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Abstract

The fields of neuroscience and artificial intelligence have a long and entwined

history. In recent times, however, communication and collaboration between

the two fields has become a rarity as they have evolved. Written in the era when

artificial intelligence and deep learning is revolutionising the world, this thesis

revisits and searches for inspiration from biological intelligence. The efficiency

and accuracy with which the human brain processes incoming stimulus (data) in

millisecond resolution using remarkably low power is unprecedented. Motivated

by this very capability in the generic sense, this thesis has focused on developing

neurobiologically inspired computational models known as spiking neural net-

works to tackle multi-modal time-series data. In a more definitive formalisation,

this work has aimed to answer three research questions:

1. How to optimally design an implementation of neuromorphic architecture

which is capable of processing large volumes of spatio-temporal data? To

answer this research question, the unsupervised SNNc algorithm (as part

of NeuCube architecture) were studied and numerous designs of the SNNc

graph was analysed in regards to storage and execution time complexities.

Further, the study was extended to include an analysis of the software

design principles for achieving modularity and heterogeneity. The design

principles formalised here are implemented in the NeuCube software pub-

licly available from www.kedri.aut.ac.nz/neucube. The design principles

proposed in the study are also utilised in other parts of this work.

2. How to perform neural encoding on real-world data to represent informa-

tion as spike-timings? This topic has been analysed from the viewpoint of

data compression and information theory. To answer this research ques-
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tion, the focus was on using temporal encoding as a framework for concise

representation of large volumes of data. Apart from comparing the state

of the art temporal encoding algorithms from literature, a novel a priori

knowledge driven temporal encoding framework was formalised and an al-

gorithmic realisation of it for fMRI data, called GAGamma, was proposed.

The temporal encoding algorithms on benchmark fMRI data was experi-

mentally evaluated to demonstrate its superiority to succinctly represent

the discriminatory information in the data without appreciable informa-

tion loss. It was also demonstrated that the proposed encoding framework

provides enhanced flexibility to include a priori knowledge of the data

source and thus, provide the compression/encoding algorithms sufficient

redundancy to compress large datasets in an optimally concise manner.

3. How to recognise patterns from multi-modal data with spatial, temporal

and orientation information using neuromorphic architectures? To answer

this research question, a novel, unsupervised learning algorithm, namely

oiSTDP learning algorithm, was proposed for fusing temporal, spatial and

orientation information in a spiking neural network architecture. Further-

more, a case study is presented on building a computational model that

discriminates between people with schizophrenia who respond or do not

respond to mono-therapy with the anti-psychotic clozapine. The perfor-

mance of the proposed algorithm as part of the modified NeuCube frame-

work has demonstrated superiority against the state of the art deep learn-

ing algorithm not only in prediction performance but also degree of inter-

pretability.

Overall, through this work, the researcher has presented several novel approaches

of recognising patterns in time series data using spike-timings as the unit of data

representation in the neuromorphic computation framework. The several soft-

ware design challenges that arose due to the nature of neuromorphic computa-

tion framework has also been addressed in this thesis.
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1Introduction

In the recent past, significant progress has been made in neuroscience and arti-

ficial intelligence (AI). With the inception of computers in the early nineteenth

century, progress in AI was inextricably intertwined with neuroscience and psy-

chology, and many of the early pioneers straddled both fields, with collabora-

tions between these disciplines proving highly productive (Turing, 1950; Hinton,

Mcclelland & Rumelhart, 1986; McCulloch & Pitts, 1943; Hebb, 1949; Church-

land & Sejnowski, 1988). Nevertheless, progress in recent times has seen in-

teractions and collaborations becoming less commonplace, as both fields have

evolved massively in complexity, and disciplinary boundaries have solidified.

The development of AI began with the premise that creating human like gen-

eral purpose artificial intelligence (or Turing-powerful intelligent systems) is an

intimidating task, due to the massive search space of sparsely populated solu-

tions. This underscored the utility of examining the principles of the human

brain which is the only existing proof that such an intelligence is even possi-

ble. As described by Hassabis, Kumaran, Summerfield and Botvinick (2017),

the benefits of developing AI by close scrutinisation of biological intelligence are

two-fold. First, neuroscience provides a rich source of inspiration for new algo-

rithms and architectures, independent of and complementary to the mathemati-

cal and logic-based methods, and ideas that have largely dominated traditional

approaches to AI. For example, where a new facet of biological computation

found to be critical to supporting a cognitive function, then it has been consid-

ered as an excellent candidate for incorporation into artificial systems. Second,

neuroscience can provide validation of artificial intelligence techniques that al-

ready exist. If a known algorithm is subsequently found to be implemented in

the brain, then that is strong support for its plausibility as an integral component

of an overall general intelligence system.
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1.1 Rationale and Motivation

It is without a doubt that in the era of ‘smart’ everything, availability and utility

of massive volumes of digital data plays a substantial role. Historically, data was

used as a part of business and gathered to serve specific needs. For example,

retailers recorded sales for accounting, manufacturers recorded raw materials

for quality management and the number of mouse clicks on advertising banners

was collected for calculating advertisement revenue. But as the demand for big

data analytics emerged, data no longer served only its initial purpose. Organi-

sations were able to access huge amounts of data and possess a valuable asset

that when combined with the ability to analyse it, has given rise to a whole new

industry.

This thesis began its journey in the middle of a technological revolution in the

year 2014 when the industry was booming with the following technological rev-

olutions:

• Big data: The total volume of digital data has grown into Zetabytes and is

projected to be reaching 180 Zetabytes by the year 2025. This enormous

growth in digital data has brought on an era of "Big data". Big data is a

term applied to data sets whose size or type is beyond the capabilities of

traditional relational databases to capture, manage, and process the data

with low-latency. Also, it has one or more of the following characteristics:

high volume, high velocity, or high variety. Big data traditionally originates

from Internet of Things (IoT) enabled sensors, devices, video/audio, net-

works, log files, transactional applications, and social media - much of it

generated in real time and on a very large scale.

• Deep learning: Deep learning is a specialised stream of AI which has come

into prominence in the past decade. Deep learning is considered to be

an extension of machine learning, which consists of a set of technologies

around neural networks that empowers computers to learn, evolve and
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improve upon their own learning by reiterating and consistently updat-

ing the data bank through recursive experiments and human intervention.

Deep learning has already revolutionised AI and pushed the boundaries

of intelligent systems through technologies such as autonomous cars, fully

automated language translation and speech transcription systems.

• High performance computing (HPC): Experts have described deep learning

as analogous to a rocketship that needs a really big engine (a model) and a

lot of fuel (the data) in order to go anywhere interesting. A big model that

learns from big data, of course, requires large scale computational capabil-

ities, or, in other words, high performance computing for it to be efficient

and effective. The need for HPC has also meant a massive progress in the

form of cloud computing and infrastructure as a service providing capa-

bility to scale infrastructure requirements (computation, storage, network

speed) on a demand basis.

The state-of-the-art of AI is composed of big data, big models and big infrastruc-

ture where solutions are traditionally developed by stacking up resources in the

form of multiple instances of computers (physical and/or logical). The main mo-

tivation and/or question that drives the present research in this domain is the

following: "Is stacking up computers an ideal solution for the future direction

of AI?" This question led to the revisiting of the field of neuroscience seeking

inspiration from biological intelligence for efficient and accurate computing.

An important distinction of the human brain from AI is its ability to operate

at full capacity using orders of magnitude lower power. This is a rather subtle

hint that the human brain does not scale by stacking up computational units.

Rather, the efficiency is due to the ability of the human brain to represent sen-

sory information as electrical impulses. The idea of information representation

as electrical impulses is at the base of this thesis. The present work concen-

trates on developing algorithms for pattern recognition, not by stacking layers

of computational units and infrastructure, rather by developing algorithms for
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representing, processing and recognising patterns in big data, especially time-

series data, efficiently and accurately.

1.2 Aims of this Thesis and Research

Questions

On the basis of the rationale and motivations discussed previously, this work

constrains its focus on the development of neuromorphic computational models

for recognising patterns using multi-modal time-series data.

1. Neuromorphic models: This thesis concentrates on developing neuro-biology

inspired computational models known as spiking neural networks for recog-

nising patterns in data. The most important characteristic ensuring neuro-

morphic behaviour is the ability to represent, transform and process spike-

time data.

2. Multi-modal time-series data: As it has been briefly described earlier, the

concept of big data is characterised not only by volume and velocity, but

also very importantly, by variety. The data sources in the era of IoT are di-

verse, leading to multi-modal data with a variety of spatio-temporal prop-

erties. The aim is to develop technologies that has the capacities to deal

with such multi-modal data sources.

3. Time-series, especially brain data: The studies in this thesis are also lim-

ited to experiments performed on time-series data, especially, non-invasive

brain data, such as functional Magnetic Resonance Imaging (fMRI), Elec-

troencephalography (EEG), and Diffusion Tensor Imaging (DTI). The brain

activity data is particularly useful as data sources of multi-modal nature

with prominent impact on healthcare for several brain related diseases.

This will be discussed in detail later.
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Keeping the above mentioned constraints in mind, this research aims to answer

the following more in-depth research questions:

1. Research question 1: How to design architectures of spiking neural net-

works that are capable of digesting and processing large volumes of spatio-

temporal data? This research question focuses on software design prin-

ciples, including the data structure design, modularity and scalability as-

pects of spiking neural network architectures.

2. Research question 2: How to perform neural encoding on real-world data

to represent information as timings of spikes? This research question can

be observed in the light of information theory and theories of lossy data

compression.

3. Research question 3: How to integrate spatial, temporal and orientation

information present in multi-modal brain data using spiking neural net-

work architecture?

1.3 Thesis Structure, Navigation and List of

Peer-reviewed Publications

This thesis is presented in eight Chapters. Figure 1.1 depicts a self-explanatory

bird’s eye view of the relationships between the different components of interest

of this thesis. It is highly recommended to review this figure before proceeding

further. The components are categorised as Chapters, topics, research questions,

tangible outcomes (software implementations or algorithms) and publications

(journals, conferences or book chapters). There are three categories of relation-

ships (arrows in the diagram) drawn in the figure: (1) Contains: These are

one-to-many relationships. A relationship of this kind can be observed between

a chapter and multiple topics. (2) Dependence: These are directed one-to-one

relationships. The one-to-one directed relationships are drawn between chap-
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ters and/or topics. Following the dependence graph, the reader can navigate

through the prerequisites and/or flow of topics. (3) Associated with: These are

undirected one-to-one relationships associating a pair of components (such as a

Chapter and a research question, or a Chapter and a publication). An example

of a possible navigation through the diagram is as follows: To read Chapter 7

for example (which is associated with research question 3 and resulted in one

journal publication and a tangible outcome in the form of oiSTDP learning al-

gorithm), a reader is recommended to read Chapter 2, especially the topics on

brain data modelling and Chapter 4, especially the topics related to NeuCube

(which also has certain prerequisites).

This thesis generally follows a linear and continuous flow. This means that ef-

forts have been made throughout the thesis to cross-reference across chapters

and sections in order to minimise repetitions. Chapter 5, 6 and 7 are presented

as the main contributions of this thesis and directly relates to the research ques-

tions discussed in section 1.2. Chapters 3 and 4 on the other hand forms the

basis on which the main chapters are written and many of the concepts are in-

troduced in these chapters and reused thereafter in the main contributions. The

following table lists the contributions that have been made in the form of peer

reviewed publications through the work of this thesis.
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Table 1.1.: List of peer-reviewed publications

Type Publication Year

Journal Sengupta, N., McNabb, C. B., Kasabov, N. & Russell, B. (2018),
integrating space, time and orientation in spiking Neural Net-
works: A case study on multi-modal brain data modelling, IEEE
Transactions on Neural Networks and Learning System. DOI:
https://doi.org/10.1109/TNNLS.2018.2796023.

2018

Journal Sengupta, N., & Kasabov, N. (2017). Spike-time encoding as a
data compression technique for pattern recognition of temporal
data. Information Sciences, 406, 133-145.

2017

Journal Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci,
E., ... & Espinosa-Ramos, J. I. (2016). Evolving spatio-temporal
data machines based on the NeuCube neuromorphic framework:
design methodology and selected applications. Neural Networks,
78, 1-14.

2016

Conference Sengupta, N., Scott, N., & Kasabov, N. (2015). Framework for
knowledge driven optimisation based data encoding for brain
data modelling using spiking neural network architecture. In
Proceedings of the Fifth International Conference on Fuzzy and
Neuro Computing (FANCCO-2015) (pp. 109-118). Springer,
Cham.

Conference Abbott, A., Sengupta, N. & Kasabov, N. (2016). Which method to
use for optimal structure and function representation of large spik-
ing neural networks: A case study on the Neucube architecture. In
2016 international joint conference on neural networks(ijcnn)(pp.
1367-1372). IEEE

2016

Conference Kasabov, N., Sengupta, N., & Scott, N. (2016, September). From
von neumann, John Atanasoff and ABC to Neuromorphic compu-
tation and the NeuCube spatio-temporal data machine. In IEEE
8th International Conference on Intelligent Systems (IS), 2016
(pp. 15-21). IEEE.

2016

Conference Arya, A. S., Ravi, V., Tejasviram, V., Sengupta, N., and Kasabov, N.
(2018, January) Cyber fraud detection using evolving spiking neu-
ral network, in IEEE International conference on industrial and
information systems (ICIIS), 2016 (pp. 263-268). IEEE.

