of

Master of Engineering (ME)

In Electrical and Electronic Engineering

Auckland University of Technology, New Zealand

November 2011

School of Engineering

Primary Supervisor: Dr John Collins

Kaore ko au

E kimi ana,

E hahau ana,

I nga pari ra

Piri nga hakoakoa,

E kau oma tera.

Ka toa atu tera

Ka ao mai te ra

Ki tua.

E I a ha-a!

Seeking, searching, peering,

As on those rocky crags

The sea-hawk sits

And watches for his prey,

Soon will the sun

Rise flaming over the world!

 Whakaaraara-pa

 From Rauparaha's Ngati-Toa warriors

Attestation of Originality

‘I hereby declare that this submission is my own work and that, to the best of my knowledge and

belief, it contains no material previously published or written by another person nor material

which to a substantial extent has been accepted for qualification of any other degree or diploma

of a university or other institution of higher learning, except where certain content is exactly

defined in the acknowledgements.’

Stephen Xu

November 2011

Acknowledgement

I am very grateful to both of my academic supervisors: Dr John Collins and Mark Beckerleg.

With your patient mentoring, strict requirements and kind encouragement through all these years,

I have become a better person with independent research capability, innovative thinking and

consistent motivation from inside.

Dr John Collins has provided invaluable guidance and advice on the architectural and directional

level with his broad background in embedded system. And Mark Beckerleg has been a technical

mentor and friend in the new technology domain with numerous amounts of help and assistance.

I am also very grateful to all my industry supervisors: Simon Bridger, John Newton and Gordon

Macdonald. I am grateful for the research platform which is based on unique technology, aiming

at investigating and solving real world limitations and having an impact on the outcome. I have

benefited a lot from all my supervisors from different perspectives and I would like to express

my sincere appreciation again.

Finally, I am very grateful for the help from technicians in the university and engineers inside the

company in terms of system understanding, prototype building and trouble shooting. I would like

to thank all my friends and family as well since it has been a long and difficult process.

i

Abstract

This thesis is involved with the investigation, implementation, verification, validation and

optimization of a purpose built on-chip solution customized for a real world touch screen

application. A Field Programmable Gate Array based application specific controller has been

designed and built in this research as a substitute for a general purpose controller to explore the

feasibility and capability of meeting the required system performance while maintaining the

minimum consumption of system resources. A variety of new mechanisms, approaches and

techniques have been evaluated, developed and applied to different design stages at multiple

levels to achieve an overall optimized system outcome.

A dedicated optical imaging acquisition system has been developed with a concurrent control

mechanism, faster operational speed and lower signal noise; a customized touch information

processing unit has been designed to perform edge detection, object positioning, and touch

motion indication with low system latency and highly parallelism; and a computer interface has

been built to demonstrate the coherent real-time system performance with visualized validation

of results. In the optical based touch screen area, this research presents an original and compact

on-chip solution with a significant number of algorithm and method improvements in terms of

the touch object detection and localization efficiency as well as touch motion analyzing

capability.

The system design has been optimized after establishing the desired functionality to minimize

logic resource and memory storage consumption, based on a wide range of techniques with a

certain amount of architectural restructuring. The overall economic on-chip resource

consumption has been achieved in this research with further consideration for migrating the

design into a more application specific high integration density chip in the future for large

volume manufacture.

ii

Table of Contents

Abstract... i

List of Figures ... v

List of Tables..ix

List of Abbreviations .. x

Chapter 1 Background and Introduction ... 1

1.1 Background and Requirements Analysis .. 1

1.2 Objective and Methodology... 5

1.3 System Abstraction and Overview .. 7

Chapter 2 -- Literature Review .. 10

2.1 Hardware Accelerated Hybrid System .. 10

2.1.1 Software-Oriented Hybrid System ... 10

2.1.2 Hardware-Oriented Hybrid System ... 12

2.1.3 Hardware/Software Co-Design System ... 15

2.2 Image Acquisition and Processing .. 18

2.3 Field Programmable Gate Arrays .. 21

2.4 System on Chip (SoC) .. 25

Chapter 3 -- Touch Screen System on Chip Design and Implementation....................................... 28

3.1 Introduction ... 28

3.2 Data Acquisition System .. 29

3.2.1 Data Acquisition System Overview ... 29

3.2.2 Acquisition Controller .. 30

3.2.4 Analog to Digital Convertor ... 35

3.2.5 Universal Serial Bus 2.0 ... 39

3.2.6 System FIFO.. 42

3.2.7 PCB Finalization ... 44

3.3 Memory Management Unit (MMU) ... 46

3.3.1 Memory Elements Overview.. 46

3.3.2 Memory Management Unit Control Structure .. 47

3.3.3 Constrained Memory Management Unit Structure ... 50

iii

3.4 Edge Localization Unit (ELU)... 51

3.4.1 Edge Localization Unit Overview.. 51

3.4.2 Edge Detection Unit .. 52

3.4.3 Edge Localization Unit ... 53

3.5 Position Localization Unit (PLU) .. 55

3.5.1 Position Localization Mechanism .. 55

3.5.2 Position Localization Unit Structure Transformation ... 56

3.5.4 Position Localization Unit Structure Overview .. 59

3.5.3 Binary Search Engine ... 60

3.5.4 Triangulation Operator ... 61

3.5.5 Position Localization Unit Registers ... 61

3.6 System Look Up Table... 62

3.7 Normaliser Unit .. 65

3.7.1 Normaliser Operator ... 65

3.7.2 Level Detection Logic .. 66

3.7.3 Normaliser Register .. 66

3.7.4 Norm Comparator ... 66

3.7.5 Gesture Register .. 66

3.8 System Master Controller .. 67

3.8.1 System Master Controller Control Flow.. 67

Chapter 4 -- Touch Screen System on Chip Testing Methods and Results 70

4.1 Overview ... 70

4.2 Data Acquisition System Testing Methods and Results .. 70

4.2.1 Timing Control Engine Testing Method and Results ... 70

4.2.2 ADC Testing Method and Results ... 72

4.2.3 USB Testing Method and Results .. 73

4.2.4 Noise Analysis and Results .. 74

4.2.5 Concurrent Acquisition Mechanism Testing Method and Results 75

4.3 Processing Unit Testing Methods and Results ... 76

4.3.1 Memory Management Unit Testing Method and Results .. 77

4.3.2 System LUT Testing Method and Results ... 78

iv

4.3.3 Edge Localization Unit Testing Method and Results ... 78

4.3.4 Normaliser Testing Method and Results ... 82

4.3.5 Position Localization Unit Testing Method and Results .. 83

4.4 Complete Real-Time System Testing Results .. 84

Chapter 5 Hardware Touch Screen System Optimization.. 87

5.1 System Optimization Overview... 87

5.2 Top-Level Architecture Optimization ... 88

5.3 Behavioral and Functional Level Optimization.. 89

5.3.1 Algorithm Evaluation (Alteration) ... 89

5.3.2 Memory Resource Reduction ... 95

5.3.3 Pipeline Rolling and Resource Sharing ... 96

5.3.4 Iterative Approach and Time-Division-Multiplexing (TDM)101

5.3.5 Retiming and Register Balancing...104

5.3.6 Multiplexer Resource Reduction..105

5.3.7 State Machine Optimization ...107

5.4 Floor Planning ..109

5.5 Reducing Power Dissipation ..111

Chapter 6 Touch Screen System Optimization Results ..112

6.1 Resource Optimization Results --- Original Version ...112

6.2 Resource Optimization Results --- Memory-Oriented Optimization113

6.3 Resource Optimization Results --- Logic Elements-Oriented Optimization115

6.3.1 Algorithm alteration based logic optimization ..115

6.3.2 Resource sharing, iterative approach and TDM based optimization results115

6.3.3 Multiplexer restructuring algorithm based logic reduction results118

6.3.4 Retiming and Register Balancing based optimization results118

6.4 Resource Optimization Conclusion ...120

6.5 Optimized Chip Floor Planning Result ...121

Chapter 7 Discussion and Conclusion ...122

7.1 Conclusion ..122

7.2 Future Work ..125

References ...127

v

Appendices ..131

List of Figures

Figure 1 Simplified Optical Imaging Based Touch Screen System .. 2

Figure 2 Left and Right Line Scan Sensors Waveform .. 2

Figure 3 Left and Right Line Scan Sensors Waveform with Single Touch 2

Figure 4 Simplified System Block Diagram ... 7

Figure 5 Software-Oriented Hybrid System ... 11

Figure 6 Hardware-Oriented Hybrid System .. 13

Figure 7 Hardware Software Co-design Approach... 16

Figure 8 SRAM Based Logic Element Structure.. 22

Figure 9 Flash Based Logic Cell Structure ... 23

Figure 10 Performance Benchmark of Vision Based Algorithms on Different Platforms 24

Figure 11 Stereo-vision and K-means Clustering Algorithms on Different Platforms 25

Figure 12 Data Acquisition System Block Diagram .. 29

Figure 13 Acquisition Controller Block Diagram .. 30

Figure 14 Clock Divider RTL Structure.. 32

Figure 15 Acquisition Engine Counter Module RTL Structure... 33

Figure 16 Pixel Map Generator RTL Structure .. 34

Figure 17 Acquisition Engine Shift Register RTL Structure ... 34

Figure 18 ADC Chip Conversion Clock Block Diagram ... 35

Figure 19 ADC Chip Configuration Circuit.. 36

Figure 20 ADC Interface Block Diagram ... 37

Figure 21 ADC Counter Module RTL Structure .. 38

Figure 22 ADC Register RTL Structure.. 38

Figure 23 USB Chip Block Diagram ... 39

Figure 24 USB Chip Configuration Circuit .. 40

Figure 25 Transmission Engine Block Diagram ... 41

Figure 26 USB Package Constructor Structure... 41

file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360966
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360967
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360968
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360969
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360970
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360971
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360972
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360973
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360974
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360975
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360977
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360978
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360979
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360982
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360983
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360984
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360985
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360987
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360988
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360989
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360990
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360991

vi

Figure 27 System FIFO RTL Structure ... 42

Figure 28 Data Acquisition Board PCB Layout ... 44

Figure 29 Data Acquisition Board Physical View .. 45

Figure 30 Data Acquisition Board Connected to Dev Board ... 45

Figure 31 Dual-Port Ram Read/Write Operation Structure ... 47

Figure 32 Memory Management Unit Block Diagram .. 48

Figure 33 Memory Management Unit Abstracted Circuit Structure ... 48

Figure 34 Constrained Memory Management Unit Abstracted Circuit Structure 50

Figure 35 Reflection Block on Left and Right Image Waveforms .. 51

Figure 36 Gradient Based Edge Detection Block Diagram ... 52

Figure 37 Gradient Based Detection and Localization Units Abstracted Circuit Structure 53

Figure 38 Position Localization Mechanism Illustration ... 55

Figure 39 Binary Search Based Object Localization Mechanism ... 58

Figure 40 Position Localization Unit Block Diagram .. 59

Figure 41 Binary Search Engine Abstracted Circuit Structure .. 60

Figure 42 Look Up Table Block Diagram... 62

Figure 43 Look up Table Abstracted Circuit Structure .. 63

Figure 44 Look up Table Correspondence Value ... 64

Figure 45 Normaliser Block Diagram ... 65

Figure 46 Normaliser Abstracted Circuit Structure .. 66

Figure 47 Acquisition Timing Control Testing Result ... 70

Figure 48 Hardware Timing Control Engine --- Ambient Frames .. 71

Figure 49 Hardware Timing Control Engine --- Normal Frames (No Touch) 71

Figure 50 Hardware Timing Control Engine --- Touch at One Position... 71

Figure 51 Hardware Timing Control Engine --- Touch at another Position 71

Figure 53 ADC Testing Results --- Constant Voltage Input .. 72

Figure 52 Figure 36 Acquisition Timing Control Testing Result 900K ... 72

Figure 54 Data Acquisition System Digitization Result .. 73

Figure 55 PC Monitor Interface ... 74

Figure 56 Data Acquisition System Noise Analysis Result ... 75

Figure 57 Concurrent Acquisition Mechanism Testing Result .. 76

file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360992
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360993
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360996
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360997
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360998
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308360999
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361000
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361001
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361002
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361003
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361004
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361005
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361006
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361007
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361008
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361009
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361010
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361011
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361012
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361013
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361014
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361015
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361016
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361018
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361019
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361020
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361021
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361022

vii

Figure 58 Memory Management Unit Testing Structure ... 77

Figure 59 System Look up Table Testing Structure ... 78

Figure 60 Edge Detection and Localization Units Testing Structure .. 79

Figure 61 Edge Localization Unit Real Time Testing Result (Edge Up) 80

Figure 62 Figure 50 Edge Localization Unit Real Time Testing Result (Edge Down) 82

Figure 63 Normaliser Testing Result (Touch Down) ... 83

Figure 64 Position Localization Unit Testing Structure ... 84

Figure 65 Real Time Touch Screen System Testing Results (Drawing Straight Line, rectangle) 86

Figure 66 Original Top Level System Flow ... 88

Figure 67 Optimized Top Level System Flow .. 88

Figure 68 Linear approximation sub-pixel detection of Hussmann and Ho’s system Error!

Bookmark not defined.

Figure 69 Dynamic Linear Approximation Sub-Pixel Detection Based on Real Camera Scope .. 91

Figure 70 Trigger Level Based Edge Localization Block Diagram .. 92

Figure 71 Trigger Level Based Edge Localization Abstracted Circuit Structure 92

Figure 72 Pipelined Data Flow of Edge Detection and Localization Unit with Nomaliser 94

Figure 73 Memory Resource Optimization Illustration ... 95

Figure 74 Data Acquisition Engine Block Diagram without Optimization 97

Figure 75 Optimized Data Acquisition Engine Block Diagram .. 97

Figure 76 Optimized Acquisition Engine Abstracted Circuit Structure .. 98

Figure 77 Optimized ADC Interface Block Diagram ... 99

Figure 78 Optimized ADC Interface Abstracted Circuit Structure ... 99

Figure 79 Arithmetic Resource Sharing Common ALU ..100

Figure 80 Comparator Resource Consumption and Adder Resource Consumption101

Figure 81 Multiplier Resource Consumption and Absolute value operator Consumption101

Figure 82 Resource Sharing of Binary Search Engine ...102

Figure 83 Divider Free Arithmetic Logic Unit ...102

Figure 84 Common ALU Abstracted Circuit Structure ...103

Figure 85 Retiming and Register Balancing Illustration ..104

Figure 86 Retiming and Register Balancing Option...105

Figure 87 Multiplexer Restructuring Algorithm Compression ..106

file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361023
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361024
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361025
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361026
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361027
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361028
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361029
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361031
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361032
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361033
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361034
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361035
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361036
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361038
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361039
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361040
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361041
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361042
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361043
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361044
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361045
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361046
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361047
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361048
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361049
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361050
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361051
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361052

viii

Figure 88 Multiplexer Restructuring Algorithm Balancing ...106

Figure 89 Original Acquisition Controller Data and Control Path ..108

Figure 90 Optimized Acquisition Controller Data and Control Path ..108

Figure 91 Physical Chip Overview ..109

Figure 92 Logic Element Configuration..109

Figure 93 Original System Partition Design ...110

Figure 94 Optimized System Partition Design ...110

Figure 95 Programmable Chip Power Consumption ..111

Figure 96 Power Optimization Options ...111

Figure 97 Memory Resource Reduction Result ..120

Figure 98 Logic Resource Reduction Result ..120

Figure 99 Original Chip Floor Planning Result ..121

Figure 100 Optimized Chip Floor Planning Result ..121

Figure 101 More optical imaging coverage ..125

Figure 102 More robust processing handling..126

Figure 103 SoC Design ..126

Figure 104 FPGA Chip ...126

Figure 105 Migrated ASIC Chip ..126

file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361053
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361054
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361055
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361056
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361057
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361058
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361059
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361060
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361061
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361062
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361063
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361064
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361065
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361066
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361068
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361069
file:///C:/ME/6%20Nov%202011/Master_Thesis_Stephen_V3.3.5%20ModifiedCopy.docx%23_Toc308361070

ix

List of Tables

Table 1 Acquisition Controller State transition Table .. 31

Table 2 ADC Interface State Transition Table ... 37

Table 3 Master Controller State Transition Table .. 68

Table 4 Original System Resource Analysis Table ..113

Table 5 Optimized Memory Resource Analysis Table ..114

Table 6 Gradient Based Edge Detection Algorithm Resource Analysis Table115

Table 7 Dynamic Linear Approximation Detection Algorithm Resource Analysis Table115

Table 8 Original Edge and Position Localization Units Resource Analysis Table116

Table 9 Optimized Edge and Position Localization Units Resource Analysis Table116

Table 10 Original Acquisition Controller and ADC Interface Resource Analysis Table117

Table 11 Optimized Acquisition Engine Resource Analysis Table ..117

Table 12 Optimized ADC Interface Resource Analysis Table ..117

Table 13 Multiplexer Restructuring Results Table ...118

Table 14 Retiming and Register Balancing Results Table ...119

file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346181
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346182
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346183
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346184
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346185
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346186
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346187
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346188
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346189
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346190
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346191
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346192
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346193
file:///C:/Users/SXu/Desktop/Master_Thesis_Stephen_V3.3.4.docx%23_Toc307346194

x

List of Abbreviations

Abbreviation Meaning

ADC Analog-to-Digital Converter

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

BBD Block Based Design

BSE Binary Search Engine

CPU Central Processing Unit

DAU Data Acquisition Unit

DCM Digital Clock Manager

DSP Digital Signal Processor

EDU Edge Detection Unit

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

LED Light Emitting Diode

LUT Look up Table

MMU Memory Management Unit

PBD Platform Based Design

PC Personal Computer

PLU Position Localization Unit

PU Processing Unit

RAM Random Access Memory

SAW Surface Acoustic Wave

SOC System on Chip

TOC Touch Screen on Chip

USB Universal Serial Bus

1

Chapter 1 Background and Introduction

1.1 Background and Requirements Analysis

Conventional Touch Screen Technologies

Touch screen technology has been developed as a popular interactive component in everyday life

to facilitate human-to-machine communication and enrich user experience. There are

conventionally four types of touch screen input devices based on different technologies. They

have been applied to various applications with their own advantages and disadvantages where:

Resistive based touch screen solution is relatively cost efficient and supports multiple input

means (fingers, gloves, and stylus) but has the drawbacks of image clarity degradation in

public environments and the requirement of periodic calibration.

Capacitive based touch technology is considered durable and reliable when applied in harsh

environments (water, dirt and dust) but has disadvantages in input methods capability (most

are restricted to finger input) and scalability (the technical difficulty and high cost of

applying to large formats).

Surface Acoustic Wave (SAW) constructed touch device provides high quality image clarity

and light transmission however with the same restriction in large scale capability and cost

efficiency.

Infrared oriented touch technology has the unique integration advantage of being a

completely sealed in device, but is also regarded as having a relatively poor touch function

performance and it is vulnerable to complex environments (contaminants etc).

Optical Imaging Based Touch Screen Technology

The optical imaging based touch screen solution has emerged in recent years as a new

competitive technology which has its own distinct characteristics leading to a significant variety

of advantages over the aforementioned traditional approaches.

2

In general, it is a compact and efficient image sensor and reflective retro combined solution

designed to realize touch screen functionality with minimum cost and great scalability.

The simplified optical imaging based touch screen system is illustrated below in figure 1:

Inside the basic optical touch system, there are two image sensors (each being single line scan

based, one at the left top corner and the other at the right top corner) with a LED positioned on

top of each sensor chip (1). Specific reflective material has been placed along the screen edge

(2). The simplified system mechanism is when there is no object within the active touch screen

area all the infrared light emitted by the two LEDs will be reflected back to the image sensors by

the retro material at the screen boundary; the image sensors receive the full level light reflection

as below in figure 2:

When an object occurs within the touch screen active area, part of the reflection will be blocked

as shown below in figure 3:

Figure 1 Simplified Optical Imaging Based Touch Screen System

Figure 2 Left and Right Line Scan Sensors Waveform

Figure 3 Left and Right Line Scan Sensors Waveform with Single Touch

3

By converting the blocked waveform locations to actual angles from the sensor view points, and

coordinating with the physical screen dimensions, the actual touch point is able to be triangulated

and its position calculated. Moreover, a significant number of advanced methods and techniques

have been evolved based on the basic mechanism as described above to achieve real time high

quality performance. The basic optical imaging control and process unit behind the system is

comprised of a microcontroller which directs the timing sequence of the LED based illumination

subsystem and image sensor subsystem to acquire and transmit the raw touch information. A PC

based processing system abstracts the edges, localizes and finalizes the touch positions, resolves

the occlusions etc. The existing system is relatively accurate, robust and meets the current real

time requirements reasonably well. Nonetheless, a certain number of system limitations and

additional requirements have been identified.

Requirements Analysis

With the ever growing market competition and increasing customer expectations, there are three

new design requirements investigated in this research: Low level system acquisition requirement,

high level processing requirement and system cost requirement on the resource level.

System acquisition requirement

The general-purpose microcontroller based data acquisition unit is a system bottleneck which

relies on a sequential acquisition mechanism with a relatively limited frame rate. Customized

acquisition control logic is urgently required, to execute a concurrent acquisition control

structure where one image sensor is capturing image pixels while the other sensor is

simultaneously digitizing and transmitting the pixels. The significant increase in the touch

information frame rate is required for fast touch activity detection and touch history tracking,

which will play an important role in the subsequent processing module.

4

Another major problem in the current optical imaging based system is the touch occlusion issue

which is largely caused by lack of sufficient screen imaging information. Furthermore, a

fundamental requirement of the next generation operating system is the supporting of multiple

touches that demands more accurate coverage of screen information from more different camera

view perspectives. Therefore, it is important that the proposed acquisition control logic is not

only able to provide a more efficient concurrent mechanism for improving the frame rate but

should also have the capability and extensibility for handling a larger camera based bandwidth in

a more advanced system.

System processing requirement

In current touch screen systems, the majority of system processing functionality has been placed

on the PC processor with a combined latency of sequential acquisition delay and PC algorithm

operation time. With the potential increase in the number of acquisition sensors and frame rate,

longer latency will occur in the current acquisition engine and more processing load will placed

on the general-purpose CPU which is also shared by other applications within the OS. In order to

reduce the low level system latency under the increasing data rate and computational pressure, it

is necessary that certain processing in the critical path is pipelined and pre-processed with the

acquisition process. Pre-processing operations such as edge detection, ambient subtraction and

pre-touch indication leads to the process-on-the-fly requirement.

