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Monotonicity criteria
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Abstract— Monotonicity is an important type of dependence of
random  variables. The paper reviews the definitions of
comonotonicily and counter-monotonicity, their existing criteria and
introduces a new criterion for cach of the two concepts, along with
some proofs, The new criteria are similar to the definition of a
monotone function and clarify the meaning of the monotonicity
concept. Stronger criteria are proven for the case of continuous
marginals.
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I. INTRODUCTION

HE research of dependence between random variables is

reviewed in several publications (see, for example. [1] and
[2]). Most important types of dependence are linear and
monotone dependence. Other types of dependence include
quadrant dependence (see, for example, [3], [4]) and mutual
complete dependence [5].

Monotone dependence of continuous random variables ¥
and Y was introduced by Kimeldorf and Sampson [6]: X and
Y are monotone dependent if for some monotone function g,
Y = g(X) almost surely. A more general concept of
monotonicity was introduced in actuarial science and studied
in [7]-[12] but it was not studied in depth in mathematical
literature.

This paper reviews the definitions of comonotonicity,
counter-monotonicity, and their existing criteria, and
introduces a new criterion for each of the two concepts, along
with some proofs. The new criteria can be used as definitions;
they better reflect the meaning of the concepts. Stronger
criteria are proven for the particular case of continuous
marginals.

1. COMONOTONICITY

A. Definition of comonotonicity

We fix an arbitrary probability space <€), I, P >, where I is
the collection of all events in this space. We consider only
random variables defined on this space.

The concept of comonotonicity was introduced in [13] and
[14]; other versions of its definition were given in [7]-[12].
Random variables X and ¥ are comonotonic means there is an
increasing dependence between the values of X and Y, or
they change in the same direction.

Dhaene et al. [10] give a mathematically rigorous definition
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ol comonotonicity. The following is a particular case of the
definition for two random variables.

Definition 1. 1) A set of pairs of real numbers is called
comonotonic if for any ofits elements <x,, y;> and <x,, y:>:

cither (x;<x> & ¥, <) or (v =x: & 2 3) holds.

2) Random variables X and V' are called comonotonic if
there exists a comonotonic set 4 with P(<X, Y>ed)=1.0

The following is another definition of comonotonicity of two
random variables.

Definition 2. The random variables X and V' are called
comonotonic if there exists an event B of probability 1. such
that

(V. w3 &B) [Xw)) < Xm:) = Ym) € V@) (1)

Note: Clearly Definition 2 is symmetrical with respect to .V

and Y.

In the following theorem we show that the two definitions
are equivalent. so the second onc can be considered as a
criterion of comonotonicity. Definition 2 is similar to the
definition of an increasing function and better reflects the
meaning of the comonotonicity coneept.

Theorem 1.
Definitions | and 2 of comonotonicity are equivalent.

Proof of Theorem 1.
= Suppose X and Y are comonotonic as in Definition 1.
Then there is a comonotonic set 4 with P (< X, Y=ed)= 1.

Denote B = {wel): < X(w), o) >ed}.

Then P(B)=P(<X, V>ed)=1.

Consider @, @> €8 with X{w;) < X{@). This implics
Ye,) € Y(ew,), since both pairs < X(@;). Y(e,) > and
< X@,), ;) = are elements of the comonotonic set 4.

4= Suppose¢ X and } arc comonotonic as in Definition 2.
Then for some event B, P(B) = 1 and the condition (1) holds.

Denote 4 = {< X{w), Y(@) > weB). Then P(< X, ¥ >cd)=
=P(8)=1.

Suppose
@1, W R,

<xp, 11> €4 and <x», y»> €4. Then for some
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X =Xe), v =) x

X(@;), and y, = He,).
By (1), x; <x, implies v; <y, and x, > x, implies y; = ys.

Hence 4 is a comonotonic set. o

B. Criteria for Comonotonicity

For a random variable X its distribution function is denoted
Fy. The following is a well-known definition of quantile

funetion F,'.

Definition 3. For a random variable X,

1) F ! is defined by the following:
F o' ()= min {x: Fy (x) 2 4} for any ue(0, 1),
FH0) = sup {x: Fy (x) =0}, itis - if the set is empty,
Fel(1) =inf {x: Fy(x)= 1}, itis +o if the set is empty:

2) denote Dy=1{F '(u):us(0, )}. 0

Usually F;'(x) is defined for ne(0, 1); the above is a

natural extension of the definition to w =0 and % = 1. These
common conventions were applied:

sup & =—x and inf' & =+,

The following lemma states basic properties of the quantile
function and some related simple facts.

Lemma 1. 1) F(X) ~ Uniform (0, 1), i.e. the random
vanable Fy (X) has a uniform distribution on (0, 1).