2016

Chapter Sengupta, N., Ramos, J.I.E., Tu, E., Marks, S., Scott, N.,... &
Abbott, A. (2018). From von Neumann architecture and Atana-
soffs ABC to Neuromorphic Computation and Kasabovs NeuCube:
Principles and Implementations, Learning Sytems: From Theory
to Practice. Springer.

2018
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2Literature Review on Brain

Data Modelling and Machine

Learning

2.1 A Review on Modelling Brain Data

The human curiosity to understand the neural activity associated with cognition

and perception is as old as the field of neuroscience itself. During its incep-

tion, neuroscience studies were focused on invasive techniques for modelling

the brain. This strand of research suffered from two major disadvantages:

1. The studies were non-functional studies due to their invasive nature (Geschwind,

1974; Shallice, 1988).

2. These studies needed to be implemented on non-human subjects (Felle-

man & Van Essen, 1991; Pandya & Yeterian, 1985) due to the risk associ-

ated with invasive procedures.

Due to these limitations, therefore, for many years, neuroscientists faced great

difficulties in measuring the neural activity in the mammalian brain, while they

performed tasks or simply rested. The advent of non-invasive techniques, such

as electrical activity (Electroencephalography, Electromyography, Electronystag-

mography), haemodynamic activity (fMRI), water diffusion (DTI), and others,

allowed for indirect measurements of neural activity and connectivity, leading

to the affordance of a new departure of computational neuroscience.
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• Functional Magnetic Resonance Imaging (fMRI): Magnetic resonance imag-

ing (MRI) applies an external magnetic field to align the magnetic mo-

ments of hydrogen ions in the body and then applies a radio frequency

pulse, which flips the ions in the opposite direction. The recovery of these

hydrogen ions back to the direction of the external magnetic field produces

a current, which generates the black and white image in an MRI photo.

Resting state functional magnetic resonance imaging (rs-fMRI) measures

changes in blood oxygenation within the brain during rest. When neurons

are activated in the brain, they expend energy, which needs to be replaced.

This is achieved via an increase in blood flow to the active area (occur-

ring between 6 and 10 seconds after activity is initiated). This increase

in blood flow produces a net decrease in deoxygenated haemoglobin lev-

els, changing the magnetic properties of the blood. Areas of high activity

are consequently associated with higher signal in the MRI and this can be

measured across time.

• Electroencephalography (EEG): EEG is a technique for measuring the elec-

trical activity of the brain. Silver chloride electrodes placed on the scalp

record the integrated activity of a large number of neurons within the

brain. Only neural structures with a specific spatial organisation (i.e., lay-

ers of neurons with all cell bodies/dendrites facing in the same direction,

such as the cortex, thalamus and cerebellum) can generate scalp potentials.

Consequently, non-invasive EEG can only measure a subset of the overall

activity of the brain. Despite this limitation, however, EEG is a valuable

tool for investigating abnormalities in brain function and provides a use-

ful data source for classifying patient populations with known changes in

their EEG output.

• Diffusion Tensor Imaging (DTI): DTI measures the net movement of water

within the brain. Water molecules outside of the cell have equal probability

of movement in every direction. However, when water is trapped within

a neuronal cell (within an axon or dendrite), its diffusion is restricted to

movement along the direction of the axon or dendrite. The diffusion direc-
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tion of these trapped water molecules can be measured using DTI, provid-

ing a map of neuronal tracts (white matter) within the brain.

Numerous studies have focused on analysing and modelling neural activities re-

lated to cognitive or non-cognitive tasks, using single modalities of non-invasive

techniques, such as EEG, fMRI or DTI. Functional Magnetic Resonance (fMRI)

was used by Boksman et al. (2005) to study brain connectivity related to word

fluency during the first episode of schizophrenia. Supekar, Menon, Rubin, Musen

and Greicius (2008) used fMRI to study brain connectivity in Alzheimers disease.

Diffusion Tensor imaging (DTI) was also employed in the works of Eluvathingal

et al. (2006), Price et al. (2007) for cognitive studies. Ravan, Hasey, Reilly,

MacCrimmon and Khodayari-Rostamabad (2015) used EEG data for studying

the effect of Clozapine therapy in schizophrenia. Cabeza and Nyberg (2000)

studied fMRI and PET, two modalities of neuroimaging to explore the func-

tional anatomy of different cognitive functions, such as, attention, perception,

language and so on. McClure et al. (2007) studied a predictive model for treat-

ment of anxiety disorder in young children. DTI is used by Hamstra, Rehemtulla

and Ross (2007), as a biomarker for treatment response in oncology. Gordon

(2007) discussed using neuromarkers like fMRI and DTI for brain-related per-

sonalised medicine and treatment. Apart from these, applications, such as, Brain

Computer Interfaces (BCI), neuroprosthetics, neuro-rehabilitation are a few of

many other areas, which can potentially gain from brain data modelling and

analysis. All of the research work discussed above show the trend of modelling

a single modality of brain data. This is primarily due to the technological con-

straints associated with simultaneous acquisition of multiple modalities of brain

data. Concurrent recording suffers from several technical difficulties, such as,

ballistocardiographic artefact, MRI pulse artefact and others, leading to high

noise to signal ratio. Current technical advances in MRI and EEG recordings,

though, have overcome the aforementioned difficulties and allow for simulta-

neous recording of mixed modalities of brain data (Menon & Crottaz-Herbette,

2005; Horovitz, Skudlarski & Gore, 2002). This is ground breaking, as fused

analysis of multiple data types is potentially more informative about the com-

plex brain activity during the measured task. Until recently, the most commonly
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used method of integrated data analysis for this kind of problem was by converg-

ing evidence (Horwitz & Poeppel, 2002). Typically, each data type is analysed

separately, and the results from other analyses that support one’s finding are dis-

cussed in the discussion Section. A standard sentence looks like "the activation

that was found in region X is consistent with studies in patients with focal lesion

in region X and in ERP studies, where a latency in the Y component on task Z

has been observed during.." (Horwitz & Poeppel, 2002). Horwitz and Poeppel

(2002) also discussed an alternative data fusion analysis called computational

neural modelling. This is done by creating biologically realistic neural network

models where each network simulates data of a certain type and is compared

with observed data. One major setback of this paradigm of data analysis is that

the hypothesis-driven neural network model is built under several assumptions

for simulated data generation. Hence, it is difficult to know, whether any lack of

agreement between observed and simulated data is due to the assumptions in

the model, or whether it is simply wrong.

There is a third alternative for multi-modal data integration, known as direct

data fusion (George et al., 1995). Direct data fusion can be loosely defined as,

the technique for directly fusing multiple datasets using statistical and machine

learning algorithms. BieSSmann, Plis, Meinecke, Eichele and Muller (2011) pre-

sented a detailed description and analysis of this approach. In this approach, if

one is interested in the neural potentials induced by a certain stimulus event,

one averages epochs of EEG time series aligned to the presentation of that stim-

ulus. If one is not interested in the exact phase of the neural response, one

often extracts the amplitude modulations of neural oscillations in a certain fre-

quency band (e.g. (Laufs et al., 2006)). For fMRI data, one typically extracts

patterns of activity that are correlated with the time course of the experimental

stimulus. Several exploratory unsupervised methods are also proposed for fused

data analysis. In (Eichele et al., 2008), temporal ICA is applied to EEG, and

spatial ICA is applied to fMRI data. Other unsupervised feature extraction tech-

niques include microstate analyses (Brandeis & Lehmann, 1989; Patil, Carmena,

Nicolelis & Turner, 2004), which is based on clustering to find quasi-stable to-

pographical EEG scalp maps whose time courses can be compared with fMRI
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signals (Muthukumaraswamy & Singh, 2008). This thesis intends to emphasize

the broad technique of direct data fusion. Next, a brief review of the literature

on statistical and machine learning treatment of brain data will be presented.

From a methodological perspective, there exists several statistical techniques for

brain data analysis. Conceptually, they can be divided into two different groups

according to Horwitz, Tagamets and McIntosh (1999):

• Subtraction paradigm: This paradigm hypothesizes the functional speciali-

sation, that different brain regions are associated with different brain func-

tions (Fristen, 1997; Posner, Petersen, Fox & Raichle, 1988). It compares

the signals between sets of scans, where each set represents a different

experimental condition. The locations of large differences in signals be-

tween the two presumably delineated brain regions differentially involved

in the two conditions. This paradigm is implemented using different forms

of univariate (Woolrich, Ripley, Brady & Smith, 2001) feature by feature

approaches, and does not take into account the influence of the spatial

neighbourhood, considering each feature activity as statistically indepen-

dent.

• Covariance paradigm: The assumption in covariance paradigm is that any

experimental condition is mediated by a network of interacting regions of

interest (ROI), and different functional tasks relate to different functional

networks (Horwitz, Soncrant & Haxby, 1992; Mesulam et al., 1990). This

paradigm focuses on correlation (Horwitz, Grady et al., 1992), covariance

and regression (Friston et al., 1997) to analyse the relationships between

brain regions and producing activity maps of the ROIs. Until recently,

the General Linear Model (GLM), a form of statistical linear model was

used to perform multivariate statistical modelling of neuroimaging data

(Beckmann, Jenkinson & Smith, 2003; Calhoun, Stevens, Pearlson & Kiehl,

2004), and it was integrated in dedicated neuroimage analysis tools like

SPM (Friston, 1994) and AFNI (Cox, 1996).
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Recently, the machine learning community collaborated with computational neu-

roscience, which led to the application of several machine learning techniques

in cognitive pattern recognition. The ability of pattern recognition algorithms

to map neural activity to mental states led to the practical realisation of mind

reading (Norman, Polyn, Detre & Haxby, 2006). A study by Haxby et al. (2001)

illustrated how multi voxel pattern analysis can be used to distinguish cognitive

states. Similar methods were also applied to discriminate the viewing of differ-

ent orientation of stripes (Haynes & Rees, 2005; Kamitani & Tong, 2005), move-

ment direction of a field of dots (Kamitani & Tong, 2006), determine whether

a subject is viewing a picture or a sentence, and whether a subject was reading

an ambiguous or an unambiguous word, and the semantic category of a viewed

object (Mitchell et al., 2004). The University of Pittsburg organised brain com-

petitions in the years 2006 and 2007 that aimed to predict dynamic experience

in a virtual reality environment. In 2009, a brain connectivity challenge was

organised by them that aimed to map the cables of human brain mapping ap-

proximately 300, 000 fibres streamline into 20− 50 cables or tracts. In all of the

above mentioned studies, advanced pattern classification algorithms like Gaus-

sian Nave Bayes (Mitchell et al., 2004), Multilayer Perceptron (MLP) and Kernel

Ridge Regression (Chu, Ni, Tan, Saunders & Ashburner, 2011) were used as

discriminative models and achieved significant classification accuracy.

2.2 A Review of Machine Learning

The problem of searching and recognising patterns in data is a fundamental

form of science which has a long and fruitful existence in the history of the

human race. One of the earliest instances of the successful pattern recognition

endeavour was the discovery of empirical laws of planetary motion by Johannes

Kepler in the 16th century AD. The area of pattern recognition aims at automated

discovery of regularities in data through the usage of computational algorithms,

and with the use of these regularities, to take action on the task in hand (Bishop,

2006). Over the years, several approaches of pattern recognition have come

into prominence, the most primitive of which is hand crafted heuristics based on
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known knowledge, as used by Kepler during the discovery of empirical laws of

planetary motion using radio astronomy data.

In this work, however, the interest lies in a more sophisticated and automated

approach called machine learning. A machine in the form of a computer pro-

gram is formally said to "learn from experience E with respect to some task T

and performance measure P if its performance at task in T, as measured by P ,

improves with experience E" (Mitchell et al., 1997). The machine learning way

of pattern recognition approaches the problem as a three step process. Each

step is accompanied by a subset of data. In the first step, known as the train-

ing phase, a learning algorithm trains a mathematical model y(x) using a set of

training data xtrain := {x1,x2, · · · xn} (experience E). It must be noted, that

in the majority of cases, the data lies in a multidimensional feature space. The

training data xtrain can be labelled or unlabelled according to the class of the

problem. In the second phase, known as the validation phase, the model is val-

idated on its performance P on the set xvalid. The validation step is performed

to estimate the best model parameters and properties. At the end of the training

and validation phase, the best model y(x) is applied on new unseen data sample

xnew to recognise the pattern.

If one considers the pattern recognition programs as intelligent agents, based

on the type of feedback from which it learns the patterns, the area of machine

learning can be broadly divided into three main categories (Russell, 2003):

• Unsupervised learning: This class of learning tasks involve no explicit feed-

back from the environment. The most common unsupervised learning task

is clustering, which aims to create distinct groups of data in multidimen-

sional space, where there is significant homogeneity within a group and

heterogeneity between groups.

• Supervised learning: The supervised learning task is to learn a mapping

between input and output pairs. In this class of machine learning, the
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agent receives explicit feedback from the environment, which acts as the

supervisor.

• Reinforcement learning: This type of learning is concerned with how an

agent ought to take actions in an environment with an aim to maximise

certain short and long term rewards. In this form of learning, the agent

receives indirect weak feedback from the environment in the form of the

reward (Sutton & Barto, 1998).

The focus in this research is on supervised and unsupervised learning paradigms.

Traditionally, the supervised learning paradigm deals with static data, where a

dataset is defined by D := {X, y|X ∈ Rn×m}. The input data X is multisample

(n) and multivariate (m) in nature. The output label is a vector y. In a classi-

fication task, y is sampled from a nominal set C := {c1, c2, · · · , ck}n and in a

regression task, y is continuous Rn. A simple example of a classification task is

that it is an intelligent agent being able to discriminate between a ‘spam’ and a

‘non-spam’ email given an email. In this task, the output y ∈ {spam,no spam} is

nominal in nature. On the contrary, prediction of temperature from multivariate

weather information is a good example of a regression/prediction task, where

the output y ∈ R is a real continuous number.

