
COMPUTATIONALLY INTENSIVE
PROBLEMS OF PHYSICS AND
ASTRONOMY: OSCILLATOR

STRENGTHS AND DEPARTURE
COEFFICIENTS OF THE

HYDROGEN ATOM IN THE
INTERSTELLAR MEDIUM

A thesis submitted to Auckland University of Technology
in partial fulfilment of the requirements for the degree ofMaster of

Science

Supervisors
Sergei Gulyaev
Andrew Ensor

May 2013

By
Boris Feron

School of Computing and Mathematical Sciences

Contents

Acknowledgements ix

Declaration x

Copyright xi

Abstract 1

1 Introduction 2
1.1 Radio Astronomy . 2
1.2 Radio Recombination Lines . 3

1.2.1 Radiative Transfer Model 3
1.3 Departure Coefficients . 6
1.4 Introduction to Computations on Graphical Processing Units

(GPUs) . 8
1.5 Research Problem . 11

2 Einstein Coefficients and Oscillator Strengths 14
2.1 Introduction to Einstein Coefficients and Oscillator Strengths . . 14
2.2 Calculation of Einstein Coefficients and Oscillator Strengths . . 17
2.3 Insufficient Precision Problem . 20
2.4 Solution to Insufficient Precision Problem for n using Gaunt Factors 22
2.5 Solution to the Insufficient Precision Problem for n, l 25
2.6 Implementation . 28

2.6.1 The MPFR Library . 29
2.7 GPU Optimization . 31
2.8 Conclusion . 32

iii

3 Radiative Recombination 34
3.1 Introduction to Radiative Recombination 34
3.2 Calculation of Radiative Recombination Coefficients 35
3.3 Implementation . 37

3.3.1 Calculating I(n, l, l′, t) . 46
3.4 GPU Optimization . 48
3.5 Conclusion . 49

4 Iterative Computation of bn Coefficients 50
4.1 Implementation . 55

4.1.1 Output . 56
4.2 GPU Optimization . 58
4.3 Results . 59

4.3.1 Performance . 62

5 Matrix Computation of bn Coefficients 65
5.1 Implementation . 69
5.2 GPU Optimization . 71
5.3 Results . 71
5.4 Comparison of Matrix Computation and Iterative Computation

of bn Coefficients . 74

6 Conclusion 76

References 79

A Code 84
A.1 Auxiliary Code . 84
A.2 Einstein Coefficients . 90
A.3 Radiative Recombination . 103
A.4 Iterative Computation . 124
A.5 Matrix Computation . 138

B Test Machine Specification 155

iv

List of Figures

1.1 Illustration of the Radiative Transfer Model 4
1.2 Instruction Stream Processing (Strzodka et al., 2005). 10
1.3 GPU_loop.c . 10
1.4 Data Stream Processing (Strzodka et al., 2005). 11

2.1 Spontaneous radiation from energy state E2 down to energy state
E1. Adopted from http://commons.wikimedia.org/wiki/File:Spon
taneousemission.svg. Licensed under the “GNU Free Documen-
tation License”. 15

2.2 Stimulated radiation from energy state E2 down to energy state
E1. Adopted from http://upload.wikimedia.org/wikipedia/comm
ons/0/09/Stimulated_ Emission.svg. Licensed under the “GNU
Free Documentation License”. 17

2.3 Stimulated absorption from energy state E1 up to energy state E2.
Adopted from http://upload.wikimedia.org/wikipedia/commons
/0/09/Stimulated_ Emission.svg. Licensed under the “GNU Free
Documentation License”. 18

2.4 Plot of absolute value of the sum of the hypergeometric function
for n = 1000,n′ = 514 and l not considered, as a function of bits
of precision. Note that the y-axis is in base 10 logarithmic scale. 21

2.5 Plot of oscillator strength transitions, f , from n = 1000 to n′,
where n′ ∈ {1, 2, · · · , 999} . 22

2.6 Plot of the gaunt factor as a function of maximum principal
quantum number nmax and lower principal quantum number n′ 23

2.7 Plot of deviation in percent between the real oscillator strength, f ,
using hypergeometric functions with 300 bits precision, and the
oscillator strength given by equation (2.21). 24

v

2.8 This plot shows the magnitudes of difference between x = n or
x = n, l for the function #hyp(x). 27

2.9 General usage of the MPFR library. 30
2.10 Naive implementation of n! in factorial.c from the MPFR library. 31
2.11 Plot of time to calculate Einstein coefficients as a function of

upper principal quantum number n in log10 scale. 33

3.1 The picture shows the naive approach to solving the recurrence
relation when G(n, l, κ, l′) = G(8, 3, κ, 2). The shaded rectangles
show where duplicate calculations are being performed. κ is not
shown for brevity. 38

3.2 The picture shows the dynamic programming approach to solv-
ing the recurrence relation when G(n, l, κ, l′) = G(8, 3, κ, 2). The
shaded rectangle shows where duplicate calculations are being
performed. κ is not shown for brevity. 41

3.3 The picture shows the optimized dynamic programming ap-
proach to solving the recurrence relation when G(n, l, κ, l′) =

G(8, 3, κ, 2). κ is not shown for brevity. 42
3.4 G_l_K_lg algorithm . 43
3.5 Plot of time taken to compute αnl for nmax = 1000 for both GPU

and CPU. 49

4.1 calc_S_mn_term algorithm . 56
4.2 Example output for bn, d ln(bn)

dn and β 57
4.3 Plot of bn at various iterations for fixed density Ne = 10 and

temperature Te = 104. 60
4.4 Plot of bn at various iterations for fixed density Ne = 104cm−3 and

temperature Te = 104. 60
4.5 Plot of log10

(
d ln(bn)

dn

)
for fixed density Ne = 10cm−3, temperature

Te = 104 and a fixed number of iterations of 5000. 61
4.6 Plot of log10

(
d ln(bn)

dn

)
for fixed density Ne = 104cm−3, temperature

Te = 104 and a fixed number of iterations of 5000. 61
4.7 Plot of bn showing spurious results for n ≤ 6. Number of itera-

tions is 7000 and Ne = 104 and Te = 104. 62
4.8 Plot of time taken to compute bn for nmax = 250,nmax = 500 and

nmax = 1000 vs. number of iterations. 63

vi

5.1 Y_m_population.c . 70
5.2 Plot of time taken to compute YM for nmax = 1000 − 10000. 72
5.3 Plot of bn for four different densities and temperature Te = 104. . 73
5.4 Plot of log10

(
d ln(bn)

dn

)
for four different densities and temperature

Te = 104. 73
5.5 Plot of bn for Ne = 104 and temperature Te = 104 for the iterative

method and the matrix method. 75

vii

List of Tables

2.1 Matrix demonstrating the symmetry of spontaneous radiation,
for n only, up to n = 4. 25

2.2 Matrix demonstrating the symmetry of spontaneous radiation,
for n and l, up to n = 4. 26

viii

Acknowledgements

I would like to thank my primary supervisor, Professor Sergei Gulyaev, for
his invaluable help and guidance. Without his support, knowledge and keen
insight into the area of radio astronomy this thesis could not have been written.
Furthermore, I highly value his patience in going through my thesis countless
times to correct for any inaccuracies, no matter how small.

I would also like to thank my secondary supervisor, Dr Andrew Ensor. With
his expertise in computer science, and especially high performance computing,
I am confident that this thesis will help bring to light some of the new and very
interesting ways that old problems in radio astronomy can be revitalised.

Thank you to Jordan Alexander for his countless efforts in aiding my under-
standing of numerous topics in radio astronomy. I also greatly appreciate the
discussions we have had on unrelated topics to help me get my mind off things.

A big thanks to Dr Guy Kloss for assisting me in running experiments on
the test machine and helping with odd Linux questions.

Thank you very much to Eleanor Da Fonseca for having patience and giv-
ing me encouragement when things were getting off track.

I would like to thank Kordia, the Bank of Nordea, the IRASR at AUT as well as
the Danish Government’s recent study abroad scholarship. Without the finan-
cial help of any of these, none of this would have been possible.

Lastly I would like to thank everyone at the Institute for Radio Astronomy
and Space Research at AUT for their company and encouragement.

ix

Declaration

I hereby declare that this submission is my own work
and that, to the best of my knowledge and belief, it
contains no material previously published or written
by another person (except where explicitly defined in
the acknowledgements), nor material which to a sub-
stantial extent has been submitted for the award of any
other degree or diploma of a university or other insti-
tution of higher learning.

x

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instructions
given by the Author and lodged in the library, Auckland University of Tech-
nology. Details may be obtained from the Librarian. This page must form part
of any such copies made. Further copies (by any process) of copies made in
accordance with such instructions may not be made without the permission
(in writing) of the Author.

The ownership of any intellectual property rights which may be described
in this thesis is vested in the Auckland University of Technology, subject to any
prior agreement to the contrary, and may not be made available for use by third
parties without the written permission of the University, which will prescribe
the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and ex-
ploitation may take place is available from the Librarian.

xi

Abstract

Calculating departure coefficients, bn, as well as bn,l, for non-LTE gases/plasmas, is
a fundamental computational problem in radio astronomy, physics of the inter-
stellar medium, and for diagnostics of plasmas of nuclear reactors. Most work
in this area was done in the 1960s and 1970s. Recent advances in computing
technology have rendered the technology used in these two decades obsolete.
Hence we ask if the approximate techniques developed to compensate for the
technological limitations of the 1960s and 1970s are still needed.

In this thesis we introduce modern computational techniques to solve, ex-
actly, the computational problems relating to departure coefficients. Specifi-
cally, we have made use of arbitrary precision arithmetic as well as introducing
GPU & parallelization techniques to already established solutions.

We investigated the problem of the hypergeometric function which arises
as the solution of the wave equation for hydrogen, which is the key component
in Einstein coefficients, radiative recombination rates and the Stark broadening
theory. Furthermore, we implemented, optimized and compared two different
techniques for calculating bn coefficients and developed a matrix approach for
dealing with the bn,l problem.

We hope that the solutions resulting from this thesis will pave the way for
further development in the outlined area, allowing for exact solutions up to
n = 1000 and greater.

1

Chapter 1

Introduction

Radio astronomy is a rather young area of science and its birth is generally
credited to Karl Jansky who first discovered radio emission from the Milky
Way in 1932 (“Encyclopaedia Britannica”, 2013). However, not until the firm
identification of “radio stars” was conducted in New Zealand in the end of the
1940’s (Bolton & Stanley, 1948) and the discovery of the 21cm hydrogen line in
the 1950’s (van de Hulst, 1951) did the importance of Jansky’s findings become
apparent to the general scientific community (Dopita & Sutherland, 2003, p. 1).

In this thesis we will deal with problems related to the area known as De-
parture Coefficients which become important when dealing with the Radiative
Transfer Model as used in the field of Radio Recombination Lines. A brief
introduction on the relation between Radio Astronomy, Radio Recombination
Lines, the Radiative Transfer Model and finally the Departure Coefficients will
therefore follow.

1.1 Radio Astronomy

In ground based radio astronomy we deal with electromagnetic waves of fre-
quencies approximately between 10 MHz and 1 THz, or, correspondingly,
wavelengths between 30 m and 0.3 mm. This part of the electromagnetic spec-
trum corresponds to the “transparency window” of the Earth’s atmosphere at
these wavelengths. A telescope on Earth that is observing a radio source with
a peak in this spectrum will receive a substantially large amount of the source’s
emitted radio waves towards the Earth as the atmosphere will not absorb these
wavelengths (Dopita & Sutherland, 2003).

2

1.2. Radio Recombination Lines 3

1.2 Radio Recombination Lines

Radio recombination lines are a special case of spectral lines formed when a
positively charged ion recombines with a free electron in plasmas or partially
ionized gases. This electron, which is normally captured in a high energy state,
will then cascade down through allowed energy states. The probability of these
transitions are governed by the laws of quantum mechanics. Each spontaneous
transition releases energy in the form of radiation.

Observing a radio source that produces radio recombination lines, and
using methods of spectroscopy, we are capable of determining the source’s
temperature and density, as well as the composition of the chemical elements
that make up these sources (Gordon & Sorochenko, 2002).

1.2.1 Radiative Transfer Model

After obtaining a spectrum for a given source we can use the radiative transfer
model to predict its density and temperature. The radiative transfer equation
takes on the form:

dI = −Iκdx + jdx (1.1)

where dI is the net change in the radiation intensity at a given frequency, ν; x
is the distance the radiation travels in the source towards the observer, κ is the
linear absorption coefficient for all depletions from the radiation in the direction
of the observer, and j is the emission coefficient for all gains in intensity in the
direction of the observer (Chandrasekhar, 1960, p.9).

It should be noted that although the convention is to use I, a more appro-
priate notation would be Iν, as we are measuring the intensity at a specific
frequency. Fig. 1.1 depicts the radiation travelling in the source.

Radio recombination lines are not the only contributing factor to the inten-
sity received by the telescope. We must also account for continuum radiation
from heated gas particles. This radiation is also known as the thermal radiation
due to “free-free” transitions (Gordon & Sorochenko, 2002, p.58). “Free-free”
transitions occur when an electron close to an ion decelerates due to electric
interaction i.e. loses kinetic energy which is converted into radiation. This
radiation, unlike that of radio recombination lines, is continuous. However, it

1.2. Radio Recombination Lines 4

Figure 1.1: Illustration of the Radiative Transfer Model

still contributes to the intensity of a given frequency. Rewriting the intensity, I,
into its components we obtain:

I = IC + IL (1.2)

where IC is the intensity of continuous radiation and IL is the intensity of line
radiation. This is possible due to the linearity of κ and j. We shall henceforth
deal exclusively with the discrete subcomponents, κL and jL. We note that
under the assumption of thermodynamic equilibrium:

jL = κLBν(T) (1.3)

as stated by Chandrasekhar (1960, p.8) where Bν(T) is the Planck function for
radiation of a black body with temperature T. Using this equation we need
only focus on arriving on an expression for κL after which we can use (1.3) to
find jL.

Following Gordon and Sorochenko (2002, p.64) we have:

κL =
hν
4π
φν(Nn1Bn1,n2 −Nn2Bn2,n1) (1.4)

In this equation, n1 denotes the lower principal quantum number and n2 the
upper principal quantum number; N, along with its subscript, denotes the
population density at that principal quantum number; Bn,m denotes the Einstein
coefficient for stimulated absorption and emission in the direction left to right.
The units of the Bn,m Einstein coefficient are inverse specific intensity per unit

1.2. Radio Recombination Lines 5

time; φν is the line profile with units Hz−1 and h is the Planck constant.
Assuming thermodynamic equilibrium we can write the equation for the

relative populations between two principal quantum states, n1 and n2:

Nn2

Nn1

=
ωn2

ωn1

e−hν/(kT) (1.5)

where ωn is the statistical weight at the level n. Secondly, according to Lang
(1975, p.91):

ωmBm,n = ωnBn,m (1.6)

Substituting (1.5) and (1.6) into (1.4) we get:

κL =
hν
4π
φνNn1Bn1,n2

[
1 − e−hν/(kT)

]
(1.7)

Using the notion of an oscillator strength, given by:

fn1,n2 = −
ωn2

ωn1

fn2,n1 (1.8)

=
mechν
4π2q2

e
Bn1,n2 (1.9)

where qe is the charge of an electron, we can rewrite our equation for κL as:

κL =
πq2

e

mec
φνNn1 fn1,n2

[
1 − e−hν/(kT)

]
(1.10)

This may not appear to be of much use. However, much research has gone into
oscillator strengths and it can therefore be convenient, as we will see later, to
use this instead of the form involving Bn1,n2 .

By once again assuming thermodynamic equilibrium we can make use of
the Saha-Boltzmann equation to obtain an expression for Nn1 relating it to
temperature and the density of electrons and ions, respectively Ne and Ni:

Nn1 =
NeNi

T3/2

n2
1h3

(2πmek)3/2 exp
(

Z2En1

kT

)
(1.11)

where Z is the atomic number (Z = 1 for the case of hydrogen which we are
dealing with) and En1 is the ionization energy at level n1. We are now able to

1.3. Departure Coefficients 6

write an explicit equation for κL using (1.10) and (1.11):

κL =
πh3q2

e

(2πmek)3/2mec
n2

1 fn1,n2φν ×
NeNi

T3/2 exp
(

Z2En1

kT

) (
1 − e−hν/(kT)

)
(1.12)

Using (1.12) we are able to obtain an expression for jL assuming thermodynamic
equilibrium, as given by (1.3).

So far we have assumed thermodynamic equilibrium in order to derive our
expression for κL. Although thermodynamic equilibrium does not occur in
the astronomical systems that we are dealing with, there are situations where
locally one may assume thermodynamic equilibrium. We refer to these as being
in local thermodynamic equilibrium (abbr. LTE). When assuming LTE we can
accordingly use (1.12) (Gordon & Sorochenko, 2002, pp.70-71).

1.3 Departure Coefficients

So far we have assumed LTE conditions when calculating line strengths us-
ing κL. This allows us to assign a single temperature, T, to the entire system.
However, comparing observed temperatures of the M17, Orion and W51 nebu-
lae (Gordon & Sorochenko, 2002, p.69) (using different, more well-established
techniques for calculations of T) gives a difference of a factor of 2 as compared
to using the temperature calculated from the radiative transfer model, using
the derived expression for κL given in (1.12).

This disagreement in temperature stems from the incorrect assumption of
LTE when dealing with populations of atomic levels. When non-LTE conditions
are present we have not one, but two temperatures present: The excitation
temperature, Tex, which describes the relative population of bound quantum
levels and Te, which is the electron temperature of the ionized gas in the nebula
(Gordon & Sorochenko, 2002, p.71). Using the result of Goldberg (1966, p.1225)
we have:

ehν/(kTex) =
bn

bn−1
e−hν/(kTe) (1.13)

In (1.13) we introduce the departure coefficient, bn. It is a correction factor
that gives the ratio between the actual (non-LTE) number of atoms in a level n,

1.3. Departure Coefficients 7

compared to the number of atoms in level n, when assuming LTE. We reproduce
the final equation for the line absorption coefficient including correction factors,
as given by Gordon and Sorochenko (2002, p.73):

κL = κ∗Lbn1

[
1 − (bn2/bn1)e

−hν/(kTe)

1 − e−hν/(kTe)

]
(1.14)

= κ∗Lbn1β (1.15)

where κ∗L is the LTE version of κL.
In order to find κL and solve the radiative transfer equation (1.1) we must

find the unknown bn coefficients for each atomic level n. As each bn is simply
a correction-factor that gives us the actual population density at level n i.e. Nn

compared to the density assuming LTE i.e. N∗n, we have:

bn ≡ Nn/N∗n (1.16)

We now solve for each Nn through the following system of equations, which
states that the number of all possible transitions out of a given quantum level
n is equal to the number of all the transitions into the level n. This is known as
the statistical equilibrium equation:

Nn

∞∑
m=n0,n,m

Pnm =

∞∑
m=n0,n,m

NmPmn (1.17)

where the lower limit is the lowest quantum state considered. Commonly we
set n0 = 1 or n0 = 2. We refer to these as Case A and Case B respectively.
Coefficients Pnm and Pmn in equation (1.17) are the probabilities of the corre-
sponding transitions between quantum states (see below). Infinity represents
the theoretical upper quantum state. Given that the system of equations must
be solved numerically, infinity must be replaced with a finite number. How-
ever, according to Dupree (1969, p.493), bn = 1 above some level nmax due to
collisional coupling with the continuum. As such we can let bn = 1 for n > nmax

and thus establish a finite system of equations.

1.4. Introduction to Computations on Graphical Processing Units (GPUs) 8

The processes that contribute to level depopulation, and their probabilities, are:

Anm = Spontaneous radiation from level n down to level m (1.18)

Cnm = Collisional transitions out of level n to level m (up & down) (1.19)

Bnm = Stimulated radiation out of level n to level m (up & down) (1.20)

Cni = Collisional ionization out of level n to continuum (1.21)

Bni = Stimulated radiative ionization out of level n to continuum (1.22)

The processes that contribute to level population are:
The same processes as in equation (1.18)-(1.20) , but in reverse along with

three more components:

αn = Radiative recombination from the continuum to level n (1.23)

Cin = Collisional three-body recombination from continuum to level n (1.24)

Bin = Stimulated radiative recombination from continuum to level n (1.25)

Using these contributions to level population/depopulation we can expand on
(1.17) and obtain:

Nn

 ∞∑
m=n0,m,n

(Cnm + Bnmρν) +

n−1∑
m=n0,m,n

Anm + Cni + Bniρν

 = (1.26)

∞∑
m=n0,m,n

Nm(Cmn + Bmnρν) +

∞∑
m=n+1

NmAmn + NeNi(αn + Cin) + Binρν

where ρν is the radiation density at frequency ν.

1.4 Introduction to Computations on Graphical Pro-

cessing Units (GPUs)

General Purpose GPU programming did not become popular until Nvidia re-
leased their Compute Unified Device Architecture (CUDA) in 2006/2007 and
the Khronos group standardised the Open Computing Language (OpenCL)
(Murthy, Ravishankar, Baskaran, & Sadayappan, 2010). However, when presently
discussing high-performance scientific computations it is impossible to avoid

1.4. Introduction to Computations on Graphical Processing Units (GPUs) 9

the topic of GPUs. Before that, any code written for execution on the GPU
had to be done using native graphics APIs, such as OpenGL and Microsoft
DirectX, and graphics programming languages, such as GLSL and HLSL (for
writing what is known as the kernel) (Strzodka, Doggett, & Kolb, 2005, p.670).
These languages are not well suited for general purpose computation as they
are aimed at facilitating programming graphics problems that are ultimately
meant to be displayed on the computer screen.

To understand the need for the development of CUDA and OpenCL, we
must first clarify the difference between the Central Processing Unit (CPU)
architecture and the GPU architecture.

The CPU architecture performs what is known as instruction stream process-
ing. In this architecture, which is based on the von Neumann architecture, we
store data and instructions together in the same memory space (Strzodka et
al., 2005, p.668). In sequence, each instruction will load in data from mem-
ory. No use is made of large data blocks that all use the same instruction, as
each instruction will load in the data needed only when it is executed. This
model is called the SISD model (Single Instruction Single Data) and is the most
commonly implemented instruction architecture on CPUs. Fig. 1.2 shows an
overview of instruction stream processing.

GPUs rely on what is called the SIMD model (Single Instruction Multiple
Data). Although modern CPUs also make use of the SIMD model, GPUs are
highly optimized for this model and have many more of its benefits, as well
as its drawbacks. This model makes use of the fact that the same instructions
will be run on a large block of data. A very effective example for use of this is
a loop where the body is working on a large set of data which at each point is
independent of its neighbour points. A commonly used example is the loop
given in Fig. 1.3. This loop has properties that make it ideal for the SIMD
model:

1. It is a for-loop resulting in a fixed number of iterations

2. The computation of element [i, j] is independent of all other computations

Property 1 means that before executing the loop, we know how many iter-
ations there will be, as opposed to a while loop where the number of iterations
will be undetermined. A while-loop that will in fact have a fixed amount of
iterations can be turned into a for-loop.

1.4. Introduction to Computations on Graphical Processing Units (GPUs) 10

Figure 1.2: Instruction Stream Processing (Strzodka et al., 2005).

1 for(i=0;i<row;i++)
2 for(j=0;j<col;j++)
3 Output[i][j] = Input1[i][j]+Input2[i][j];

Figure 1.3: GPU_loop.c

Property 2 means that for any i, j we can compute the result without regard
to other computations. This very important property means that all calculations
of the loop can be done in parallel without synchronization. As such we can
let the GPU decide on its own which calculation needs to be done when. This
demonstrates how the function of the loop is not to determine in what order
elements are calculated, but rather to iterate through the loop variables i and j.
Hence, instead of a loop we could imagine a 2D array with dimensions imax× jmax,
where the loop iterates through, possibly at random, all possible combinations
of i and j. This is precisely how the GPU architecture is constructed. CUDA
and OpenCL have slightly different ways of maintaining the indexing as just
described (1D, 2D and 3D indexing). However, both rely on defining a kernel,
as mentioned earlier, where the body of the loop is performed. The GPU is
then free to run the kernel in parallel for any given index values.

This shows the nature of SIMD where we have a large set of data on which
we perform the same instruction independently of each other. The reason the
GPU is so fast at performing tasks like this is because it uses a Data stream
processing architecture as opposed to the CPU’s instruction stream processing.
In this architecture we configure the GPU pipeline, as illustrated in Fig. 1.4.
This includes what the input and output array should be along with loading
the kernel function. Once this is configured we need only load in the entire
data once and the GPU can in parallel compute the kernel value for each index

1.5. Research Problem 11

Figure 1.4: Data Stream Processing (Strzodka et al., 2005).

pair i, j. GPUs have many more computing cores than CPUs and as such can
perform many more computations in parallel.

In this thesis we will be dealing with certain computationally intensive
tasks. Each of these tasks will be subcomponents of the overlying departure
coefficient problem. The goal of the departure coefficient problem is to correctly
describe the temperature and density for a given spectrum. As such, these pa-
rameters can be considered variables for the departure coefficient problem.
We shall see examples further on where this assumption allows us to favour
simplicity in calculations over speed. However, in general, where GPU opti-
mization has not been possible or feasible due to time constraints, measures
have been taken to optimize run time.

1.5 Research Problem

The majority of papers relating to the bn problem and its subcomponents (os-
cillator strengths, Gaunt factors, recombination coefficients etc.) have been
written in the 1960s and 1970s (see for example a review of the bn problem in
Gordon and Sorochenko (2002, pp.77-78)). Even though, by that time, com-
puter techniques had advanced far beyond the early ABC and ENIAC com-
puters of the 1940s and 1950s, the largest mainframes of the 1970s would still
be no match for modern day computers. As an example we can mention the
University College London IBM 360/65 mainframe, which was used to solve
one of the problems we will cover in this thesis, that ran at approximately 0.1
MFLOPS (“System/360 Model 50”, 2013). With this kind of computing per-
formance, approximate techniques were necessarily developed to make the

1.5. Research Problem 12

calculations manageable. This was especially needed when including angular
momentum quantum number l in bn (now bn,l) calculations, as the complexity
greatly increased.

We can compare the performance of an IBM 360/65 mainframe with that
of a current Nvidia Tesla C20xx series GPU, which is nothing more than a
component in a desktop computer. At 515 GFLOPS, the Nvidia Tesla GPU
outperforms the IBM 360/65 mainframe by a factor of more than 5 million.
With this kind of difference in performance, one might wonder if we still need
the approximate solutions developed in the 1960s and 1970s.

In this thesis we introduce modern computational techniques to solve com-
putational problems, relating to departure coefficients, exactly. This will in-
clude:

• Arbitrary precision arithmetic: Introducing the technique of arbitrary pre-
cision arithmetic to solve exactly the hypergeometric function (see eq.
(2.17)) without the use of recursive relations and analyse its behaviour as
it relates to departure coefficients.

• GPU & parallelization: Optimizing existing solutions and discussing pos-
sible optimizations to departure coefficient problems by re-implementing
solutions to make use of modern-day techniques such as GPUs and par-
allelization.

• bn,l problem: Do the groundwork needed to allow for further development
in the area of departure coefficients that focuses on creating an exact
solution to the bn,l problem for n up to 1000 and beyond.

We hope that these developments will allow us to advance from current
simplistic to more complex, and hence more realistic, models of the interstellar
medium (ISM) objects, thereby progressing to a better understanding of the
physics and evolution of the ISM and star-formation in our galaxy.

In Chapter 2 we introduce the topic of Einstein coefficients and oscillator
strengths. We give a thorough presentation of the key component of both terms
i.e. the hypergeometric function and some of the problems that occur when
trying to compute it.

1.5. Research Problem 13

In Chapter 3 we introduce radiative recombination. As for Chapter 2 the
key component is the hypergeometric function. However, this time we use a
recursive relation and give a thorough computer science based break down of
how to solve it most efficiently and optimize it to make use of GPUs.

