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Abstract

Chronic Pulmonary Disease (CPD) often causes a reduction in physical activity and lower
limb dysfunction. Exercise tolerance generally declines across the stages of CPD, which might
be related to a reduction in physical activities of daily living, due to breathing discomfort or
increased leg/arm fatigue. The contributions of specific aspects of disease severity and
deconditioning to exercise tolerance remains unclear. In addition, it is uncertain whether patients
with CPD have reduced upper limb function, or if upper body aerobic training capacity (arm
ergometry) may be preserved. To provide insight into why patients adopt a more sedentary
lifestyle, the aims of this study were to determine: (1) the combined and individual contributions
of physical activities of daily living (type and volume) and FEV1 to arm and leg ergometry capacity
of patients with CPD; and (2) the predictability and odds ratio of high arm and leg ergometry
capacity in CPD individuals with high and low arm and leg strength, while controlling for stage of
disease, body composition and gender.

Forty-four CPD patients, 16 males and 28 females (mean age = 59.8 ± 11.9 years), with a
FEV1 of 22-89% predicted (mean FEV1% predicted = 54.6 ± 18.3) participated. All participants
completed spirometry, International Physical Activity Questionnaire and Activities of Daily
Living-Dyspnoea questionnaire, Medical Research Council grade, anthropometric assessment,
sub-maximal arm and leg ergometry testing, grip strength, and isokinetic quadriceps and
hamstrings strength and endurance testing. To determine contributing and predictor variables of
arm and leg ergometry capacity, a progressive statistical procedure was implemented leading to
multiple linear and binary regression analyses.

No statistically significant relationships (p>0.05) were found between total activity, upper body
activity and lower body activity, and peripheral muscle strength and aerobic capacity (controlling
for age, gender and percentage body fat). Multiple regression analysis demonstrated that
quadriceps strength (Nm), FEV1% and grip strength (kg) predicted 64% of peak wattage during
submaximal leg ergometry testing (adjusted R2 = 64%, F = 26.387, p=0.00). Quadriceps strength
showed the highest predictability of peak leg ergometry wattage (p=0.00, beta 0.844 and t=6.238),
followed by grip strength and FEV1% (p=0.038, β=-0.270, t=-2.143 and p=0.028, β=-0.230,
t=2.279, respectively).  A second regression analysis determined that quadriceps strength (Nm),
FEV1% and grip strength (kg) predicted 53% of peak wattage during submaximal arm ergometry
testing (adjusted R2=0.53, F=17.018, p=0.00). Quadriceps strength was the only independent
variable that showed predictability of peak arm ergometry wattage (p=0.00, beta 0.793 and
t=5.125). The odds ratio analysis indicated that CPD patients with high quadriceps strength have
13.76 times higher odds of having high peak arm ergometry wattage. This odds ratio equated to
an 85% probability of having high arm ergometry peak wattage if quadriceps strength is high.

In summary, the main factors predicting leg ergometry capacity were quadriceps strength
FEV1 and grip strength. Quadriceps strength was the only statistically significant predictor of peak
arm ergometry wattage, suggesting that a reduction in leg function is associated with a reduction
in arm function. This study highlights the importance of assessing upper and lower limb strength
in patients with CPD, and endorses the incorporation of specified lower limb strength training in
pulmonary rehabilitation, especially for those with reduced strength and physical activity levels.
Pulmonary rehabilitation programs should incorporate both aerobic exercise and lower limb
strength training.
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Chapter 1. Introduction

Chronic pulmonary disease (CPD) is a common medical term used to describe respiratory

conditions causing progressive airflow limitation that is not fully reversible (World Health

Organisation [WHO], 2013). Chronic pulmonary disease most commonly includes chronic

bronchitis, emphysema, chronic obstructive pulmonary disease (COPD), bronchiectasis, asthma,

interstitial lung disease, pulmonary hypertension and obstructive sleep apnoea syndrome. In New

Zealand, respiratory disease is a significant cause of morbidity and mortality, which places a major

burden on the healthcare system of New Zealand (National Health Committee [NHC], 2013). In

the mid-central region of the North Island of New Zealand, 95% of avoidable respiratory deaths

are caused by chronic obstructive pulmonary disease (COPD) and between 2-3% are due to

asthma (Central Region’s Technical Advisory Services Limited, 2008).

Effective management of CPD in New Zealand requires an integrated healthcare model. Specific

guidelines for the management of COPD are outlined by Abramson et al. (2009), on behalf of the

Thoracic Society of Australia and New Zealand and the Australian Lung Foundation in the

‘COPDX’ plan, which considers Confirming diagnosis (C), Optimising function (O), Preventing

deterioration (P), Developing support (D) and managing eXacerbations (X). Pulmonary

rehabilitation, with the main component being exercise training, is one goal of the ‘optimising

function’ category. Exercise-based rehabilitation is an important component in the management

of CPD, with the focus to improve physical function largely via an increase in exercise tolerance

(Eisner et al., 2011). The ability to exercise is a major limiting factor when it comes to the physical

rehabilitation of patients with CPD. Exercise capacity becomes limited as disease state

progresses, which is largely due to increasing symptoms and systemic complications. This can

prevent patients from exercising at an intensity or duration that provides sufficient overload which

is needed to elicit physiological adaptations (Koutedakis, Metsios, & Stavropoulos-Kalinoglou,

2006). Exercise intensity is often restricted to low levels in CPD in order to maintain an adequate

duration and vice versa, due to symptom limitations (Maltais et al., 1997). Accordingly, the

predominant focus of exercise-based rehabilitation for pulmonary patients is to gradually increase

cardiovascular function (aerobic capacity) by placing controlled but increasing demands on their

cardiovascular system (Cooper, 2003).
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The effectiveness of this exercise approach has been thoroughly researched and the consensus

is that the potential impact of exercise training is limited by the severity of the disease (Cooper,

2001; Sietsema, 2001). Killian et al. (1992) redirected the focus of research on exercise-based

rehabilitation away from pulmonary function and aerobic capacity, and focused on systemic

limitations. Compared to the degree of dyspnoea, a more crucial exercise training limitation during

maximal leg ergometry was the intensity of leg effort (Killian et al., 1992), confirming that disability

and treatment of CPD extends well beyond lung function.

The mechanisms responsible for leg fatigue during aerobic exercise in CPD patients were

discussed in a review study by Stendardi, Grazzini, Gigliotti, Lotti and Scano (2005). These

authors concluded that leg fatigue in patients with CPD during aerobic exercise occurs as a result

of blood flow redistribution and peripheral muscle alterations. When the body is hypoxic, as a

result of inadequate ventilation/perfusion, blood flow is redistributed away from the periphery to

the major organs (Kent et al., 2011). Blood flow to the working muscles during lower limb exercise

is further reduced when the respiratory muscles become fatigued, due to increased work of

breathing (Harms et al., 1997).

Over time, hypoxemia and the redistribution of blood flow results in structural changes to skeletal

muscle fibres (Sietsema, 2001; Kent et al., 2011). As forced expiratory volume in one second

(FEV1) decreases, inspiratory muscles become chronically overloaded due to the increased work

of breathing from hyperinflation and obstruction, causing an increase in type I muscle fibres in the

diaphragm (Levine et al., 2003). In the lower limbs, there is a reduction of type I (slow twitch

oxidative) fibres and augmentation of the proportion of type IIb (fast twitch glycolytic) fibres (Kim,

Mofarrahi, & Hussain, 2008). In further support, meta-analysis data reveal that the proportion of

type I fibres in the vastus lateralis correlates strongly with obstruction severity, as defined by FEV1

(r=0.56; p<0.001), and moderately with BMI1 (r=0.34; p<0.001) in patients with severe-very severe

COPD (Gosker, Zeegers, Wouters, & Schols, 2007b).

Moreover, a relationship has been established between leg fatigue, exercise tolerance and lower

limb muscle strength in cardiorespiratory patients (Hamilton, Killian, Summers, & Jones, 1995).

1 BMI = body mass index
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The authors made three important observations: 1) muscle strength contributed significantly to

the intensity of leg effort and dyspnoea at a given power output; 2) peak exercise capacity was

reduced in individuals with lower quadriceps strength; and 3) it was quantified that a doubling of

strength is associated with a decrease in leg effort by 25% and dyspnoea by 30%.  These findings

are important as they identified the impact of quadriceps strength on maximal work capacity and

severity of symptoms. This study concluded that cardiorespiratory patients have peripheral

muscle weakness (quadriceps strength) and that quadriceps strength was a significant contributor

to exercise capacity. The implication of this study was the emphasised need for assessment and

therapeutic management of lower limb dysfunction. Furthermore, a review by Debigaré and

Maltais (2008) concluded that exercise limitations of CPD patients is largely determined by lower

limb dysfunction, specifically fatigability, muscle atrophy, and structural muscle fibre changes,

which impacts lower body strength. Quadriceps strength in particular impacts dramatically on

quality of life and physical independence (Donaldson, Maddocks, Martolini, Polkey, & Man, 2012),

and strength has been reported as a significant predictor of healthcare utilisation in COPD

patients (Decramer, Gosselink, Troosters, Verschueren, & Evers, 1997).

Additionally, there is scientific evidence indicating that frequency of muscle recruitment and

activation in CPD patients largely determines the degree of dysfunction in a given muscle. In this

regard, researchers have demonstrated that the degree of skeletal muscle dysfunction in COPD

patients is not homogeneous between various muscle groups. For example, Franssen,

Broekhuizen, Janssen, Wouters, and Schols (2005) identified that COPD patients with skeletal

muscle dysfunction had a higher dysfunction in leg strength than in arm strength, when compared

to healthy individuals. Lower extremity muscles are chronically under-loaded due to inactivity and

disuse, while upper extremity muscles are less under-loaded (Kim et al., 2008). This under-

loading of the lower extremity muscles contributes to lower extremity muscle dysfunction. Poor

lower extremity functioning (as measured by the short performance physical battery) and poor

exercise performance is related to a greater risk of COPD-related disability (Eisner et al., 2011).

It was concluded that the management of COPD needs to be complimented with a comprehensive

rehabilitation programme including exercise training to help prevent poor lower extremity function

and COPD-related disability (Eisner et al., 2011).
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To date, lower limb function in CPD has received a lot of attention in the literature, however, fewer

studies have reported on upper limb function. There is still uncertainty regarding the comparative

declining effect of CPD on arm and leg function. Owens et al. (1988) compared arm and leg

ergometry in eight patients with moderate COPD and found that oxygen consumption during arm

and leg ergometry were the same at similar heart rate responses, even though arm ergometry

was at a significantly lower wattage. However, it is unclear from this study whether arm ergometry

results in less limb fatigue and/or dyspnoea at similar heart rates, and therefore an improved

ability to exercise. Franssen, Wouters, Baarends, Akkermans, and Schols (2002) investigated the

mechanical efficiency (determined by peak load of the exercise and the difference between

resting and exercise energy expenditure) of arm and leg exercise in patients with COPD

compared to healthy controls. In contrast to the findings of Owens et al. (1988), those patients

with COPD exhibited a preserved mechanical efficiency during sub-maximal arm exercise in

contrast with a markedly decreased leg efficiency, concluding that exercise tolerance of the upper

limbs appears to be relatively high in comparison to the lower limbs in COPD patients (Franssen

et al., 2002). However, they did not explore this concept at different stages of the disease. It is

unknown whether the progression of the disease affects the efficiency of arm exercise vs. leg

exercise.

Lower limb muscle function in CPD patients can be improved with physical exercise (Rochester,

2003). Improving leg strength and endurance may result in less leg fatigue (better exercise

tolerance) and improved functional exercise capacity during submaximal and maximal graded leg

ergometry testing. Arm ergometry may serve as an alternative method of exercise testing and

aerobic exercise training given the muscles of the upper limbs are less affected (less muscle fibre

redistribution and atrophy) compared to the lower limbs (Owens et al., 1988). As a consequence,

CPD patients may have the potential to perform upper limb exercise at higher heart rates for

longer without experiencing extremity muscle fatigue.

The ability to exercise generally declines across the stages of CPD progression. This reduction

might be related to individuals reducing their level of Physical Activities of Daily Living (PADL),

due to dyspnoea and/or increased leg/arm fatigue. The reasons why persons with CPD adopt a

more sedentary lifestyle are complex and could be dependent on the individual. Novel insights
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into the specific limitations of exercise are needed to develop effective exercise training

modalities, and ways to maintain physical activity levels in CPD patients.

There is a lack of scientific studies exploring whether CPD patients demonstrate better trainability

potential (ability to exercise for longer durations with less dyspnoea and limb fatigue) during arm

ergometry as compared to leg ergometry. Improvements in the trainability of CPD patients may

allow them to better maintain (if not improve) current aerobic capacity. In addition, it is unclear

from scientific studies whether a relationship exists between peripheral muscle strength and

PADL (type and volume), and whether there is an association between peripheral muscle strength

and the exercise trainability across stages of disease progression. Improvements in aerobic

capacity, along with muscular strength and endurance, will likely improve the physical functioning

of CPD patients in their everyday lives. This thesis therefore set out to explore these gaps in the

literature.

1.1. Aim of the thesis

This thesis aimed to:

1. investigate the combined and individual contributions of physical activities of daily living

(type and volume) and FEV1 to arm and leg ergometry capacity of patients with CPD;

2. determine the predictability and odds ratio of high arm and leg ergometry capacity in CPD

individuals with high and low arm and leg strength, while controlling for stage of disease,

body composition and gender.

It was hypothesised that:

1. Individuals that do more physical activities of daily living involving the arms and legs will

show better respective arm ergometry and leg ergometry capacity.

2. Independent of stage of disease, body composition and gender:

- leg strength contributes significantly to leg ergometry capacity; and

- arm strength contributes significantly to arm ergometry capacity.
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Chapter 2. Literature Review

Chapter 2 reviews the latest research findings relating to the upper and lower body aerobic

exercise capacity and strength of patients with CPD. The main focus of the literature discussed

in this section will be directed towards COPD, as the vast majority of the literature available on

the topic being discussed is specific to COPD. As there are marked similarities in pulmonary and

systemic manifestations of COPD and other chronic respiratory diseases (Goldstein, 2005;

Holland, Wadell, & Spruit, 2013), the information may be applied to other chronic respiratory

conditions. Additionally, in a clinical setting they undertake the same pulmonary exercise

rehabilitation programmes (Holland et al., 2013; Rochester, Fairburn, & Crouch, 2014).

2.1. Introduction to Chronic Pulmonary Disease

As previously stated in Chapter 1, the major determinant of CPD is chronic airflow limitation that

is not fully reversible, which is primarily due to increased airflow resistance as a result of

obstruction, inflammation, and/or damage to the airways and lung parenchyma (WHO, 2013).

Chronic pulmonary diseases have a progressive nature, and symptoms, namely breathlessness,

chronic cough, and increased phlegm production, can flare up during exacerbations (WHO,

2013). These diseases are often under diagnosed and can reach life threatening stages before

they are detected by medical professionals (Doherty, 2006).

2.1.1. Obstructive vs. Restrictive Pulmonary Diseases

Diagnosis of CPDs are based on symptoms, thorough examination of patient history, lung function

testing, and optimal treatment regimen trials (GOLD, 2014). Spirometry is used to assess lung

function by measuring the volume and flow of air inhaled and exhaled. The key values used for

diagnosis are forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and the

FEV1/FVC ratio. On conclusion of the spirometry test, the values are displayed as absolute

values, as well as percentage predicted value based on age, sex, height, weight and ethnicity.

Essentially, the values can then classify individuals into obstructive and restrictive pulmonary

disease categories as follows: obstruction is present when FEV1 is reduced compared to the

percentage and the FEV1/FVC ratio is < 0.7; and restriction is present if the FEV1/FVC ratio is >

0.7 and FVC is < 80% predicted (Mason et al., 2010). Additionally, some CPDs may present with
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a combination of obstruction and restriction when their FEV1/FVC ratio is > 0.7 but both their FEV1

and FVC% predicted values are reduced. It must be noted that some CPDs can cause obstruction

of the airways, but may not fit the diagnostic criteria of COPD. For example, the cause of the

obstruction may be a secondary complication of another CPD, such as asthma or bronchiectasis,

and not fit the diagnostic characteristics for COPD (Athanazio, 2012; Lange, 2013).

2.1.2. Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease is a predominant and thoroughly researched pulmonary

condition. It is an umbrella term that encompasses those lung conditions which become chronic,

cause obstruction of the airways, have a history of exposure to noxious gases, and result in

irreversible damage to the lungs. Chronic obstructive pulmonary disease is diagnosed, according

to GOLD (2014), as a post-bronchodilator FEV1/FVC ratio of <0.7, a history of exposure to noxious

gases, and a reduced FEV1. The World Health Organisation (WHO, 2008) stated that COPD

affects 210 million people worldwide, and has caused 3 million deaths annually. Furthermore, the

WHO (2008) predicted that by 2030 COPD will become the third leading cause of death

worldwide. Likewise, COPD has a considerable impact on the health of the New Zealand

population, affecting 15% of the adult population (200,000 people) older than 45 years of age

(WHO, 2008).

2.1.3. Other Chronic Pulmonary Diseases

Asthma is a chronic disease of the airways characterised by inflammation and bronchial

hypersensitivity resulting in intermittent episodes of semi-reversible/reversible airway obstruction

(Cruz, Bousquet, & Khaltaev, 2007). The key distinction between asthma and other chronic airway

diseases is that the airflow obstruction is reversible in the initial stages of the disorder, but as time

goes on, some patients will develop permanent obstruction as a consequence of airway

remodelling (NHC, 2013). It is estimated that there are currently 235 million people worldwide

who have been diagnosed with asthma (WHO, 2013), and 250,000 people worldwide die from

asthma annually. Asthma is generally known as a condition diagnosed in childhood, however

more and more adults and elderly individuals are being diagnosed. In 2006/07, 109,900 children

and 348,400 adults, or nearly 460,000 New Zealanders in total had been diagnosed with asthma
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(NHC, 2013).  In 2011/12, one in nine New Zealand adults (11.0%), and one in seven children

aged 16 years and younger (14.0%) had asthma (NHC, 2013).

Bronchiectasis is an abnormal, chronic enlargement of the bronchi. Patients with bronchiectasis

have a chronic cough, elevated phlegm production, and bacterial infections develop in the

enlarged bronchi that result in inflammation that furthers the bronchial damage and the loss of

lung function (O’Donnell, 2008). Diagnosis is made by high resolution computerise tomography.

Bronchiectasis is characterised by airflow obstruction, phlegm production and hyperinflation and

is associated with decreased health related quality of life and reduced functional exercise capacity

(O’Donnell, 2008). While bronchiectasis is often a complication of a previous lung infection or

injury, it could also be due to an underlying systemic illness (O’Donnell, 2008). According to NHC

(2013), clinical estimates of bronchiectasis in New Zealand are between 272 and 341 per 100,000

people, and the total cost of hospitalisation of patients with bronchiectasis have been

approximated to $5 million (1.9% of total costs).

Obstructive sleep apnoea (OSA) is characterised by recurring episodes of obstruction of the upper

airway during sleep preventing normal breathing, which may result in hypoxemia (Cruz et al.,

2007; Fauci et al., 2008). Causes of OSA include obesity, abnormal upper airway anatomy and/or

other obstructions of the upper airway passages (Fauci et al., 2008). According to a New Zealand-

based population survey, OSA affects approximately 4.4% and 4.1% of Māori and non-Māori

men, and 2.0% and 0.7%, Māori and non-Māori women, respectively (Mihaere et al., 2009). Total

annual healthcare burden of OSA for New Zealanders aged 30–60 years were estimated at a cost

of $40 million (NHC, 2013).

2.2. Severity of Chronic Pulmonary Disease

Due to the progressing nature of these diseases, early detection is important as, unfortunately,

death and disability eventuate (Doherty et al., 2006). In order for medical practitioners to diagnose

and determine severity COPD, Doherty et al. (2006) promotes the use of the medical research

council (MRC) dyspnoea scale, Global Initiative for Chronic Obstructive Lung Disease (GOLD)

classification and BODE index classification.

Based on FEV1% predicted values, GOLD (2014) has developed diagnostic and disease

classification guidelines (Table 2-1). These guidelines, along with the MRC scale, are commonly
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used in research to classify individuals into categories of disease severity. The MRC scale

classifies dyspnoea on a five point likert scale to determine severity of breathing impairment

during exercise, walking or typical activities of daily living.

Table 2-1.
The GOLD classification for diagnosis and classification of chronic obstructive pulmonary
disease.

Grade Stage Diagnostic Criteria*

I Mild FEV1 ≥ 80% predicted

II Moderate 50% ≥ FEV1 ≤ 80% predicted

III Severe 30% ≥ FEV1 ≤ 50 % predicted

IV Very Severe FEV1 < 30% predicted
Or FEV1 < 50% predicted plus chronic
respiratory failure

Note. *ratio FEV1/FVC < 0.7; chronic respiratory failure is defined as arterial partial pressure
of oxygen (PaO2) less than 8.0 kPa (60 mmHg) with or without arterial partial pressure of
CO2 (PaCO2) greater than 6.7 kPa (50 mmHg) while breathing air at sea level.