A brief review of the classical supervised ML, as presented in Kotsiantis, Za-

harakis and Pintelas (2007), classified the research directions in the following

categories:

1. Logic based algorithms: These type of algorithms are generally divided

into the decision trees and rule based classifiers.

Decision trees These trees perform instance classification by data parti-

tioning based on feature values (Murthy, 1998). Figure 2.1 shows an

example of decision tree. Each node in the tree represents a feature.

A new sample is classified based on the corresponding feature value

beginning from the root node. Numerous techniques are found in the
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Figure 2.1.: A decision tree model built on the Iris dataset (Fisher, 1936) (source
Girones (n.d.)).

literature for data partitioning including information gain (Quinlan,

1986), gini index and others. The best known algorithms for creating

decision trees are the C4.5 (Quinlan, 2014) and ID3 (Quinlan, 1986).

The major stand out aspect of the decision tree is the representation

of the model as a knowledge extraction system which makes it com-

prehensible for the user.

Rule induction Apart from decision trees, various algorithms for induc-

ing rules from training data have been proposed in the literature. The

rule induction algorithms aim to minimise the set of rules consisting

of training data. Minimising the rule-set ensures generalisation and

avoids overfitting (Kotsiantis et al., 2007). RIPPER (Cohen, 1995),

AQ family (Michalski, 1980) and CN2 (Clark & Niblett, 1989) are

some of the more popular rule based learning algorithms.

2. Perceptron based: Perceptron oriented algorithms are one of the most re-

searched and powerful class of machine learning algorithms. These ML

algorithms, as described in the seminal article (Rosenblatt, 1958), are

inspired by the working principles of the brain, and can be categorised
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(a) Adaptive Linear Elements (ADALINE) (b) Example of a linearly separable prob-
lem.

Figure 2.2.: The ADALINE single layer perceptron model and an example of linearly
separable problem (source Widrow and Lehr (1990)).

loosely as neuromorphic in nature. Historically, the perceptron based algo-

rithms are divided into two sub categories:

Single layer perceptron A single layer perceptron model consists of a set

of computational neurons (perceptrons) arranged in a single layer

and fully connected to the input data x by connectors with weight w.

These networks were equipped to solve a binary classification prob-

lem (y := −1, 1). The neurons compute weighed sum
∑
i

wi · xi of

the input data, and is passed through an adjustable threshold gate to

output −1 or 1. In the ADALINE model the weighed sum is further

passed through an activation function (Widrow & Lehr, 1990). Fig-

ure 2.2a shows the architecture of the ADALINE network. The most

prevalent method of learning the patterns is by running multiple it-

erations of the training data and adjusting the connection weights w

until the output matches ground truth. Some of the well known learn-

ing algorithms for single layer perceptron are described in (Littlestone

& Warmuth, 1994; Freund & Schapire, 1999). Despite its computa-

tional ability to solve linearly separable binary output problems as

shown in Figure 2.2b, these ML algorithms cannot solve problems of

non-linearly separable variety, such as, the XOR problem (Minsky &

Papert, 1969).
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Figure 2.3.: A fully connected feed-forward multi layer perceptron model (source
Widrow and Lehr (1990)).

Multi layer perceptron MLP models are extended from the earlier percep-

trons. It is defined as a fully connected feed-forward ANN having mul-

tiple layers of nodes arranged as a directed graph. The layers are seg-

regated into three classes: input units, hidden and output units. The

hidden elements of MLP possess non-linear activation functions and

can distinguish non-linearly separable data. Figure 2.3 shows an ex-

ample of an MLP model. The feed-forward MLP networks are trained

usually using some variant of the gradient based backpropagation al-

gorithm (Rumelhart, Hinton & Williams, 1988), which optimise the

output by minimising the network prediction error by backpropaga-

tion of the error. It must be noted that due to the gradient descent-

based approach of the learning algorithm, these networks require the

activation functions to be fully differentiable and the input data to

be in a continuous space. Genetic algorithms have also been used to

train the weights of neural networks (Siddique & Tokhi, 2001) and

to find the architecture of neural networks (Yen & Lu, 2000). There

are also Bayesian methods in existence which attempt to train neural

networks (Vivarelli & Williams, 2001).

3. Support vector machines: SVM is one of the most recent and widely used

supervised ML algorithm introduced by Cortes and Vapnik (1995). It was

developed to solve binary classification problems using linear hyperplanes.

SVM revolves around the idea of a margin that maximally separates two
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Figure 2.4.: Maximum-margin hyperplane and margins for an SVM trained with sam-
ples having two features from two classes (source Cortes and Vapnik
(1995)).

data classes around a hyperplane (see Figure 2.4). For linearly separable

training data, the tuple (w, b) exists such that:

wTxi + b ≥ 1 ∀xi ∈ P (2.1)

wTxi + b ≤ −1 ∀xi ∈ N (2.2)

The black and white dots represent the positive class P and negative class

N, respectively. The decision rule is given by:

fw,b(x) := sgn(wTxi + b) (2.3)

An optimum separating hyperplane can be found by minimising the squared

norm of the separating hyperplane. The minimisation can be set up as a

convex quadratic programming (QP) problem:

minw,b Φ(w) := 1
2 ||w||

2

s.t. yi(wTxi + b) ≥ 1, i = 1, · · · , l
(2.4)

For linearly separable data, at the end of the optimally separating hyper-

plane search, data points lying on its margin are known as support vector

points. This hard margin solution is later modified (Veropoulos, Campbell,
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Cristianini et al., 1999) to accommodate misclassification of the training

samples.

To overcome the issue of non-linearly separable problems, non-linear SVM

is introduced by applying the kernel approach to find maximum margin

hyperplanes. The kernel function transforms the given data space in a

higher dimensional space in the hope of achieving linear hyperplane in

a higher dimension that can separate the classes. There are numerous

transformation kernels existing in the literature including:

• linear: K(xi,xj) = xixj

• polynomial: K(xi,xj) = (γxixj + c)d

• RBF: K(xi,xj) = exp(−γ|xixj |2)

• sigmoid: K(xi,xj) = tanh(γxixj + c)

The kernel function represents the dot product of the input data points

mapped into higher dimensional feature space. Some of the known disad-

vantages of SVM are the high computational complexity of the quadratic

programming based training phase (Horvath, 2003) and sensitivity to over-

fitting the model selection criteria in kernel models (Cawley & Talbot,

2010).

The brief review presented in this chapter are very general and touches upon the

two broad strands of research the studies in this thesis belongs to. Chapters 3

and 4 further reviews and delves into the nitty-gritties of computational neuron

and network of such neurons as a basis of the main studies presented in Chapters

5, 6 and 7. Further, literature reviews are also performed locally in the context

of the topics.
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3From the Human Brain to

Artificial Evolving Spiking

Neural Networks

3.1 Introduction

This Chapter introduces the biophysiology of a human brain cell known as a

neuron and proceeds through the historical evolution of artificial neurons and

network of such neurons as computational models. Further, a brief review and

the work on the evolving connectionist systems (ECOS) will be presented. This is

an evolving neural network framework developed for recognising patterns from

data.

3.2 The Human Brain and the Morphology of

a Neuron

The human brain is the central processing unit of the human nervous system.

It is responsible for processing, integrating, and coordinating the information it

receives from the sensory organs, and making decisions as to the instructions

sent to the rest of the body. The human brain is made up of a network of approx-

imately ten billion interconnected neurons. A neuron is the basic information

processing unit which receives, processes and transmits information using bio-

chemical reactions. A typical neuron, as shown in Figure 3.1, comprises three

functional units, namely, dendrites, soma and axon. Dendrites are tree-like struc-

tural fibres which emanate from the cell body and provide the receptive zones

for receiving the signals from other neurons. The morphology of the dendritic
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Figure 3.1.: Morphology of a biological neuron (source Carlson (1967)).

tree plays an important role in the integration of the synaptic inputs and influ-

ences the way the neuron processes information (Mel, 1994). The integration

process is performed through a non-linear process of spatio-temporal summation

(Koch, 1999). The resulting activation flows to the soma and suffers voltage at-

tenuation, so that about half of the total charge injected into the distal dendritic

site reaches the soma. The primary function of the soma is to perform the con-

tinuous maintenance required to keep the neuron functional (Kandel, Schwartz,

Jessell, Siegelbaum, Hudspeth et al., 2000). The part of the soma that performs

the important nonlinear processing of the input is known as axon hillock. If the

total input produces a depolarisation up to the neural threshold, the axon hillock

fires an action potential. The output signal is transmitted down the axon, which

delivers it to other neurons. Some of the important characteristics of of neuron

are enumerated below:

• Synapse: The contact point between a pre-synaptic axon and a post-synaptic

dendrite or soma is known as a synapse. In a chemical synapse, arrival of

action potential triggers a complex chain of biochemical reactions leading

to the release of neurotransmitters. This process generates a post-synaptic

potential (PSP) in the post-synaptic neuron. The internal state of a post-

synaptic neuron is driven by complex integration of PSP arising from multi-

ple such synapses. When the state of a post-synaptic neuron is sufficiently

stimulated, it gives rise to an action potential or a spike which is then trans-

mitted through the axon. Synapses are believed to be the locus of learning
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and memory in the brain (Squire & Kandel, 1999). This is where the brain

is the most flexible and the most vulnerable (Marian, 2002).

• Action potential and neuron dynamics: The output generated by a biolog-

ical neuron is referred to as the action potential. The action potential is

an all or none electrical voltage based impulse response (Aur & Jog, 2010)

also known as a spike. A neuronal action potential is generated when the

membrane potential of the neuron reaches a threshold limit. Figure 3.2

plots a typical example of membrane potential (in mv) with time (in ms).

The membrane potential starts with a resting potential of −70mV . On

application of a stimulus at t = 1ms, the membrane potential is raised

above −55mV which is the threshold limit. After the stimulus is applied,

the membrane potential rises to +40 mV. This phase is known as the de-

polarisation phase. The potential then drops down to −90mV at time =

3ms (the repolarisation phase), and finally rises to the resting potential of

−70mV is at time = 5ms. The period between repolarisation and resting

state is known as the refractory period during which the neuron goes into

a hyperpolarisation state. During the hyperpolarised state, the neuron is

incapable of firing any action potential. This mechanism stops a neuron

firing spikes immediately after firing a spike.

3.2.1 Neural Encoding and Information

Communication

Neurons are thought to convey signals mainly if not exclusively through the in-

formation content of their spike-trains. A spike-train consists of a series of times

at which the neuron has fired. It is possible to record spike trains from individual

neurons using various electro-physiological methods in-vivo and in-vitro. Such

methods have generated a good number of datasets, which, in turn, have re-

vealed many properties of the neural computation. These properties constitute

the main body of results in the rapidly growing neuroscience literature.

3.2 The Human Brain and the Morphology of a Neuron 24



Figure 3.2.: Dynamics of the membrane potential of a typical neuron (source “Afterhy-
perpolarization” (2007)).

Neural encoding refers to the study of how neurons perceive and process infor-

mation received from other neurons or through incoming stimuli. As mentioned

earlier, information in a biological neuron is represented by action potentials.

Even though minor variations exist in the morphology of an action potential,

they are generally treated as identical stereotyped events in time. The study

of neural encoding and decoding has taken massive leaps over the past decade

with the availability of sophisticated invasive and non-invasive recording mech-

anisms from the brain cells. The curiosity regarding the nature of the neural

code has been around from the beginning of neuroscience and till now, there

has been no single answer towards it. Several large scale projects, such as the

brain decoding project, (Tsien et al., 2013) have emerged due to progress in this

area. The scientific fraternity has presented evidence over the years pointing to

the existence of two major categories of neural encoding schemes:

1. Rate coding: The most classical view of the neural encoding is the rate

coding and is originally shown in Adrian (1926) through experiments con-

ducted by hanging different weights from a muscle. They found the in-

crease of stimulus weight increases the number of spikes recorded from

the nerve. The frequency based approach of rate coding states that the fir-
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ing rate of the neuron changes monotonically with the intensity or salience

of the input. This also means that the randomness in the inter spike inter-

val (ISI) in a spike train is considered as noise. This coding hypothesis can

be explained by Poisson’s model of random process (Pachitariu, Brody, Jun

& Holmes, n.d.). Out of the abundant examples of this coding scheme, the

experiments conducted by (Hubel & Wiesel, 1959, 1962) in their ground

breaking articles are the most interesting. During the experiments, light

stimuli was presented to a cat and the action potentials of the primary vi-

sual cortex receptive fields were recorded over time. Figure 3.3 shows how

different orientation of light bars generates response of varying spike rates

in the receptive fields of cat eyes. Such observations formed the basis of

the rate coding scheme.