2) Forany #=(0. 1], xeR:
Fl)sx < us Fy(x).
3) F;' is non-decreasing on [0, 1] and it is left-continuous
on (0, 1).
4) Forany xeDy, F/'(Fy(x))=x.
5) Fy is increasing on Dy .

6) Dy is a Borel setin R and P(XeDy) =1,ie Dy isa
support of the random variable X

7)If Fy is continuous, then F' is increasing on [0, 1] and
for any we(0, 1)
Fy(F7' ()=

o

Dhaene et al. [10] proved three criteria for comonotonicity
of 7 random variables, which are stated in the following
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theorem for the case of two variables.

Theorem 2. The random variables X and ¥ are comonotonic
if and only if one of the following equivalent conditions holds.

(Vx,yeR) [Fyy(x, v) = min {Fy (x), Fy()}], )
where Fy y denotes the joint distribution function of X and Y.

For U~ Uniform (0, 1),

<X, Y> = <FJ' W), F, (D>,
where =¢ denotes equality in distribution.

(3)

There exist a random vanable 7 and non-decreasing
functions g, &, such that

=)

= (4
O
Next we provide a new proof that the condition (2) implies

comonotonicity as in Definition 2. The new proof directly

constructs the event B of probability 1 where the condition

(1) holds, so the new proof is more constructive than the old

one.

X, V> = <g(2), WZ)=.

Theorem 3. If the random variables X and Y satisfy the
condition (2), then they are comonotonic.

Proof of Theorem 3.

Suppose  (Vx, yeR) [Fry (x, y) = min {Fy (x), Fy ()}].
Denote:

a =F.0), o =F (1)

Clearly

and  f =F,-I(0)e Jid :F,'J(l)-
PlasX<a)=land P<Y<B)=1. (5

For any xeR. denote g(x) = inf {v: Fy(3) = Fy (x)}. We
will prove:

(Vxelay, o)) [g(x) is finite and PLX < x = Y < g(x)] = 1]. (6)
Suppose e <x< . Then 0< Fy(x)<1 and
P Fy(3) 2 Fy (x)} = ©&. By Lemma 1.2), Fy(y) 2 Fy (x)

implies y 2 F'(Fy (x)); this means that F'(Fy (x)) is a
I

lower bound of the set {y: Fy (1) = Fy (x)}. Hence g(x) is

finite.

Forany y>g(x), Fy(0) = Fy(x). s0 Fy(g(x) 2 Fy (x),
since Fy is continuous on the right. Then F; ¥ r{x gx)) =
“Fy(x).50 P[Xsx & V=g(x)] -

SPASX) - PX<Sx & Y<g)] = Fy (x) = Fy y(x, g(x)) = 0,
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and P[X<sx = Y=g)]=1.

For any yeR, denote h(y) = inf {x: Fy (x) 2 Fy ()}
Similarly to (6) we get:

(Yye(fo, Bi)) [A(y) is finite and P[Y < v =X < h(y)] = 1]. (7)
Denote ( the set of all rational numbers and denote
B=fa X2 n{fpSYLh)n

a A
peQ
Gy pla

{A’Sp:})’ég(p}“

1Y <q = X <hlg)}
Ai<os

Since this mtersection is countable, then X and P(B) = 1
by (5) = (7). It remains to prove for any e, e» €8:

[ M) < Xen) = Yy = Y.

Assume the opposite; @, e¢» €B, X(ay) < X(er) and
Y{e) = Y{en). Then there exist p. g=Q such that

< X)) <p<Xer)Sa and F< V) <g<Hew)<p.
Therefore ey <p<ea and f<g=<f,s0
@, m;e{XSp::o YSg(p)} and
o, me{¥Y<q= X<h(q).

Smee Al{en) < p, then ¥lay) < g(p) and g < g(p). By the
definition of g, Fy(g) < Fy (p).

Similarly. since Yar) < ¢, then X(er) < i(g) and p < h(g).
By the definition of &, Fy (p) < Fy(g). Contradiction. This
proves the theorem. O

C. The Case of Continuous Marginais

In this case the criteria for comonotonicity can be made
stronger as the following theorem shows.

Theorem 4. Supposc the marginal distribution functions of
X and Y are continuous. The random variables X and ¥ are

comonotonic if and only if one of the following equivalent
conditions holds.

Y= F,;'(F.(X)) with probability 1. (8)
There is an event C of probability 1, such that

(Yo, o cO)[Me) <Mw) = He)<He)] (9)

There is a non-decreasing function g such that ¥ = g(X) with
probability 1. (10)

Proof of Theorem 4.
It is sufficient to prove:
comonotonicity = (8) = (9) = comonotonicity
and
comonotonicity = (8) = (10) = comonotonicity.
We will use Definition 2 of comonotonicity.