The BODE index includes walking ability measured by the six minute walk test as part of its

disease severity classification framework. The BODE index is a validated multidimensional

grading system and is regarded as a better predictor of death from respiratory causes than FEV1

alone (Doherty et al., 2006) and can predict the number of exacerbations in these individuals

(Marin et al., 2009). The BODE-index has four dimensions including: body mass index (B), degree

of airflow obstruction (O), dyspnoea (D), and exercise capacity (E).

Several organisations have developed guidelines for the classification and management of CPD,

including: GOLD classification (Vestbo et al., 2013), The American Thoracic Society/European

Respiratory Society (Celli et al., 2004), Canadian Thoracic Society (O’Donnell et al., 2008), and

The Thoracic Society of Australia and New Zealand (Abramson et al., 2009). The general

consensus is that disease severity range from mild to very severe, with a decreasing FEV1 and/or

FVC being classed as more severe.

Early detection is important as pulmonary rehabilitation is just as effective in the earlier stages of

CPD, and hence may delay disease progression (Chee & Sin, 2008; Takigawa et al., 2007).

Improving exercise capacity is important for the long term survival of COPD patients as exercise
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training can slow disease progression (Garcia-Aymerich, Lange, Benet, Schnohr, & Anto, 2007).

Measuring exercise capacity of patients with CPD is important, as they tend to have a reduced

exercise capacity compared to non-COPD individuals (Gosselink, Troosters, & Decramer, 1996;

Hamilton et al., 1995; Johnson-Warrington., 2014).

Few studies have reported on the physical activity patterns of people with CPD. In general, it

seems these patients prefer to avoid exercise and the reasons for that are not entirely clear.  From

this perspective there has been increasing awareness and scientific interest in the response of

individuals with CPD to exercise and the potential benefits of using planned/structured physical

activity and PADL to delay physical decline in people with CPD (American Thoracic

Society/European Respiratory Society, 2006).

2.3. Exercise Intolerance and Physical Inactivity in CPD patients.

Exercise tolerance and functional status are impaired in patients with CPD causing disability and

a decrease in quality of life (Eisner et al., 2011). Although the causes of the reduction on exercise

capacity in CPD are complex, some of this decline may be attributed to a reduction in physical

activity levels. Reduced levels of physical activity, such as less involvement in PADL, have been

reported in patients with CPD (Watz, Waschki, Meyer, & Magnussen, 2009b). Physical activity

becomes increasingly harder to perform as patients with CPD experience the progressive decline

in lung function (Celli, 1998).  The decline in lung function is accompanied by an increase in

symptoms, namely dyspnoea and/or leg fatigue, which leads to greater exercise limitation

(Cooper, 2001). The volume, intensity and duration of the physical activity is limited by the CPD

patient’s perception and severity of their symptoms.  As a result, a downward spiral can evolve,

as a greater reduction in the amount of PADL performed leads to further deconditioning (Préfaut,

Varray, & Vallet, 1995).

Exercise limitation in COPD patients results from a complex interaction of central (lungs) and

peripheral (limbs) factors (Debigaré & Maltais, 2008). Chronic Pulmonary Disease patients have

an increased metabolic demand due to abnormal gas exchange, hyperinflation, and increased

dead space ventilation, which leads to an increased work of breathing (Ofir, Laveneziana, Webb,

Lam, & O’Donnell, 2008). Respiratory muscles become overloaded to supply the body with

adequate oxygen, causing an increased demand of oxygen utilisation of the respiratory muscles,
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and resultant dyspnoea occurs (O’Donnell & Laveneziana, 2007). When oxygen demand is

increased during activity a smaller proportion of the already limited oxygen supply is available for

the working muscles (Laghi & Tobin, 2003). These respiratory complaints may contribute to the

systemic complications associated with CPD which contribute to leg fatigue.

2.3.1. Symptoms during exercise

Research indicates that exercise in COPD patients is often more limited by leg effort than

dyspnoea (Killian et al., 1992). Dyspnoea and leg effort were examined in COPD patients and

normal subjects during leg ergometry (Killian et al, 1992). Leg effort limited exercise in 46% of

COPD patients and 36% of normal subjects, whereas 26% of patients with COPD and 22% of

normal subjects were limited by dyspnoea.  However, this study did not compare dyspnoea and

leg effort ratings in varying degrees of airway obstruction. Leg effort might, as a consequence, be

more prevalent as a barrier to exercise as the disease progresses.

Hamilton et al. (1995) investigated the relationship of leg effort with peripheral muscle strength

and maximal exercise capacity in healthy individuals and patients with cardiorespiratory

disorders.  A significant relationship was found between maximal exercise capacity and

quadriceps strength in all groups. Likewise, a significant relationship was found between leg effort,

cycling wattage and quadriceps strength in all groups (p<0.001).  Poor quadriceps strength may

cause low power output and higher leg effort during exercise, suggesting that improving

quadriceps strength can decrease leg fatigue at a given exercise intensity. An important finding

was that for a given quadriceps strength, leg effort was greater for the cardiorespiratory patients

than normal subjects when cycling at the same intensity. This shows that cardiorespiratory

patients experience more leg effort than healthy subjects and therefore have greater exercise

limitations. Hamilton et al. (1995) concluded that in cardiorespiratory patients, leg fatigue is related

to leg strength and exercise capacity, which may be worsened with deconditioning. Moreover, in

CPD patients reduced PADL may lead to deconditioning (Préfaut et al., 1995), which may

contribute to the alterations in peripheral muscle function often seen in CPD patients (Gosselink

et al., 1996). Lower limb dysfunction in CPD patients is common and is caused by structural

changes to the muscle, which leads to a reduction in skeletal muscle strength and endurance

(Gosselink et al., 1996; Serres, Gautier, Préfaut, & Varray, 1998).
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2.4. Lower Limb Impairments in Chronic Pulmonary Diseases

Debigaré and Maltais (2008) illustrated that lower limb muscle dysfunction is caused by a

combination of anthropometrical and biochemical (physiological) impairments. These

impairments include a reduced cross-sectional area and muscle wasting and a muscle fibre shift

from type I to type IIb (Gosker et al., 2003), decreased muscle oxidative capacity and

capillarisation, and decreased mitochondrial function (Gosker, Hesselink, Duimel, Ward, &

Schols, 2007a). These non-respiratory, systemic impairments and functional limitations were

shown to be critical determinants of disability in patients with COPD (Eisner et al., 2011), and are

a major limitation to exercise in CPD (Debigaré & Maltais, 2008). Lower limb muscle dysfunction

is not always related to lung function, as such limitations have been evident across all stages of

CPD (Seymour et al., 2010; Donaldson et al., 2012). Seemingly, these physiological and

anthropometric impairments present as a reduction in lower limb strength and endurance.

2.4.1. Reduced lower limb strength

Reduced quadriceps strength and thigh cross sectional area have been reported in patients with

CPD, when compared to healthy individuals (Bernard et al., 1998). Impairment in lower limb

strength of people with CPD has an impact on the health care system, as a reduction in

quadriceps strength of CPD patients is associated with an increased utilization of health care

services (Decramer et al., 1997), and can be used as a predictor of mortality (Swallow et al.,

2007).

Peripheral muscle dysfunction, specifically quadriceps weakness, has been found across all

stages of COPD (Seymour et al., 2010), even in those with mild/moderate disease. However,

quadriceps weakness does not occur during moderate COPD with normal physical activity levels

and fat-free mass (FFM) (Degens, Sanchez, Horneros, Heijdra, Dekhuijzen, & Hopman, 2005).

Their findings suggest that lower limb dysfunction may be prevented by maintaining physical

activity levels and lower limb muscle mass (Degens et al., 2005). Early physical rehabilitation

interventions may be useful for avoiding the decline in physical activity associated with CPD and

aid in preserving lower limb muscle dysfunction and in preventing the associated exercise

limitations.
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Hamilton et al. (1995) quantified that a 2-fold increase in quadriceps strength was associated with

a 1.5-fold increase in maximal exercise capacity in cardiorespiratory patients. Their result

suggests that quadriceps strength can determine the intensity of exercise that CPD patients can

perform. Furthermore, they reported that a 2-fold increase in quadriceps strength was associated

with a 30% decrease in the intensity of leg fatigue at a given power output, suggesting that

strengthening the quadriceps can improve exercise tolerance and decrease symptoms

associated with CPD during exercise tolerance testing (Hamilton et al., 1995).

2.4.2. Reduced lower limb endurance

Lower limb exercise endurance is significantly impaired in CPD patients when compared with

healthy controls (Serres et al., 1998). Moreover, quadriceps endurance has been reported to be

more affected in CPD patients than quadriceps strength (Coronell et al., 2004). Specifically,

Coronell et al. (2004) reported that quadriceps endurance was reduced by 77% and quadriceps

strength was reduced by 43% in CPD patients, compared to healthy controls. The impairment in

quadriceps endurance was present even in those with mild to moderate COPD with normal

physical activity levels. Their findings demonstrated the importance of muscle endurance testing

and may explain the reduction in cycling endurance time seen in COPD (Coronell et al., 2004).

Contractile fatigue of the quadriceps occurs after cycling in a significant proportion of patients with

COPD (Saey et al., 2003), which may limit cycling duration. After bronchodilation, no significant

improvements in cycling endurance time (measured by cycling at a constant rate of 80% of the

peak wattage obtained during a maximal incremental leg ergometer test) were shown in those

who experience quadriceps fatigue, suggesting that peripheral muscle fatigue is involved in

limiting exercise endurance in patients with COPD (Saey et al., 2003). Furthermore, a smaller

increase in cycling endurance time of patients with COPD was seen after bronchodilation in those

who report leg fatigue as the main limiting symptom, compared to dyspnoea (Deschênes, Pepin,

Saey, LeBlanc, & Maltais, 2008).

Leg fatigue tolerance at the end of exercise and aerobic capacity were independently related to

cycling endurance time (Vivodtzev et al., 2011). The authors speculated that non-respiratory

impairments may be stronger determinants of endurance time than air flow limitation, as the

differences in endurance time occurred independently of pulmonary function.
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2.4.3. Relationship of lower limb dysfunction and severity of air flow obstruction

Changes in peripheral muscle dysfunction accelerate with ascending disease severity causing a

decrease in physical function (Eliason, Abdel-Halim, Arvidsson, Kadi, & Piehl-Aulin, 2009). This

finding indicates that those with increasing CPD severity have greater functional limitations. The

relationship between aspects of lower limb muscle dysfunction and disease severity will now be

discussed.

Associations between disease severity (FEV1) and quadriceps structure and function have been

reported. For example, quadriceps strength and muscle cross sectional area have displayed

positive correlations with FEV1% predicted (Bernard et al., 1998). Additionally, meta-analysis data

revealed that the proportion of type I fibres in the vastus lateralis correlated with FEV1 and BMI in

patients with moderate to severe COPD (Gosker et al., 2007b).

While the above findings of Bernard et al. (1998) show that a reduction in quadriceps strength

may increase with disease progression, quadriceps weakness is present across all stages of

disease severity. For instance, Seymour et al. (2010) found significant differences in quadriceps

strength between healthy individuals and CPD patients for all GOLD stages. Despite the fact that

the highest percentage of patients with quadriceps weakness was in GOLD stage 4 (38%),

quadriceps weakness was apparent at early stages (GOLD stage 1).

Moreover, maximum cycling wattage has been strongly associated with FEV1 (r=0.71, p>0.05)

(Haccoun, Smountas, Gibbons, Bourbeau, & Lands, 2002). In this study, a combination of FEV1

and quadriceps endurance explained most of the variability in maximum cycling wattage

(Haccoun et al., 2002). Similarly, Serres et al. (1998) demonstrated that disease severity, physical

activity levels and lower limb endurance are inter-related and the authors speculated that the

three variables are cofactors that progress together. Their findings demonstrated that FEV1

correlated moderately with quadriceps endurance (r=0.52, p<0.05) and physical activity levels

(r=0.63, p<0.05) (Serres et al., 1998). Physical inactivity is apparent across all stages of COPD,

with a gradual decrease across the stages (Troosters et al., 2010). Exercise intolerance is

apparent in CPD patients as of GOLD stage I, which begins to have an impact of PADL as of

GOLD stage 2 (Díaz et al., 2013).
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Likewise, Jehn et al. (2011) demonstrated that daily walking activity is indicative of disease

severity in 107 patients with COPD (GOLD stage 2-4). Steps per day, time spent walking (at

passive, active and fast paced intensities), and total walking time differed significantly between

GOLD stages 2-4, and fast walking was negatively associated with GOLD stage, BODE index,

and the MRC dyspnoea scale. Walking time (min/day) and intensity were significant and

independent predictors of a BODE score ≥ 6. These findings indicate that walking time and

intensity are significant and independent predictors of disease severity and can be used to predict

the probability of poor prognosis of patients with COPD using the BODE index. Jehn et al. (2011)

concluded that exercise training is needed in COPD patients to improve functional capacity and

walking ability to potentially slow the progression of the disease. To date, the main body of

literature has investigated exercise tolerance specific to the lower limbs. There has been little

focus on the role of the upper limbs in the reduction of physical activity levels, exercise intolerance

and increase in disease severity.

2.4.4. Upper limb vs. lower limb function

Ventilation and heart rate are higher for arm ergometry during both maximal and submaximal

exercise at a given level of oxygen consumption (Owens et al., 1988). During maximal ergometry

testing, the maximum ventilation and heart rates achieved were similar for arm ergometry and leg

ergometry, however the maximum wattage and oxygen consumption obtained were lower for the

arms. It is unclear from this study whether arm ergometry resulted in more or less dyspnoea

and/or limb fatigue at similar heart rates or oxygen consumption. Castagna, Boussuges, Vallier,

Prefaut, and Brisswalter (2007) reported no significant differences in dyspnoea severity between

peak arm and leg exercise COPD patients. The authors observed differences between arm and

leg aerobic capacity in COPD patients and only a slight reduction in arm exercise capacity was

reported in COPD patients compared to healthy controls. Additionally, no statistically significant

differences were seen in mechanical efficiency during arm exercise between COPD and controls,

but mechanical efficiency was significantly decreased during leg cycling in COPD. These findings

suggest that there is less upper limb dysfunction in COPD compared to lower limb.

Upper limb muscle strength (triceps and biceps) and handgrip strength have been shown to be

significantly reduced in CPD patients compared to healthy controls (Clark, Cochrane, Mackay, &
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Paton, 2000; Gosselink et al., 1996). In contrast, Heijdra et al. (2003) showed no differences in

handgrip strength between patients with CPD and controls, however this was based on an

average of 3 attempts rather than the maximum. Peripheral muscle weakness has been apparent

in the upper body along with the lower body, however, upper limb strength appears to be better

preserved compared to lower limb strength in patients with CPD (Bernard et al., 1998). Their

findings demonstrated that lower body strength (quadriceps), upper body strength (pectoralis

major and latissimus dorsi), and thigh cross sectional area were all significantly reduced in COPD

when compared to healthy controls, however, the reduction in strength and type I fibres were

proportionately greater for the quadriceps than the pectoralis major and latissimus dorsi (Bernard

et al., 1998). In contrast, Franssen et al. (2005) reported that quadriceps and biceps strength

were significantly reduced compared to healthy controls, and they were equally affected (65 ±

3% and 67± 3% respectively). When the participants were split into fat free mass depleted and

non-FFM depleted COPD patients, quadriceps strength and endurance were significantly lower

in the FFM depleted subgroup, however, biceps strength and endurance and handgrip strength

were comparable between the two subgroups. This finding suggests that more of the muscle

atrophy in the FFM depleted participants occurred in the lower limbs compared to the upper limbs.

These above findings suggest that upper limb function is somewhat preserved as lower limb

endurance declines in COPD patients. Chronic Pulmonary Disease patients may reduce the use

of their lower limbs (potentially through a decrease in walking), while the use of the upper limbs

remain unchanged, however no studies were found which compared upper and lower limb activity

levels. During rest, the shoulder girdle muscles are often used as accessory respiratory muscles

to help facilitate the increase in breathing resistance, and are as a consequence quite active

during quiet breathing in COPD patients (Bevegard, Freyschuss, & Strandell, 1966).  Recruitment

of accessory respiratory muscles could mean that the upper extremity muscles are less under

loaded than the lower extremity, and could be the reason for the apparent preservation of upper

limb function. However in patients with COPD, arm activity results in a significant increase in

metabolic and ventilatory demand, which is emphasised during arm elevation, resulting in

dyspnoea, dynamic hyperinflation, and a consequent decrease in performance during arm

specific PADL (Celli, Rassulo, & Make, 1986; Martinez, Couser, & Celli, 1991; Velloso et al.,

2003). During arm specific PADL the muscles of the shoulder girdle are used as accessory
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muscles of respiration due to the increased work in breathing, causing an increase in oxygen

demand (Laghi & Tobin, 2003). Ventilatory constraints and the resultant breathlessness causes

limitation during arm specific PADL, which highlight the importance of upper limb exercise training

(Velloso, Stella, Cendon, Silva, & Jardim, 2003). Upper limb exercise training may reduce the

physical demands of PADL involving the upper limbs, as Couser, Martinez, and Celli (1993)

reported that eight weeks of upper limb exercise training (including arm ergometry and

unsupported arm exercise) resulted in significantly reduced ventilatory and metabolic demands

during unsupported arm exercise testing.

2.5. Body Composition

Low BMI and FFM are common in CPD patients, and can be used to predict poor prognosis

(Schols, Broekhuizen, Weling-Scheepers, & Wouters, 2005). A BMI of <21 as part of the BODE

index decreases the likelihood of long term survival in CPD (Doherty et al, 2006). While a BMI of

<18.5 kg.m2 is considered underweight according to the WHO, a BMI of <21 km.m2 is considered

the underweight cut off in CPD (Celli et al, 2004; ATS, 2014). Low BMI in CPD (<21 kg.m2) is

more common in severe stages due to muscle atrophy (Eliason et al, 2009). Body mass index is

a simple method of classifying individuals into body mass categories, however it does not

measure the components of body composition. Assessing FFM in CPD needs consideration, as

reduced FFM levels have been reported in male and female CPD patients with a normal BMI

(Vestbo et al, 2006). Fat-free mass is an independent predictor of mortality in CPD (Schols et al.,

2005), which supports the use of body composition assessment when considering severity of

disease in CPD patients.

On the other hand, a higher BMI has been associated with higher FEV1% predicted (Vibhuti et al,

2007), and a BMI >25 emerged as an independent predictor of better long term survival in CPD

patients (Lainscak et al, 2011). A BMI greater than 25 is likely to improve patient prognosis if the

higher BMI is associated with a higher amount of FFM. However, if the extra body mass is due to

an increase in fat mass (FM), it may increase the risk of co-morbidities such as obesity, metabolic

syndrome, diabetes, psychological disorders, and cardiovascular diseases (Chatila, Thomashow,

Minai, Criner, & Make, 2008; Franssen & Rochester, 2014; Watz, Waschki, Kirsten, et al., 2009a).
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In the early stages of COPD visceral FM is associated with a decrease in exercise tolerance and

contributes to low grade systemic inflammation, which in turn is associated with mortality in CPD

(Ramachandran, McCusker, Conners, Zuwallack, & Lahiri, 2008; Van den Borst et al, 2012).

Obesity has become increasingly prevalent in CPD and its impact on exercise tolerance, exercise

dyspnoea and prevalence of markers for metabolic syndrome during early stages of COPD also

needs consideration, according to Sava, Maltais, and Poirier (2011). Obesity decreases lung

function and is associated with increased dyspnoea independent of airflow obstruction (Sin,

Jones, & Man, 2002), suggesting that obese patients with CPD may experience more dyspnoea.

Even when obese and overweight patients have less severe airflow obstruction compared to

normal BMI patients, they experience more symptoms (Sava et al., 2010; Vibhuti et al 2007).

According to Monterio et al. (2012), increased FM contributes to muscle pain and fatigue during

exercise, which contributes to decreased physical activity and lower exercise intolerance in CPD.

The decline in PADL and exercise tolerance may cause patients to show symptoms like dyspnoea

during physical exertion at FEV1 levels that are normally considered equal to early stage disease

development. Patients with COPD who were physically inactive were more predisposed to

present with lower FFM percentages and higher FM percentages (Monterio et al., 2012).