Even today, neuro-scientists often assume that useful theories can be learned

about neural coding by summarising the post-stimulus time histogram

(PSTH) that plots the rate of firing as a function of time. There is no

doubt that rate coding seems to be the most obvious explanation of how

neurons encode information. However, it is also quite evident that the fir-

ing rate as a coding scheme is highly inefficient for information processing

(S. Thorpe, Delorme & Van Rullen, 2001; Gautrais & Thorpe, 1998; Van

Rullen & Thorpe, 2001). S. J. Thorpe and Imbert (1989) argued that the

primate visual cortex brain cells need to operate in less than 10 ms resolu-

tion. On the other hand, the upper bound of the firing rate is ≈ 100 Hz,

which implies that such processing can be accomplished if the individual

neurons only get to fire none or one spike. The inefficiency in rate coding

is caused by the requirement of precise calculation of the firing rate. Gau-

trais and Thorpe (1998) showed within a mathematical framework that

during the first 10 ms of computation, n neurons can transmit log2(n+ 1)

bits of information in a rate coding scheme and log2(n!) bits of information

with the alternate temporal coding scheme. The necessity of approximat-

ing firing rate from a large volume of spikes is a significant hindrance in the

acceptance of this theory, especially considering the extreme efficiency of

the human brain. Additionally, the refractory period of the neuron dynam-
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Figure 3.3.: Experimental results obtained by Hubel and Wiesel (1962). The orienta-
tion of light bars presented at various orientations are shown on the left
and the spike responses are shown on the right (source Hubel and Wiesel
(1959)).

ics also prevents neurons from generating large numbers of spiking events

within a short period. Olshausen and Field (2006) empirically demon-

strated from the electro-physiological data that rate coding V1 consumes

ten times more energy to operate.

2. Temporal coding: Temporal encoding hypothesizes that the information

is encoded in the relative timings of the spikes. This is in complete con-

trast to the rate coding scheme where irregularities in ISI do not arise from

stochastic forces and thus are not a random process. Temporal codes em-

ploy the features of the spiking activity that cannot be described by the

firing rate. For example, the time to the first spike after the stimulus onset,

characteristics based on the second and higher statistical moments of the

ISI probability distribution, spike randomness, or precisely timed groups

of spikes (temporal patterns) are candidates of temporal coding schemes

(Kostal, Lansky & Rospars, 2007). Several studies have also suggested the

existence of the temporal coding scheme across the animal kingdom. For

fast encoding of visual stimuli in the retina cells, latency time between

the stimulus onset and time to first spike is used for encoding (Gollisch &

Meister, 2008). This is also known as the rank order coding (Van Rullen

& Thorpe, 2001). As with the visual system, in mitral/tufted cells in the
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olfactory bulb of mice, first-spike latency relative to the start of a sniffing

action seem to encode much of the information about an odour. This strat-

egy of using spike latency allows for rapid identification of and reaction

to an odourant. In addition, some mitral/tufted cells have specific firing

patterns for given odourants. This type of extra information could help in

recognising a certain odour, but is not completely necessary, as the average

spike count over the course of the animal’s sniffing was also a good iden-

tifier (R. I. Wilson, 2008). Along the same lines, experiments done with

the olfactory system of rabbits showed distinct patterns which correlated

with different subsets of odourants, and a similar result was obtained in

experiments with the locust olfactory system (Theunissen & Miller, 1995).

3.3 Generations of Artificial Neuron

It is a common understanding that primate intelligence has formed the base of

artificial intelligence. The idea of mimicking or translating human intelligence

into machines has been a significant ambition for the scientific community in

the past centuries. The evolution of artificial neural networks has massively

contributed towards realisation of that ambition. ANN is a mathematical real-

isation of a network of neurons or processing units that can perform complex

functional mappings. Although ANNs have progressed through various stages

of evolution, attempts were made only very recently to classify them into gen-

erations of neural network (Maass, 1997). Due to the multiple branching of

ANN research and development, this has been a challenging task. Addition-

ally, such categorisation is subjective and dependent on what is considered as

achievement. However, one such identifiable conceptual progress has been the

development of mathematically-defined activation function as the information

processing mechanism of an artificial neuron (Maass, 1997).

An artificial neuron has been conceived as a mathematical model of a biological

neuron. Figure 3.4 shows a block diagram of the components of an artificial

neuron. Starting from the left, an ANN consists of multiple input channels. The
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Figure 3.4.: Block diagram showing components of an artificial neuron.

input channels resemble the properties of dendrites in a biological neuron. These

channels feed input signals (originating from pre-synaptic neurons) {x1,x2, · · · }

to the processing unit of the neuron. The synaptic weights {w1,w2, · · · } de-

fine the strengths of the synapses and allows for strengthening or weakening of

synapses through synaptic plasticity. The input along with the synaptic strengths

are fed into the processing units which consists of the summation and activation

units. These units together are responsible for mapping of the inputs x to the

output y. Next, The evolution and properties of an artificial neuron is well sum-

marised by Ghosh-Dastidar and Adeli (2009), however, for the sake of continuity,

I present below, a brief overview of the three generations of computational neu-

ron:

3.3.1 First Generation Neurons:

The perceptron model described by Rosenblatt (1958) was the beginning of the

first generation of artificial neuron. The variations of this model used the per-

ceptrons as integrate and fire units, which integrate the inputs and fired if the

internal state (synaptic weighed sum of inputs) reached a threshold. Mathe-

matically, the activation can be described by a Heavyside step function (range

{0, 1}).

f(x) =

1, if w · x + b > 0

0, otherwise
(3.1)

Equation 3.1 describes the activation of a simple perceptron. It produces binary

output y = 1 or y = 0, if the weighed sum w · x goes beyond b or otherwise.
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Unlike the biological neuron, the inputs of the perceptron were real and con-

tinuous, i.e. the magnitude of inputs contribute to the activation of the neuron.

This is a primitive realisation of the rate coding scheme, i.e. higher input causes

the neuron to fire. However, the outputs were binary spikes and did not cater

to the rate coding scheme. The perceptrons were also time agnostic. The inputs

are always considered to be synchronous in time and it did not matter when

the threshold is reached, i.e., as they contribute to the internal state at the same

time, and hence can be directly integrated. Any events of the past do not affect

the activation at the present time.

3.3.2 Second Generation Neurons:

The second generation of neurons were developed in the 1960s as an extension

of the first generation neurons. In the second generation, non linear smooth

activation functions were introduced. Hence, instead of a fixed threshold value

for the output determination, the outputs were proportionate within range to in-

put signals. Tanh (Equation 3.3 range (−1, 1)) or Sigmoid (Equation 3.2 range

(0, 1)) functions were used most often as activation functions. With this develop-

ment, the outputs became real and continuous, and contrary to the first gener-

ation, the post-synaptic neurons could generate rate coded information. These

neurons became extremely popular in the AI community with the introduction

of feed-forward neural networks and back-propagation (BP) algorithm (Rumel-

hart et al., 1988), which enabled supervised learning. Since the BP algorithm

was constrained by its requirement of a continuous and differentiable activation

function, a significant portion of the ensuing research became focused on finding

more appropriate continuous and differentiable activation functions. This model

was significantly more powerful than the one based on first generation neurons

and could solve complex pattern recognition problems (the most notable early

example was the XOR problem). However, the computational power of the neu-

ron still did not reach its full potential because the temporal information about

individual spikes was not represented.
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f(x) = 1
1 + e−(w·x+b) (3.2)

f(x) = tanh(w · x + b) (3.3)

3.3.3 Third Generation Neurons

In the past decade, to overcome the shortcomings of the first and second gen-

eration neurons, neurons that can communicate via the precise timing of spikes

or a sequence of spikes have been developed and adapted for ANNs. These neu-

rons are known as spiking neurons. In the literature, these spiking neurons have

been referred to as third generation neurons (Maass & Bishop, 2001). Similar to

the first generation neurons, spiking neurons act as integrate-and-fire units and

have an all or none response. The spiking neuron, however, has an inherent dy-

namic nature characterised by an internal state which changes with time. Each

post-synaptic neuron fires an action potential or spike at the time instance that

its internal state exceeds the neuron threshold. Similar to biological neurons,

the magnitude of the spikes (input or output) contains no information. Rather,

all information is encoded in the timing of the spikes.

3.4 Spiking Neuron Models

The first and second generation neurons discussed in the previous Section use

rather simplistic activation of the artificial neurons. The biophysical neuron mod-

els, however, are developed to quantitatively characterise neuronal behaviour

based on neuron membrane potential and ion channel conductance models (Ghosh-

Dastidar & Adeli, 2009). Marian (2002) distinguished between the two spiking

neuron models by the extent of detail included in the neuron model.
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1. Detailed neuron models: In this approach, researchers aimed at creating

detailed and complex models of the neurons. De Schutter and Bower

(1994), Segev, Burke and Hines (1998) described the chemical process

at the sub-cellular level. This included ion channel and dendritic tree

biophysics, synaptic interplay between excitation and inhibition, and volt-

age dependent events in the active dendrites (Mainen & Sejnowski, 1998).

Among all the detailed neuron models, the most prominent is the con-

ductance based Hodgkin-Huxley model (Hodgkin & Huxley, 1952). The

Hodgkin-Huxley model describes the generation of action potentials at the

level of ion channels and ion current flow. It is the starting point for

detailed biophysical neuron models which in general include more than

the three types of currents considered by Hodgkin and Huxley. Electro-

physiologists have described an overwhelming richness of different ion

channels. The set of ion channels is different from one neuron to the

next. The precise channel configuration in each individual neuron deter-

mines a good deal of its overall electrical properties. The model provides

a detailed description of the biophysics of ionic mechanisms underlying

the initiation and propagation of the neural spike. By doing this, it offers

an accurate quantitative model of the physiological data. But, complex

frameworks, such as this, which account for numerous ions-channels and

different types of synapses are difficult to construct and analyse. An impor-

tant conceptual drawback of this family of models is that their numerical

complexity (e.g., solve a large number of non-linear differential equations)

can prevent one from understanding which features are responsible for a

particular phenomenon and which are irrelevant (Koch, 1999).

The Hodgkin-Huxley like models are useful in modelling point neurons.

For the purpose of building detailed neuron models that can take into con-

sideration extreme cell complexities, such as branched cable structure, the

standard way is to divide a neuron into a fixed number of compartments

where each compartment acts like a resistance-capacitance (RC) circuit.

The RC circuits are modelled by a system of differential equations. Numer-

ous biological neuron simulators, such as Genesis (M. A. Wilson, Bhalla,
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Uhley & Bower, 1989) and Neuron (M. L. Hines & Carnevale, 2006), imple-

mented the compartmental models. Nonetheless, there is always a trade-

off between computational cost and biological realism.

2. Formal spiking neuron models: The second direction focuses on the spik-

ing nature of the neurons and retaining the essential elements of the be-

haviour being modelled, while trying to simplify the complexity of the

resulting description. The main motivation for the creation of simplified

models is that they allow studying more easily the computational and func-

tional principles of neural systems.

The reduction of the detailed neuron models to formal models requires sim-

plifications in at least two respects. First, the nonlinear dynamics of spike

generation must be reduced to a single ordinary differential equation and

second, the spatial structure of the neuron (i.e., the dendritic tree) is ne-

glected and reduced to an input (Gerstner & Kistler, 2002). To support the

validity of the former simplification, Kistler, Gerstner and van Hemmen

(1997) demonstrated that spike generation in the Hodgkin-Huxley model

can be reproduced to a high degree of accuracy (up to 90%) by a sin-

gle variable model. Several simplified neural models have been proposed

in the last decades. The leaky-integrate-and-fire (LIF) neuron is proba-

bly the best-known example of a formal neural model. It simulates the

dynamics of the neuron membrane potential in response to a synaptic cur-

rent by implementing an equivalent electrical circuit. The function of the

integrate-and-fire circuit is to accumulate the input currents, and, when

the membrane potential reaches the threshold value, to generate a spike.

Immediately after emitting a pulse, the potential is reset and maintained

there for an absolute refractory period.

The simplified mathematical models for spiking neurons cannot account

for the entire range of computational functions of the biological neuron.

Rather, they try to abstract a number of essential computational aspects

of the real cell function. The essential features implemented can differ
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between models, as a function of what the modeller considers to be rele-

vant and crucial for its domain study. Thus, the integrate-and-fire model

focuses upon the temporal summation function of the neuron (Bugmann,

Christodoulou & Taylor, 1997). The spike response model proposed by

Gerstner (1998) simplifies the action potential generation to a threshold

process. The resonate-and-fire model (Izhikevich, 2001) focuses upon the

operation of the neuron in a resonating regime. By contrast with the de-

tailed neural models, the computational strength of the spiking neurons

arises from the way they interact with each other, when they work cooper-

atively in large networks.

Next, I will outline some of the most prominent spiking neural network models

present in the literature:

3.4.1 Integrate and Fire

The description of the Integrate and Fire (IF) and Leaky Integrate and Fire (LIF)

model is adapted from (Gerstner, Kistler, Naud & Paninski, 2014) which serves

as a comprehensive review on this topic. An IF model is described by a single

variable known as membrane potential. The effect of an incoming spike on

a post-synaptic neuron can be recorded using intra-cellular electrodes which

measure the potential difference v(t) at time t between the inner and outer wall

of a cell membrane. This is known as the membrane potential. In absence of any

input, the neuron is said to be at rest with a constant resting membrane potential

vrest. The arrival of a spike changes the membrane potential and finally decays

back to vrest. For excitatory synapses the change is positive and for inhibitory,

it is negative. The neuronal dynamics of an IF neuron can be conceived as an

integration process combined with a mechanism that triggers action potential

above a threshold voltage Vthr. From hereon, post-synaptic and pre-synaptic

neurons will be indexed by symbols i and j respectively. A simple IF model can

be described using: (i) A linear differential equation to describe the evolution of

the membrane potential vi(t). (ii) A threshold for spike firing.
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Figure 3.5.: Electrical properties of the passive membrane of an IF neuron. (A) A cell
membrane enclosed neuron receives a positive input current I(t) resulting
in increase of electrical charge inside the cell. The cell membrane acts as
a capacitor in parallel with a resistor which is in line with a battery of
potential vrest. (B) The reaction of the cell membrane to a step current
(top) with a smooth voltage trace (source Gerstner, Kistler, Naud and
Paninski (2014)).