System resource requirement

Market and cost considerations are always involved in real product development. A minimum

amount of hardware resources is demanded in this industrial research for realizing the

aforementioned concurrent acquisition engine and pre-processing module. Moreover, a further

interest has been expressed for this project to explore and analyze the feasibility and resource

consumption of a complete on-chip hardware solution achieving basic touch screen functionality

to lower the overall manufacturing cost.

5

1.2 Objective and Methodology

This is investigative research based on real world touch screen system requirements, which aims

at creating customized logic to acquire touch information and further explore the feasibility of a

complete on-chip hardware solution to realize basic touch screen functionality. There are three

objectives in system research and development according to these requirements:

Create a customized and more advanced data acquisition system compared with the existing

platform in terms of its operation mechanism, speed, accuracy and noise level.

Research and validate the concept of embedding a complete touch system on a chip with an

incremental design and verification process.

 Optimize the resource utilization without compromising overall system performance.

For the system design methodology, it is necessary and critical to understand the existing system

structure and functionality. Therefore the same functionality is required to be migrated to a new

platform (a field programmable gate array) on the system level with the consideration of

technology differences and the explicit partitioning of different system modules. After that, more

sub-modules are designed, constructed, verified and tested to realize the required system level

functionality with constrained timing requirements. Then all top level modules are integrated and

synchronized to achieve system timing closure with a well organized control flow. In the end, a

number of optimization techniques will be applied to both system level and module level

components to minimize the resource consumption while maintaining the same functionality.

During the development process, there are three design phases:

Phase One: Data Acquisition System

Phase one is a performance oriented design process with the purpose of constructing a high

speed, concurrent data acquisition engine to replace the existing general purpose microcontroller

based acquisition system. It is planned to start by constructing the image sensor timing control

logic with the basic capability of configuring and controlling sensors to acquire analog pixels,

equipped with a LED based illumination subsystem with more complicated timing control

between the shutter and operation modes. After that, an analog-to-digital convertor is added to

6

digitize the analog signals which will be further transmitted out of the data acquisition system

through a USB module. Each module will operate at the highest possible execution speed by

taking advantage of the pipeline structure. It is acceptable that extra resources are consumed to

reduce overall noise level and a new concurrent timing control mechanism is expected to

maximize system operation efficiency. The data acquisition system is aimed initially to achieve

the highest possible system performance without consideration of resource consumption. At the

end of phase one, a number of tests are required to verify the real time performance is

acceptable.

Phase Two: Processing Unit

The development of the processing unit is considered as an investigation and verification process

using the incremental design methodology [1] where each new module is constructed and then

integrated with the previously verified system. The design objective of the processing unit is to

realize basic touch screen functionality with minimum concern for resource use. Based on raw

touch information collected by the Data Acquisition System, the Processing Unit design process

starts from a proposed memory management unit to store and direct image frames before further

processing. Dedicated logic blocks are required to perform initial edge detection, then touch

position localization and initial touch level detection, then touch motion tracking. Each block

development will go through its own verification and test process [2]. Finally, it is necessary to

have a system master controller synchronizing and organizing all processing modules, to respond

to both the acquisition system and PC through a customized transmission engine. A software

interface is required to demonstrate the correct functionality of the basic touch screen system

during real time user testing.

Phase Three: System Optimization

After successfully establishing the proposed touch screen system, a number of optimization

techniques are applied to the acquisition system and the processing unit on different levels (from

the algorithm level to the logic gate level) to minimize resource consumption without

compromising overall system performance. An optimized on-chip hardware solution with

proven real time performance will be validated as the result of this research.

7

1.3 System Abstraction and Overview

This research is based on real world touch screen application requirements with specific

investigation, implementation, verification, validation and optimization involved to create a

dedicated on-chip solution. Field Programmable Gate Array based application specific control

logic is proposed and developed in this research not only to investigate the possibility of a

customized acquisition engine with desirable performance but also to explore the feasibility and

capability of an on-chip touch information processing unit with the minimum consumption of

system resources. The abstraction layer of the system is illustrated below before being expanded

and explained in detail in later chapters.

The complete system is comprised of three major modules: Data Acquisition Unit (DAU) which

controls and coordinates the image sensor, illumination and ADC subsystems to consistently

acquire, digitize and transmit the real time touch information to processing logic; Processing

Unit (PU) which performs real time touch detection, object positioning and motion analyzing

with low latency characteristics by taking advantage of a pipeline structure; and a PC monitor

which continuously updates the touch screen optical imaging scope and user touch positions.

The following is the simplified system block diagram on an architectural level:

Figure 4 Simplified System Block Diagram

8

The following paragraphs will concisely introduce the design concept and system flow with an

overview of how the system operates. Brief explanations of the main components integrated

inside the three main blocks are presented here.

Inside this vision (image sensor) based real time touch screen system, the Data Acquisition Unit

(DAU) plays a fundamental role in raw optical imaging information acquisition by controlling

and organizing the Line Scan Sensors, LED based Illumination system, Sensor Support Chip,

ADC Chip, ADC Interface Logic and Digital Clock Manager (DCM). The unit is designed

and partitioned as a self-contained module with the Data Acquisition Control Engine operating

all control signals within the unit so there is no interference with other units.

The Processing Unit is the key block of the whole touch screen system. The digitized image

frames from the Data Acquisition Unit are redirected by Mode Demux to be either stored into

RAM in the Memory Management Unit (MMU) in iunitialization mode or fed into the Edge

Detection Unit (EDU) and Normaliser when in operation mode. The Trigger Logic inside the

MMU adjusts the threshold level for different ambient light environments while the Memory

Address Generator updates both the reading and writing addresses for the MMU. The Edge

Detection Unit (EDU) is constituted of a Level Detection Unit which defines and indicates the

touch action and the EDU Result Register which stores both the rising and falling edges of the

touch for both image frames.

More accurate touch edge positions can be obtained using the Interpolation Data Path inside

the Common ALU module catering for more precise requirements. All touch edges are

translated from image Pixel Ids into real angles in the detection area from both the top cameras’

perspectives, using a pre-calculated Look up Table (LUT) in ROM. After that, the two angles

are triangulated in the Position Localization Unit to calculate the x and y coordinates of the

touch on physical screen. The Triangulation Data Path is involved in localization processing

while the hardware Binary Search Engine is used to optimize the search process by accelerating

the system critical path to a significant extent.

9

The Normalizing Process inspects and analyses subtle application actions such as pre-touch

using the Level Comparator and Register module inside the Normaliser. This runs in parallel

with the Edge Detection and Localization. As a result, the most recent touch percentage levels

will be stored in registers for further touch history tracking analysis. Finally, both the concurrent

processed results (touch position and tracking history results) are reconstructed in packages by

the Package Constructor in the Transmission Engine and transmitted outside the block.

The Master Controller inside the Processing Unit is the core element of the system operation

which not only directs process flow and organizes control signals to and from sub-modules

simultaneously, but also coordinates and interfaces with the Data Acquisition Unit and PC

monitor to achieve real time system synchronization and coherence.

The PC Monitor receives data transmitted from the hardware touch screen system through a

USB2.0 connection. The software interface is designed for high speed USB transmission with

two GUIs: one for displaying the raw touch screen optical imaging information for development

debugging and data acquisition process validation; and the other for updating actual real time

touch position results based on the hardware processing unit in a visual form for system

demonstration purposes.

All units and modules abstractly aforementioned will be further discussed and illustrated in detail

in the next few chapters.

10

Chapter 2 -- Literature Review

2.1 Hardware Accelerated Hybrid System

In modern electronic system design, with increasing demands in processing capability and more

stringent requirements for system latency, it is difficult for a real time application to fulfill design

specifications if it is only implemented in software. The hardware accelerated hybrid system [3]

emerged due to this reason in the early 1990s to describe a process where certain parts of the

program’s critical functions are constructed in hardware to meet performance target and timing

constraints while other parts are implemented in software in the processor . It is informed by

multiple design disciplines and approaches based on the characteristics of an application which

can be classified as a software-oriented hybrid system, hardware-oriented hybrid system or

software/hardware co-design system.

2.1.1 Software-Oriented Hybrid System

For software-oriented heterogeneous system design, without violating any application

performance constraints, a significant proportion of system functionality has been implemented

in software with a minimum amount of hardware processing. Most often, software-oriented

design takes advantage of the existing processor or microprocessor structure (either general

purpose or special purpose) with dedicated software programs that allow the user to define the

desired functionality using a specialized language. On the instruction level, as indicated by [4],

programming is achieved by executing on the hardware supported by the existing architecture. It

is considered to be more flexible with a relatively high level of software and lower cost by

implementing major system design into the available structure with very limited extra hardware

cost. Compared with a pure software solution, the software-oriented hybrid system is more

efficient with a hardware acceleration of a small part of the system.

11

The software-oriented hybrid system structure is illustrated below redrawn from [3]:

Low Level Latency Requirements

In most software-oriented hybrid system design, the key processing timing and latency

requirements are less demanding which makes it easy and cost-efficient to implement the major

proportion of system functionality into general processor based software. For example, in Garufi

and Acernese’s hybrid modular control and acquisition system [5], with low sampling and

performance requirements, the complete distributed control algorithm was processed by PC

based software with low cost hardware logic used in the critical acquisition path. Another

example is the control design for swing scanning infrared earth sensor application [6]. The entire

earth wave algorithm has been executed in an embedded ARM processor with necessary

acceleration in obtaining raw data by taking advantage of the hardware structure.

Flexibility and Extendibility

For some other software-oriented systems, the specification requires flexibility and adaptability

because a certain amount of system functionality is to be executed unpredictably and

sporadically. Thus, it is natural to implement the majority of the proposed design into a standard

software core to allow rapid change to a new algorithm. The real-time dark environment vehicle

detection system [7] is a good example. With basic hardware acceleration on pixel-level

Figure 5 Software-Oriented Hybrid System

12

operation, the main vehicle searching and decision making algorithm has been executed on

processor based software because of the broad variety of possibilities and uncertainties.

Computational Cost and Execution Convenience

Sometimes the system functionality is technically difficult and computationally expensive to be

implemented into pipelined hardware or the required function is already an existing component

of a processor based system. For instance, floating-point arithmetic operations are a basic

element inside numerous algorithms which are widely supported by existing instruction sets

inside conversional PC or processor based systems. And for modern software-oriented platforms

(physical or soft [8] on chip processor core based system) it is also commonly supported. Thus,

from the cost perspective, some applications are best suited to processor based design.

Meanwhile, software-oriented design is considered efficient and convenient in terms of

implementation cycle and requirements for specialized human resources compared with a fully

customized hardware design.

2.1.2 Hardware-Oriented Hybrid System

The aforementioned software-oriented hybrid system design usually has a high speed clock

frequency and relatively powerful sequential computation processing ability. However the

hardware-oriented design is practically application-specific with the characteristic of inherent

parallelism to meet stringent user requirements. Usually, the operational frequency in hardware

dominated design is much slower than PC or processor based system but with a capability to

provide better performance through paralleling more operations, minimizing memory access and

optimizing critical paths.

The hardware-oriented hybrid system structure is illustrated below: the majority of system

functionality has been implemented in hardware logic with tight and multi-level interconnections

between system peripherals and the subsequent processing block.

13

Hardware-oriented hybrid system structure:

High Throughput and Low Latency

In most high performance real-time applications, throughput and latency are two significant

factors affecting the performance and outcome of the system. Morris, Thomas and Luk’s [9]

financial trading system is an example. “The combination of increased message rate and more

complex market feed data format ” naturally requires a system which has high bandwidth

message processing capability and desired latency in a situation where large bursts of trading

activity occurs. Software-oriented solutions are often unable to keep up with the input data rate

and also have difficulty meeting the latency requirements of sub-millisecond response times.

Under such circumstances, there is a shift during the application design towards a more

hardware-oriented system with an accelerated propagation structure.

Functionality Effectiveness, Compactness and Robustness

With an explicit design specification or clear problem definition, the architecture of a hardware-

oriented system is often constructed in a compact and application-specific manner such as [10]

compared with a general processor software solution. In detail, the hardware dominated solution

usually starts with a straightforward design approach which resolves the problem in a direct way

Figure 6 Hardware-Oriented Hybrid System

14

that leads to better efficiency. The hardware oriented structure is usually more tightly

interconnected and integrated with target requirements, which leads to a better solution because

the hardware solution is more convenient for adding concurrent features inside each block and it

is more versatile because it is more easily extensible.

Architecture Parallelism and Reduced Response Time

In safety-critical areas, such as medical instruments, the efficiency and efficacy of equipment

design plays a crucial role in accurate and appropriate problem identification and localization,

which sometimes reduces the instrumentation operation and response time, helping minimize

unintended damage (such as to healthy tissue etc). Minimally invasive image-guided intervention

(IGIs) is a typical application that benefits from the hardware-oriented design method with a

significant improvement in execution time from hours to a few minutes compared with the

conventional open and invasive procedure. Inside the IGIs workflow, the deformable image

registration is the fundamental and major step, which in Dandekar and Shekhar’s system [11] has

been implemented into a highly pipelined multimodal based hardware architecture to reduce the

procedure time.

In order to maintain the high level calculation accuracy, which is equally important in hardware

occupied medical instrument design to minimize the possibility of complications, there are

commonly two execution alternatives. One is constructing a dedicated floating processor unit at a

high cost of hardware resources, such as plane-sphere intersection in a hardware ray tracing

system [12] having an independent pipeline arithmetic unit for meeting accuracy requirements.

The other alternative often used is the adoption of multiple look up table (LUT) based

polynomial approximation. In Castro-Pareja, Jagadeesh and Shekhar’s system [13], two LUTs

(Interpolation Weights and corresponding floating coordinates) have been utilized to replace a

standard arithmetic unit while achieving the same operational precision.

15

Security and Adaptability

For certain areas, such as military communications, there is a growing concern not only in traffic

speed and bandwidth, but also in network security where a device is required to protect the

intellectual property of a design from attempts to reverse engineer or replicate operation. The

general-purpose processor based software solution is considered relatively unsecure in terms of

concealing internal algorithms since “their reliance on external instruction streams means that

they are susceptible to instruction bus monitoring attacks while operational" [14]. In order to

maintain network security, hardware based solutions are used where the critical function has

been separated and implemented into hard-wired logic in a self-contained manner without

requiring external instruction data. At the same time, by taking advantage of the capability of

run-time reconfiguration of certain hardware devices, new protocols and algorithms are able to

be processed and adopted without compromising performance. The information exchange

security system based on specialized hardware has demonstrated a more capable security

monitoring mechanism and in addition the “reconfigurability and expandability of the solution

provides an apparatus for further improvement and elimination of potential threats that are still to

arise" [15].

2.1.3 Hardware/Software Co-Design System

The hybrid hardware/software co-design [16] emerged to embrace new design requirements in

the early 1990s to describe a process where part of the program’s functions are constructed in

hardware while the others are implemented in software in a processor. The increasing use of the

co-design method for complex systems stems from a variety of factors. One is “the need for

multi-formalism specification" [17] where most modern embedded systems consist of different

components (analog, digital etc.) and there is no common description or language to cope with

specification variations within the system. Another is the market pressure for real-time products

which demands shorter development cycles and effective design cost. Last but not least, design

reuse is a key issue in complex system design convenience and coherence.

16

The hardware/software co-design is the net result of a significant number of research activities in

the embedded area. It is informed by multiple disciplines including software/hardware partition

design, application-oriented hardware circuits design and hardware/software domain interface

design. Compared with the aforementioned hardware-oriented design and software-oriented

design, there is neither an explicit overall performance constraint demanding a complete

hardware solution nor a pure software solution fully satisfying the specification without

acceleration.

Hardware/Software Co-Design Approach:

There are a number of fundamental stages for establishing a complex system following the co-

design approach: from system specification, system profiling, architecture partitioning,

concurrent hardware and software development to the actual run-time system. The general

approach route is illustrated below redrawn from[18] with minor changes:

 Figure 7 Hardware Software Co-design Approach

17

System Abstraction

The abstraction of system functionality based on heterogeneous specifications can also be

described as “modeling system functionality and constraints " [18]. It is usually considered as a

high level behavioral description regardless of implementation details.

System Profiling

System profiling refers to the identification of performance in critical regions and the timing

estimation for real time operation using software (for instance C code) without real execution on

the candidate architecture.

Architecture Partitioning

Hardware/Software partitioning aims to determine which parts of the system should be

implemented in hardware and which in software by applying various trade-offs and spectrums

[19]. As further explained by Ismail and Jerraya [20] the architecture is partitioned by assigning

the whole system functionality to concrete parts of the physical system, which will be either

compiled into machine code in a processor or synthesized into a hardware circuit description.

The final system architecture formalizes the result of “several successive trial and error iterations

of this step" [17] based on the detailed specification, timing constraints and designer’s

experience.

Concurrent Development

During the implementation stage, the hardware compilation and software compilation are

executed simultaneously after the system evaluation and partitioning from previous stages. The

concurrent development follows different design processes where hardware compilation is

composed of hardware behavior description, optimization, synthesis, placing and routing, linking

etc using a modern reconfigurable platform while software compilation generates machine code

for the processor structure.

18

Run-Time System

The run-time system is the final operation platform which varies according to applications, such

as a general-purpose CPU with Field Programmable Gate Array, or an application-specific

processor with an application-specific-integrated-circuit.

To conclude, In order to achieve hardware/software co-design success, it is not only critical that

the initial partitioning be made appropriately into hardware and software, but also that the

ensuing system level development proceeds along lines that benefit from an integration of both

hardware and software perspectives. Compared with traditional design, it is more efficient to

plan the design with a more detailed specification available before selecting the final

architecture. It is less costly to modify parts of the system between different partitions at later

stages of development and it is easier to facilitate the final integration between different

technology domains. Alternative system implementations are considered with respect to

performance, physical aspects, reliability, modifiability, maintainability and manufacturing cost

as emphasized by Purvis and Franke [21].

2.2 Image Acquisition and Processing

Vision based systems have been a popular research topic for the last decade where a significant

number of areas have benefited directly or indirectly from it, such as robotics and autonomous

systems [22], surveillance [23] and navigation systems [24]. It is also considered to be the

general research and knowledge background for the proposed touch screen system. Vision

systems aim at enhancing and improving the visual image characteristics for a human viewer

through a variety of techniques and processes depending on applications. The acquisition

capability which refers to large volume data handling, memory bandwidth and real-time

constraints [25] and the processing ability which depends on the efficiency and parallelism of

algorithms, arithmetic and logic operations are two major factors that determine the success of a

vision based system.

There are three critical stages during the vision system design which includes data acquisition,

system pre-processing and high-level processing.

19

Image Acquisition

Inside a vision based system, data acquisition is the fundamental image-sensor based integration

control and read-out process to “set the mode of operation, address the pixels and transfer the

data to high-speed local storage" [26]. And the difficulty of designing such an acquisition system

usually lies on the efficiency of the interface which is the bridge connecting the system’s front

end and back end processing [27]. Usually, the image acquisition storage structure is developed

by consideration of the related processing unit which has an impact on data collection.

System Pre-Processing

In recent real-time application development, there is an increasing trend towards the system pre-

processing unit design because of the pressure of larger volume data from multi-inputs and the

stringent performance and latency requirements. In the image processing area, the pre-processing

is usually referred to three major components: image enhancement, feature extraction and

interest segmentation. Image enhancement is a basic restoration approach to make subsequent

analysis easier over environmental variation [25] through a number of techniques such as noise

reduction, contrast or color correction [28] and lens distortion. The second important component

in image pre-processing is feature extraction where typical properties like lines, edges [29],

texture and shapes [30] can be extracted to reduce raw data size in order to reduce the processing

burden on the main system. Last but not least, the interest segmentation step refers to “ the

selection of a specific set of points or regions of interest which are the subject for further

processing" [31]. On the pixel level, the image segmentation task functions on the spatial domain

“grouping together neighboured pixels or voxels to homogeneous regions if they can be

considered to be similar according to a common feature" [32]. In general, the purpose of pre-

processing is to robustly abstract typical characteristics and information useful for subsequent

processing from the image to further optimize overall system processing distribution.

High-Level Processing

High-level processing is the critical stage of collecting, analyzing and generating the final system

outputs. The results after advanced processing are likely to be route and movement decisions

from a vision based navigation system [24], or the identification of a person from a face

authentication system [33]. The high-level processing is usually performed by a general or

20

specific processor structure because of the variety, flexibility and complexity of the dedicated

algorithms.

On the implementation level, a number of studies have investigated the optimum system

structure partitioning between hardware and software in different applications.

In two dimensional image based vision detection, Alt, Claus and Stechele [7] have built a

vehicle detection system where the image acquisition, spotlight detection and region labelling are

partitioned in a hardware structure while light pair searching and plate searching are executed in

an embedded processor. Pei, Chun and Li [34] have a similar design partition in their departure

warning system with frame acquisition and liquid-crystal display and other peripherals controlled

by hardware. The implementation of a fundamental Gaussian smoothing filter based global edge

detector has been proposed in hardware from their research. In order to meet increasing system

performance requirements in real time, more and more researches have shifted intensive image

processing units from software-executed processors and customised this into more application-

specific logic structures. For example, Bonato, Marques and Constantinides [35] describe a

feature detection system, in which major system processing such as pixel streaming, magnitude

calculation, orientation computing, and key points detection and classifying are constructed in

logic structures and the embedded processor is used to generate descriptors for future feature

extension. Vicente and Munoz [36] describe an object counting and tracking system which is

constituted of critical object and contour detection algorithms constructed in hardware structures

and more flexible classifying and tracking modules implemented in a processor.

Furthermore, in other performance-oriented research applications, more hardware resources are

consumed to achieve design goals. For example, Ishii, Taniguchi and Yamamoto [37] have

developed a high speed (1000fps) real time vision platform where most image processing

algorithms (multi-target colour tracking, feature point tracking, optical flow detection, and

pattern recognition) are accelerated by a hardware pipeline structure. Another example is Yean

and Yu’s [38] Smart Camera system for Gesture Recognition in HCI Applications The complete

Harris keypoint detection algorithm and Kanade-Lucas-Tomasi (KLT) feature tracker algorithm

have been implemented in a logic structure.

21

The proposed touch screen system is a line scan image sensor based specific object detecting

application. Ohtani, Baba and Notohara [39] have built an optical measurement system with the

analogue scan unit and ADC conversion controlled by software in a processor while hardware is

responsible for actual spot position calculation from digitized information. In Hussmann and

Ho’s real-time edge detecting system [40], hardware was used for most elements inside the

system including sensor scan circuits, ADC conversion, and low-pass filter. In addition, a simple

edge localization algorithm was constructed in hardware. The processor was used for further

advanced post-processing. From their work, it is suggested that the fundamental architectural,

data-path critical and computationally less complex functions are more efficiently implemented

in hardware while software is preferred to handle more flexible features. These design

considerations will be applied in constructing the touch screen system.