Comonotonicity = (8):
Suppose <X, ¥> is comonotonic. Then there 1s a set 8 of
probability 1, where

M) <Xlw:) = )= Hes).
Denote B = {@eB;: Y(w)eDy |. Then P(8) = 1. Consider
ay €8 and denote x, = X(w,) and 1, = Y{@y).
Since F) is continuous, Fy (X(@)) = P(X <xg) =
=Plwe B: Xl <May)) £ Plwe B: Y(w) £ Hwy)) =
=P(Y 2yg)=Fy (M)

Due to symmetry, Fy (¥ @) < Fy (X{@y)): hence

Fy (M) = Fy (X(@g)) and Heo) = F'(F,(X(e,)) by
Lemma 1.4), since Y{(wy)eD,.
(8)=(9):
Suppose ¥ = F,'(F.(X)) on a set B with P(B) = 1.
Denote C={weB: X(w)=Dy}. Then P(C)= 1.

Forany ey, » €C: if X(e) < X(e2). then by Lemma 1.5),

F,(X(e@ )< Fo(X(ca,)). By Lemma 1.7),
FoE (X)) < FHF (X)) and He) < Hws).

(9) = comonotonicity: obvious,

(8) = (10): we cantake g= F, 'oF,.

(10) = comonotonicity:
Suppose condition (10) holds. Then there is a set 8 of
probability 1 where Y= g(X). Forany e, e» €B:

if X(ea) < X(w), then g(X(e,)) < g(X (@, )). since g is

non-decreasing, and Y(ew,) < Hw,). o

Clearly the condition (9) is a stronger version of Definition
2. The condition (10) means that if X and ¥ have continuous
marginals, then comonotonicity of X and Y is equivalent to
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their monotone increasing dependence introduced in [6] and
briefly described in our introduction.

The next section contains similar material on counter-
monotonicity.

II. COUNTER-MONOTONICITY

A. Definition of counter-monotonicity

Definitions of counter-monotonicity can be found in [11]
and [8]. Random variables X and ¥ are counter-monotonic
means there is a decreasing dependence between the values of
X and Y, or they change in opposite directions.

Definition 4. 1) A set of pairs of real numbers is called
counter-monotonic if for any of its elements <x, > and
<X, Va2l

either (x; <x> & 1,2 1) or (x;2x; & ¥y =<y,) holds.

2) Random variables X and Y are called counter-monotonic
if there exists a counter-monotonic set 4 with
P(<X,. Yzed)=1. o

The following is another definition of counter-monotonicity
of two random variables.

Definition 5. The random variables X and } are called
counter-monotonic if there exists an event B of probability
1, such that

(Y, w2 €B) [Mw) < Xlw:) = Y(@)) 2 Yws)]. (11)

o

Note: Clearly Definition 5 is symmetrical with respect to X’
and ¥.

In the following theorem we will show that the two
definitions of counter-monotonicity are equivalent, so
Definition 5 can be considered as a criterion of counter-
monotonicity. Definition 5 is similar to the definition of a
decreasing function and better reflects the meaning of the
counter-monotonicity coneept.

Theorem 5. Definitions 4 and 5 of counter-monotonicity are
equivalent.

Proof of Theorem 5.

The variables .X and Y are counter-monotonic by Definition
5 ifand only if Xand -Y are comonotonic by Definition 2. A
set 4 of pairs of real numbers is counter-monotonic if and
only if the set {<x, —y>: <x, y=e4} is comonotonic.

Hence Theorem 5 follows from Theorem 1. 0

B. Crireria for Counter-monofonicity
The following theorem is similar to Theorem 2.

Theorem 6. The random variables X" and ! are counter-
monotonic if and only if one of the following equivalent
conditions holds.

(¥x, veR) [Fyy(x, v) = max {Fy(x) + Fy(0)=1.0}]. (12)
For U~ Uniform (0, 1),

<X, Y> = <F{' ), F]' (1-0)>. (13)
There exist a random variable Z, a non-decreasing function
g. and a non-increasing function A, such that

<X, 7> = <g(2), h2)>. (14)
o
Note: The bivariate distributions min {Fy (x), Fy(3)} and
max {Fy (x) + Fy(y) =1, 0} from the conditions (1) and (12),
respectively, are called Fréchet bounds. Fréchet [15] showed
that they are the upper and lower bounds, respectively, for all

bivariate distributions with fixed marginals.

For brevity we will only prove the part of Theorem 6, that
the condition (12) implies counter-monotonicity, as follows,

Theorem 7. If the random variables X and ¥ satisfy the
condition (12), then X and Y are counter-monotonic.