Gerstner et al. (2014) modelled an IF neuron as a single RC circuit (see Figure

3.5) following the laws of electricity. The cell membrane (insulation to the cell

body) acts as a capacity of a capacitor C. Also, because the insulation is imper-

fect, the charge over time, slowly leaks through the cell membrane. The cell

membrane hence can be characterised by a finite leak resistance R. Due to the

leaky nature of the resistance, the model is also known as leaky integrate-and-

fire (LIF) model.

I(t) = IR + IC (3.4)

I(t) =
v(t)− vrest

R
+C

dv

dt
(3.5)

τm
dv

dt
= RI(t)− [v(t)− vrest] (3.6)
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v(t) = vrest +RI0[1− exp(− t

τm
)] (3.7)

The circuit shown in Figure 3.5 can be analysed from the law of current con-

servation as per Equation 3.4. This can be further rewritten as Equation 3.5 by

calculating IR = vR/R as per Ohm’s law, where vR = v − vrest. The IC charges

capacitor C. The capacitive current can be written as IC = dq/dt = Cdv/dt. Eq.

Equation 3.6 is the linear differential equation describing a LIF neuron’s passive

membrane. The trajectory of membrane potential (Equation 3.7) for a constant

input current I(t) = I0 starting and ending at t = 0 and t = ∆ can be derived by

solving the differential Equation 3.6. The LIF neuron emits a spike denoted as

t
(f)
i generates a spike when the membrane potential v(t) reaches threshold vthr,

i.e.,

t(f) : v(t(f)) = vthr (3.8)

3.4.2 Hodgkin-Huxley

One of the earliest proposed (1952) models for spiking neuron is the Hodgkin-

Huxley (HH) model. This model describes the influence of ion channel conduc-

tance on the spike responses of axon and was empirically studied on the axons

of a Giant Squid. The choice of squid was due to its non-microscopic size. This

large size was necessary as electrodes had to be inserted into the axon, in order

to record the changes in electrical state experienced when neurons are active.

The HH model is described by a RC circuit connected in a parallel scheme resem-

bling the IF model. Following Equation 3.4, the HH model rewrites it as:

C
dv

dt
= I(t)− IR (3.9)
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HH model describes the resistive current as the sum of three different ion cur-

rents due to the presence of movement of sodium, potassium and leakage. The

resistive current is described by Equation 3.10.

IR = GNam
3h(u− VNa) +GKn

4(u− VK) +GLeak(u− VLeak) (3.10)

Where VNa,VK and VLeak are known as reversible potential constants. GNa and

Gk are the maximum conductance of the sodium and potassium channels, while

the voltage independent leak channel is represented by GLeak. The variables

m,n and h are gating variables described by Equations 3.11, 3.12 and 3.13.

m

dt
= αm(u)(1−m)− βm(u)m (3.11)

n

dt
= αn(u)(1− n)− βn(u)n (3.12)

h

dt
= αh(u)(1− h)− βh(u)h (3.13)

where m and h control the sodium channel and n controls the potassium chan-

nels. The function αx(.) and βx(.) represent empirically determined voltage

dynamics across capacitor v, are adjusted to simulate different neuron types.

3.4.3 Izhikevich

The Izhikevich model claims to combine biological plausibility of the HH model

with the lower computational complexity of the IF and LIF models (Izhikevich,

2004). Based on the theory of dynamic systems, the dynamics of this model are

governed by two equations:
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dv

dt
= 0.04v2 + 5v+ 140− u+ I (3.14)

where u is a membrane recovery variable providing negative feedback for v;

variables u and v, and parameters a, b, c and d are dimensionless. The input

stimuli in the form of input current is represented by I. When the membrane

potential reaches the (fixed) threshold vthr = 30mV , the neuron spikes and

resets u and v as:

ifv ≥ 30mV

v ← c,

u← u+ d,
(3.15)

Dependent on parameters a (decay rate of membrane potential), b (sensitivity

of membrane recovery), c and d (reset values of v and u respectively), a huge

variety of neuronal types can be modelled with relative ease.

It can be observed that the mathematical representation of the biological neu-

rons are extremely complex and focus on mimicking the biological properties

accurately. This direction of work focuses on discoveries of biophysical prop-

erties of neurons and the human brain through simulations. The work of this

thesis is, however, not intended to follow that direction. This work focuses on

using the spiking properties of the biological neurons, interwoven together in

a network for solving pattern recognition problems. Therefore, it is necessary

to compare the capabilities of the spiking neuron models in regards to the bi-

ological plausibility and complexity vs computational cost. Izhikevich (2004)

presented an insightful comparison of over twenty spiking neuron models in

this regard. Izhikevich, in this article, compared the presence or absence of 22

categories of biological properties, such as tonic spiking, phasic spiking, spike

latency and chaos in the spiking neuron models. Figure 3.6 shows the compar-

ison of spiking neuron models presented in (Izhikevich, 2004). The biological

plausibility on the Y axis is measured by the total number of biological proper-

ties (out of 22 different categories) present in the neuron model. The X axis

plots the implementation cost of the neuron model by the number of floating
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Figure 3.6.: Comparison of spiking neuron models in the evaluation landscape of bio-
logical plausibility and implementation cost (source Izhikevich (2004)).

point operations (FLOPS). It can be observed that out of many models proposed

in the literature, Hodgkin-Huxley and integrate-and-fire neurons, reside at the

extremity of the evaluation landscape. The choice of neuron models, as argued

in (Izhikevich, 2004) really depends on the goal. If the goal is to simulate a large

number of neurons interacting within a network, efficiency plays an important

role. Variations of IF models are suitable for this purpose. For the rest of this

thesis, variations of the IF model are used and discussed.

3.5 Spiking Neural Networks

The phenomenological models of spiking neurons described earlier can be simpli-

fied to lesser realistic models where spikes are not modelled which leads to the

first two generations of the neurons. Of course, the computational load reduces

drastically along with biological plausibility. For decades, the modelling of the

neurons was limited by the available computing power because the hardware

was unable to support large ANNs based on detailed neuronal models. This

limitation dictated the design of the learning algorithms. Subsequently, even

when advances were made in computing power, proportionate advances were

not made in the complexity of the neuronal models because the existing learn-

ing algorithms were not compatible with the detailed models.
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Accordingly, two distinct research areas emerged. The field of Artificial Neu-

ral Networks concentrated on the behaviour of large networks of neuron-like

processing units (i.e., the second generation neurons), which were primitive

and oversimplified formulations of biological neurons. However, it was demon-

strated that even such networks were capable of learning using pseudo-realistic

learning algorithms, such as backpropagation. ANNs were applied with great

success to pattern recognition, classification, and pattern completion tasks in a

wide variety of areas. The other field became known as Computational Neuro-

science. Within this broad interdisciplinary field, the detailed biophysical and

phenomenological models were primarily used in relatively smaller networks to

study electro-physiological processes, pattern generation, and the dynamic be-

haviour of small groups of neurons. There have also been studies involving very

large numbers of interconnected biophysical neuron models. However, it has

not been possible to use such networks of detailed neurons in a manner similar

to ANNs for large real-world pattern recognition and classification tasks.

Modern advances and the accessibility of computing resources have increased

the overlap between the two fields. On one hand, the processing units, net-

works, and learning algorithms for ANNs have become biologically more realis-

tic. On the other hand, networks of biophysical neurons have become increas-

ingly larger in size and the biophysical models, more detailed. The available

computing power still limits the use of the detailed models in large biophysical

neural networks for pattern recognition and classification tasks. As the comput-

ing power becomes more readily available, suitable learning algorithms are also

being developed for such models. The development of Spiking Neural Networks

(SNN) was the next logical step towards achieving this goal.

Simply stated, SNNs are networks of spiking neurons. The SNN is architecturally

similar to that of a traditional ANN. The processing units, however, are spiking

neurons, typically modelled by a phenomenological model, such as a Spike Re-

sponse Model. As discussed earlier, the use of the biophysical models in certain

applications of SNNs is less common due to the computational burden.
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3.6 Neuromorphic Computing Beyond von

Neumann Hardware Architecture

This Section is an adaptation of the article (N. Kasabov, Sengupta & Scott, 2016)

published in 2016. The tremendous push of AI towards emulation of real intel-

ligence has been sustained by the realisation of Moore’s law (Schaller, 1997),

which states that the processing power of central processing units (CPU) will

double every couple of years. The scalable computer architecture proposed by

John von Neumann in 1945 as part of the draft of EDVAC computer (Randell,

2013) had to play a substantial role in accomplishing the continuous miniaturi-

sation of the CPU chips. In more recent years, CPU chip manufacturing compa-

nies have spent billions of dollars in CMOS technology to shrink the transistor

size to a minuscule (≈ 14 nanometres) and thus keep Moore’s law alive. It is

evident that this is non-sustainable and as per well-supported predictions will

reach its boundary in the next three to five years (Toumey, 2016). The literature

suggests that the ongoing effort to enhance the traditional von Neumann archi-

tectures are unlikely to lower simulation runtimes significantly, as single and

multi-core architectures are reaching a state of saturation in terms of transistor

size (Thompson & Parthasarathy, 2006), energy consumption (Esmaeilzadeh,

Blem, St Amant, Sankaralingam & Burger, 2011) and communication (Perrin,

2011).

The Von Neumann architecture is a multi-modular design based on rigid phys-

ically separate functional units. It specifically consists of three different enti-

ties:

• Processing unit: The processing unit can be broken down into several sub-

units, the arithmetic and logical unit (ALU), the processing control unit

and the program counter. The ALU computes the arithmetic logic needed

to run programs. The control unit is used to control the flow of data

through the processor.
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Table 3.1.: A comparison of the key contrasts between von Neumann and neuromor-
phic computing paradigm.

Properties von Neumann Neuromorphic

Representation of the data Sequence of binary numbers Spike (event) timings
Memory Volatile and non-volatile Long and short term memory
Plasticity (Learning) No Long, short term potentiation and depression
Processing Deterministic, centralised and sequential Stochastic, decentralised and parallel

• I/O unit: The i/o unit essentially encompasses all I/O the computer could

possibly do (printing to a monitor, to paper, inputs from a mouse or key-

board, and others.).

• Storage unit: The storage unit stores anything the computer would need

to store and retrieve. This includes both volatile and non volatile memory.

These units are connected over different buses like data bus, address bus and

control bus. The bus allows for the communication between the various logical

units. Though very robust, this architecture inherently suffers from the bottle-

neck created due to the constant shuffling of the data between the memory unit

and the central processing unit. This bottleneck leads to rigidity in the architec-

ture as the data needs to pass through the bottleneck in a sequential order. An al-

ternate solution of parallelising the computers has been proposed where millions

of processors are interconnected. Despite the increase in processing power, this

solution is still limited by the bottleneck in its core elements (Schuler, 2015).

The saturation in the scalability of the von Neumann architecture led to develop-

ments in computer and computing architectures. Neuromorphic computing was

coined by Carver Mead (Mead, 1990) in the 1980s and further developed in a

new paradigm of computing. As the name ‘neuromorphic’ suggests, this is in-

spired by the human brain. Moreover, as the existence of AI is complimented by

computing architectures, having a real neuromorphic computer architecture ori-

ented processing unit is a step towards the development of highly neuromorphic

AI. The focus of neuromorphic hardware systems are to model the behaviour

of the biological neurons in digital or analog circuits. It also draws great in-

spiration from our brain’s ability to manage tens of billions of processing units

connected by the hundreds of trillions of synapses using tens of watts of power
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Table 3.2.: Comparison of the key features of the popular neuromorphic systems and
human brain. The details are adapted from (Scott, 2015; S. Furber, 2016).

Feature Human brain SpiNNaker (S. B. Furber, Galluppi, Temple & Plana, 2014) Zheijang FPGA (J.-l. Li, Wang, Li, Han & Zhang, 2005) TrueNorth (Hsu, 2014)

Type Biological Programmable digital FPGA Fixed Digital
Neuron model Diverse Programmable LIF LIF
Synapse model Diverse Programmable Programmable Binary
Max # neurons 100B 16K 2048 1M
Max # synapses 1015 14M 4.2M 256M
Runtime plasticity yes Programmable No No
Energy per connection 10fJ 10nJ Unknown 25pJ
Biological speed up 1x 1x 1x 1x

on average. The large network of the processing units (neurons) in the brain are

in a true sense a mesh. The data is transmitted over the network via the mesh

of synapses seamlessly. Architecturally, the presence of the memory and the

processing unit as a single abstraction is uniquely advantageous leading to dy-

namic, self-programmable behaviour in complex environments (Schuler, 2015).

The highly stochastic nature of computation in our brain is a very significant

divergence from the bit-precise processing of the traditional CPU. The neuro-

morphic computing hence aspires to move away from the bit-precise computing

paradigm towards the probabilistic models of simple, reliable, power and data

efficient computing (Calimera, Macii & Poncino, 2013) by implementing neuro-

morphic principles, such as spiking, plasticity, dynamic learning and adaptabil-

ity. This architecture morphs the biological neurons, where the memory and the

processing units are present as part of the cell body leading to the decentralised

presence of memory and processing power over the network. There is a signif-

icant interest in such hardware implementations of SNN due to many factors.

The primary factor being the massive power efficiency -somewhere in the order

of 20 watts- for its ability to learn and operate in a stochastic environment. Such

systems can be broadly categorised in one of the families of Application-Specific

Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), or digital sys-

tems. Table 3.1 lists some fundamental characteristics of the von Neumann and

neuromorphic architecture.