In Chapter 4 we solve the entire bn problem based on an iterative scheme
by Sejnowski and Hjellming (1969). We then discuss the results and how GPU
optimizations would be possible.

In Chapter 5 we solve the entire bn problem by solving the system of linear
equations given in equation (1.26). We then optimize certain key components
to make use of GPUs and compare the results to that of the single threaded
solution. Finally, we compare this approach to solving the bn problem to that
of the iterative approach in Chapter 4.

Lastly, the conclusion is given in Chapter 6.

Chapter 2

Einstein Coefficients and Oscillator
Strengths

2.1 Introduction to Einstein Coefficients and Oscil-

lator Strengths

In this chapter we will deal with the notions of Einstein coefficients and oscil-
lator strengths. As we only touched very briefly on this in Chapter 1 we will
now elaborate further.

Let us consider a neutral hydrogen atom in an excited state, in a low density
gas, in the absence of any magnetic field, far from any source of radiation. On
a short time scale, as it is far away from other particles, we might assume it
to be “isolated”. The state of this atom is then fully described by the laws of
spontaneous radiation. These laws determine the probability of spontaneous
transition from a given upper state n, l downwards to a state n′, l′. The upper
number n is not limited whereas the lowest value of n′ is 1. Furthermore, as
by the definition of l, we have l ∈ {0, 1, ...,n − 1}. However, quantum selection
rules dictate that ∆l = ±1 (Bethe & Salpeter, 1957). From this we have that each
level n has (n − 1)2 possible downward transitions (see section 2.5). We use
the Einstein coefficient for spontaneous radiation (also known as spontaneous
emission) to describe this downward transition as a probability giving the
number of transitions per second per unit volume (Pradhan & Nahar, 2011,
p.73). It should be noted that this transition is completely random and that
the Einstein coefficient is only an overall probability and cannot be used to

14

2.1. Introduction to Einstein Coefficients and Oscillator Strengths 15

Before During After emission
Atom in excited state

Atom in ground state

photon

Figure 2.1: Spontaneous radiation from energy state E2 down to energy state E1. Adopted
from http://commons.wikimedia.org/wiki/File:Spon
taneousemission.svg. Licensed under the “GNU Free Documentation License”.

tell when a specific electron will make a transition downwards. When this
transition occurs, it releases a photon of energy E2 − E1 = hν as depicted
schematically in Fig. 2.1. This photon is, unlike for stimulated radiation,
released in no particular direction and with no particular phase.

Let us now assume that a source of external radiation is present. The atom is
now no longer isolated as photons from the external radiation will interfere with
its state. Following Dopita and Sutherland (2003, p.13) we define the energy per
unit volume received from this electromagnetic field as the energy density and
denote it by U(ν12), measured in erg cm−3, where ν12 denotes the frequency at
which the radiation occurs. We recognise this as the radiation density, ρν, from
equation (1.26). This interference occurs in the form of stimulated emission
and stimulated absorption.

We have already introduced the Einstein coefficients for these in equation
(1.4), where equation (1.6) describes the relation between the two Einstein B
coefficients. Furthermore, the relation between the Einstein coefficients A and
B is given by: (

8πh
c3

)
ν3

12B12 = A21
ω2

ω1
(2.1)

m

B12 = A21
ω2

ω1

(
c3

8πh

)
1
ν3

12

(2.2)

2.1. Introduction to Einstein Coefficients and Oscillator Strengths 16

where B12 is the Einstein coefficient for absorption and ω1 and ω2 are the
statistical weights of states 1 and 2. Note that the units of the B coefficients
are not s−1 as we need to multiply them by ρν to account for the amount of
radiation received. Hence the rate of excitation per second of an atom from a
lower state 1 to an upper state 2, is:

B12ρν (2.3)

For stimulated radiation we simply reverse the subscripts and use the ap-
propriate detailed balance to describe it in terms of the Einstein A coefficient:

B21 =
[
ω1

ω2

]
B12 =

[
ω1

ω2

]
A12

[
ω2

ω1

] (c3

8πh

)
1
ν3

12

(2.4)

= A12

(
c3

8πh

)
1
ν3

12

(2.5)

We thus have that the rate of stimulated radiation from an upper level 2 to a
lower level 1 is:

B21ρν (2.6)

We note that the subscript of ν is identical for absorption and radiation at given
upper level 2 and lower level 1, as the frequency of the incident photon is the
same. Fig. 2.2 shows the process of stimulated radiation and Fig. 2.3 shows
the process of stimulated absorption. Note that in stimulated radiation, the
phase, frequency and direction of the emitted photon is identical to that of the
incident photon. Hence when stimulated radiation occurs, an incident photon
is effectively “transformed” into two identical photons traveling in the same
direction, having identical frequency and phase. This principle, along with
that of population inversion, are the main principles behind masers, which are
important, naturally occurring objects in radio astronomy (Singer, 1959).

So far we have only introduced the two quantum numbers n and l. However,
there are two remaining quantum numbers which we have not accounted for,
namely the magnetic quantum number m and the intrinsic orbital momentum,
or spin, number s. When an external magnetic field is present, the m levels are
no longer degenerate i.e. they become distinct energy levels. This is known as
the Zeeman effect. However, when there is no magnetic field, which is the case
we are dealing with in this thesis, all the orbital momentum states m become

2.2. Calculation of Einstein Coefficients and Oscillator Strengths 17

Transition

After

transition

Atom in

ground state

Ground level

Excited level

Incident photon

Before

transition

Atom in

excited state

Figure 2.2: Stimulated radiation from energy state E2 down to energy state E1. Adopted from
http://upload.wikimedia.org/wikipedia/comm
ons/0/09/Stimulated_ Emission.svg. Licensed under the “GNU Free Documentation License”.

degenerate and no distinction between each value of m, in terms of energy, can
be made. Hence we do not consider m. We include s as the factor 2 in the
calculation of statistical weight. Although it is also present, theoretically, in the
transition between two identical states that only differ in spin, the probability
of this is so low that we do not consider it.

2.2 Calculation of Einstein Coefficients and Oscilla-

tor Strengths

In order to calculate the contribution of spontaneous emission (Einstein coef-
ficient A) along with stimulated emission and absorption (Einstein coefficient
B) for the population density at a quantum level n, we use the notion of an
oscillator strength, f , introduced in equations (1.8)-(1.9).
Common for these three terms is the use of the Wave function, Ψ, in order
to compute their values. As the concept (not complexity) of the general and
“honest” solution (i.e. no approximate solution) for these terms does not differ
when considering the orbital momentum quantum number l, we will include
l in our calculations of the above-mentioned terms.

2.2. Calculation of Einstein Coefficients and Oscillator Strengths 18

Transition

After

transition

Atom in

ground state

Ground level

Excited level

Incident photon

Before

transition

Atom in

excited state

Figure 2.3: Stimulated absorption from energy state E1 up to energy state E2. Adopted from
http://upload.wikimedia.org/wikipedia/commons
/0/09/Stimulated_ Emission.svg. Licensed under the “GNU Free Documentation License”.

According to Dopita and Sutherland (2003, pp.17-18), the transition prob-
ability A between two levels n, l and n′, l′ is described by the overlap between
each level’s wave function. We thus have:

A ∝
∫

ΨnlrΨ′n′l′dr (2.7)

where r is the position vector.
As we will be dealing purely with hydrogen atoms containing only one

electron, we can describe the atom completely through the radial wave function,
R(nl), as shown in Brocklehurst (1971, p.474):

Anl,n′l′ = 2.6674 · 109Z4anl,n′l′ (2.8)

anl,n′l′ =
(1
n′2
−

1
n2

)3 max(l, l′)
2l + 1

|ρ(n′l′,nl)|2 (2.9)

ρ(n′l′,nl) =

∫
∞

0
R(n′l′)rR(nl)dr (2.10)

where R(nl) = Ψnl.
Furthermore, we are able to solve the integral (2.10) through the use of

hypergeometric functions, following Gordon (1929). We use the expression

2.2. Calculation of Einstein Coefficients and Oscillator Strengths 19

given in Dopita and Sutherland (2003, p.18) as this is the easiest to follow:

|ρ(n′, l′,n, l)|2 = [c(n,n′, l)H(n,n′, l)]2 if l′ = l − 1 (2.11)

= [c(n′,n, l′)H(n′,n, l′)]2 if l′ = l + 1 (2.12)

where ρ(n′l′,nl) = ρ(n′, l′,n, l). Note that Brocklehurst (1971) uses different
notation from Dopita and Sutherland (2003).
We then have:

c(n,n′, l) =
(−1)n′−l

4(2l − 1)!
×

√
(l + n′ − 1)!(l + n)!
(n′ − l)!(n − l − 1)!

(2.13)

×
(4nn′)l+1

(n′ + n)n′+n × (n − n′)n+n′−2l−2 (2.14)

and:

H(n,n′, l) = 2F1

(
−n + l + 1,−n′ + l, 2l,

−4nn′

(n − n′)2

)
(2.15)

−
(n − n′)2

(n + n′)2 × 2F1

(
−n + l − 1,−n′ + l, 2l,

−4nn′

(n − n′)2

)

The function 2F1(α, β, γ, χ) is the hypergeometric function which is used to
solve many linear second-order ordinary differential equations. In the case of
(2.15), we note that for both expressions involving α and β, we have:

α ≤ 0 and β ≤ 0⇒ α and β are non-positive integers (2.16)

and γ and χ are real numbers. Hence we define the hypergeometric function
in the regular fashion:

2F1(α, β, γ, χ) =

∞∑
n=0

(α)n(β)n

(γ)n

χn

n!
=

min(|α|,|β|)∑
n=0

(α)n(β)n

(γ)n

χn

n!
(2.17)

where (q)n is the Pochhammer symbol

(q)n =

 1 if n = 0
q(q + 1) · · · (q + n − 1) if n > 0

(2.18)

2.3. Insufficient Precision Problem 20

(Knuth, 1992).
As both α and β are non-positive integers, it follows that (2.17) will converge

in a finite number of steps as indicated by substituting the upper limit of ∞
with min(|α|, |β|).

Note that the hypergeometric function in equation (2.15) is for the general
case where both n and l are considered. When l is not considered, the two first
arguments to both hypergeometric functions have l = 0. The third argument
has l = 1

2 (Menzel & Pekeris, 1935).
As we are dealing with large quantum numbers in this thesis (1000+) it

becomes evident that the numbers present in the expression for ρ (equations
(2.11)-(2.12)) will become very large, due to the many exponents and factorials
involving n. As such it is a fair assumption that double precision arithmetic will
not suffice when solving ρ for large values of n, and even for moderate n. E.g.
if calculating for n = 165,n′ = 155, l = 1, we have one of the exponents equal to
n + n′ − 2l − 2 = 165 + 155 − 2 − 2 = 316. This leads to the last term in c(n,n′, l)
being equal to (165− 155)311 = 10311 - three orders of magnitude larger than the
highest representable number of an IEEE 754 64-bit binary double-precision
floating-point number. Clearly there is a need for a standard that is able to
represent numbers of a sufficient degree. IEEE 754 128-bit binary quadruple-
precision allows for exponents up to order 106111. However, the third term in
c(n,n′, l) has the denominator: (n′ + n)n′+n which can be of order ∼ 106600 for n
and n′ ' 1000. Finally, as can be seen in Fig. 2.4, when n = 1000,n′ = 514 and
we don’t consider l, the final sum for the hypergeometric function is off by a
factor of 1026 for quadruple-precision and 1043 for double-precision.

2.3 Insufficient Precision Problem

As was shown in Fig. 2.4 there was a clear discrepency in the final sum of
the hypergeometric function for different precisions when considering n =

1000,n′ = 514. This was established by use of the arbitrary precision package
MPFR (Fousse, Hanrot, Lefèvre, Pélissier, & Zimmermann, 2007) which allows
for theoretically infinite precision - well above the maximum 128-bit precision
as set by the IEEE 754 standard. In Fig. 2.4 we calculated the hypergeometric
function using multiples of 53-bits precision up to 6 times (except quadruple
which is 113 bits). The 53-bits refer to the precision in the mantissa of the

2.3. Insufficient Precision Problem 21

740

750

760

770

780

790

506 508 510 512 514

|lo
g 1

0(
2F

1)
|

Number of terms in sum

double-precision
quadruple-precision

159 bits precision
212 bits precision
265 bits precision
318 bits precision

Figure 2.4: Plot of absolute value of the sum of the hypergeometric function for n = 1000,n′ =
514 and l not considered, as a function of bits of precision. Note that the y-axis is in base 10
logarithmic scale.

number and not to the overall bits used in representing the number. In fact,
as mentioned earlier, it would not be possible to represent the number ∼ 10788

using standard IEEE 754 double-precision as the exponent is only 11 bits which,
when accounting for the offset-binary, gives a maximum exponent of 21023

'

10308 (“IEEE Standard for Floating-Point Arithmetic”, 2008, p.8). As such,
when using the MPFR package we are able to establish the correlation between
number of bits in the significand vs. difference in value of the hypergeometric
function. It is clear from Fig. 2.4 that in this particular example convergence
happens at approximately 212 bits of precision - almost twice the precision
as given by IEEE 754 quadruple precision (“IEEE Standard for Floating-Point
Arithmetic”, 2008, p.8).

To see the effect of limited precision in calculating the hypergeometric
function, the oscillator strength transitions from n = 1000 to n′, where n′ ∈
{1, 2, · · · , 999} have been plotted in Fig. 2.5 and l is not considered. It is evident
that there is a discrepancy between 185-bit precision and 250-bit precision. The
plot for the 250-bit precision strength is what we would expect. Physically, the
reason for this can be understood through the overlap of the wave functions

2.4. Solution to Insufficient Precision Problem for n using Gaunt Factors 22

0

50

100

150

200

0 200 400 600 800 1000

f(
10

00
,n
′
)

Principal quantum number n′

0
10
20
30
40
50

400 450 500 550 600

Zoom

250-bit precision
185-bit precision

Figure 2.5: Plot of oscillator strength transitions, f , from n = 1000 to n′, where n′ ∈ {1, 2, · · · , 999}

between two different states of hydrogen. The overlap from a state n to a state
n−1 is larger than that from the state n to the state n−2. We know this because,
when only considering n, the radius, r, of hydrogen is given as a function of
the Bohr radius:

r = n2a0 (2.19)

This radius signifies the distance from the nucleus at which the electron is
most likely to be. The radial probability function for hydrogen is peaked
at this radius (Serway & Jewett, 2008, p.1230). Hence the overlap of two
probability density functions at different n is greater when ∆n = n − n′ is
smaller. We therefore expect a strictly increasing function as that shown for
250-bits precision, whereas that shown for 185-bits precision is un-physical.

2.4 Solution to Insufficient Precision Problem for n

using Gaunt Factors

Computing the hypergeometric function for each pair of n,n′ when calculating
oscillator strengths is time consuming. As such, substituting the calculation

2.4. Solution to Insufficient Precision Problem for n using Gaunt Factors 23

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000

ga
un

t_
fa

ct
or

(n
m

ax
,n
′
)

Lower quantum number n′

nmax = 250
nmax = 500

nmax = 1000

Figure 2.6: Plot of the gaunt factor as a function of maximum principal quantum number nmax
and lower principal quantum number n′

with a simple algebraic expression would be highly desirable. For that reason
Burgess and Summers (1976, p.384) expanded upon the Gaunt factor, gnn′

I, for
transitions between bound levels, as introduced by Menzel and Pekeris (1935).
They claim that this factor can correct the very simple formula for oscillator
strength as given by Kramer (Menzel & Pekeris, 1935, p.84) to within 0.5%:

f ′nn′ =
26

3
√

3π

1
ω′n

1(
1

n′2 −
1
n2

) ∣∣∣∣∣ 1
n3

1
n′3

∣∣∣∣∣ (2.20)

where ω′n is the statistical weight as introduced in (1.5).
In other words, the oscillator strength fnn′ can be presented as the product

of Kramer’s f ′nn′ and the Gaunt factor, gI
nn′ :

fnn′ = gI
nn′ f

′

nn′ (2.21)

The analytic presentation of the Gaunt factor, for any n and n′, is given in
Burgess and Summers (1976, p.384) as follows:

2.4. Solution to Insufficient Precision Problem for n using Gaunt Factors 24

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

D
ev

ia
ti

on
in

%

Principal quantum number n′

f (10,n′)
f (20,n′)

f (100,n′)
f (250,n′)
f (500,n′)
f (750,n′)

f (1000,n′)

Figure 2.7: Plot of deviation in percent between the real oscillator strength, f , using hypergeo-
metric functions with 300 bits precision, and the oscillator strength given by equation (2.21).

gI
nn′ ' 1.0 − T4(T1G1 + T2G2 + T3G3) (2.22)

where, for n′ < n,

G1 =
(
0.203 +

0.256
n2 +

0.257
n4

)
n (2.23)

G2 = 0.170n + 0.18 (2.24)

G3 =
(
0.2214 +

0.1554
n2 +

0.370
n4

)
n (2.25)

T1 = (2n′ − n)(n′ − n + 1) (2.26)

T2 = 4.0(n′ − 1)(n − n′ − 1) (2.27)

T3 = (2n′ − n − 0.001)(n′ − 0.999) (2.28)

T4 =
1

(n − 1.999)2

1
nn′2/3

(n − 1
n − n′

)2/3

(2.29)

The Gaunt factor, computed according to the approximation (2.22)-(2.29), changes
between 0 and 1 as shown in Fig. 2.6.

2.5. Solution to the Insufficient Precision Problem for n, l 25

In Fig. 2.7 we have plotted the deviation in percent between the real os-
cillator strength calculated using the hypergeometric function with 300 bits
precision compared to that of using equation (2.20) multiplied by the gaunt
factor. It is clear that the claimed deviation of 0.5% is a realistic estimate. An
interesting side-note is that for the transition f (2, 1) the deviation is -44.2%.
However, this is a Case A example as mentioned earlier which we will not deal
with in this thesis and the transition f (3, 1) does not exhibit this behaviour.

2.5 Solution to the Insufficient Precision Problem

for n, l

When considering quantum orbital momentum l, there does not exist an ap-
proximation formula for the Gaunt factor to correct for approximate estimates
of the oscillator strength. This becomes a serious computation issue. We will
now compare the run time of pure n calculations with that of n, l calculations
by showing the complexity for n and n, l respectively.

In equation (1.26), instead of having infinity as an upper limit we choose a
finite number, nmax. It is clear that each level n must then have nmax number of A
terms in equation (1.26). This equation also shows the symmetry between the
Amn and Anm terms. Furthermore, it very quickly becomes evident that these
terms are not unique. Representing each Anm term in a matrix demonstrates
symmetry about the diagonal, with the diagonal itself being equal to zero. The
matrix below shows this for nmax = 4:

n 1 2 3 4

1 0 A21 A31 A41

2 A21 0 A32 A42

3 A31 A32 0 A43

4 A41 A42 A43 0

Table 2.1: Matrix demonstrating the symmetry of spontaneous radiation, for n only, up to
n = 4.

In Table 2.1 we have an upper/lower diagonal matrix, with diagonal zero.
We note that each level has n − 1 downward transitions. Hence we have, for

2.5. Solution to the Insufficient Precision Problem for n, l 26

the number of unique spontaneous transitions, Snmax :

Snmax =

nmax∑
n=1

n − 1 =
nmax(nmax − 1)

2
=

n2
max − nmax

2
(2.30)

When computing the number of unique terms including l, we must obey the
rules of quantum mechanics known as selection rules. These state that a
transition from a higher state n, l to a lower state n′, l′, must obey the rule:

∆l = l − l′ = ±1 (2.31)

where the usual definition of l states that for a given n, we have l ∈ {0, 1, 2, ...,n−
1}

n, l 1, 0 2, 0 2, 1 3, 0 3, 1 3, 2 4, 0 4, 1 4, 2 4, 3

1, 0 0 0 A2,1;1,0 0 A3,1;1,0 0 0 A4,1;1,0 0 0

2, 0 0 0 0 0 A3,1;2,0 0 0 A4,1;2,0 0 0
2, 1 A2,1;1,0 0 0 A3,0;2,1 0 A3,2;2,1 A4,0;2,1 0 A4,2;2,1 0

3, 0 0 0 A3,0;2,1 0 0 0 0 A4,1;3,0 0 0
3, 1 A3,1;1,0 A3,1;2,0 0 0 0 0 A4,0;3,1 0 A4,2;3,1 0
3, 2 0 0 A3,2;2,1 0 0 0 0 A4,1;3,2 0 A4,3;3,2

4, 0 0 0 A4,0;2,1 0 A4,0;3,1 0 0 0 0 0
4, 1 A4,1;1,0 A4,1;2,0 0 A4,1;3,0 0 A4,1;3,2 0 0 0 0
4, 2 0 0 A4,2;2,1 0 A4,2;3,1 0 0 0 0 0
4, 3 0 0 0 0 0 A4,3;3,2 0 0 0 0

Table 2.2: Matrix demonstrating the symmetry of spontaneous radiation, for n and l, up to
n = 4.

Table 2.2 presents the matrix that arises when following these selection rules
for nmax = 4. Taking each pair of quadrants reflected in the diagonal, it is easy
to see that these are symmetric. We note that for each level n, there are (n − 1)2

downward transitions which can be seen from counting the amount of non-
zero terms appearing in either the upper or lower diagonal, for each level. As

2.5. Solution to the Insufficient Precision Problem for n, l 27

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180

(#
hy

p(
n,

l)/
h

yp
(n

))
/0
.1

65
n2

Principal Quantum Number

(
#hyp(n, l)
#hyp(n)

)
0.165n2

Figure 2.8: This plot shows the magnitudes of difference between x = n or x = n, l for the
function #hyp(x).

such we have term Snmax,l equal to:

Snmax,l =

nmax∑
n=1

(n − 1)2 =

nmax−1∑
n=0

n2 P=nmax−1
======

P3

3
+

P2

2
+

P
6

(2.32)

From equation (2.30) and (2.32) we have that Snmax ∈ O(n2) and Snmax,l ∈ O(n3),
where O is the “Big O” notation.

Although we have established the number of terms in Snmax and Snmax,l we
must also analyse them with respect to the amount of terms in the hypergeo-
metric function as this will have a very large impact on the overall runtime.
For this purpose sdwe define the function:

#hyp(x) (2.33)

as the total number of unique terms in the hypergeometric function for a given
x, where x = n or x = n, l.

2.6. Implementation 28

In Fig. 2.8 we have plotted the function:(
#hyp(n, l)
#hyp(n)

)
0.165n2 (2.34)

where the quadratic, 0.165n2, was established through manual curve fitting. As
can be seen, the plot quickly becomes constant. Hence the difference in runtime
for n vs. n, l is a whole magnitude larger than what we predicted when using
equation (2.30) and equation (2.32).

We determined #hyp(n, l) and #hyp(n) by activating a counter in the
einstein_coefficient_calc_mpfr.c program.

2.6 Implementation

For computation of the Einstein coefficients, including orbital quantum number
l, we rely here on the very extensive paper by Brocklehurst (1971). However, as
noted earlier, we have used Dopita and Sutherland (2003) for the description of
the radial function, as this definition is more clear. Furthermore, they observe
that this integral can in fact always be expressed as a rational number since
the square root in equation (2.13) and (2.14) will eventually be squared. As
such, one could technically avoid performing this square root. However, for
simplicity, we perform the square root. Secondly, in a case where n = 1000,n′ =

999, l = 998, the fraction of the square root term in (2.13) would look like this:

(l + n′ − 1)!(l + n)!
(n′ − l)!(n − l − 1)!

=
(998 + 999 − 1)!(998 + 1000)!
(999 − 998)!(1000 − 998 − 1)!

(2.35)

=
1996!1998!

1!1!
(2.36)

= 1996!1998! (2.37)

= 1996!1996! · 1998 · 1997 (2.38)

= (1996!)2
· 1998 · 1997 (2.39)

' (2.07 · 105722)2
· 4 · 106 (2.40)

' 4 · 1011444
· 4 · 106 (2.41)

' 1.6 · 1011451 (2.42)

2.6. Implementation 29

This is a very large number but by taking the square root we reduce the
size of it enough to allow us to perform calculations on it. The term will then
subsequently be cancelled out by other very small terms (which arise from the
sizes of n,n′ and l′).

When n,n′ are large and l is small, the fraction of the square root becomes
close to unity. Similarly, the remaining terms also cancel. For small n, all
fractions become close to unity as n is the largest of all the quantum numbers.

2.6.1 The MPFR Library

The program for computing the Einstein Coefficients was implemented in C
with the additional MPFR library to support arbitrary precision. This library
does not extend previously defined C functions to allow for arbitrary arithmetic
but rather defines its own arithmetic functions. Fig. 2.9 explains the general
structure of reading code containing MPFR functions.

The MPFR library is built on top of the GMP library which is widely used
when dealing with arbitrary precision. In fact, the GCC compiler uses the
MPFR library, which uses the GMP library, to evaluate built-in maths functions
at compile time (“GCC 4.3 Release Series Changes, New Features, and Fixes”,
2013). Fousse et al. (2007, p.9) have compared the run time of the MPFR library
to that of three other widely used arbitrary precision packages, also based
on GMP, with the results being widely in favour of MPFR. As such, we are
confident that the MPFR package is a good choice. However, there are a few
concerns of how some of the functions are computed when using the MPFR
package. As the analysis of the computation pointed out, the hypergeometric
function can have numerous terms. Hence it is important that the calculations
are performed optimally.

Fig. 2.10 shows that the calculation of n! in the MPFR library is per-
formed naively as n! = n · (n − 1) · (n − 2) · · · 1. Based on the suggestion of
“FastFactorialFunctions” (2013) (referred to by Black (2013)) we suggest im-
plementing the factorial function known as PrimeSwing. This is in fact the
algorithm implemented by the GMP library (Granlund & the GMP develop-
ment team, 2013, p.107). Surprisingly, this implementation is not offered by the
MPFR library.

When taking the square root the MPFR library is implemented identically

2.6. Implementation 30

1 // Set default MPFR precision to 300
2 mpfr_set_default_prec(300);
3

4 // Declares variable
5 mpfr_t temp1, temp2, temp3;
6

7 // Initialise variable
8 mpfr_init(temp1);
9 mpfr_init(temp2);

10

11 // Initialise and set precision of variable
12 mpfr_init2(temp3,350);
13

14 // Assign values to variables
15 // temp1 = 10.0 with ’MPFR_RNDN’ rounding
16 // temp2 = 20 with ’MPFR_RNDN’ rounding
17 // temp3 = temp2 with ’MPFR_RNDN’ rounding
18 mpfr_set_d(temp1,10.0,MPFR_RNDN);
19 mpfr_set_ui(temp2,20,MPFR_RNDN);
20 mpfr_set(temp3,temp2,MPFR_RNDN);
21

22 // Do arithmetic on variables:
23 // temp3 = temp2*temp1 with ’MPFR_RNDN’ rounding
24 mpfr_mul(temp3,temp2,temp1,MPFR_RNDN);
25

26 // temp1 = temp1-temp2 with ’MPFR_RNDN’ rounding
27 mpfr_sub(temp1,temp1,temp2,MPFR_RNDN);
28

29 // temp3 = 5/temp2 with ’MPFR_RNDN’ rounding.
30 // 5 is an ’unsigned long int’
31 mpfr_ui_div(temp3,5,temp2,MPFR_RNDN);
32

33 // temp3 = temp2/5 with ’MPFR_RNDN’ rounding.
34 // 5 is an ’unsigned long int’
35 mpfr_ui_div(temp3,temp2,5,MPFR_RNDN);
36

37 // Get double value of ’temp3’ with MPFR_RNDN rounding.
38 double answer = mpfr_get_d(temp3,MPFR_RNDN);
39

40 mpfr_clear(temp1);
41 mpfr_clear(temp2);
42 mpfr_clear(temp3);

Figure 2.9: General usage of the MPFR library.