Obese CPD patients entering pulmonary rehabilitation programmes commonly have reduced six

minute walk distance but not constant work rate cycling endurance times (Sava et al., 2010),

indicating that increased FM produces greater functional limitations during weight bearing

activities in CPD patients. In this study, normal weight (BMI 21-25 kg.m2), overweight (BMI 25-30

kg.m2) and obese (BMI>30 kg.m2) CPD patients displayed the same magnitude of improvements

in cycling endurance time and six minute walk distance. The differences in six minute walk

distance between high and low BMI were maintained even after exercise rehabilitation, validating

the impact high BMI has on weight bearing activities (Sava et al., 2010).

Exercise training for CPD patients can increase FFM, or delay the decline of FFM due to hypoxia

and deconditioning (Franssen et al., 2004). Fat-free mass is an independent predictor of mortality

in CPD (Schols et al., 2005), which supports the use of body composition assessment when

considering CPD severity, and supports exercise rehabilitation techniques that focus on
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improvement and preservation of lean mass. In terms of body composition, pulmonary

rehabilitation should aim to increase FFM and decrease FM, while attaining a normal BMI.

2.6. Exercise Testing

Exercise testing is crucial for measuring the physiological impact of CPD on the physical function

of patients. Exercise testing is important for the construction of personalized exercise

rehabilitation programmes for CPD patients to enable the best possible outcomes, and to

measure the effectiveness of exercise rehabilitation programmes. Exercise testing can include

exercise tolerance testing and peripheral muscle strength testing. Methods differ between

researchers and organizations and are dependent on available equipment, accessibility, cost of

administration, and degree of validity and reliability. Below is a summary of common exercise

testing methods used in pulmonary rehabilitation, as reported in the scientific literature.

2.6.1. Aerobic capacity testing

Gas exchange measurement during treadmill exercise, leg ergometry or arm ergometry is still

considered the most accurate way of determining cardiopulmonary ability of early and mid-stage

pulmonary disease individuals. Progressive incremental exercise protocols are normally used

which involves workload increases every 1-2 minutes until volitional exhaustion (American

College of Sports Medicine [ACSM], 2014). Maximal incremental exercise tests are useful in the

evaluation of CPD patients, but require expensive equipment that necessitates regular

maintenance and qualified professionals to supervise testing. The most commonly reported

cardiopulmonary exercise test in CPD is maximal incremental leg ergometry (Bernard et al., 1999;

Franssen et al., 2005; Troosters, Gosselink, & Decramer, 2000; Spruit et al., 2002; Mador et al.,

2011). Cardiopulmonary exercise testing to measure maximal oxygen uptake is a valid and

reliable method of testing aerobic capacity in patients with CPD (American Thoracic Society

[ATS], 2003). Clear guidelines for testing in clinical populations have been outlined by the

American Thoracic Society and the American Heart Association (ATS, 2003; American Heart

Association, 2010).

Constant work rate leg ergometry testing, or cycle endurance test (CET) is often used in

conjunction with incremental leg ergometry testing (Simpson, Killian, McCartney, Stubbing, &

Jones, 1992; Spruit et al., 2002; Mador et al., 2011). For the purpose of measuring cycling
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endurance time, an intensity of 60-80% of peak workload achieved in the maximal incremental

leg ergometer test is selected and patients are encouraged to cycle for as long as they can until

fatigue. Constant load leg ergometry testing has been shown to be a reliable and valid method

for measuring exercise endurance in patients with COPD (van‘t Hul, Gosselink, & Kwakkel, 2003).

Where maximal exercise is not appropriate, submaximal ergometry testing is an alternative

exercise testing method which uses equations to predict VO2max. Typically, it involves 2-4 stages

or 3-4 minutes of continuous exercise with regular increases in workload with each stage. The

YMCA submaximal leg ergometry test is commonly used in clinical populations when

cardiopulmonary exercise testing is either unavailable or unsafe. Heart rates are recorded in the

last minute of each stage, with the aim being to achieve a steady state heart rate (within 6bpm)

(ACSM, 2014). This submaximal ergometry test has been found to be valid and reliable at

predicting peak oxygen uptake, via an extrapolation method of submaximal exercise intensity and

heart rates in a healthy population (Beekley et al., 2004).

The six minute walk test (6MWT) is a self-paced field walking test that has become a popular

method to assess the functional ability of patients with CPD (American Thoracic Society, 2002).

This test measures the distance a person can walk quickly on a flat, hard surface in 6 minutes.

The test requires a 30m walkway but no exercise equipment. The self-paced 6MWT is generally

used to assess patient’s sub-maximal functional capacity. Most patients choose their own

intensity during the test and are allowed to stop and rest when needed. Most PADL are performed

at submaximal levels of exertion so the 6MWT may be a better reflector of the level of functioning

of PADL than maximal incremental tests (Pitta et al., 2005). Although the test is quick and easy

to administer, it does not measure peak oxygen uptake or evaluate the mechanisms of exercise

limitation. For this reason, it has been recommended that the 6MWT be used in conjunction with

maximal incremental exercise tolerance testing (American Thoracic Society, 2002).

Incremental maximal and sub-maximal exercise testing may be used for arm ergometry also. To

determine maximal exercise tolerance in CPD patients using arms, researchers have adopted the

maximal incremental exercise test protocols originally used for leg ergometry and treadmill testing

and used it for arm ergometry. Arm ergometry may be used as an additional testing method to

assess differences in upper and lower limb function in CPD (Owens et al., 1988; Carter, Holiday,
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Stocks, & Tiep, 2003). A review by Janaudis-Ferreira et al. (2011) suggested that arm ergometry

may be the best method for measuring peak supported arm exercise capacity and endurance in

CPD patients as it is easy to standardise and has been demonstrated to be a valid and reliable

test to measure the aerobic capacity.

Unsupported upper limb exercise tests (UULEX), the 6 minute pegboard and ring test (6PBRT)

and the grocery shelving task, are alternative upper limb exercise testing methods (Janaudis-

Ferreira et al., 2011). They require minimal equipment and are easy to administer in a clinical

setting. These tests mimic upper body PADL more than arm ergometry and are useful for

assessing upper body function during upper body PADL tasks. Unsupported upper limb tests

involve self-paced exercise intensity and may not be useful for accurately assessing exercise

capacity.

2.6.2. Peripheral muscle testing

Peripheral muscle strength and endurance testing is important for assessing systemic

manifestations of CPD such as muscle dysfunction. Isokinetic dynamometers are considered the

gold standard when measuring dynamic muscle strength and endurance. It consists of an

adjustable chair constructed next to a swivel able dynamometer with changeable lever arms

allowing testing of different muscles groups at various velocity and speed ranges. The machine

measures muscle force at a set velocity, providing maximal torque values. Muscle strength is

commonly expressed as maximal voluntary contraction. The most commonly tested muscle in

COPD patients is the quadriceps at an angular velocity of 60º.s-1 (Robles et al., 2011).

Handheld dynamometers, which tests the participant’s ability to exert force in a pre-set joint angle

against the assessor, has been used to test upper and lower body strength in CPD (Robles et al.,

2011). Handheld dynamometers are small and portable and have been shown to have excellent

reliability and to correlate with isokinetic dynamometry (r=0.332-0.617, p<0.001) (Whiteley et al.,

2012). They can however, only measure isometric muscle force at various joint angles and cannot

measure strength continuously through the full range of motion (Stark, Walker, Phillips, Fejer, &

Beck, 2011), such as is the case with isokinetic dynamometer testing. They are also dependent

on the strength of the assessor.
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Handgrip force measured using a handgrip dynamometer has been used as an indicator of upper

body strength in CPD (Shah, Nahar, Vaidya, & Salvi, 2013). Low grip strength is related to an

increase risk of multiple chronic diseases and hence premature mortality (Cheung, Nguyen, Au,

Tan, & Kung, 2013). In CPD, handgrip strength may be used as a quick functional measure of

prognosis, as decreased handgrip strength is associated with an increased risk of mortality and

exacerbations (Puhan, Siebeling, Zoller, Muggensturm, & ter Riet, 2012).

One repetition maximum (1RM) is a reliable method of evaluating maximal strength in untrained

middle-aged individuals (Levinger et al., 2009); and has been used to test upper and lower body

strength in CPD patients (Bernard et al., 1999). Repetition maximum is the maximal amount of

weight that can be lifted with one contraction, and can be performed with any machine or free

weights (ACSM, 2014). If it is unsafe to test true 1RM, it can be accurately predicted with an

equation for up to 10 repetitions (Reynolds, Gordon, & Robergs, 2006).

2.7. Exercise Training

The Australian lung foundation (2014) recommends exercise training as an essential part of the

rehabilitation process. Their current evidence-based recommendations are outlined in Table 2-2

below, which incorporates upper and lower body aerobic and strength exercise training. The

ultimate goals of pulmonary rehabilitation are to improve CPD patients’ physical function and

quality of life, increase participation in daily activities, and reduce health care utilization (Troosters,

Casaburi, Gosselink, & Decramer, 2005). A review of the practical recommendations for exercise

training in patients with CPD by Gloeckl, Marinov, and Pitta (2013) summarises the benefits of

exercise training. These benefits can include improvements in quality of life, increased peripheral

muscle strength and endurance, increased aerobic capacity, improved psychological health

profiles, improved balance, reductions in dyspnoea and fatigue perception at rest and during

exercise, decreased hospitalisations, and increased survival rates. The benefits of exercise

training are dependent on the individual goals and training components used in rehabilitation

interventions. New research into the contributions of factors limiting exercise tolerance of CPD

patients may enhance the research focus on examining and establishing specific exercise

rehabilitation guidelines for optimal exercise mode, intensity, frequency and/or volume of training.
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Table 2-2.
Australian Lung Foundation (2014) exercise training guidelines for patients with chronic pulmonary disease.

Mode Intensity Protocol Duration Frequency

Lower
limb

Endurance Training

Walking training
(Ground-based)

80% average speed on 6MWT
75% peak speed on incremental shuttle walk
Dyspnoea rating of 3 (moderate)

Continuous or
interval

30 minutes 4 or 5 times a week that includes 2 or 3
supervised sessions and home exercise
training

Walking training
(Treadmill)

As for ground-based walking training but reduce
speed by 0.5 to 1 kmph until familiar with
treadmill

Continuous or
interval

30 minutes 4 or 5 days a week that includes 2 or 3
supervised sessions and home exercise
training

Stationary cycle
training (if possible)

Dyspnoea rating of 3 (moderate) Continuous or
interval

30 minutes 4 or 5 days a week that includes 2 or 3
supervised sessions and home exercise
training

2) Strength training 10 RM (repetition maximum) 10 reps (1 set) 2 or 3 times a week with at least 1 day rest
between sessions

Upper
limb

Endurance training

Unsupported arm
exercise

Arm ergometry

Determine the weight that the patient can only
lift 15 times

Dyspnoea rating of 2 or 3 (slight or moderate)

15 reps (1 set) 4 or 5 times a week that includes 2 or 3
supervised sessions and home exercise
training

2) Strength training 10 RM (repetition maximum) 10 repetitions
(1 set)

2 or 3 times a week with at least 1 day rest
between sessions

Notes. 6MWT = 6 minute walk test, kmph = kilometres per hour, reps = repetitions, RM = repetition maximum.
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2.7.1. Lower limb benefits of exercise training

Lower limb exercise training in CPD patients has been well-established in pulmonary

rehabilitation due to the impact of lower limb muscle dysfunction on the physical functioning of

these patients (Casabur et al., 1999). Traditionally, exercise rehabilitation for CPD patients was

focused mostly on lower limb aerobic exercises such as cycling and walking (Chester et al., 1977;

Cockcroft, Saunders, & Berry, 1981). Consistent research findings indicating the relative

pronounced lower limb dysfunction apparent in CPD patients gave reason for lower limb strength

training to be introduced as part of the physical rehabilitation of CPD patients. Improvements in

exercise tolerance, such as improved maximum cycling wattage, submaximal cycling endurance

and walking distance, as a result of lower limb strength training have been well documented

(Rochester, 2003). Table 2-3 provides a summary of exercise training interventions studies that

targeted lower limb strength training and exercise capacity conditioning of CPD patients.

The duration of the exercise training protocols ranged from 2-6 months, with a training frequency

of 2-3 days per week. The pre and post exercise training aerobic capacity measures included

maximal incremental leg ergometry testing, CET at 60-80% of peak work rate determined by

incremental leg ergometry, 6MWT, and treadmill endurance walking. Five of the seven studies

used at least two of these lower limb aerobic capacity tests. Leg ergometry testing results are

expressed as peak wattage, VO2max, and VO2peak. Lower limb strength measures utilized in the

studies listed in Table 2-3 includes isokinetic strength and endurance testing of the quadriceps

and hamstrings, 1RM seated leg extension and leg press testing, and quadriceps fatigability

(endurance) measured by twitch force.

Four studies incorporated aerobic training and strength training as part of their exercise protocols.

Two studies included only strength training, while two studies compared aerobic and strength

training protocols. There were marked similarities between the aerobic and strength training

protocols. Aerobic training included leg ergometry and walking (treadmill or ground) or a

combination of the two. All five studies that included leg ergometry determined intensity by

percentage of peak wattage, with the initial wattage ranging from 30-60%. Treadmill walking

speed was determined by 6MWT speed and ground walking speed was at a self-selected

intensity. The majority of strength training protocols included machine weighted exercised,

namely, seated leg press, knee flexion and knee extension. Intensity ranged from 1-3 sets of 8-
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12 repetitions and training resistance was set at 50-70% of maximal strength. Progression of

exercise intensity was dependent on symptoms (Borg score) and individual improvements, which

were assessed on a weekly basis, with the aim of reaching 70-85% of their maximal strength.

The major findings of the eight studies outlined in table 2-3 were that leg ergometry capacity (peak

wattage, VO2max, and VO2peak) of CPD patients improve statistically significantly with lower limb

aerobic and strength training protocols lasting 8 weeks to 6 months. A longer training programme

duration and the utilization of combined aerobic and strength training exercises generally

produced better effect on walking ability and measures of VO2peak. One study (Simpson et al.,

1992), for example, did not include an aerobic exercise training component (apart from 5 minutes

of warm-up cycling) and reported no significant post-training differences in maximal incremental

leg ergometry wattage. This finding occurred despite the improvements in leg extension 1RM

(44%) and leg press 1RM (16%).

The type of aerobic ability test utilized to measure effect also appeared to impact on the outcome.

Cycle endurance test time and 6MWD for instance improved significantly independent of whether

aerobic training and strength training are used in isolation or in combination. Incremental cycle

ergometer testing requires respondents to manipulate increasingly higher cycle wattage as the

test proceeds while maintaining a pre-determined cycle speed. It is quite possible therefore that

outcome measures such as CET time or 6MWD, which do not require the participant to

manipulate increasingly higher amounts of training loads at a pre-determined speed, are more

prone to show improvements in studies that did not combine aerobic and strength training

protocols.
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Table 2-3.
Summary of the effects of exercise training interventions on lower limb strength and exercise capacity in CPD.

Study Dur/Freq Outcome measures Exercise protocol Training load Progressions Lower limb findings
Simpson
et al.,
1992
n=34
FEV1=18-
96%

3 x pw
8 weeks

Isometric strength:
quadriceps, hamstrings
1RM: single knee
extension and leg press
CET, 6MWT, &
Incremental leg ergometry

Warm up: 5 min low
resistance leg
ergometry
RT: single leg
extension, single
leg press

RT: 3 x 10
reps at 50%
1RM

Increased to
85% 1RM

44% increase in leg extension 1RM and 16% increase
in leg press 1RM (p<0.01)
23% increase max isometric force for quadriceps (240
± 23.6 to 301 ± 25.3 N, p<0.01)
CET significantly improved by 53% (518 ± 69 to 898 ±
95 seconds, p<0.01)
No sig. increases max incremental leg ergometry
capacity

Bernard
et al.,
1999
n=45
GOLD 2-3

12 weeks
3 x pw

Quad strength
Incremental leg ergometry
6MWD

AE: Leg ergometry
RT: leg press &
knee extension

30min
2 x 8-10 reps
60% 1RM

Increased to 3
x 8-10 at 80%
1RM

AE + RT: 8% increase in thigh CSA (160 ± 36 to 171 ±
38 cm2, p<0.0001); 20% increase in quad strength (57
± 20 to 67 ± 21kg, p<0.0001);
12% increase in Wpeak (p<0.05)
21% 6MWD increase (411±81 to 499±68m, p<0.001)
AE: 9% increase in quad strength (51±12 to 56±11kg,
0.05); and a 17% increase in 6MWD (388±78 to 454
±50m, p<0.0005)
19% increase in Wpeak (non-significant)

Clark et
al., 2000
n=26,
GOLD I

12 weeks
2 days
pw

Isotonic strength
Isokinetic strength
Treadmill endurance walk
Incremental leg ergometry

RT: body squat, calf
leg, press knee
flexion, knee
extension

3 x 10 reps
70% Max

70% Max
recalculated at
6 weeks

Quadriceps strength increased by 7.6±7.2kg (p<0.01)
in training group (controls = 0.4±4.8kg)
4205J increase in walking endurance (p<0.001)
Increase in isometric quadriceps work (320J, p<0.05)

Troosters
et al.,
2000
n=34
FEV=41±
16%

6 months
2-3 x pw

6MWT
Isometric quad strength
Incremental leg ergometry

Leg ergometry
treadmill walking
stair climbing
RT: quadriceps

60% Wpeak

6MWTspeed
2min, 1-3
reps
3 x 10 reps
60% 1RM

Increase to
80%

Sig. differences in change between training and
control groups in 6MWD (p=0.01), Wpeak (p=0.003),
VO2max (p=0.02), quadriceps strength ( p=0.004)
Correlation between improvements in 6MWD and
quad strength (r=0.38, p<0.05)

Notes. pw = per week, RM = repetition maximum, CET = cycling endurance time, 6MWT = six minute walk test, 6MWD = six minute walk distance, N = newtons, RT
= resistance training, AE = aerobic exercise, sig. = statistical significance, reps = repetitions, Wpeak = peak wattage, J = joules.
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Table 2-3. Continued.
Study Dur/Freq Outcome measures Exercise protocol Training load Progressions Lower limb findings
Spruit et
al., 2002
AE n = 16
RT n = 14
FEV1=38
±13%

12 weeks
3 x pw

Quadriceps peak torque
Quad, Hamstring force
CET at 70% Wpeak

incremental leg ergometry
6MWT

Walking,
Leg ergometry,
RT: quadriceps,
hamstrings

60% 6MWT
speed
30% Wpeak-
3x8 reps at
70% 1RM

Up to 25 min
at 75% Wpeak

Weekly
increases of
5% 1RM

Sig. increases in 6MWD for RT (38 ± 50 m, p<0.01)
and AE (41 ± 43, p<0.002)
Sig. increase Wpeak for RT (15 ± 16W, p<0.01) and AE
(14 ± 13W, p<0.001)
Sig. increase VO2peak of 89 ± 166 mL.L-1 (p<0.05) for
AE, but not RT (106 ± 253 mL.min-1, p=0.21)

Franssen
et al,
2005
n = 87
GOLD 3

8 weeks
3 days pw

FFM (Bioelectrical
impedance)
Isokinetic quadriceps
strength & endurance
Incremental leg ergometry

Submaximal leg
ergometry
Treadmill walking
Gymnastics
Strength training

50-60%
Wpeak

20min
20min
30min
NS

Based on
subject
improvement

Quadriceps strength and endurance increase of 20%
(p<0.01)
FFM increase of 1.5 ± 0.3kg (p<0.001)
Wpeak increase of 15 ± 2W (p<0.001)
VO2max increase of 137 ± 26mL/min (p<0.01)

Alexander
et al.,
2008
AE+RT
n=10
FEV1=
29.8±13%

8 weeks
2 x pw

1RM seated leg press
lower body strength (chair
stand), 8-foot up and go
6MWT

Treadmill
Leg ergometry
RT: seated leg
press

Combined
aerobic =
20min 1-2 x
12 reps

Increase to 40
min
Based on
RPE 11-13

14% increase in 6MWD (321 ± 32 to 365 ± 105m)
Non sig. increase in leg press 1RM of 2% (106 ± 32kg
to 107 ± 36kg)
Note: p-values not reported.

Mador et
al 2011
n=20
FEV1=
42±13%
pred.

8 weeks
3 x pw

6MWT
Incremental leg ergometry
CET 60-70% Wpeak

Quad strength & twitch
force

Leg ergometry
Treadmill walking

Calisthenics with
and without small
weights

50% Wpeak

80% 6MWT
speed
NS

5-10%
increase when
borg scores
<5

Sig. increases (p<0.05) in 6MWD of 10 ± 15.8% (414
± 134 to 446 ± 128m), Wpeak of 23.1 ± 33.3% (52.9 ±
22.1 to 64.4 ± 26.8W, and CET of 384 ± 352% (6 ± 3
to 24.7 ± 12.5min). All sig. difference compared to
controls.
Improvements in quad strength NS (baseline = 42.8 ±
9.8kg)
Quad fatigability sig. (p<0.05) reduced after training.
No differences between training and control groups.