A number of large-scale neuromorphic systems have emerged over recent years

taking advantage of the enormous transistor resources now available on a sin-

gle microchip. The enhanced capabilities of the neuromorphic systems enable

modellers to contemplate building models of complete brains of animals from in-

sects up to smaller mammals, or substantial sub-areas of the human brain, and

the same systems also offer platforms capable of supporting new scales of cogni-
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tive architecture (S. Furber, 2016). A tabular comparison of the neuromorphic

hardware platforms are adapted from (Scott, 2015) and shown in Table 3.2.

SpiNNaker: The SpiNNaker hardware, developed as part of the Human Brain

Project is a massively parallel digital computer whose communication infras-

tructure is motivated by the the objective of modelling massively scalable SNN

with the brain like connectivity profile in biological real time. In many respects,

SpiNNaker resembles conventional supercomputers, with the following differ-

ences:

• The processors in SpiNNaker are mobile IC chips.

• The communication protocol in SpiNNaker is brain inspired and is opti-

mised for broadcasting large quantities of small data packets to destina-

tions in a stochastic manner.

The SpiNNaker system is designed around a plastic ball grid array package which

incorporates a custom processing chip and a 128 Mbyte SDRAM memory chip.

The processing chip contains 18 ARM968 processing cores, each with 23 Kbytes

of instruction memory and 64 Kbytes of data memory, a multicast packet router

and sundry support components (S. Furber, 2016). The SpiNNaker communi-

cation fabric is based on a 2D triangular mesh with each node formed from a

processor layer and a memory layer. The routing is based upon packet-switched

Address Event Representation and relies on the fact that the connections from a

particular neuron are static, or at most slowly changing. Each neuron can route

through a unique tree, though in practice routing is based on populations of

neurons rather than individual neurons, and the restricted size of each routing

table makes this optimisation necessary in most cases. In addition to the hard-

ware system, the project also developed numerous high level neural description

language, such as PyNN (Davison et al., 2008) and Nengo (Bekolay et al., 2013)

for application development on SpiNNaker.
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IBM TrueNorth: The IBM TrueNorth chip is the hardware developed under the

DARPA SYNAPSE programme aimed at developing dense, power-efficient hard-

ware for cognitive applications. This hardware consists of a 5.4 million transistor

28 nm CMOS chip with 4096 cores, where each core is made up of 256 neurons

each having 256 synaptic inputs (Cassidy et al., 2013).

The design of the TrueNorth core is a 256× 256 cross-bar which selectively con-

nects incoming neural spike events to outgoing neurons. The cross-bar inputs

are coupled via buffers that can insert axonal delays. The outputs from the

cross-bar couple into the digital neuron model, which implements a form of IF

algorithm with 23 configurable parameters that can be adjusted to yield a range

of different behaviours, and digital pseudo-random sources are used to generate

stochastic behaviours through modulating the synaptic connections, the neuron

threshold and the neuron leakage. Neuron spike event outputs from each core

follow individually-configurable point-to-point routes to the input to another

core, which can be on the same or another TrueNorth chip. Where a neuron

output is required to connect to two or more neurosynaptic cores, the neuron is

simply replicated within the same core. The TrueNorth hardware is supported by

a software emulator, which, exploiting the deterministic nature of the hardware,

can be relied upon to predict the performance of the hardware exactly.

Apart from these two systems that rose to prominence, numerous other neuro-

morphic hardware systems are being constantly developed. Some of the systems

worth a mention include Neurogrid (Stanford University) (Boahen, 2006), Brain-

ScaleS (University of Heidelberg) (Markram et al., 2011), and multi-PWM pulse

generator (Zheijiang University) (J.-l. Li, Wang, Li, Han & Zhang, 2005).
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3.7 Brief Review of SNN Software

Implementations

The number of software implementations that have appeared, as a result of on-

going research in the area of ANN and SNN, is ever growing. These software

packages are developed for two main purposes:

• Data analysis: They are aimed at analysing real-world data derived from

practical applications. These software use a relatively simple static archi-

tecture, hence are easily configurable and easy to use. A few examples

of such software are: multi-layer perceptron (MLP) (Baum, 1988), RBF

network (Park & Sandberg, 1991), Probabilistic network (PNN) (Specht,

1990), Self organising maps (SOM) (Kohonen, 1998), Evolving connec-

tionist systems, such as DENFIS and EFuNN (N. Kasabov, 2007). These

software are either available as independent open source APIs, such as

NeuCom (“NeuCom”, n.d.), PyBrain (python) (Schaul et al., 2010), Fast

Artificial Neural Network (C++) (Nissen & Nemerson, 2000), or as part

of a data analytics suite like Weka (Hall et al., 2009), Knime (Berthold

et al., 2008), Orange (Demar, Zupan, Leban & Curk, 2004) and so on.

• Research and development systems: As opposed to data analysis software,

they are complex in behaviour, and require expert knowledge for usage

and configuration. The majority of the existing SNN software belong to

this class of ANN.

NEURON (M. L. Hines & Carnevale, 1997): Neuron is aimed at simulating a

network of detailed neurological models. Its ability to simulate biophysical prop-

erties, such as multiple channel types, channel distributions, ionic accumulation

and so on, renders it well suited for biological modelling (Brette et al., 2007). It

also supports parallel simulation environment through: (1) distributing multiple

simulations over multiple processors, and (2) distributing models of individual

cells over multiple processors.

3.7 Brief Review of SNN Software Implementations 46



PyNEST (Eppler, Helias, Muller, Diesmann & Gewaltig, 2008): The neural simu-

lation tool (NEST) is primarily developed in C++ to simulate a heterogeneous

network of spiking neurons. NEST is implemented to ideally model neurons

in the order of 104 and synapses in the order of 107 to 109 on a range of de-

vices from single core architectures to supercomputers. NEST interfaces with

python via implementation of PyNEST. PyNEST allows for greater flexibility in

simulation setup, stimuli generation and simulation result analysis. A ‘node’

and a ‘connection’ comprise the core elements of the heterogeneous architec-

ture. The flexibility to simulate ‘a neuron’, ‘a device’ or ‘a subnetwork (which

can be arranged hierarchically)’ as a node, provides a major improvement over

(Pecevski, Natschläger & Schuch, 2009). Due to the bottom-up approach of net-

work simulation, the software allows for individually configurable neuron states

and connection setup.

Circuit Simulator (Natschläger, Markram & Maass, 2003): The circuit simulator

is a software developed in C++ for simulation of heterogeneous networks with

major emphasis on high-level network modelling and analysis, as opposed to

(M. L. Hines & Carnevale, 1997). The C++ core of the software is integrated

with Matlab based GUI, for ease of use and analysis. CSIM enables the user to

operate both spiking and analog neuron models along with mechanisms of spike

and analog signal transmission through its synapse. It also performs dynamic

synaptic behaviour by using short and long-term plasticity. In 2009, circuit sim-

ulator was further extended to parallel circuit simulator (PCSIM) software with

the major extension being implementation on a distributed simulation engine in

C++, interfacing with Python based GUI.

Neocortical Simulator (Drewes, 2005): NCS or Neocortical Simulator is a SNN

simulation software developed for simulating mammalian neocortex (Brette et

al., 2007). During its initial development, NCS was a serial implementation in

Matlab but later rewritten in C++ to integrate distributed modelling capability

(E. C. Wilson, 2001). As reported in (Brette et al., 2007), NCS could simulate

in the order of 106 single compartment neurons and 1012 synapses using STP,

LTP and STDP dynamics. Due to the considerable setup overhead of the ASCII-
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based files used for the I/O, a Python-based GUI scripting tool called BRAINLAB

(Drewes, 2005) was later developed to process I/O specifications for large scale

modelling.

Oger Toolbox (Pecevski, n.d.): Oger toolbox is a Python-based toolbox, which

implements modular learning architecture on large datasets. Apart from tradi-

tional machine learning methods such as PCA and ICA, it also implements SNN

based reservoir computing paradigm for learning from sequential data. This soft-

ware uses a single neuron as its building block, similar to the implementation in

(Eppler et al., 2008). A major highlight of this software includes the ability to

customise the network with several non-linear functions and weight topologies,

and a GPU optimised reservoir using CUDA.

BRIAN (D. F. Goodman & Brette, 2009; D. F. Goodman, 2010): Brian is a SNN

simulator application programming interface written in Python. The purpose

of developing this API is to provide users with the ability to write quick and

easy simulation code (D. F. Goodman, 2010), including custom neuron models

and architecture. The model definition equations are separated from the imple-

mentation for better readability and reproducibility. D. F. Goodman and Brette

(2009) also emphasise the use of this software in teaching a neuroinformatics

course (Diesmann, Gewaltig & Aertsen, 1999). A major limitation of BRIAN is,

however, the requirement of Python knowledge to run the simulation, and the

lack of GUI for the non-technical user community.

3.8 Evolving Connectionist System

It is beyond any speculation that AI and neuromorphic hardware systems be-

long to a unified symbiotic ecosystem, where a neuromorphic hardware is truly

neuromorphic if and only if it has dynamic learning, adaptation and creativ-

ity incorporated in the framework. On the other hand neuromorphic learning

systems are paradigm shifting in machine learning where it is not only about
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accurate performance, but also about performing it economically using limited

resources.

Subsequently, I will concentrate on the principle and evolution of the Evolving

Connectionist System (ECOS) with emphasis on our work in evolving spiking

neural network (eSNN). The rest of the Chapter is an adaptation of our work

presented in (Arya, Vadlamani, Valadi, Sengupta & Kasabov, 2016) along with

an article under review.

3.8.1 Principles of ECOS

The human brain’s unique ability to combine low level learning within an in-

terconnected framework and high level rule abstraction leads to the learning of

abstract concepts. ECOS is inspired by this very concept and aims at training

neural networks for deriving abstract knowledge representations that explains

data and can be used as an interpretable knowledge-based system. The ECOS

was developed as a trend in neural networks and computational intelligence by

N. Kasabov (2001) and incorporated in many novel computational methods over

the last few decade across different application domains. Some classical exam-

ple of ECOS systems are EFuNN (N. Kasabov, 1998) and DENFIS (N. Kasabov

& Song, 2002), where classical McCulloch and Pitts neuron models are used to

perform pattern recognition in single dimensional scalar data. ECOS principle

was propagated further to evolving spiking neural networks (eSNN) that used

spiking neuron models and temporal spike sequences as data representation.

The eSNN was architected primarily as a visual pattern recognition system. The

first eSNNs were based on the Thorpes ‘time to first spike’ rule (S. Thorpe et al.,

2001), in which the importance of early spikes (after the onset of a certain stim-

ulus) is boosted, called rank-order encoding and learning. N. Kasabov, Dhoble,

Nuntalid and Indiveri, 2013 further proposed dynamic eSNN (deSNN), which

combines rank order encoding of eSNN with dynamic Hebbian spike-time based

learning. The main advantage of the eSNN when compared with other super-

vised or unsupervised SNN models is that it is computationally inexpensive due
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to the one-pass nature of the learning algorithm and boosts the importance of

the order in which input spikes arrive, thus making the eSNN based algorithms

suitable for on-line learning with a range of applications. For a comprehensive

study of ECOS and eSNN see (Watts, 2009; Wysoski, Benuskova & Kasabov,

2010). I, in collaboration with The Institute of Development and Research in

Banking Technology, India, have used eSNN in applications of automatic cyber

fraud detection and stock price movement prediction case studies. In the follow-

ing two Sections, the results that have been obtained will be summarised from

these two studies. The detail of each of the studies can be found in Appendix A

and B

3.8.2 Application of eSNN in Forecasting Stock Price

Movement

Prediction of the stock price index and its trend are considered challenging tasks

due to their complexity, non-linearity, dynamic and chaotic nature. In addition,

the stock market behaviour is also influenced by socio-political movements, in-

vestor psychology, and so on. Although many researchers have explored several

forecasting techniques, it is for the first instance that eSNN has been employed to

develop a computational model for the stock market movement trend prediction.

In this study, two computational models are proposed, namely, CUDA-SI-eSNN,

which is a parallel CUDA implementation of the standard eSNN architecture.

The second algorithm, known as SW-eSNN, is the incremental learning of eSNN

using a sliding window of data. Appendix B describes the motivation behind

this study along with descriptions of the proposed SI-eSNN, CUDA-SI-eSNN and

SW-eSNN architectures along with the formal description of the algorithms.
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Dataset Description and Experiments with the SI-eSNN and the

CUDA-eSNN Models

The datasets used in this study are obtained from QUANDL (“Quandl Financial,

Economic and Alternative Data.” n.d.), (“Historical - Indices.” n.d.), and (“NSE -

National Stock Exchange of India Ltd.” n.d.). These datasets cover stock market

indices of different countries: BSE, Nikkie-225, NIFTY-50, S&P-500, Dow-Jones,

NYSE-Amex, DAX, NASDAQ and Shanghai stock exchange. In this study, thir-

teen technical indicators have been selected as input variables based on earlier

research done in (K.-j. Kim, 2003; J. Patel, Shah, Thakkar & Kotecha, 2015;

Kara, Boyacioglu & Baykan, 2011). The direction of daily stock price index is

categorised as ‘UP’ or ‘DOWN’. If the stock price index at time t is higher than that

at time t+ 1, then the trend is ‘DOWN’. If the stock price index at time t is lower

than that at time t+ 1, then the trend is ‘UP’. The number of instances of each of

the stock index data is given in Table B.3. The details about selected indicators

is given in Table B.2 and the summary statistics of selected technical indicators

for each stock indices are provided in the supplementary information.