2.7. GPU Optimization 31

1 mpfr_t t; /* Variable of Intermediary Calculation*/
2 unsigned long i;
3 int round;
4 ...
5 for (i = 2 ; i <= x ; i++)
6 {
7 round = mpfr_mul_ui (t, t, i, rnd);
8 ...
9 }

Figure 2.10: Naive implementation of n! in factorial.c from the MPFR library.

to the GMP library (The MPFR Team, 2013, p.13), using the “Karatsuba Square
Root” (Granlund & the GMP development team, 2013).

For exponentiation (pow) the MPFR library makes use of the identity log(xy) =

y log(x) by defining the function in terms of exp as such:

pow(x, y) = xy = ey log(x) = exp(x, y) (2.43)

This requires the calculation of a mul function along with an exp and log

function. However, all three of these functions are implemented with focus on
optimization (unlike the factorial function).

2.7 GPU Optimization

Based on the analysis of the computation of the radial integral given in equa-
tion (2.10), optimization will be an important factor. For this, use of parallel
computation techniques such as GPUs will be highly desirable. At the time
of implementation, the author was not familiar with any arbitrary precision
packages available for GPUs and as such no attempt has been made to imple-
ment arbitrary precision on the GPU. However, both Nakayama and Takahashi
(2011) and Lu, He, and Luo (2010) have demonstrated significant performance
gains by implementing arbitrary arithmetic, also based on GMP, on the GPU
as opposed to running those same calculations on the CPU using a GMP based
arbitrary arithmetic package. It should be noted though that Fig. 2.4 indi-
cates that arbitrary arithmetic may not be needed for a large number of terms

2.8. Conclusion 32

in the hypergeometric series, if we exclude the magnitude of the exponent,
as precision only decreases in the last 8 terms. Hence there may be a way
of calculating using double-precision on the GPU, and then returning to the
CPU for the remaining 8 calculations. However, the relatively small size of the
double-precision mantissa must be dealt with if this approach is taken, such as
using logarithms.

2.8 Conclusion

Lastly, it should be noted that the nature of the departure coefficient problem is
dependent on temperature and density, as mentioned earlier. As the Einstein
coefficients are purely dependent on the atomic states of the atom, and indepen-
dent of temperature and density, one can pre-calculate all Einstein coefficients
and simply reload the values when solving the bn,l problem. Furthermore,
there is no dependence on previous calculations of n, l, i.e. if calculating all the
Einstein coefficients for nmax = 1000, there is no need to recompute these values
when continuing calculation for nmax > 1000. The program included with this
thesis does exactly this and can in a matter of seconds reload from a (large)
file all the previously calculated Einstein coefficients. Even when changing
the precision one can still use pre-calculated values and as such the reduced
performance of calculating the Einstein coefficients on the CPU rather than on
the GPU will not be an obstacle for the calculations of bn,l for any temperature.
In Fig. 2.11 we show the calculation of all Einstein coefficients up to nmax = 1000
for different bits of precision.

2.8. Conclusion 33

−2

−1

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800 900 1000

lo
g 10

(T
im

e
in

se
co

nd
s)

Upper principal quantum number n

300 bits precision
100 bits precision

Figure 2.11: Plot of time to calculate Einstein coefficients as a function of upper principal
quantum number n in log10 scale.

Chapter 3

Radiative Recombination

3.1 Introduction to Radiative Recombination

In this chapter we introduce the concept of radiative recombination. This
process takes place in plasmas where the electrons are separated from atoms
(who have thus become ions) and are said to be in a “free” state. As ions
can accept electrons and the electrons are now free, an ion can capture an
electron. When this occurs, the electron is said to recombine with the ion. After
recombining, the electron can transition up, down or become ionized according
to the processes given in equations (1.18)-(1.22).

In Chapter 4, equation (4.36), we derive the expression for n of the radiative
recombination coefficient αn. We will not do that here and simply state the
result:

αn = 5.197 × 10−14x3/2
n S0(xn) (3.1)

where

xn =
15.789 × 104

Ten2 (3.2)

and
S0(x) = ex

∫
∞

x

e−v

v
dv (3.3)

and Te is the electron temperature.
Although this involves an exponential integral, we only have to do n numer-

ical integrations and so αn does not become an intensive computational task
and this calculation is well understood. Hence we progress to the calculation
of αnl in the following section.

34

3.2. Calculation of Radiative Recombination Coefficients 35

3.2 Calculation of Radiative Recombination Coeffi-

cients

When including orbital momentum l, the equation for αn (now αnl) becomes
increasingly more complex as, which was the case for Einstein coefficients, we
must calculate the hypergeometric function. However, we will this time make
use of a second approach, relying on a recursive scheme developed by Burgess
(1965).

In order to derive an expression for αnl we use the fact that radiative re-
combination and photoionization can be related by the Milne relation and are
in fact inverse processes (see Chapter 4). When photoionization occurs, the
electron is ejected with a dimensionless energy of k2 which obeys the energy
conservation condition:

hν =
(1
n2 + k2

)
IH (3.4)

where IH is energy needed to ionize an electron in its ground state. The cross
section for photoionization is then given by:

anl(k2) =

(
4παa2

0

3

)
n2

∑
l′=l±1

max(l, l‘)
2l + 1

Θ(n, l, κ, l′) (3.5)

where
Θ(n, l, κ, l′) = (1 + n2κ2)2

|g(n, l, κ, l′)|2 (3.6)

and
g(n, l, κ, l′) =

1
n2

∫
∞

0
ΨnlrΨ′κldr (3.7)

As κ ≡ k/Z, where Z = 1 for hydrogen, we have made a direct substitution for
k with κ. As in Chapter 2 the overlap of the wave functions in (3.7) represents
the transition probability from the state n, l to the state κ, l, where κ, l is the
ionization state with energy that obeys equation (3.4). Following Burgess
(1965) we now define:

αnl =
2π1/2α4a2

0c
3

2y1/2

n2

∑
l′=l±1

I(n, l, l′, t) (3.8)

where

I(n, l, l′, t) = max(l, l′)y
∫
∞

0
(1 + n2κ2)2Θ(n, l, κ, l′)e−κ

2 yd(κ2) (3.9)

3.2. Calculation of Radiative Recombination Coefficients 36

and
t =

Te

104 (3.10)

and
y =

Rhc
kTe
'

15.789
t

(3.11)

Similar to the Einstein coefficients we are able to get an exact expression for
g(n, l, κ, l ± 1), stated by Burgess (1965) as:

g(n, l, κ, l′) =

√√
π
2

(n + 1)!
(n − l − 1)!(1 − e−2π/κ)

l′∏
s=0

(1 + s2κ2) (3.12)

×

(4n
1 + n2κ2

)min(l,l′)

×

exp
[
−

2
κ tan−1(nκ)

]
4n2(2l ± 1)!

Y±

where

Y+ = iη
(

n − iη
n + iη

)n−l [
2F1

(
l + 1 − n, l − iη, 2l + 2,

−4niη
(n − iη)2

)
(3.13)

−

(
n + iη
n − iη

)2

× 2F1

(
l + 1 − n, l + 1 − iη, 2l + 2,

−4niη
(n − iη)2

)
and

Y− = iη
(

n − iη
n + iη

)n−l−1 [
2F1

(
l − 1 − n, l − iη, 2l,

−4niη
(n − iη)2

)
(3.14)

−

(
n + iη
n − iη

)2

× 2F1

(
l + 1 − n, l − iη, 2l,

−4niη
(n − iη)2

)
and η = 1/κ and i2 = −1. There are a few major differences between the expres-
sion for g(n, l, κ, l′), given by equation (3.12) and the expression for ρ(n′l′,nl),
given by equation (2.11). These originate in the radial wave equation for Ψκl

because the atom is ionized rather than transitioning to another bound state.
The equation for Ψκl includes the term π/2 and

∏l
s=0(1 + s2κ2) which is why

we see variants of these terms appearing in equation (3.12). It is for this same
reason that some of the parameters to the hypergeometric function are now

3.3. Implementation 37

complex.
As mentioned at the start of this section, we will be implementing a second

technique that uses a recursive scheme by Burgess (1965) to solve g(n, l, κ, l′)
rather than using hypergeometric functions. As the reason behind this recur-
sive scheme is rather involved we simply restate the equations and refer the
reader to Burgess (1965):

g(n, l, κ, l′) =

√√
(n + l)!

(n − l − 1)!

l′∏
s=0

(1 + s2κ2)(2n)l−nG(n, l, κ, l′) (3.15)

where

G(n,n − 1, 0,n) =

√
π
2

8n
(2n − 1)!

(4n)ne−2n (3.16)

G(n,n − 1, κ,n) =
1

√

1 − e−2π/κ

exp
[
2n − 2/κ tan−1(nκ)

]
(1 + n2κ2)n+2 (3.17)

× G(n,n − 1, 0,n) (3.18)

G(n,n − 2, κ,n − 1) = (2n − 1)(1 + n2κ2)nG(n,n − 1, κ,n) (3.19)

G(n,n − 1, κ,n − 2) =

(
1 + n2κ2

2n

)
G(n,n − 1, κ,n) (3.20)

G(n,n − 2, κ,n − 3) = (2n − 1)
[
4 + (n − 1)(1 + n2κ2)

]
G(n,n − 1, κ,n − 2) (3.21)

Furthermore, we have the following recurrence relations:

G(n, l − 2, κ, l − 1) =
[
4n2
− 4l2 + l(2l − 1)(1 + n2κ2)

]
G(n, l − 1, κ, l) (3.22)

− 4n2(n2
− l2)

[
1 + (l + 1)2κ2

]
G(n, l, κ, l + 1)

G(n, l − 1, κ, l − 2) =
[
4n2
− 4l2 + l(2l + 1)(1 + n2κ2)

]
G(n, l, κ, l − 1) (3.23)

− 4n2
[
n2
− (l + 1)2

]
(1 + l2κ2)G(n, l + 1, κ, l)

3.3 Implementation

It is clear from equation (3.8) that the most intensive part of the calculation
will be performed calculating the value I(n, l, l′, t), defined in equation (3.9).
Although we are not using arbitrary arithmetics for the calculation of g(n, l, κ, l′)
(which was neccessary for the method used for the Einstein coefficients) we do

3.3. Implementation 38

G(8,7,8)_{K=0}

G(8,7,8)_{K=0} G(8,7,8)_{K=0}

G(8,7,8)

G(8,7,6)

G(8,6,5)

G(8,4,3)

G(8,7,8)

G(8,7,6)

G(8,5,4)

G(8,7,8)

G(8,7,6)

G(8,6,5)

G(8,7,8)_{K=0}

G(8,7,8)_{K=0}

G(8,7,8)

G(8,7,6)

G(8,5,4)

G(8,7,8)

G(8,7,6)

G(8,6,5)

G(8,3,2)

Figure 3.1: The picture shows the naive approach to solving the recurrence relation when
G(n, l, κ, l′) = G(8, 3, κ, 2). The shaded rectangles show where duplicate calculations are being
performed. κ is not shown for brevity.

use IEEE 754 128-bit binary quadruple-precision to avoid the possible errors
that can build up when multiplying the highly fluctuating G terms in equations
(3.16)-(3.21) (Burgess, 1965), as we calculate for very high n.

We can solve the problem naively via a top-down approach by using the
recurrence relations (3.22) and (3.23). In Fig. 3.1 we show this approach for
G(8, 3, 2). As can be seen from the shaded rectangles, we are performing many
calculations more than once. In fact, out of the 22 calculations made in all, only
7 are unique.

Instead of the naive approach, a memoization algorithm could be used (Cormen,
2009). This will still solve the algorithm in a top-down approach but will store
the results obtained so that when the same result is needed, it can be returned
in constant time rather than performing the computation once more. This has
the advantage of completely avoiding duplicate computation but uses more
memory. To avoid this, we use a bottom-up dynamic programming approach
(Cormen, 2009). We can do this because the problem exhibits the two desired

3.3. Implementation 39

criteria for a dynamic programming approach:

• Optimal substructure

• Overlapping subproblems

Optimal substructure is fulfilled because each solution to a problem contains the
solution to subproblems.

Overlapping subproblems requires the size of the independent subproblem space
to be significantly smaller than that of the entire problem space i.e. solving all
of the independent subproblems is much less time-consuming than solving the
entire problem naively. As was demonstrated in Fig. 3.1 this is clearly the case
for our recurrence relation.

As both criteria are fulfilled the problem is well-suited for a bottom-up dy-
namic programming approach.

We now make the following observation:
For any n and l, we have n ≥ l + 1. We assume l′ = l − 1 and call this Case 1.

This does not change the following argument as the concept will be the same
for l′ = l + 1. Hence we can write l = n − 2 − s where −1 ≤ s ≤ n − 2 − l. If s ≤ 0,
the solution is trivial as we can match it to one of our base cases in equations
(3.16)-(3.21). For s = 0, this requires the calculation of four terms. When s > 0,
we define, by rewriting equation (3.23) to better suit our problem:

G [n, (n − 2) − s, (n − 3) − s] = A [n, (n − 2) − s]

× G [n, (n − 2) − s + 1, (n − 3) − s + 1]

+ B [n, (n − 2) − s]

× G [n, (n − 2) − s + 2, (n − 3) − s + 2] (3.24)

3.3. Implementation 40

From this it follows that:

G [n, (n − 2) − s − 1, (n − 3) − s − 1] = A [n, (n − 2) − s − 1]

× G [n, (n − 2) − s, (n − 3) − s]

+ B [n, (n − 2) − s − 1]

× G [n, (n − 2) − s + 1, (n − 3) − s + 1] (3.25)

Equations (3.24) and (3.25) show that each calculation of G(n, l, κ, l′) is defined
entirely by G(n, l + 1, κ, l′ + 1) and G(n, l + 2, κ, l′ + 2). An analogous result can
be established for l′ = l + 1 (Case 2).

We can now create a program that first checks whether G(n, l, κ, l′) is in the
form of any of the base case equations given in (3.16) - (3.21). If so, simply
return the answer directly. If not, one of the two following cases are true:

1. G(n, l, κ, l′) = G(n, l, κ, l − 1)

2. G(n, l, κ, l′) = G(n, l, κ, l + 1)

In Case 1, our base cases are G(n,n − 1, κ,n − 2) and G(n,n − 2, κ,n − 3), both
defined through relation (3.24) and (3.25), where s = −1 and s = 0 respectively.
Furthermore, we are able to reach any G(n,n − 2 − s, κ,n − 3 − s) through these
two base cases, where s is finite and s > 0. In our program we therefore define
h1 and h2 as:

h1 = G(n,n − 1, κ,n − 2) (3.26)

h2 = G(n,n − 2, κ,n − 3) (3.27)

We now define hi according to equation (3.24):

hi = Aihi−1 + Bihi−2 (3.28)

As each hi is defined only in terms of hi−1 and hi−2 we can store hi in the place of
hi−2. In Fig. 3.4 we show the code for the function G_n_l_K_lg where lg means
l′ is less than l i.e. l′ = l − 1. Furthermore, Fig. 3.2 shows an example of the
recursion tree for this new approach when n = 8, l = 3 and l > l′.

3.3. Implementation 41

G(8,7,6) G(8,6,5)

G(8,5,4)

G(8,4,3)

G(8,7,8) G(8,7,6)

G(8,7,8)_{K=0}

G(8,7,8)

G(8,3,2)

Figure 3.2: The picture shows the dynamic programming approach to solving the recurrence
relation when G(n, l, κ, l′) = G(8, 3, κ, 2). The shaded rectangle shows where duplicate calcula-
tions are being performed. κ is not shown for brevity.

3.3. Implementation 42

G(8,6,5)

G(8,5,4)

G(8,4,3)

G(8,7,6)

G(8,7,8)_{K=0}

G(8,7,8)

G(8,3,2)

Figure 3.3: The picture shows the optimized dynamic programming approach to solving the
recurrence relation when G(n, l, κ, l′) = G(8, 3, κ, 2). κ is not shown for brevity.

3.3. Implementation 43

1 G_l_K_lg(n,l,K)
2 {
3 h1 = G_n_n_1_K_n(n,K);
4 h2 = G_n_n_2_K_n_1(n,K);
5

6 for(i=3;i<=n-l;i++)
7 {
8 if(i%2==0)
9 h1 = A*h2+B*h1;

10 else
11 h2 = A*h1+B*h2;
12 }
13 // Check whether or not last
14 // returned value was h2 or h1
15 if(i%2==0)
16 return h2;
17 else
18 return h1;
19 }

Figure 3.4: G_l_K_lg algorithm

3.3. Implementation 44

We note here that, initially, i = 3 which we will discuss shortly.
Using this scheme, we have reduced the memory needed for the algorithm

compared to the previously suggested memoization algorithm, as we overwrite
hi−2 in each iteration with the value of hi. Furthermore, we have also eliminated
the checks needed to verify whether or not a result has already been computed.

In Fig. 3.2, three of the relations are solved twice, namely G(n,n − 1, κ,n −
2),G(n,n− 1, κ,n) and G(n,n− 1, 0,n). However, we can easily avoid the dupli-
cate calculations by first computing the value of F = G(n,n−1, κ,n−2) and then
setting G(n,n − 2, κ,n − 3) = (2n − 1)

[
4 + (n − 1)(1 + n2κ2)

]
× F, thus avoiding

the additional three calculations. This is depicted in Fig. 3.3 where the two
branches from Fig. 3.2 have now become one.

The height of the tree in Fig. 3.3 is seven. In order to get a general expression for
the height of the tree, we must define it in terms of the two parameters n and l.
Calculating G [n, (n − 2) − s − 1, (n − 3) − s − 1] after G [n, (n − 2) − s, (n − 3) − s]
has been calculated requires one calculation following relations (3.24) and
(3.25). Hence the number of terms needed to calculate G [n, (n − 2) − s, (n − 3) − s],
when G [n, (n − 2), (n − 3)] has been calculated, is s. We mentioned earlier that
calculating G [n, (n − 2) − s, (n − 3) − s], where s = 0, requires four calculations.
Hence to calculate G [n, (n − 2) − s, (n − 3) − s] for any s requires s + 4 calcula-
tions. As we defined s = n − 2 − l we can write total number of calculations
as:

Hdyn> = s + 4 = (n − 2 − l) + 4 = n − l + 2 (3.29)

which is therefore the height of the tree. In our example we have n = 8, l = 3
and hence the height can be written as 8 − 3 + 2 = 7 which is the height we
stated earlier.

For the naive approach, we remind the reader that we are using a top-down
approach.

The height of the leftmost leaf is the same height as the tree for the dynamic
programming approach. This is true because all the nodes on the (only) path
to the leftmost leaf node will decrease s by one, until s = 0, when traversing
from the node at level i to level i + 1, where s is defined as for the dynamic
programming approach and when using relations (3.24) and (3.25).

3.3. Implementation 45

We will now show the height of the rightmost node. Following relations
(3.24) and (3.25), the path to the rightmost leaf will decrease s by two when
traversing from the node at level i to level i + 1. Hence, when n − l is even, s
will have decreased by two exactly n−l

2 times when s becomes zero. Thus, the
length of the path to the rightmost leaf node is:

Leven =
n − l

2
+ 3 (3.30)

Note that, unlike for the dynamic programming approach, we add three, not
four, in our equation (3.30). This is because the naive method is a top-down
approach and hence when s = 0 the calculation has been counted in the term
for n, l. Thus we only need to compute G(n,n − 1, 0,n),G(n,n − 1, κ,n) and
G(n,n − 1, κ,n − 2), whereas for the dynamic approach, we start at s = 0 and
hence G(n,n−2, κ,n−3) should be added to the the constant for the expression
of n, l.

However, when n − l is odd, at some point s = 1 and when decreasing s
by two, we obtain s = −1. After calculating this term, we need only calculate
G(n,n − 1, 0,n),G(n,n − 1, κ,n). Hence the length of the path to the rightmost
node will be:

Lodd =
n − l − 1

2
+ 3 (3.31)

Combining equation (3.30) and (3.31) we obtain the equation:

Lg =

⌊
n − l

2

⌋
+ 3 (3.32)

where Lg is the length of the path to the rightmost leaf. Lg is also the shortest
path to any leaf. Hence when subtracting three from Lg, we get the length at
which the tree for the naive approach is a perfect binary tree. The number of
nodes in a perfect binary tree of height

⌊
n−l

2

⌋
is:

(⌊
n − l

2

⌋)2

− 1 (3.33)

In Case 2, where l′ = l + 1 we use the same reasoning as for l′ = l − 1 to
obtain:

Hdyns = n − l + 1 (3.34)

3.3. Implementation 46

For the naive approach, when l′ = l + 1, we get:

Ls =

⌊
n − l

2

⌋
+ 2 (3.35)

Using equation (3.29) and (3.34), we obtain a complexity of O(n − l) for the
dynamic approach. Using equation (3.33) and (3.35) we obtain a complexity of
O

(
(n − l)2) for the naive approach. Due to this difference in run-time we have

naturally chosen to implement the dynamic programming approach.

3.3.1 Calculating I(n, l, l′, t)

Unlike for Einstein coefficients, when calculating radiative recombination we
are eventually faced with solving an integral as seen in equation (3.9). Burgess
(1965) mentions how the integrand is always monotonically decreasing ap-
proximately exponentially. As such, we can calculate the integral numerically
and increase the step size used as the integration is done on the interval from
0→∞, where∞ is replaced with a sufficiently large upper value of κ2 (the in-
tegration variable). As for Einstein coefficients, it is possible to pre-calculate all
the values of Θ(n, l, κ, l′). Thus when integrating, we need only read the values
of the already calculated Θ(n, l, κ, l′) values. Due to the nature of the integral
for I(n, l, l′, t), it would seem favourable to calculate it using a Gauss-Laguerre
method. However, this method uses a weighted step size as a function of
its variables. As t is a variable in the integral, we would need evaluation of
different intervals for Θ(n, l, κ, l′) at varying values of t. Thus whenever t is
changed, all values of Θ(n, l, κ, l′) would need to be recalculated. As Θ(n, l, κ, l′)
is excessively more computationally intensive than the calculation of the in-
tegral, we need a method that does not make use of weighted step sizes as
a function of its variables. Hence we use the fixed point integration method
of Boole as suggested by Burgess (1965). However, we do use a significantly
smaller initial step size, with more iterations, as we are dealing with signif-
icantly higher values of n and l than that of Burgess (1965). He suggests an
initial step size of h = 0.00025/n and 26 iterations. We found convergence for
all values of n and l, when nmax = 1000, to require h = 0.000000025 and number
of iterations 100. We are using a five point integration formula, where step
size, h, is doubled after each iteration. In each iteration, κ2 takes on the values

3.3. Implementation 47

κ2, κ2 + h, κ2 + 2h, κ2 + 3h, κ2 + 4h, where initially κ2 = 0 for the first iteration.
Hence all the values of κ2 will be:

1st iteration:

κ2 = 0, h, 2h, 3h, 4h

2nd iteration:

κ2 = 4h, 6h, 8h, 10h, 12h

3rd iteration:

κ2 = 12h, 16h, 20h, 24h, 28h
... (3.36)

mth iteration: (3.37)

κ2 = 4h(2m−1
− 1), . . . , 4h(2m

− 1)

As we have chosen the number of iterations, m, to be 100, and we are using a
five point integration method, this leaves us with a total of 5 · 100 = 500 values
needed of Θ(n, l, κ, l′) for each triplet of n, l, l′. For each triplet we need two
values of Θ(n, l, κ, l′). In section 3.3 we found that for any n, l we need n − l + 2
or n − l + 3 calculations for each Θ(n, l, κ, l′). We arbitrarily choose n − l + 3 as
the calculations required for each Θ(n, l, κ, l′) due to simplicity. As there are n
values of l for each n, the total number of Θ(n, l, κ, l′) values needed is:

500 · 2
nmax∑
n=1

n = 1000 ·
nmax

2
(nmax + 1) (3.38)

To find the total number of evaluations of G(n, l, κ, l′) we must remember that
there are n − l + 3 calculations for each pair n, l. Hence when calculating the
number of calculations of G(n, l, κ, l′) for each level n, we must calculate the
sum:

(n− 0 + 2) + (n− 1 + 2) + . . .+ [n− (n− 1) + 2] = (n + 2) + (n + 1) + . . .+ (3) (3.39)

As such we can express the sum as:

n
2

[(n + 2) + 3] =
n
2

(n + 5) (3.40)

3.4. GPU Optimization 48

Hence the total number of calculations of G(n, l, κ, l′) for a given nmax is:

= 500 · 2 ·
nmax∑
n=1

n
2

(n + 5) (3.41)

= 500
nmax∑
n=1

(n2 + 5n) (3.42)

= 500

nmax∑
n=1

n2 + 5
nmax∑
n=1

n

 (3.43)

= 500
[
n3

max

3
+

n2
max

2
+

nmax

6
+ 5

nmax(nmax + 1)
2

]
(3.44)

= 500
[
n3

max

3
+

n2
max

2
+

nmax

6
+ 5

n2
max

2
+ 5

nmax

2

]
(3.45)

= 500
[
n3

max

3
+ 3n2

max +
8nmax

3

]
(3.46)

3.4 GPU Optimization

Similarly to the Einstein coefficients, many computations that are needed for
the radiative recombination coefficients need only be done once, though not all
of them. By using the integration technique from subsection 3.3.1 we need only
calculate all the Θ(n, l, κ, l′) values once. However, as the variable t in equations
(3.9)-(3.11) is dependent on temperature Te, we must re-calculate the integral
whenever we wish to determine the radiative recombination coefficient for a
different temperature. As such, this step is the most critical to optimize. We
do this through implementing an OpenCL kernel that performs all parts of the
calculation for αnl except that of the Θ(n, l, κ, l′) values. These are pre-calculated
and loaded into the kernel as a CL_READ_ONLY buffer. The number of different,
and independent, αnl values that need to be calculated for nmax = 1000 is:

1000
2

(1000 + 1) = 500, 500 = 5.005 · 105 (3.47)

(see equation (3.38)). Hence the overhead of establishing an OpenCL kernel is
heavily outweighed by the total time needed to calculate all of the values on
the CPU.

3.5. Conclusion 49

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
in

se
co

nd
s

Principal quantum number n

GPU
CPU

Figure 3.5: Plot of time taken to compute αnl for nmax = 1000 for both GPU and CPU.

3.5 Conclusion

Burgess (1965) implemented the recursion relation for n up to 20. In this thesis
we computed all n up to 1000. Furthermore, through extending the calculations
to also use GPUs, this process could be done in a matter of seconds. Fig. 3.5
shows the difference in runtime for the calculation on a GPU (Nvidia Tesla
C2070 - see Appendix B) vs. a CPU (Intel Xeon X5660 - see Appendix B) for
values of n from 50-1000 with increments of 50. The graph for the GPU does not
change smoothly for lower n. This happens because the most time consuming
task at this point is to set up the OpenCL kernel. Hence there is no point in
executing a kernel for low n, but a significant difference is seen at high(er)
n. From the graph one can see approximately a 10 fold performance increase
when n = 1000 when using GPUs instead CPUs and we can therefore conclude
that there is a significant gain in implementing the computation of radiative
recombinations on GPUs.

Chapter 4

Iterative Computation of bn

Coefficients

Sejnowski and Hjellming (1969) introduced the concept of solving the bn prob-
lem iteratively. They write equation (1.17) as:

NnPn = NcPcn +

∞∑
m=1

NmPmn (4.1)

where

Pn =

∞∑
m=1

Pnm (4.2)

Pcn is the combined probability of capturing an electron to level n and Nc = Ni

is the ion density, where Ni is defined as in equation (1.11).