Notes. pw = per week, RT = resistance training, AE = aerobic exercise, CET = cycling endurance time, Wpeak = peak wattage, 6MWT = six minute walk test, RM =
repetition maximum, 6MWD = six minute walk distance, reps = repetitions, RPE = rating of perceived exertion, sig = statistical significance, FFM = fat-free mass, NS
= not stated.
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The representative outcome measure to monitor improvements in lower limb strength in the eight

studies reported in Table 2-3 was quadriceps strength. Quadriceps strength improved across the

seven studies by 16-44%. Three studies reported on quadriceps endurance but used three

different outcome measures, making it difficult to compare. The one study which provided pre-

and post-quadriceps endurance isokinetic data reported a 20% increase in quadriceps endurance

(Franssen et al., 2005). The information summarized in Table 2-3 provides strong evidence of a

direct relationship between measures of leg strength and the ability to perform cardiovascular

tests that involve the lower limb. This relationship appears to exist independent from stage of

disease development, as the GOLD stage of the participants in all of the studies ranged from mild

or moderate to severe or very severe airflow obstruction.

2.7.2. Upper limb training

To optimize the ability of CPD patients to perform PADLs researchers have also investigated the

impact of upper limb exercise training on upper limb strength and aerobic capacity. Table 2-4

reviews seven upper limb exercise training intervention studies. The duration of the exercise

training protocols ranged from 6-12 weeks with a training frequency of 2-3 days per week, with

the exception of one study that exploited daily exercise training (Ries et al., 1988). Upper limb

aerobic training consists of arm ergometry, unsupported arm exercise, and resistance exercises

targeting the pectorals, deltoids, rhomboids, latissimus dorsi, biceps and triceps muscle groups.

The exercise training protocols are dissimilar across the seven studies making them difficult to

compare. Six of the seven studies included upper limb strength training and five reported on the

strength training outcomes. The strength training protocols across these studies ranged from 1-3

sets of 8-15 repetitions, which is similar to the leg strength training protocols (Table 2-3). Four

studies reported significant improvements in upper body strength using various measures of

strength, namely 1RM testing for arm curl, chest press, lateral pull down and incline bench press,

isometric force for elbow flexion and extension and shoulder flexion and abduction, and handgrip

dynamometry. The one study that reported non-statistically significant improvements in upper

body strength (grip strength) had a small sample size and high standard deviations which would

have impacted on the statistical significance.

Four studies included arm ergometry training, however only two reported post assessment data

(Ries et al., 1988; Gigliotti et al., 2005). Both of these studies reported significant increases in
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arm ergometry endurance time. One study compared arm ergometry and unsupported arm

exercise training, with both training protocols impacting positively on arm ergometry endurance

and measures of perceived dyspnoea and arm fatigue at a given work rate (Gigliotti et al., 2005).

Overall, three of the upper limb exercise training studies reported improvements in dyspnoea at

a given exercise intensity (Ries et al., 1988; Gigliotti et al., 2005; Janaudis-Ferreira et al., 2011).

Improvements after arm exercise training can include increases in arm exercise endurance, upper

body muscle strength, reduced dyspnoea and arm fatigue and improve health-related quality of

life (Janaudis-Ferreira et al., 2011). However, it is unclear how upper body training compares to

lower body training, and which modalities produce the largest improvements in exercise

symptoms, quality of life and performance during PADL. The potential to use arm ergometry to

lengthen or improve the effectiveness of training sessions in an attempt to increase gains in

aerobic capacity remains unclear.
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Table 2-4.
Summary of the effects of exercise training interventions on upper limb strength and exercise capacity in CPD.

Study Dur/Freq Outcome measures Exercise protocol Training load Upper limb findings

Ries et al, 1988
n=45
moderate-severe
COPD

6 weeks
1-2 x
daily

Arm ergometry
UULEX

Arm ergometry
Walking
RT or PNF

RT = 1-2 x 10
reps, 10RM
PNF = 3 x 4-10
reps, 6RM

Number of lifts on unsupported arm exercise test and
endurance time on the arm ergometer increased in both
upper training groups

Simpson et al.,
1992
n=34 FEV1=38%

8 weeks
3 x pw

Isometric handgrip
strength
1RM: arm curl

Warm up: 2 min arm ergometry
RT: arm curl

3 x 10 reps at 50-
85% 1RM

33% increase in arm curl 1RM (p<0.01)
Sig. increase max isometric force for biceps (28 ± 2.6 to 33 ±
3.2 N, p<0.01)

Bernard et al.,
1999
n=45, Gold 2-3

12 weeks
3 x pw

1RM Pectoralis major,
Latissimus dorsi

RT: chest press, lat pull down 30min
2-3 x 8-10 reps
60-80% 1RM

15% increase in pectoralis major strength (64 ± 16 to 73 ±
17kg, p<0.0001); 8% increase in latissimus dorsi strength (53
± 12 to 56 ± 11kg, p<0.05)

Spruit et al., 2002
AE n=16
RT n=14

12 weeks
3 x pw

shoulder abduction, &
elbow flexion force
Handgrip force

Arm ergometry
RT: pectorals, biceps, triceps,
deltoids,

4-9 min
3x8 reps, 70%
1RM

non-sig. increase in handgrip strength for RT (8 ± 15%,
p=0.09) and AE (30 ± 62%, p=0.07)

Gigliotti et al,
2005
n=12
GOLD 2-3

6 weeks
NS

Arm ergometry VO2

Dysnoea/Arm effort
Ventilation

UAE: repeated shoulder abduction
and extension, and ring and peg
board
SAE: Arm ergometry

UAE: as tolerated
SAE: 80% of peak
work rate

A significant increase in arm exercise endurance (p < 0.001)
at a standardized work rate, ventilation, exercise dyspnea,
and arm effort significantly decreased, while the decrease in
IC was significantly less (p < 0.01) post training.

Alexander et al.,
2008
AE n=10
AE+RT n=10

8 weeks
2 x pw

1RM incline bench press
upper body strength (arm
curl)

Arm ergometry
RT: incline bench press, lateral
pulldown, lateral arm raise, triceps
pushdown, upright row, bicep curl

Combined aerobic
= 20-40min
1-2 x 8-15 reps

Non sig. increase in incline bench press 1RM of 5.4% (34 ±
13 to 35 ± 13kg)
Note: p-values not reported.

Janaudis-Ferreira
et al, 2011
n=36
patients with
COPD

6 weeks
3 x pw

Dyspnea during PADL
6PBRT & UULEX
Dyspnoea & Arm fatigue
Isometric hand-held
dynamometer (EF, EE,
SF, SE, SAb, SAd)

RT biceps, triceps, pectoralis
major and minor, latissimus dorsi,
deltoids, and rhomboids

2 x 10-12 reps
10-12 RM

The arm resistance training programme improved arm
function (19.7%) and arm exercise capacity (15.30%) and
arm strength (EF 11.4%, EE 14.8%, SF 10.5%, SAb 13.4%).
Significant improvements in dyspnea during ADL, however no
increase in dyspnea seen with an increase in arm exercise
capacity.

Notes. UULEX = unsupported upper limb exercise test, RT = resistance training, PNF = proprioceptive neuromuscular fascilitation, N = newtons, AE = aerobic exercise, UAE =
unsupported arm exercise, SAE = supported arm exercise,   RM = repetition maximum, 6PBRT = 6min peg board and ring test, PADL = acticities of daily living, EE = elbow flexion, EE
= elbow extension, SF = shoulder flexion, SE = shoulder extension, Sab = shoulder abduction, SAd = shoulder adduction.
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2.8. Conclusion

Research evidence is clear and consistent that disease progression and lower limb dysfunction

impact negatively on aerobic capacity. As the disease increases in severity, the amount of activity

CPD patients are able to do not only decreases, but they also report more symptoms of dyspnoea

during exercise. Upper limb muscle function appears to be less affected than the lower limb and

hence there may be a potential to use arm ergometry to lengthen or improve the effectiveness of

exercise training sessions to speed up or maximise the improvements in aerobic capacity.

Chronic pulmonary disease severity increases with a decline in pulmonary function. Disease

severity can be classified from mild-very severe based on FVC and FEV1 % predicted acquired

through spirometry testing. Research evidence is clear and consistent that disease progression,

reduced levels of physical activity, and lower limb dysfunction impact negatively on aerobic

capacity. There appears to be a downward spiral that exists: as the disease severity increases,

the physical profile of the patient decreases, which in turn results in an increase in symptoms.

A relatively new area of research focuses on the impact of CPD on upper body aerobic capacity,

strength and fibre type changes. The relative importance of this relates to the possibility of

enhanced ability to perform upper body conditioning given upper body muscle function seems to

be less affected than lower limb function, and hence there may be potential to use arm ergometry

to lengthen or improve the effectiveness of training sessions in an attempt to increase gains in

aerobic capacity.

In attempt to enhance the training ability of CPD patients it is important to identify specific exercise

limitations in this population and to assess how much impact each limitation has on the overall

functioning of these individuals. This knowledge will enhance the understanding of the

behavioural and physiologic mechanisms behind the reduction in physical activity, and contribute

to the construction of effective exercise rehabilitation programmes to improve the outcomes of

CPD patients.
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Chapter 3. Method

3.1. Study Design

A cross-sectional research design was used to investigate the within group relationships of

pulmonary, strength, and physiological measures of patients with mild to very severe airflow

obstruction. All participants completed three one hour assessments, with 24 hours minimum

between. Appointment 1 consisted of informed consent, health screening, pulmonary function

testing and IPAQ (International physical activity questionnaire), MRC (Medical Research Council),

and ADL-D (Activity of daily living–Dyspnoea) questionnaires. Appointment 2 included resting

haemodynamics, anthropometric assessment, sub-maximal leg ergometry testing, and grip

strength testing. Appointment 3 included resting haemodynamics, sub-maximal arm ergometry

testing, and isokinetic quadriceps/hamstrings strength and endurance testing. The study protocol

had prior approval of research-ethics from the central lower-north island ethic committee of New

Zealand.

3.2. Participants

Forty-four patients referred by the Palmerston North Hospital Pulmonary clinic to the U-kinetics

exercise and wellness clinic for 12-weeks of exercise-based rehabilitation participated. Written

informed consent was obtained from all participants of the study. The participants had not been

involved in structured exercise training for at least one year prior to participation in the study.

All of the participants had been diagnosed with a chronic pulmonary condition (or a combination)

by a General Practitioner or Respiratory Physician including: chronic bronchitis, emphysema,

COPD, bronchiectasis, asthma, and obstructive sleep apnoea syndrome.

The descriptive and disease severity characteristics of the participants are displayed in Table 3-

1. The study participants included 44 CPD patients, 16 males and 28 females, with a mean age

of 59.8 ± 11.9 years. The mean FEV1% predicted was 54.6 ± 18.3, indicating GOLD stage 2

(moderate CPD). Participant’s FEV1% predicted ranged from 89-22% (mild to very severe airflow

obstruction).
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Table 3-1.
Participant descriptive and disease severity characteristics.

Mean ± SD Range

Age 59.8 ± 11.9 26-72

Weight (kg) 87.3 ± 20.6 41.9-142.1

BMI (kg.m2) 33.2 ± 11.0 18.8-51.9

BF% 30.6 ± 13.1 12.9-60.0

FVC% 70.6 ± 13.2 39-95

FEV1% 54.6 ± 18.3 22-89

GOLD stage 2 1-4

Notes. BMI=body mass index; BF%=body fat percentage, FVC% = forced vital capacity
percentage predicted, FEV1% = forced expiratory flow in one second percentage predicted,
GOLD = GOLD = Global Initiative of Chronic Obstructive Lung Disease.

The number of respondents in each disease severity category, based on the GOLD classification,

is displayed in Figure 4-1. For the purpose of this thesis, disease severity categories were merged

to form two groups, due to the low number of respondents in the mild (n=4) and very severe

categories (n=5). Mild and Moderate CPD stages (GOLD 1-2) were combined to form the “Mild-

Mod” group (n=28) and severe and very severe CPD stages (GOLD 3-4) were combined to form

the “Severe+” group (n=16). The Mild-Mod group included 10 males (35.7%) and 18 females

(64.3%); and the Severe+ group included 6 males (37.5%) and 10 females (62.5%).

Figure 3-1. Number and percentage of participants in disease severity categories based on GOLD
classification.
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3.3. Data Collection

3.3.1. Resting haemodynamics

Resting heart rate and blood pressure were measured after the participant had been in a supine

position for 5 minutes in a quiet room. Resting heart rate was obtained with the values shown on

an electrocardiogram system (custo cardio 100, Custo-Med, Germany). Resting blood pressure

was measured three times manually using a stethoscope and sphygmomometer (DiagnostixTM

720, American Diagnostics Corporation, Hauppauge, NY), and the lowest blood pressure reading

was recorded.

3.3.2. Anthropometric measures

Stature was assessed with shoes removed with a wall mounted stadiometer (model 222, Seca,

Hamburg, Germany). Body mass was measured on a calibrated electronic scale (Tanita,

Cloverdale, Western Australia 6985) with the shoes and as much clothing removed as possible.

Body mass index (BMI) was calculated by dividing body mass (kg) by stature (m) squared. Skin-

fold thickness of six sites (triceps, subscapular, supra-iliac, abdominal, thigh and medial calf) were

measured with Harpenden callipers (CE 0120, BATY International, RH15 9LB, England)

according to the guidelines of the International Society for the Advancement of Kinanthropometry

(Marfell-Jones, Stewart, & Marfell-Jones, 2006). Body fat percentage was calculated using

Yuhasz’s (1974) six-site formula for males [sum of 6 skinfolds x 0.1051 + 2.588], and for females

[(sum of 6 skinfolds x 0.1548 + 3.58].

3.3.3. Sub-maximal exercise tests

Leg ergometry

All participants completed a modified version of the YMCA sub-maximal leg ergometer testing

protocol (ACSM, 2014) for estimation of VO2max. Testing was performed on a leg ergometer

(ec3000e, Custo-med, Germany). The test comprised an unloaded one minute warm-up, followed

by three 4 minute stages. Participants started on 20-30 Watts for the first stage and then power

output was gradually increased with each stage depending on rating of perceived exertion (RPE),

pain and dyspnoea scores, and heart rate and blood pressure responses. Power output was

increased at the end of the 4th minute of each stage if the 3rd and 4th minute heart rates were

within a steady state (± 6 bpm) and no symptom limitations were present. The aim was to reach
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either 70% of the age adjusted maximum heart rate using Karvonen's Formula [(220 - age - resting

heart rate) x 0.7 + resting heart rate], or any symptom limitation according to the ACSM absolute

and relative contra-indications for terminating exercise testing (ACSM, 2014).

Electrocardiography (ECG) was used to monitor heart waveform and rhythm during exercise

testing using the Mason and Likar (1966) modified electrode placement provided by McArdle,

Katch, & Katch (2010). Arm electrodes were positioned medial to the anterior deltoid 1-2cm below

the right and left clavicle and foot electrodes were positioned over the lower ribs.

Power increments were decided by experienced Clinical Exercise Physiologists, based on heart

rate response, Borg scores, physical signs, blood pressure response, and the ECG. Heart rate

was recorded every minute of each stage using the heart rate reading on the ECG. Exercise blood

pressure was manually recorded during the last minute of each stage.

The following equation was used to calculate VO2max [VO2 = ((10.8 x work rate in watts) / body

mass) + 7] (ACSM, 2014).

Arm ergometry

All participants performed an incremental multi-stage sub-maximal arm ergometry test (ACSM,

2014). Testing was performed on a Technogym Arm Ergometer (Top Excite 700, Technogym,

Casena, Italy). Participants sat upright with both feet on the ground and at a distance that their

arms were slightly flexed while undertaking the arm ergometry test. Participants performed one

minute warm-up of unloaded arm cycling, before completing three stages of 3 minutes.

Participants started at 20-30 Watts and power increments were decided by professional judgment

of experienced Clinical Exercise Physiologists, based on heart rate response, Borg scores,

physical signs, and blood pressure response. The aim was to either reach 70% of age-adjusted

maximal heart rates (using Karvonen’s formula as above), a RPE score of higher than 14 or a

wattage equal to or greater than 42% as obtained during the last stage on the leg ergometry

assessment, according to Carter et al. (2003). Test termination points included the presence of

symptom limitation based on the ACSM's (2014) guidelines for early termination.

The following equation was used to calculate VO2max [VO2 = ((18 x work rate in watts) / body

mass) + 3.5] (ACSM, 2007). If peak wattage beyond 42% of leg ergometry wattage were required

for subjects to reach the same maximum heart rates as obtained during leg ergometry, the test
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continued beyond 3 stages until they reached the required heart rate, or the clients requested to

stop.

Dyspnoea, fatigue and RPE scores

Dyspnoea was measured during each stage of arm and leg ergometry using the Borg dyspnoea

scale (Borg, 1998). Perceived exertion was measured using the Borg RPE scale. Perceived arm

and leg fatigue was recorded using the Borg CR-10 scale (Borg, 1998). Subjects were instructed

to report a number describing their perception of limb fatigue during each stage of respectively

arm and leg ergometry. The Borg CR-10 scale is a general intensity scale with ratings from 0-12

that has previously been used to measure extremity pain/fatigue during exercise (Carter et al.,

2003).

3.3.4. Pulmonary function testing

Spirometry was performed in order to verify the degree of airway obstruction, with consideration

to the ratio FEV1/FVC, so that participants could be classified into mild (FEV1 ≥ 80% predicted),

moderate (predicted 50% ≤ FEV1 < 80%), severe (predicted 30% ≤ FEV1 < 50%) and very severe

(predicted FEV1 < 30%) obstruction categories (GOLD, 2014). Spirometry was performed using

a hand-held spirometer (EasyOne, nnd Medizintech AG, 8005 Zurich, Switzerland), which was

calibrated prior to each test with a 3L syringe. Participants performed the FEV1 and FVC

manoeuvre according to the American Thoracic Society guidelines (ATS, 2005). The participants

sat in an upright position with both feet on the floor wearing a nose peg when performing the test,

and were instructed to breathe in as deeply as they could, seal their lips around the mouthpiece,

and blow out as hard, fast and as long as possible. Subjects performed three attempts and the

best attempt was recorded.

3.3.5. Peripheral muscle strength testing

Upper body

Upper limb strength was measured by grip strength using a Baseline Hydraulic Hand

Dynamometer (Irvington New York, 10533 U.S.A). Two attempts were performed on each side

for familiarization and highest reading was recorded. The grip strength test started with the arm

in shoulder abduction of 90 degrees, with the elbow in full extension (00 of flexion). The subject

was instructed to grip the hand dynamometer as hard as they could, lower the arm down to the
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side of the body squeezing the tool with a maximum effort. The dynamometer was reset to zero

prior to each reading.

Lower body

Lower limb strength and endurance was measured by knee flexion and extension using an

Isokinetic muscle dynamometer (HUMAC norm, model 502140, Computer Sports Medicine, Inc.,

Stoughton, MA 02072, USA). The dynamometer was calibrated according to standard settings

outlined by the user manual with the axis of rotation in line with subject’s femoral epicondyles.

The dynamometer was corrected for gravity. Range of motion (ROM) was set to at least 90°.

Subjects completed one trial set of 5 repetitions at 60 and 180°.s-1 for familiarization and then one

set of 5 repetitions at 60°.s-1 and one set of 15 repetitions as fast as possible at 180°.s-1. Each set

was separated by a 60 second rest interval, which has been found to be an adequate rest period

during isokinetic testing to avoid fatigue (Parcell, Sawyer, Tricoli, & Chinevere, 2002). Subjects

were instructed to flex and extend their knee as hard and as fast as they could for the full duration

of the test. This quadriceps/hamstring strength and endurance testing protocol has been used on

healthy, inactive, elderly individuals (Malliou et al., 2003).

3.3.6. Dyspnoea

All subjects completed the MRC scale (Fletcher, Elmes, Fairbairn, & Wood, 1959) for the purpose

of determining severity of dyspnoea and stage of disease. All subjects completed the Activity of

Daily Living Dyspnoea (ADL-D) scale (Yoza, Ariyoshi, Honda, Taniguchi, & Senjyu, 2009), which

contains 15 items for assessing activity of daily living in patients with CPD. Subjects provide a

dyspnoea score of 4 (not at all) to 0 (maximal) for each item, with a lower score indicating more

severe dyspnoea.

3.3.7. International Physical Activity Questionnaire (IPAQ)

Current Physical Activities of daily living (PADL) were assessed using the International Physical

Activity Questionnaire (IPAQ) – Long Form. The IPAQ has 4 distinct PADL groupings,

distinguishing between job-related, transport, domestic and recreational (sport and leisure) PADL.