2.3 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are reprogrammable hardware devices that can be

utilized to implement logical functions through a hierarchy of reconfigurable interconnects

among digital blocks. It is the advanced technology having both the execution speed by taking

advantage of the parallel hardware architecture and the implementation flexibility through the

programming approach. In modern designs, there is a growing trend in applying FPGAs as

development and product platforms. There are three major types of FPGAs among different

vendors: SRAM based FPGA, Flash based FPGA and Anti-Fuse based FPGA[41].

SRAM FPGA

Static memory technology based Field Programmable Gate Arrays are widely used by major

vendors such as Altera and Xilinx where power is required to be sustained to retain the internal

data during the operation. Usually an external boot device is needed to provide in-system

programming through bit streams.

22

The following is the basic logic element structure from an SRAM based Altera Cyclone II device

[42]:

The basic logic element is composed of a four-input look-up table (LUT), which is a function

generator that can execute any function of four variables: a programmable register which can be

configured as different logical operations such as D flip flop or T flip flop; a carry chain for

function directing; a register chain for unit cascading; and some other components for controlling

and linking signals.

Flash based FPGA:

Flash-erase EPROM based Field Programmable Gate Arrays are reprogrammable and low-cost

hardware devices. The FLASH based FPGA is able to retain the value after power-off and will

always leave residual charges after being erased.

Figure 8 SRAM Based Logic Element Structure

23

The following is the logic cell of a Flash based Actel ProASIC FPGA device[43]:

The basic cell structure also has a look-up-table (which is a common component in most FPGA

devices) with three inputs that can implement a three-input combinatorial gate or flip-flop with

enable. This flash based Actel device is similar to basic ASIC cells in the sense of its fine

granularity.

Anti-Fuse based FPGA

Anti-Fuse based Field Programmable Gate Arrays are less used due to their limitation of one-

time programmability. However, its less flexible physical structure has relatively high security

that prevents illegal etching and design retrieving.

FPGA Verses ASIC

After establishing a proposed hybrid system with proper considerations on system level

partitioning and module level integration, it is usually required to convert all or part of the

system into an application specific design (ASIC) to lower product cost and increase system

reliability, especially in high volume applications. The ASIC design process and semiconductor

process performance characteristics vary according to different manufacturers. The efficiency of

resource consumption is normally measured as the number of standard cells. Compared with the

traditional ASIC design process which usually has a long design cycle and relatively high NRC

(Nor-Recurring Cost), recently there is a growing trend to create hardware embedded simulations

Figure 9 Flash Based Logic Cell Structure

24

to facilitate incremental design verification of ASICs by using FPGA (Field Programmable Gate

Array) devices. With its high flexibility and short time-to-market, as indicated by Selvaraj,

Sapiecha and Dhavlikar [44], this FPGA emulation has emerged as a major ASIC verification

technology.

FPGA Verses DSP and Mobile PC

Compared with a Digital Signal Processor (specialized microprocessor for signal processing) and

a Mobile PC (general purpose processing unit), parallelism is the most significant advantage in

an FPGA which enables Process-On-The-Fly (processing during data acquisition), multiple

operations within one cycle and multiple algorithms processed in a pipeline. The drawback is the

relatively slow operational clock, relatively more expensive cost and much higher design and

verification effort compared with an equivalent implementation running on a DSP or PC [31].

Powerful arithmetic operation processing capability is one well known feature of Digital Signal

Processors, such as multiply accumulate (MACs) which is ideal for mathematical algorithms.

Recent DSP’s supporting of SIMD [45] (single instruction multiple data) featuring the

instruction-level-parallelism through very long instruction words (VLIW) improves execution

time to a great extent. The general processor is renowned for its super fast clock speed and multi-

threading for potential multi-cores. The following figure shows the results of a performance

benchmark of selected vision based algorithms implemented on different high-speed embedded

platforms: Field-Programmable-Gate Array (FPGA) (Altera Stratix- II families with 133MHz

core), digital signal processor (DSP) (Texas Instruments TMS320C6414 with 1GHz system

clock) as well as mobile PC processor (Intel Mobile Core 2 Duo T7200 with 2GHz clock) [31]:

Figure 10 Performance Benchmark of Vision Based Algorithms on Different Platforms

25

FPGA Verses GPU and CPU

FPGAs have shown very high performance in many applications in image processing. However,

recent GPUs and CPUs also have the potential for high performance for similar applications. A

Graphics Processing Unit (GPU) is designed particularly for intense graphic processing which

usually has a much faster clock than a FPGA and a little slower clock than a CPU, but supports a

significant number of cores (for instance, 240 cores in Nvidia GTX280) running in parallel and

outperforms a CPU. The disadvantage of the GPU is the relatively slow memory access speed

which affects the efficiency of communication and the limited data transfer between grouped

cores fixed by its structure [46]. The following figure shows the relative performance for stereo-

vision and k-means clustering algorithm. As computational complexity increases the

performance of all GPU, FPGA and CPU based solutions decreases. However, the FPGA based

design consistently outperforms both GPU and CPU solutions with the stepwise curve [46].

 Performance of the stereo-vision Performance of the k-means clustering algorithm

 Figure 11 Stereo-vision and K-means Clustering Algorithms on Different Platforms

2.4 System on Chip (SoC)

With the rapid advance of electronic design automation and IC fabrication technology, System-

On-Chip (SOC) has become more and more popular in complex system design which integrates

data acquisition, signal conversion, application specific processing and various peripherals into a

single chip. It refers to integrating all system components into a single circuit or chip to reduce

manufacture cost and enable more compact systems.

26

Compared with traditional board level design, the System-On-Chip approach has a number of

advantages in terms of higher system integrity, higher operation speed, lower development cost,

more compact chip size and diminishing time to market. A typical SoC device can be a hybrid

module with embedded processors, on-chip memory, versatile general purpose IO ports, high

speed serial links, standard peripherals and other digital or analogue components[47]. In practice,

external memory chips and various specific peripherals are often needed for different application

requirements. The purpose of System-on-Chip development is to realize the required system

functionality through a single chip resource with minimum external peripherals.

There are two main SoC development methods: Block Based Design (BBD) method and

Platform Based Design (PBD) approach. For block based SOC design, the system is

constructed based on assembling and coordinating a number of hardware blocks under sub-

system functionalities to achieve an overall performance, while for platform based design, the

system is a device integrating a predetermined collection of resources with a more system and

model level focus [48] . Extensive research has explored methodologies and techniques on both

design methods to improve the SOC design overall efficiency. Carloni and Li [49] proposed a

latency-insensitive design (LID) to increase global performance in Block-Based Design. In the

platform based approach, the reuse of intellectual property [50] and pre-designed blocks or

virtual components (VC) [51] have been applied to boost design productivity.

A number of performance criteria have been required from modern industry system applications

according to [52]. These are the demand for high-level integration and density of the target for

the control module; the capability of supporting high-performance control algorithms with

flexibility and modifiability; and “reliability, accuracy, and safety in a harsh environment”. In

order to meet most of the above criteria, recent research studies show that the digital hardware

solution, such as the field-programmable gate array (FPGA), is an appropriate SoC development

and implementation platform compared with other solutions.

The proposed touch screen system is an image sensor based design, using a Field Programmable

Gate Array as a fast and advanced prototyping and implementation platform. In the image sensor

based field-programmable-gate-array-executed detection and tracing system on chip area, within

27

the platform based design domain, Kim, Park and Lee’s outdoor scene tracking system[53] has

been designed relying on a platform based approach with a large amount of component reuse,

such as the image encoder. Eun Tack and Kwang Sung have demonstrated an object and distance

tracking SoC system based on field programmable gate array prototyping [54]. The on-chip

system is comprised of processor core (ARM core), I2C control, SRAM control for stereo image

capturing, DMA control, LCD driver and other basic peripherals. The distance and object

trackng algorithm has been partitioned in processor based software. The development is under

the guidance of the platform based approach where a variety of IPs have been adopted from

previous designs such as LCD control IP and SRAM accessing IP. Moreover, the system has

been further organized as a new IP for future platform development purposes.

Since the proposed research aims at providing a system solution for a specific application in a

unique technology domain, it is estimated that most system functions and components are

required to be constructed and customized according to specific application requirements and are

unlikely to be reused as IPs in other designs. Therefore, block based design (BBD) is considered

the most appropriate approach to initiate the design. A block based face detection system[55] is

an appropriate example where the development process has been organized in three phases from

a pre-processing block, detection block to post-processing block design. All key components

have been constructed and verified on the module level, such as the Haar feature generator and

ANN classifier, before being integrated incrementally into the whole system. A PowerPC based

processor was used for memory control and future extension.

The System on Chip design is still a relatively new research field for system development in

terms of high level system partitioning, design methodology and specific hardware level

requirements. The design varies significantly according to different applications and knowledge

of both architecture design and module verification is critical for achieving an optimum result.

28

Chapter 3 -- Touch Screen System on Chip Design and Implementation

3.1 Introduction

The proposed touch screen system was originally specified to perform two major system

functionalities, acquiring touch information and processing touch results, with a number of sub-

modules specified by the industry partner, such as an image sensor module and illumination

support chip. A number of other sub-units were considered to be investigative, such as most of

the blocks in the processing part of the system. Therefore, the traditional block based system on

chip design method has been applied to the construction process with each module researched,

implemented and tested separately and integrated incrementally as a complete system in the end.

The system has been partitioned into three main parts defined by the functionality on the top

level:

A Data Acquisition System which is designed to configure and control acquisition sub-

modules to consistently collect and update touch screen based vision data.

A Processing Unit which is designed to calculate and analyse the object position and touch

motions based on the previous acquisition result.

A PC module which is planned to handle and update touch positioning and motion results

from the hardware block with data then passed to shared memory for future extension.

Each sub-module inside the acquisition and processing systems is dedicated to implementing one

function. In addition there is a customized Acquisition Controller organizing all sub-units in the

Data Acquisition System and a Master Controller coordinating all sub-modules in the Processing

Unit for system synchronization. More details are presented in following paragraphs.

29

3.2 Data Acquisition System

3.2.1 Data Acquisition System Overview

The Data Acquisition System is the fundamental module inside the touch screen system to

continuously acquire and transmit touch information to the next stage, the Processing Unit. The

acquisition system is comprised of three major parts: Acquisition Controller which configures

and directs the cameras and the LED based illumination subsystem through camera support

circuits; ADC Interface which controls the analogue-to-digital converter chip to digitize

analogue pixels from the cameras into digital values; and USB Interface which constructs digital

pixels into packages and drives the USB chip to transmit them correctly.

Inside the Data Acquisition System, all the control units have been constructed in the FPGA with

I/O signals interfacing with outside physical components such as camera support circuits, two

image sensors mounted on top of the touch screen, the ADC chip (Texas Instrument) and the

USB chip (FTDI) through ribbon cables. The initial block diagram (before optimization) of the

Data Acquisition System is illustrated below:

Figure 12 Data Acquisition System Block Diagram

30

3.2.2 Acquisition Controller

The Acquisition Controller is the central sub-module of the Data Acquisition System, which not

only controls the camera and illumination system but also organizes the communication with

both the ADC and USB modules. Timing control is one of the most significant parts inside the

Acquisition Controller, affecting the system coherence and correct handshaking between sub-

modules. Thus, timing control flow is decoded into a state machine with clear transitions among

different states. Counter modules are constructed for more accurate timing control inside states

in different operations. Meanwhile, pixel and frame counting are required from camera

communication. There is also a group of clock dividers in the Acquisition Controller generating

clocks at different frequencies for different operation modes. As a basic controller design, the

register unit is a necessary element for initialization purposes or restoring intermediate results.

The initial design of the Acquisition Controller is illustrated below with the sub-modules

mentioned above and other separate logic elements:

3.2.2.1 Acquisition Controller Timing Control Flow

Acquisition timing control has been organized in four phases: Idle, Configuration, Operation and

Transmission with a total number of 23 states describing the flow of the acquisition process. Two

additional states (CAM_Setup_Switch and CAM_Tx_Switch) are decoded to switch between the

two cameras. Each camera goes through the 23 states before the system switches to the other

camera.

Figure 13 Acquisition Controller Block Diagram

31

The following table lists all states encoded in the Acquisition Controller state machine:

Phase 1 (Idle): All internal and external control signals are set to their default values.

Phase 2 (Configuration): In the configuration phase, the camera clock is switched to the

configuration clock frequency (200 kHz) first, and then the camera mode, camera pixel map,

camera voltage and current level are all set up under the configuration clock.

Phase 3 (Operation): In the operation phase, the camera clock is changed from the configuration

clock to the operation clock and the camera mode is switched to operation mode. The

illumination subsystem is enabled for the camera exposure time (1ms typical), and during this

period, the controller is concurrently configuring the ADC register before the transmission phase

starts.

Phase 4 (Transmission): In the transmission phase, the camera pixels are transmitted at the

transmission clock frequency.

Camera Switching Phase: Camera one and camera two are switched in both configuration and

transmission.

Phase 1

Phase 2

Phase 3

Phase 4

Table 1 Acquisition Controller State transition Table

32

3.2.2.2 Clock Divider Modules

The system clock is 50 MHz, however, there are three different frequencies required for different

parts of the Data Acquisition System: 200 kHz, 500 kHz and 12.5 MHz. Counter based clock

divider modules are designed to derive lower frequencies from the system clock.

For example, the system clock needs to be divided by 100 in order to generate a 500 kHz clock

from the 50 MHz system clock. A counter is applied to count from 0 to 49 (50 counts) and then

reverses the output clock signal from either 0 to 1 or 1 to 0.

The following is a circuit level design of the clock divider (from 50 MHz to 500 kHz) which is

mainly made of multiplexers, an adder and a comparator (for incrementing and checking the

count value), and D flip flops used to store counts and synchronize with the reset signal:

The same principle has been applied to the 200 kHz and 12.5 MHz dividers which use 125 count

and 2 count based designs respectively.

3.2.2.3 Acquisition Engine Counter Modules

In the original design before optimization, there are six counters in the Data Acquisition System:

two process counters, two frame counters and two pixel counters. The use of counters is common

inside most digital systems and the following is the circuit level design of one process counter

(operation counter) which is 14 bits wide:

+
A[5..0]

B[5..0]

ADDER

=
A[5..0]

B[5..0]

EQUAL

D

ENA

Q

PRE

CLR

D Q

PRE

ENA

CLR

0

1

0

1

1

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

Add0

6' h01 --

Equal0

6' h31 --
FivHdrK_clock

FivHdrK_clock~0
FivHdrK_clock~1

FivHdrK_clock_count~[5..0]

6' h00 --

FivHdrK_clock_count~[11..6]

6' h00 --

clk_in

reset

FivHdrK_clk_on

sync_clock_500k

FivHdrK_clock_count[5..0]

Figure 14 Clock Divider RTL Structure

33

14 bit operation counter design:

Figure 15 Acquisition Engine Counter Module RTL Structure

In the counter structure, one adder is used to increment the count starting from 14’h0001. When

the counter is enabled, the new incremented result will be selected by the first multiplexer,

otherwise the old result which was previously stored in the D flip flops will be chosen. The

second multiplexer is used to reset the counter value to the default value of zero.

3.2.2.4 Reconfigurable Pixel Map Generator

One important task in the camera configuration process, which is also managed by the Data

Acquisition System, is selecting the active imaging area by configuring pixel maps inside both

cameras. The active imaging area is different for each camera. Thus it is required that the Data

Acquisition System is able to generate all possible combinations in the pixel map to suit each

camera's optimal imaging performance. There are ten cycles to configure the pixel map with

each cycle having ten bits for activating certain vertical rows in imaging area. The design idea of

the Pixel Map Generator is to selectively produce any duty cycle waveforms inside each cycle.

From the hardware point of view, the design idea has been translated into a core having two

comparators: one for indicating the start the duty cycle with the other indicating the end as well

as a counter for adjusting duty cycle accuracy inside the cycle. The initial design is to configure

the cameras by a default setting (bit5 and bit6 high with the other bits all low in the 10 bits)

which represents only the central two rows are activated out of whole ten rows. So in the

hardware structure, a 20% duty cycle is supposed to be generated with adjustable position. The

following structure is designed for default pixel map configuration:

+
A[13..0]

B[13..0]

ADDER

D Q

PRE

ENA

CLR

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

cnt[13..0]

cnt~[13..0]
cnt~[27..14]

14' h0000 --

clk

reset

qout[13..0]

Add0

14' h0001 --

cnt_en

34

Pixel Map Generator Structure for default setting:

Figure 16 Pixel Map Generator RTL Structure

For the default setting, the counter has 20 counts and the first comparator (left) is compared with

19 (H’13) while the second comparator (right) is compared with 16 (H’10). This produces a duty

cycle of 20 % (4 out of 20). The start value of the counter is set to 8 to position the pulse in the

middle of the period. Both the start position and duty cycle can be adjusted by modifying the

initial counter value and the two compare values.

3.2.2.5 Shift Register Module

In the Data Acquisition System design, a shift register is used to load voltage and current

configuration settings at the beginning and these are shifted to the camera bit by bit during the

configuration. The following is the D Flip Flop based configuration shift register circuit:

+
A[4..0]

B[4..0]

ADDER

<
A[4..0]

B[4..0]

LESS_THAN

<
A[4..0]

B[4..0]

LESS_THAN

D Q

PRE

ENA

CLR

0

1
D

ENA

Q

PRE

CLR

D

ENA

Q

PRE

CLR

SEL

DATAA

DATAB
OUT0

MUX21

1

Add0

5' h01 --

LessThan0

5' h13 --

LessThan1

5' h10 --

Pixel_Map_Setup_count[4]Pixel_Map_Setup_count[3]

FourHdrK_clock

Pixel_Map_Waveform_clock_on

Pixel_Map_Waveform_clock

Pixel_Map_Waveform_intern_clock~0

Pixel_Map_Setup_count~[4..0]

5' h00 --

Pixel_Map_Setup_count[2..0]

Generator_reset

D Q

PRE

ENA

CLR

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

data_reg[7..0]

data_reg~[7..0]

1' h0 --

data_reg~[15..8]

clk

shift_en

shift_out

data_in[7..0]

data_ld

Figure 17 Acquisition Engine Shift Register RTL Structure

35

3.2.4 Analog to Digital Convertor

The analog pixels output from the camera module are required to be converted into digital values

for further processing. An analog-to-digital converter is used to convert the analog values to

digital numbers. In our touch screen system, the analog pixels represented by voltage levels are

to be converted into a digital format so they can be displayed as binary numbers.

3.2.4.1 ADC Chip Selection and Circuit Configuration

There are three considerations in selecting an appropriate ADC chip. The first one is speed. The

camera module is able to transmit analog pixels at a rate up to 1 MHz, so the ideal sampling rate

of the ADC chip is greater than this frequency. The second consideration is resolution. The

previous microcontroller based acquisition system operated at 10-bit resolution, but a higher

resolution is expected in the new system to provide more touch information. The final

consideration is synchronization. The ADC conversion process must be able to synchronize with

an external clock (from the system clock, outside the ADC module) to achieve complete data

acquisition system synchronization.

The ADS 7229 [56] from Texas Instrument has been selected as the ADC chip. This is a low-

power, SAR (Successive-approximation) based analog-to-digital converter. It is able to operate

at a 1MHz sampling rate which meets speed requirement, it is 12-bit which provides more

resolution and the conversion can be programmed to run based on an external clock to achieve

synchronization with the system controller. The internal conversion clock logic is illustrated

below, with options for using either an internal oscillator or external synchronised clock:

 Figure 18 ADC Chip Conversion Clock Block Diagram

36

Configuration circuit design for ADC 7229:

Two pairs of decoupling capacitors are added separately for the analog power supply and the

digital power supply to shunt the noise and reduce the effect of the power supplies on each other.

An extra low noise, low drift precision voltage reference (REF5025 [57]) is applied to the ADC

chip to provide a highly accurate conversion reference. Excellent temperature drift

(3ppm/degree) and high accuracy (0.05%) are two main reasons that make this chip ideal for use

in high-precision data acquisition system design. The complete ADC circuit (with reference) is

able to convert analog pixels which range from 0 to 2.5 volts to two byte binary results (12 bits

of value plus 4 bits of extra information). The conversion in the ADC system is synchronized by

the Acquisition Controller through SCLK, with CONVST and FS signals sent from the

Acquisition Controller to indicate start conversion and start transmission of digitized results. The

SDI input is used by the controller to configure the ADC registers and the SDO output is used to

reading digitized data. EOC is the feedback signal to indicate the end of conversion to the

controller.

G N D

S C L K

1 5

S D O

1 3

S D I

1 2

F S / C S

1 1

E O C

1 0

C O N V S T

9

+ V B D

1 6

B D G N D

1 4

I N +

3

I N -

4

A
G

N
D

5

R
E

F
-

6

R
E

F
+

7

+
V

A

1

U 1

A D S 7 2 2 9

D N C

1

V i n

2

T E M P

3

G N D

4

T R I M

5

V o u t

6

D N C

8

U 2

R E F 5 0 2 5

5 V 3 . 3 V

G N D

G N D

3 . 3 V

V A D C

2 2 u F

C 1

1 0 0 n F

C 2

4 . 7 u F

C 3

1 0 0 p F

C 5

4 . 7 u F

C 4

S C L K

E O C

C O N V S T

F S

S D I

S D O

Figure 19 ADC Chip Configuration Circuit

37

3.2.4.2 ADC Interface Overview

In the Data Acquisition system, the ADC Interface sub-module plays an important role in

controlling the ADC chip during the digitization. It responds to the Acquisition Controller for

initiating and completing the configuration or conversion processes. In the initial design before

optimization, the ADC Interface consists of three parts: Control Logic for directing process flow

for configuration and conversion, ADC Counter system for handling accurate SPI transfer

timing, and ADC Register system for shifting configuration settings and shifting out digitized

results.

The ADC Interface block diagram is illustrated below:

3.2.4.3 ADC Control Flow

ADC control flow has been organized in two phases: configuration phase and conversion phase.

Phase 1 (Configuration): Configuration phase is the process of ADC register configuration

(which selects power mode, operation mode and others). It operates at the same time as the

Phase 1 Phase 2

Figure 20 ADC Interface Block Diagram

Table 2 ADC Interface State Transition Table

38

Acquisition Controller exposure which means the Configuration phase does not cost extra system

time.