Using the expression for bn as given in equation (1.16) and the formula for
N∗n, as given in equation (1.11), we have:

Nn = bnN∗n (4.3)

where

N∗n = NcNe
h3

(2πmekTe)3/2 n2 exp(xn) (4.4)

and
xn = En/(kTe) (4.5)

50

CHAPTER 4. ITERATIVE COMPUTATION OF BN COEFFICIENTS 51

and En is the ionization energy of an atom in level n. We can now derive an
implicit expression for bn:

Nn/N∗n = bn

m

bn =
NcPnc +

∑
∞

m=1 NmPmn

Pn

1
N∗n

=
NcPcn

Pn

1
N∗n

+

∑
∞

m=1 NmPmn

Pn

1
N∗n

= Tn +

∑
∞

m=1
Nm
N∗m

Pmn

Pn

N∗m
N∗n

Using equation (4.4), we get:

N∗m
N∗n

=
m2

n2 exp(xm − xn) (4.6)

Noting that:
Nm

N∗m
= bm (4.7)

we get:

bn = Tn +

∞∑
m=1

bmSmn (4.8)

where

Tn =
(2πmkTe)3/2

Neh
Pcn

n2Pn exp(xn)
(4.9)

and

Smn =
Pmn

Pn

m2

n2 exp(xm − xn) (4.10)

Using equation (4.8) Sejnowski and Hjellming (1969) propose a scheme that
iteratively solves equation (4.8) where initially bn = 1 for all n.

Sejnowski and Hjellming (1969) give the following definitions of the popu-
lation and depopulation probabilities:

CHAPTER 4. ITERATIVE COMPUTATION OF BN COEFFICIENTS 52

Pmn
R= Amn

(
1 +

c2Jν
2hν3

)
(4.11)

Pnm
R= Amn

ωm

ωn

c2Jν
2hν3 (4.12)

Pnc
R =

∫
∞

0

4πJν
hν

αn(ν)dν (4.13)

Pcn
R = Ne

∫
∞

0
σ(v)

(
1 +

c2Jν
2hν3

)
v f (v)dv (4.14)

where ωn is the statistical weight. Jν is the average intensity of the radiation
field at frequency ν; αn(ν) is the cross-section for photo-ionization from level
n for a photon at frequency ν; v is the speed of a free electron; f (v) is the
Maxwellian velocity distribution for free electrons and σ(v) is the cross-section
for electrons at speed v to recombine to level n.

In (4.11)-(4.14), index R refers to the radiative probability component. As
such, we also have the following collisional probability components:

Pnc
C = 7.8 × 10−11T1/2

e n3 exp(−xn)Ne (4.15)

Pnm
C= 1.2 × 10−7 fnm exp(−xnm)

(Em − En

E1

)−1.1856

Ne (4.16)

where fnm is the oscillator strength from level n to m and xnm = (Em−En)/(kTe) =

xm − xn. These probabilities are for what Sejnowski and Hjellming (1969) re-
fer to as Class II cross sections. We will not deal with Class I cross sections here.

CHAPTER 4. ITERATIVE COMPUTATION OF BN COEFFICIENTS 53

Sejnowski and Hjellming (1969) use the principle of detailed balancing to cal-
culate Pmn

C:

n2 exp(xn)Pnm
C = m2 exp(xm)Pmn

C (4.17)

m

n2 exp(xn)
m2 exp(xm)

Pnm
C = Pmn

C (4.18)

m

Pmn
C =

n2

m2 exp(xn − xm)Pnm
C (4.19)

and Pcn
C:

Pcn
C =

Neh3

(2πmkTe)3/2 n2 exp(xn)Pnc
C (4.20)

The total probabilities are then given by:

Pmn= Pmn
R+Pmn

C

Pnm= Pnm
R+Pnm

C

Pcn = Pcn
R +Pcn

C

Pnc = Pnc
R +Pnc

C

In our calculations of bn for the iterative method, we have made the simpli-
fying assumption that Jν = 0 for all frequencies ν. As such, stimulated emission
or stimulated absorption is not taken into account. Hence (4.11)-(4.14) become:

Pmn
R= Amn (4.21)

Pnm
R= 0 (4.22)

Pnc
R = 0 (4.23)

Pcn
R = Ne

∫
∞

0
σ(v)v f (v)dv (4.24)

and the collisional processes remain the same as they are not affected by external
radiation. Using Seaton (1959b, p.92) we have the expression for Amn:

CHAPTER 4. ITERATIVE COMPUTATION OF BN COEFFICIENTS 54

Amn =

(
8α4c

3πa0
√

3

)
Z4

m5 ×
2m2gmn

n(m2 − n2)
(4.25)

where gmn is the bound-bound Gaunt factor given by equation (2.22) and α is
the fine structure constant. As noted in Sejnowski and Hjellming (1969), one
can use the Milne relation to relate σn(v) to αn(ν). Hence we express Pcn

R in
terms of αn(ν) which we obtain from Seaton (1959a, p.81):

αn(Te) = D
λ1/2

n
xnSn(λ) (4.26)

and

D =
26

3

(
π
3

)1/2

α4ca2
0 (4.27)

= 5.197 × 10−14cm3sec−1 (4.28)

λ =
hRc
kTe

(4.29)

= 15.789 × 104 1
Te

(4.30)

xn =
λ
n2 (4.31)

Sn(λ) =

∫
∞

0

gII(n, ε)exnu

(1 + u)
du (4.32)

where gII(n, ε) is the free-bound Gaunt factor and u = n2ε. Furthermore, we
have:

gII(n, ε) = 1+0.1728n−2/3(u+1)−2/3(u−1)−0.0496n−4/3(u+1)−4/3(u2 +
4
3

u+1)+ . . .

(4.33)
and substituting (4.33) in (4.32) we have:

Sn(λ) = S(0)(xn) + λ−1/3S(1) + λ−2/3S(2) + . . . (4.34)

For simplicity, we will approximate Sn(λ) by using only the first term, S(0)(xn),
defined by:

S(0)(x) = ex
∫
∞

x

e−v

v
dv (4.35)

This approximation will have an effect, but not dominate, for levels n = 1, 2, 3.

4.1. Implementation 55

As we are interested in comparing with Sejnowski and Hjellming (1969), whose
solutions are only given for n > 20, this should not cause any noticable differ-
ence. Hence our final expression for αn is:

αn = 5.197 × 10−14x3/2
n S0(xn) (4.36)

Using the Milne relation, as given by Osterbrock and Ferland (2006, p.401) we
have:

αn =

∫
∞

0
σ(v)v f (v)dv (4.37)

which is the same as in equation (4.24). We can thus do a direct substitution
and finally obtain:

Pcn
R = Neαn (4.38)

4.1 Implementation

The bn calculations were done in standard C. Furthermore, the GNU Scientific Li-
brary (Gough, 2009) was used in order to perform integration of the exponential
integral in equation (4.35). When compiling, one must include “constants.h”,
“oscillator_strength_gaunt_final.c” and “expint.c” which define the
physical constants needed (in ESU units); the bound-bound Gaunt factors and
the setup needed to calculate the exponential integral. From equations (4.8)-
(4.10) it becomes apparent that most calculations need only be performed once.
A scheme was developed where, for each n; Pn,Pcn and Tn were calculated. As
these are only dependent on n, 1-dimensional arrays sufficed. Furthermore,
for each value of n, an array of values was needed for Smn as m takes on all
possible values of n. Hence a 2-dimensional array to hold the values of Smn was
needed. After calculations of these arrays, each bn was calculated according
to equation (4.8). To ensure consistent results, all bn’s were calculated for each
iteration before continuing.

To avoid branching when calculating the Smn terms we defined two loops
in the function calc_S_mn_term:

4.1. Implementation 56

1 int i;
2 for(i=CASE;i<n;i++)
3 {
4 S_mn[n-CASE][i-CASE] = s_mn_term_n_greater(P_n, n, i, beta, T_e,

N_e);
5 }
6 for(i=n+1;i<=num_of_b_n;i++)
7 {
8 S_mn[n-CASE][i-CASE] = s_mn_term_m_greater(P_n, n, i, beta, T_e,

N_e);
9 }

Figure 4.1: calc_S_mn_term algorithm

We then let s_mn_term_m_greater and s_mn_term_n_greater in turn call
p_mn_term_m_greater and p_mn_term_n_greater. This is needed as when m
is greater we must include spontaneous radiation (as m is the upper level and
can thus spontaneously transition downwards) and apply detailed balancing
to our collisional term. By writing out two different functions we avoid mak-
ing any branching which will decrease performance for a GPU implementation.

4.1.1 Output

When calculating the bn coefficients we are very much interested in knowing
not only the bn coefficients themselves but also the logarithmic derivative and
the β value as defined in equation (1.15). However, as Gordon and Sorochenko
(2002) use the following form for β, we redefine it as:

β ≡

(
1 −

kTe

hν
d ln(bn2)

dn
∆n

)
(4.39)

Secondly, as we are establishing discrete values of bn we define the logarithmic
derivative as:

d ln(bn)
dn

≡
bn+1 − bn

bn
(4.40)

The function write_output thus takes the final values of bn and writes to a text
file in the format of:

4.1. Implementation 57

n bn
d ln(bn)

dn β

1 · · · · · · · · ·

2 · · · · · · · · ·

... · · · · · · · · ·

Below is given an example of the output of the first 9 values from a calculation
(’#’ is needed to ignore the first line when reading the file using GNUPlot):

n b_n db/b beta
2 26218526584.933... nan 1.0000000000
3 2.3226056803 nan 1.0605858215
4 0.6572058324 nan 1.0963419014
5 0.5184360528 nan 1.0278584810
6 0.5073570940 -1.5870106201 0.9271052771
7 0.5204882547 -1.4607079426 0.8205137810
8 0.5385061057 -1.4759779291 0.7126133918
9 0.5565036273 -1.5238207438 0.6033994807
10 0.5731625631 -1.5803451843 0.4921211652

Figure 4.2: Example output for bn, d ln(bn)
dn and β

4.2. GPU Optimization 58

4.2 GPU Optimization

The benefit of an iterative scheme is that it lends itself well to be parallelized.
If one can manage to make each calculation independent of the others, GPUs
can greatly improve performance.

The nature of the iterative approach is to solve each bn independently for
any given iteration. As we are calculating in the vicinity of n ∼ 1000 this has
the potential to use 1000 GPU compute units independently for each iteration.
However, in order for this to be feasible, there are two criteria that must be met.
We must ensure:

1. That there are two buffers to hold the value of the bn’s

2. That the calculation of bn for each n is complete before the next iteration
begins i.e. we must ensure that the calculation of bn in iteration i uses the
value of bn from iteration i − 1.

Criterion 1 ensures that when calculating a given bn value in iteration i,
following equation (4.8), it can write to an output buffer that will only be read
in iteration i + 1. Thus when calculating other bn values in iteration i, they will
not see this newly updated value, but only use values calculated in iteration
i − 1.

Criterion 2 ensures that all values calculated in iteration i will be updated,
stored in the output buffer and be available for reading in iteration i + 1.

These two criteria have the potential of decreasing performance gains when
using GPUs. However, criterion 1 is not an issue since in iteration i, buffer one
can act as a read-only buffer whereas buffer two can act as a write-only buffer.
In iteration i+1 they switch roles and become a write-only and read-only buffer
respectively. As such there will be no need for copying any data and hence no
overhead.

Criterion 2 becomes an issue for performance. The nature of GPUs means
that one should try to avoid synchronization in order to gain optimal perfor-
mance. However, in order to ensure Criterion 2 we must synchronize after each
iteration. This is typically done using CPU synchronization. However, this is
not the most effective method as it still involves communication back and forth

4.3. Results 59

with the CPU. Hence, Stuart and Owens (2011) propose various techniques
for performing synchronization on the GPU rather than the CPU with signif-
icant speedups. The XF barrier (Xiao & Feng, 2010), which is an appropriate
synchronization mechanism for our approach, appears to be the most effective
(Stuart & Owens, 2011). Implementation on the GPU for the iterative method
is outside the scope of this thesis. However, due to the nature of the iterative
scheme there is no doubt that this can be done, which would be expected to
greatly increase performance.

4.3 Results

There were several complications with reproducing the results of Sejnowski
and Hjellming (1969). They specify that:

“...the bn solutions we will discuss will depend only on Ne, Te, and
assumptions concerning cross-sections and the techniques of calcu-
lation”.

However, they do not specify how Jν should be calculated. Hence, as stated
earlier, we assume Jν to be equal to zero - the assumption that was normally
made in early bn calculations (Gordon & Sorochenko, 2002). Furthermore, the
alternative recursion scheme suggested (Sejnowski & Hjellming, 1969, p.919)
did not work and as such we reverted to using the standard approach. How-
ever, as Sejnowski and Hjellming (1969) note, this will take many iterations in
order to converge. Figs. 4.3 and 4.4 show this clearly as they do not convergence
until the number of iterations becomes ∼ 5000. This is far more iterations than
the 150 iterations needed for convergence by the recursion method of Sejnowski
and Hjellming (1969, p.921).

In Figs. 4.5 and 4.6 we see the importance of choosing nmax large enough.
Sejnowski and Hjellming (1969) give examples where they have truncated at
n = 240 after which an unspecified analytic continuation is performed. From
Fig. 4.5 it is evident that divergence between nmax = 250 and nmax > 250 becomes
apparent at approximately n = 225 i.e. to obtain a correct value of bn or the
logarithmic derivative, for n = 250 we must have nmax − n > 25. Sejnowski and
Hjellming (1969) state that nmax − n > 10 should suffice. As they truncate at

4.3. Results 60

0.98

0.985

0.99

0.995

1

140 160 180 200 220 240 260 280 300

b n

Principal quantum number n

50 iterations
150 iterations
500 iterations

5000 iterations
50000 iterations

Figure 4.3: Plot of bn at various iterations for fixed density Ne = 10 and temperature Te = 104.

0.98

0.985

0.99

0.995

1

100 150 200 250 300

b n

Principal quantum number n

50 iterations
150 iterations
500 iterations

5000 iterations
50000 iterations

Figure 4.4: Plot of bn at various iterations for fixed density Ne = 104cm−3 and temperature
Te = 104.

4.3. Results 61

−6

−5.5

−5

−4.5

−4

−3.5

200 250 300 350 400 450 500

lo
g 10

(d
ln

(b
n
)

dn

)

Principal quantum number n

−7

−5

−3

−1

250 500 750 1000

n = 250
n = 500

n = 1000

Figure 4.5: Plot of log10

(
d ln(bn)

dn

)
for fixed density Ne = 10cm−3, temperature Te = 104 and a fixed

number of iterations of 5000.

−6

−5.5

−5

−4.5

−4

−3.5

200 250 300 350 400 450 500

lo
g 10

(d
ln

(b
n
)

dn

)

Principal quantum number n

−7

−5

−3

−1

250 500 750 1000

n = 250
n = 500

n = 1000

Figure 4.6: Plot of log10

(
d ln(bn)

dn

)
for fixed density Ne = 104cm−3, temperature Te = 104 and a

fixed number of iterations of 5000.

4.3. Results 62

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

b n

Principal quantum number n

7000 iterations

Figure 4.7: Plot of bn showing spurious results for n ≤ 6. Number of iterations is 7000 and
Ne = 104 and Te = 104.

n = 240 this seems a fair assumption. However, when calculating for higher
density, as in Fig. 4.6, this is not the case as divergence starts already at nmax−50.

Secondly, when calculating for larger n, both figures clearly depict a much
larger discrepancy between nmax = 500 and nmax = 1000. For Fig. 4.6 this dis-
crepancy starts at 350 i.e. at nmax − n = 150.

Lastly, it should be pointed out, as shown in Fig. 4.7 that spurious results
are obtained for values n ≤ 6. As Sejnowski and Hjellming (1969) have no
graphs where bn’s with n < 20 are shown, we cannot say if this is a fault in the
program or a result from the recursion scheme. However, this result should
not be expected, even when neglecting Jν.

4.3.1 Performance

In Fig. 4.8 we present the time taken to calculate bn for nmax = 250,nmax =

500,nmax = 1000 and nmax = 2000. The number of iterations used for the
calculations are between 50 and 5000, with increments of 50. Although there
are peaks on both graphs, the relationship between the runtime and the number

4.3. Results 63

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ti
m

e
in

se
co

nd
s

of iterations

nmax = 250
nmax = 500

nmax = 1000
nmax = 2000

Figure 4.8: Plot of time taken to compute bn for nmax = 250,nmax = 500 and nmax = 1000 vs.
number of iterations.

of iterations is clearly linear in both cases. When calculating the gradients, mnmax ,
for nmax = 250,nmax = 500,nmax = 1000 and nmax = 2000, we choose two points
for each nmax that are neither on a peak, nor where the number of iterations is
low. The latter must be done to avoid counting time that is spent initialising
variables etc. as this has more effect on lower values for number of iterations
but becomes negligible when the number of iterations is large.

We now select two random points for each nmax as described above and thus
obtain the following gradients:

m250 =
(2.67 − 0.91
4900 − 1500

)
=

1.76
3400

= 0.00052 (4.41)

m500 =
(10.07 − 3.63
4650 − 1500

)
=

6.44
3150

= 0.00204 (4.42)

m1000 =
(42.84 − 14.51

4950 − 1500

)
=

28.33
3450

= 0.00821 (4.43)

m2000 =
(167.39 − 58.41

4800 − 1500

)
=

108.98
3300

= 0.03302 (4.44)

4.3. Results 64

We thus have:

m500

m250
=

0.00204
0.00052

= 3.9 (4.45)

m1000

m500
=

0.00821
0.00204

= 4.0 (4.46)

m2000

m1000
=

0.03302
0.00821

= 4.0 (4.47)

Equations (4.45)-(4.47) clearly suggest that when there is an increase from n
to 2xn, the time, t, taken to compute bn increases as 4xt.

Chapter 5

Matrix Computation of bn

Coefficients

In this chapter we solve the bn problem in a somewhat straightforward way.
As for the iterative approach in Chapter 4, we define a finite nmax, instead of
infinity, as the upper limit for the infinite sums in equation (1.26). Rewriting
equation (1.26) we then get a set of linear equations of the form:

N2X2 −N3Y23 − . . . −NmY2m − . . . −NnmaxY2nmax = Z2 (5.1)

−N2Y32 + N3X3 − . . . −NmY3m − . . . −NnmaxY3nmax = Z3 (5.2)
... (5.3)

−N2Ym2 −N3Ym3 − . . . + NmXm − . . . −NnmaxYmnmax = Zm (5.4)
... (5.5)

−N2Ynmax2 −N3Ynmax3 − . . . −NmYnmaxm − . . . + NnmaxXnmax = Znmax (5.6)

where:

Xn =

nmax∑
m=n0,m,n

(Cnm + Bnmρν) +

n−1∑
m=n0,m,n

Anm + Cni + Bniρν (5.7)

Ynm = Cmn + Bmnρν + Amn (5.8)

Zn = NeNi(αn + Cin) + Binρν (5.9)

and Amn = 0 if m < n.

65

CHAPTER 5. MATRIX COMPUTATION OF BN COEFFICIENTS 66

Putting this into matrix notation we have:

X2 −Y23 . . . −Y2m . . . −Y2nmax

−Y32 X3 . . . −Y3m . . . −Y3nmax

...
...

...
...

...
...

−Ym2 −Ym3 . . . +Xm . . . Ymnmax

...
...

...
...

...
...

−Ynmax2 −Ynmax3 . . . −Ynmaxm . . . Xnmax

×

N2

N3
...

Nm
...

Nnmax

=

Z1

Z2
...

Zm
...

Znmax

From this it is clear that the first matrix can be written as the sum of the two
matrices:

YM =

0 −Y23 . . . −Y2m . . . −Y2nmax

−Y32 0 . . . −Y3m . . . −Y3nmax

...
...

...
...

...
...

−Ym2 −Ym3 . . . 0 . . . Ymnmax

...
...

...
...

...
...

−Ynmax2 −Ynmax3 . . . −Ynmaxm . . . 0

and

XM =

X2 0 . . . 0 . . . 0
0 X3 . . . 0 . . . 0
...

...
...

...
...

...

0 0 . . . Xm . . . 0
...

...
...

...
...

...

0 0 . . . 0 . . . Xnmax

Furthermore, if we remove the terms Cni and Bniρν from the Xn term, it

becomes evident from equations (5.7) and (5.8) that each Xn term is in fact the
sum of all the Ynm terms in row n. Secondly, due to detailed balancing, as used
in Chapter 4, we have symmetry between each entry Ynm and Ymn and thus
it suffices to compute just one of these terms and apply detailed balancing to
obtain the other.
Below, we define the terms used in equations (5.7)-(5.9).

For bound-bound collisional transitions we have:

Cnm = n4(J1 + J2 + J3)/T3/2
e (5.10)

CHAPTER 5. MATRIX COMPUTATION OF BN COEFFICIENTS 67

where

s = m − n > 0 (5.11)

β = 105
× 1.58/T (5.12)

β1 = 1.4(nm)1/2 (5.13)

E = 0.85/β (5.14)

A =
8
3s

(m
sn

)3

(0.184 − 0.04/s2/3)
(
1 −

0.2s
nm

)1+2s

(5.15)

L = ln
(

1 + 0.53E2nm
1 + 0.4E

)
(5.16)

J1 =
4
3

AL
(

0.85
β

) (
1
β
−

1
β + β1

)
(5.17)

J2 =
16
9

F1m3

y1

(
√

2 − n2/m2 + 1)3

(n + m)3s3

exp(−β/β1)
β

(5.18)

F1 =
(
1 −

0.3s
nm

)1+2s

(5.19)

y1 =

[
1 −

ln(18s)
4

s
]−1

(5.20)

J3 =
1
4

(
n2ξ−

m

)3 J4(z)
β + β1

ln(1 + 0.5βξ−) (5.21)

ξ− = 2/
[
n2

(√
2 − n2/m2 − 1

)]
(5.22)

z = 0.75ξ−(β + β1) (5.23)

J4(z) =
2
z

1
2 + z(1 + e−z)

(5.24)

and
Cmn = Cnm ×

(m
n

)2

exp
(
−β

[1
n2 −

1
m2

])
(5.25)

(Gee, Percival, Lodge, & Richards, 1976).
For spontaneous radiation we have:

Anm = 1.574 · 1010 n−5m−3

m−2 − n−2 gI
nm (5.26)

(Shaver, 1975, p.5) where gI
nm is the Gaunt factor.

CHAPTER 5. MATRIX COMPUTATION OF BN COEFFICIENTS 68

For stimulated radiation we have:

Bnmρν = WAnm/
[
exp(−hν/[kTr]) + 1

]
(5.27)

and
Bmnρν = Bnmρν

(n
m

)2

(5.28)

where Tr is the radiation temperature in the observed nebula and W is the
dilution factor for the source of radiation.

For collisional ionization:

Cni = Ne · 3.45 · 10−5 n2

√
Te

exp(−xn) (5.29)

where
xn = In/(kTe) (5.30)

and
In = 2.179 · 10−11/n2 (5.31)

Hence for three-body recombination:

NeNiCin = NeNi
N∗n

NeNi
Cni = N∗nCni (5.32)

(Dupree, 1969, p.494) and (Shaver, 1975, p.8).

For stimulated radiative ionization we have:

Bniρν = z0
W
n5

∫
∞

In/(kTr)

1
x(ex − 1)

dx (5.33)

where

z0 =
8α4c

3
√

3πa0

(5.34)

For stimulated recombination we have:

Binρν =
z1

T3/2
e

z0
W
n3

exp(−Trx/Te)
x(exp(x) − 1)

dx (5.35)

5.1. Implementation 69

where
z1 = 8(πa2

0In/k)3/2 (5.36)

Finally, for radiative recombination we have:

NeNiαn = NeNi · 5.197 × 10−14x3/2
n S0(xn) (5.37)

[see equation (4.36)].

5.1 Implementation

The implementation of this program relies on an unpublished Matlab program
by Professor Sergei Gulyaev, that solves the bn problem. The implementation
given in this program was written in standard C. As in Chapter 4, when compil-
ing, we must include “constants.h”, “oscillator_strength_gaunt_final.c”
and “expint.c”.

When implementing our program, we first populate the matrix YM from
which we can create a second matrix, XM, obtained from YM. Finally, we
add these two matrices. We then use LU factorization (Serre, 2010, p.208) to
solve the resulting system of linear equations. For this purpose, we make
use of the Meschach library which supports various matrix operations as well
as LU factorization. Stewart and Leyk (1994) describe Meschach and outline
its advantages over the very well-known linear algebra libraries LINPACK,
EISPACK and LAPACK.

When populating the matrix YM we make extensive use of detailed balanc-
ing for collisional transition (shown in equation (5.25)) and stimulated radiation
(shown in equation (5.28)). Hence we need only calculate values below the di-
agonal for the matrix YM and apply detailed balancing to obtain the values
above the diagonal. The function that performs this calculation is shown in
Fig. 5.1.

5.1. Implementation 70

1 // ’beta’ = 1.57e5/T_e
2 // ’W’ is the dilution factor of the radiation field
3 // ’T_r’ is the temperature of the radiaion field
4 // ’nu’ is the frequency of radiation
5 for(n=N0;n<=N;n++)
6 {
7 for(m=N0;m<n;m++)
8 {
9 // m<n

10 spon_rad =
spontaneous_radiation(n,m)*gaunt_approximation(m,n);

11 col_trans = collisional_transition(m,n,beta,T_e,N_e);
12 col_trans_db =

col_trans*pow((m+0.0)/n,2)*exp(-beta*(1/pow(n,2)-1/pow(m,2)));
13 ind_rad = W*spon_rad/(exp(h*nu(n,m)/k/T_r)+1);
14 ind_rad_db = ind_rad*pow((n+0.0)/m,2);
15 C[n-N0][m-N0] = -(spon_rad+col_trans_db+ind_rad);
16 C[m-N0][n-N0] = -(col_trans+ind_rad_db);
17 C[n-N0][n-N0] = 0.0;
18 C[m-N0][m-N0] = 0.0;
19 }
20 }

Figure 5.1: Y_m_population.c

5.2. GPU Optimization 71

5.2 GPU Optimization

In this chapter we solve the bn problem by adding matrices and using LU fac-
torization. There are three major steps in solving the system of linear equations
in equations (5.1) - (5.6):

1. We must populate the matrices YM and XM and add them together.

2. We must populate the matrix ZM =
(
Z1 Z2 · · · Znmax

)ᵀ.

3. We must apply LU factorization to the resulting system of linear equations
in order to solve it.

Step 1 will be a bottleneck as it involves populating an entire matrix of
dimension nmax × nmax. As we want to push the limits for what levels can be
computed, we let n go from 103

− 104. This will result in matrices with number
of entries between 106

− 108. From the nature of matrices XM and YM it is
clear that the population of an entry i, j can be done independently of all other
entries. Also, the process is the same for each entry as shown in Fig. 5.1.
Hence this problem is very well suited for GPU parallelization, as it obeys both
property 1 and property 2 for GPUs (see section 1.4). Furthermore, the kernel
space will have size ∼ 106

− 108 which will heavily outweigh the cost of setting
up a kernel.

Step 2 will most likely not be a bottleneck as the number of terms will only
be between 103

− 104 and hence the cost of setting up a kernel may outweigh
gain in computation speed.

Step 3 will result in the greatest speed up if utilising a GPU as solving the
system of linear equations will be the most intensive task due to the nature of
LU factorization.

5.3 Results

The scope of this thesis only allowed for step 1 to be completed. However, it
is clear from Fig. 5.2 that the GPU approach has a significant impact on speed.
For n = 1000 there is only a two fold speed increase but at n = 10000 this
increases to approximately 30 times.

Although step 3 was not carried out, Mukunoki and Takahashi (2012) have
shown a 30 fold increase in performance when performing quadruple precision

5.3. Results 72

0

20

40

60

80

100

120

140

160

180

200

0 2000 4000 6000 8000 10000 12000 14000 16000

Ti
m

e
in

se
co

nd
s

Principal quantum number n

5

10

0 1000 2000 3000 4000

Zoom

GPU
CPU

CPU

Figure 5.2: Plot of time taken to compute YM for nmax = 1000 − 10000.