The IPAQ captures participation according to days and minutes of activity and segregates

between walking, moderate and vigorous activity by multiplying the various activity minutes with

a MET factor (8 METs for vigorous activity; 4 METs for moderate activity and 3.3 METs for
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walking). The questionnaire provides a total activity METs per minute score as well as individual

METs per minute scores for each of the four PADL groups. The IPAQ is currently considered the

gold standard of physical activity questionnaires, which has acceptable validity when assessing

levels and patterns of physical activity in adults (Hagströmer, Oja, & Sjöström, 2006).

A comprehensive and detailed interview was used in conjunction with the IPAQ to determine the

amount of upper and lower body PADL participants performed on a daily basis. This was done in

order to compare the impact of daily upper and lower body physical activities on aerobic capacity

(arm and leg ergometry) and measures of arm and leg strength.

3.4. Data Analysis

Statistical analyses were performed using STATISTICA (Version 7.0) and SPSS (Version 22).

Descriptive statistics are presented as means ± standard deviation. The data set presented with

normal distribution. Accordingly, a total of 8 statistical procedures were conducted including t-

tests, partial correlations, ANOVA, multiple linear regressions and a binary logistical regression

as follows:

Between group differences regarding anthropometric, PADL, aerobic and strength values were

analysed using unpaired t-tests for disease severity groups and gender.

A factorial ANOVA was conducted to explore the independent relationships of PADL and GOLD

stage with measures of arm and leg aerobic capacity and strength. The Tukey’s post-hoc test

was used to determine sub-group significance. Wilks Lambda and ETA2 analysis was used to

determine the combined and individual contributions of measures of PADL (type and volume) and

FEV1 to arm and leg ergometry capacity of patients with CPD.

Partial correlations were performed - controlling for age, gender, and BF% - to assess

relationships between measures of aerobic capacity (upper and lower body arm ergometry

capacity), measures of strength (grip and isokinetic quadriceps and hamstrings), pulmonary

function and physical activity (total activity and upper and lower body activity). The aim of the

partial correlations were to determine whether the ANOVA finding, that physical activity negates

the detrimental effect of disease development on certain measures of strength and arm aerobic

capacity, will sustain after statistical control for the influence of external variables such as BF%,

gender, and age.
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Two multiple linear regressions were conducted to determine if peak arm and leg ergometry

wattage could be predicted with quadriceps strength, grip strength and FEV1. A check for multi-

collinearity was completed and variables with r < 30 and > 90 were excluded. This analysis

provided more specific information about individual contributions. A binary logistic regression

analysis was used to examine the predictability of upper body function (arm ergometry) by

quadriceps strength.

For the purpose of the ANOVA and the binary logistical regression statistical analyses the

respondents were placed in groups.  For the ANOVA respondents were grouped according to

“high” and “low” regarding participation in total PADLs and FEV1%. For total PADL level was split

at the 50th percentile and FEV1% was split according to GOLD groups at 50% predicted (Mild-

moderate = low, and severe-very severe = high). The physical activity levels of the participants

was generally low and there were only 16 respondents with severe and very severe COPD (FEV1

<50%). The 50th percentile of the group distribution was henceforth selected for PADLS and FEV1

to ensure enough participants in the groups. For the multiple linear and binary logistical

regressions participants were grouped for each of the variables used into relative “high” and “low”

categories. Peak arm and leg ergometry wattage, quadriceps strength, and grip strength were

split at the 60th percentile, while upper and lower body PADLs, and FEV1% were again split at

the 50th percentile of the group distribution. Grouping at the 60th percentile are generally

recommended for binary and regression analysis because the aim is to distinguish predictability

of either poor or good performers (Thomas, Nelson, & Silverman, 2012).

3.4.1. Participant groups for further analysis:

For the statistical analyses, the participants were not grouped according to sex for three reasons.

Firstly, the numbers of male and female participants were similar in the two disease severity

groups. Secondly, the thesis aimed to investigate the influence of disease severity, rather than

gender, on arm and leg ergometry capacity. Finally, although one could argue that males and

females may respond differently during exercise and have different relationships between the

variables measured, the sample size was too small to split the groups further.
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Chapter 4. Results

The results reported below have been organised into themes relating to the outcome measures.

Firstly, comparisons of male and female participants are reported. The results then split into

sections regarding participant descriptive/anthropometric characteristics, disease severity,

aerobic, strength and physical activity measures. Each section reports the t-test, and ANOVA

statistics of the specified variable groups. These sections are then followed by a partial correlation

of strength, aerobic and physical activity variables. The chapter concludes with the reporting of

the prediction statistical procedures (multiple linear regression and binary regression analyses)

that were conducted.

4.1. Comparison of Male and Female Participants

4.1.1. Descriptive/anthropometric measures

A comparison of descriptive data for male and female CPD patients is displayed in Table 4-1.

Body fat percentage was 15.9% higher in females compared to males (p<0.001), while body mass

was comparable between males and females. There were no significant differences between

males and females for age or BMI.

Table 4-1.
Comparison of males and female participants for descriptive and anthropometric data.

Total (n=44)
± SD

Male (n=16)
± SD

Female (n=28)
± SD

t-value p-value

Age 59.8 ± 11.9 63.50 ± 9.2 57.68 ± 12.9 1.59 0.12
Body mass
(kg) 87.3 ± 20.6 89.45 ± 13.9 86.04 ± 23.7 0.53 0.60

BMI 33.15 ± 11.0 29.69 ± 4.1 35.13 ± 13.1 -1.61 0.11
BF% 30.56 ± 13.1 20.41 ± 7.7 36.36 ± 12.0 -4.77 <0.001

Note. BMI=body mass index, BF%=body fat percentage.

4.1.2. Disease severity

There were no significant differences between males and females for any of the disease severity

measures (Table 4-2).
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Table 4-2.
Comparison of males and female participants for disease severity measures.

Total (n=44)
± SD

Male (n=16)
± SD

Female (n=28)
± SD

t-value p-value

FVC% 70.6 ± 13.2 71.1 ± 13.0 70.4 ± 13.6 0.18 0.86
FEV1% 54.6 ± 18.3 50.6 ± 19.7 55.2 ± 17.8F -0.27 0.78
MRC Grade 2.0 ± 0.9 2.1 ± 0.9 2.3 ± 0.9 -0.72 0.48

Note. FVC% = forced vital capacity percentage predicted, FEV1% = forced expiratory flow in
one second percentage predicted, MRC = Medical Research Council.

4.1.3. Peripheral muscle strength

Males displayed significantly higher grip strength, quadriceps strength and hamstring strength

(p<0.001) compared to female participants (Table 4-3). Quadriceps and hamstrings endurance

were comparable for males and females.

Table 4-3.
Comparison of males and female participants for peripheral strength measures.

Total (n=44)
± SD

Male (n=16)
± SD

Female (n=28)
± SD

t-value p-value

Grip strength (kg) 30.9 ± 10.4 41.1 ± 8.6 25.1 ± 5.8 7.37 <0.001
Quad strength (Nm) 103.7 ± 35.0 129.4 ± 24.6 89.0 ± 31.6 4.40 <0.001
Ham strength (Nm) 53.1 ± 19.5 66.94 ± 16.0 45.2 ± 16.9 4.12 <0.001
Quad endur. (Nm) 88.4 ± 14.1 88.9 ± 12.3 88.2 ± 15.3 0.16 0.87
Hamstring endur. (Nm) 98.7 ±30.9 90.1 ± 16.8 103.6 ± 36.0 -1.41 0.17

Note. Quad endur. = quadriceps endurance, Hamstring endur. = hamstring endurance.

4.1.4. Arm and leg ergometry

The total group mean for arm ergometry VO2peak was comparable to the group mean VO2peak for

leg ergometry (Table 4-4). There were significant differences between males and females for

peak arm ergometry wattage (p=0.01), peak leg ergometry wattage (p=0.02), and leg ergometry

VO2peak (p=0.03). Male leg ergometry VO2peak was significantly higher than females (p=0.03),

however no difference was seen between males and females for arm ergometry VO2peak. No

statistically significant differences were seen between sexes for either arm or leg ergometry pain

scores.
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Table 4-4.
Comparison of males and female participants for arm and leg ergometry measures.

4.1.5. Physical activities of daily living

Male’s total physical activity level was 12.6% higher than females. Males reported a significantly

(p=0.02) higher level of vigorous physical activity and walking activity (p=0.05) than females

(Table 4-5).

Table 4-5.
Comparison of males and female participants for physical activity of daily living measures.

Total (n=44)
± SD

Male (n=16)
± SD

Female (n=28)
± SD

t-value p-value

Total activity* 3074 ± 3320 3342 ± 4586 2921 ± 2408 0.40 0.69
Vigorous activity* 313 ± 1042 798 ± 1643 36 ± 103 2.47 0.02
Moderate activity* 2242 ± 2283 1743 ± 2269 25278 ± 2281 -1.10 0.28
Walking activity* 524 ± 762 815 ± 1149 358 ± 334 1.98 0.05

Note. *Activity measured in MET (metabolic equivalents) minutes/week.

4.2. Participant’s Descriptive/Anthropometric Characteristics

4.2.1. GOLD group comparison

Table 4-6 provides data of the comparisons between the two CPD groups (mild-moderate vs.

severe+) for the descriptive/anthropometric data. Although the two groups mean age differed by

7 years and body mass and the mild-mod group was on average 12.3kg heavier, these differences

were not significant (p=0.06 and p=0.05, respectively). There were no statistically significant

differences (p>0.05) between the two groups in terms of any of the anthropometric variables.

Total (n=44)
± SD

Male (n=16)
± SD

Female (n=28)
± SD

t-value p-value

Leg VO2peak 21.8 ± 5.9 24.3 ± 6.7 20.4 ± 4.9 2.23 0.03
Leg Wattpeak 49.3 ± 19.1 57.8 ± 20.2 44.5 ± 17.0 2.24 0.02
Leg Painpeak 3.3 ± 1.8 2.8 ± 1.6 3.6 ± 1.9 -1.41 0.17
Arm VO2peak 21.6 ± 6.3 21.67 ± 6.6 21.5 ± 6.2 0.06 0.95
Arm Wattpeak 38.9 ± 11.7 45.0 ± 12.8 35.4 ± 9.6 2.84 0.01
Arm Painpeak 3.3 ± 1.5 3.34 ± 1.6 3.3 ± 1.5 0.17 0.86

Note. VO2peak = peak oxygen consumption (mL/kg.min), Wattpeak = peak ergometry wattage,
Painpeak = peak pain score during ergometry.
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Table 4-6.
Comparison of GOLD groups for descriptive and anthropometric data.

Total (n=44)
± SD

Mild-Moderate
(n=28)

± SD

Severe+ (n=16)
± SD

t-value p-value

Age 59.8 ± 11.9 57.3 ± 13.5 64.3 ± 6.7 1.93 0.06
Body mass (kg) 87.3 ± 20.6 91.8 ± 22.0 79.4 ± 15.5 -1.98 0.05
BMI 33.2 ± 11.0 35.2 ± 12.8 29.7 ± 5.4 -1.63 0.11
BF% 30.6 ± 13.1 32.3 ± 14.0 27.5 ± 11.0 -1.18 0.24

Note. BMI = body mass index, BF% = body fat percentage.

4.2.2. Relationship of CPD stage and physical activities of daily living with descriptive

and anthropometric data

Results of a factorial ANOVA, where the dependent and independent relationships of disease

severity and physical activity volume were compared with participant characteristics, are reported

in Table 4-7. No statistically significant differences were found between any of the physical activity

and disease severity groups for participant characteristic data. It is important to note the

comparative large standard deviation of group a (age = 16.22) and group b (body mass = 29.02)

due to two outliers which ended up in those groups. These high standard deviations, as well as

the small sample sizes had an impact on statistical significance.

Table 4-7.
Combined and individual relationships of CPD stage and total PADL with descriptive and
anthropometric data, as determined with a factorial ANOVA.

CPD Stage
PADL

(min/week)
Mild-Moderate Severe +

X SD X SD
Age Low a 55.7 16.2 c 64.5 5.6

High b 59.3 9.6 d 64.0 8.1
Body Mass Low a 95.7 14.6 c 77.4 16.3

High b 86.5 29.0 d 81.5 15.6
BMI Low a 37.7 14.4 c 28.0 4.8

High b 31.8 10.0 d 31.3 5.6
Body fat % Low a 35.2 14.4 c 24.4 8.5

High b 28.5 13.1 d 30.6 12.9

Note. Group a = mild-moderate CPD and low PADL level (n= 16), group b = mild-moderate CPD
and high PADL level (n= 12), group c = severe+ CPD and low PADL level (n= 8), and group d =
severe+ CPD and high PADL level (n= 8).

The F-ratio, p-values, ETA2, and Wilks Lambda scores of the factorial ANOVA for the descriptive

and anthropometric data are reported in Table 4-8. The Eta2 calculations indicated that CPD
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disease stage shows larger (non-significant) independent contributions than total PADL minutes

to the variances of age, body mass, BMI, body fat percentage.

The Wilks Lambda scores (Table 4-8) indicated that the two independent variables in combination

(CPD stage and total PADL minutes) explained small portions of the variances in age (100-

90.3=9.7%), body mass (100-87.9=12.1%), BMI (100-88.7=11.3%), and body fat percentage

(100-90.4=9.6%).

Table 4-8.
The f-ratio, p-values, ETA2 and Wilks Lambda scores of the factorial ANOVA investigating the
relationships of CPD stage and total PADL with descriptive and anthropometric data.

Dependent variables ANOVA groups F-ratio p-values Eta2 Wilks Lambda
Age CPD stage

Total PADL
Combined

3.326
0.181
1.428

0.076
0.673
0.249

27.4
6.39
9.67

90.3

Body Mass CPD stage
Total PADL
Combined

3.438
0.173
1.836

0.071
0.679
0.156

27.5
6.17
12.1

87.9

BMI CPD stage
Total PADL
Combined

2.267
0.137
1.701

0.140
0.713
0.182

22.4
5.51
11.3

88.7

Body fat % CPD stage
Total PADL
Combined

1.143
0.004
1.411

0.292
0.951
0.254

16.1
0.94
9.57

90.4

4.3. Disease Severity

4.3.1. GOLD group comparison

The mean FEV1% was 54.64±18.27, indicating GOLD stage 2 (moderate COPD), ranging from

22-89% (very severe to mild CPD). The groups showed statistically significant differences with

regard to FVC% (p<0.002) and FEV1% (p<0.0001), and MRC grade (p<0.003) (Table 4-9).

Table 4-9.
Comparison of GOLD groups and disease severity measures.

Total (n=44)
X ± SD

Mild-Moderate (n=28)
X ± SD

Severe+ (n=16)
X ± SD

t-value p-value

FVC% 70.6 ± 13.2 75.18 ± 11.4 62.7 ± 12.6 -3.36 0.002
FEV1% 54.6 ± 18.3 65.93 ± 10.7 34.9 ± 9.8 -9.54 0.0001
MRC
Grade 2.4 ± 0.8 1.9 ± 0.7* 2.8 ± 0.9 3.19 0.003

Note. FVC% = forced vital capacity percentage predicted, FEV1% = forced expiratory flow in
one second percentage predicted, MRC = Medical Research Council.
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4.3.2. Relationship of CPD stage and physical activities of daily living with other

measures of disease severity

Statistically significant differences were evident with the MRC grade and FVC% predicted (Table

4-10). The ANOVA split participants into four groups according to physical activity volume and

GOLD stages. Group a, refers to participants with mild-moderate CPD and low physical activity

levels. Group b refers to participants with mild-moderate CPD and high physical activity levels.

Group c includes participants with severe CPD and low physical activity levels. Group d refers to

participants with severe CPD and high physical activity levels.

The Tukey post hoc test (Table 4-10) demonstrated that groups a (low PA and mild-moderate

stage) and b (high PA but mild-moderate CPD stage) displayed better MRC grade scores than

groups c (low PA and severe to very severe CPD stage), with a set p-value of <0.05. Group a

also presented with a statistically significantly higher mean FVC% when compared to groups c

and d (p<0.05).

Table 4-10.
Combined and individual relationships of CPD stage and total PADL with other makers of
disease severity, as determined with a factorial ANOVA.

CPD Stage
Total PADL
(min/week)

Mild-Moderate Severe +
X SD X SD

MRC Grade Low a 1.9c 0.6 c 3.1 a b 0.83
High b 2.9c 0.9 d 2.4 0.74

ADL-D Low a 52.0 7.2 c 49.9 4.91
High b 49.9 7.4 d 50.4 4.67

FVC% Low a 77.4 c d 13.6 c 62.1a 12.3
High b 72.3 13.2 d 63.1a 13.8

Note. MRC = Medical Research Council, ADL-D = dyspnoea during activities of daily living,
FVC% = forced vital capacity percentage predicted.
Group a = mild-moderate CPD and low PADL level (n= 16), group b = mild-moderate CPD and
high PADL level (n= 12), group c = severe+ CPD and low PADL level (n= 8), and group d =
severe+ CPD and high PADL level (n= 8).
a indicates statistical significant (p<0.05) difference from group a, b indicates statistical significant
(p<0.05) difference from group b, c indicates statistical significant (p<0.05) difference from group
c, and d indicates statistical significant (p<0.05) difference from group, as found with the Tukey
post-hoc test.

The data in Table 4-11 indicated that CPD stage contributed independently and significantly to

the variances of FVC% predicted (44.5%; p=0.003), MRC grade (43.3%; p=0.003) and peak leg

ergometry wattage (31.4%; p=0.035). Total activity did not contribute significantly to the variances

of any of the dependent variables. As a combination, CPD stage and Total Activity contributes
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statistically significantly to the variances of FVC% (23.6%; p = 0.012) and MRC grade (27.4%;

p=0.005).

Table 4-11.
The f-ratio, p-values, ETA2 and Wilks Lambda scores of the factorial ANOVA investigating the
relationship of CPD stage and total PADL with other markers of disease severity in CPD
patients.

Dependent variables ANOVA groups F-ratio p-values Eta2 Wilks Lambda
FVC% CPD stage

Total PADL
Combined

10.356
0.282
4.121

0.003
0.598
0.012

44.5
7.33
23.6

76.4

MRC Grade CPD stage
Total PADL
Combined

10.257
1.266
5.030

0.003
0.267
0.005

43.1
15.2
27.4

72.6

ADL-D CPD stage
Total PADL
Combined

0.159
0.143
0.306

0.693
0.708
0.821

6.23
5.90
2.24

97.6

Notes. MRC = Medical Research Council, ADL-D = dyspnoea during activities of daily living,
FVC% = forced vital capacity percentage predicted.

4.4. Peripheral Muscle Strength

4.4.1. GOLD group comparison

The mean quadriceps strength, as measured by peak torque, for the total group was 103.67 ±

34.99 Nm, and mean hamstring strength was 53.10 ± 19.47 Nm for the total group. Statistically

significant differences were found between the two GOLD groups for quadriceps strength and

hamstrings strength (p<0.05). No differences existed between GOLD groups for grip strength,

quadriceps endurance or hamstrings endurance.
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Table 4-12.
Comparison of GOLD groups for peripheral strength measures.

Total (n=44)
± SD

Mild-Moderate
(n=28)

± SD

Severe+
(n=16)

± SD

t-value p-value

Grip strength
(kg) 30.9 ± 10.4 31.8 ± 10.6 29.4 ± 10.3 -0.73 0.47

Quad strength
(Nm) 103.7 ± 35.0 111.3 ± 37.7 90.3 ± 25.6 -1.97 0.05

Ham strength
(Nm) 53.1 ± 19.5 57.5 ± 21.0 45.4 ± 13.8 -2.06 0.04

Quad endur.
(Nm)

88.4 ± 14.1 87.2 ± 14.1 90.5 ± 14.4 0.73 0.47

Hamstring
endur. (Nm) 98.7 ± 30.9 96.3 ± 25.2 102.8 ± 39.7 0.67 0.50

Note. Quad endur. = quadriceps endurance, Hamstring endur. = hamstring endurance.

4.4.2. Relationship of CPD stage and physical activities of daily living with peripheral

muscle strength

Results of a factorial ANOVA, where the dependent and independent relationships of disease

severity and total PADL participation were compared with peripheral muscle strength measures,

are reported in Table 4-13. No statistically significant differences were found between any of the

physical activity and disease severity groups for the peripheral muscle strength data.

Table 4-13.
Combined and individual relationships of CPD stage and total PADL living with peripheral
muscle strength, as determined with a factorial ANOVA.