Phase 2 (Conversion): Conversion phase starts when the analog pixel is available from the

camera and is signaled by a start command from the Acquisition Controller. It takes 36 system

clocks until the conversion process is complete. Then the shift register will be enabled to shift

the 16 bit digitized value from the SDO pin of the ADC chip. The data valid signal will be

generated at the end of shift to indicate completion.

3.2.4.4 ADC Counter Modules

There are two counters in the ADC Interface: one is for configuration timing counts and the other

is for conversion timing control. The counter structure is the same as the operation counter inside

the Acquisition Controller design, apart from differences in the count numbers.

Figure 21 ADC Counter Module RTL Structure

3.2.4.5 ADC Register Modules

Two registers are used in the ADC Interface: one is a configuration register that loads default

settings at the beginning and shifts the settings out in serial; the other is a result register which

reads the digitised value bit by bit in serial and stores the result temporarilly. A Synchronous

Parallel Load, Serial In, and Serial Out shift register is customized for ADC requirements.

Figure 22 ADC Register RTL Structure

39

3.2.5 Universal Serial Bus 2.0

Universal Serial Bus (USB) is a common communication method for interfacing external devices

with a host controller. In the Data Acquisition System design, a USB2.0 chip FT 245R[58] from

FTDI is selected to consistently transmit camera frames to the real time monitor on the PC side

for testing purposes. The block diagram of the FT 245R is illustrated below:

The FT 245R handles the entire USB protocol on the chip with integrated EEPROM storing

device descriptions and I/O configuration. The USB Protocol Engine is the key unit inside the FT

245R chip which manages the data stream from the device USB control endpoint and also

handles the low level USB protocol requests generated by the USB host controller and the

commands for controlling the functional parameters. The Serial Interface Engine (SIE) block is

the core data conversion engine which performs the parallel to serial and serial to parallel

conversion of the USB data. The USB DPLL cell locks on to the incoming NRZI USB data and

generates recovered clock and data signals for the Serial Interface Engine (SIE) block. One

important feature of this USB structure is the internal buffers on both the transmission and

receiving sides to handle the speed differences between hardware acquisition and the host

processor.

Figure 23 USB Chip Block Diagram

40

 3.2.5.1 USB Configuration Circuits Design

The circuit configuration for the FT 245R chip is simple because the chip integrates the external

EEPROM, clock circuit and USB resistors onto the device already. The USB circuit is

configured as self powered with decoupling capacitors added for noise reduction.

3.2.5.2 USB Transmission Engine Overview

There are two design requirements for the USB Transmission Engine: One is constructing the

digitized pixel (12-bit value) into a package which has a header structure indicating the

beginning and end of the camera frame to facilitate the synchronization with the software

monitor for display purposes. The other is the control of the USB chip to achieve consistent

transmission. A simple logic structure is designed to meet both specifications.

Figure 24 USB Chip Configuration Circuit

41

The Transmission Engine block diagram is illustrated below:

3.2.5.3 USB Interface Package Constructor

There are 528 pixels (including dummy pixels) in one camera frame with each pixel comprised

of 12 bits. The constructor packs 12 bits into 2 bytes (16 bits) with 4 spare bits providing sync

information for the software monitor.

The least significant 12 bits of the 2 bytes (6 bits from each byte) are used to store the 12 bit

pixel value. The most significant bits of Byte 1 and Byte 2 are used to represent the beginning

and end of frame: 01 means beginning (first pixel), 10 means end (pixel 528), and 00 is used for

all pixels in between. The other bit in both Byte 1 and Byte 2 is used to indicate Byte sequence: 0

means Byte 1 and 1 means Byte 2.

3.2.5.4 USB Interface Control Flow

The USB Interface Control Flow is relatively straightforward compared with the Acquisition

Controller and the ADC Interface. When pixel data is available from the ADC Interface, a valid

flag will be set and the USB Interface will be activated. It will take two cycles to construct the

package and then check the buffer is not full before pulling the write signal high to the USB chip

to start transmission.

Figure 25 Transmission Engine Block Diagram

Figure 26 USB Package Constructor Structure

42

3.2.6 System FIFO

The FIFO (First In First Out) is a common queue processing technique widely applied to hybrid

system design which has both hardware accelerate logic and a processor. It is used to buffer and

balance the difference in traffic speed between the hardware domain and the host processor

domain. In this touch screen system, a hardware synchronous FIFO is integrated between the

hardware Data Acquisition System and the PC monitor for real time operating purposes. The

hardware FIFO structure is usually made of three parts: Control Logic, Pointer Logic (Read and

Write Pointers) and Storage. The synchronous FIFO [59] integrated in the Data Acquisition

System is illustrated below on the top level:

aclr

clock

rreq

sclr

wreq

empty

full

usedw_out[12..0]

0

inclock

outclock

outclocken

wren

data[15..0]

rdaddress[12..0]

wraddress[12..0]

q[15..0]

aclr

clock

cnt_en

sclr

q[12..0]

0

aclr

clock

cnt_en

sclr

q[12..0]

0

a_fefifo_3bf:f ifo_state

cntr_tkb:rd_ptr_count

_~0

_~1

_~2

_~7

_~8

_~9

_~10

_~11

_~12

_~13

valid_rreq

valid_w req

clock

empty

full

rreq

sclr

w req

data[15..0]

usedw [12..0]

_~5

q[15..0]

dpram_r011:FIFOram

_~6

_~4

_~3

cntr_tkb:w r_ptrCtrl

Logic

Rd

Pointer

Wr

Pointer

Storage

Dual-Port

SRAM

Figure 27 System FIFO RTL Structure

43

Control Logic:

Control logic has four inputs: clock, synchronous clear, read request and write request. The

availability of the FIFO buffer is evaluated inside the control logic with a FIFO Full flag or FIFO

Empty flag generated as outputs. The unused width of the FIFO is also tracked by the control

logic.

Pointer System:

The counter based pointer system has a read pointer and a write pointer, where one pointer is

incrementing and the other is decrementing, depending on whether a read or write process is

being performed.

Storage:

In FIFO storage, SRAM, flip-flops or latches are frequently used. In this FIFO design, a dual-

port SRAM is created where one port is used for writing and the other is used for reading at the

writing or reading addresses generated from the pointer system.

44

3.2.7 PCB Finalization

The following is the finalized PCB layout for the Data Acquisition Board:

ADC

Chip

Voltage

Ref

Cams

Connection

USB Kit

Plug On

Ribbon Cable Connection To

FPGA Controller Chip

Figure 28 Data Acquisition Board PCB Layout

45

The following is the physical view for the Data Acquisition Board:

 Figure 29 Data Acquisition Board Physical View

 Figure 30 Data Acquisition Board Connected to Dev Board

46

3.3 Memory Management Unit (MMU)

3.3.1 Memory Elements Overview

In any large digital system design, the memory unit is always one of the most important parts

during the system operation. The basic concept of memory is the organization of stored

information. Bits are stored in locations specified by an address which is a unique code telling a

digital system how to find data that has been previously stored. The simplest memory device, a

D-type latch, can store one bit. A 0 or 1 is stored in the latch and remains there until changed.

There are a number of types of storage catalogued in terms of volatility, mutability and

accessibility.

One of the most common memory types is random access memory (RAM) which can be written

to and read from in random order. M4K based Block RAM is the main memory used to store

camera pixels in this touch screen system. In read only memory (ROM) data is only able to be

read. In the touch screen system design, ROM is used to store look up tables for triangulation.

These will be introduced later.

There are two other types of memories considered in the first phase of system design, in case the

on-chip memory is insufficient for dealing with extra camera data for potential extended

processing. One is SRAM (Static Random Access Memory) which is bistable latching circuitry

based storage and can operate up to 167 MHz in the current Cyclone II based design

platform[60]. The other one is DRAM (Dynamic Random Access Memory) which is cell (one

capacitor and transistor) based storage.

As mentioned, M4k Block based on-chip RAM is selected as the main touch screen system

memory to store a total number of 1056 pixels (528*2). An M4K Memory Block is able to

operate up to 250 MHz with true dual-port operation and supports four modes of operation:

single clock, shared clock, separate clock, and asynchronous. In single clock mode, the read and

write operations are synchronous with the same clock while in shared clock mode, the read and

write operations are synchronous with the same clock but also a separate clock for the output

port.

http://en.wikipedia.org/wiki/Multivibrator
http://en.wikipedia.org/wiki/Latch_(electronics)

47

In separate clock mode, there are two independent clocks (read clock and write clock) for the

read/write operations respectively. In asynchronous mode, no clock is required. Both the write

operation and the read operation are dependent only on the enable signal.

The basic Read/Write Operation structure is illustrated below:

3.3.2 Memory Management Unit Control Structure

After reviewing all the storage elements considered in the initial design planning, a memory

management unit control structure is presented below which responds to the master controller to

store a reference camera frame, update the latest camera frame and derive the trigger level. The

core M4K storage operates in asynchronous mode with separate clock control for memory

reading and writing, coordinating with a multiplexer and demultiplexer to switch between the

different camera data and propagating through trigger logic to generate a trigger level for next

step Edge Detection Unit.

Figure 31 Dual-Port Ram Read/Write Operation Structure

48

Below is the block diagram of the Memory Management Unit without Updating Logic:

Since a small number of frames are required to be stored (one frame for nor-constrained MMU,

three frames for MMU with constrained logic), on-chip M4K RAM blocks are capable of storing

the camera pixels for this touch screen system. This RAM also has a high execution speed, using

three processing cycles for a write operation and two processing cycles for a memory read

operation. The abstract circuit level of the MMU structure is illustrated below:

Figure 32 Memory Management Unit Block Diagram

Figure 33 Memory Management Unit Abstracted Circuit Structure

49

The Memory Management Unit (MMU) is involved in the operation of the Initialization mode

and the Operation mode, which are organized by the Master Controller. The access to each

camera’s memory block is switched by Mem Demux and the output of the memory block is

swapped by Mem Mux, both conrolled by the Cam-Sel signal from the Master Controller.

In the initializing process, both cameras’ memories are configured by digitized data from the

Data Acquisition System after stabilization. All writing related control signals (camera one and

two writing clock enable, writing clocks and writing addresses) are enabled, while all reading

related control signals are deactivated. The initialization camera frame is the full camera level

with the ambient light level subtracted to remove environmental effects.

In operation mode, the Memory Management Unit starts functioning first and finishes last. In

detail, when system operation begins, the previous camera pixels and previous trigger values are

required to be read from memory for edge detection purpose. It takes three cycles to retrieve

these from memory with all the reading related control signals (camera one and two reading

clock enable, reading clocks and reading addresses) enabled and all writing related control

signals disabled. At the same time, trigger values are generated through Trigger Logic based on

the full level pixel values from the memory block.

The design of the Trigger Logic is also a highlight of the MMU. The trigger is specified to be

either 75% or 62.5% depending on experimental experience. Creating a floating point unit

processor to calculate the percentage would consume a large number of arithmetic logic

elements, so a resource-efficient adder-register based solution is used with equivalent results. To

generate 75% logic, which is equivalent to ¾, the execution adds itself three times (multiply by

3) with the result shifted 2 bits to the right (divide by 4). To generate 62.5% logic, which is

equivalent to 5/8, the execution adds itself five times (multiply by 5) with the result shifted 3 bits

to the right (divide by 8).

50

3.3.3 Constrained Memory Management Unit Structure

During the operation of the real time touch screen system, the trigger level should be updated in

a relatively smooth way without significant increases or decreases. Therefore, a customized

constrain logic is required to set reasonable limits on the top and bottom range of trigger

variations. The design specifications for this constrain logic are that it is one self-contained unit

that does not affect other components and then it is as compact and low latency as possible.

The abstract circuit level of the constrained MMU is shown below:

The Top Constrain and Bottom Constrain components are set to make sure the current trigger

level is within a certain range. If the current trigger level is beyond the top limit, an overflow flag

will be generated and an underflow flag is indicated by the comparator if the new trigger level is

below the bottom limit. The Trigger Update Register adjusts the new trigger level based on the

overflow and underflow flags. If either flag is high, which means it is out of normal operation

range, the trigger level will be reset to the reference default trigger value. If the current trigger

value is within the safe range, the trigger level will be updated by averaging previous and current

trigger values.

Figure 34 Constrained Memory Management Unit Abstracted Circuit Structure

51

3.4 Edge Localization Unit (ELU)

Once a touch event happens, the touch object blocks part of the reflection seen from one image

sensor while it blocks a different part of the reflection seen from the other sensor:

The purpose of edge localization is to capture the pixel ID for both the rising and falling edges of

the touch object, to localize the object on each camera before further triangulated in the next

processing unit.

3.4.1 Edge Localization Unit Overview

Gradient-based edge detection is one of the most well known methods in the field of image

processing. It s a discrete differentiation based technique with the position of the local maximum

of the first derivative considered as the edge point as defined in Yasri and Hamid’s paper [61].

Mathematically, for a 2D image function f(x, y), the gradient magnitude g(x, y) and the gradient

direction Ө (x, y) are computed as:

The edge gradient is calculated from the difference of the pixels in the horizontal and vertical

directions. G(x, y) (magnitude) is the sum of the magnitudes of the differences, while the

gradient’s direction is the arctangent of the ratio of the differences.

Reflection block

position on cam1

Reflection block

position on cam2

Figure 35 Reflection

Block on Left and

Right Image

Waveforms

52

The basic concept of gradient based edge detection is originally designed for two dimensional

image processing. In order to modify the basic detection idea to this touch screen system using a

single line scan camera, simplification and transformation have been applied to create a one

dimensional gradient based hardware edge detection structure.

In a one dimensional image, gradient based detection can be simplified to searching for the

maximum of the derivative of y in the x direction, which can be further reduced to finding largest

vertical difference since all pixels are equally distributed on the horizontal axis.

The design specification requires localizing and storing the touch edge pixel IDs into registers on

both the rising and falling edges, by locating the largest vertical magnitude changes.

Gradient Based Edge Detection Logic block diagram is illustrated below:

The Gradient Edge Detection Logic is made up of a Detection Unit and a Localization Unit:

3.4.2 Edge Detection Unit

The Edge Detection Unit is used to generate the flag when a touch occurs. The derivative is

calculated by subtracting two registers.

Figure 36 Gradient Based Edge Detection Block Diagram

53

3.4.3 Edge Localization Unit

The Localization Unit is used to capture the pixel ID at both the maximum rising derivative and

the maximum falling derivative.

The abstracted circuit level is depicted below:

Figure 37 Gradient Based Detection and Localization Units Abstracted Circuit Structure

54

Process Description:

There are two major units for locating the edge positions on both the rising and falling event: the

Detection Unit and the Localization Unit. Inside the Detection Unit, a comparator is used to

indicate the touch event by issuing a flag calculated on a preset trigger value and the current

camera value. Once the current camera value is below the trigger value, a flag will be generated.

Two registers are involved in the DU module: Cur Reg is applied to record the current camera

value while the other Pre Reg is used to store the previous camera reading. Both register results

will be fetched into the Derivative Unit when triggered by the Master Controller to calculate the

current derivative value.

When the current derivative is available at the Detection Unit, it will be directed into either the

rising branch or the falling branch, determined by the Falling_Rising flag. In the LU

(Localization Unit), both the maximum rising edge and the maximum falling edge derivatives are

stored in the Rising Edge Reg and the Falling Edge Reg respectively. After that, either the rising

or falling comparator may be activated to indicate the current derivative value is the largest

rising or falling value so far in this frame. If either comparator is activated, the largest derivative

value will be maintained with its pixel ID captured simultaneously in the Edge Localization

Register. In the end, both the falling edge pixel ID and the rising edge pixel ID will be output to

the subsequent processing unit for further processing.

The edge detection and localization unit has a conventional basis, customized for the line scan

based optical touch screen. The architecture is resource oriented with a small amount of parallel

operation. A total of 10 cycles are consumed in the worst case to process a complete edge

detection and obtain localization function results.

55

3.5 Position Localization Unit (PLU)

The Position Localization Unit is a unique and fundamental part of the touch screen system,

which processes the final touch coordinates based on the edge positions from the previous Edge

Detection Unit. The Position Localization Unit is customized for the physical layout of the touch

screen which has image sensors (two in a basic system) on the top corners with the reflective

retro glued on the screen frame. Once an object is detected, the middle of the object is calculated

by the Edge Detection Unit, and then the tangent values of the camera view angles are read from

the LUT. Finally the Position Localization Unit processes and finalizes the whole operation

using the results from all the previous modules.

3.5.1 Position Localization Mechanism

Since the Position Localization Unit is constructed in hardware, its mechanism should be

efficient and simple. However, a high level of accuracy is required to meet the minimum design

specification. The object localization mechanism is illustrated below:

Figure 38 Position Localization Mechanism Illustration

56

When a touch occurs, the object can be seen by the two cameras along the lines represented by

two linear equations in x and y:

 where is the number of active pixels between the start and end pixels of the camera,

 assumes the 90 degree view is equally distributed among the active pixels,

 is the middle pixel of the touch position seen from camera one,

 is the middle pixel of the touch position seen from camera two,

 allows calibration for the actual camera placement,

 is the screen width.

After the touch object is seen by both cameras, the coordinates of the touch point are found by

solving these two simultaneous linear equations. In hardware, the object localization can be

performed by searching for the x value that makes these two linear equations have the same

value for y. In a real implementation, the required accuracy is a maximum difference of 1mm

between the two calculated y values.

3.5.2 Position Localization Unit Structure Transformation

In order to design the hardware structure, the localization mechanism has to be converted into a

hardware style description. The transformation process from the original mechanism to the

proposed hardware structure is presented in following stages:

Stage one:

The localization mechanism can be simplified as finding an x value that makes y1 equal to y2 in

the following equations:

1*)1*)*2/tan((xoffsetPixEdgeNumpiy active 

)2(*)2*)*2/tan((xCoffsetPixEdgeNumpiy active 

activeNum

1PixEdge

2PixEdge

)*2/(activeNumpi

offset

C

1*)1*)*2/tan((1 xoffsetPixEdgeNumpiy active 

)2(*)2*)*2/tan((2 xCoffsetPixEdgeNumpiy active 

57

Stage two:

The calculation of the tangent value is computationally expensive and is not suitable to be

implemented directly into a hardware structure. As explained in a previous section, a look up

table will be used to perform the tangent calculation. For the position localization structure, both

tangent terms can be replaced by coefficients k1 and k2 from the LUT:

Stage three:

The searching for the x value solution is realized by constructing a counter incrementing from

zero to the screen width to find the x value that makes the two equations produce the same value

for y.

After stage three, the basic localization idea is translated into an efficient hardware core with one

multiplier, one adder and one comparator:

58

Stage four:

With a normal up counter, using a 24 inch (532mm width) touch screen as an example, in the

worst case, the localization unit will take 532 system cycles to locate the x and y coordinates.

From the system point of view, 532 cycles does not satisfy the timing specification for the

Position Localization Unit. Thus, customized logic is required to accelerate the x searching

process. In this chapter, a hardware binary search engine based Position Localization Unit

solution is developed for the touch screen application. The main idea is illustrated below:

Instead of searching from the beginning of the screen to the end, the search always starts from

the middle of the search region. Then, the next search value will be evaluated using arithmetic

logic to calculate the optimal next search direction. If the search goal is greater than the current

search value, the next search will start from middle of the upper region based on the current

value, otherwise it will start from middle of the lower region. Still using the 24 inch screen as an

example, the binary search based structure will require only 10 cycles in the worst case (because

 which satisfies the system timing requirements.

Figure 39 Binary Search Based Object Localization Mechanism

59

3.5.4 Position Localization Unit Structure Overview

The Object Localization Unit was implemented after the transformation from the localization

concept to the hardware description. The three major modules are the Binary Search Engine,

Triangulation operator and Results Register. They have been coordinated to calculate the touch

position in an efficient way by taking advantage of the hardware structure.

At the beginning of the search process, the Search Number Generator produces the first search

candidate which is the middle value of the default screen width (x axis). The candidate is fed into

the Triangulation module which calculates the corresponding y values from the left and right

cameras’ perspectives. The difference between the two y values is evaluated inside the

Triangulation module. If the difference is within the required accuracy, a touch found flag is

raised to finish the search routine, otherwise a direction flag guides the next search number

generation (the middle of the lower range or the middle of the higher range) by propagating

through the dedicated logic controlled by the localization controller. The Results register is used

to store the final touch location result. This continues until the touch found flag is raised. The

Position Localization Unit (PLU) is designed in a self-contained manner with its own

independent module controller (Localization Controller) coordinated with the system Master

Controller.

Figure 40 Position Localization Unit Block Diagram

60

3.5.3 Binary Search Engine

The binary search or half-interval search is a conventional and efficient position localization

process that divides the search space in half on each iteration. The hardware Binary Search

Engine is designed based on the binary search algorithm to optimize the touch position searching

process in order to meet the system timing requirements. It has five sub components contributing

to the binary search process: a search number generator, upper and lower branch logic, a

multiplexer and the binary search controller. The abstracted circuit level is illustrated below:

When the Binary Search Engine is activated by the Master Controller, the Search Engine

Controller will configure the search value and the search step value inside the Search Number

Generator to the default starting values, which are determined by the application screen size. The

search value is the search attempt to locate the correct x value. If the current search value does

not make the two camera linear functions match, a new optimal search value is derived from the

current value through either the Upper Branch Logic or Lower Branch Logic guided by the

Search Controller. In the hardware design, the Upper Branch Logic is basically an adder that

adds the search step value to the current search value, while the Lower Branch Logic is a

subtractor that subtracts the search step value from the current search value, to rapidly approach

required solution. The search step value is originally set to ¼ of the screen width and is then

right shifted on each search cycle (so its magnitude is half the value of previous step) to generate

Figure 41 Binary Search Engine Abstracted Circuit Structure

61

a more and more accurate search attempt. The Multiplexer is directed by the operator evaluation

result to select either the upper search value or the lower search value for next cycle, until the

search goal is achieved.

3.5.4 Triangulation Operator

The Triangulation Operator is the arithmetic unit constructed inside the hardware localization

core and consists of a number of arithmetic operators (introduced in the aforementioned

transformation stage three with one multiplier, one adder and one comparator) to complete the

localization process. Extra arithmetic resources are used here to compare the two y values and

generate a Region-Toward-Flag for the Binary Search Engine. A small difference is allowed in

the linear function results matching, and implementing this also consumes extra resources.

3.5.5 Position Localization Unit Registers

The Position Localization Unit Register is used to capture the current x value when the current

search routine is accomplished. The Search-Finish-Flag and Search-Towards-Flag (which causes

the multiplexer to select either the upper or lower branch value) are both temporarily stored in

the OLU Register which will be read by the Search Engine Controller during the step of the

search operation.