BLAS calculations on a Tesla C1060 GPU as opposed to using an Intel Core i7
920. Secondly, a test performed on an AMD Opteron with an Nvidia GeForce
GTX 280 has shown a similar performance increase when performing LU fac-
torization (Lezar & Davidson, 2010). Hence we would expect a significant
performance increase when carrying out step 3 on the GPU.

Finally, we produce a graph of bn versus n (Fig. 5.3) and of the logarithmic
derivative (5.4) to show the calculation of bn for nmax = 1000.

5.3. Results 73

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300

b n

Principal quantum number n

Ne = 10
Ne = 102

Ne = 103

Ne = 104

Figure 5.3: Plot of bn for four different densities and temperature Te = 104.

−12

−10

−8

−6

−4

−2

0

0 100 200 300 400 500 600 700 800 900 1000

lo
g 10

(d
ln

(b
n
)

dn

)

Principal quantum number n

Ne = 10
Ne = 102

Ne = 103

Ne = 104

Figure 5.4: Plot of log10

(
d ln(bn)

dn

)
for four different densities and temperature Te = 104.

5.4. Comparison of Matrix Computation and Iterative Computation of bn Coefficients74

5.4 Comparison of Matrix Computation and Itera-

tive Computation of bn Coefficients

In Fig. 5.5 we have plotted a calculation of bn for nmax = 2000 in the case of
the iterative approach and nmax = 1000 for the matrix approach to avoid any
spurious results. Secondly, we have shown values of bn between n = 20 and
n = 250. The lower limit is due to the spurious results for the iterative method
as shown in Chapter 4.

There is clearly some difference in the results between the two methods.
However, this is partly due to differences in the definitions of the processes. It
was discovered that when only considering radiative processes, the iterative
method and the matrix method agreed fairly well. However, the way in which
collisional transitions behave differs between the two methods which is evident
from Fig. 5.5. Overall, the matrix method appears to be more stable in the way
at which it provides results that are not dependent on the number of iterations.

When comparing speed, it will be most likely that the matrix method will
benefit mostly from the use of GPUs as there will be no need for synchroniza-
tion and hence one can avoid costly call-backs to the CPU.

5.4. Comparison of Matrix Computation and Iterative Computation of bn Coefficients75

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

50 100 150 200 250

b n

Principal quantum number n

Iterative method
Matrix method

Figure 5.5: Plot of bn for Ne = 104 and temperature Te = 104 for the iterative method and the
matrix method.

Chapter 6

Conclusion

In this thesis we have explored the computationally intensive problems of
spectroscopy and the physics of the interstellar medium, in particular those
relating to the problem of departure coefficients. Specifically, we have looked
at these problems with the understanding that the methods of computation
have changed drastically since the 1960s and 1970s, which was when a majority
of the work in this area was published.

The importance of departure coefficients was understood in the 1960s when
the interpretation of radio recombination lines and cosmic masers required
consideration of plasmas far from the thermodynamic equilibrium (Goldberg,
1966). Observations of radio recombination lines dealt with high principal
quantum numbers — up to 1000. Hence, solving the departure coefficient
problem required simultaneous consideration of thousands of quantum lev-
els, resulting in thousands of simultaneous equations of population balances.
Some of these coefficients in turn required special consideration from a com-
putational point of view — namely those involving hypergeometric functions,
with terms of order 101000 and higher. Approximate methods were developed
for dealing with huge matrices and numbers, such as the approximation formu-
lae used to compute the Gaunt factors and oscillator strengths, and the matrix
condensation technique (Brocklehurst, 1970).

The latter was used in the solution to the bn problem proposed by Brocklehurst
and Salem (1977). They present a solution that relies on the use of the ma-
trix condensation technique, which was based on the technique developed by
Burgess and Summers (1969). This technique can condense a matrix of di-
mensions 1000 × 1000 to one of dimensions 30 × 30. The main reason for this

76

CHAPTER 6. CONCLUSION 77

was:

“It is obviously impracticable to invert a 1000× 1000 matrix, D, so a
procedure of matrix condensation based on Lagrange interpolation
and extrapolation of bn (which vary smoothly except for small n)
was adopted” (Burgess & Summers, 1969, p.1010).

It is no longer the case that it is impractical to invert a 1000 × 1000 matrix and
hence we have chosen to solve the entire system of linear equations given by
the bn problem rather than use an approximation technique that is no longer
required.

Seminal papers by Storey and Hummer [(Hummer & Storey, 1987), (Hummer
& Storey, 1992) and (Storey & Hummer, 1995)] which discuss a solution for n, l,
also use a matrix condensation technique. Furthermore, it starts by assuming
that for n, l, the l-sublevels have populations proportional to (2l + 1) such that
bn = bn,l. It then goes on to correct, through an iterative approach, for the
levels of n below some nc where this assumption is not correct. It then uses the
calculated bn,l’s for n ≤ nc to calculate bn through the equation:

bn =
∑

l

2l + 1
n2 bn,l (6.1)

It is our opinion, as for the case of bn, that approximation techniques are no
longer needed, due to the increasing performance of computers. Hence we did
not use this method to solve the bn,l problem.

The goals of this thesis were to use, for the first time, arbitrary arithmetic to
solve problems involving the hypergeometric function as well as optimizing
the solutions to the aforementioned problems using modern multi-core and
high-performance computing architectures.

We managed to implement the exact solution to the bn problem. Although
Gaunt factors were used in this calculation, we compared them to the exact
solutions we computed for the oscillator strengths, using arbitrary precision,
and determined that they were very close approximations. Furthermore, we
implemented exact solutions for both the Einstein coefficients and the radiative
recombination coefficients for n, l.

We also managed to optimize some of the procedures to use high perfor-
mance techniques and drastically increase speed, some by a factor of 30.

CHAPTER 6. CONCLUSION 78

Future Work

Due to the large scope of both the bn and bn,l problems, it was not possible to
fully cover either in this thesis. Hence it would be greatly desirable to continue
calculations of collisional transitions for n, l and solve the entire bn,l problem
as well as improve the matrix method for calculation of bn. Furthermore, a
comparison of the output of these methods should be made with the methods
developed by Brocklehurst and Salem (1977) and Storey and Hummer (1995)
to show if the various assumptions, such as matrix condensation, are in fact
valid. A large, modern area of applications for the bn problem is connected
with the development of the thermonuclear controlled fusion reactors, such as
the Tokamak and ITER (Lisitsa et al., 2012). Recombination lines proved to be
the only reliable tool for diagnostics of the high temperature plasmas of these
power stations of the future. Consideration of the methods developed in this
thesis in terms of this very important application would be highly desirable.

References

Bethe, H. A., & Salpeter, E. E. (1957). Quantum Mechanics of One- and Two-
Electron Atoms.

Black, P. E. (2013, May). factorial. in Dictionary of Algo-
rithms and Data Structures [online], Paul E. Black, ed., U.S. Na-
tional Institute of Standards and Technology. Retrieved from
http://www.nist.gov/dads/HTML/factorial.html

Bolton, J. G., & Stanley, G. J. (1948, February). Variable Source of Radio
Frequency Radiation in the Constellation of Cygnus. Nature, 161, 312-
313. doi: 10.1038/161312b0

Brocklehurst, M. (1970). Level populations of hydrogen in gaseous nebulae.
Monthly Notices of the Royal Astronomical Society, 148, 417.

Brocklehurst, M. (1971). Calculations of level populations for the low lev-
els of hydrogenic ions in gaseous nebulae. Monthly Notices of the Royal
Astronomical Society, 153, 471-490.

Brocklehurst, M., & Salem, M. (1977). Radio recombination lines from H+ re-
gions and cool interstellar clouds: computation of the bn factors. Computer
Physics Communications, 13, 39-48. doi: 10.1016/0010-4655(77)90025-X

Burgess, A. (1965). Tables of hydrogenic photoionization cross-sections and
recombination coefficient. Memoirs of the Royal Astronomical Society, 69, 1.

Burgess, A., & Summers, H. P. (1969, August). The Effects of Electron and
Radiation Density on Dielectronic Recombination. Astrophysical Journal,
157, 1007. doi: 10.1086/150131

Burgess, A., & Summers, H. P. (1976, February). The recombination and level
populations of ions. I - Hydrogen and hydrogenic ions. Monthly Notices
of the Royal Astronomical Society, 174, 345-391.

Chandrasekhar, S. (1960). Radiative transfer. Dover Publ. Retrieved from
http://books.google.co.nz/books?id=zPVQAAAAMAAJ

79

References 80

Cormen, T. (2009). Introduction to algorithms. Mit Press. Retrieved from
http://books.google.co.nz/books?id=h2xRPgAACAAJ

Dopita, M. A., & Sutherland, R. S. (2003). Astrophysics of the diffuse universe.
Dupree, A. K. (1969, November). Radiofrequency Recombination Lines

from Heavy Elements: Carbon. Astrophysical Journal, 158, 491. doi:
10.1086/150213

Encyclopaedia britannica. (2013, Feb 06). Retrieved from
http://www.britannica.com/EBchecked/topic/488865/radio-astron

omy

Fastfactorialfunctions. (2013, Mar 12). Retrieved from
http://www.luschny.de/math/factorial/FastFactorialFunctions.h

tm

Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., & Zimmermann, P.
(2007, June). Mpfr: A multiple-precision binary floating-point li-
brary with correct rounding. ACM Trans. Math. Softw., 33(2). Re-
trieved from http://doi.acm.org/10.1145/1236463.1236468 doi:
10.1145/1236463.1236468

Gcc 4.3 release series changes, new features, and fixes. (2013, March 04).
Retrieved from http://gcc.gnu.org/gcc-4.3/changes.html

Gee, C. S., Percival, L. C., Lodge, J. G., & Richards, D. (1976, April). Theoretical
rates for electron excitation of highly-excited atoms. Monthly Notices of
the Royal Astronomical Society, 175, 209-216.

Goldberg, L. (1966, June). Stimulated Emission of Radio-Frequency Lines of
Hydrogen. Astrophysical Journal, 144, 1225-1231. doi: 10.1086/148723

Gordon, M., & Sorochenko, R. (2002). Radio recombination lines: Their
physics and astronomical applications. London. Retrieved from
http://books.google.co.nz/books?id=Q-iGoBWLXIoC

Gordon, W. (1929). Zur Berechnung der Matrizen beim Wasserstoffatom.
Annalen der Physik, 394, 1031-1056. doi: 10.1002/andp.19293940807

Gough, B. (2009). Gnu scientific library: Reference manual. Network Theory.
Retrieved from http://books.google.ca/books?id=CUuNPgAACAAJ

Granlund, T., & the GMP development team. (2013). GNU MP: The GNU Multi-
ple Precision Arithmetic Library (5.1.1 ed.) [Computer software manual].
(http://gmplib.org/)

Hummer, D. G., & Storey, P. J. (1987, February). Recombination-line intensities

References 81

for hydrogenic ions. I - Case B calculations for H I and He II. Monthly
Notices of the Royal Astronomical Society, 224, 801-820.

Hummer, D. G., & Storey, P. J. (1992, January). Recombination line intensities
for hydrogenic ions. III - Effects of finite optical depth and dust. Monthly
Notices of the Royal Astronomical Society, 254, 277-290.

Ieee standard for floating-point arithmetic. (2008, Aug 29). IEEE Std 754-2008,
1 -58. doi: 10.1109/IEEESTD.2008.4610935

Knuth, D. E. (1992). Two notes on notation. The Ameri-
can Mathematical Monthly, 99(5), pp. 403-422. Retrieved from
http://www.jstor.org/stable/2325085

Lang, K. R. (1975). Astrophysical formulae: A compendium for
the physicist and astrophysicist. Not Avail. Retrieved from
http://www.amazon.com/Astrophysical-Formulae-Compendium-Physi

cist-Astrophysicist/dp/3540066055%3FSubscriptionId%3D0JYN1NVW

651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D202

5%26creative%3D165953%26creativeASIN%3D3540066055

Lezar, E., & Davidson, D. (2010). Gpu-based lu decomposition for large
method of moments problems. Electronics Letters, 46(17), 1194-1196. doi:
10.1049/el.2010.1680

Lisitsa, V. S., Bureyeva, L. A., Kukushkin, A. B., Kadomtsev, M. B., Krupin,
V. A., Levashova, M. G., . . . Vukolov, K. Y. (2012). Spectroscopic problems
in iter diagnostics. Journal of Physics: Conference Series, 397(1), 012015. Re-
trieved from http://stacks.iop.org/1742-6596/397/i=1/a=012015

Lu, M., He, B., & Luo, Q. (2010). Supporting extended precision on graph-
ics processors. In Proceedings of the sixth international workshop on data
management on new hardware (pp. 19–26). New York, NY, USA: ACM.
Retrieved from http://doi.acm.org/10.1145/1869389.1869392 doi:
10.1145/1869389.1869392

Menzel, D. H., & Pekeris, C. L. (1935, November). Absorption coefficients and
hydrogen line intensities. Monthly Notices of the Royal Astronomical Society,
96, 77.

Mukunoki, D., & Takahashi, D. (2012). Implementation and eval-
uation of quadruple precision blas functions on gpus. In
K. Jonasson (Ed.), Applied parallel and scientific computing (Vol.
7133, p. 249-259). Springer Berlin Heidelberg. Retrieved from

References 82

http://dx.doi.org/10.1007/978-3-642-28151-8_25 doi: 10.1007/978-
3-642-28151-8_25

Murthy, G., Ravishankar, M., Baskaran, M., & Sadayappan, P. (2010, April).
Optimal loop unrolling for gpgpu programs. In Parallel distributed
processing (ipdps), 2010 ieee international symposium on (p. 1-11). doi:
10.1109/IPDPS.2010.5470423

Nakayama, T., & Takahashi, D. (2011, December). Implementation of multiple-
precision floating-point arithmetic library for gpu computing. In T. Gon-
zalez (Ed.), Proceedings of the 23rd iasted international conference on par-
allel and distributed computing and systems (p. 343-349). Retrieved from
http://www.actapress.com/PaperInfo.aspx?paperId=453078 doi:
10.2316/P.2011.757-041

Osterbrock, D., & Ferland, G. (2006). Astrophysics of gaseous nebu-
lae and active galactic muclei. Univ Science Books. Retrieved from
http://books.google.co.nz/books?id=6GIXMFpET4cC

Pradhan, A., & Nahar, S. (2011). Atomic astrophysics and
spectroscopy. Cambridge University Press. Retrieved from
http://books.google.co.nz/books?id=5948JMEGzm8C

Seaton, M. J. (1959a). Radiative recombination of hydrogenic ions. Monthly
Notices of the Royal Astronomical Society, 119, 81.

Seaton, M. J. (1959b). The solution of capture-cascade equations for hydrogen.
Monthly Notices of the Royal Astronomical Society, 119, 90.

Sejnowski, T. J., & Hjellming, R. M. (1969, June). The General Solution of the
b_{n} Problem for Gaseous Nebulae. Astrophysical Journal, 156, 915. doi:
10.1086/150024

Serre, D. (2010). Matrices: Theory and applications.
Springer Science+Business Media, LLC. Retrieved from
http://books.google.co.nz/books?id=pKKrFnINccIC

Serway, R., & Jewett, J. (2008). Physics for scientists and engineers
with modern physics: Chapters 1-46. Brooks/Cole. Retrieved from
http://books.google.co.nz/books?id=eOU9AQAAIAAJ

Shaver, P. A. (1975, July). Theoretical intensities of low frequency recombina-
tion lines. Pramana, 5, 1-28. doi: 10.1007/BF02875147

Singer, J. (1959). Masers. Wiley. Retrieved from
http://books.google.co.nz/books?id=FhMjAAAAMAAJ

References 83

Stewart, D., & Leyk, Z. (1994). Meschach: Matrix com-
putations in c : Version 1.2. CMA. Retrieved from
http://books.google.co.nz/books?id=4HSBQgAACAAJ (Contributor:
Australian National University. Centre for Mathematics and Its Appli-
cations)

Storey, P. J., & Hummer, D. G. (1995, January). Recombination line intensities
for hydrogenic ions-IV. Total recombination coefficients and machine-
readable tables for Z=1 to 8. Monthly Notices of the Royal Astronomical
Society, 272, 41-48.

Strzodka, R., Doggett, M., & Kolb, A. (2005). Scientific computation
for simulations on programmable graphics hardware. Simulation
Modelling Practice and Theory, 13(8), 667 - 680. Retrieved from
http://www.sciencedirect.com/science/article/pii/S1569190X050

00833 (<ce:title>Programmable Graphics Hardware</ce:title>) doi:
10.1016/j.simpat.2005.08.001

Stuart, J. A., & Owens, J. D. (2011). Efficient synchronization primitives for
gpus. CoRR, abs/1110.4623.

System/360 model 50. (2013, May 21). Retrieved from
http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainfram

e_PP2050.html

The MPFR Team. (2013). The mpfr library: Algorithms and proofs.
(http://www.mpfr.org/algorithms.pdf)

van de Hulst, H. C. (1951, October). Observations of the interstellar hydrogen
line of wave length 21 cm made at Kootwijk, Netherlands. Astronomical
Journal, 56, 144-144. doi: 10.1086/106564

Xiao, S., & Feng, W. (2010). Inter-block gpu communication via fast barrier syn-
chronization. In Parallel distributed processing (ipdps), 2010 ieee international
symposium on (p. 1-12). doi: 10.1109/IPDPS.2010.5470477

Appendix A

Code

A.1 Auxiliary Code

1 #ifndef _BNCONSTANTSGUARD_

2 #define _BNCONSTANTSGUARD_

3 /*

4 * Header file that contains definitions of

5 * physical constants for use in departure

6 * coefficient calculations

7 */

8

9 double const PI = 3.14159265;

10 double const EXP = 2.71828183;

11 double const h = 6.626068e-27;

12 double const h_bar = (6.626068e-27)/(2*3.14159265); // h_bar = h/(2*PI)

13 double const k = 1.3806503e-16;

14 double const m_e = 9.10938188e-28;

15 double const m_p = 1.672621637e-24;

16 double const R_inf = 109737.31568;

17 double const R_H = (109737.31568)/(1+(9.10938188e-28)/(1.672621637e-24));

//R_H = R_inf/(1+m/m_p)

18 double const c = 2.99792458e10;

19 double const Z = 1.0;

20 double const q_e = -4.8032041e-10; // ESU or statCoulomb units

21

84

A.1. Auxiliary Code 85

22 #endif

constants.h

1 #include <stdio.h>

2 #include <math.h>

3 #include <gsl/gsl_integration.h>

4

5 double epsabs = 0;

6 double epsrel = 1e-5;

7

8 double expint(double x)

9 {

10 double expint = exp(-x)/x;

11 return expint;

12 }

13

14 double ff1(double x)

15 {

16 double ff1 = 1/x/(exp(x)-1);

17 return ff1;

18 }

19

20 double ff2(double x, void* params)

21 {

22 double T_r = ((double *)params)[0];

23 double T_e = ((double *)params)[1];

24 double ff2 = (exp(-T_r*x/T_e)/x)/(exp(x)-1);

25

26 return ff2;

27 }

28

29 double calc_expint(double x_n)

30 {

31 gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000);

32 double result, error;

33

34 gsl_function EXPINT;

35 EXPINT.function = (void *)&expint;

A.1. Auxiliary Code 86

36 gsl_integration_qagiu(&EXPINT,x_n,epsabs,epsrel,1000,w,&result,&error);

37 gsl_integration_workspace_free (w);

38 return result;

39 }

40

41 double calc_ff1(double x)

42 {

43 gsl_integration_workspace* w = gsl_integration_workspace_alloc(1000);

44 double result, error;

45

46 gsl_function FF1;

47 FF1.function = (void *)&ff1;

48 gsl_integration_qagiu(&FF1,x,epsabs,epsrel,1000,w,&result,&error);

49 gsl_integration_workspace_free(w);

50

51 return result;

52 }

53

54 double calc_ff2(double x, double T_r, double T_e)

55 {

56 gsl_integration_workspace* w = gsl_integration_workspace_alloc(1000);

57

58 double result, error;

59 double params[2];

60

61 params[0] = T_r;

62 params[1] = T_e;

63

64 gsl_function FF2;

65 FF2.function = (void *)&ff2;

66 FF2.params = ¶ms[0];

67 gsl_integration_qagiu(&FF2,x,epsabs,epsrel,1000,w,&result,&error);

68 gsl_integration_workspace_free(w);

69

70 return result;

71 }

expint.c

A.1. Auxiliary Code 87

1 #include <stdlib.h>

2 /*

3 * struct definitions

4 */

5 // struct Program_kernel stores a kernel along with its size

6 typedef struct

7 {

8 char** kernel;

9 int size;

10 } Program_kernel;

11

12 /*

13 * method declarations

14 */

15 Program_kernel* loadKernel(const char* filename);

16 void readKernelFromTextFile(FILE* pFile, Program_kernel* pgmKernel);

kernelReader.h

1 /******************

2 * kernelReader.c:

3 * - ’loadKernel’ uses ’readKernelFromTextFile’ to load an OpenCL

4 * kernel into dynamic memory from a text file.

5 * - The kernel is stored in the typdef struct Program_kernel

6 * defined in ’kernelReader.h’.

7 * - Returns a Program_kernel*.

8 ******************/

9

10 #include <stdio.h>

11 #include <stdlib.h>

12 #include <string.h>

13 #include "kernelReader.h"

14

15 Program_kernel* loadKernel(const char* filename)

16 {

17 FILE* pFile;

18

19 pFile = fopen(filename, "r");

20

A.1. Auxiliary Code 88

21 Program_kernel* pgmKernel =

(Program_kernel*)malloc(sizeof(Program_kernel));

22

23 if(pFile != NULL)

24 {

25 readKernelFromTextFile(pFile, pgmKernel);

26 }

27 else

28 {

29 puts("Error loading kernel");

30 }

31

32 fclose(pFile);

33

34 return pgmKernel;

35 }

36

37 void readKernelFromTextFile(FILE* pFile, Program_kernel* pgmKernel)

38 {

39 int size = 0;

40 char** textMatrix = (char**)malloc(size*sizeof(char*));

41 int index = 0;

42 int lineSize = 1024; // Expected maximum size of each line

43 // in text file

44 char currentString[lineSize];

45

46 while(!feof(pFile))

47 {

48 fgets(currentString, lineSize, pFile);

49

50 size += sizeof(char*);

51

52 textMatrix = (char**)realloc(textMatrix, size);

53 textMatrix[index] = strdup(currentString);

54 index++;

55 }

56

57 pgmKernel->kernel = textMatrix;

A.1. Auxiliary Code 89

58 // HACK: must remove last char* pointer as loop goes one line further

than it should i.e. goes one line past end of file.

59 pgmKernel->size = (size-sizeof(char*));

60 }

kernelReader.c

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4 #include "constants.h"

5

6 double oscillator_strength(int n, int m);

7 double gaunt_approximation(int n, int m);

8 double f_kramer_func(int n, int m);

9

10 double oscillator_strength(int n, int m)

11 {

12 double gaunt_factor = gaunt_approximation(n,m);

13 double f_kramer = f_kramer_func(n,m);

14 double f_real = f_kramer*gaunt_factor;

15

16 return f_real;

17 }

18

19 double gaunt_approximation(int n, int m)

20 {

21 double G_1 = (0.203+0.256/pow(m,2)+0.257/pow(m,4))*m;

22 double G_2 = 0.170*m+0.18;

23 double G_3 = (0.2214+0.1554/pow(m,2)+0.370/pow(m,4))*m;

24 double T_1 = (2*n-m)*(n-m+1);

25 double T_2 = 4.0*(n-1)*(m-n-1);

26 double T_3 = (2*n-m-0.001)*(n-0.999);

27 double T_4 = (1/pow(m-1.999,2))*(1/(m*pow(n,(2.0/3))))

28 *pow((m-1.0)/(m-n),(2.0/3));

29

30 double gaunt_factor = 1.0-T_4*(T_1*G_1+T_2*G_2+T_3*G_3);

31

32 return gaunt_factor;

A.2. Einstein Coefficients 90

33 }

34

35 double f_kramer_func(int n, int m)

36 {

37 return 1.9603/pow(m*m-n*n,3)*pow(m,3)*n;

38 }

oscillator_strength_gaunt_final.c

A.2 Einstein Coefficients

1 /**

2 * file: ’einstein_coefficient_calc_mpfr.c’ *

3 **/

4

5 #include <stdio.h>

6 #include <stdlib.h>

7 #include <math.h>

8 #include <time.h>

9 #include <mpfr.h>

10 #include <gmp.h>

11 #include "constants.h"

12

13 // Global variables

14 FILE* fp;

15 const char* FILENAME = "A.dat";

16

17 // Function declarations

18 void calc_A(mpfr_t* A, int n, int m, int l);

19 void calc_B(mpfr_t* B, int n, int m, int l);

20 void calc_C(mpfr_t* C, int n, int m);

21 void calc_2F1(int a, int b, int g, double X, mpfr_t* hyp_ser_ptr);

22 double calc_A_nl_ml_p(int n, int l, int m, int l_p, int write);

23 double calc_A_nl_ml_p_f(int n, int l, int m, int l_p);

24 double calc_A_nl_ml_p_no_file(int n, int l, int m, int l_p);

25 double calc_A_nl_ml_p_w_file(int n, int l, int m, int l_p);

26 double calc_A_nl_ml_p_r_file(int n, int l, int m, int l_p);

27 double calc_rho_squared(int n, int m, int l);

A.2. Einstein Coefficients 91

28

29 int open_file(const char* FILENAME, FILE** fp)

30 {

31 int write = -2;

32

33 printf("Trying to open ’%s’\n",FILENAME);

34 if((*fp = fopen(FILENAME,"r")))

35 {

36 //File exists - set for reading

37 write = 0;

38 printf("File is ready for reading\n");

39 }

40 else if((*fp = fopen(FILENAME,"w")))

41 {

42 //File does not exist - set for writing

43 write = 1;

44 printf("File is ready for writing\n");

45 }

46 else

47 {

48 printf("Could not open file for ");

49 if(write)

50 {

51 printf("writing.\n");

52 }

53 else

54 {

55 printf("reading.\n");

56 }

57 printf("Will calculate function without saving\n");

58 write = -1;

59 }

60

61 return write;

62 }

63

64 int input_accepter()

65 {

A.2. Einstein Coefficients 92

66 char input[256];

67 gets(input);

68 int n = atoi(input);

69

70 while(!(n+1))

71 {

72

73 printf("You did not enter a number correctly, please enter

again:\n");

74 gets(input);

75 n = atoi(input);

76 }

77 return n;

78 }

79

80

81 int main()

82 {

83 int write;

84

85 printf("Please enter desired precision:\n");

86 int prec = input_accepter();

87

88 printf("Please enter n:\n");

89 int n = input_accepter();

90

91 mpfr_set_default_prec(prec);

92

93 system("clear");

94

95

96 time_t t0, t1; // time_t is defined in <time.h> and <sys/types.h>

97 // as long

98 clock_t c0, c1; // clock_t is defined in <time.h> and <sys/types.h>

99 // as int

100

101 double A;

102 int i,j,k;

A.2. Einstein Coefficients 93

103

104

105 // Open file

106 printf("Write to file?\n");

107 printf("Press 1 to write or read\n");

108 printf("Press 0 to re-calculate\n");

109 if(input_accepter())

110 {

111 write = open_file(FILENAME,&fp);

112 }

113 else

114 {

115 write = -1;

116 }

117

118 printf("Starting calculation of A_%d...\n",n);

119 // Start timing

120 t0 = time(NULL);

121 c0 = clock();

122

123 // Start of Calculation

124 //==

125

126 double A_val = -1.0;

127 int m = n;

128 char append_flag = 0;

129

130 // Loop calculates all allowed Einstein coefficients

131 // according to quantum selection rules.