CPD Stage
PADL

(min/week)
Mild-Moderate Severe +

X SD X SD
Grip strength Low a 33.0 9.7 c 32.6 13.1

High b 30.2 11.9 d 26.2 5.5
Quad strength Low a 116.9 38.0 c 98.1 33.8

High b 103.8 37.6 d 82.6 11.2
Hamstring strength Low a 61.5 21.2 c 44.5 18.1

High b 52.2 20.4 d 46.3 9.0
Quad endurance Low a 89.4 10.7 c 93.9 17.9

High b 84.3 17.7 d 87.1 10.0
Hamstring endurance Low a 94.6 12.7 c 119.3 48.7

High b 98.7 36.4 d 86.4 19.5

Note. Group a = mild-moderate CPD and low PADL level (n= 16), group b = mild-moderate CPD
and high PADL level (n= 12), group c = severe+ CPD and low PADL level (n= 8), and group d =
severe+ CPD and high PADL level (n= 8).
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The F-ratio, p-values, ETA2, and Wilks Lambda scores of the factorial ANOVA for the peripheral

muscle strength data are reported in Table 4-14. The Eta2 calculations indicated that CPD disease

stage showed larger (non-significant) independent contributions than total PADL minutes to the

variances of quadriceps strength and hamstrings strength. Total activity showed larger (non-

significant) independent contributions than CPD stage to the variances of grip strength and

quadriceps and hamstring endurance.

The Wilks Lambda scores (reported in Table 4-14) indicated that the two independent variables

in combination (CPD stage and total activity minutes) explains small portions of the variances in

grip strength (100-94.1=3.9%), quadriceps strength (100-87.5=12.5%), hamstrings strength (100-

87.1=12.9%), quadriceps endurance (100-94.5=5.5%) and hamstrings endurance (100-

88.1=11.9%).

Table 4-14.
The f-ratio, p-values, ETA2 and Wilks Lambda scores of the factorial ANOVA investigating the
relationships of CPD stage and total PADL with peripheral muscle strength measures.

Dependent variables ANOVA groups F-ratio p-values Eta2 Wilks Lambda
Grip strength CPD stage

Total PADL
Combined

0.441
1.957
0.841

0.511
0.170
0.479

10.2
21.5
5.94

94.1

Quad strength CPD stage
Total PADL
Combined

3.514
1.779
1.906

0.068
0.190
0.144

27.7
19.7
12.5

87.5

Hamstring strength CPD stage
Total PADL
Combined

3.753
0.405
1.978

0.059
0.528
0.133

28.6
9.39
12.9

87.1

Quad endurance CPD stage
Total PADL
Combined

0.658
1.745
0.770

0.422
0.194
0.518

12.5
20.3
5.46

94.5

Hamstring endurance CPD stage
Total PADL
Combined

0.430
2.321
1.795

0.516
0.135
0.164

9.74
22.6
11.9

88.1

4.5. Arm and Leg Ergometry

4.5.1. GOLD group comparisons

Participants with mild-moderate CPD demonstrated significantly higher (28%) peak leg ergometry

wattage compared to the severe CPD group (p=0.03). The mild-moderate CPD group

demonstrated a 17% higher peak arm ergometry wattage, which was close to meeting statistical

significance (p=0.07). In addition, the leg pain scores reported during the ergometry testing were
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20% greater for those with mild-moderate disease compared to severe disease, however the

difference was not statistically significant (p<0.08). Arm pain scores were 23% higher in the mild-

moderate CPD group, compared to the severe group (p=0.13).

Table 4-15.
Comparison of GOLD groups for arm and leg ergometery outcomes.

4.5.2. Relationship of CPD stage and physical activities of daily living and arm and leg

ergometry

Results of a factorial ANOVA, where the dependent and independent relationships of disease

severity and physical activity volume were compared with arm and leg ergometry outcome

measures, are reported in Table 4-15. No statistically significant differences were found between

the physical activity and disease severity groups for any of the arm and leg ergometry outcome

measures.

Total (n=44)
± SD

Mild-Moderate (n=28)
± SD

Severe (n=16)
± SD

t-
value

p-
value

Leg
VO2peak

21.8 ± 5.9 22.8 ± 6.4 20.1 ± 4.5 -1.50 0.14

Leg
Wattpeak

49.3 ± 19.1 54.1 ± 21.0 40.9 ± 11.9 -2.30 0.03

Leg
Painpeak

3.3 ± 1.8 3.3 ± 1.7 2.7 ± 1.8 -1.78 0.03

Arm
VO2peak

21.6 ± 6.3 22.4 ± 6.5 20.1 ± 5.9 -1.16 0.07

Arm
Wattpeak

38.9 ± 11.7 41.3 ± 11.8 34.7 ± 8.3 -1.84 0.08

Arm
Painpeak

3.3 ± 1.5 3.6 ± 1.6 2.8 ± 1.4 -1.54 0.13

Note. VO2peak = estimated peak VO2 (ml/kg/min), Wattpeak = peak ergometry wattage, Painpeak =
peak pain during ergometry.
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Table 4-16.
Combined and individual relationships of CPD stage and total PADL with arm and leg ergometry
capacity, as determined with a factorial ANOVA.

CPD Stage
Total PADL
(min/week)

Mild-Moderate Severe +

X SD X SD
Leg Wattpeak Low a 58.8 20.0 c 41.9 14.6

High b 47.9 21.4 d 40.0 9.3
Leg VO2peak Low a 22.4 4.7 c 19.4 5.2

High b 23.4 8.3 d 20.8 4.0
Leg RPEpeak Low a 12.8 1.6 c 12.9 1.7

High b 12.7 2.2 d 12.3 0.9
Leg Dysppeak Low a 2.9 1.2 c 3.7 1.3

High b 2.7 0.8 d 2.9 1.2
Leg Painpeak Low a 3.7 1.3 c 2.6 2.2

High b 3.6 2.3 d 2.8 1.6
Arm Wattpeak Low a 42.8 10.2 c 33.1 9.6

High b 39.8 15.9 d 36.3 6.9
Arm VO2peak Low a 21.7 5.6 c 17.7 5.9

High b 23.4 7.6 d 22.6 5.0
Arm RPEpeak Low a 12.7 1.7 c 13.1 1.0

High b 12.6 1.6 d 11.5 1.2
Arm Dysppeak Low a 2.4 0.7 c 2.5 1.5

High b 2.4 1.2 d 2.2 1.3
Arm Painpeak Low a 3.7 1.6 c 3.2 1.5

High b 3.4 1.6 d 2.5 1.2

Notes. Wattpeak = peak ergometry wattage, VO2peak = estimated peak VO2 (ml/kg/min), RPEpeak =
peak rating of perceived exertion, Dysppeak = peak dyspnoea, Painpeak = peak pain during
ergometry. Group a = mild-moderate CPD and low PADL level (n= 16), group b = mild-moderate
CPD and high PADL level (n= 12), group c = severe+ CPD and low PADL level (n= 8), and group
d = severe+ CPD and high PADL level (n= 8).

The F-ratio, p-values, ETA2, and Wilks Lambda scores of the factorial ANOVA for the arm and

leg ergometry data are reported in Table 4-16. The Eta2 calculations indicated that CPD disease

stage displayed larger (non-significant) contributions than overall physical activity minutes to the

variances of peak leg ergometry wattage, peak leg ergometry VO2, peak leg pain, peak arm

ergometry wattage, and peak arm pain. Total activity displayed larger (non-significant)

independent contributions than CPD stage to the variances of peak leg ergometry RPE score,

peak arm ergometry VO2, and peak arm ergometry RPE and dyspnoea scores.

The Wilks Lambda scores (reported in table 4-16) indicated that the two independent variables in

combination (CPD stage and total activity minutes) explain small portions of the variances of peak

leg ergometry wattage (100-83.6=16.7%) and peak arm ergometry RPE (100-87.9=12.3%), and

less than 10% of the variances of the other arm and leg ergometry variables.
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Table 4-17.
The f-ratio, p-values, ETA2 and Wilks Lambda scores of the factorial ANOVA investigating the
relationships of CPD stage and total PADL with arm and leg ergometry capacity in CPD
patients.

Dependent variables ANOVA groups F-ratio p-values Eta2 Wilks Lambda
Leg Wattpeak CPD stage

Overall Act
Combined

4.725
1.242
2.622

0.035
0.272
0.064

31.4
16.1
16.4

83.6

Leg VO2peak CPD stage
Total PADL
Combined

2.247
0.395
0.852

0.142
0.533
0.474

22.9
9.63
6.01

94.0

Leg RPEpeak CPD stage
Total PADL
Combined

0.131
0.444
0.228

0.719
0.509
0.877

5.57
10.4
1.68

98.3

Leg Dysppeak CPD stage
Total PADL
Combined

1.888
1.888
1.339

0.177
0.177
0.275

20.7
20.7
9.13

90.9

Leg Painpeak CPD stage
Total PADL
Combined

2.973
0.019
1.044

0.092
0.891
0.384

26.3
2.08
7.26

92.7

Arm Wattpeak CPD stage
Total PADL
Combined

3.015
0.005
1.424

0.090
0.943
0.250

26.1
1.08
9.65

90.7

Arm VO2peak CPD stage
Total PADL
Combined

1.524
2.882
1.485

0.224
0.097
0.233

18.5
25.5
10.0

90.0

Arm RPEpeak CPD stage
Total PADL
Combined

0.495
3.543
1.838

0.486
0.067
0.156

10.4
27.9
12.1

87.9

Arm Dysppeak CPD stage
Total PADL
Combined

0.022
0.299
0.110

0.896
0.632
0.954

0.62
7.61
0.82

99.2

Arm Painpeak CPD stage
Total PADL
Combined

2.195
1.000
1.126

0.146
0.323
0.350

22.5
15.2
7.79

92.2

Notes. Wattpeak = peak ergometry wattage, VO2peak = estimated peak VO2 (ml/kg/min), RPEpeak =
peak rating of perceived exertion, Dysppeak = peak dyspnoea, Painpeak = peak pain during
ergometry.

4.6. Physical Activity

4.6.1. GOLD group comparisons:

Table 4-17 reports the comparison of GOLD groups for physical activity measures. No significant

differences were found between the mild-moderate and severe-very severe groups for total,

vigorous, moderate and walking activity. The severe CPD group displayed lower (64%) scores for

vigorous activity compared to the mild-moderate CPD stage, although this was not statistically

significant (p=0.58) due to the high standard deviations.
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Table 4-18.
Comparison of GOLD groups for physical activity measures.

Total (n=44)
X ± SD

Mild-Moderate
(n=28)
X ± SD

Severe+
(n=16)
X ± SD

t-value p-value

Total activity* 3074 ± 3320 2838 ± 947 3209 ± 860 0.75 0.73
Vigorous activity* 313 ± 1042 380 ± 647 195 ± 1218 -0.56 0.89
Moderate activity* 2242 ± 2282 2178 ± 2194 2279 ± 2371 -0.14 0.57
Walking activity* 524 ± 762 558 ± 864 465 ± 559 -0.14 0.70

Note. *Activity measured in MET-minutes per week.

4.7. Partial Correlation

Partial correlations were consequently conducted to examine the relationships between

measures of pulmonary function, leg ergometry capacity (arm and leg), strength (leg and grip)

and physical activity levels (overall, lower body and upper body) while controlling for age, gender,

and BF% (Table 4-18). Total activity and the amount of upper and lower body activity showed no

statistically significant relationship (p>0.05) with measures of strength and aerobic capacity.

Predicted FEV1% displayed a weak non-significant (p>0.05) correlation with quadriceps strength

(r=0.30), and significant (p<0.05) moderate correlations with peak leg watt (r=0.42), peak arm

watt (r=0.33), and hamstring strength (r=0.41).

Peak arm ergometry watt presented a strong positive association with peak leg ergometry watt

(r=0.81, P<0.05). Peak leg watt demonstrated a moderate positive correlation with quadriceps

strength (r=0.51, p<0.05) and hamstring strength (r=0.47, p<0.05). Peak arm watt correlated

moderately with quadriceps strength (r=0.58, p<0.05) and hamstrings strength (r=0.51, p<0.05).

No correlation was found between peak arm watt and grip strength (r=-0.02).

Grip strength demonstrated a significant negative correlation with peak pain during leg ergometry

(r=-0.34, p<0.05). Arm pain and leg pain during ergometry had a moderate association (r=0.62,

p<0.05), while quadriceps and hamstrings strength demonstrated a high association (r=0.75,

p<0.05).

Perceived pain (arm and leg) during ergometry did not correlate with maximum wattage during

the 3rd stage of both the arm ergometry (arm pain r=0.04; leg pain r=-0.08) and leg ergometry

(arm pain r=0.23; leg pain r=-0.02) tests. In contrast, leg strength measures correlated moderately

with arm and leg ergometry wattage (arm watt r=0.58; leg watt r=0.51, p<0.05).
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Table 4-19.
Partial Correlations of the total group (n=44) between lung function, arm and leg ergometry
capacity, peripheral muscle strength, and PADL type and volume, controlling for age, gender,
and body fat percentage.

Leg
WattPeak

Leg
Painpeak

Arm
WattPeak

Arm
Painpeak

Grip
Strength

Quad
Strength

Ham
Strength

FVC% 0.29 -0.03 0.22 0.08 0.28 0.16 0.19
FEV1% 0.42* 0.12 0.33* 0.22 0.17 0.30 0.41*
Leg WattPeak - -0.02 0.81* 0.23 -0.13 0.51* 0.47*
Leg Painpeak -0.02 - -0.08 0.62* -0.34* 0.13 0.13
Arm WattPeak 0.81* -0.08 - 0.04 -0.02 0.58* 0.51*
Arm PainPeak 0.23 0.62* 0.04 - -0.28 0.16 0.10
Grip Strength -0.13 -0.34* -0.02 -0.28 - 0.28 0.13
Quad Strength 0.51* 0.13 0.58* 0.16 0.28 - 0.75*
Ham Strength 0.47* 0.13 0.51* 0.10 0.13 0.75* -
Quad Endur. 0.10 -0.29 0.05 -0.19 -0.13 -0.13 -0.17
Ham Endur. 0.01 -0.09 -0.03 -0.01 -0.08 0.11 0.02
Total activity 0.02 -0.09 0.15 -0.14 0.02 -0.11 -0.06
UB activity 0.14 -0.01 0.29 -0.02 -0.12 0.11 0.18
LB activity 0.30 0.01 0.16 0.24 -0.14 0.08 0.13

Note. VO2peak = estimated peak VO2 (ml/kg/min), Wattpeak = peak ergometry wattage, Painpeak =
peak pain during ergometry, Ham = hamstrings, Quad = quadriceps, Endur. = endurance, UB
= upper body, LB = lower body.
*Indicates statistical significance at p<0.05.

4.8. Prediction of Arm and Leg Ergometry Wattage

A regression analysis was conducted to determine whether quadriceps strength (Nm), grip

strength (kg) and FEV1% were predictive of peak wattage during submaximal leg ergometry

testing (Table 4-19). The adjusted R2 indicated that 64% of the variability in peak leg ergometry

wattage was explained by the independent variables. The F statistic was 26.387 with a

significance level of p=0.00, indicating that we can reject the null hypothesis.

Quadriceps strength showed the highest predictability of peak leg ergometry wattage (p=0.00,

beta 0.844 and t=6.238). The model predicts that for a one Nm increase in quadriceps strength

(peak torque), peak leg ergometry wattage would increase by 0.5W, holding grip strength and

FEV1% fixed. Furthermore, grip strength and FEV1% were significant predictors of peak leg

ergometry wattage (p=0.038, β=-0.270, t=-2.143 and p=0.028, β=-0.230, t=2.279, respectively).

The model predicts that a 1kg increase in grip strength would proliferate with a 0.5W increase in

peak leg ergometry wattage; and a 1% higher in FEV1 predicted value would increase peak leg

ergometry wattage by 0.2W.
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Table 4-20.
Regression analysis to determine whether quadriceps strength (Nm), grip strength (kg) and
FEV1% could predict peak wattage during submaximal leg ergometry testing.

Adjusted R2 F p-value

Model 1 0.693 26.387 0.000

B Std. Error Beta t p-value
Constant 3.678 7.110 0.517 0.608
Quad strength 0.461 0.074 0.844 6.238 0.000
Grip strength 0.496 0.232 0.270 2.143 0.038
FEV1% 0.241 0.106 0.230 2.279 0.028

A second regression analysis was conducted to determine whether quadriceps strength (Nm),

grip strength (kg) and FEV1% were predictive of peak wattage during submaximal arm ergometry

testing (Table 4-19). The adjusted R2 indicated that 53% of the variability in peak leg ergometry

wattage was explained by the independent variables. The F statistic was 17.018 with a

significance level of p=0.00, indicating that we can reject the null hypothesis.

Quadriceps strength was the only independent variable that showed predictability of peak arm

ergometry wattage (p=0.00, beta 0.793 and t=5.125). The model predicts that if you hold grip

strength and FEV1% fixed, a one Nm increase in quadriceps strength (peak torque), would equate

to a 0.3W higher peak arm ergometry wattage.

Table 4-21.
Regression analysis to determine whether peak wattage during submaximal arm ergometry
testing could be predicted by quadriceps strength (Nm), grip strength (kg) and FEV1%.

Adjusted R2 F p-value
Model 1 0.53 17.018 0.000

B Std. Error Beta t p-value
Constant 12.991 4.978 2.610 0.013
Quad strength 0.265 0.052 0.793 5.125 0.000
Grip strength 0.184 0.126 0.163 1.132 0.264
FEV1% 0.074 0.074 0.115 0.998 0.324

Quadriceps strength, as measured with an isokinetic dynamometer, was a statistically significant

contributor to leg wattage and arm wattage in the two regression analyses (Tables 4-19 and 4-

20). The results of the two standard regression analyses raised the question of how important leg

strength is, and whether it could be used as a predictor of arm ergometer capacity. Is arm wattage

dependent on the maintenance of leg strength?
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4.9. Prediction of Arm Ergometry Wattage from Quadriceps Strength

A binary logistic regression analysis was therefore conducted to predict peak arm ergometry

wattage with quadriceps strength (Table 4-21, Model 1). A test of the full model against the

constant only model was statistically significant, indicating that quadriceps strength distinguishes

with statistical significance between low and high arm ergometry wattage (chi square = 14.75,

p=0.001). The Nagelkerke R2 value indicated that quadriceps strength contributed 38.1% to the

variance of peak arm ergometry wattage (obtained during the 3rd stage of the graded arm

ergometry test).

The odds ratio was 13.76, indicating that if a CPD patient has high quadriceps strength they have

a 13.76 times higher odds of having high peak arm ergometry wattage. This odds ratio equates

to an 85.0% probability of having high arm ergometry peak wattage if quadriceps strength is high.

The probability of having low peak arm ergometry wattage in presence of high quadriceps strength

ability is 29.2%.

In Model 2, FEV1% and grip strength were added to the prediction model, which had a negative

impact on the prediction model, as the odd ratio decreased from 13.76 to 10.49. The chi square

value was non-significant (p=0.915), which indicated that adding FEV1% and grip strength does

not improve the model’s ability to predict arm ergometry wattage during the 3rd stage of the arm

ergometry test.

Table 4-22.
Binary logistic regression analysis to predict arm ergometry wattage with quadriceps strength
while controlling for stage of pulmonary disease, dyspnoea during physical activity and grip
strength.

Arm Ergometry Wattage
Quad
Strength

-2 Log
likelihood

Nagelkerke
R2

B S.E Wald OR (95% CI) p-
value

Model 1 45.883 0.381 2.62 0.77 11.58 13.76 3.04-62.32 0.00

Model 2 45.705 0.385 2.35 1.00 5.56 10.50 1.49-74.17 0.02
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Chapter 5. Discussion

5.1. Introduction

The primary aim of this thesis was to investigate the combined and individual contributions of

physical activities of daily living (type and volume) and FEV1 to arm and leg ergometry capacity

of patients with CPD. The secondary aim was to examine the predictability and odds ratio of high

arm and leg ergometry capacity in CPD individuals with high and low arm and leg strength, while

controlling for stage of disease, body composition and gender.

The main findings of the present thesis were that the volume of PADL performed with the upper

and lower body did not correlate with the respective upper and lower body strength or ergometry

capacity measures. Hence the first hypothesis that individuals engaging in more PADL involving

the arms and the legs will show better respective arm ergometry capacity and leg ergometry

capacity, can be rejected. The regression analyses revealed that stage of disease, handgrip

strength and leg strength contributed (p<0.05), independently from body composition and gender,

to leg ergometry capacity (peak wattage). Arm strength did not contribute statistically significantly

to arm ergometry capacity (peak wattage). Finally, the odds-ratio of the binary logistic regression,

to predict peak arm ergometry wattage with quadriceps strength, demonstrated that CPD patients

were 13.76 times more likely to have high peak arm ergometry wattage if their quadriceps strength

was high. The second hypothesis that arm and leg strength measures would predict arm and leg

ergometry capacity independently from body composition and gender, can consequently be

accepted. Leg strength measures had better predictability (with regard to both arm and leg

ergometry capacity) than handgrip strength.