62

3.6 System Look Up Table

In system design, a Look Up Table (LUT) is usually built to perform some critical task such as

providing a mathematical function or conversion. Some simple arithmetic operations such as

addition, subtraction or even multiplication can be constructed straightforwardly at a relatively

low computational cost and latency without implementing a look up table. More complicated

arithmetic operations such as division, square root, sine/cosine, and tangent/arc tangent are both

resource-consuming and cycle-consuming and not economical to be implemented directly under

the constrained hardware resources and required latency of this application.

For this touch screen system, both touch edges on the two cameras are required to be converted

to tangent values ranging from 0 to π/2 for the next stage position localization processing. This

conversion is not only computationally complex but also on the system critical path with

maximum processing cycle limitation. Therefore, a Look Up Table (LUT) is considered to be an

appropriate solution, using a trade-off between logic cells and memory blocks.

Read only memory (ROM) is selected as the memory component for storing a look up table,

since the contents of the LUT are read by the Position Localization Unit (PLU) only after

memory initialization. The block diagram of the look up table is illustrated below:

Figure 42 Look Up Table Block Diagram

63

The abstract circuit level of LUT is illustrated below:

The design purpose of the look up table (LUT) in the touch screen system is to translate the

camera one and camera two pixel positions (IDs) into tangent values of the real angles

corresponding to the pixel ids. The content of the LUT is pre-calculated using Matlab, and

configured into a memory initialization file (MIF) in hex format. The Look up table is enabled

by activating the ROM Rd Clk signal from the Master Controller, with the specific table element

access determined by either the cam1 or cam2 address. The outputs of the LUT are the

corresponding tangent values of the input camera pixel ids. In addition, one multiplier in the

LUT multiplies one tangent value by C for the following Position Localization Unit (PLU)

structure.

The image sensor used in the touch screen system generally has a 90 degree range of view, and

ideally the 90 degrees would be equally distributed between the start pixel id and the end pixel

id. In the actual implementation, the range between the start pixel and the end pixel is typically

450-500 pixels out of the total 528 pixels per sensor. The Matlab look up table calculation is

based on the ideal case since the proposed system is concept-proofing. A more accurate look up

table could be generated from calibrated measurements.

Figure 43 Look up Table Abstracted Circuit Structure

64

X axis is the pixel id (position), Y axis is the tangent value corresponding to the pixel id:

 Cam 1 LUT

 Cam 2 LUT

We have assumed that the typical value of 450 pixels constitutes the valid range (range between

the start pixel and the end pixel) in this implementation. In addition, both the start pixel and the

end pixel are not used since the tangent value is either zero or infinite at these points. All tangent

values are stored as integers to avoid floating point processing. The stored value is the actual

tangent value multiplied by 1024, and when processing is complete the correct value is obtained

by right shifting the answer by 10 bits, effectively dividing by 1024.

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3
x 10

5

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3
x 10

5

Figure 44 Look up Table Correspondence Value

65

3.7 Normaliser Unit

The Normaliser Unit is one significant module inside the Processing Unit (PU) which is on a

separate data path and pipelined with the edge and position processing. It is the unit normalizing

the camera waveform into a range between zero and one. There are three reasons in the initial

design phase to construct this unit as a system addition. First is noise cancellation: since the

normalized waveform is obtained from the division of the current camera frame and averaged

reference frame, the noise effects in the current frame will be reduced after the normalization.

Second, the normalized result is within the range between zero and one; a simple threshold based

comparing method could implement the edge detection efficiently which allows for potential

future optimization. Last but not least, it is a necessary supplement to track and record touch

history in order to indicate touch motion (touch-up or touch-down) by weighting the ratio of the

normalized waveform, since the Edge Detection Unit (EDU) on the other data path is only able

to detect a touch event without further in-depth monitoring during the event.

The block diagram of the Normaliser is illustrated below. The Normaliser is comprised of the

Normaliser Operator, Level Detection Unit, Norm Register, Norm Comparator and Gesture

Register.

3.7.1 Normaliser Operator

The Normaliser Operator is used to calculate the ratio of the normalised waveform (the current

camera pixel is divided by the reference camera pixel at the same position, and then subtracted

from one).

Figure 45 Normaliser Block Diagram

66

3.7.2 Level Detection Logic

The Level Detection Logic is made of a group of comparators with parallel comparing value

ranging from 10 to 90 (percentage) to find the match from the previous Normaliser operator.

3.7.3 Normaliser Register

Normaliser Register records ratio result for each pixel comparing at norm wr-enable clock.

3.7.4 Norm Comparator

Norm Comparator consistently compares each pixel ratio result through the whole frame and

records the largest one which is the deepest touch on the screen.

3.7.5 Gesture Register

At the end of the frame, Gesture Register will shift the latest largest ratio result into the gesture

buffer which keeps track of the latest five frames' touch history.

The abstracted circuit level of the Normaliser is illustrated below:

Figure 46 Normaliser Abstracted Circuit Structure

67

After a new camera pixel is available from the ADC module and the reference camera pixel is

read from memory, the Normaliser Unit is activated with the Normaliser Operator calculating the

ratio of the current pixel to the reference pixel, and the Level Detection Logic generating a 9-bit

binary number indicating the percentage of the detected touch level. Then the Norm Register is

enabled by the Master Controller to record the normalized result (percentage presented by the

binary number) which is immediately fed into the Norm Comparator to weight and save the

largest ratio value (which means deepest touch level in normaliser). After the whole frame has

been analyzed, the deepest touch level binary result will be stored in the Gesture Register as the

touch level status of the current frame and the oldest touch level result will be shifted out of the

Gesture Register.

The Gesture Register is designed to record the most recent five touch level ratio results. The

touch motion (touch-up and touch-down) can be easily evaluated by reviewing and comparing

the history results with great potential to be extended to other new features. The Normaliser Unit

consumes a total number of 5 processing cycles for the pipeline level detection logic. In the

future, the structure can be optimized by a hardware resource design trade-off with processing

time.

3.8 System Master Controller

The Master Controller is state machine based control logic which directs the system process flow

and organizes all the operations of sub-modules including all the processing units’ functioning

and also the interfaces with the data acquisition system. The states flow in a sequential order

with concurrent control signals generated to activate and deactivate other function units to

perform the required operations. In the worst case, the Master Controller design consumes 22

system cycles to process each sample (pixel) so a total of 0.5 ms is consumed to finalize the

touch position for the whole frame.

3.8.1 System Master Controller Control Flow

There are five major phases in the system control flow with 76 detail states: starting from the

Idle phase, then the Trigger Configuration phase, Trigger Retrieving phase, to the Edge

Processing phase and Position Processing phase. The control flow is illustrated below:

68

Simplified system control flow:

 Table 3 Master

Controller State

Transition Table

69

Idle Phase:

There are two idle states in the idle phase, Idle_1 and Idle_2. An asynchronous pulse is generated

from Idle_1 to Idle_2 to set certain units (Normaliser and EDU) to a particular status with all

other control signals set to their default values.

Trigger Configuration Phase:

After the Idle Phase, the Master Controller will activate the MMU (Memory Management Unit)

to store reference camera frames after being indicated as stabilization by the Acquisition

Controller. It takes four states (from Cam1_Trigger_Storage_1 to Cam1_Trigger_Storage_4) to

complete the BRAM reading process with propagation delay occurring in Address Generator and

Counter module.

Trigger Retrieve Phase:

After the reference camera frames have been stored in memory in the Trigger Configuration

Phase, the trigger level will be derived repeatedly from the reference camera frames through the

customized trigger logic block before edge localization starts. At the end of the Trigger Retrieve

Phase, all necessary preparations for edge and position processing is complete.

Edge Processing Phase:

Edge processing flow is a critical part of the whole system’s operation. It guides both the ELU

(Edge Localization Unit) and Normaliser Unit to indicate a touch event, calculate edge and sub-

edge locations, and track touch motions (touch-down and touch-up). Once both camera frames

are completely analyzed, system flow will be directed to the Position Processing Phase.

Otherwise, it will flow back to the Trigger Retrieve Phase to start next sample edge detection.

Position Processing Phase:

Position processing is the final stage to calculate the x and y coordinates using the pre-calculated

Look Up Table in ROM and enabling the pipelined position processing controller in the PLU

(Position Processing Unit). When the final touch position is localized, the transmission engine

will be activated and the system will flow back to the Trigger Retrieve Phase to initiate the next

cycle detection and localization processing.

70

Chapter 4 -- Touch Screen System on Chip Testing Methods and Results

4.1 Overview

The testing of the hardware touch screen system has been executed in two parts with different

testing focuses: the first part is the testing of the Data Acquisition System where different

modules inside the acquisition system have been tested separately concentrating on acquisition

speed, noise level and the proposed concurrent acquisition mechanism. The second part is the

real time functionality proofing of the Processing Unit which is supported by a number of sub-

module tests.

4.2 Data Acquisition System Testing Methods and Results

4.2.1 Timing Control Engine Testing Method and Results

Customized timing control logic has been designed in the Data Acquisition System which

replaces the general purpose microcontroller to control both the image sensors and the

illumination system to consistently obtain camera frames. The following testing photo shows the

timing control logic using a 500 kHz data clock which takes about 1ms to complete the

acquisition of one line-scan frame (528 pixels) from an image sensor.

500us

Period

1ms per

frame

1ms per

frame

Figure 47 Acquisition Timing

Control Testing Result

71

The following testing photos show the hardware timing control engine acquiring ambient frames,

normal camera frames, camera frames when a touch occurs at one position and camera frames

when a touch occurs at another position:

The testing results show the customized hardware timing control engine is able to perform the

same acquisition function as the general microcontroller based system. The response to the touch

position (which blocks the reflection on camera frames) is represented clearly on the two camera

frames.

The image sensor is designed to operate at about 1 MHz data clocking rate. The following testing

photo shows the hardware timing control logic is capable of supporting faster acquisition speeds

(1.8 MHz for example) which is a significant acceleration compared with the existing micro

based acquisition (300 kHz).

Figure 48 Hardware Timing Control Engine --- Ambient Frames

Figure 49 Hardware Timing Control Engine --- Normal Frames (No Touch)

Figure 50 Hardware Timing Control Engine --- Touch at One Position

Figure 51 Hardware Timing Control Engine --- Touch at another Position

72

Hardware Timing Control Engine running at 1.8MHz data clock rate:

The above camera scope is operating at a 1.8 MHz data clock rate which takes approximately

296 us total to transmit one complete frame (528 pixels).

4.2.2 ADC Testing Method and Results

The ADC module is tested separately before being integrated with the verified Timing Control

Logic. A number of constant voltage inputs have been fed into the ADC module to test its

conversion functionality and consistency. The following figure shows the digitized result based

on 1.21 volts input from an adjustable power supply:

Figure 53 ADC Testing Results --- Constant Voltage Input

100us

Period

296us per frame

frame Figure 52 Figure 36 Acquisition Timing Control Testing Result 900K

73

Then the verified ADC module was integrated with the timing controller. At this stage, the main

structure of the hardware data acquisition system has been established with full capability to

acquire touch information and digitize it into a digital format. The following testing photos show

the conversion from analog pixel to digital values based on a range of testing situations:

 Analog Camera Scope: Digitised Camera Scope:

The testing results show the hardware acquisition system (ADC module included) correctly

digitizing ambient frames, normal frames and frames including a touch.

4.2.3 USB Testing Method and Results

During the the Data Acquisition System design and testing, a USB module is implemented in the

system to consistently transmit digitized camera frames to the PC side monitor. By doing this,

any real time touch events occurring on the hardware acquisition engine controlled touch screen

are able to be displayed immediately, providing intuitive testing capability.

Figure 54 Data Acquisition System Digitization Result

74

The USB module has been tested separately with an up counter continuously generating testing

inputs to the USB module. The same incrementing numbers should be received on the PC side if

the USB transmission is consistent and coherent. The corresponding testing results have

demonstrated the correct functionality.

After that, the USB module was integrated into the Data Acquisition System demonstrating real

time operation results. The following photo is the real time monitor displaying the hardware

acquisition system operation results, on a custom interface written in C++:

The two camera frames are displayed on the real time interface through the acquisition and

transmission of a complete hardware structure based solution.

4.2.4 Noise Analysis and Results

Low system noise level is one important design specification for the Data Acquisition System.

The existing microcontroller based acquisition system has overall 1.5% noise variation which is

mainly caused by two sources: the image sensors and the internal ADC (the ADC silicon design

itself and interference from the nearby internal USB transmission). The proposed hardware Data

Acquisition System has adopted a high performance external ADC chip with extra low drift and

Figure 55 PC Monitor Interface

75

a low noise reference voltage chip. Also, the USB module and the ADC module are separated so

they cause minimum interference to each other. The system noise level has been analyzed in

Matlab, running on the new hardware acquisition engine with various image sensor settings.

The top figure is the image sensor operating at default voltage with a typical noise level of 0.1%

(5 out of 4096) and a worst case of 0.2 %. The middle figure is the image sensor running at a

voltage gain of 3 with a typical noise level of 0.3% (13 out of 4096) and a worst case of 0.5%.

The bottom figure shows the normal camera frames. The testing results demonstrate the new

customized hardware acquisition engine has a significant improvement in reducing system noise.

4.2.5 Concurrent Acquisition Mechanism Testing Method and Results

The Concurrent Acquisition Mechanism is a more efficient acquisition control method applied in

the proposed hardware acquisition engine with concurrent access to both shutter and operation

control. The testing results of the new acquisition mechanism are presented below:

0.1~0.2%

0.3~0.5%

Figure 56 Data Acquisition System Noise Analysis Result

76

The concurrent acquisition mechanism has an acquisition speed approximately twice as fast as

the sequential acquisition mechanism. The new acquisition method is organized to ensure the

consistency of transmission switching between the two cameras. Moreover, it has the

convenience and potential to be applied to systems containing more than 2 cameras (say 4-24

cameras) to maximize the advantage in acceleration with main structure reuse.

4.3 Processing Unit Testing Methods and Results

The testing priority of the Processing Unit (PU) is to validate and demonstrate correct

functionality without too much consideration of accuracy and efficiency. The Processing Unit is

comprised of sub-modules to perform frame management, edge detection, position localization

and touch motion tracking. All the sub-modules have been verified and tested separately.

Figure 57 Concurrent Acquisition Mechanism Testing Result

77

MMU Address Generator

Frame Generator

4.3.1 Memory Management Unit Testing Method and Results

The Memory Management Unit is the storage organizer which directs digitized frame writing

into the M4K memory block during the trigger configuration phase and reading from the

memory block during the trigger retrieve phase. It is necessary to ensure the correct procedure

and results in accessing memory. A separate testing circuit has been designed to write particular

camera values at particular addresses with a LED display based on the MMU outputs to confirm

the values by reading from the same memory addresses. The following structure is specifically

built for MMU testing with an adjustable address and camera generator feeding testing inputs

and a visible LED displaying reading results:

A group of testing numbers has been applied to the MMU testing module, and the results

displayed on the LED demonstrated the MMU is able to record reference input correctly, which

is a fundamental verification step before running in real time.

1
0
2
4
 W

o
rd

(s
)

R
A

M

Block Ty pe: AUTO

data[15..0]

w raddress[9..0]

w ren

rdaddress[9..0]

w rclock

w rclocken

rdclock

rdclocken

q[15..0]

lpm_ram_dp0

inst

1
0
2

4
 W

o
rd

(s
)

R
A

M

Block Ty pe: AUTO

data[15..0]

w raddress[9..0]

w ren

rdaddress[9..0]

w rclock

w rclocken

rdclock

rdclocken

q[15..0]

lpm_ram_dp1

inst11

cam1_wr_en

cam1_wr_clk

cam1_wr_clk_en

cam1_rd_clk

cam1_rd_clk_en

cam1_wr_addr[9..0]

cam1_rd_addr[9..0]

cam2_wr_addr[9..0]

cam2_wr_en

cam2_rd_addr[9..0]

cam2_wr_clk

cam2_wr_clk_en

cam2_rd_clk

cam2_rd_clk_en

clk_in

reset

indicator

Cam_Gen_En

Cam_pixel[15..0]

cam_generator

inst6

up counter
aset 0clock

clk_en

a
s
e
t

q[9..0]

lpm_counter0

inst5

Address[9..0]

Mood_Sel

Cam_Sel

cam1_wr_addr[9..0]

cam1_rd_addr[9..0]

cam2_wr_addr[9..0]

cam2_rd_addr[9..0]

addr_demux

inst10

cam_select

cam1_wr_addr[9..0]

cam1_rd_addr[9..0]

cam2_wr_addr[9..0]

cam2_rd_addr[9..0]

a
s
e

t

Mood_Sel

LED Display

Figure 58 Memory Management Unit Testing Structure

78

LUT

4.3.2 System LUT Testing Method and Results

The test method for the System Look up Table is similar to the MMU module testing. Since both

camera look up tables are pre-calculated and configured in ROM, we know the table value at

each particular address. The LED display is also used in this part to confirm the table accessing.

The LUT testing circuit is illustrated below:

A number of LUT addresses have been read from ROM and displayed correctly on the LED.

4.3.3 Edge Localization Unit Testing Method and Results

There are two types of testing for the Edge Localization Unit (ELU). One is a purpose built edge

simulator generating different falling-rising edge based camera frames for proving the proposed

logic is able to perform the edge detection algorithm and give correct results. The edge

localization simulation structure is illustrated below with pre-defined rising and falling edges in

the camera frame generator:

2
0

 b
it
s

5
1

2
 w

o
rd

s

Block ty pe: AUTO

address[8..0]

clock

q[19..0]

Test_ROM

inst

2
0

 b
it
s

5
1

2
 w

o
rd

s

Block ty pe: AUTO

address[8..0]

clock

q[19..0]

Test_ROM_2

inst1

LED Display at Certain Address

LED Display at Certain Address

Figure 59 System Look up Table Testing Structure

79

Edge Detection and Localization Units Frame Generator

(Defined Edges)

Typical edge localization testing results has verified the required functionality.

After the functionality of the ELU has been proved in simulation, it is integrated into the system

to detect and localize real touch edges on the actual screen to validate the real time performance.

This testing has been designed with the touch object blocking and moving from the beginning of

the frame to the end of frame, as seen from one camera, and then moving back from the end to

beginning. By doing this, both rising and falling edges of the detected object should be localized

by the ELU as increasing (from frame beginning to end) and then decreasing (from frame end to

beginning). The following are images are from video clips showing the whole real time testing

process and results.

When an object (finger) moves from a low value edge position to a high value edge position, the

ELU processes the edge changes as increasing:

PIN_D4

TouchOUTPUT

Trigger_Pixel[15..0]

clk

clr

Pixel_addr[9..0]

Cam_Pixel[15..0]

DU_En

Cur_Reg_Load

Pre_Reg_Load

Touch

Falling_Rising

Derivative[15..0]

Pixel_ID[9..0]

Edge_Detection_Unit

inst10

clk

reset

Derivative_Reg_Wr

Falling_Rising

Derivative[15..0]

Pixel_ID[9..0]

Derivative_Comp_En

Output_Results

Rising_Edge_ID[9..0]

Falling_Edge_ID[9..0]

Edge_Rp

Edge_Localization_Unit

inst12

clock

reset

Touch ELU_Dwr

ELU_Dcomp

ELU_Outputs

clk_in

reset

indicator

Cam_Gen_En

Cam_pixel[15..0]

cam_generator

inst11

Falling Edges

Rising Edges

Cam ID

Least Significant Bit

Most Significant Bit

Increasing

Figure 60 Edge Detection and Localization Units Testing Structure

 Start from low value position 2 3

80

Figure 61 Edge Localization Unit Real Time Testing Result (Edge Up)

 4 5

 6 7

 8 9

81

When an object (finger) reaches the far end (high value edge position) then the testing continues

by moving the object back to the start point again, and the ELU processes the edge changes as

decreasing as shown below:

Least Significant Bit

Most Significant Bit

Decreasing

10

11

12

13

14

15

82

The real time testing results have been presented in a real time testing video (on the CD) which

validated the integrated performance of the Edge localization Unit.

4.3.4 Normaliser Testing Method and Results

The Normaliser Unit is used to detect the touch level and then further track the touch motion

(touch-up and touch-down). The LED is used to present the touch level ranging from no touch (1

led) to contacting the screen (9 leds).

Normaliser based motion detection is shown below (Touch-down tracking for this example):

Figure 62 Figure 50 Edge Localization Unit Real Time Testing Result (Edge Down)

16

17

 1 2

83

4.3.5 Position Localization Unit Testing Method and Results

The testing process of the Position Localization Unit (PLU) is performed in two stages as for the

ELU testing: a Module Simulation Stage and Real Timing operation testing:

PLU Module Simulation:

An extra testing block has been designed for PLU simulation with the PLU function module and

a testing controller which provides the PLU inputs (cam1 tangent, cam2 tangent and screen

width) and control signals for the PLU module. The PLU processing results are displayed on the

LED. The testing block structure is illustrated below:

Figure 63 Normaliser Testing Result (Touch Down)

 3 4

 5 6

84

Position Localization Units Testing Controller

After verification using the simulation, the Position Localization Unit was integrated into the

final system, which should now consistently process x and y coordinates in real time. The final

system testing is presented in section 4.4.

4.4 Complete Real-Time System Testing Results

A number of simple actions have been tested on the complete hardware structure based touch

screen system, such as drawing a straight line, drawing a rectangle and cycles to validate and

visualize the real time performance of the proposed hardware system:

Screen_Width[28..0]

Cam2_Angle_Tan[18..0]

Cam1_Angle_Tan[18..0]

clock

reset

pixel_gen_en

Test_Flag

Y[28..0]

X[9..0]

locate_flag

TestCnt[8..0]

Triangulation_Block

inst

clock

reset

pixel_gen_en

Lef t_Angle_Tan[18..0]

Right_Angle_Tan[18..0]

screen_width[28..0]

locate_f lag

test

LED[9..0]

clk_in

reset

Test_Gen_En

Locate_Flag

Sc_width[28..0]

L_Angel_Tan[18..0]

R_Angel_tan[18..0]

Test[9..0]

cnt_gen_en

test_generator

inst1

X coordinates

Y coordinates

Figure 64 Position Localization Unit Testing Structure

85

This column is drawing a straight line: This column is drawing a rectangle:

 1

 2

 3

 1

 2

 3

86

 Drawing a straight line: Drawing a rectangle:

 Figure 65 Real Time Touch Screen System Testing Results (Drawing Straight Line, rectangle)

The real-time complete system testing has also been presented in a video (on the CD attached).