132 for(n=1;n<=m;n++)

133 {

134 // Print time taken to calculate n for multiples of 10

135 printf("n = %d\n",n);

136 if(n%10==0)

137 {

138 c1 = clock();

139 printf("%f\n",(float)(c1 - c0)/CLOCKS_PER_SEC);

140 }

A.2. Einstein Coefficients 94

141 for(i=1;i<n;i++)

142 {

143 for(j=0;j<n;j++)

144 {

145 if(j+1<i && j+1>=0)

146 {

147 A_val = calc_A_nl_ml_p(n,j,i,j+1,write);

148

149 // We must check end of file AFTER calc_A has

150 // tried to write

151 if(feof(fp))

152 {

153 printf("Appending\n");

154 fclose(fp);

155 fp = fopen(FILENAME,"a+");

156 write = 1;

157 j--;

158 }

159

160 if(j-1<i && j-1>=0)

161 {

162 A_val = calc_A_nl_ml_p(n,j,i,j-1,write);

163 }

164 }

165 else if(j-1<i && j-1>=0)

166 {

167 A_val = calc_A_nl_ml_p(n,j,i,j-1,write);

168 }

169

170 // We must check end of file AFTER calc_A has tried to write

171 if(feof(fp))

172 {

173 printf("Appending\n");

174 fclose(fp);

175 fp = fopen(FILENAME,"a+");

176 write = 1;

177 j--;

178 }

A.2. Einstein Coefficients 95

179

180 }

181 }

182 }

183

184 //==

185 // End of Calculation

186

187 // Measure elapsed time

188 t1 = time(NULL);

189 c1 = clock();

190

191 printf("\n");

192 printf("\n");

193 printf("\n");

194 printf("Done calculating A_%d:\n",n);

195 printf("Total time was:\n");

196 printf ("\telapsed wall clock time: %ld\n", (long) (t1 - t0));

197 printf ("\telapsed CPU time: %f\n", (float) (c1 -

c0)/CLOCKS_PER_SEC);

198 printf("\n");

199

200 //close file - if open

201 if(write != -1)

202 fclose(fp);

203 }

204

205 double calc_A_nl_ml_p(int n, int l, int m, int l_p, int write)

206 {

207 double A = 0.0;

208 if(write == 1)

209 {

210 // Calculate Einstein Coefficient and save in dat file

211 A = calc_A_nl_ml_p_w_file(n,l,m,l_p);

212 }

213 else if(write == 0)

214 {

215 // Read Einstein Coefficient from dat file

A.2. Einstein Coefficients 96

216 A = calc_A_nl_ml_p_r_file(n,l,m,l_p);

217 }

218 else

219 {

220 // Calculate Einstein Coefficient without saving value

221 A = calc_A_nl_ml_p_no_file(n,l,m,l_p);

222 }

223

224 return A;

225 }

226

227 double calc_A_nl_ml_p_no_file(int n, int l, int m, int l_p)

228 {

229 double A = calc_A_nl_ml_p_f(n,l,m,l_p);

230 return A;

231 }

232

233

234 double calc_A_nl_ml_p_r_file(int n, int l, int m, int l_p)

235 {

236 double A;

237 fscanf(fp,"%lfe\n",&A);

238 return A;

239 }

240

241 /*

242 * Function that, along with calculating Theta, also stores in a

243 * file to avoid costly recalculation. NOTE: File-pointer must

244 * point to an open and ready file.

245 */

246 double calc_A_nl_ml_p_w_file(int n, int l, int m, int l_p)

247 {

248 // fp is open and ready to avoid overhead of re-opening

249 // file with every call to calc_Theta_w_file

250 double A = calc_A_nl_ml_p_f(n,l,m,l_p);

251 fprintf(fp, "%fe ",A);

252

253 return A;

A.2. Einstein Coefficients 97

254 }

255

256 double calc_A_nl_ml_p_f(int n, int l, int m, int l_p)

257 {

258 // Must swap n,m,l and l’ according to quantum selection rules

259 int n_rho = n;

260 int m_rho = m;

261 double l_max;

262 double rho_2;

263 if(l>=l_p)

264 {

265 l_max = l;

266 }

267 else

268 {

269 l_max = l_p;

270 n_rho = m;

271 m_rho = n;

272 }

273

274 rho_2 = calc_rho_squared(n_rho,m_rho,l_max);

275 double a_nl_md = pow(1/pow(m,2)-1/pow(n,2),3)*l_max/(2*l+1)*rho_2;

276 double A_nl_md = 2.6774e9*a_nl_md;

277

278 return A_nl_md;

279 }

280

281 double calc_rho_squared(int n, int m, int l)

282 {

283 mpfr_t A,B,C,F1,F2,temp1,answer;

284 mpfr_init(A);

285 mpfr_init(B);

286 mpfr_init(C);

287 mpfr_init(F1);

288 mpfr_init(F2);

289 mpfr_init(temp1);

290 mpfr_init(answer);

291

A.2. Einstein Coefficients 98

292 calc_A(&A,n,m,l);

293 calc_B(&B,n,m,l);

294 calc_C(&C,n,m);

295 calc_2F1(-n+l+1,-m+l,2*l,-4*n*m/pow(n-m,2),&F1);

296 calc_2F1(-n+l-1,-m+l,2*l,-4*n*m/pow(n-m,2),&F2);

297

298 mpfr_mul(answer,C,F2,MPFR_RNDN);

299 mpfr_sub(answer,F1,answer,MPFR_RNDN);

300 mpfr_mul(answer,answer,B,MPFR_RNDN);

301 mpfr_mul(answer,answer,A,MPFR_RNDN);

302 // answer = A*B*[F1-C*F2]

303

304 mpfr_pow_ui(answer,answer,2,MPFR_RNDN);

305

306 double answer_d = mpfr_get_d(answer,MPFR_RNDN);

307

308 // Clean-up

309 mpfr_clear(A);

310 mpfr_clear(B);

311 mpfr_clear(C);

312 mpfr_clear(F1);

313 mpfr_clear(F2);

314 mpfr_clear(temp1);

315 mpfr_clear(answer);

316

317 return answer_d;

318 }

319

320 void calc_A(mpfr_t* A, int n, int m, int l)

321 {

322 mpfr_t temp1;

323 mpfr_t temp2;

324 mpfr_t temp3;

325 mpfr_t temp4;

326 mpfr_t temp5;

327

328 mpfr_init(temp1);

329 mpfr_init(temp2);

A.2. Einstein Coefficients 99

330 mpfr_init(temp3);

331 mpfr_init(temp4);

332 mpfr_init(temp5);

333 mpfr_fac_ui(temp1, n+l, MPFR_RNDN);

334 mpfr_fac_ui(temp2, m+l-1, MPFR_RNDN);

335 mpfr_fac_ui(temp3, n-l-1, MPFR_RNDN);

336 mpfr_fac_ui(temp4, m-l, MPFR_RNDN);

337 mpfr_div(temp1,temp1,temp3,MPFR_RNDN);

338 mpfr_div(temp2,temp2,temp4,MPFR_RNDN);

339 mpfr_mul(temp5,temp1,temp2,MPFR_RNDN);

340 mpfr_sqrt(temp5,temp5,MPFR_RNDN);

341 // temp5 = sqrt([(n+l)!(m+l-1)!]/[(n-l-1)!(m-l)!])

342

343 mpfr_set_ui(temp1,4*n*m,MPFR_RNDN);

344 mpfr_pow_ui(temp1,temp1,l+1,MPFR_RNDN);

345 mpfr_set_ui(temp2,n+m,MPFR_RNDN);

346 mpfr_pow_ui(temp2,temp2,n+m,MPFR_RNDN);

347 mpfr_div(temp1,temp1,temp2,MPFR_RNDN);

348

349 // temp1 = [(4*n*m)^(l+1)]/[(n+m)^(n+m)]

350 mpfr_set_si(temp2,-1,MPFR_RNDN);

351 mpfr_pow_ui(temp2,temp2,m-l,MPFR_RNDN);

352 // temp2 = (-1)^(m-l)

353 mpfr_fac_ui(temp3, 2*l-1, MPFR_RNDN);

354 mpfr_mul_ui(temp3, temp3, 4, MPFR_RNDN);

355 // temp3 = 4(2l-1)!

356 mpfr_div(temp2, temp2, temp3, MPFR_RNDN);

357 // temp2 = [(-1)^(m-1)]/[4(2l-1)!]

358 mpfr_mul(temp1, temp1, temp2, MPFR_RNDN);

359 mpfr_mul(temp1, temp1, temp5, MPFR_RNDN);

360 // temp1 = [(-1)^(m-1)]/[4(2l-1)!]*sqrt([(n+l)!(m+l-1)!]

361 // /[(n-l-1)!(m-l)!])*[(4*n*m)^(l+1)]/[(n+m)^(n+m)]

362

363 mpfr_set(*A,temp1,MPFR_RNDN);

364

365 // Clean-up

366 mpfr_clear(temp1);

367 mpfr_clear(temp2);

A.2. Einstein Coefficients 100

368 mpfr_clear(temp3);

369 mpfr_clear(temp4);

370 mpfr_clear(temp5);

371 }

372

373 void calc_B(mpfr_t* B, int n, int m, int l)

374 {

375 mpfr_t temp1;

376 mpfr_init(temp1);

377 double exponent;

378 double base;

379

380 exponent = n+m-2*l-2;

381 base = n-m;

382

383 mpfr_set_si(temp1,n-m,MPFR_RNDN);

384 mpfr_pow_ui(temp1,temp1,exponent,MPFR_RNDN);

385

386 mpfr_set(*B,temp1,MPFR_RNDN);

387

388 // Clean-up

389 mpfr_clear(temp1);

390 }

391

392 void calc_C(mpfr_t* C, int n, int m)

393 {

394 mpfr_t temp1, temp2;

395 mpfr_init(temp1);

396 mpfr_init(temp2);

397

398 mpfr_set_si(temp1,n-m,MPFR_RNDN);

399 mpfr_set_ui(temp2,n+m,MPFR_RNDN);

400 mpfr_div(temp1,temp1,temp2,MPFR_RNDN);

401 mpfr_pow_ui(temp1,temp1,2,MPFR_RNDN);

402

403 mpfr_set(*C,temp1,MPFR_RNDN);

404

405 // Clean-up

A.2. Einstein Coefficients 101

406 mpfr_clear(temp1);

407 mpfr_clear(temp2);

408 }

409

410 void calc_2F1(int a, int b, int g, double X, mpfr_t* hyp_ser_ptr)

411 {

412 long double ab_sum = a+b;

413 long double ab_sum_prod = a*b-a-b+1;

414 long double l2_sub_1 = g-1;

415

416 mpfr_t chi;

417 mpfr_init(chi);

418 mpfr_set_ld(chi,X,MPFR_RNDN);

419

420 // Find largest, i.e. least negative of a,b

421 int num_iter;

422

423 if(a < 0 && b < 0)

424 {

425 if(a>b)

426 {

427 num_iter = -a;

428 }

429 else

430 {

431 num_iter = -b;

432 }

433 }

434

435 if(a == 0 || b == 0)

436 {

437 num_iter = 0;

438 }

439

440 int i;

441

442 mpfr_t F_1_mpfr[num_iter+1];

443 mpfr_init(F_1_mpfr[0]);

A.2. Einstein Coefficients 102

444 mpfr_set_si(F_1_mpfr[0],1,MPFR_RNDN);

445

446 mpfr_t temp;

447 mpfr_init(temp);

448

449 mpfr_t sum;

450 mpfr_init(sum);

451 mpfr_set(sum,F_1_mpfr[0],MPFR_RNDN);

452

453 mpfr_t numerator;

454 mpfr_t denominator;

455 mpfr_init(numerator);

456 mpfr_init(denominator);

457

458 // Hypergeometric series progresses as:

459 // t1 = 1 =>

460 // 2F1_t1 = t1

461 //

462 // t2 = [(ab)/(1!2l)]X = [(ab)/(2l)]X =>

463 // 2F1_t2 = t1+t1*t2

464 //

465 // t3 = [a(a+1)b(b+1)/(2!(2l+1)]X^2 = [(a+1)(b+1)/(2l+1)]X*[(ab)/(2l)]X

466 // 2F1_t3 = t1+t1*t2+t1*t2*t3

467 // and so on

468 for(i=1;i<=num_iter;i++)

469 {

470 mpfr_init(F_1_mpfr[i]);

471

472 mpfr_set_ld(numerator,ab_sum_prod+i*(ab_sum)-2*i+i*i,MPFR_RNDN);

473 // numerator = ab-a-b+1+i(a+b)-2i+i^2

474 mpfr_set_ld(denominator,i*(l2_sub_1+i),MPFR_RNDN);

475 // denominator = i(2l-1+i)

476 mpfr_div(temp,numerator,denominator,MPFR_RNDN);

477 // temp = (ab-a-b+1+i(a+b)-2i+i^2)/(i(2l-1+i))

478 mpfr_mul(temp,temp,chi,MPFR_RNDN);

479 // temp = (ab-a-b+1+i(a+b)-2i+i^2)/(i(2l-1+i))*X

480 mpfr_mul(F_1_mpfr[i],F_1_mpfr[i-1],temp,MPFR_RNDN);

481 // F_1_mpfr[i] = F_1_mpfr[i-1]*temp

A.3. Radiative Recombination 103

482 mpfr_add(sum,sum,F_1_mpfr[i],MPFR_RNDN);

483 }

484

485 mpfr_set(*hyp_ser_ptr,sum,MPFR_RNDN);

486

487 // Clean-up

488 for(i=0;i<num_iter;i++)

489 {

490 mpfr_clear(F_1_mpfr[i]);

491 }

492 mpfr_clear(temp);

493 mpfr_clear(sum);

494 mpfr_clear(numerator);

495 mpfr_clear(denominator);

496 mpfr_clear(chi);

497 }

einstein_coefficient_calc_mpfr.c

A.3 Radiative Recombination

1 long double g_nl_Kl_p(int n, int l, double K, int l_p);

2 long double G_n_l_K_lp(int n, int l, double K, int l_p);

3 long double G_n_l_K_lg(int n, int l, double K);

4 long double G_n_l_K_ls(int n, int l, double K);

5 long double G_n_n_1_0_n(int n);

6 long double G_n_n_1_K_n(int n, double K);

7 long double G_n_n_2_K_n_1(int n, double K);

8 long double G_n_n_1_K_n_2(int n, double K);

9 long double G_n_n_2_K_n_3(int n, double K);

10 long double calc_A_g(int n, int l, double K);

11 long double calc_B_g(int n, int l, double K);

12 long double calc_A_s(int n, int l, double K);

13 long double calc_B_s(int n, int l, double K);

14 long double factorial_minus_lower(int n, int lower_limit);

15 long double calc_Theta(int n, int l, double K, int l_p, int write, FILE*

fp);

16 long double calc_Theta_r_file(int n, int l, double K, int l_p, FILE* fp);

A.3. Radiative Recombination 104

17 long double calc_Theta_w_file(int n, int l, double K, int l_p, FILE* fp);

18 long double calc_Theta_no_file(int n, int l, double K, int l_p);

19 int max(int n1, int n2);

20 int input_accepter();

21 int open_file(const char* FILENAME, FILE** fp);

radiative_recombination_long_double.h

1 /***

2 * file: ’radiative_recombination_long_double.c’ *

3 ***/

4

5 #include <CL/cl.h>

6 #include <errno.h>

7 #include <string.h>

8 #include <sys/types.h>

9 #include <sys/resource.h>

10 #include <time.h>

11 #include <unistd.h>

12 #include <stdio.h>

13 #include <stdlib.h>

14 #include <math.h>

15 #include "radiative_recombination_long_double.h"

16 #include "constants.h"

17 #include "kernelReader.h"

18

19 // Global variables

20 FILE* fp;

21 const char* FILENAME = "dat_rad_rec.dat";

22 const int N0=2; // Case B

23 int N=500;

24 const double T_e = 10000.0;

25 const int num_Iter = 100;

26 const double h_factor = 0.000000025;

27

28 double calc_alpha_nl(int n, int l, int iter, double y, double h_factor,

double alpha, double* theta);

29 double calc_I_y(int n, int l, int l_p, double y, int iter, double

h_factor, double* theta);

A.3. Radiative Recombination 105

30 double calc_I_integral_y(int n, int l, int l_p, int iter, double y,

double h_factor, double* theta);

31 // boole’s integral as given on:

http://en.wikipedia.org/wiki/Boole%27s_rule

32 double boole_integral_y(int n, double x1, double x5, double h, double

(*i_f)(int n, double K, double y, double* theta, int theta_index),

double y, double* theta, int theta_index);

33 double integrand_y(int n, double K2, double y, double* theta, int

theta_index);

34 void execute_open_cl_kernel(int N0, double y, double h_factor, double

alpha, int num_Iter, double* theta, int theta_size, double* alpha_nl,

int alpha_nl_size, int* alpha_n_index);

35 void execute_cpu_kernel(double y, double h_factor, double alpha, int

num_Iter, double* theta, int alpha_nl_size, double* alpha_nl_array);

36 void print_matrix(double* MAT, int alpha_nl_size);

37

38 int main()

39 {

40 // SETUP TIMER

41 clock_t gc0, gc1;

42 clock_t c0, c1;

43 gc0 = clock();

44

45 // Increase stack size

46 struct rlimit old_lim;

47 getrlimit(RLIMIT_STACK,&old_lim);

48 printf("old_lim_cur = %lld\n",(long long)old_lim.rlim_cur);

49 printf("old_lim_max = %lld\n",(long long)old_lim.rlim_max);

50 long long newLim = 10000*old_lim.rlim_cur;

51 struct rlimit new_lim = {newLim,newLim};

52

53 // Set new limit in BYTES (4 times the original stack size)

54 setrlimit(RLIMIT_STACK,&new_lim);

55 printf("new_lim_max = %lld\n",(long long)new_lim.rlim_max);

56

57 printf("Please enter N:\n");

58 N = input_accepter();

59

A.3. Radiative Recombination 106

60 int write;

61

62 // Open file

63 printf("Write to file?\n");

64 printf("Press 1 to write or read\n");

65 printf("Press 0 to re-calculate\n");

66 if(input_accepter())

67 {

68 write = open_file(FILENAME,&fp);

69 }

70 else

71 {

72 write = -1;

73 }

74

75 int theta_index = 0; // This is the base offset in the theta_array.

num_Iter values of theta will be needed.

76 int n,l,l_counter,k_index,intg_index;

77 double K2 = 0.0;

78 double h_m = 0.0;

79 int l_p;

80

81 int alpha_nl_size = ((N-1)*(N+2))/2;

82 int theta_size = N*(N-1)*num_Iter*5;

83

84 double alpha_nl_gpu[alpha_nl_size];

85 double alpha_nl_cpu[alpha_nl_size];

86 double theta[theta_size];

87

88 // Population of Theta

89 for(n=N0;n<=N;n++)

90 {

91 //printf("n = %d\n",n);

92 for(l=0;l<n;l++)

93 {

94 for(l_counter=0;l_counter<2;l_counter++)

95 {

96 // Reset K every time as this is the integration variable.

A.3. Radiative Recombination 107

97 K2 = 0.0;

98 h_m = h_factor/n;

99

100 if(l_counter == 0)

101 l_p = l-1;

102 else

103 l_p = l+1;

104

105 // Ensure quantum selection rules are upheld i.e.

106 // l_p >= 0 and l_p < n

107 if(l_p>=0 && l_p<n)

108 {

109 theta[theta_index] = (double)calc_Theta(n,l,0.0,l_p,write,fp);

110 theta_index++;;

111 K2 = h_m;

112

113 for(k_index=0;k_index<num_Iter;k_index++)

114 {

115 for(intg_index=1;intg_index<=4;intg_index++)

116 {

117 theta[theta_index] =

(double)calc_Theta(n,l,sqrt(K2),l_p,write,fp);

118 K2 += h_m;

119 theta_index++;

120 }

121 K2 += h_m;

122 h_m = 2*h_m;

123 }

124 }

125 }

126 }

127 }

128

129 // Variables needed to calculate alpha_nl

130 double y = 15.778e4/T_e;

131 double alpha = 1/137.035999074; // Fine-structure constant

132

133 int i;

A.3. Radiative Recombination 108

134 n = 2; // n = N0

135 int alpha_n_index[alpha_nl_size];

136

137 for(i=0;i<alpha_nl_size;)

138 {

139 for(l=0;l<n;l++)

140 {

141 alpha_n_index[i] = n;

142 i++;

143 }

144 n++;

145 }

146

147 printf("Calculating GPU\n");

148 // Start TIMER

149 c0 = clock();

150

151 execute_open_cl_kernel(N0,y,h_factor,alpha,num_Iter,theta,theta_size,

152 alpha_nl_gpu,alpha_nl_size, alpha_n_index);

153

154 c1 = clock();

155 printf ("\tGPU total time: %f\n", (float) (c1 - c0)/

156 CLOCKS_PER_SEC);

157

158 printf("Calculating CPU\n");

159 // Start TIMER

160 c0 = clock();

161

162 execute_cpu_kernel(y,h_factor,alpha,num_Iter,theta,alpha_nl_size,

163 alpha_nl_cpu);

164

165 c1 = clock();

166 printf ("\tCPU total time: %f\n", (float) (c1 - c0)/CLOCKS_PER_SEC);

167

168 gc1 = clock();

169 printf ("Total global time: %f\n", (float) (gc1 - gc0)/

170 CLOCKS_PER_SEC);

171 printf("Done\n");

A.3. Radiative Recombination 109

172 }

173

174 void execute_cpu_kernel(double y, double h_factor, double alpha, int

num_Iter, double* theta, int alpha_nl_size, double* alpha_nl_array)

175 {

176 int i,l;

177 int n = 2;

178 //printf("\n");

179 for(i=0;i<alpha_nl_size;)

180 {

181 for(l=0;l<n;l++)

182 {

183 alpha_nl_array[i] =

calc_alpha_nl(n,l,num_Iter,y,h_factor,alpha,theta);

184 i++;

185 }

186 n++;

187 }

188 }

189

190 void print_matrix(double* MAT, int alpha_nl_size)

191 {

192 int i,l;

193 int n = 2;

194 printf("\n");

195 for(i=0;i<alpha_nl_size;)

196 {

197 for(l=0;l<n;l++)

198 {

199 if(i>=alpha_nl_size-N)

200 printf("%e\n",MAT[i]);

201 i++;

202 }

203 n++;

204 }

205 printf("\n");

206 }

207

A.3. Radiative Recombination 110

208 void execute_open_cl_kernel(int N0, double y, double h_factor, double

alpha, int num_Iter, double* theta, int theta_size, double* alpha_nl,

int alpha_nl_size, int* alpha_n_index)

209 {

210 // DATA INIT

211 int err;

212 size_t global[1];

213 cl_device_id device_id[100];

214 cl_context context;

215 cl_command_queue commands;

216 cl_program program;

217 cl_kernel kernel;

218 cl_uint nd;

219 cl_mem alpha_n_index_in, theta_in, alpha_nl_out;

220

221 // PLATFORM SETUP

222 cl_platform_id platforms[100];

223 cl_uint platforms_n = 0;

224 cl_uint devices_n = 0;

225 clGetPlatformIDs(100, platforms, &platforms_n);

226 if(platforms_n == 0)

227 puts("no devices found");

228 err = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, 100, device_id,

&devices_n);

229

230 //context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);

231 context = clCreateContext(NULL, 1, device_id, NULL, NULL, &err);

232 commands = clCreateCommandQueue(context, device_id[0], 0, &err);

233

234 // SETUP buffers and write "alpha_n_index" and "theta_in"

235 // to the device memory

236 alpha_n_index_in = clCreateBuffer(context, CL_MEM_READ_ONLY ,

sizeof(int) * alpha_nl_size , NULL, NULL);

237 theta_in = clCreateBuffer(context, CL_MEM_READ_ONLY ,

sizeof(double) * theta_size , NULL, NULL);

238 alpha_nl_out = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(double) * alpha_nl_size, NULL, NULL);

A.3. Radiative Recombination 111

239 err = clEnqueueWriteBuffer(commands, alpha_n_index_in,

CL_TRUE, 0, sizeof(int) * alpha_nl_size, alpha_n_index, 0, NULL,

NULL);

240 err = clEnqueueWriteBuffer(commands, theta_in , CL_TRUE, 0,

sizeof(double) * theta_size, theta , 0, NULL, NULL);

241

242 // BUILD the program, define the kernel and setup arguments

243 Program_kernel* pgmKernel = loadKernel("rad_kernel.cl");

244 const char** program_source = (const char**)pgmKernel->kernel;

245 int pgmSize = pgmKernel->size;

246 program = clCreateProgramWithSource(context,

pgmSize/sizeof(*program_source), program_source, NULL, &err);

247 err = clBuildProgram(program, 0, NULL, NULL, NULL,

NULL);

248

249 // SETUP Kernel

250 kernel = clCreateKernel(program, "calc_alpha_nl", &err);

251 err = clSetKernelArg(kernel, 0, sizeof(int) , &N0);

252 err |= clSetKernelArg(kernel, 1, sizeof(double) , &y);

253 err |= clSetKernelArg(kernel, 2, sizeof(double) , &h_factor);

254 err |= clSetKernelArg(kernel, 3, sizeof(double) , &alpha);

255 err |= clSetKernelArg(kernel, 4, sizeof(double) , &PI);

256 err |= clSetKernelArg(kernel, 5, sizeof(double) , &a_0);

257 err |= clSetKernelArg(kernel, 6, sizeof(double) , &c);

258 err |= clSetKernelArg(kernel, 7, sizeof(int) , &num_Iter);

259 err |= clSetKernelArg(kernel, 8, sizeof(cl_mem), &theta_in);

260 err |= clSetKernelArg(kernel, 9, sizeof(cl_mem), &alpha_nl_out);

261 err |= clSetKernelArg(kernel,10, sizeof(cl_mem), &alpha_n_index_in);

262

263 // RUN the kernel and collect results

264 global[0] = (size_t)alpha_nl_size;

265 nd = 1;

266 err = clEnqueueNDRangeKernel(commands, kernel, nd, NULL, global, NULL,

0, NULL, NULL);

267 clFinish(commands);

268 err = clEnqueueReadBuffer(commands, alpha_nl_out, CL_TRUE, 0,

sizeof(double) * alpha_nl_size, alpha_nl, 0, NULL, NULL);

269 }

A.3. Radiative Recombination 112

270

271 long double calc_Theta(int n, int l, double K, int l_p, int write, FILE*

fp)

272 {

273 long double Theta = 0.0;

274 if(write == 1)

275 {

276 // Calculate theta and save in dat file

277 Theta = calc_Theta_w_file(n,l,K,l_p,fp);

278 }

279 else if(write == 0)

280 {

281 // Read Theta from dat file

282 Theta = calc_Theta_r_file(n,l,K,l_p,fp);

283 }

284 else

285 {

286 // Calculate Theta without saving value

287 Theta = calc_Theta_no_file(n,l,K,l_p);

288 }

289

290 return Theta;

291 }

292

293 long double calc_Theta_no_file(int n, int l, double K, int l_p)

294 {

295 long double g = g_nl_Kl_p(n,l,K,l_p);

296 return (1+n*n*K*K)*g*g;

297 }

298

299

300 long double calc_Theta_r_file(int n, int l, double K, int l_p, FILE* fp)

301 {

302 long double T;

303 fscanf(fp,"%Le\n",&T);

304 return T;

305 }

306

A.3. Radiative Recombination 113

307 // Function that, along with calculating Theta, also stores in a file to

avoid

308 // costly recalculation. NOTE: File-pointer must point to an open and

ready

309 // file.