Proof of Theorem 7.
Suppose
(Vx, yeR) [Fyy (x. )= max {Fy (x) + Fy(y) -1, 0}].

Denote Z=-Y. We will prove:
(Vx, zeR) [ Fyz(x,2) = min {Fy(x), Fz(2)}].  (15)

Then by Theorem 3, <X, Z> = <X, -Y> is comonotonic
and <X, Y> is counter-monotonic.

Proof of (15)
Fix points x, zeR.

Case l. The function Fyy is continuous at point (x, =z)
with respect to the second argument.

F;)=P-Y<£2)=P(Yz-z)=1-P(Y<-z)=1- Fy(-2),
since Fy is continuous. So
Fy(=2) = 1 =—F,(2). (16)

F\"z{)f‘ Z) =PX<x,-Y<z)= P(X<x, Yz-2)=
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=PX<x) - PX<x, Y<-2)= Fx(x) = lim F, (x,1)=

=Fy(x)= Fyy(x,=2) = Fy(x) = max {Fy(x) = Fy(=2)=1,0} =

=[by (16)] = Fi(x) — max {Fy (x) - F;(z), 0} =

=min {Fy (x), Fz(2)}.

Case 2. The function Fyy is not continuous at point (x, -z
with respect to the second argument.

There is a countable number of points where Fyy is
discontinuous with respect to the second argument, so there
exists a sequence y, — =+ such that Fy, is continuous at
each point (x, y,) with respect to the second argument. Since
Fy» 1s right-continuous,

Fyz(x,2)= lim F,,(x,p,) = [bycase1]=

Wy =it

= ‘1’:_:';1‘ min{ F(x).F,(v,)}= min{ F.(x) ‘{f_rfr: i+ (v, )} =

=min {Fy(x), F2(2)}. ©

C. The Case of Continuous Marginals

In this case the criteria for counter-monotonicity can be
made stronger as the following theorem shows.

Theorem 8. Suppose the marginal distribution functions of

X and Y are continuous. The random variables X and ¥ are
counter-monotonic if and only if one of the following
equivalent conditions holds.

Y= F,'[1=F.(X)] with probability 1. (17

There is an event € of probability 1, such that
(Yo, @2 €O X(@)) < X(@2) = (@) > Hey)]. (18)
There is a non-increasing function /& such that ¥ = A(Y)
with probability 1. (19)

Proof of Theorem 8.
It follows from Theorem 4 and the following fact:

<A, Y= 1s counter-monotonic < < -X, ¥'> is comonotonic,
1]
Clearly the condition (18) is a stronger version of Definition
5. The condition (19) means that if X and ¥ have continuous
marginals, then counter-monotonicity of X and Y is equivalent
to the monotone decreasing dependence introduced in [6] and
briefly described in our introduction.
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IV. DiISCUSSION

When there is no linear dependence between random
variables it can be useful to investigate the case of monotone
dependence. The concepts of monotonicity describe monotone
dependence between two random variables: comonotonicity
means increasing dependence and counter-monotonicity means
decreasing dependence. There is also research on monotonicity
of more than two variables (see, for example, [10]).
Monotonicity has useful applications in actuarial science.

When a relationship of two random variables is studied it
can be useful to measure the degree of their monotonicity. One
of such possible measures, the monotonicity coefficient was
introduced in [16]:

Cov(XY)

=91l i Cov(XY)>0,
Cr:\'(k",}") ¥ Cov(XY)>0

pm(X¥)=4 0 if Cov(XY)=0,

Cov(X V)

— — C ,Y) 0.
| oy ¥ CrlenIe

Here Cow(.X. Y) is the covariance of Yand ¥, Y " =F ‘.’[L']
and ¥'=

uniform distribution on (0, 1).
It satisfies the following natural conditions for such a
measure. For the random variables X and Y,

F ,_“ (1-t7) for a fixed random variable U with the

D]pX )| pm (X V)| <1, where p (X, 1) is the
Pearson correlation of X and }:

2) if X' and ¥ are independent, then pm (X, ¥) = 0;
3) pm(X, Y)=1 if and only if the pair <X, ¥ is comonotonic;

4) pm (X, ¥) = —1 if and only if the pair < X, ¥ > is counter-
monotonic.

This is the sample version of the monotonicity coefficient
for a two-dimensional sample (x, y):

;_{—E‘—:—’]) i s(xy)>0

0 if s(xy)=0

rm(x,y)=

ll]

7—-] i s{xy)<o.

where s(x, v) is the sample covariance, x™ is the sample x with
its values in ascending order and )/ is the sample » with its
values in descending order. The properties of rm are studied in
detail in [17].
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