 4

 5

 6

 4

 5

 6

87

Chapter 5 Hardware Touch Screen System Optimization

5.1 System Optimization Overview

The original touch screen system has been developed based on a block based System-On-Chip

design methodology because of the initial uncertainty of the system component level

architecture. The disadvantage of block based design is the lack of consideration of system level

structuring, and inefficiency on the sub-module level in terms of communication and resource

sharing. After establishing a functionally-correct touch screen system, a significant number of

optimization techniques have been applied to the proposed system on the architectural level,

behavioral level (algorithm level), functional level (register transfer level) and physical structural

level (gates and switch) from an overall system perspective.

A unique topology has been designed before implementing system optimization, which targets

chip area consumption by reusing logic resources to a significant extent, and also maintains (or

even improves) the overall system throughput performance while using minimum resources. In

detail, a re-organization on the architectural level has been performed to accelerate the system

operation speed with negligible resource addition; key algorithms have been investigated and

evaluated on the behavioral level to select the solution using least resources; function sharing and

other reduction techniques have been applied on the register transfer level to increase the

resource utilization efficiency and an application specific chip floor planning process has been

executed to improve timing and propagation capability on the physical gates level.

More details are presented in the following paragraphs regarding overall system optimization

results.

88

5.2 Top-Level Architecture Optimization

The top level hardware system structure is mainly comprised of a data acquisition part and a

processing part. In the original design, the data acquisition and processing units operate

sequentially with two frames (1024 pixels) acquired, digitized and stored completely into

memory with a time cost of 1ms at a 1 MHz acquisition clock rate. Then, the processing unit has

to retrieve pixel information from memory again and detects, functions and analyses pixel by

pixel with a total time cost of 0.5 ms (22 processing cycles per pixel, 1024 pixels at 50 MHz

processing clock).

The original system flow is illustrated below with a latency of 1.5 ms:

It is apparent that, instead of storing complete frames while halting the processing unit, both

units can be arranged in a pipeline with no extra function cost and the addition of minimum

multiplexing logic. The processing unit starts operation as soon as receiving the first pixel from

the data acquisition engine, and completes the single pixel processing before the next pixel is

available, since the data acquisition cycle is longer than the processing cycle. After the

reorganization, the system critical path has been successfully reduced to the data acquisition

cycle, with a significant latency improvement of 33%.

Figure 66 Original Top Level System Flow

Figure 67 Optimized Top Level System Flow

89

5.3 Behavioral and Functional Level Optimization

5.3.1 Algorithm Evaluation (Alteration)

The highest level of abstraction of a digital design is known as the behavioral level which refers

to the algorithm describing the behavior of a function using abstract constructs. The optimization

and alteration on the algorithm level will significantly contribute to the efficiency of overall

resource consumption. During the development of this touch screen system, edge detection has

been one of the fundamental elements for object tracking, motion analysis and other

requirements. Two different algorithms have been designed, constructed, implemented and tested

to identify the most suitable solution under the system requirements. A number of tradeoffs and

compromises have been made inside each algorithm in terms of speed and area to achieve a

further optimization improvement.

5.3.1.1 Gradient Based Edge Detection Algorithm

Gradient based edge detection is the traditional image processing method which we have

investigated and implemented in chapter 3.

5.3.1.2 Dynamic Linear Approximation Sub-Pixel Detection Algorithm

The proposed touch screen system is built based on line scan cameras with a one dimensional

image, therefore the simplified 2D image processing oriented Gradient Edge Detection is not

likely to be the most efficient solution. The simplified Gradient Edge Detection aforementioned

is only able to provide one-pixel resolution which is not capable of meeting higher system

requirements in a real world environment. An application specific hardware edge detection unit

is required from both a resource consumption and a system requirement point of view.

90

The linear approximation sub-pixel detection method was originally proposed in Hussmann and

Ho’s [40] system, as an approach using two linear functions to locate the edge sub-pixel position.

The value of the sub-pixel is determined by the intercept point of two equations, and principle is

illustrated below:

From Hussmann and Ho’s [40] description, taking the rising edge as an example, the first linear

function is derived from the maximum positive gradient which is described as:

X is the pixel position at the maximum positive gradient where IX is the corresponding intensity

value. The other linear function is an arbitrary horizontal function with intensity value Ia:

By combining equations (1) and (2), sub-pixel intersection position P can be calculated as:

Inside this algorithm, the arbitrary horizontal intensity Ia is preset through a look up table, which

has the disadvantage of not adapting to real time ambient light intensity variations. Also, the first

linear function is based on the gradient edge detection method we investigated and implemented

previously, and which is not a very efficient solution in terms of hardware resources. Therefore,

a more efficient edge detection method is required to minimize system resources.

Figure 68 Linear approximation

sub-pixel detection of

Hussmann and Ho’s system

91

The Dynamic Linear Approximation Sub-Pixel Detection Algorithm is presented in this section.

This is derived from Hussmann and Ho’s [40] work, with two significant modifications

customized for the proposed touch screen system. The look up table based static light intensity Ia

has been replaced by a dynamic updated trigger level which is calculated from the real time

operation environment. Also, the resource-consuming whole frame based gradient sub-pixel

detection is simplified to level triggered adjacent region based sub-pixel detection. This method

is explained and illustrated below, based on a real camera scope of the touch screen system:

The blue line is the full camera scope with a touch occurring near pixel 220. The red line is the

trigger level which is 75% of the averaged consistent full camera scope. C1 is the camera pixel

value just before the intercept point (where the blue and red lines intersect) while C2 is the pixel

value just after the intercept. T1 is the trigger value just before the intercept point and T2 is the

trigger value just after the trigger point.

In this method, the value of the sub-pixel at the intercept point is calculated from two modified

linear equations. One is the linear function based on pixels C1 and C2 on the blue line:

 f)(1 X = C2 + (C1 – C2)(Pid – x) (1)

Pid is the id number of the pixel after the intercept point, x is sub-pixel value.

The second linear function is based on pixels T1 and T2 on the red (trigger) line:

 f)(2 X = T2 + (T1 – T2)(Pid – x) (2)

By combining equations (1) and (2), the sub-pixel position Pn can be calculated:

Figure 69 Dynamic Linear Approximation Sub-Pixel Detection Based on Real Camera Scope

92

 Pn = Pid
MtrigMcam

TC




 22

Mcam = C2 - C1 is the magnitude change of the two adjacent pixels in the camera image, while

Mtrig = T2 -T1 is the magnitude difference of adjacent trigger pixel values. A new hardware

detection unit is designed based on this optimized method which is illustrated below:

The Trigger Level Based Edge Detection Unit is made up of the Level Detection Unit which has

a comparator and register combination to detect and record a touch, the Interpolation Unit which

calculates the sub-pixel positions and Results Storage which stores the edge pixel and sub-pixel

positions for both cameras. The abstracted circuit level is illustrated below:

Figure 70 Trigger Level Based Edge Localization Block Diagram

Figure 71 Trigger Level Based Edge Localization Abstracted Circuit Structure

93

When both the camera pixels and the trigger level values are available from the previous

memory module, the previous camera pixel and trigger value will be fetched into the pre-register

pair (Pre-Trigger-Reg and Pre-Cam-Reg) , and then the new camera and trigger values will be

stored in the current register pair (Cur-Trigger-Reg and Cur-Cam-Reg) one cycle later. After

register fetching is complete, the master controller will analyze the touch status based on the

Cur-Touch-Flag from the Touch Comparator and Pre-Touch-Flag from Touch-Record-Reg

(which has been initialized as no touch).

 If both flags are high (active low), there is no touch in the current pixel, the current no touch

status will be recorded in Touch-Record-Reg and the Edge Detection Unit will stay inactive until

the next camera pixel is available. If one of Cur-Touch-Flag or Pre-Touch-Flag is low (Falling

edge detected when Pre-Touch-Flag is low and Cur-Touch-Flag is high; Rising edge detected

when Pre-Touch-Flag is high and Cur-Touch-Flag is low), a touch event is detected and the

interpolator will be activated by the master controller. Four outputs (current camera and trigger

values, and previous camera and trigger values) from the Level Detection Unit will be processed

by the interpolation unit to produce more precise sub-pixel edge results. All pixel edges and sub-

pixel edges are demultiplexed explicitly into rising edge, rising sub-pixel edge, falling edge, and

falling sub-pixel edge and stored independently in the camera-one and camera-two registers. The

last possibility, both Cur Touch Flag and Pre Touch Flag are low (active low), means the current

pixel is neither falling edge nor rising edge but within the touch region. The current status will be

updated in Touch-Record-Reg, with both the Interpolator and Results Storage Unit deactivated

since the current pixel is not on the edge.

This Trigger Level Based Edge Detection takes a maximum of seven clock cycles for processing

and storing pixel and sub-pixel results when a touch occurs, and a maximum of four clock cycles

when updating the touch status when no touch is detected.

94

The following is the pipelined data flow of the optimized Edge Detection and Localization Unit

with the Normaliser Unit:

 Stage One Stage Two Stage Three

 Figure 72 Pipelined Data Flow of Edge Detection and Localization Unit with Nomaliser

There are three major stages in the illustrated pipeline data path (edge detection, localization

function and normalize function) with concurrent operations executed in each stage. For the edge

detection and localization units, both the trigger registers and camera registers are updated at

stage one as well as the touch event indication (comparison between trigger level and current

camera pixel value). Once the four register values are loaded and the required flags are generated

to the Master Controller, a set of concurrent arithmetic operations are performed to obtain the

more accurate interpolated sub-edge results. For the normaliser unit, a group of sequential and

concurrent operators have been developed to indicate touch depth ranging between 0 and 100

percent. In last stage, the edge register is used to store the processed sub-edge value with the

corresponding edge value on both the rising and falling detection; and the normaliser record

register is used to organize the five latest touch depth histories for further touch motion analysis.

95

Two 1024 words M4K block Two 512 words M4K block

5.3.2 Memory Resource Reduction

Memory storage is an important constituent in the touch screen system where the reference

camera frames have been stored with extra logic for deriving the trigger level. Memory resource

reduction will have a significant impact on chip resource efficiency, since all storage is in the on-

chip M4K memory block in the proposed system design.

In the original memory unit planning, a capacity of two frames (one frame per camera) was

required for basic processing purposes. Each frame consisted of a full range of 528 pixels

including active pixels and dummy pixels. Two 1024 word M4K blocks (16 bits per word) were

consumed to hold two full range frames with a total cost of 32768 memory bits. During the

optimization, from the system point of view, it was found to be unnecessary to store the full

range of pixels since only 512 active pixels are used in processing. Thus, the Data Acquisition

System has been modified to acquire active pixels only. By doing this, two 1024 word blocks

have been optimized to two 512 word blocks with no effect on system processing. The reduction

of memory storage is illustrated below:

Figure 73 Memory Resource Optimization Illustration

96

5.3.3 Pipeline Rolling and Resource Sharing

Pipeline rolling and resource sharing are two popular techniques usually applied to digital system

optimization. Pipeline rolling is defined as the opposite operation of unrolling a loop to create

concurrent structures [62] . After reviewing the touch screen system design, some modules with

a pipeline structure were able to be re-constructed as repeated loops also meeting the timing

constraint. By doing this, replicating computational structures are reduced and the overall system

performance is not affected.

Resource sharing is another common method in system resource reduction, in which a single

functional block is accessed by several system operations [63, 64]. Resource sharing adds

additional logic levels to multiplex the inputs to implement more than one function. Therefore it

is a more complicated optimization technique which has high requirements on system control

directing and switching. Resource sharing has been applied to a great content in the touch screen

system optimization, with a significant modification and re-construction on both system level

and sub-module level. More details are explained in the following paragraphs.

5.3.3.1 Data Acquisition Control Engine Resource Sharing

The Data Acquisition Control Engine is the key unit of the whole data acquisition system, which

generates control signals to image sensors, the illumination sub-system and the ADC interface. It

consumes a large amount of the hardware resources used by the data acquisition system, which

in total uses 445 logic elements. The optimization of the acquisition controller is extremely

difficult because the whole engine is in the system critical path and it is unlikely to trade speed

into space. At the same time, the acquisition engine deals with low level signals with handshakes

between external physical components in an accurately timed sequence which increases the

complexity of applying any optimization techniques without interfering with its behaviour.

97

The following is the original acquisition controller block diagram:

Reviewing the design of the original acquisition engine, it consists of three major parts: clock

generators, the timing control state controller and the counter group. Advanced and different

optimization techniques are customized for each part separately. For the clock generator region,

instead of isolating it as local logic only utilized by the acquisition engine, a more efficient

partitioning has been made to relocate the clock generators out of the acquisition engine into the

system level so they can be shared by all other modules that need different clock inputs. For the

timing control state controller, the original state transitions need to stay the same since they

control fixed communication sequences with other components, but minor modifications have

been made in the state controller counter for the initialization and operation modes. The obvious

advantage of sub-module resource sharing is represented in the counter group optimization,

where several counters used to specifically perform certain functions have been reduced to one

counter which is shared by different requirements in different time slices directed by control

logic. The new block diagram of the data acquisition control engine is illustrated below:

Figure 74 Data Acquisition Engine Block Diagram without Optimization

Figure 75 Optimized Data Acquisition Engine Block Diagram

98

The following is the abstracted circuit level of the acquisition controller:

All the clock generators at different frequencies are relocated to the Digital Clock Management

(DCM) region, apart from the Pixel Map Generator which is unique to the Acquisition Engine

and used to configure the pixel map for image sensors during initialization. Cam Switch Core is

applied to direct control flow inside the state controller, for either camera, in both the

initialization and operation modes, where the outputs of the controller will be re-multiplexed into

either cam one or cam two depending on the control states. Cam Setting Shift Register is the

component shifting reconfigurable voltage and current settings into the image sensor at the

request of the state controller. Cam Control State Machine remains unchanged with three major

stages: initialization cycle, exposure cycle and operation cycle which are made of a total of 25

states starting from the Cam Init Setup state back to the Idle state in a maximum of 2ms.

Only two counters are required in the engine after optimization: Cam Main Counter which is

shared by both the initialization and operation cycles for timing control and frame counts

(reduced from Init Counter, Operation Counter, Cam1 and Cam2 Frame Counter in the old

design); Sub Pixel Counter (optimised from Cam1 and Cam2 Sub Pixel Counters) which is

activated inside the frame counter to accumulate a number of subpixels for both cameras, and

that cannot be combined with Main Counter because of a time collision.

Figure 76 Optimized Acquisition Engine Abstracted Circuit Structure

99

The same low level advanced sub-component resource sharing idea has been applied to the ADC

Interface inside the Data Acquisition System to further reduce logic consumption.

Using the same principle, Sync Clock Generator has been moved to the DCM region which

generates different clocks at a number of frequencies shared by all system modules. Synchronize

Clock Counter is discarded after the removal of Sync Clock Generator. Configuration Counter

and Conversion Counter are activated in different modes which from a timing sequence point of

view are one after the other. A combined counter has been introduced which is reused by both

configuration and conversion operations.

The sub components resource sharing interface structure is illustrated below:

All major sub components retain the same functionalities where Control Logic has the same

timing sequence, CFR shift register configures with the same response and Result Register stores

the same conversion results. One concern in this sub-component resource sharing structure is the

clearing of combined counters between different operations to avoid interference.

Figure 77 Optimized ADC Interface Block Diagram

Figure 78 Optimized ADC Interface Abstracted Circuit Structure

100

5.3.3.2 ELU and PLU Resource Sharing (Arithmetic Resource Sharing)

The Edge Localization Unit (ELU) and Position Localization Unit (PLU) are two fundamental

units for edge detection, localization and position triangulation which are also computationally

expensive in terms of arithmetic operations. A total of 1211 Logic Elements are consumed by

these two units which comprise more than 50% of overall system resources (990 LE in EDU and

221 LE in PLU). Therefore, it is critical and compulsory to review and optimize both units to

improve the system efficiency.

Since both units have arithmetic operators made of adder, subtracter, comparator, multiplier,

divider and abs (absolute value), it is considered that one common arithmetic unit is more

optimal than separate arithmetic processing from a system point of view. Thus, a new general

purpose ALU is constructed which covers both ELU and PLU’s arithmetic operations:

Figure 79 Arithmetic Resource Sharing Common ALU

101

The common ALU has been constructed with separate data paths for interpolation and

triangulation which are selected by multiplexers. It is directed by the master controller for

switching to the correct mode with the interpolated sub-edge or triangulated position fed back to

the Edge Localization Unit or Position Localization Unit.

After the relocation of separate arithmetic operations into one common ALU, further focus has

been placed on high-rank arithmetic operators such as divide, square root, and multiply which

are both cycle-consuming and computationally expensive. In the ALU resource review, it was

found that more than half the hardware resources are utilized by the Divide Operator (650 LE)

inside the interpolation path which is not frequently used and not in the critical path.

Following is an overview of other arithmetic operator resource consumption:

5.3.4 Iterative Approach and Time-Division-Multiplexing (TDM)

From 5.3.3.2, an alternative approach is further required to replace the Divider while performing

the same functionality. An iterative optimization method is inspired from Hussmann and Ho’s

system[40], which transformed a signed divider into an Up/Down Counter and Minimum

Detector based iterative structure at the expense of latency. The result from the interpolator

ranges from 0 to 1000 which represents an accuracy of one thousandth of the interpolation. In

[40]’s iterative structure, in the worst case it will take exactly the maximum counter counts to

complete the iterative process (in our case by applying the same structure, the worst case would

be 1000 system cycles to obtain the interpolated result). The maximum latency allowed by the

system for interpolation is 50 cycles which means the iterative approach mentioned above

requires further modification and improvement to achieve timing closure with low resource cost.

Figure 80 Comparator Resource Consumption and Adder Resource Consumption

Figure 81 Multiplier Resource Consumption and Absolute value operator Consumption

11 LE 6 LE

29 LE 22 LE

102

An original Iterative Approach with a Timing-Division-Multiplexing structure is presented here

to perform interpolation with a maximum 12 processing cycles that completely meets the timing

closure, and a minimal additional cost of one ALU flag unit and one iterative multiplexer, by

reusing the binary search engine inside the Position Location Unit. The use of the binary search

engine has been explained and illustrated in detail in a previous chapter and it is mainly used by

the Position Location Unit to process the touch position. In this proposed optimized structure, the

binary search counter is also accessed by the Interpolation Unit during a different timing division

to accelerate the iterative process. Both the interpolation path and the triangulation path inside

the ALU have access to the binary search engine at different time divisions, leading to the

elimination of the Divide operator.

The Common ALU has been optimized to a new divider-free structure:

The optimised Common ALU has three major parts: the ALU operator part which is made up of

the Interpolation Data Path and Triangulation Data Path; the Mode Select part which is signalled

 Figure 83 Divider Free Arithmetic Logic Unit

 Figure 82 Resource Sharing of Binary Search Engine

103

by the master controller to switch between interpolation and triangulation and the ALU Flag part

which is a necessary unit to signal outside the binary search engine for iterative implementation.

The abstracted circuit level of the optimized common ALU is illustrated below:

Both the Interpolation and Triangulation Data Paths are comprised of computationally simple

operators. The Interpolation Data Path has four inputs (previous pixel, previous trigger, current

pixel and current trigger) propagating through the data path in three cycles, and has Interpolation

Iterative Goal (used as the numerator of a divide) and Interpolation Iterative Attempts (used as

the denominator of a divide) as outputs. The Triangulation Data Path has three inputs (screen

width, cam2 angle tan and cam1 angle tan) propagating through the data path in two cycles, and

has Triangulation Iterative Goal (which is the screen width) and Interpolation Iterative Attempts

(addition of multipliers of both angle tan with search value) as outputs. The Iterative Goals and

Iterative Attempts are directed by the Mode Multiplexer into the binary search engine to

calculate the result with the accuracy determined by the offset. After each cycle, the Flag Unit

will generate Iterative Done when a sufficiently accurate answer is found or Iterative Towards

Flag to guide the binary search engine to move towards required answer. Worst case latency is

12 cycles for interpolation arithmetic processing (3 cycles for propagation and 9 cycles

maximum for iteration) and 11 cycles for triangulation (2 cycles for propagation and 9 cycles

maximum for iteration).

Figure 84 Common ALU Abstracted Circuit Structure

104

5.3.5 Retiming and Register Balancing

Retiming and register balancing are common techniques applied to register level optimization

which are based on the principle of balancing out negative and positive slacks throughout the

design structure. The worst-case delay will be minimized between any two register stages based

on this method by relocating flip flops around logic.

The concept of retiming and register balancing is illustrated below from [65] and [66]:

Some research such as [67] has proposed improving the general retiming procedure by applying

a novel polynomial time algorithm with forward retiming to minimize the clock period. In our

touch screen system optimization, since timing is not the high priority, instead of manually

manipulating numerous registers at a very low level with the new algorithm, an optimization

option provided by the design vendor in the synthesis tool is adopted, with a robust ability for

redistributing logic.

Figure 85 Retiming and Register Balancing Illustration

105

Retiming and register balancing option is offered in the Quartus EDA tool [68]:

The optimization results of retiming and register balancing will be presented in a later section.

5.3.6 Multiplexer Resource Reduction

Multiplexers are fundamental digital components used in building structures for a number of

applications such as a processor, function switch and many others. It is estimated that more than

25% of an FPGA design area is constituted of multiplexers, from Altera Benchmark

analysis[69]. In this proposed touch screen system, a larger amount of multiplexer based

resources are utilized by the Processing Unit (PU) which is heavy in both arithmetic processing

and function switching. Therefore, the optimization of multiplexer based hardware resources is

expected to have a significant impact on overall system efficiency.

A multiplexer restructuring algorithm has been researched by a group of engineers [70] to reduce

LUT based multiplexer resource consumption by an average of 18%. The optimization across

busses of multiplexers is the core part of this new method which allows area reduction to be

made in every part of the bus at the cost of additional control logic.

Figure 86 Retiming and Register Balancing Option

106

There are two basic elements of this new algorithm: One is compression, the other is balancing.

Compression:

The compression process in Metzgen and Nancekievill’s [70] algorithm converts groups of 2:1

multiplexers into the more area efficient 4:1 multiplexer: the following is the illustration from

[70]:

Balancing:

Balancing is a restructuring process used because some structures cannot be clustered after

compression. A minimal amount of restructuring has been performed by balancing to achieve

better performance. The concept of balancing is illustrated below from [70]:

This algorithm has been integrated in synthesis tools as an optimization option [68]:

The optimized results will be presented in the Results chapter.