310 long double calc_Theta_w_file(int n, int l, double K, int l_p, FILE* fp)

311 {

312 // fp is open and ready to avoid overhead of re-opening

313 // file with every call to calc_Theta_w_file

314 long double T = calc_Theta_no_file(n,l,K,l_p);

315 fprintf(fp, "%Le ",T);

316

317 return T;

318 }

319

320 // Calculates g(n,l;K,l_p)

321 long double g_nl_Kl_p(int n, int l, double K, int l_p)

322 {

323 long double product = 1.0;

324 long double G = G_n_l_K_lp(n,l,K,l_p);

325 long double fact;

326

327 int s;

328 for(s=1;s<=l_p;s++)

329 {

330 // Take square root to make number smaller

331 product *= sqrtl(1+s*s*K*K);

332 }

333

334 // fact = (n+l)!/(n-l-1)!

335 fact = factorial_minus_lower(n+l,n-l-1);

336 fact = sqrtl(fact);

337

338 // return: g(nl,Kl’) =

339 // sqrt[(n+l)!/(n-l-1)!)*\product_{s=0}^{l’}(1+s^2*K^2)]*

340 // (2n)^(l-n)*G(n,l,K,l’)

341 return fact*product*powl(2*n,l-n)*G;

342 }

A.3. Radiative Recombination 114

343

344 long double G_n_l_K_lp(int n, int l, double K, int l_p)

345 {

346 long double G;

347

348 if(l==(n-1) && l_p==n)

349 {

350 if(K==0.0)

351 {

352 G = G_n_n_1_0_n(n);

353 }

354 else

355 {

356 G = G_n_n_1_K_n(n,K);

357 }

358 }

359 else if(l==(n-2) && l_p==(n-1))

360 {

361 G = G_n_n_2_K_n_1(n,K);

362 }

363 else if(l==(n-1) && l_p==(n-2))

364 {

365 G = G_n_n_1_K_n_2(n,K);

366 }

367 else if(l==(n-2) && l_p==(n-3))

368 {

369 G = G_n_n_2_K_n_3(n,K);

370 }

371 else

372 {

373 if(l==(l_p+1))

374 {

375 G = G_n_l_K_lg(n,l,K);

376 }

377 else if(l==(l_p-1))

378 {

379 G = G_n_l_K_ls(n,l,K);

380 }

A.3. Radiative Recombination 115

381 else

382 {

383 printf("Error - incorrectly formatted l and l’\n");

384 printf("l and l’ are not in the format of:\n");

385 printf("l’ = l+1 or l’ = l-1\n");

386 }

387 }

388

389 return G;

390 }

391

392

393 // Calculates G(n,l,K,l’) = G(n,l,K,l-1) i.e. ’g’ is ’greater’, since l>l’

394 long double G_n_l_K_lg(int n, int l, double K)

395 {

396 long double h1 = G_n_n_1_K_n_2(n,K);

397 long double h2 = (2*n-1)*(4+(n-1)*(1+n*n*K*K))*h1;//= G_n_n_2_K_n_3(n,K);

398

399 int i;

400 // i = 3 as this is the base case (i.e. G(n,n-3,K,n-4)) for l>l’ (l’=l_p)

401 for(i=3;i<=n-l;i++)

402 {

403 // l should be given in terms of n (for the argument of A_g and B_g) -

as the first step

404 // is to calculate h3 = G(n,n-3,K,n-4), A = calc_A_g(n,n-3+1,K),

405 // B = calc_B_g(n,n-3+1,K), we must add 1, as A and B use l rather

than l-1

406 long double A = calc_A_g(n,n-i+1,K);

407 long double B = calc_B_g(n,n-i+1,K);

408

409 // if i is odd redefine h1, else redefine h2

410 if(i%2 != 0)

411 {

412 h1 = A*h2+B*h1;

413 }

414 else

415 {

416 h2 = A*h1+B*h2;

A.3. Radiative Recombination 116

417 }

418

419 }

420

421 // As we want the last calculated value,

422 // simply check to see what ’i’ is

423 if(i%2==0)

424 val = h2;

425 else

426 val = h1;

427

428 return val;

429 }

430

431 long double calc_A_g(int n, int l, double K)

432 {

433 // A_g = 4n^2-4l^2+l(2l+1)(1+n^2*K^2)

434 return 4*n*n-4*l*l+l*(2*l+1)*(1+n*n*K*K);

435 }

436

437 long double calc_B_g(int n, int l, double K)

438 {

439 // B_g = -4(n)^2[n^2-(l+1)^2](1+l^2*K^2)

440 return -4*n*n*(n*n-(1+l)*(1+l))*(1+l*l*K*K);

441 }

442

443 long double calc_A_s(int n, int l, double K)

444 {

445 // A_s = 4n^2-4l^2+l(2l-1)(1+n^2*K^2)

446 return 4*n*n-4*l*l+l*(2*l-1)*(1+n*n*K*K);

447 }

448

449 long double calc_B_s(int n, int l, double K)

450 {

451 // B_s = -4(n^2)(n^2-l^2)[1+(l+1)^2*K^2]

452 return -4*n*n*(n*n-l*l)*(1+(l+1)*(l+1)*K*K);

453 }

454

A.3. Radiative Recombination 117

455 // Calculates G(n,l,K,l’) = G(n,l,K,l+1) i.e. ’s’ is ’smaller’,

456 // since l<l’

457 long double G_n_l_K_ls(int n, int l, double K)

458 {

459 long double h1 = G_n_n_1_K_n(n,K);

460 long double h2 =(2*n-1)*(1+n*n*K*K)*n*h1; // = G_n_n_2_K_n_1(n,K);

461

462 int i;

463 // i = 2 as this is the base case (i.e. G(n,n-2,K,n-1) for l<l’ (l’ =

l_p))

464 for(i=2;i<n-l;i++)

465 {

466 // l should be given in terms of n (for the argument of A_s and B_s) -

as the first step

467 // is to calculate h3 = G(n,n-2,K,n-1), A = calc_A_s(n,n-2,K),

468 // B = calc_B_s(n,n-2,K), we must add 2, as A and B use l rather than

l-2

469 long double A = calc_A_s(n,n-i+1,K);

470 long double B = calc_B_s(n,n-i+1,K);

471

472 if(i%2 == 0)

473 {

474 h1 = A*h2+B*h1;

475 }

476 else

477 {

478 h2 = A*h1+B*h2;

479 }

480 }

481

482 // If l == even, the last h1 calculated will be the answer

483 // else, the last h2 calculated will be the answer.

484 long double val;

485 // As we want the last calculated value,

486 // simply check to see what ’i’ is

487 if(i%2!=0)

488 val = h2;

489 else

A.3. Radiative Recombination 118

490 val = h1;

491

492 return val;

493 }

494

495 // Calculates G(n,n-1,0,n)

496 long double G_n_n_1_0_n(int n)

497 {

498 long double numerator;

499 long double denominator;

500

501 numerator = sqrtl(PI/2)*8*n*powl(4*n,n)*expl(-2*n);

502 denominator = factorial_minus_lower(2*n-1,1);

503

504 return numerator/denominator;

505 }

506

507 // Calculates G(n,n-1,K,n)

508 long double G_n_n_1_K_n(int n, double K)

509 {

510 if(K==0.0)

511 {

512 return G_n_n_1_0_n(n);

513 }

514

515 long double numerator;

516 long double denominator;

517

518 numerator = expl(2*n-2/K*atanl(n*K));

519 denominator = sqrtl(1-exp(-2*PI/K))*powl(1+n*n*K*K,n+2);

520

521 return numerator/denominator*G_n_n_1_0_n(n);

522 }

523

524 // Calculates G(n,n-2,K,n-1)

525 long double G_n_n_2_K_n_1(int n, double K)

526 {

527 return (2*n-1)*(1+n*n*K*K)*n*G_n_n_1_K_n(n,K);

A.3. Radiative Recombination 119

528 }

529

530 // Calculates G(n,n-1,K,n-2)

531 long double G_n_n_1_K_n_2(int n, double K)

532 {

533 return (1+n*n*K*K)/(2*n)*G_n_n_1_K_n(n,K);

534 }

535

536 // Calculates G(n,n-2,K,n-3)

537 long double G_n_n_2_K_n_3(int n, double K)

538 {

539 return (2*n-1)*(4+(n-1)*(1+n*n*K*K))*G_n_n_1_K_n_2(n,K);

540 }

541

542 // Calculates the number: n!/lower_limit! - hence if

543 // lower_limit = 1, factorial_minus_lower(n,1) = n!

544 long double factorial_minus_lower(int n, int lower_limit)

545 {

546 long double fact = 1.0;

547

548 int i;

549 for(i=n;i>lower_limit;i--)

550 {

551 fact *= i;

552 }

553

554 return fact;

555 }

556

557 int max(int n1, int n2)

558 {

559 if(n1>n2)

560 return n1;

561 else

562 return n2;

563 }

564

565 int input_accepter()

A.3. Radiative Recombination 120

566 {

567 char input[256];

568 gets(input);

569 int n = atoi(input);

570

571 while(!(n+1))

572 {

573 printf("You did not enter a number correctly, please enter

again:\n");

574 gets(input);

575 n = atoi(input);

576 }

577 return n;

578 }

579

580 int open_file(const char* FILENAME, FILE** fp)

581 {

582 int write = -2;

583

584 printf("Trying to open ’%s’\n",FILENAME);

585 if((*fp = fopen(FILENAME,"r")))

586 {

587 //File exists - set for reading

588 write = 0;

589 printf("File is ready for reading\n");

590 }

591 else if((*fp = fopen(FILENAME,"w")))

592 {

593 //File does not exist - set for writing

594 write = 1;

595 printf("File is ready for writing\n");

596 }

597 else

598 {

599 printf("Could not open file for ");

600 if(write)

601 {

602 printf("writing.\n");

A.3. Radiative Recombination 121

603 }

604 else

605 {

606 printf("reading.\n");

607 }

608 printf("Will calculate function without saving\n");

609 write = -1;

610 }

611

612 return write;

613 }

614

615 // Single threaded alpha_nl calc

616 double calc_alpha_nl(int n, int l, int iter, double y, double h_factor,

double alpha, double* theta)

617 {

618 double alpha_nl;

619 double sum_I =

calc_I_y(n,l,l-1,y,iter,h_factor,theta)+calc_I_y(n,l,l+1,y,iter,

620 h_factor,theta);

621

622 // ’c’ is speed of light

623 // ’a_0’ is the Bohr Radius

624 alpha_nl =

(2*pow(PI,0.5)*pow(alpha,4)*pow(a_0,2)*c)/3*2*sqrt(y)/(n*n)*sum_I;

625

626 return alpha_nl;

627 }

628

629 double calc_I_y(int n, int l, int l_p, double y, int iter, double

h_factor, double* theta)

630 {

631 if(!(l_p==-1 || l_p==n))

632 {

633 int l_max = max(l,l_p);

634 double const const_fact = l_max*y;

635

636 // As l_p is no longer used for any other purpose than indexing

A.3. Radiative Recombination 122

637 // theta, we assign 1 if larger than l, or 0 if smaller.

638 if(l_p > l)

639 l_p = 1;

640 else

641 l_p = 0;

642 double I_integral =

calc_I_integral_y(n,l,l_p,iter,y,h_factor,theta);

643

644 return const_fact*I_integral;

645 }

646 else

647 return 0.0;

648 }

649

650 double calc_I_integral_y(int n, int l, int l_p, int iter, double y,

double h_factor, double* theta)

651 {

652 int num_iter = iter;

653 long double integral_val = 0;

654 int i;

655 double h_m = h_factor/n;

656 double x1 = 0.0;

657 double x5 = 4*h_m; // x5 = x1+4h

658 int theta_index = 0;

659

660 // theta_index = ((n-1)*(n-2)+2*l-(l_p-1))*num_iter

661 // This is the base offset in the theta_array. num_Iter values of

662 // theta will be needed.

663

664

665 // 4 is the amount of iterations in the five point integration.

666 // ’+1’ to account for increment of theta_index in outer of loop.

667 theta_index = ((n-1)*(n-2)+2*l+(l_p-1))*(num_iter*4+1);

668

669 for(i=0;i<num_iter;i++)

670 {

671 // Note: x1 = K^2 NOT K

672 integral_val += boole_integral_y(n,x1,x5,h_m,&integrand_y,y,

A.3. Radiative Recombination 123

673 theta,theta_index);

674 h_m = 2*h_m;

675 x1 = x5;

676 x5 = x1+4*h_m;

677

678 theta_index += 4; // Add 4 to offset

679 }

680

681 return integral_val;

682 }

683

684 // boole’s integral as given on:

http://en.wikipedia.org/wiki/Boole%27s_rule

685 double boole_integral_y(int n, double x1, double x5, double h, double

(*i_f)(int n, double K, double y, double* theta, int theta_index),

double y, double* theta, int theta_index)

686 {

687 // Int_{x_1}^{x_5}f(x)dx =

frac{2h}{45}(7f(x_1)+32f(x_1+h)+12f(x_1+2h)+32f(x_4)+7f(x_5))

688 // +error_term, where h is the step size, hence x_1+4h = x_5

689 // Note: Although i_f takes several parameters, only the third

690 // (given by the x1 and h term) is a variable. Hence we can use

691 // Boole’s law for functions of 1 variable.

692

693 return (2*h)/(45)*(7*i_f(n,x1,y,theta,theta_index)+32*i_f(n,x1+h,y,

694 theta,theta_index+1)+12*i_f(n,x1+2*h,y,theta,theta_index+2)+

695 32*i_f(n,x1+3*h,y,theta,theta_index+3)+7*i_f(n,x1+4*h,y,theta,

696 theta_index+4));

697 }

698

699 double integrand_y(int n, double K2, double y, double* theta, int

theta_index)

700 {

701 // NOTE: K2 = K^2

702 return pow(1+n*n*K2,2)*theta[theta_index]*exp(-K2*y);

703 }

radiative_recombination_long_double.c

A.4. Iterative Computation 124

A.4 Iterative Computation

1 /********************************

2 * file: ’b_n_calc_iterative.c’ *

3 ********************************/

4

5 #include <sys/types.h>

6 #include <time.h>

7 #include <unistd.h>

8 #include <stdio.h>

9 #include <stdlib.h>

10 #include <math.h>

11 #include "constants.h"

12 #include "oscillator_strength_gaunt_final.c"

13 #include "expint.c"

14

15 // CASE = 1 for case A, CASE = 2 for case B

16 const int CASE = 2;

17

18 int compute_b_b_coll = 1;

19

20 int input_accepter();

21 void b_n_calculate(int n, int m, int num_iter, double N_e, double T_e);

22 double b_n_calc_level_n(double b[], int n, int m, double T_n_const,

double beta, double N_e, int num_of_levels, double T_e, double P_n,

double P_cn, double sum_S_n_infty, double** S_mn, double T_n);

23 double sum_of_A_nm(int n);

24 double p_cn_term(int n, double x_n, double N_e, double T_e);

25 double spontaneous_radiation(int n, int m);

26 double x_n_term(double beta, int n);

27 double collisional_ionization(int n, double T_e, double N_e);

28 double p_n_term(int n, int m, double T_e, double N_e, double beta);

29 double sum_of_b_m_S_mn(double b[], double P_n, int n, int num_of_b_n,

double beta, int infty_int, double T_e, double sum_S_n_infty, double

N_e, double** S_mn);

30 double collisional_transition(int n, int m, double beta, double T_e,

double N_e);

31 double sum_of_C_nm(int n, int m, double beta, double T_e, double N_e);

A.4. Iterative Computation 125

32 double partial_S_mn_sum(double P_n, int n, int num_of_b_n, int

infty_level, double beta, double T_e, double N_e);

33 double input_accepter_f();

34 double s_mn_term_m_greater(double P_n, int n, int m, double beta, double

T_e, double N_e);

35 double s_mn_term_n_greater(double P_n, int n, int m, double beta, double

T_e, double N_e);

36 double p_mn_term_m_greater(int m, int n, double beta, double T_e, double

N_e);

37 double p_mn_term_n_greater(int m, int n, double beta, double T_e, double

N_e);

38 void calc_S_mn_term(double P_n, int n, int num_of_b_n, double beta,

double T_e, double N_e, double** S_n);

39

40 int main()

41 {

42 // Input variables:

43 int n;

44 int num_iter;

45 int m; // number of levels from CASE to continuum

46 double T_e;

47 double N_e;

48

49 // Default values of T_e and N_e if non entered:

50 T_e = 1e4;

51 N_e = 1e4;

52

53 printf("Please enter n (number of b_n coefficients to calulate):\n");

54 n = input_accepter();

55

56 printf("Please enter number of iterations for the iterative

method:\n");

57 num_iter = input_accepter();

58

59 printf("Please enter number of levels from 1 to continuum:\n");

60 m = input_accepter();

61

62 // Setup timing

A.4. Iterative Computation 126

63 time_t t0, t1; /* time_t is defined in <time.h> and <sys/types.h> as

long */

64 clock_t c0, c1; /* clock_t is defined in <time.h> and <sys/types.h> as

int */

65

66 long count;

67

68 // Clear Screen

69 system("clear");

70 printf("Calculating b_n ...\n");

71 printf("\n");

72 printf("N_e = %e\n",N_e);

73 printf("n_max = %d\n",n);

74 printf("# of iterations time_taken\n");

75

76 N_e = 10000.0;

77 int i;

78 for(i=0;i<=100;)

79 {

80 // Start timing

81 t0 = time(NULL);

82 c0 = clock();

83

84 // Perform b_n calculation

85 b_n_calculate(n, m, num_iter, N_e, T_e);

86

87 // Measure elapsed time

88 t1 = time(NULL);

89 c1 = clock();

90 printf("%d %f\n",num_iter,(float) (c1 -

c0)/CLOCKS_PER_SEC);

91 num_iter +=50;

92 }

93 }

94

95 int input_accepter()

96 {

97 char input[256];

A.4. Iterative Computation 127

98 gets(input);

99 int n = atoi(input);

100

101 while(!n)

102 {

103 printf("You did not enter a number correctly, please enter

again:\n");

104 gets(input);

105 n = atoi(input);

106 }

107 return n;

108 }

109

110 double input_accepter_f()

111 {

112 char input[256];

113 gets(input);

114 double number = atof(input);

115

116 scanf("%*c");

117 int result = scanf("%lf", &number);

118

119 while(result != 1)

120 {

121 printf("You did not enter a number correctly, please enter again:\n");

122 gets(input);

123 number = atof(input);

124 result = scanf("%lf", &number);

125 }

126

127 return number;

128 }

129

130

131 void write_output(double b[], int size, int n_lower, double T_e, double

N_e, int num_iter)

132 {

133 FILE* pFile;

A.4. Iterative Computation 128

134 FILE* pFile_b_n;

135 char filename[256];

136 char filename_b_n[256];

137 sprintf(filename,

138 "./b_n_output/b_n_%d_case_%d_T_e_%.0E_N_e_%.0E_num_iter_%d.dat",

139 size,CASE,T_e,N_e,num_iter);

140 sprintf(filename_b_n,

141 "./b_n_output/b_n_%d_case_%d_T_e_%.0E_N_e_%.0E_num_iter_%d.b_n",

142 size,CASE,T_e,N_e,num_iter);

143

144 pFile = fopen(filename, "w");

145 pFile_b_n = fopen(filename_b_n, "w");

146

147 // Specify columns

148 fprintf(pFile, "# n b_n db/b beta \n");

149

150 double db_b = 0.0;

151 double beta = 0.0;

152 double v = 0.0;

153

154 int j;

155 for(j=0; j<=size-CASE; j++)

156 {

157 // (d/dn)lnB(n) = db/b

158 db_b = (b[j+1]-b[j])/b[j];

159

160 v = R_H*c*pow(Z,2)*(1.0/pow(j,2)-1.0/pow(j+1,2));

161

162 beta = 1-(k*T_e)/(h*v)*db_b; // delta_n not included as this is for

the alpha transition

163

164 fprintf(pFile,"%d %.10f %.10f %.10f

\n", j+n_lower, b[j], log10(db_b), beta);

165 fprintf(pFile_b_n,"%.10f\n", b[j]);

166 }

167

168 printf("Saving to file: %s\n", filename);

169

A.4. Iterative Computation 129

170 fclose(pFile);

171 fclose(pFile_b_n);

172 }

173

174 void b_n_calculate(int n, int m, int num_iter, double N_e, double T_e)

175 {

176 // Constants

177 double T_n_const = pow(2*PI*m_e*k*T_e, 3.0/2)/(N_e*pow(h,3));

178 double beta = 1.5789e5/T_e;

179

180 int i, j;

181

182 // NOTE size of b_n = n-1 for CASE B

183 int array_size = n-CASE+1;

184 double b[array_size];

185

186 // Initialise all bn’s to 1 for initial iteration

187 for(i=0;i<n-CASE+1;i++)

188 {

189 b[i] = 1.0;

190 }

191

192 // Declare P_n outside to avoid recalculation

193 double P_n[array_size];

194 double P_cn[array_size];

195 double x_n = 0.0;

196

197 // Holds the sum of S_mn but only from n+1 to infty,

198 // as b_n is = 1.0 at level n+1

199 double sum_S_n_infty[array_size];

200 double** S_mn;

201 double T_n[array_size];

202

203 S_mn = malloc(array_size*sizeof(*S_mn));

204 for(i=0;i<array_size;i++)

205 {

206 S_mn[i] = malloc(array_size*sizeof(*S_mn[i]));

207 }

A.4. Iterative Computation 130

208

209 // Initialise all values before entering loop to avoid if-else

210 // statements

211 for(j=CASE; j<=n;j++)

212 {

213 x_n = x_n_term(beta,j);

214 P_n[j-CASE] = p_n_term(j,m,T_e,N_e,beta);

215 P_cn[j-CASE] = p_cn_term(j,x_n,N_e,T_e);

216 T_n[j-CASE] =

T_n_const*(P_cn[j-CASE]/(pow(j,2)*P_n[j-CASE]*exp(x_n)));

217 calc_S_mn_term(P_n[j-CASE],j,n,beta,T_e,N_e,S_mn);

218 sum_S_n_infty[j-CASE] =

partial_S_mn_sum(P_n[j-CASE],j,n,m,beta,T_e,N_e);

219 }

220

221 for(i=1; i<=num_iter; i++)

222 {

223 for(j=CASE; j<=n; j++)

224 {

225 b[j-CASE] = b_n_calc_level_n(b,j, m, T_n_const, beta, N_e, n, T_e,

P_n[j-CASE], P_cn[j-CASE], sum_S_n_infty[j-CASE], S_mn,

T_n[j-CASE]);

226 }

227

228 }

229

230 // Deallocate S_mn

231 for (i=0; i<array_size; i++)

232 {

233 free(S_mn[i]);

234 }

235 free(S_mn);

236

237 write_output(b,n,CASE,T_e,N_e,num_iter);

238 }

239

240 void calc_S_mn_term(double P_n, int n, int num_of_b_n, double beta,

double T_e, double N_e, double** S_mn)

A.4. Iterative Computation 131

241 {

242 int i;

243 for(i=CASE;i<n;i++)

244 {

245 S_mn[n-CASE][i-CASE] = s_mn_term_n_greater(P_n, n, i, beta, T_e, N_e);

246 }

247 for(i=n+1;i<=num_of_b_n;i++)

248 {

249 S_mn[n-CASE][i-CASE] = s_mn_term_m_greater(P_n, n, i, beta, T_e, N_e);

250 }

251 }

252

253 double partial_S_mn_sum(double P_n, int n, int num_of_b_n, int

infty_level, double beta, double T_e, double N_e)

254 {

255 double partial_sum = 0.0;

256

257 int i;

258 for(i=num_of_b_n+1;i<=infty_level;i++)

259 {

260 partial_sum += s_mn_term_m_greater(P_n, n, i, beta, T_e, N_e);

261 }

262

263 return partial_sum;

264 }

265

266 double b_n_calc_level_n(double b[], int n, int m, double T_n_const,

double beta, double N_e, int num_of_levels, double T_e, double P_n,

double P_cn, double sum_S_n_infty, double** S_mn, double T_n)

267 {

268 double b_n = 0.0;

269 double sum_of_terms = 0.0;

270 double x_n = 0.0;

271

272 x_n = x_n_term(beta,n);

273 sum_of_terms = sum_of_b_m_S_mn(b, P_n, n, num_of_levels, beta, m,

T_e, sum_S_n_infty, N_e, S_mn);

274 b_n = T_n+sum_of_terms;

A.4. Iterative Computation 132

275

276 return b_n;

277 }

278

279 double x_n_term(double beta, int n)

280 {

281 return (beta/n)/n;

282 }

283

284 double sum_of_b_m_S_mn(double b[], double P_n, int n, int num_of_b_n,

double beta, int infty_int, double T_e, double sum_S_n_infty, double

N_e, double** S_mn)

285 {

286 double sum = 0.0;

287

288 // Create two loops, one for m>n and one for m<n

289 int i;

290 for(i=CASE;i<n;i++)

291 {

292 double temp = 0.0;

293 temp = b[i-CASE]*S_mn[n-CASE][i-CASE];

294 if(isnan(temp))

295 {

296 temp = 0.0;

297 }

298 sum += temp;

299 }

300 // SKIP level i==n

301 for(i=n+1;i<=num_of_b_n;i++)

302 {

303 double temp = 0.0;

304 temp = b[i-CASE]*S_mn[n-CASE][i-CASE];

305 if(isnan(temp))

306 {

307 temp = 0.0;

308 }

309 sum += temp;

310 }

A.4. Iterative Computation 133

311

312 return sum+sum_S_n_infty;

313 }

314

315 double s_mn_term_m_greater(double P_n, int n, int m, double beta, double

T_e, double N_e)

316 {

317 double P_mn = 0.0;

318 double x_n = x_n_term(beta, n);

319 double x_m = x_n_term(beta, m);

320

321 P_mn = p_mn_term_m_greater(m,n,beta,T_e,N_e);

322

323 return P_mn/P_n*pow(m,2)/pow(n,2)*exp(x_m-x_n);

324 }

325

326

327 double s_mn_term_n_greater(double P_n, int n, int m, double beta, double

T_e, double N_e)

328 {

329 double P_mn = 0.0;

330 double x_n = x_n_term(beta, n);

331 double x_m = x_n_term(beta, m);

332

333 P_mn = p_mn_term_n_greater(m,n,beta,T_e,N_e);

334

335 return P_mn/P_n*pow(m,2)/pow(n,2)*exp(x_m-x_n);

336 }

337

338 double p_cn_term(int n, double x_n, double N_e, double T_e)

339 {

340 // Collection of terms from free-bound

341 double P_cn = 0.0;

342

343 // Collisional 3-Body Recombination

344 double C_cn = 0.0;

345

346 // Collisional Ionization

A.4. Iterative Computation 134

347 double C_nc = 0.0;

348 double N_TE = 0.0; // Population at Thermodynamic Equilibrium

349

350 // Radiative Recombination

351 double alpha_n = 0.0;

352 double S_0 = 0.0;

353

354 S_0 = exp(x_n)*calc_expint(x_n);

355 alpha_n = 5.197e-14*pow(x_n,3.0/2)*S_0;

356

357 N_TE = pow(N_e,2)*pow(h,3)*pow(n,2)*exp(x_n)/pow(2*PI*m_e*k*T_e,3.0/2);

358

359 C_nc = collisional_ionization(n,T_e,N_e);

360

361 // Use detailed balancing relation to compute

362 // C_cn = \frac{h^2}{2\pi*m*k*T}^(3/2)\frac{\omega_n}{2}e^{x_n}C_nc

363

364 // Taken from Shaver 1975,p.8 - unit is: cm^3*s^-1

365 C_cn = C_nc*N_TE/(N_e*N_e);

366

367 P_cn = N_e*(alpha_n+C_cn);

368

369 return P_cn;

370 }

371

372 double p_n_term(int n, int m, double T_e, double N_e, double beta)

373 {

374 /******************************

375 * Transitions OUT of level n *

376 ******************************/

377

378 // n-> down

379 double A_n = 0.0; // Sum of spontaneous radiation down from level n

380

381 // n-> down AND n-> up

382 double C_nm_sum = 0.0; // Sum of stimulated radiation down AND up from

level n

383

A.4. Iterative Computation 135

384 // n-> continuum

385 double C_nc = 0.0; // Collisional ionization

386

387 // Sum of all transition probabilities

388 double P_n = 0.0;

389

390 A_n = sum_of_A_nm(n);

391 C_nc = collisional_ionization(n,T_e,N_e);

392 C_nm_sum = sum_of_C_nm(n,m,beta,T_e,N_e);

393 P_n = A_n + C_nc + C_nm_sum;

394

395 return P_n;

396 }

397

398 double sum_of_A_nm(int n)

399 {

400 /***

401 * Transitions OUT of level n TO level m *

402 ***/

403

404 double A_nm_sum = 0.0;

405

406 int i;

407 for(i=CASE;i<n;i++)

408 {

409 A_nm_sum += spontaneous_radiation(n,i)*gaunt_approximation(i,n);

410 }

411

412 return A_nm_sum;

413 }

414

415 double sum_of_C_nm(int n, int m, double beta, double T_e, double N_e)

416 {

417 double C_nm_sum = 0.0;

418 int i;

419

420 // Turn if-else into two loops to avoid branching (bad for GPUs)

421 for(i=CASE;i<n;i++)

A.4. Iterative Computation 136

422 {

423 C_nm_sum += collisional_transition(i,n,beta,T_e,N_e)*

424 pow((i+0.0)/n,2)*

425 exp(x_n_term(beta,i)-x_n_term(beta,n));

426 }

427 for(i=n+1;i<=m;i++)

428 {

429 C_nm_sum += collisional_transition(n,i,beta,T_e,N_e);

430 }

431

432 return C_nm_sum;

433 }

434

435 // (Shaver,1975)

436 double p_mn_term_m_greater(int m, int n, double beta, double T_e, double

N_e)

437 {

438 // Collection of terms

439 double P_mn = 0.0;

440

441 // Spontaneous Radiation

442 double A_mn = 0.0;

443

444 // Collisional Transition

445 double C_mn = 0.0;

446

447 // We know m>n and hence must use detailed balancing for C_mn and must

also calculate A_mn

448 A_mn = spontaneous_radiation(m,n)*gaunt_approximation(n,m);

449

450 C_mn = collisional_transition(n,m,beta,T_e,N_e)*pow((n+0.0)/m,2)*

451 exp(x_n_term(beta,m)-x_n_term(beta,n));

452 P_mn = A_mn+C_mn;

453

454 return P_mn;

455 }

456

A.4. Iterative Computation 137

457 double p_mn_term_n_greater(int m, int n, double beta, double T_e, double

N_e)

458 {

459 // Collection of terms

460 double P_mn = 0.0;

461

462 // Collisional Transition

463 double C_mn = 0.0;

464

465 // We know m<n and hence need only consider collisional transition

466 C_mn = collisional_transition(m,n,beta,T_e,N_e);

467 P_mn = C_mn;

468

469 return P_mn;

470 }

471

472 double spontaneous_radiation(int n, int m)

473 {

474 return 1.574e10*pow(n,-5)*pow(m,-3)/(pow(m,-2)-pow(n,-2));

475 }

476

477 double collisional_ionization(int n, double T_e, double N_e)

478 {

479 // Class II cross section - (Sejnowski & Hjellming, 1969)

480 double beta = 1.5789e5/T_e;

481 double C_n_i = 7.8*10e-11*sqrt(T_e)*pow(n,3)*exp(-x_n_term(beta,n))*N_e;

482

483 return C_n_i;

484 }

485

486 // Based on (Gee, Percival, Lodge & Richards, 1976) and Gulyaev, S.