In the experiments, the first 70% of the temporal stock data represented by the

13 indicators on a daily basis are used as input variables for training the SI-eSNN

and the CUDA-SI-eSNN models and the future 30% of the time series stock data

is used to test the model accuracy. Experiments in the present study were carried

on systems with 32 GB RAM and eight cores. The GPU device used for all of our

experiment is GeForce GT730. The details of the GPU device is given in Table

B.4.

Classification accuracy and AUC scores were used to evaluate the performance

of both eSNN and CUDA-SI-eSNN models. Sensitivity and specificity are used

to assess the AUC score. In addition to the sensitivity, specificity and accuracy

equations described earlier, the AUC score can be defined as:

AUC score =
Sensitivity+ Specificity

2
(3.16)
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Table 3.3.: Accuracy and AUC of CUDA-eSNN model with Gaussian Distribution for
different stock indices.

Datasets BSE Nikkie-225 NASDAQ NIFTY-50 S&P-500

No. of Gaussian Receptive Fields Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC

3 82.17 0.84 0.82 81.57 3.3 0.81 84.46 0.89 0.84 76.85 0.61 0.76 82.96 8.51 0.82
4 85.71 1.06 0.86 82.53 4.67 0.82 85.43 1.1 0.85 79.96 0.7 0.79 83.74 9.77 0.83
5 83.88 1.25 0.83 80.33 5.96 0.8 84.22 1.23 0.84 80.13 0.69 0.8 81.16 11.59 0.81
6 85.59 1.36 0.85 84.41 7.15 0.84 84.22 1.24 0.83 77.37 0.79 0.77 82.72 13.78 0.82
7 87.05 1.39 0.87 80.88 8.06 0.80 85.92 1.53 0.86 82.55 0.81 0.82 82.53 18.95 0.82
8 85.47 1.55 0.85 86.15 8.91 0.85 81.79 1.55 0.81 82.03 0.84 0.81 84.03 22.05 0.84
9 88.76 1.65 0.88 82.12 9.68 0.82 84.7 1.67 0.84 81.69 0.93 0.81 82.16 29.05 0.82
10 86.08 1.75 0.86 87.12 10.6 0.87 85.92 1.84 0.85 83.93 0.99 0.83 84.13 35.7 0.84
11 88.64 1.78 0.88 83.73 11.58 0.83 84.7 1.91 0.84 80.31 1.05 0.8 84.5 39.36 0.84
12 87.91 1.88 0.88 86.11 12.41 0.86 83.49 2.04 0.83 82.38 1.08 0.82 81.26 46.94 0.81
13 88.4 2 0.88 83.68 13.15 0.83 84.22 2.19 0.84 84.45 1.18 0.84 84.74 51.51 0.84
14 87.91 2.25 0.88 86.57 14.04 0.86 83.73 2.19 0.83 81 1.22 0.8 84.13 51.88 0.84

∗Acc.=Accuracy, ∗T.T = Training Time

Table 3.4.: Accuracy and AUC of CUDA-eSNN model with Gaussian Distribution for
different stock indices (Continued).

Sanghai Stock Exchange Dow-Jones NYSE-Amex DAX-Index

No. of Gaussian Receptive Fields Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC

3 77.48 1.68 0.77 75.31 0.83 0.74 78.37 2.01 0.77 79.23 2.67 0.79
4 78.14 2.08 0.78 76.59 0.93 0.76 84.04 2.5 0.83 77.64 4 0.77
5 80.74 3.13 0.8 75.31 0.96 0.74 82.75 3.67 0.81 81.55 5.12 0.81
6 80.37 3.3 0.8 78.38 1.05 0.78 80.56 3.96 0.8 82.07 5.79 0.81
7 79.92 3.7 0.79 79.79 1.23 0.79 82.62 4.4 0.82 78.41 6.43 0.78
8 79.18 3.73 0.79 79.28 1.46 0.79 77.79 4.7 0.77 82.22 7.22 0.81
9 79.48 3.76 0.79 78.51 1.49 0.78 82.78 5.1 0.83 82.53 7.76 0.82

10 80.37 4.8 0.8 77.74 1.59 0.77 83.65 5.51 0.82 82.07 8.48 0.81
11 82.66 5.2 0.82 77.62 1.69 0.77 81.78 6.05 0.81 83.41 9.11 0.83
12 79.77 5.33 0.79 79.28 1.77 0.79 86.29 6.45 0.85 84.9 9.66 0.84
13 79.7 5.9 0.79 81.2 1.84 0.8 83.78 6.87 0.83 82.22 10.68 0.81
14 80.44 5.44 0.8 80.17 2.03 0.79 86.42 7.42 0.86 84.75 11.23 0.84

∗Acc.=Accuracy, ∗T.T = Training Time

Tables 3.3 and 3.4 reports the accuracy and AUC of CUDA-SI-eSNN model for a

different number of Gaussian receptive fields on various stock indices.

In Table 3.5, the performance of both SI-eSNN and CUDA-SI-eSNN models have

been included for the best value of some Gaussian receptive fields. The accuracy

of both these models is very high across all stock indexes (between 80% and

90%) and only slightly different between the two models. Table 3.5 also reports

the time for training performed by both the SI-eSNN and the CUDA-SI-eSNN on

the same data. While the latter is 2 to 5 times faster, the SI-eSNN training was

very fast as well. For example, it took only 40 seconds to train the SI-eSNN on

5000 samples for the S&P-500, while it took 20 seconds on the CUDA-SI-eSNN.

Table 3.5.: Comparisons of SI-eSNN and CUDA eSNN for the best value of number of
Gaussian receptive fields.

eSNN CUDA-eSNN

Dataset Size of training data No. of Gaussian Receptive Fields (Best) Accuracy (%) Training Time (Sec) AUC Accuracy (%) Training Time (Sec) AUC

BSE 1912 9 88.15 5.91 0.88 88.76 1.65 0.88
Nikkie-225 5092 10 87.12 23.67 0.87 87.12 10.6 0.87
NASDAQ 1923 7 86.04 5.22 0.86 85.92 1.53 0.86
NIFTY-50 1353 13 83.76 5.98 0.84 84.45 1.18 0.83
S&P-500 9591 13 84.71 82.56 0.84 84.74 51.51 0.84

Shanghai Stock Exchange 3149 11 83.18 12.87 0.82 82.66 5.2 0.83
Dow-Jones 1824 13 81.2 8.53 0.8 81.2 1.84 0.8
NYSE-Amex 3625 14 86.16 20.09 0.86 86.42 7.42 0.86
DAX-Index 4527 12 84.16 24.05 0.84 84.9 9.66 0.84

3.8 Evolving Connectionist System 52



Table 3.6.: Accuracy and AUC of CUDA-SI-eSNN model using Logistic Distribution for
different stock indices.

Datasets BSE Nikkie-225 NASDAQ NIFTY-50 S&P-500

No. of Logistic Receptive Fields Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC

3 78.14 0.85 0.78 84.87 3.05 0.84 70.87 0.87 0.71 72.02 0.57 0.72 70.85 8.24 0.7
4 77.53 1.01 0.75 86.98 3.32 0.86 83.98 1.12 0.83 78.23 0.64 0.78 79.68 9.16 0.79
5 79.36 1.12 0.78 81.57 3.7 0.81 83.85 1.11 0.83 82.21 0.68 0.82 84.47 11.01 0.84
6 84.37 1.32 0.84 86.29 4.29 0.86 85.19 1.27 0.84 80.65 0.72 0.8 80.58 12.23 0.8
7 86.81 1.38 0.86 81.57 5.07 0.81 87.37 1.81 0.87 83.24 0.76 0.83 83.09 15.37 0.82
8 85.34 1.55 0.85 86.34 6.45 0.86 86.89 1.52 0.86 81.69 0.79 0.81 85.86 19.97 0.85
9 90.47 1.63 0.9 84.55 7.67 0.84 86.77 1.65 0.86 82.03 0.89 0.82 83.81 24.53 0.83
10 86.81 1.74 0.86 86.66 9.73 0.86 85.8 1.74 0.85 83.93 0.96 0.83 84.28 30.96 0.84
11 89.01 1.78 0.89 85.24 10.59 0.85 87.5 1.85 0.87 81.69 1.02 0.81 85.71 35.78 0.85
12 88.03 1.89 0.88 86.38 11.58 0.86 87.01 1.99 0.86 84.8 1.09 0.84 83.5 41.02 0.83
13 89.13 2.03 0.89 86.52 12.87 0.86 86.16 2.05 0.86 85.14 1.15 0.85 84.54 45.49 0.84
14 87.05 2.08 0.87 86.61 13.87 0.86 86.28 2.19 0.86 84.8 1.18 0.84 85.76 49.69 0.85

Table 3.7.: Accuracy and AUC of CUDA-SI-eSNN model using Logistic Distribution for
different stock indices (Continued).

Sanghai Stock Exchange Dow-Jones NYSE-Amex DAX-Index

No. of Logistic Receptive Fields Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC Acc. (%) T.T (Sec) AUC

3 78.74 1.6 0.78 73.91 0.79 0.73 69.75 2.07 0.69 75.32 2.65 0.74
4 78.88 1.95 0.78 74.8 0.81 0.74 81.59 2.43 0.8 77.94 3.63 0.77
5 77.85 2.54 0.77 78.9 0.86 0.78 81.14 3.14 0.8 85 4.78 0.84
6 81.11 3.03 0.81 78 0.92 0.78 81.85 3.63 0.81 81.04 5.59 0.8
7 80 3.23 0.79 79.66 1.05 0.79 86.16 4.15 0.85 80.47 6.24 0.8
8 79.7 3.49 0.79 81.45 1.27 0.81 82.11 4.59 0.81 82.27 6.82 0.81
9 80.29 3.78 0.8 79.79 1.34 0.79 84.42 4.91 0.84 83.51 7.57 0.83
10 81.92 4.15 0.81 79.79 1.46 0.79 84.23 5.34 0.83 82.63 8.11 0.82
11 83.03 4.53 0.83 82.09 1.63 0.81 84.1 5.79 0.83 84.49 8.83 0.84
12 81.55 4.73 0.81 80.56 1.74 0.8 86.62 6.23 0.85 85.67 9.57 0.85
13 81.03 5.1 0.81 82.99 1.81 0.83 83.91 6.87 0.83 84.23 10.25 0.83
14 82.48 5.41 0.81 81.84 1.97 0.81 85.97 7.14 0.85 84.75 11.07 0.84

Table 3.8.: Comparisons of SI- eSNN and CUDA-SI-eSNN for the best value of number
of Logistic receptive fields.

eSNN CUDA-SI-eSNN

Dataset Size of training data No. of Logistic Receptive Fields (Best) Accuracy (%) Training Time (Sec) AUC Accuracy (%) Training Time (Sec) AUC

BSE 1912 9 90.04 5.78 0.89 90.47 1.63 0.9
Nikkie-225 5092 10 86.66 22.17 0.86 86.66 9.73 0.86
NASDAQ 1923 11 88.14 6.14 0.87 87.5 1.85 0.87
NIFTY-50 1353 13 84.74 5.65 0.84 85.14 1.15 0.85
S&P-500 9591 8 85.23 40.83 0.85 85.86 19.97 0.85

Sanghai Stock Exchange 3149 11 83.85 11.83 0.83 83.03 4.53 0.83
Dow-Jones 1824 13 82.87 5.43 0.83 82.99 1.81 0.83
NYSE-Amex 3625 12 85.94 19.23 0.85 86.62 6.23 0.85
DAX-Index 4527 12 85.16 23.02 0.85 85.67 9.57 0.85
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Table 3.9.: p values of McNemar test for the pairwise comparison of performance of
CUDA-SI-eSNN with Logistic and Gaussian distribution.

Stock Indices p Values

BSE 0.648
Nikkie-225 0.804
NASDAQ 0.794
NIFTY-50 0.470
S&P-500 0.269
SSE 0.044
DJUS 0.007
NYSE-Amex 0.001
DAX-Index 0.125

The results of CUDA-SI-eSNN with Logistic Distribution is presented in Tables 3.6

and 3.7. Logistic distribution was employed in place of Gaussian in (Farquad,

Ravi & Raju, 2012) too, where better results were obtained with the former.

The experimental results showed that CUDA-SI-eSNN with Logistic distribution

outperforms the CUDA-SI-eSNN model with Gaussian distribution on all stock

indices except on Nikkie-225 stock index. The accuracy of CUDA-SI-eSNN with

Logistic distribution varies between 82.99% and 90.47%. The result of the CUDA-

SI-eSNN with the best value of a number of logistic receptive fields presented

in Table 3.8. The training time of the CUDA-SI-eSNN with logistic receptive

fields is different from the training time of the CUDA-SI-eSNN with Gaussian

receptive fields for the same number of receptive fields is due to running of

other background processes. The CUDA-SI-eSNN model with logistic receptive

fields outperformed the CUDA-SI-eSNN model with Gaussian receptive fields in

all stock indices since logistic distribution has higher kurtosis than the Gaussian

distribution.

To test whether CUDA-SI-eSNN with Logistic Distribution significantly outper-

forms another model, the McNemar test was used. The result of McNemar test

is given in Table 3.9. The McNemar test showed that CUDA-SI-eSNN with Lo-

gistic Distribution significantly outperforms other model on DJUS, NYSE-Amex,

and SSE stock indices at 5% statistical significance level.
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Table 3.10.: Average AUC score of SW-eSNN Incremental approach using Logistic and
Gaussian distributions.