Figure 88 Multiplexer Restructuring Algorithm Balancing

Figure 87 Multiplexer Restructuring Algorithm Compression

107

5.3.7 State Machine Optimization

There are three possible encoding styles that can be used in constructing a state machine:

Sequential, Gray and One-shot. A sequential state machine is normally used in designs when

area is the highest priority instead of timing; The Gray encoding style should be glitchless, where

only one flip flop changes during a transition; A One-shot state machine provides the best

performance and shortest clock-to-output delay, but consumes more resources than sequential

encoding.

In the proposed touch screen system design, since most control signals to or from the state

machines have significant timing requirements, all three state machines (in the Acquisition

Controller, Position Localization Controller and Master Controller) have been chosen to be one-

shot encoding during the optimization. Nonetheless, Liu, Sun and Zhao [71] have considered the

potential unreliability of using one-shot encoding, which needs further investigation in the future.

Two optimization techniques are implemented manually on the design level since a few areas are

not considered and covered by the automatic synthesis tool appropriately: one is removal of

unreachable states and the other is separation of control path and data path.

Removal of unreachable states:

The purpose of this technique is to increase the reliability of the circuit design with extra “safe

mode” logic added to cover all states, even if they are unreachable through normal operation.

108

 Separation of control path and data path inside the state machine:

The data path refers to the channel carrying data from the the inputs of system to the outputs,

while control path refers to state transitions in the state machine which generate control signals

that further configure the data path for various operations. The original design of the state

machines in the touch screen system had control and data paths mixed, which caused a

discrepancy between their timing requirements, because the control path has slower timing

requirements. In order to achieve a high system throughput, inspired by Synplify’s design

methodology [72], the data path has been manually separated from the control path with

necessary connections to control signals. The following example shows this technique applied to

the Acquisition Controller state machine:

Original flow:

Optimized flow:

Figure 90 Optimized Acquisition Controller Data and Control Path

Figure 89 Original Acquisition Controller Data and Control Path

109

5.4 Floor Planning

Floor planning is an important placement technique applied on the physical logic gate level to

achieve timing closure and high data throughput by reorganizing the routing delays. Since FPGA

device densities are large (millions of gates), a number of placement tools have been provided by

the EDA vendor to facilitate the floor planning process. In the proposed touch screen system

development, an integrated Chip Editor[73] has been used to modify and optimize the post

timing and netlists. The following is the original touch screen system on the physical chip view:

On the field view, the touch screen system is constructed based on I/O pins which control and

respond to outside chip components, the DSP block which is particularly used to process

arithmetic functions (such as operators in the Common ALU), M4K Memory which stores all

camera frames and Logic Elements (LE) which are the smallest unit inside the FPGA chip with

efficient logic utilization. Each LE contains a 4-input LUT, programmable register and carry

chain and interconnects to organize a large number of LEs to perform more advanced

functionalities. The detail inside each logic element is illustrated below:

I/O Pins

Plug On

DSP Block

Plug On

Logic Element

Plug On

M4K Memory

Plug On

Figure 91 Physical Chip Overview

Figure 92 Logic Element Configuration

110

Most optimizations for floor planning will be handled by the Chip Editor automatically based on

a few methodologies developed by the tool vendor. One of the most important floor planning

techniques has been implemented manually in the touch screen system optimization to achieve a

better result.

Floor plan Partitioning

Instead of completely relying on automatic tools, a significant number of modifications have

been made manually to clearly define partitions according to functionalities and the

interconnections between partitions. There are two major parts in the touch screen system: one is

the data acquisition system and the other is the processing system. The original design is not

partitioned appropriately with a number of interferences between processing sub-modules and

the acquisition system. The original design partition is illustrated below:

In the optimized version, the interconnections between the two major partitions have been

combined with all processing sub-modules placed tightly on the chip to reduce routing delay.

The optimized design partition is illustrated below:

Figure 94 Optimized System Partition Design

Figure 93 Original System Partition Design

111

5.5 Reducing Power Dissipation

The proposed touch screen system is constructed based on a 90-nm Cyclone II FPGA with a

number of techniques for lowering power consumption in silicon such as decreased core voltage,

increased transistor length, lower I/O pin capacitance and a power efficient clocking structure.

The following is the typical static power consumption of the latest Cyclone III FPGA[74]:

The figure shows the static power consumption of different Cyclone devices at 85 degree

junction temperature. The most powerful Cyclone device consumes as little as 238 mW static

power. During system power reduction, the integrated tool PowerPlay[75] is used to optimize

power consumption at both synthesis and routing stages.

Normal compilation has been selected as the optimization option where low compute effort

integrated algorithms are applied to minimize power through netlist optimizations, as long as

they are not expected to reduce design performance. By applying the power-driven techniques

integrated in the automatic tool, power consumption could be reduced.

Figure 95 Programmable Chip Power Consumption

Figure 96 Power Optimization Options

112

Chapter 6 Touch Screen System Optimization Results

The proposed touch screen system has been optimized through different versions with different

orientations. The system hardware consumption is comprised of two major sources: Logic

Elements which are the smallest logic units for constructing functionality and Memory bits

which are the basic storage element. Two versions have been implemented, focusing on memory

reduction and logic element reduction respectively with techniques introduced in the previous

chapter.

6.1 Resource Optimization Results --- Original Version

The original hardware touch screen system, without any optimization techniques applied,

consumes 2407 logic elements and 52224 memory bits. In the logic consumption, two dividers

inside the Position Localization Unit (PLU) and Edge Localization Unit (ELU) constitute a large

part of the logic resource with certain key controller structures (acquisition control, ADC

control) consuming a considerable part of the other resources. Meanwhile, memory resources

are consumed by storage for two camera images. The detailed resource analysis for each system

module is listed below:

113

6.2 Resource Optimization Results --- Memory-Oriented Optimization

Memory-oriented optimization has focused on system memory reduction, based on the memory

optimization techniques applied in the previous chapter. Full range pixel (including dummy

pixels) based frame storage has been reduced to active pixel based efficient frame storage. An

approximate 32% improvement from 52224 memory bits to 35840 memory bits has been

achieved, based on the previous optimization method. The detail memory resource analysis is

listed below:

Table 4 Original System Resource Analysis Table

114

32% memory reduction

Plug On

Table 5 Optimized Memory Resource Analysis Table

115

6.3 Resource Optimization Results --- Logic Elements-Oriented Optimization

6.3.1 Algorithm alteration based logic optimization

The algorithm alteration based technique is the optimization method applied on the system level,

where the gradient based edge detection algorithm has been evaluated and replaced in the

previous chapter by a more efficient dynamic linear approximation detection algorithm. An

approximate 15% improvement has been achieved on the pixel edge level from

117LE+110LE=227LE to 197LE. The new algorithm based detection structure is also further

optimized on the sub-pixel edge level in following paragraphs. The detailed optimization list is

shown below:

 Gradient based edge detection algorithm resource list:

Dynamic linear approximation detection algorithm resource list:

6.3.2 Resource sharing, iterative approach and TDM based optimization results

In the previous chapter, a significant effort has been put into the optimization of two key blocks,

the Edge Localization Unit (ELU) and the Position Localization Unit (PLU). Complicated and

mixed optimization techniques have been applied to the original system to re-build an optimal

computational system with a less expensive structure, based on the previously introduced

Table 6 Gradient Based Edge Detection Algorithm Resource Analysis Table

Table 7 Dynamic Linear Approximation Detection Algorithm Resource Analysis Table

116

resource sharing, iterative and time-division-multiplexing methods. A common ALU module has

been created to be shared by both the ELU and PLU arithmetic operations, the resource-

consuming divide operator has been replaced by a counter based iterative approach and the

binary search engine is accessed at different times by both the edge localization and position

localization units. In the original ELU and PLU block resource analysis, a total of 1211LE was

consumed in the design.

The optimized edge and position localization blocks structure is made of 588 LE in total,

resulting in a 52% logic reduction based on optimization techniques.

Table 8 Original Edge and Position Localization Units Resource Analysis Table

Table 9 Optimized Edge and Position Localization Units Resource Analysis Table

117

Based on the resource sharing technique, further optimization has been applied to key control

modules (acquisition controller, and ADC interface) on a sub-module level. The original

acquisition controller and ADC interface resource analysis results are listed below, with 88 LE

for the ADC and 445LE for the acquisition controller:

The optimized acquisition engine has a reduction of 55% resource consumption from 445 to

202LE.

The optimized ADC interface has a reduction of 11% resource consumption from 88 to 79LE

Table 10 Original Acquisition Controller and ADC Interface Resource Analysis Table

Table 12 Optimized ADC Interface Resource Analysis Table

Table 11 Optimized Acquisition Engine Resource Analysis Table

118

6.3.3 Multiplexer restructuring algorithm based logic reduction results

The wide range of optimization methods implemented in the previous chapter have a significant

impact on system logic element optimization. Based on the multiplexer restructuring algorithm,

the number of multiplexers has been reduced in many system modules: the acquisition controller,

ADC controller, memory management unit and so on. The details are listed below:

6.3.4 Retiming and Register Balancing based optimization results

The Retiming and Register Balancing technique aims at re-organizing negative and positive

system slacks which will not reduce hardware resources but will increase system structure

reliability.

Table 13 Multiplexer Restructuring Results Table

119

The following table shows a number of registers inside different modules that have been

modified, deleted and retimed to balance slacks:

Table 14 Retiming and Register Balancing Results Table

120

6.4 Resource Optimization Conclusion

To conclude, an approximate 32% improvement from 52224 memory bits to 35840 memory bits

has been achieved after applying the aforementioned memory optimization techniques:

For logic resources, using optimization methods on different levels such as algorithm alteration,

pipeline rolling, resource sharing, iterative approach, Timing-Division-Multiplexing and register

balancing, an approximate 40% improvement has been made from 2403 logic elements to 1445

logic elements without affecting overall system performance:

Original

Plug

On

Optimized

Plug On
Figure 97 Memory Resource Reduction Result

Figure 98 Logic Resource Reduction Result

121

6.5 Optimized Chip Floor Planning Result

After manually re-designing the system partition (connection between Data Acquisition System

and Processing Unit) and adapting certain automatic floor planning tools, a more throughput-

efficient floor planning result has been achieved. In the original version, key modules inside the

Processing Unit such the master controller, edge localization unit and position localization unit

are decentralized on the physical chip causing considerable interference with the data acquisition

system partition. After optimization, all processing units are organized tightly with each other ,

having minimal cross-function timing delay. Meanwhile, there is only one interconnection

between the acquisition partition and the processing partition to minimize possible interference.

Dedicated DSP blocks and memory blocks are arranged close to processing units to achieve a

low overall system propagation delay. The physical chip floor planning is illustrated below:

Processing Unit

Plug On

Processing Unit

Plug On

Processing Unit

Plug On

Data Acquisition Unit

Plug On

Data Acquisition Unit

Plug On

Processing Unit

Plug On

Figure 100 Optimized Chip Floor Planning Result

Figure 99 Original Chip Floor Planning Result

122

Chapter 7 Discussion and Conclusion

7.1 Conclusion

This research project has successfully created a complete system on programmable chip (FPGA)

solution customized for a touch screen system with a real time proven performance. There are

three significant outcomes achieved in this research: first, having established an on-chip

hardware based touch screen acquisition engine with a more efficient control mechanism, higher

speed and lower noise level compared with the existing general microcontroller based acquisition

system; second, having constructed all basic touch screen functionalities into on-chip hardware

blocks and realized a basic real-time operational touch screen; and third, having optimized

system resource consumption to a substantial extent on different levels to lower manufacture

cost, without compromising overall system performance.

Instead of a general purpose microcontroller structure, a customized acquisition engine has been

built in this research with more efficient resource usage, a more flexible design mechanism and

improved performance. All logic structures and components in the customized acquisition

system are indispensable, compared with the general microcontroller structure where some of the

structure resources are redundant in the acquisition operation. Thus, the tailored on-chip

acquisition design is more efficient in resource consumption from a system point of view. By

taking advantage of the on-chip pipeline structure, a new concurrent acquisition mechanism has

been developed in this research, with a pipelined configuration and transmission capability for

controlling a two image sensor based acquisition system. Testing has proved that the acquisition

speed is approximately twice as fast on the concurrent acquisition mechanism compared with the

sequential mechanism.

Furthermore, the acquisition engine architecture has been developed in a modular and self-

contained manner, bearing in mind future expansion where more image sensors can be used by

the same control mechanism for a multi-touch system. Without the system limitation of a fixed

structure microcontroller, the programmable chip based acquisition design has the flexibility

required for meeting newly emerging and updated requirements. In the customized acquisition

123

design, the data clock has been accelerated up to 1 MHz which is three times faster than the

existing system and a high performance conversion chip with a low drift low noise reference

voltage has been added to improve digitization accuracy to 12 bits and reduce the noise level by

approximate 50% from the previous microcontroller based system. The design result has fully

satisfied the first design objective where a general-purpose acquisition structure has been

replaced with a customized concurrent acquisition engine with faster execution speed, more

accurate digitization, lower signal noise and robust capability in optical imaging system

expansion.

After establishing an on-chip data acquisition system which has better performance validated by

test results, the touch screen processing modules have been constructed incrementally in this

research, aiming to achieve a complete on-chip real time touch screen solution. The design

started from the memory management unit (MMU) which stores reference frames and derived

trigger levels. Then the edge localization unit (ELU) was constructed, where two algorithms

were implemented and evaluated with the application specific dynamic linear approximation

edge detection method being selected. This method was found to have less latency and was a

more resource-efficient solution and has the capability of more accurate sub-pixel edge

localization. Then, after consideration of system resources, the computationally expensive

operations (tangent, for instance) have been pre-calculated in system look up tables, for

converting the edge location to the tangent of the angle before position localization.

In touch screen system design, the position localization unit (PLU) is the core unit, localizing the

touch x and y coordinates based on all previous processing results. In this research, an original

position localization structure has been created and demonstrated with a clear and compact

transformation process from the application requirement to a resource-efficiency oriented

hardware block. Most important, for the first time a hardware binary search engine based

localization approach has been applied to the touch screen application with a significant

acceleration compared with the existing sequential localization method. Meanwhile, a normaliser

based touch motion tracking system has been implemented and executed concurrently with the

aforementioned localization processing on a separate data path. During tested this has shown the

capability of recording subtle motion variations, which is critical in pre-touch detection. Finally,

124

a master controller has been designed to integrate and synchronize all processing modules to

achieve the complete touch screen functionality with a transmission engine and corresponding

PC interface demonstrating the real time operation performance. The resulting on-chip touch

screen processing unit is the first and original all-functionalities-in-one-chip system prototype

and is unique in the optical imaging based touch screen industry, with a number of extra features

(such as support for pre-touch recognition) customized for real world design requirements. The

real time testing has successfully demonstrated the processing design output and made the results

visible.

A significant effort has been put into system optimization, after proving the correct functionality

of the on-chip touch screen in real time. Numerous optimization techniques have been applied to

the system on different layers with different focuses. By reducing the full range pixel frame to

active range frame, 32% of memory space has been saved compared with the original version.

The logic optimization process was more complicated since the system architecture design,

module and sub-module interconnection design have a critical impact on overall system resource

consumption. A large number of system modules and sub-modules have been manually

restructured using algorithm alteration, pipeline rolling, resource sharing, iterative approach,

Timing-Division-Multiplexing and register balancing techniques. An approximate 40%

improvement in logic consumption has been achieved without affecting overall system

performance, in consideration of resource and manufacturing cost. Physical chip floor planning

has been implemented resulting in a more efficient and higher throughput.

In conclusion, this research has investigated, implemented and validated a complete functional

real time touch screen system on-chip solution with a customized high performance touch

imaging acquisition engine, and a fully capable basic touch localization and motion tracking

system, with an economic amount of overall resource consumption.

125

7.2 Future Work

This investigative project has achieved significant research outcomes with an advanced multi-

level solution satisfying and exceeding the specified requirements and expectations from

different perspectives. Nonetheless, there are a number of developments that could be

implemented in future for further improvement.

First and foremost, a greater optical imaging coverage is considered to be an important factor for

supporting multiple touches, as specified by the latest industry requirements. The concurrent

acquisition mechanism inside the system solution has been designed based on two image sensors,

but with the capability to be adapted to accommodate more sensors without changing the main

structure. In future development, such as a six-sensor touch screen as illustrated below right,

more dedicated counters and registers are required in the acquisition block with modified module

timing flow and increased imaging bandwidth.

The increase in optical imaging bandwidth leads to higher requirements for subsequent touch

information processing ability. And the potential demand for more user-touch recognition in the

future further increases the complexity of the processing unit. As well as considering the

conventional approach of sharing post-processing on the PC side, it is planned to use an

embedded solution with the addition of an on-chip compact processor core that is independent of

the PC operating system.

Figure 101 More optical imaging coverage

126

The established processing unit inside the on-chip solution has aimed at integrating all

elementary and fundamental touch related functionalies on-the-fly with the acquisition process.

With the increasing processing pressure, it is not efficient to further customize dedicated logic in

a dynamic enviroment for potential flexible requirements in the future. Based on the existing

work, a simple soft processor core can be added to handle relatively complicated and uncommon

algorithms and features. Most existing modules will still play a critical role in flow acceleration

and basic function processing with a foreseeable path to improve and optimize module-to-

module and module-to-processor core interconnections and partitions. The proven system

functionalities are able to be reorganized and reformed as new IPs for reuse for further

development purposes. A potential soft processor core for the system is illustrated below:

 Figure 102 More robust processing handling

Finally, from a manufacturing cost perspective, the on-chip solution in this research has been

implemented in a Field Programmable Gate Array with a minimum number of outside chip

components and circuits. For high volume production, it is expected to achieve higher integration

density on the chip level. Compared with standard-cell solutions, the Hardcopy ASIC approach

is preferred in the future, with a seamless migration capability based on the existing design from

this research, because of its low cost and time-to-market pressure.

 Figure 105 Migrated ASIC Chip Figure 104 FPGA Chip Figure 103 SoC Design

127

References

[1] L. Li-Yi, et al., "Incremental physical design method for flat SOC design," in VLSI

Design, Automation and Test, 2009. VLSI-DAT '09. International Symposium on, 2009,

pp. 351-354.

[2] H. Yoshida, et al., "Demonstration of hardware-accelerated formal verification," in Field-

Programmable Technology, 2009. FPT 2009. International Conference on , 2009, pp.

380-383.

[3] M. D. Edwards and J. Forrest, "Software acceleration using programmable hardware

devices," Computers and Digital Techniques, IEE Proceedings -, vol. 143, pp. 55-63,

1996.

[4] D. Andrews, et al., "Programming models for hybrid CPU/FPGA chips," Computer, vol.

37, pp. 118-120, 2004.

[5] F. Garufi, et al., "A hybrid modular control and acquisition system," in Real-Time

Conference, 2007 15th IEEE-NPSS, 2007, pp. 1-5.

[6] Y. Pengfei, et al., "ARM and FPGA based electrical signal source for swing scanning

infrared earth sensor," in Image and Signal Processing (CISP), 2010 3rd International

Congress on, 2010, pp. 2742-2746.

[7] N. Alt, et al., "Hardware/software architecture of an algorithm for vision-based real-time

vehicle detection in dark environments," in Design, Automation and Test in Europe,

2008. DATE '08, 2008, pp. 176-181.

[8] X. Dang, et al., "Hardware acceleration for motion tracking system used in image-guided

surgery," in Biomedical Engineering and Informatics (BMEI), 2010 3rd International

Conference on, pp. 1498-1502.

[9] G. W. Morris, et al., "FPGA Accelerated Low-Latency Market Data Feed Processing," in

High Performance Interconnects, 2009. HOTI 2009. 17th IEEE Symposium on, 2009, pp.

83-89.

[10] B. Madhusudan and J. W. Lockwood, "A hardware-accelerated system for real-time

worm detection," Micro, IEEE, vol. 25, pp. 60-69, 2005.

[11] O. Dandekar and R. Shekhar, "FPGA-Accelerated Deformable Image Registration for

Improved Target-Delineation During CT-Guided Interventions," Biomedical Circuits and

Systems, IEEE Transactions on, vol. 1, pp. 116-127, 2007.

[12] Y. Kaeriyama, et al., "Ray Tracing Hardware System Using Plane-Sphere Intersections,"

in Field Programmable Logic and Applications, 2006. FPL '06. International Conference

on, 2006, pp. 1-6.

[13] C. R. Castro-Pareja, et al., "FAIR: a hardware architecture for real-time 3-D image

registration," Information Technology in Biomedicine, IEEE Transactions on, vol. 7, pp.

426-434, 2003.

[14] J. Majeed, "Hardware based Security for Wireless Devices," presented at the 3rd

International Conference: Sciences of Electronic,Technologies of Information and

Telecommunications, 2005.

[15] V. Pejovic, et al., "Adding Value to TCP/IP Based Information exchange Security by

Specialized Hardware," in Emerging Security Information, Systems, and Technologies,

2007. SecureWare 2007. The International Conference on, 2007, pp. 145-150.

128

[16] W. Wolf, "A decade of hardware/software codesign," Computer, vol. 36, pp. 38-43,

2003.

[17] N. S. Voros, et al., "Hardware/Software Co-Design of Complex Embedded Systems: An

Approach Using Efficient Process Models, Multiple Formalism Specification and

Validation via Co-Simulation," Design Automation for Embedded Systems, vol. 8, pp. 5-

49, 2003.

[18] N. Nedjah and L. D. M. Mourelle, Co-design for System Acceleration

 A Quantitative Approach: Springer Netherlands, 2007.

[19] H. K. H. So, et al., "A unified hardware/software runtime environment for FPGA-based

reconfigurable computers using BORPH," in Hardware/Software Codesign and System

Synthesis, 2006. CODES+ISSS '06. Proceedings of the 4th International Conference ,

2006, pp. 259-264.

[20] T. B. Ismail and A. A. Jerraya, "Design models and steps for codesign," in Verification of

Hardware Software Codesign, IEE Colloquium on, 1995, pp. 1/1-1/2.

[21] M. K. Purvis and D. W. Franke, "An overview of hardware/software codesign," in

Circuits and Systems, 1992. ISCAS '92. Proceedings., 1992 IEEE International

Symposium on, 1992, pp. 2665-2668 vol.6.

[22] N. Sudha and A. R. Mohan, "Hardware-Efficient Image-Based Robotic Path Planning in

a Dynamic Environment and Its FPGA Implementation," Industrial Electronics, IEEE

Transactions on, vol. 58, pp. 1907-1920.

[23] A. Laureshyn, et al., "Application of automated video analysis for behavioural studies:

concept and experience," Intelligent Transport Systems, IET, vol. 3, pp. 345-357, 2009.