487 // m>n

488 // Collisional transitions between bound states

489 double collisional_transition(int n, int m, double beta, double T_e,

double N_e)

490 {

491 // Class II cross section - (Sejnowski & Hjellming, 1969)

492 double osc_proper = f_kramer_func(n,m)*gaunt_approximation(n,m);

A.5. Matrix Computation 138

493 double I_1 = -2.17989724e-11;

494 double I_n = I_1/pow(n,2);

495 double I_m = I_1/pow(m,2);

496 double pow_exp = ((I_m-I_n)/I_1);

497 double pow_fin = 0.0;

498 double x_nm = (I_m-I_n)/(k*T_e);

499

500 // Ensure pow_fin is real i.e. not complex

501 if(pow_exp < 0)

502 {

503 pow_fin = pow(-pow_exp,-1.1856);

504 }

505 else

506 {

507 pow_fin = pow(pow_exp,-1.1856);

508 }

509

510 double alpha_n_m = 1.2e-7*osc_proper*exp(-x_nm)*pow_fin*N_e;

511

512 return alpha_n_m;

513 }

b_n_calc_iterative.c

A.5 Matrix Computation

1 /********************************

2 * file: ’b_n_calc_matrix.c’ *

3 ********************************/

4

5 #include <CL/cl.h>

6 #include <errno.h>

7 #include <string.h>

8 #include <sys/types.h>

9 #include <sys/resource.h>

10 #include <time.h>

11 #include <unistd.h>

12 #include <stdio.h>

A.5. Matrix Computation 139

13 #include <stdlib.h>

14 #include <math.h>

15 #include "constants.h"

16 #include "oscillator_strength_gaunt_final.c"

17 #include "expint.c"

18 #include <meschach/matrix2.h>

19 #include "kernelReader.h"

20

21 //Input parameters:

22

23 const int N0=2; // Case B

24 int N=500;

25 const double T_e=1e4; // in K

26 const double stim_ion_const = 7.889356e9;

27 const double stim_rec_const = 4.134682e-16;

28

29 // Functions

30 double collisional_ionization(double beta, int n, double T_e, double N_e);

31 double spontaneous_radiation(int n, int m);

32 double gaunt_approximation(int n, int m);

33 double collisional_transition(int n, int m, double beta, double T_e,

double N_e);

34 void calc_b_n(double N_e, double T_e);

35 void write_output(double b[], int size, int n_lower, double T_e, double

N_e);

36 double stimulated_radiative_ionization(int n, double T_r, double W);

37 double stimulated_radiative_recombination(int n, double T_r, double T_e,

double W);

38 double nu(int n, int m);

39 void execute_open_cl_kernel(double** C, int N, int N0, double T_e, double

N_e, double beta, double W, double T_r);

40

41 int input_accepter()

42 {

43 char input[256];

44 gets(input);

45 int n = atoi(input);

46

A.5. Matrix Computation 140

47 while(!(n+1))

48 {

49

50 printf("You did not enter a number correctly, please enter

again:\n");

51 gets(input);

52 n = atoi(input);

53 }

54 return n;

55 }

56

57 int main()

58 {

59

60 // Increase stack size

61 struct rlimit old_lim;

62 getrlimit(RLIMIT_STACK,&old_lim);

63

64 printf("old_lim_cur = %lld\n",(long long)old_lim.rlim_cur);

65 printf("old_lim_max = %lld\n",(long long)old_lim.rlim_max);

66 long long newLim = 10000*old_lim.rlim_cur;

67 struct rlimit new_lim = {newLim,newLim};

68

69 // Set new limit in BYTES (4 times the original stack size)

70 setrlimit(RLIMIT_STACK,&new_lim);

71 printf("new_lim_max = %lld\n",(long long)new_lim.rlim_max);

72

73 printf("Please enter N:\n");

74 N = input_accepter();

75

76 // Setup timing

77 time_t t0, t1; /* time_t is defined in <time.h> and <sys/types.h>

as long */

78 clock_t c0, c1; /* clock_t is defined in <time.h> and

<sys/types.h> as int */

79

80 // Clear Screen

81 system("clear");

A.5. Matrix Computation 141

82 printf("Num of b_n’s : %d\n", N);

83 //printf("N_e : %Ef\n", N_e);

84 printf("T_e : %Ef\n", T_e);

85 printf("\n");

86

87 printf("Calculating b_n ...\n");

88

89 // Start timing

90 t0 = time(NULL);

91 c0 = clock();

92

93 // Perform b_n calculation

94

95 int iter;

96 double N_e = 0.0;

97 for(iter = 1; iter <= 4; iter++)

98 {

99 N_e = pow(10,iter);

100 calc_b_n(N_e,T_e);

101 }

102

103 // Measure elapsed time

104 t1 = time(NULL);

105 c1 = clock();

106

107 printf("Done calculating b_n’s.\n");

108 printf("Total time was:\n");

109 printf ("\telapsed wall clock time: %ld\n", (long) (t1 - t0));

110 printf ("\telapsed CPU time: %f\n", (float) (c1 -

c0)/CLOCKS_PER_SEC);

111 }

112

113 void calc_b_n(double N_e, double T_e)

114 {

115 // ’Strength’ of star - used for stimulated emission/absorption etc.

116 double W = 0.0;

117 double T_r = 30000;

118 double beta=1.5789e5/T_e;

A.5. Matrix Computation 142

119 //double b_n[N-1];

120 double b_n[N-N0+1];

121 double N_TE[N]; // Size should be (N-N0+1)+(1) = N <-- +1 must be

122 // added as the ionisation level is N+1

123

124 // LTE populations N_TE

125 int j;

126 for(j=1;j<=N;j++)

127 {

128 N_TE[j-1] =

pow(N_e,2)/pow(T_e,3.0/2)*pow(j,2)*4.1396e-16*exp(pow(j,-2)/

129 T_e*1.579e5);

130 }

131

132 double C[N][N]; // C must have size 1 larger than Col and Spon as it

also includes the level N+1

133

134 int n;

135 int m;

136

137 // Setup timing

138 time_t t0, t1; /* time_t is defined in <time.h> and <sys/types.h>

as long */

139 clock_t c0, c1; /* clock_t is defined in <time.h> and

<sys/types.h> as int */

140

141

142 // Start timing

143 t0 = time(NULL);

144 c0 = clock();

145 // Compute array on GPU:

146

147 execute_open_cl_kernel(NULL, N, N0, T_e, N_e, beta, W, T_r);

148

149 // Measure elapsed time

150 t1 = time(NULL);

151 c1 = clock();

152

A.5. Matrix Computation 143

153 printf("\n");

154 printf("\n");

155 printf("Done calculating C from:\n");

156 printf(" GPU\n");

157 printf("Total time was:\n");

158 printf ("\telapsed wall clock time: %ld\n", (long) (t1 - t0));

159 printf ("\telapsed CPU time: %f\n", (float) (c1 -

c0)/CLOCKS_PER_SEC);

160

161

162 // Start timing

163 t0 = time(NULL);

164 c0 = clock();

165

166 double col_trans = 0.0;

167 double col_trans_db = 0.0;

168 double spon_rad = 0.0;

169 double ind_rad = 0.0;

170 double ind_rad_db = 0.0;

171 // Calculate the lower triangular matrix, then use detailed

balancing

172 // to reflect around the diagonal

173 for(n=N0;n<=N;n++)

174 {

175 for(m=N0;m<n;m++)

176 {

177 // m<n

178 spon_rad =

spontaneous_radiation(n,m)*gaunt_approximation(m,n);

179 col_trans = collisional_transition(m,n,beta,T_e,N_e);

180 col_trans_db =

col_trans*pow((m+0.0)/n,2)*exp(-beta*(1/pow(n,2)-1/

181 pow(m,2)));

182 ind_rad = W*spon_rad/(exp(h*nu(n,m)/k/T_r)+1);

183 ind_rad_db = ind_rad*pow((n+0.0)/m,2);

184 C[n-N0][m-N0] = -(spon_rad+col_trans_db+ind_rad);

185 C[m-N0][n-N0] = -(col_trans+ind_rad_db);

186 C[n-N0][n-N0] = 0.0;

A.5. Matrix Computation 144

187 C[m-N0][m-N0] = 0.0;

188 }

189 }

190 // Measure elapsed time

191 t1 = time(NULL);

192 c1 = clock();

193

194 printf("\n");

195 printf("\n");

196 printf("Done calculating C from:\n");

197 printf(" CPU\n");

198 printf("Total time was:\n");

199 printf ("\telapsed wall clock time: %ld\n", (long) (t1 - t0));

200 printf ("\telapsed CPU time: %f\n", (float) (c1 -

c0)/CLOCKS_PER_SEC);

201

202 C[N-N0][N-N0] = 0.0; // Set probability to transition from continuum to

203 // continuum to zero

204

205 // Radiative recombination from continuum to bound states

206 // based on Seaton 1959. I took the first term S_0(xn) --

207 // which is expressed through the exponential integral "expint"

208 // -- and ignored S_1 and S_2. They may be important (but

209 // not dominate) for the lowest levels n=1, 2, 3.

210 // Good idea is just to take alpha_rad for the low levels

211 // calculated as the function of Temperature.

212

213 for(n=N0;n<=N;n++)

214 {

215 // Radiative Recombination

216 double x_n = (beta/n)/n;

217 double alpha_n = 0.0;

218 double S_0 = 0.0;

219 double stim_ion = 0.0;

220 double stim_rec = 0.0;

221

222 S_0 = exp(x_n)*calc_expint(x_n);

223 alpha_n = 5.197e-14*pow(x_n,3.0/2)*S_0;

A.5. Matrix Computation 145

224 // Here, N-1 is the ionisation level as levels go from 0->(N-N0) when

indexing

225 // and ionisation level is at index sizeOf(C)

226 C[N-1][n-N0] = N_e*N_e*alpha_n;

227

228 // Collisional ionization

229 C[n-N0][N-1] = collisional_ionization(beta,n,T_e,N_e);

230

231 // Collisional 3-body recombination

232 // C_i,n = N_TE(n)*C(n,N+1)

233 // Add Collisional 3-body recombination to radiative recombination

234 C[N-1][n-N0] = C[N-1][n-N0]+C[n-N0][N-1]*N_TE[n-N0+1];

235

236 // N_TE=Ne^2/Te^(3/2)*nn.^2*4.1396e-16.*exp(nn.^-2/Te*1.579e5);

237 // here I used the principle of DB for Coll ioniz and 3-body rec.:

238 // Ne^3*K_3 = Ne*S(n)*N_TE(n), where Ne*S(n) is C(n,N+1) and

239 // Ne^3*K_3=C(N+1,n) is the rate of 3-body recombination on level

n.

240 // See e.g. van der Mullen, 1990, p.165 (with misprint - Ne is

omitted

241 // in the right-hand side.

242

243 stim_ion = stimulated_radiative_ionization(n,T_r,W);

244 C[n-N0][N-1] = -(C[n-N0][N-1]+stim_ion);

245

246 stim_rec = stimulated_radiative_recombination(n,T_r,T_e,W);

247 C[N-1][n-N0] = -(C[N-1][n-N0]+N_e*N_e*stim_rec);

248

249 }

250

251 C[N-1][N-1]=0;

252

253 double D[N];

254 int row;

255 int col;

256 for(row=0;row<N;row++)

257 {

258 double tempSum = 0.0;

A.5. Matrix Computation 146

259 for(col=0;col<N;col++)

260 {

261 tempSum += C[row][col];

262 }

263 D[row] = -tempSum;

264 }

265

266 double E[N][N];

267 int i;

268 for(i=0;i<N;i++)

269 {

270 for(j=0;j<N;j++)

271 {

272 E[i][j] = 0.0;

273 }

274 // Make the diagonal equal to D[i]

275 E[i][i] = D[i];

276 }

277

278 double CCC[N][N];

279

280 for(i=0;i<N;i++)

281 {

282

283 for(j=0;j<N;j++)

284 {

285 CCC[i][j] = C[i][j]+E[i][j];

286 }

287 }

288

289 VEC *Rec;

290 Rec = v_get(N-1);

291

292 for(i=0;i<N-1;i++)

293 {

294 Rec->ve[i] = -CCC[N-1][i];

295 }

296

A.5. Matrix Computation 147

297 //Left=Left’;

298 // Matrix of l.h.s. of equtions is transposed matrix C+E

299 MAT *Left_T;

300 Left_T = m_get(N-1,N-1);

301

302 for(row=0;row<N-1;row++)

303 {

304 for(col=0;col<N-1;col++)

305 {

306 Left_T->me[col][row] = CCC[row][col];

307 }

308 }

309

310 // Use Mechachs

311 // http://www.math.uiowa.edu/~dstewart/meschach/html_manual/

312 // tutorial.html

313 VEC *N_n;

314 MAT *LU;

315 PERM *pivot;

316 N_n = v_get(N-1);

317 LU = m_get(Left_T->m,Left_T->n);

318 LU = m_copy(Left_T,LU);

319 pivot = px_get(Left_T->m);

320 LUfactor(LU,pivot);

321

322 N_n = LUsolve(LU,pivot,Rec,VNULL);

323

324 for(i=0;i<N-1;i++)

325 {

326 b_n[i] = N_n->ve[i]/N_TE[i+1];

327 }

328

329 write_output(b_n,N-N0,N0,T_e,N_e);

330 }

331

332 double collisional_transition(int n, int m, double beta, double T_e,

double N_e)

333 {

A.5. Matrix Computation 148

334 double s = m-n;

335 double power = 1+s+s;

336 double en2 = n*n;

337 double ennp = n*m;

338 double beta1 = 1.4*sqrt(ennp);

339 double betrt = beta1/beta;

340 double betsum = beta1+beta;

341 double f0 = s/ennp;

342 double f1 = pow(1-0.2*f0,power);

343 double f2 = pow(1-0.3*f0,power);

344 double s23trm = 0.184-0.04/pow(s,(2.0/3));

345 double a = 8.0/3/s*pow(m/s/n,3)*s23trm*f1;

346 double L = 0.85/beta;

347 L = log((1+0.53*L*L*ennp)/(1+0.4*L));

348 double j1 = 4.0/3*a*L*(1/beta-1/betsum);

349 double drt = sqrt(2-pow((n+0.0)/m,2));

350 double y1 = 1-log(18*s)/4.0/s;

351 double j2 =

16.0/9*f2*y1*pow(m*(drt+1)/(n+m)/s,3)*exp(-1/betrt)/beta;

352 double xi = 2.0/pow(n,2)/(drt-1);

353 double z = 0.75*xi*betsum;

354 double j4 = 2.0/z/(2+z*(1+exp(-z)));

355 double j3 = 0.25*pow(en2*xi/m,3)*j4/betsum*log(1+0.5*beta*xi);

356 double alpha_n_m = N_e*en2*en2*(j1+j2+j3)/sqrt(pow(T_e,3));

357

358 return alpha_n_m;

359 }

360

361 double spontaneous_radiation(int n, int m)

362 {

363 return 1.574e10*pow(n,-5)*pow(m,-3)/(pow(m,-2)-pow(n,-2));

364 }

365

366 double collisional_ionization(double beta, int n, double T_e, double N_e)

367 {

368 double x_n = (beta/n)/n;

369 double S_n = 3.45e-5*pow(n,2)/sqrt(T_e)*exp(-x_n);

370 double C_n_i = N_e*S_n;

A.5. Matrix Computation 149

371

372 return C_n_i;

373 }

374

375 void write_output(double b[], int size, int n_lower, double T_e, double

N_e)

376 {

377 FILE* pFile;

378 FILE* pFile_b_n;

379 char filename[256];

380 char filename_b_n[256];

381 sprintf(filename,

382 "./b_n_output/b_n_%d_T_e_%.0E_N_e_%.0E.dat",size,T_e,N_e);

383 sprintf(filename_b_n,

384 "./b_n_output/b_n_%d_T_e_%.0E_N_e_%.0E.b_n",size,T_e,N_e);

385

386 pFile = fopen(filename, "w");

387 pFile_b_n = fopen(filename_b_n, "w");

388

389 // Specify columns

390 fprintf(pFile, "# n b_n db/b beta

\n");

391

392 double db_b = 0.0;

393 double beta = 0.0;

394 double v = 0.0;

395

396 int j;

397 for(j=0; j<=size; j++)

398 {

399 // (d/dn)lnB(n) = db/b

400 db_b = (b[j+1]-b[j])/b[j];

401

402 v = R_H*c*pow(Z,2)*(1.0/pow(j,2)-1.0/pow(j+1,2));

403

404 beta = 1-(k*T_e)/(h*v)*db_b; // delta_n not included as

405 // this is for the alpha

406 // transition

A.5. Matrix Computation 150

407

408 fprintf(pFile,"%d %.10f %.10f

%.10f \n", j+n_lower, b[j], log10(db_b), beta);

409 fprintf(pFile_b_n,"%.10f\n", b[j]);

410 }

411 printf("size = %d\n", size);

412

413 printf("Saving to file: %s\n", filename);

414

415 fclose(pFile);

416 fclose(pFile_b_n);

417 }

418

419 double stimulated_radiative_ionization(int n, double T_r, double W)

420 {

421 double I_n = (2.179e-11/n)/n;

422 double LB_n = (I_n/k)/T_r;

423 //printf("LB_n = %e\n",LB_n);

424 double int1 = calc_ff1(LB_n);

425

426 double stim_rad_ion = stim_ion_const*W/pow(n,5)*int1;

427

428 return stim_rad_ion;

429 }

430

431 double stimulated_radiative_recombination(int n, double T_r, double T_e,

double W)

432 {

433 double I_n = (2.179e-11/n)/n;

434 double LB_n = I_n/k/T_r;

435 double int2 = calc_ff2(LB_n,T_r,T_e);

436

437 double stim_rad_rec =

stim_rec_const/pow(T_e,3.0/2)*stim_ion_const*W/pow(n,3)*int2;

438

439 return stim_rad_rec;

440 }

441

A.5. Matrix Computation 151

442 double nu(int n, int m)

443 {

444 // m<n

445 // Take negative to make positive

446 return -3.29e15*(1/pow(n,2)-1/pow(m,2));

447 }

448

449 void checkErr(int err, int funcNumber)

450 {

451 if(err != CL_SUCCESS)

452 {

453 printf("Err: ’%d’ from func_num: %d\n",err,funcNumber);

454 }

455 }

456

457 void initmat(int Mdim, int Ndim, int Pdim, float* A, float* B, float* C)

458 {

459 int numEntries = Mdim*Ndim;

460 printf("numEntries = %d\n", numEntries);

461 int i;

462 // populate array

463 for(i = 0; i<numEntries; i++)

464 {

465 A[i] = i;

466 B[i] = i;

467 C[i] = 0;

468 }

469 }

470

471 void print_matrix(double* MAT, int Mdim, int Ndim, char name)

472 {

473 int i, j;

474 int k = 0;

475 printf("%c=",name);

476 puts("[");

477 for(i=0; i<Mdim; i++)

478 {

479 for(j=0; j<Ndim; j++)

A.5. Matrix Computation 152

480 {

481 //printf("%i+%i: ", i, j);

482 printf("%e, ", MAT[k]);

483 k++;

484 }

485 puts("\n");

486 }

487 puts("]");

488 }

489

490 void index_array_calc(int index_array[], int N)

491 {

492 int h,j,k,n,m;

493 h = 0;

494 n = 0;

495 int size = N*(N-1);

496 printf("size = %d\n",size);

497

498 for(j=0;j<N-1;N--)

499 {

500 m = n+1;

501 for(k=0;k<N-1;k++)

502 {

503 index_array[h] = m;

504 h++;

505 index_array[h] = n;

506 h++;

507 m++;

508 }

509 n++;

510 }

511 }

512

513 void execute_open_cl_kernel(double** C_t, int N, int N0, double T_e,

double N_e, double beta, double W, double T_r)

514 {

515 // DATA INIT

516 int DIM = N-1;

A.5. Matrix Computation 153

517 //int DIM = N;

518 int err;

519 size_t global[1];

520 cl_device_id device_id[100];

521 cl_context context;

522 cl_command_queue commands;

523 cl_program program;

524 cl_kernel kernel;

525 cl_uint nd;

526 cl_mem index_array_in, c_out;

527 int index_array_size = DIM*(DIM-1);

528 int szC = DIM*DIM;

529 int* index_array = (int *)malloc(index_array_size*sizeof(int));

530 double* C = (double *)malloc(szC*sizeof(double));

531

532 // PLATFORM SETUP

533 cl_platform_id platforms[100];

534 cl_uint platforms_n = 0;

535 cl_uint devices_n = 0;

536 clGetPlatformIDs(100, platforms, &platforms_n);

537 if(platforms_n == 0)

538 puts("no devices found");

539 err = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, 100,

device_id, &devices_n);

540

541 //context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);

542 context = clCreateContext(NULL, 1, device_id, NULL, NULL, &err);

543 commands = clCreateCommandQueue(context, device_id[0], 0, &err);

544

545 // SETUP buffers and writes "index_array" matrix to the device

memory

546 index_array_calc(index_array,DIM);

547

548 index_array_in = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(int) *

index_array_size, NULL, NULL);

549 c_out = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(double)

* szC, NULL, NULL);

A.5. Matrix Computation 154

550 err = clEnqueueWriteBuffer(commands, index_array_in, CL_TRUE, 0,

sizeof(int) * index_array_size, index_array, 0, NULL, NULL);

551

552 // BUILD the program, define the kernel and setup arguments

553 Program_kernel* pgmKernel = loadKernel("kernel.cl");

554 const char** program_source = (const char**)pgmKernel->kernel;

555 int pgmSize = pgmKernel->size;

556 program = clCreateProgramWithSource(context,

pgmSize/sizeof(*program_source), program_source, NULL, &err);

557 err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

558

559 // SETUP Kernel

560 kernel = clCreateKernel(program, "matrix_population", &err);

561 err = clSetKernelArg(kernel, 0, sizeof(int) , &DIM);

562 err |= clSetKernelArg(kernel, 1, sizeof(int) , &N0);

563 err |= clSetKernelArg(kernel, 2, sizeof(double), &T_e);

564 err |= clSetKernelArg(kernel, 3, sizeof(double), &beta);

565 err |= clSetKernelArg(kernel, 4, sizeof(double), &N_e);

566 err |= clSetKernelArg(kernel, 5, sizeof(double), &W);

567 err |= clSetKernelArg(kernel, 6, sizeof(double), &T_r);

568 err |= clSetKernelArg(kernel, 7, sizeof(double), &h);

569 err |= clSetKernelArg(kernel, 8, sizeof(double), &k);

570 err |= clSetKernelArg(kernel, 9, sizeof(cl_mem), &c_out);

571 err |= clSetKernelArg(kernel, 10, sizeof(cl_mem),

572 &index_array_in);

573

574 // RUN the kernel and collect results

575 global[0] = (size_t)index_array_size/2;

576 nd = 1;

577 err = clEnqueueNDRangeKernel(commands, kernel, nd, NULL, global,

NULL, 0, NULL, NULL);

578 clFinish(commands);

579 err = clEnqueueReadBuffer(commands, c_out, CL_TRUE, 0,

sizeof(double) * szC, C, 0, NULL, NULL);

580 }

b_n_calc_matrix.c

Appendix B

Test Machine Specification

All tests were carried out on AUT University’s test machine, Pohutukawa. The
specifications are as follows:

CPU

Manufacturer: Intel

Model: X5660

Clock-speed: 2.8 GHz

of cores: 6

L3 cache: 12 MB

Instruction set: 64-bit

GPU

Manufacturer: Nvidia

Model: Tesla C2050/C2070

Clock-speed: 1.15 GHz

of CUDA cores: 448

Memory: 6 GB GDDR5

Memory bandwidth: 144 GB/s

Single precision floating point performance: 1.03 TFlops

Double precision floating point performance: 515 GFlops

Memory interface: 384-bit

155

APPENDIX B. TEST MACHINE SPECIFICATION 156

RAM

Manufacturer: Hyundai

Memory type: DDR3 SDRAM

Bus type: PC-10600

Data transfer rate: 1333 MHz

Memory clock: 166 MHz

CAS: CL9

Error correction: ECC

Size: 3×8192 MB

HDD

Manufacturer: Western Digital

Model number: WDC WD1003FBYX-01Y7B0

Interface type: SATA-II (3Gb/s)

Data transfer rate (measured): 133 MB/s

Cache: 32 MB

RPM: 7200

Capacity: 1 TB