5.2. Interpretation of main findings

5.2.1. Comparison of males and females

A comparison of sexes revealed that males and females were comparable in terms of age, weight,

FVC% and FEV1%. Females displayed a higher body fat percentage than males; and males

displayed higher grip, quadriceps and hamstring strength, arm and leg ergometry peak wattage

and VO2peak, and levels of vigorous activity and walking. These results were expected and have

been seen previously in CPD patients and healthy subjects (Carter et al., 2003; de Torres et al.,

2005). The differences found in anthropometric and physiological measurements between male
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and female participants revealed the importance of controlling for sex in the statistical analyses,

and acknowledging the differences when interpreting the findings of this thesis. However, due to

the small sample size there were not enough participants to further split the disease severity

groups in terms of sex.

5.2.2. Participant descriptive/anthropometric characteristics

In this thesis, disease severity was not statistically significantly associated with age or

anthropometric variables. A comparison of GOLD groups revealed that there were no significant

differences between mild-moderate and severe+ groups with regard to age, body mass, BMI or

BF% (Table 4-6). Furthermore, the factorial ANOVA revealed that there were no significant

differences for age, body mass, BMI or BF% between participants with low or high PADL levels

with mild-moderate or severe CPD (Table 4-7). These findings indicated that volume of physical

activity and severity of CPD as a combination show poor relationships with body composition, age

and gender. Similarly, it has been reported that FM and FFM were not important correlates of

physical activities of daily living (Monteiro et al., 2012), suggesting that body composition is

unrelated to the volume of PADLs performed in this population. In contrast to the findings of the

t-test and ANOVA, it has been reported that low BMI is more prevalent with increased disease

severity (Kim et al., 2014; Schols et al., 2005). However, Kim et al. (2014) concluded that the

prevalence in low FFM was higher than that of low BMI and emphasised the importance of

investigating specific aspects of body composition in addition to BMI.

Further investigation of the data (Table 4-7) revealed there was a noticeable (non-significant)

difference between the mild-moderate CPD (groups a and b) and the severe CPD (groups c and

d) groups with regard to age and the anthropometric variables. These differences might not

statistically significant due to large standard deviations and small samples sizes. Two participants

in particular had a causal influence on the standard deviations namely a woman that weighed

57kg (group b) and an elderly woman aged 71 years (group a). The individuals with severe + CPD

(groups c and d) are on average 6.6 years older than the individuals with Mild-moderate CPD

(groups a and b). Using the mean SD of groups a and b (because it’s the largest) this age

difference (between the mild-moderate and severe+ groups) equates to a moderate effect size

difference (6.6/12.9 = 0.51). The mean body mass differences of the mild-moderate (groups a

and b) and severe+ (groups c and d) also equate to a moderate effect size difference (11.7/21.7
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= 0.54).  This finding is captured by the ETA2 values presented in Table 4-8, which shows that

stage of disease contributed more to the variances of body mass, age, BMI and BF% than overall

participation in physical activity.

In summary, GOLD stage appeared to contribute more to the variances in age, body mass, BMI

and BF% than volume of physical activity, supporting the findings from previous studies that body

composition may be associated with disease severity (Harik-Khan, Fleg, & Wise, 2002; Kim et al.,

2014). Further investigation is needed to examine the complex interaction between body

composition, physical activity levels and disease severity in the CPD population.

5.2.3. Other measures of disease severity

A comparison of GOLD groups revealed that participants with mild-moderate airflow obstruction

presented with significantly higher FVC% predicted and a significantly lower MRC grade (Table

4-9). The significant differences between the GOLD groups for MRC grade and FVC%, and the

high correlation between FEV1% and FVC% (r=0.79) justified the use of airflow obstruction

(FEV1%) as a single measure when splitting the groups according to disease severity.

5.2.4. Upper and lower body strength and ergometry capacity

Disease severity (GOLD stage) was associated with measures of upper and lower body physical

functioning. The comparison of GOLD groups revealed that participants with mild-moderate

airflow obstruction displayed significantly stronger hamstrings and quadriceps, suggesting that

disease severity is associated with measures of lower body strength (Table 4-12). Additionally,

patients with mild-moderate airflow obstruction demonstrated a significantly higher leg ergometry

peak wattage and reduced leg fatigue scores than the severe group, indicating that those

individuals with severe CPD had greater lower body exercise limitations (Table 4-15). Disease

severity (FEV1% predicted) was moderately associated with peak arm and leg ergometry wattage,

suggesting that as CPD severity increases, both arm and leg functional capacity decreases.

Similar findings have been reported for patients with chronic airflow obstruction by Carter et al.,

(2003), who found moderate associations between FEV1 and peak arm ergometry wattage

(r=0.59, p<0.0001), and peak leg ergometry wattage (r=0.53, p<0.0001). Previous studies have

demonstrated moderate to high associations between FEV1 and max/peak leg ergometry wattage

(Haccoun et al., 2002), and VO2max (Gosselink et al., 1996).
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The findings of the present study and the above mentioned previously published literature verify

that disease severity (FEV1) is associated with measures of upper and lower body exercise

capacity and lower body strength. Due to the cross-sectional construction of this study no causal

conclusions can be made but the data does show moderate relationships between FEV1 (stage

of disease) and arm and leg ergometry capacity.

In the partial correlations (Table 4-19), peak leg ergometry wattage was associated with higher

quadriceps strength (r=0.51) and hamstring strength (r=0.47), which is in line with previous

studies who found associations between leg ergometry capacity and quadriceps strength

(Gosselink et al., 1996; Hamilton et al., 1995; Hillman et al., 2012). Interestingly, an association

was found between peak arm wattage and lower limb strength. None of the studies reviewed in

chapter 2 reported this association. This finding in the present thesis was unexpected and will be

discussed later in the chapter.

In the present study peak arm ergometry wattage was strongly associated with peak leg

ergometry (r=0.81, p<0.05). In terms of peripheral muscle strength, however, comparison of CPD

groups revealed that leg strength is more reduced in the severe CPD group than arm strength.

There was less of a difference between the two GOLD groups for grip strength (7%, p=0.47) than

quadriceps (19%, p=0.05) and hamstring strength (21%, p=0.04). A similar pattern was observed

by Franssen et al. (2002), who observed a preserved upper limb exercise capacity compared to

the lower limbs. The authors found that arm and leg peak wattage obtained during ergometry

testing were similar (50 ± 3 vs 61 ± 4W, respectively), but the upper limbs were deemed less

affected than the lower limb, as the maximum wattage of healthy controls for leg ergometry was

approximately double that of the arms (205 ± 13 vs 108 ± 7W). Overall the upper limbs had less

of a reduction than the controls, but similar functional values were found when the researchers

compared arms and legs in COPD patients (Franssen et al., 2002).

In contrast, Carter et al. (2003) found a reduction in arm ergometry ability of 38% in comparison

with leg ergometry, and indicated a greater metabolic demand for arm ergometry than leg

ergometry. Differences in findings between Carter et al. (2003) and this thesis may be attributed

to the study population, since only 38% of their study population were female, whereas, 64% of

the subjects in the present study were female. In addition, the mean FEV1% predicted values

were higher for both males and females in the present thesis compared to Carter et al. (2003)
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(55.21 ± 17.75% vs. 46.5 ± 10.9% for females, and 50.63 ± 19.71% vs. 40.2 ± 9.3% for males,

respectively).

Total PADL (minutes/week) and GOLD stage, as a combination, did not explain major parts of

the variability within any of the strength or ergometry capacity measures (Tables 4-14 and 4-17).

However, it is important to note that overall physical activity contributed more to the variances of

peak RPE during leg ergometry (10.4 versus 5.57), arm ergometry VO2peak (25.5 versus 18.5),

peak RPE during arm ergometry (27.9 versus 10.4) and peak arm ergometry dyspnoea (7.61

versus 0.62) than CPD stage (Table 4-17). Total PADL also evidenced larger contributions to the

variances of grip strength (21.5 versus 10.2), quadriceps endurance (20.3 versus 12.5) and

hamstring endurance (22.6 versus 9.74) in Table 4-14. This is in line with Andersson et al. (2013),

who found lung function, walking speed, and muscle strength to be important correlates of

physical activity in COPD patients. The strength of the relationships between overall participation

in physical activity and the mentioned measures of strength and aerobic capacity in the current

study is probably influenced by the fact that the participants in this study generally exhibited quite

low levels of participation in physical activity. Only 11 participants met the recommended

requirements for adequate/sufficient physical activity according to the IPAQ guidelines (IPAQ

research committee, 2005), while none of the participants met the ASCM recommendations. This

will be discussed in more detail in the Physical Activities of Daily Living section below.

5.2.5. Physical activities of daily living

In this thesis PADL was measured with the IPAQ, which was used in the t-tests, ANOVA and

partial correlations. The comparison of GOLD groups revealed that no statistically significant

differences between the mild-moderate and severe+ groups in terms of the total volume of PADL

performed (Table 4-18). The partial correlations analysis supported this finding, showing no

association (p>0.05) between disease severity (FEV1 and FVC) and the total volume and ratio of

upper and lower body PADL performed by CPD patients. However, while the total activity and the

moderate activity levels of the two GOLD groups (mild-moderate versus Severe+) were similar,

the mild-moderate group reported a 48.6% higher mean vigorous physical activity score than the

severe+ CPD group (Table 4-18). The non-significant, reduced levels of vigorous activity in the

severe+ group suggested that disease development impacted on the amount of high intensity

physical activity performed on a daily basis.
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In contrast to the findings of this thesis, previous studies have shown moderate associations

between physical inactivity and disease severity progression (Pitta, Troosters, Probst, Lucas et

al. (2006a); Watz et al., 2009b; Jehn et al., 2011; Katajisto et al., 2012; Andersson et al., 2013;

Hartman, Boezen, de Greef, & ten Hacken 2013), which may contribute to the loss of strength

and exercise capacity. Specifically, Andersson et al. (2013) reported that FEV1 explained

approximately 20% of the variability in physical activity levels in their study participants. Changes

in both total activity and lower limb activity have been related to FEV1, and higher levels of leg

activity have been reported among subjects with better FEV1 (Walker et al., 2008).

The Wilks Lambda scores reported for the ANOVA’s (Tables 4-14 and 4-17) suggested that total

PADL does not contribute (individually or in combination with CPD stage) much to the variances

of muscle strength and ergometry capacity. Additionally, the volume of total PADL performed with

the upper and lower body correlates poorly (p>0.05) with the respective measures of upper and

lower body strength or ergometry determined aerobic capacity (Table 4-19). Hence the first

hypothesis that individuals engaging in more PADL involving the arms and the legs will show

better respective arm ergometry capacity and leg ergometry capacity, can be rejected. The

hypothesis is rejected with acknowledgement that the data may be influenced by the low levels

of physical activity in the group.

Four participants (9%) displayed low activity levels (0-599 MET minutes/week); 29 participants

(66%) were moderately active (600-2999 MET minutes/week); and 11 participants (25%) were

highly active (>3000 MET minutes/week), according to the IPAQ classification guidelines (IPAQ

Research Committee, 2005). According to the ACSM guidelines for participation in physical

activity for older adults, all the participants in the current study can be classed as physically

inactive (Chodzko-Zajko et al., 2009). Differences between the IPAQ and the ACSM guidelines

are that ACSM refers to physical activity outside of PADLs and the IPAQ includes PADLs.

Regardless, of this difference only 25% of the participants, which were in the “highly active” group,

exhibited levels sufficient enough to achieve health benefits according to the IPAQ guidelines.

The type and volume of PADL performed may, therefore, not have been specific enough to

maintain upper and lower body strength and aerobic capacity.

The findings of Katajisto et al. (2012) may explain the small contribution of physical activity to

strength and aerobic capacity in the present study. The authors reported that sensation of
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dyspnoea, pain, and discomfort felt during strenuous exercise contributed to the physical inactivity

of patients with COPD. Discomfort or fear might have prevented the participants in the present

study from performing PADLs at intensity high enough to maintain or improve their peripheral

muscle strength and/or exercise capacity, which emphasises the importance of specified exercise

training in this population. To provide more insight into the low levels of physical activity in this

population investigation into the facilitators and barriers to physical activity in the CPD population

of New Zealand is needed. New Zealand weather, for example, may restrict individuals with CPD

to indoor activities, as varying weather conditions may exacerbate symptoms. No studies could

be found on New Zealand weather and its role as an exercise barrier in CPD patients, however,

detailed interviewing of the participants involved in the current study, prior to exercise testing (data

not reported), suggested that the weather in the Manawatu region of New Zealand might indeed

have been a factor that restricted involvement in outdoor PADL in this cohort.

The differences in the findings of this thesis and previously published literature, with regard to

participation in physical activity and its relationships with measures of aerobic capacity, may be

attributed to the self-report nature of the IPAQ. It is important to note that some participants may

have overestimated their actual physical activity levels, especially those who take longer to

perform activities due to a lower level of fitness, giving them an advantage as they look like they

are physically active for longer but in reality they are actually doing less activity overall. It is likely

that this is why the severe+ group displayed higher total PADL minutes than the mild-moderate

group (3209 ± 860 vs 2838 ± 947 min/week) in Table 4-18. It has been reported that for self-report

physical activity questionnaires participants are likely to underestimate sedentary activities and

overestimate aerobic activities (Klesges et al., 1990).

5.2.6. Prediction of arm and leg ergometry wattage

The standard regression analysis to predict peak leg ergometry wattage revealed that quadriceps

strength, FEV1% predicted and grip strength explained 64% of the variability in peak leg

ergometry wattage (Table 4-20). Quadriceps strength and FEV1 showed the highest predictability

of peak leg ergometry wattage (p=0.00, beta 0.844 and t=6.238, and p=0.028, β=-0.230, t=2.279,

respectively). These findings support previous studies in which leg strength has emerged as a

contributing factor to lower body exercise capacity and disease severity (Gosselink & Decramer,

1998; Steiner, Singh, & Morgan, 2005; Hillman et al., 2012). Peripheral muscle strength and
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FEV1% have an impact on lower limb aerobic capacity. Indeed, multivariate modelling has shown

that 76% of the variance in 6MWD could be explained by lung function, quadriceps strength and

lean leg mass (Hillman et al., 2012). Furthermore, in the present study grip strength was the third

significant predictor of peak leg ergometry wattage (Table 4-20, p=0.038, β=-0.270, t=-2.143),

indicating that upper body strength and lower body exercise capacity are interrelated. In support,

strong associations have been reported between handgrip strength and leg ergometry capacity

in COPD, namely VO2peak (r=0.73), VO2max (r=0.53) (Gosselink et al., 1996), and maximum

wattage (r=0.76) (Müller, Viegas, & Patusco, 2012). In addition, grip strength has been associated

with the 6MWT (r = 0.58) (Marino et al., 2010); and lat pull down 1RM (as a measure of upper

body strength) was found to be a predictive factor of 6MWD (R2=0.589) (Dourando et al., 2006).

Even though Marino et al. (2010) and Dourando et al. (2006) use different aerobic capacity and/or

strength measures compared to the present study, their findings still support that upper body

strength and lower body exercise capacity are related in CPD patients.

The second standard regression analysis to predict peak arm ergometry wattage revealed that

quadriceps strength, FEV1% predicted and grip strength explained 53% of the variability in peak

leg ergometry wattage (Table 4-21). Quadriceps strength was the only significant predictor of

peak arm ergometry wattage. In support, the partial correlation demonstrated a moderate

association between peak arm ergometry wattage and lower body strength (quadriceps r=0.58

and hamstring strength r=0.51, p<0.05). As mentioned previously in the chapter, no supporting

evidence could be found in the literature on the relationship between leg strength and arm

exercise capacity. However, previous studies have compared upper body strength with lower

body strength, and upper body aerobic capacity with lower body aerobic capacity in CPD.

Recently, Miranda, Malaguti, Marchetti, and Dal Corso (2014) compared middle deltoid and

quadriceps femoris strength and endurance of 21 CPD patients with a mean FEV1 of 46.1 ± 10.3%

predicted. The researchers found deltoid and quadriceps similar with regard to absolute strength,

but higher fatigability in the quadriceps indicating better upper body muscle (deltoid) fatigue

resistance. Likewise, Franssen et al. (2005) reported that quadriceps and biceps muscle function

are equally affected in severe COPD.

The binary logistical regression analysis revealed that respondents with high quadriceps strength

scores were 13.8 times more likely to have a higher wattage during sub-maximal arm ergometry
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testing. This equates to an 85.0% probability of having higher peak arm ergometry wattage if

participants have stronger quadriceps. In support, stepwise regression analysis revealed leg

strength to be the only significant contributor to performance during PADLs (Beta=0.547, t(22) =

2.92, p = 0.008) (Kato, Rodgers, Stickland, & Haennel, 2012). In the present study, quadriceps

strength contributed to arm and leg exercise capacity in patients with CPD. For the purpose of

the binary regression "high” and “low” peak wattage and quadriceps strength were split at the 60th

percentile (114Nm). Clinically, this indicated that individuals with quadriceps strength testing

scores below 114Nm have an 85% probability of not reaching 35W during the 3rd stage of arm

ergometry testing.

The present thesis contributed to current knowledge by conducting a binary regression analysis

to provide odds ratios and probabilities to predict arm and leg exercise capacity. The findings

complemented those of both Miranda et al. (2014) and Franssen et al. (2005) which indicated that

there is an association between upper and lower body function in terms of strength in CPD

patients. In addition to the association between upper and lower body strength in CPD, the

findings of the regression analyses demonstrated that quadriceps strength is not only associated

with upper body strength, but also predicts upper body aerobic capacity. Leg strength measures

had better predictability (with regard to both arm and leg ergometry capacity) than handgrip

strength.

Based on the above findings of the regression analyses the second hypothesis that leg and arm

strength measures would predict arm and leg ergometery capacity independently from body

composition and gender, can be accepted. The results of the standard and binary logistical

regression procedures conducted in this study indicated that upper body functional decline is

highly related to lower body decline. Quadriceps strength was predictive of both leg and arm

ergometry capacity. A potential explanation for this may be that commonly performed upper body

PADLs also include leg involvement. Therefore, if there is a reduction in lower limb function this

could cross over to upper body activities that require leg involvement.

5.3. Limitations

While the findings of this thesis provide novel insights into the contributions of upper and lower

body strength to upper and lower body exercise capacity, it is acknowledged that there are some

limitations to the present study that may impact on the reliability of the results and their
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interpretations. These primarily include limitations to physiological measurements, physical

activity measurement, and the sample size/study population.

5.3.1. Exercise capacity measurement

In the present study, only an indirect sub-maximal arm ergometry and leg ergometry method was

used to estimate VO2max.  Direct gas exchange measures were not used in this study due to

inaccessibility and safety of the participants, but it is acknowledged that cardiopulmonary exercise

testing would have improved the accuracy of peak oxygen uptake measurement. However,

medical supervision would have been required to perform maximal exercise testing for several

high risk CPD patients and this was not feasible for this study. In addition, wearing a mask during

exercise testing may pose additional anxiety and create more dyspnoea for the CPD patients. In

defence, the extrapolation method used to predict VO2peak from the YMCA submaximal leg

ergometer test has been shown to provide accurate predictions values (Beekley et al., 2004).

However, Garatachea, Cavalcanti, García-López, González-Gallego, and de Paz (2007) reported

that predicted VO2max was overestimated in healthy adults by 5.4% for men, and 11.8% for women

for the YMCA protocol. Taking this overestimation into consideration, and acknowledging the fact

that the participants in the present thesis were not healthy adults, peak intensity used in this study

was based on symptom limits (i.e. the actual intensity where exercise needed to be terminated

due to symptom limitation).

5.3.2. Physical activity measures

Daily physical activity was measured subjectively using the IPAQ. In a comparison of physical

activity questionnaires/diaries and motion sensors, Pitta, Troosters, Probst, Spruit et al. (2006b)

stated that care must be taken when using subjective methods of measuring PA, as they rely on

patient memory and report. Accelerometers and motion sensors are more reliable methods to

accurately quantify physical activity levels; however they can only accurately measure lower body

activity. Measurement of hand/arm movements involving the carrying or lifting of objects cannot

be tracked accurately. Questionnaires are inexpensive and easy to apply and provide subjective

insights of the patient’s views of their own physical activity levels; however, patients may

underestimate sedentary activities or overestimate their true level of physical activity by 300%

(Klesges et al., 1990). However, to enhance the reliability of our physical activity findings, the

IPAQ questionnaire was completed under supervision of the researchers, and careful interviewing
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of the participants was applied when recalling their physical activity of their last typical week in an

attempt to avoid any under or overestimation of weekly physical activity.

5.3.3. Sample size and study population

A convenience sample (n=44) of CPD patients was used for the study, which was limited by the

number of referrals to U-kinetics. It was not possible to control the number of participants, or the

number of participants in the various GOLD stages. Accordingly, participants with severe and

very severe CPD were grouped together, as were participants with mild and moderate CPD. The

limitation with this approach was that the impact of disease severity could not be tracked as

effectively as was intended. It may be useful to complete a study with a larger sample size and

enough participants in the separate GOLD stage groups to compare outcomes.