[24] N. Sawasaki, et al., "Embedded vision system for mobile robot navigation," in Robotics

and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on ,

2006, pp. 2693-2698.

[25] M. Gokhale, et al., "Image Processing," in Reconfigurable Computing, ed: Springer US,

2005, pp. 119-139.

[26] M. S. Hromalik, et al., "Data acquisition and control for the LCLS pixel array detector,"

in Nuclear Science Symposium Conference Record, 2007. NSS '07. IEEE, 2007, pp. 1744-

1750.

[27] X. Hui, et al., "Acquisition board design of high-speed image data based on ARM and

FPGA," in Computer Design and Applications (ICCDA), 2010 International Conference

on, pp. V1-374-V1-376.

[28] J. Yun Ho, et al., "Design of real-time image enhancement preprocessor for CMOS

image sensor," Consumer Electronics, IEEE Transactions on, vol. 46, pp. 68-75, 2000.

[29] D. Nguyen, et al., "Real-time face detection and lip feature extraction using field-

programmable gate arrays," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, vol. 36, pp. 902-912, 2006.

[30] A. R. Akoushideh and A. Shahbahrami, "Accelerating Texture Features Extraction

Algorithms Using FPGA Architecture," in Reconfigurable Computing and FPGAs

(ReConFig), 2010 International Conference on, pp. 232-237.

[31] B. Kisačanin, et al., "Benchmarks of Low-Level Vision Algorithms for DSP, FPGA, and

Mobile PC Processors," in Embedded Computer Vision, ed: Springer London, 2009, pp.

101-120.

129

[32] P. Dillinger, et al., "FPGA-Based Real-Time Image Segmentation for Medical Systems

and Data Processing," Nuclear Science, IEEE Transactions on, vol. 53, pp. 2097-2101,

2006.

[33] N. Aaraj, et al., "Hybrid Architectures for Efficient and Secure Face Authentication in

Embedded Systems," Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, vol. 15, pp. 296-308, 2007.

[34] H. Pei-Yung, et al., "A Portable Vision-Based Real-Time Lane Departure Warning

System: Day and Night," Vehicular Technology, IEEE Transactions on, vol. 58, pp.

2089-2094, 2009.

[35] V. Bonato, et al., "A Parallel Hardware Architecture for Scale and Rotation Invariant

Feature Detection," Circuits and Systems for Video Technology, IEEE Transactions on,

vol. 18, pp. 1703-1712, 2008.

[36] A. G. Vicente, et al., "Embedded Vision Modules for Tracking and Counting People,"

Instrumentation and Measurement, IEEE Transactions on, vol. 58, pp. 3004-3011, 2009.

[37] I. Ishii, et al., "Development of high-speed and real-time vision platform,

H³ vision," in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ

International Conference on, 2009, pp. 3671-3678.

[38] H. Yean Choon and S. Yu, "Developing a smart camera for gesture recognition in HCI

applications," in Consumer Electronics, 2009. ISCE '09. IEEE 13th International

Symposium on, 2009, pp. 994-998.

[39] K. Ohtani, et al., "An intelligent position sensor for light spots using an analog scan

circuit and fpga," in Instrumentation and Measurement Technology Conference, 2003.

IMTC '03. Proceedings of the 20th IEEE, 2003, pp. 711-715.

[40] S. Hussmann and T. H. Ho, "A high-speed subpixel edge detector implementation inside

a FPGA," Real-Time Imaging, vol. 9, pp. 361-368, 2003.

[41] A. Braeken, et al., "Secure FPGA technologies and techniques," in Field Programmable

Logic and Applications, 2009. FPL 2009. International Conference on, 2009, pp. 560-

563.

[42] Altera. (2007). Cyclone II Architecture. Available:

http://www.altera.com/literature/hb/cyc2/cyc2_cii51002.pdf

[43] Actel. (2008). Designing for Performance on Flash-Based FPGAs. Available:

http://www.actel.com/documents/Design_Performance_AN.pdf

[44] H. Selvaraj, et al., "Partitioning of large HDL ASIC designs into multiple FPGA devices

for prototyping and verification," in Computational Intelligence and Multimedia

Applications, 2001. ICCIMA 2001. Proceedings. Fourth International Conference on ,

2001, pp. 411-415.

[45] W. Hinrichs, et al., "A 1.3-GOPS parallel DSP for high-performance image-processing

applications," Solid-State Circuits, IEEE Journal of, vol. 35, pp. 946-952, 2000.

[46] S. Asano, et al., "Performance comparison of FPGA, GPU and CPU in image

processing," in Field Programmable Logic and Applications, 2009. FPL 2009.

International Conference on, 2009, pp. 126-131.

[47] S. Anvar, et al., "FPGA-based system-on-chip designs for real-time applications in

particle physics," in Real Time Conference, 2005. 14th IEEE-NPSS, 2005, p. 5 pp.

[48] X. Zhihui, et al., "A platform-based SoC hardware/software co-design environment," in

Computer Supported Cooperative Work in Design, 2004. Proceedings. The 8th

International Conference on, 2004, pp. 443-448 Vol.2.

http://www.altera.com/literature/hb/cyc2/cyc2_cii51002.pdf
http://www.actel.com/documents/Design_Performance_AN.pdf

130

[49] L. Cheng-Hong and L. P. Carloni, "Leveraging Local Intracore Information to Increase

Global Performance in Block-Based Design of Systems-on-Chip," Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 28, pp. 165-178,

2009.

[50] C. Soo Ho and K. Soo Dong, "Reuse-based Methodology in Developing System-on-Chip

(SoC)," in Software Engineering Research, Management and Applications, 2006. Fourth

International Conference on, 2006, pp. 125-131.

[51] B. Younghoon, et al., "The Development of SoC Platform for Embedded System

Applications," in Convergence Information Technology, 2007. International Conference

on, 2007, pp. 2286-2291.

[52] L. Idkhajine, et al., "Fully Integrated FPGA-Based Controller for Synchronous Motor

Drive," Industrial Electronics, IEEE Transactions on, vol. 56, pp. 4006-4017, 2009.

[53] K. Jeonghun, et al., "Surveillance camera SOC architecture using one-bit motion

detection for portable applications," in SOC Conference, 2007 IEEE International, 2007,

pp. 71-74.

[54] O. Eun Tack, et al., "An Embedded SoC System to Trace Moving Object and Detect

Distance," in Natural Computation, 2008. ICNC '08. Fourth International Conference on ,

2008, pp. 379-383.

[55] H. Chun, et al., "A novel SoC architecture on FPGA for ultra fast face detection," in

Computer Design, 2009. ICCD 2009. IEEE International Conference on, 2009, pp. 412-

418.

[56] TexasInstruments. (2009). Low-Power, 12-Bit, 1-MHz, Single/Dual Unipolar Input,

ADCs with Serial Interface. Available: http://focus.ti.com/lit/ds/symlink/ads7229.pdf

[57] TexasInstruments. (2010). Low Noise, Very Low Drift, Precision Voltage Reference.

Available: http://focus.ti.com/lit/ds/symlink/ref5025.pdf

[58] FTDIChip. (2005). FT245R USB FIFO I.C. Available:

http://www.asix.cz/download/ftdi/ft2xxr/ds_ft245r_v102.pdf

[59] Altera. (2010). SCFIFO and DCFIFO Megafunctions. Available:

http://www.altera.com/literature/ug/ug_fifo.pdf

[60] Altera. (2008). Cyclone II Memory Blocks. Available:

http://www.altera.com/literature/hb/cyc2/cyc2_cii51008.pdf

[61] I. Yasri, et al., "An FPGA Implementation of Gradient Based Edge Detection Algorithm

Design," in Computer Technology and Development, 2009. ICCTD '09. International

Conference on, 2009, pp. 165-169.

[62] S. KILTS, "Architecting Area," in Advanced FPGA Design: Architecture,

Implementation, and Optimization, ed: JOHN WILEY&SONS,INC,, 2007, p. 18.

[63] S. M. Qasim, et al., "A review of FPGA-based design methodology and optimization

techniques for efficient hardware realization of computation intensive algorithms," in

Multimedia, Signal Processing and Communication Technologies, 2009. IMPACT '09.

International, 2009, pp. 313-316.

[64] S. Mondal and S. O. Memik, "Resource sharing in pipelined CDFG synthesis," in Design

Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South

Pacific, 2005, pp. 795-798 Vol. 2.

[65] S. KILTS, "Synthesis Optimization," in Advanced FPGA Design: Architecture,

Implementation, and Optimization, ed: JOHN WILEY&SONS,INC,, 2007, p. 208.

http://focus.ti.com/lit/ds/symlink/ads7229.pdf
http://focus.ti.com/lit/ds/symlink/ref5025.pdf
http://www.asix.cz/download/ftdi/ft2xxr/ds_ft245r_v102.pdf
http://www.altera.com/literature/ug/ug_fifo.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51008.pdf

131

[66] C. Maxfield, "Simulation, Synthesis, Verification, etc. Design Tools," in The Design

Warrior’s Guide to FPGAs, ed: Elsevier, 2004, p. 312.

[67] J. Cong and W. Chang, "Optimal FPGA mapping and retiming with efficient initial state

computation," Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 18, pp. 1595-1607, 1999.

[68] Altera. (2007). Netlist optimization and Physical Synthesis. Available:

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

[69] Altera. (2007). FPGA Performance Benchmarking Methodology. Available:

http://www.altera.com/literature/wp/wpfpgapbm.pdf

[70] P. Metzgen and D. Nancekievill, "Multiplexer restructuring for FPGA implementation

cost reduction," in Design Automation Conference, 2005. Proceedings. 42nd, 2005, pp.

421-426.

[71] Y. Liu, et al., "Research on the problems of satellite borne FPGA based finite state

machine," in Systems and Control in Aerospace and Astronautics, 2008. ISSCAA 2008.

2nd International Symposium on, 2008, pp. 1-4.

[72] Synopsys. (2003). Synplify & Quartus II Design Methodology. Available:

http://www.altera.ru/Disks/Altera%20Documentation%20Library/literature/an/an226.pdf

[73] Altera. (2003). Using the Quartus II Chip Editor. Available:

http://www.altera.co.jp/literature/an/an310.pdf

[74] Altera. (2010). CycloneIII FPGA Power Consumption. Available:

http://www.altera.com/devices/fpga/cyclone3/overview/power/cy3-

power.html#cyclone_power

[75] Altera. (2010). PowerPlay Power Analysis. Available:

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf?GSA_pos=2&WT.oss_r=1&W

T.oss=powerplay

Appendices

Because of confidential issue, a restricted amount of design files and source codes are selectively

attached below:

http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/wp/wpfpgapbm.pdf
http://www.altera.ru/Disks/Altera%20Documentation%20Library/literature/an/an226.pdf
http://www.altera.co.jp/literature/an/an310.pdf
http://www.altera.com/devices/fpga/cyclone3/overview/power/cy3-power.html#cyclone_power
http://www.altera.com/devices/fpga/cyclone3/overview/power/cy3-power.html#cyclone_power
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf?GSA_pos=2&WT.oss_r=1&WT.oss=powerplay
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf?GSA_pos=2&WT.oss_r=1&WT.oss=powerplay

132

Touch Screen on Chip (TOC) Architectural Level Block Diagram:

133

The following is the top layer schematic of Gradient Based Edge Detection Unit (EDU Method 1):

Block diagram:

Actual implementation of EDU Method One on Register-Transfer-Level (RTL):

Detection Unit: Localization Unit:

VCC
Trigger_Pixel[15..0] INPUT

VCC
Pixel_addr[9..0] INPUT

VCC
Cam_Pixel[15..0] INPUT

VCC
clk INPUT

VCC
clr INPUT

VCC
Pre_Reg_Load INPUT

VCC
Cur_Reg_Load INPUT

VCC
DU_En INPUT

Falling_RisingOUTPUT

Pixel_ID[9..0]OUTPUT

TouchOUTPUT

Derivative[15..0]OUTPUTclk_in

Reset

Wr_En

din[15..0]

dout[15..0]

cur_reg

inst2

clk_in

Reset

Wr_En

din[15..0]

dout[15..0]

pre_reg

inst1

unsigned compare

dataa[15..0]

datab[15..0]
ageb

lpm_compare0

inst

Clk_In

Reset

Previous_Pixel[15..0]

Current_Pixel[15..0]

Address[9..0]

DU_En

Falling_Rising

Derivative[15..0]

Pixel_ID[9..0]

Derivation_Unit

inst3

VCC
Falling_Rising INPUT

VCC
clk INPUT

VCC
reset INPUT

VCC
Pixel_ID[9..0] INPUT

VCC
Output_Results INPUT

VCC
Derivative[15..0] INPUT

VCC
Derivative_Comp_En INPUT

VCC
Derivative_Reg_Wr INPUT

Rising_Edge_ID[9..0]OUTPUT

Edge_RpOUTPUT

Falling_Edge_ID[9..0]OUTPUT

N
O

T

in
s
t6

clk_in

Reset

Derivative_Wr

Wr_En

din[15..0]

dout[15..0]

rising_edge_reg

inst7

clk_in

Reset

Derivative_Wr

Wr_En

din[15..0]

dout[15..0]

falling_edge_reg

inst8

OR2

inst9

unsigned compare

dataa[15..0]

datab[15..0]
aleb

lpm_compare1

inst3

unsigned compare

dataa[15..0]

datab[15..0]
aleb

lpm_compare2

inst4

P
ix

e
l_

ID
[9

..
0

]

D
e

ri
v
a

ti
v
e

s
[1

5
..
0

]

R
a

w
_

S
e

l

T
o

_
F

a
ll
in

g
_

In
[9

..
0

]

T
o

_
R

is
in

g
_

In
[9

..
0

]

T
o

_
F

a
ll
in

g
[1

5
..
0

]

T
o

_
R

is
in

g
[1

5
..
0

]

d
rt

_
d

e
m

u
x

in
s
t

clk_in

Reset

Rising_Wr_En

Falling_Wr_En

Rd_En

Rising_in[9..0]

Falling_in[9..0]

Rising_out[9..0]

Falling_out[9..0]

edge_location_reg

inst5

134

The following is the top layer schematic of Dynamic Linear Approximation Based Edge Detection Unit (EDU Method 2):

Block diagram:

Actual implementation of EDU Method Two on Register-Transfer-Level (RTL):

VCC
Cam_Pixel[15..0] INPUT

VCC
clk INPUT

VCC
Pre_Reg_Load INPUT

VCC
Cur_Reg_Load INPUT

VCC
Interpolate_En INPUT

VCC
Touch_Record_Reg_En INPUT

VCC
Falling_Rising INPUT

VCC
Cam1_Pixel_ID[9..0] INPUT

VCC
Cam2_Pixel_ID[9..0] INPUT

VCC
cam1_edge_en INPUT

VCC
cam2_edge_en INPUT

VCC
Trigger_75[15..0] INPUT

VCC
edge_reg_rst INPUT

VCC
rst INPUT

VCC
edge_percentg[26..0] INPUT

Current_Touch_FlagOUTPUT

Pre_Touch_FlagOUTPUT

cam1_falling_edge_percentage[26..0]OUTPUT

cam1_rising_edge_percentage[26..0]OUTPUT

cam1_falling_edge[9..0]OUTPUT

cam1_rising_edge[9..0]OUTPUT

cam2_falling_edge_percentage[26..0]OUTPUT

cam2_rising_edge_percentage[26..0]OUTPUT

cam2_rising_edge[9..0]OUTPUT

cam2_falling_edge[9..0]OUTPUT

cam1_edge_mid[9..0]OUTPUT

cam2_edge_mid[9..0]OUTPUT

pre_trigger[15..0]OUTPUT

cur_trigger[15..0]OUTPUT

pre_cam[15..0]OUTPUT

cur_cam[15..0]OUTPUT

clk_in

Reset

Wr_En

din

dout

touch_record_reg

inst1

clk_in

Reset

Wr_En

din[15..0]

dout[15..0]

cam_cur_reg

inst4

clk_in

Reset

Wr_En

din[15..0]

dout[15..0]

cam_pre_reg

inst5

clk_in

reset

pre_trigger[15..0]

cur_trigger[15..0]

pre_cam[15..0]

cur_cam[15..0]

Interpolate_Enable

pre_trigger_out[15..0]

cur_trigger_out[15..0]

pre_cam_out[15..0]

cur_cam_out[15..0]

interpolation_gate

inst6

Edge_Percentage[26..0]

Falling_Rising

Falling_Edge_Percentage[26..0]

Rising_Edge_Percentage[26..0]

falling_rising_demux

inst8

clk_in

Reset

Wr_En

din[15..0]

dout[15..0]

trigger_cur_reg

inst2

clk_in

Reset

Wr_En

din[15..0]

dout[15..0]

trigger_pre_reg

inst3

unsigned compare

dataa[15..0]

datab[15..0]
agb

lpm_compare0

inst

clk_in

reset

cam2_edge_en

falling_rising

cam2_pixel_ID[9..0]

cam2_falling_edge[26..0]

cam2_rising_edge[26..0]

cam_two_falling_edge_ID[9..0]

cam_two_rising_edge_ID[9..0]

cam2_edge_mid[9..0]

cam_two_falling_edge[26..0]

cam_two_rising_edge[26..0]

cam2_edge_reg

inst10

clk_in

reset

cam1_edge_en

falling_rising

cam1_pixel_ID[9..0]

cam1_falling_edge[26..0]

cam1_rising_edge[26..0]

cam_one_falling_edge_ID[9..0]

cam_one_rising_edge_ID[9..0]

cam1_edge_mid[9..0]

cam_one_falling_edge[26..0]

cam_one_rising_edge[26..0]

cam1_edge_reg

inst9

cam1_edge_en

cam2_edge_en

cam1_edge_en

falling_rising

falling_rising

cam2_edge_en

falling_rising

pre_trigger[15..0]

cur_trigger[15..0]

pre_cam[15..0]

cur_cam[15..0]

edge_percentg[26..0]

edge_percentg[26..0]

pre_trigger[15..0]

cur_trigger[15..0]

pre_cam[15..0]

cur_cam[15..0]

135

The following is the Majority of top layer schematic of Position Localization Unit (PLU):

Block diagram:

Actual implementation of PLU on Register-Transfer-Level (RTL):

VCC
clock INPUT

VCC
Cam2_Angle_Tan[18..0] INPUT

VCC
Cam1_Angle_Tan[18..0] INPUT

VCC
Screen_Width[28..0] INPUT

VCC
Triangulation_en INPUT

VCC
reset INPUT

Y[28..0]OUTPUT

X[9..0]OUTPUT

locateOUTPUT

Unsigned
multiplication

dataa[18..0]

datab[9..0]

result[28..0]

lpm_mult7

inst1

Unsigned
multiplication

dataa[18..0]

datab[9..0]

result[28..0]

lpm_mult9

inst10

A

B

A+B

dataa[28..0]

datab[28..0]

result[28..0]

lpm_add_sub6

inst2

unsigned compare

dataa[28..0]

datab[28..0]
alb

lpm_compare12

inst3

A

B

A-B

dataa[28..0]

datab[28..0]

result[28..0]

lpm_add_sub14

inst8

data[28..0] result[28..0]

lpm_abs3

inst19

unsigned compare

datab[]=932

dataa[28..0]
alb

lpm_compare20

inst20

Unsigned
multiplication

dataa[18..0]

datab[9..0]

result[28..0]

lpm_mult11

inst13

Unsigned
multiplication

dataa[18..0]

datab[9..0]

result[28..0]

lpm_mult13

inst16

A

B

A+B

dataa[28..0]

datab[28..0]

result[28..0]

lpm_add_sub7

inst11

A

B

A-B

dataa[28..0]

datab[28..0]

result[28..0]

lpm_add_sub15

inst21

data[28..0] result[28..0]

lpm_abs4

inst22

unsigned compare

datab[]=932

dataa[28..0]
alb

lpm_compare13

inst12

Unsigned
multiplication

dataa[18..0]

datab[9..0]

result[28..0]

lpm_mult15

inst17

Unsigned
multiplication

dataa[18..0]

datab[9..0]

result[28..0]

lpm_mult17

inst18

A

B

A+B

dataa[28..0]

datab[28..0]

result[28..0]

lpm_add_sub8

inst14

A

B

A-B

dataa[28..0]

datab[28..0]

result[28..0]

lpm_add_sub16

inst23

data[28..0] result[28..0]

lpm_abs5

inst24

unsigned compare

datab[]=932

dataa[28..0]
alb

lpm_compare14

inst15

Unsigned
multiplication

dataa[18..0]

datab[9..0]

result[28..0]

lpm_mult22

inst5

upper[8..0]

step_value[8..0]

upper_output[8..0]

upper_mid

inst6

lower[8..0]

step_value[8..0]

lower_output[8..0]

lower_mid

inst7

data1x[8..0]

data0x[8..0]

sel

result[8..0]

lpm_mux4

inst9

clk_in

reset

Triangulation_En

Locate_Flag

cnt_gen_en

cnt_rst

triang_controller

inst26

clk_in

Reset

pixel_gen_en

din[8..0]

main_out[8..0]

step_value[8..0]

range_1_out[9..0]

range_2_out[9..0]

pixel_gen

inst4

clk_in

Reset

main_region_flag

cam_1_towards_flag

region_1_flag

region_2_flag

main_counter[8..0]

range_1_counter[9..0]

range_2_counter[9..0]

X[9..0]

Range_Select

locate_flag

radix_shift[9..0]

triangulation_reg

inst

clk

rst

ra
n

g
e

_
s
e

le
c
t

main_region_flag

region_1_flag

region_2_flag

cam_1_towards_flag

main_region_flag

cam_1_towards_flag

range1_counter[9..0]

range2_counter[9..0]

region_1_flag

region_2_flag

range1_counter[9..0]

range2_counter[9..0]

main_counter[8..0]

main_counter[8..0]clk

locate_flag

cnt_gen_en

cnt_gen_en

main_counter[9..0]

rst
cnt_rst

cnt_rst

range_select

locate_flag locate_flag

136

All the other system module RTL schematics and the corresponding VHDL codes are not presented as they are confidential.

There are three major design program sources (code): one is VHDL code for all major components and sub-components (with corresponding test

bench simulation code as well); another is Matlab code for offline system performance analysis (noise analysis) and look-up-table (LUT) pre-

calculation; the last is Borland C++ based user interface code for real-time demonstration (which can be seen in the demonstration videos).

Most source code will not be attached however selected VHDL code is shown as an example: this is the timing control code inside the Camera

Control Engine which is a sub-module of the Data Acquisition Unit.

 The hardware description code for the camera timing control sub-component is attached

below:

137

138

139

140

141

142

143

144

145