Diagnostic/classification guidelines for COPD are that airway obstruction is evident with a post-

bronchodilator FEV1/FVC of <0.7; and disease severity can be classed from mild to very severe,

which increases with a decrease in FEV1 (GOLD, 2014). This thesis included participants with a

COPD, chronic asthma, bronchiectasis, and obstructive sleep apnoea. Twelve subjects (27%)

had a reduced FEV1 but did not meet the < 0.7 ratio criteria, and were categorised as having

restrictive lung disease. However, since there were no differences seen between any outcome

measures when FVC and FEV1% predicted were compared, and the fact that all of the study

population showed some reduction in FEV1% predicted, the GOLD classification system based

on FEV1% predicted was used to determine severity of disease. Diffusion capacity of the lung for

carbon monoxide (DLCO) (the extent to which oxygen passes from the air sacs of the lungs into

the blood) could have been another option of an indicator of disease severity, however this was

not available for all participants.

5.4. Future Research

The present thesis aimed to determine whether FEV1, peripheral muscle strength, symptoms

during exercise and PADLs contributed to arm and leg ergometry capacity in participants with

CPD. While all of the participants had been diagnosed with a CPD they had several different

specific diagnoses. It would be useful to conduct a larger study with participants split into groups

according to their specific diagnosis, to determine whether each condition demonstrated the same

exercise limitations.
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Although this study provided new insights into the relationships between leg strength and arm

and leg ergometry, the impact of these variables on the participants quality of life was not

considered. To expand on the present study, it would be useful to investigate whether leg strength

and arm and leg ergometry capacity are associated with quality of life and/or self-efficacy

measures of patients with CPD. This would provide insight into how reductions in physical

functioning impact their everyday lives from the perception of the individual.

In the present study lower limb dysfunction (low quadriceps strength) was associated with a

reduced upper and lower body exercise capacity. Further investigation into the mechanisms

behind the reduction in lower limb strength in patients with CPD is needed. Lower limb muscle

dysfunction can be amendable through exercise rehabilitation strategies (Debigaré & Maltais,

2008), however investigation into the specific components of strength training in CPD needs more

attention. Would it be more beneficial to focus on lower limb strength training rather than

continuous aerobic exercise training? What are the most effective method and dosage of strength

training for improving primary outcomes?

Optimal exercise rehabilitation strategies need to be investigated to enhance the effectiveness of

exercise training in this population. It is apparent that physiological characteristics differ in patients

with CPD, and this is not necessarily related to stage of disease based on pulmonary function

alone. Given that, it is evident that research is required to address the magnitude of individual

responses from exercise training based on disease severity. Disease severity classification may

need to take into account the impact of the disease on strength, aerobic capacity, and ability to

perform PADLs. Exercise training programmes may need to be individualised to match the level

of physical disability each individual has as a result of their condition. This in turn might enhance

the understanding of how to gain maximum benefits from pulmonary rehabilitation to improve the

quality of life of patients with CPD.

Additionally, further investigation into the relationship between arm and leg exercise capacity,

peripheral muscle strength, and the ability to perform PADLs is needed. Investigation into how

the benefits of supervised exercise training may be translated into an increase in PADLs is

needed. The physical strain on patients with CPD during PADLs was not assessed in this study,

which may be a useful tool for determining the specific physical limitations in the everyday lives

of patients with CPD. Further investigation into the impact of CPD on overall functioning in the
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everyday lives of patients with CPD may identify specific limitations that could be amended with

exercise training, which may increase the volume and intensity of PADLs performed, and in turn

slow the progressing of the physical decline seen in these individuals.

Alternative testing methods to determine severity of CPD are needed, especially for patients who

are unable to perform spirometry due to contra-indications caused by co-morbidities. It would be

interesting to investigate whether measures of grip strength, quadriceps strength or aerobic

capacity may be used to identify disease severity in individuals where pulmonary function

measures are unavailable. Grip strength and leg strength may pose an alternative method of

assessing severity of disease if it is unsafe to perform spirometry, and to assess a patient’s need

for a funded pulmonary rehabilitation intervention. Leg strength can be easily assessed by hand-

held dynamometry or a 1RM test if an isokinetic device in unavailable. Grip strength is

inexpensive, quick to administer, requires minimal equipment, and can be easily performed. Grip

strength may also be able to identify those who will not perform well in leg ergometry testing and

may be helpful in estimating starting wattage and the level of the watt increments between the

stages.

5.5. Clinical Implications

The findings of this thesis demonstrate the importance of maintaining and/or improving upper and

lower body strength, in order to maintain arm and leg functional capacity. Upper and lower body

strength measures were more important contributors to the participant’s physical functioning than

their weekly volume of PADLs. This indicated that the intensity of physical activity was more

important than the amount of physical activity performed, as a higher intensity would place a

greater demand on the peripheral muscles and aerobic system.

The importance of leg strength in CPD is well known and current exercise training guidelines

include leg strength training as a part of rehabilitation of CPD patients. This thesis shows that

there is a high association of leg strength to both arm and leg aerobic capacity, emphasising the

need for improving and maintaining leg strength. Attention needs to be given to gaining maximum

improvements in leg strength during exercise training interventions.

In addition, the inclusion of leg strength testing before an exercise training intervention is justified

in this study, to identify those who have reduced leg strength. A goal of amending this will be a
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key objective of the individual’s specific exercise programme. It also justifies the need to test leg

strength after rehabilitation interventions to monitor the effectiveness of exercise programmes on

improving leg strength.

5.6. Conclusion

In attempt to enhance the exercise training of CPD patients it is important to identify specific

exercise limitations in this population, and how much impact each limitation has on the overall

functioning of these individuals. Effective exercise rehabilitation programmes are important to

maximise the physical improvements gained by individuals with CPD so that they can maintain

an improved quality of life for longer. As a result, this will reduce the healthcare burden, and the

morbidity and mortality rates of patients with CPD.

It was well-established that lower limb muscle function is an important predictor of exercise

capacity and mortality in CPD. This study adds to the current literature by proposing that lower

limb muscle strength is an important contributor to arm exercise capacity in addition to leg

exercise capacity, as measured by arm and leg ergometry.

Leg strength and leg ergometry capacity were directly related to arm ergometry capacity. These

findings suggest that a reduction in leg function is associated with a reduction in arm function. It

is important to note that the findings of this thesis demonstrated merely an association between

upper and lower limb function, and does not indicate causation. However, a possible explanation

could be that commonly performed PADLs involve legs as well as arms. Therefore if lower limb

function is reduced and individuals with CPD start to avoid activities involving the legs, as a

consequence arm activities that also involve standing or walking might also be avoided.

The findings of this thesis highlight the importance of assessing upper and lower limb strength in

patients with CPD. This thesis endorses the incorporation of specified lower limb strength training

in pulmonary rehabilitation, especially for those with reduced strength and physical activity levels.

Pulmonary rehabilitation programs should incorporate both aerobic exercise and lower limb

strength training.
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Appendix A - Borg Scales

Borg CR10 scale (1998)

0 Nothing at all “No P”

0.3

0.5 Extremely weak Just noticeable

1 Very weak

1.5

2 Weak

2.5

3 Moderate Light

4

5 Strong Heavy

6

7 Very strong

8

9

10 Extremely strong “Max P”

11

 Absolute maximum Highest possible
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Borg Dyspnea Scale

0 None

0.5 Very, very slight

1 Very slight

2 Slight

3 Moderate

4 Somewhat severe

5 Severe

6

7 Very severe

8

9 Very, very severe

10 Maximal
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Borg’s Rating of Percieved Exertion Scale (RPE)

6

7 Very, very light

8

9 Very light

10

11 Fairly light

12

13 Somewhat hard

14

15 Hard

16

17 Very hard

18

19 Very, very hard

20
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Appendix B – MRC Grade

Medical Research Council dyspnoea scale (Tick one)

Grade Degree of breathlessness related to activities

1 Not troubled by breathlessness except on strenuous exercise

2 Short of breath when hurrying or walking up a slight hill

3 Walks slower than contemporaries on level ground because of
breathlessness, or has to stop for breath when walking at own
pace

4 Stops for breath after walking about 100m or after a few minutes
on level ground

5 Too breathless to leave the house, or breathless when dressing
or undressing

Adapted from Fletcher C.M., Elmes P.C., Fairbairn A.S. et al. (1959). The significance of
respiratory symptoms and the diagnosis of chronic bronchitis in a working population.
British Medical Journal, 2:257-66.
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Appendix C – ADL-D Scale

The Activity of Daily Living Dyspnoea scale

Name

 For each activity listed below, please rate your breathlessness on a
scale between 0 and 4, where 4 is not at all and 0 is maximally severe.

 If you find some activities are not performed by you, please give your
best estimate of breathlessness if you were to perform the task.

 Your responses should be for an ‘average’ day during the past week.
 Please response to all items.

Not at
all

Slight Severe Very
Severe

Maximally
Severe

Walking on level ground 4 3 2 1 0

Walking upstairs 4 3 2 1 0

Waking uphill 4 3 2 1 0

Walking inside the home 4 3 2 1 0

Straining to pass a bowel
motion 4 3 2 1 0

Putting on and taking off
jacket 4 3 2 1 0

Putting on and taking off
trousers 4 3 2 1 0

Putting on and taking off
socks 4 3 2 1 0

Washing face 4 3 2 1 0

Brushing teeth 4 3 2 1 0

Washing hair 4 3 2 1 0

Washing one’s back 4 3 2 1 0

Washing feet 4 3 2 1 0

Bending over 4 3 2 1 0

Shopping 4 3 2 1 0

© 2009 Asian Pacific Society of Respirology
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Appendix D – IPAQ
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Appendix E – Full Results Tables

Table 1.
Descriptive data of all participants and gender differences.

Total X ± SD
(n=44)

Male X ± SD
(n=16)

Female X ± SD
(n=28)

p-value

Age 59.80 ± 11.92 63.50 ± 9.18 57.68 ± 12.91 0.12
Weight 87.28 ± 20.58 89.45 ± 13.89 86.04 ± 23.72 0.60
BMI 33.15 ± 10.98 29.69 ± 4.06 35.13 ± 13.10 0.11
BF% 30.56 ± 13.08 20.41 ± 7.71 36.36 ± 11.98 <0.001
FVC% 70.64 ± 13.22 71.13 ± 13.03 70.36 ± 13.55 0.86
FEV1% 54.64 ± 18.27 50.63 ± 19.71 55.21 ± 17.75 0.78
Leg VO2peak 21.84 ± 5.86 24.34 ± 6.73 20.42 ± 4.88 0.03
Leg Wattpeak 49.32 ± 19.13 57.81 ± 20.16 44.46 ± 17.02 0.02
Leg Painpeak 3.31 ± 1.82 2.81 ± 1.61 3.61 ± 1.89 0.17
Arm VO2peak 21.59 ± 6.29 21.67 ± 6.64 21.54 ± 6.20 0.95
Arm Wattpeak 38.86 ± 11.71 45.00 ± 12.78 35.36 ± 9.62 0.01
Arm Painpeak 3.29 ± 1.52 3.34 ± 1.62 3.26 ± 1.49 0.86
Grip strength 30.92 ± 10.39 41.13 ± 8.64 25.09 ± 5.79 <0.001
Quad strength 103.67 ± 34.99 129.38 ± 24.62 88.98 ± 31.59 <0.001
Ham strength 53.10 ± 19.47 66.94 ± 15.96 45.20 ± 16.85 <0.001
Quad endur 88.42 ± 14.11 88.88 ± 12.31 88.16 ± 15.26 0.87
Ham endur 98.71 ±30.94 90.09 ± 16.83 103.63 ± 36.03 0.17
Total activity 3074 ± 3320 3342 ± 4586 2921 ± 2408 0.69
Vigorous activity 313 ± 1042 798.13 ± 1643 36 ± 103 0.02
Moderate activity 2242 ± 2282 1743 ± 2269 2528 ± 2281 0.28
Walking activity 524 ± 762 815 ± 1149 358 ± 333 0.05
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Table 2.
Comparison of Mild-Moderate and Severe+ CPD groups.

Mild-Moderate
(n=28)

Mean SD

Severe+
(n=16)

Mean SD

t-value p-value

Age 57.25 ± 13.52 64.25 ± 6.70 1.93 0.06
BMI 35.15 ± 12.83 29.65 ± 5.37 -1.63 0.11
BF% 32.31 ± 14.00 27.49 ± 11.04 -1.18 0.24
FVC% 75.18 ± 11.44 62.69 ± 12.62 -3.36 0.002
FEV1% 65.93 ± 10.69 34.88 ± 9.81 -9.54 0.0001
MRC Grade 1.96 ± 0.74 2.75 ± 0.86 3.19 0.003
Peak VO2 leg 22.83 ± 6.38 20.12 ± 4.50 -1.50 0.14
Peak VO2 arm 22.42 ± 6.48 20.13 ± 5.85 -1.16 0.25
Peak W leg 54.11 ± 20.95 40.93 ± 11.86 -2.30 0.03
Peak W arm 41.25 ± 11.81 34.69 ± 8.26 -1.84 0.07
Peak pain leg 3.28 ± 1.74 2.69 ± 1.83 -1.78 0.08
Peak pain arm 3.55 ± 1.57 2.83 ± 1.36 -1.54 0.13
Grip strength 31.79 ± 10.55 29.41 ± 10.27 -0.73 0.47
Quad strength 111.29 ± 37.70 90.34 ± 25.58 -1.97 0.055
Ham Strength 57.52 ±21.02 45.38 ± 13.83 -2.06 0.045
Quad endurance 87.23 ± 14.05 90.50 ± 14.43 0.73 0.47
Ham endurance 96.34 ± 25.17 102.84 ± 39.68 0.67 0.50
Total activity 2837.91 ± 947.35 3208.96 ± 860.31 0.75 0.73
Moderate activity 2177.5 ± 2193.7 2279.3 ± 2370.5 -0.14 0.89
Vigorous activity 380.27 ± 647.17 195.31 ± 1218.31 -0.56 0.57
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Table 3.
Combined and individual relationships of CPD stage and Physical Activity with morphological,
cardiovascular and strength variables as determined with a factorial ANOVA.

CPD Stage

Total PADL
(min/week)

Mild-Moderate Severe +

X SD X SD
Age Low a 55.69 16.22 c 4.50 5.58

High b 59.33 9.61 d 64.00 8.05
Body Mass Low a 95.74 14.57 c 77.41 16.27

High b 86.46 29.02 d 81.45 15.58
BMI Low a 37.65 14.39 c 27.98 4.84

High b 31.81 10.00 d 31.33 5.61
Percentage body fat Low a 35.20 14.35 c 24.36 8.50

High b 28.46 13.11 d 30.61 12.90
MRC Grade Low a 1.88c 0.61 c 3.1 a b 0.83

High b 2.08c 0.90 d 2.38 0.74
ADL/Dyspnea Low a 51.97 7.23 c 49.86 4.91

High b 49.92 7.44 d 50.38 4.67
FVC% Low a 77.38

c d 13.56 c 62.12a 12.29

High b 72.25 13.22 d 63.13a 13.77
Peak watt (leg) Low a 58.75 20.04 c 41.88 14.62

High b 47.92 21.36 d 40.00 9.26
Peak VO2 (leg) Low a 22.44 4.73 c 19.40 5.15

High b 23.35 8.30 d 20.83 3.95
Peak RPE bike Low a 12.81 1.64 c 12.86 1.73

High b 12.71 2.22 d 12.25 0.89
Peak Dyspnea (bike) Low a 2.86 1.20 c 3.69 1.33

High b 2.71 0.84 d 2.86 1.16
Peak Pain (bike) Low a 3.72 1.26 c 2.56 2.16

High b 3.63 2.30 d 2.81 1.56
Peak watt (arm) Low a 42.81 10.16 c 33.13 9.61

High b 39.17 15.93 d 36.25 6.94
Peak VO2 (arm) Low a 21.72 5.63 c 17.65 5.85

High b 23.35 7.63 d 22.62 5.00
Peak RPE (arm) Low a 12.69 1.66 c 13.13 0.99

High b 12.58 1.56 d 11.50 1.20
Peak Dyspnea (arm) Low a 2.41 0.71 c 2.50 1.54

High b 2.38 1.15 d 2.19 1.33
Peak pain (arm) Low a 3.66 1.60 c 3.19 1.51

High b 3.42 1.58 d 2.48 1.19
Grip strength Low a 32.97 9.66 c 32.63 13.12

High b 30.21 11.87 d 26.19 5.50
Quad strength Low a 116.8

8
38.02 c 98.06 33.79

High b 103.8
3

37.55 d 82.63 11.16

Hamstring strength Low a 61.50 21.19 c 44.50 18.08
High b 52.21 20.44 d 46.25 9.02

Quad endurance Low a 89.41 10.68 c 93.88 17.87
High b 84.33 17.70 d 87.13 10.03

Hamstring endurance Low a 94.59 12.72 c 119.31 48.72
High b 98.67 36.36 d 86.38 19.51

Note. Group a = mild-moderate CPD and low PADL level (n= 16), group b = mild-moderate CPD and high
PADL level (n= 12), group c = severe+ CPD and low PADL level (n= 8), and group d = severe+ CPD and
high PADL level (n= 8).
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Table 4.
The f-ratio, p-values, ETA2 and Wilks Lambda scores of the factorial ANOVA investigating the relationship
of CPD stage and total PADL (min) with arm and leg ability (strength and peak watt during ergometry) in
CPD patients.

Dependent variables ANOVA groups F-ratio p-values Eta2 Wilks
Lambda

Age CPD stage
Total PADL
Combined

3.326
0.181
1.428

0.076
0.673
0.249

27.4
6.39
9.67

90.3

Body Mass CPD stage
Total PADL
Combined

3.438
0.173
1.836

0.071
0.679
0.156

27.5
6.17
12.1

87.9

BMI CPD stage
Total PADL
Combined

2.267
0.137
1.701

0.140
0.713
0.182

22.4
5.51
11.3

88.7

Percentage body fat CPD stage
Total PADL
Combined

1.143
0.004
1.411

0.292
0.951
0.254

16.1
0.94
9.57

90.4

FVC% CPD stage
Total PADL
Combined

10.356
0.282
4.121

0.003
0.598
0.012

44.5
7.33
23.6

76.4

MRC Grade CPD stage
Total PADL
Combined

10.257
1.266
5.030

0.003
0.267
0.005

43.1
15.2
27.4

72.6

ADL/Dyspnea CPD stage
Total PADL
Combined

0.159
0.143
0.306

0.693
0.708
0.821

6.23
5.90
2.24

97.6

Peak watt (leg) CPD stage
Total PADL
Combined

4.725
1.242
2.622

0.035
0.272
0.064

31.4
16.1
16.4

83.6

Peak VO2 (leg) CPD stage
Total PADL
Combined

2.247
0.395
0.852

0.142
0.533
0.474

22.9
9.63
6.01

94.0

Peak RPE bike CPD stage
Total PADL
Combined

0.131
0.444
0.228

0.719
0.509
0.877

5.57
10.4
1.68

98.3

Peak Dyspnea (bike) CPD stage
Total PADL
Combined

1.888
1.888
1.339

0.177
0.177
0.275

20.7
20.7
9.13

90.9

Peak Pain (bike) CPD stage
Total PADL
Combined

2.973
0.019
1.044

0.092
0.891
0.384

26.3
2.08
7.26

92.7

Peak watt (arm) CPD stage
Total PADL
Combined

3.015
0.005
1.424

0.090
0.943
0.250

26.1
1.08
9.65

90.7

Peak VO2 (arm) CPD stage
Total PADL
Combined

1.524
2.882
1.485

0.224
0.097
0.233

18.5
25.5
10.0

90.0

Peak RPE (arm) CPD stage
Total PADL
Combined

0.495
3.543
1.838

0.486
0.067
0.156

10.4
27.9
12.1

87.9

Peak Dyspnea (arm) CPD stage
Total PADL
Combined

0.022
0.299
0.110

0.896
0.632
0.954

0.62
7.61
0.82

99.2

Peak pain (arm) CPD stage
Total PADL
Combined

2.195
1.000
1.126

0.146
0.323
0.350

22.5
15.2
7.79

92.2

Grip strength CPD stage 0.441 0.511 10.2 94.1
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Overall Act
Combined

1.957
0.841

0.170
0.479

21.5
5.94

Quad strength CPD stage
Overall Act
Combined

3.514
1.779
1.906

0.068
0.190
0.144

27.7
19.7
12.5

87.5

Hamstring strength CPD stage
Overall Act
Combined

3.753
0.405
1.978

0.059
0.528
0.133

28.6
9.39
12.9

87.1

Quad endurance CPD stage
Overall Act
Combined

0.658
1.745
0.770

0.422
0.194
0.518

12.5
20.3
5.46

94.5

Hamstring endurance CPD stage
Overall Act
Combined

0.430
2.321
1.795

0.516
0.135
0.164

9.74
22.6
11.9

88.1