Dataset eSNN+Logistic eSNN+Gaussian

BSE 0.77 0.71
Nikkie-225 0.72 0.69
NASDAQ 0.76 0.77
NIFTY-50 0.69 0.67
S&P-500 0.75 0.73

Sanghai Stock Exchange 0.67 0.65
Dow-Jones 0.73 0.7
NYSE-Amex 0.73 0.69
DAX-Index 0.72 0.7

Appendix B also presented the SW-eSNN model. In this approach, a model is first

trained with one-year data and then tested for the prediction on the subsequent

month. Subsequently, the window was slid by one-month for next one-month

prediction. The experimental results show that the average AUC score of the

models over all the benchmark data sets vary from 65% to 80% and for some

months reaches 100%. The manifested fluctuation across monthly prediction

accuracy is expected with this model due to the short window length used and

external factors affecting the stock price movement.

The average AUC score of SW-eSNN incremental approach for both logistic distri-

bution and Gaussian distribution on all stock indices is presented in Table 3.10.

This result shows that SW-eSNN incremental approach with logistic distribution

outperformed SW-eSNN incremental approach with Gaussian distribution on all

stock indices except on NASDAQ stock index.

3.8.3 Application of eSNN in Cyber Fraud Detection

In the present work (Arya et al., 2016) published in 2016, an application of

eSNN based system for detecting cyber frauds in phishing websites was pre-

sented. This study has applied the eSNN algorithm to learn a model for detect-

ing phishing websites from URL and web page source information. The detail of

the eSNN learning algorithm used is described in Appendix A.
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Table 3.11.: Comparison of performance of eSNN and other iterative and non iterative
machine learning algorithms on the phishing website data.

Classifiers Type Sensitivity (%) Specificity (%) Accuracy (%)

Gaussian process

Iterative

99 100 99.5
Logistic Regression 91 88 89.5
MLP 89 80 84.5
CART 94 90 92
Gaussian Process+CART 94 87 90.5

Probabilistic NN
One pass

93 92 92.5
eSNN 89 90 89.5

Table 3.12.: t-test based model comparison.

t-statistic value (accuracy)

eSNN vs.

Gaussian Process 4.33
Logistic Regression 1.12
PNN 1.17
MLP 3.04
CART 0.2

Dataset Description

For the purpose of experiments on phishing website detection, a web phishing

dataset was used for phishing website detection. 200 phishing websites were cho-

sen for analysis, where 50% URL’s were phishing website and the rest were legit-

imate websites URLs. The URLs are collected from PhishTank (www.phishtank.

com). The dataset was created by extracting 17 features based on t-statistics

values from web pages source code and URLs.

Results

The result of the experiments performed on the web phishing data sets are pre-

sented in Tables 3.11 and 3.12. All the reported results are 10-fold cross vali-

dated. The details of eSNN model testing method and hyperparameter selection

protocol are described further in Appendix A. The performances of the various

models were compared with respect to sensitivity, specificity and overall accu-

racy. These measures are defined as the following:

3.8 Evolving Connectionist System 56

www.phishtank.com
www.phishtank.com


Specificity =
TN

TN + FP
(3.17)

Sensitivity =
TP

TP + FN
(3.18)

Accuracy =
TP + TN

TP + FP + TN + FN
(3.19)

Where TP = True Positive, TN = True Negative, FP = False Positive, FN = False

Negative, where a phishing website is considered to be a positive class and non-

phishing as negative class.

In Table 3.11, the proposed eSNN algorithm for cyber fraud detection is com-

pared with the iterative and one-pass learning algorithms. The result shows that

the proposed eSNN model achieves better performance with respect to overall

accuracy and sensitivity/specificity in comparison to the one pass PNN algorithm.

Table 3.12 compares the eSNN model performance with the benchmark models

based on the t-statistic value. The t-test value is found to be less than 2.83 (t-

table value concerning 18 degrees of freedom, i.e., 10 + 10− 2 = 18) in all the

classifier except GP and MLP. For all the cases, eSNN performance is statistically

equivalent.
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3.9 Contributions and Publications

Contributions

1. Historical evolution of artificial neuron and neural networks.

2. Review and motivation of the hardware and software implementa-

tion of spiking neural networks.

3. Application of evolving spiking neural network on cyber fraud detec-

tion.

• Implementation of a novel sequential eSNN classification algo-

rithm.

• Comparison of the proposed algorithm with iterative and one-

pass learning algorithms on cyber fraud detection problem.

4. Application of evolving spiking neural network on stock movement

forecast.

• GPU implementation of the evolving spiking neural network al-

gorithm.

• Implementation of the sliding window approach for evolving

spiking neural network.

• Evaluation of one day ahead stock index forecast across 9 dif-

ferent stock indices.
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Publications

1. Kasabov, N., Sengupta, N., & Scott, N. (2016, September). From

von neumann, John Atanasoff and ABC to Neuromorphic computa-

tion and the NeuCube spatio-temporal data machine. In IEEE 8th

International Conference on Intelligent Systems (IS), 2016 (pp. 15-

21). IEEE.

2. Arya, A. S., Ravi, V., Tejasviram, V., Sengupta, N., and Kasabov, N.

(2018, January) Cyber fraud detection using evolving spiking neural

network, in IEEE International conference on industrial and informa-

tion systems (ICIIS), 2016 (pp. 263-268). IEEE.
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4A Review of NeuCube: An

Evolving Spatio-Temporal

Data Machine Framework

In the last decade or so, with the advent of deep neural network, a significant

proportion of research in artificial intelligence and machine learning has been

conducted in the area of neural networks. This has led to a massive diversifi-

cation in the architecture and functionality of the neural networks. This diver-

sity across the domain of neural networks makes it extremely difficult to review

the area exhaustively or even perform systematic taxonomy as such. van Veen

(2016) has visually demonstrated (see Figure 4.1) the node level block archi-

tectures of several popular neural networks. This is a very useful comparative

diagram to provide broad understanding of different neural networks. However,

care must be taken in interpreting the networks from the figure as the node level

diagram hides several degrees of abstractions and similar looking architectures

(e.g. VAE and DAE), which may be greatly different with respect to training

protocol and application areas.

In this Chapter, the focus will be shifted towards discussing the novel evolv-

ing spatio-temporal data machine, NeuCube, proposed by Nikola Kasabov in (N.

Kasabov, 2012). This framework is especially designed to take advantage of het-

erogeneous properties present in the data, especially in the form of spatial and

temporal information. NeuCube draws its inspiration from the of recurrent neu-

ral network based reservoir computing paradigm and this topic will be discussed

further.
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Figure 4.1.: Node level architectures of popular neural networks (source van Veen
(2016)).
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4.1 Recurrent Neural Networks

Rather than diverting into describing all the networks (see (van Veen, 2016) for

a brief description of all the architectures shown in Figure 4.1), I will concen-

trate on the recurrent neural networks (RNN). RNNs can be described simply as

feed forward neural networks (FFNN) with a time twist. RNNs consist of a set

of processing elements (neurons) which are interconnected by abstractions of

synaptic connections. The interconnected mesh enables activations to be prop-

agated through the network. The characteristic feature that differentiates RNN

from FFNN is the connection topology. RNNs possess cyclic connections form-

ing intra and inter-layer loops. The existence of cyclic connection has profound

impact:

1. Even in the absence of input signals, RNNs possess the ability to develop a

self-sustained activation dynamics along the cyclic connections. This prop-

erty allows RNNs to act as a dynamic system as opposed to the function

like behaviour of FFNN.

2. RNNs possess dynamic memory and are able to make use of temporal con-

textual information.

The philosophy of the recurrent neural network is rooted in the fact that humans

do not start thinking from scratch every second. When an individual reads or

speaks, their understanding of a concept at any point in time is contextually

dependent on what they understood earlier. Thoughts have persistence. Tra-

ditional neural networks are not capable of using information in a contextual

manner, which is a major shortcoming. For example, to classify events in a video

over time, it is unclear how a traditional neural network could use its reasoning

about previous events in the video to inform future events.

RNNs are built to address this exact issue. The network retains information

by including loops in them. On the left hand side of Figure 4.2, a RNN block is
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Figure 4.2.: Unrolled RNN (source Olah (2015)).

Figure 4.3.: Mapping capabilities of RNN (source Karpathy (2015)).

shown. Block A, receives some input xt and outputs a value ht. A loop passes the

information from one step of the network to the next step (Olah, 2015). An RNN

can be intuitively described as multiple copies of the same network unrolled

across the time dimension (see Figure 4.2). This chain-like nature reveals that

recurrent neural networks are intimately related to sequences and lists. They

are the natural architecture of neural networks to use for such data.

4.1.1 What Makes RNN Effective?

Andrej Karpathy in his blog post (Karpathy, 2015) addresses this question with

great detail. In his post, he argued that the ability of the RNNs to operate over

sequences of vectors, input, output or both makes it more powerful. Figure 4.3

taken from (Karpathy, 2015) describes the effectiveness with respect to map-

ping capabilities of RNN. Each rectangle in the figure represents a vector and

the arrows are functions (such as matrix multiplication). The input vectors are

coloured in red, output vectors in blue and RNN hidden states in green. From

left to right, it shows: (1) The typical FFNN style vanilla processing with fixed

size input and output; (2) Sequence of outputs (Image captioning. One image

as input and a sequence of words as output); (3) Sequence of inputs (Sentiment

analysis. Sequence of word as input and sentiment as output); (4)Sequence
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input and delayed sequence output (Machine translation); and, (5) Synced se-

quence input and output (Video frame labelling).

From a dynamic system viewpoint, two major classes of RNNs exist. The first

class of models are characterised by symmetric connections and energy min-

imising stochastic dynamics (Lukoeviius & Jaeger, 2009). The best known ar-

chitectures of this category are Hopfield Network (Hopfield, 1982), Boltzmann

Machine (Hinton & Sejnowski, 1986), Deep Belief Network (Bengio, Lamblin,

Popovici & Larochelle, 2007) and Long Short Term memory (Hochreiter & Schmid-

huber, 1997a). These networks are mostly trained in some unsupervised learn-

ing scheme. Typical targeted network functionalities in this field are associative

memories, data compression, the unsupervised modelling of data distributions,

and static pattern classification, where the model is run for multiple time steps

per single input instance to reach some type of convergence. In contrast, the sec-

ond big class of RNN models typically features a deterministic update dynamics

and directed connections. Systems from this class implement non-linear filters,

which transform an input time series into an output time series. The mathe-

matical background here is non-linear dynamical systems (Lukoeviius & Jaeger,

2009). I will focus on the second category of RNNs as part of my work.

4.2 Formalisation of the Temporal Learning

Problem

A traditional machine learning task can be expressed mathematically as the

learning of functional dependence given an input x(n) ∈ RNx and ground truth

y(n) ∈ RN, where n = 1, · · · ,T , and T is the number of samples in the training

dataset {x(n), y(n)}. In a static data scenario, there is no temporal dependence

between the samples, and the objective is to learn a function ŷ = f(x), such that

the error or loss function E(ŷ, y) is minimised. On the contrary, in a temporal

task, x and y are signals in a discrete time domain n = 1, · · · ,T , and the goal

is to learn ŷ = f(x(1), · · · ,x(n− 1),x(n)), such that that E(ŷ, y) is minimised.
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Figure 4.4.: Schematic diagram of a feed forward neural network vs. a reservoir com-
puting system (source Abel and Fompeyrin (n.d.)).

This formalism clearly shows that in the temporal learning scenario, the function

learned is stateful or memory driven as opposed to the stateless non-temporal

task. In a dynamic filter approach of RNN, it typically implements the non-linear

expansion of memory as a state vector of the form described in the equation

below:

h(n) = f(Winx(n) +Wx(n− 1), · · · ), n = 1, · · · ,T (4.1)

where h is the activation function of a computational unit.

4.3 Reservoir Computing and Liquid State

Machines

Figure 4.4 compares the node level diagram of a typical FFNN and the reser-

voir computing approach. Reservoir computing as described by Schrauwen, Ver-

straeten and Van Campenhout (2007) is a dynamic filter, where an input signal

is fed into a fixed and random dynamic system called reservoir, and the dynam-

ics of the reservoir performs non-linear expansion of the input into a higher di-

mensional space. A recurrence-free readout mechanism then takes the data and

maps it to the desired output. Figure 4.5 shows the intuition of reservoir comput-
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Figure 4.5.: Principle of reservoir computing: The input states are transformed into
a high-dimensional feature space where classification can be performed
with linear operation (source Abel and Fompeyrin (n.d.)).

ing paradigm in a schematic diagram. Since the expansion and the readout serve

different purposes, training/generating them separately and even with different

goal functions makes sense. The blue nodes in FFNN acts as non-dynamic and

non-linear transfer functions. On the other hand, the blue nodes in a reservoir

computing paradigm acts as a reservoir of recurrently connected neurons which

possess the ability to act stateful and transform data into a higher dimensional

space for the readout layer (green) to map into output with relative ease. The

"traditional" RNN training methods do not make the conceptual separation of a

reservoir vs. a readout, and train both reservoir-internal and output weights in

technically the same fashion. For a detailed review of reservoir computing, see

(Lukoeviius & Jaeger, 2009).

4.3.1 Liquid State Machines

Liquid State Machines (LSM) are a special kind of RNN architecture within the

reservoir computing paradigm proposed by Maass, Natschläger and Markram

(2002). LSMs were primarily intended for elucidating computational proper-

ties of microcircuits from a computational neuroscience perspective. Therefore,
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LSMs possess great sophistication and biological realism with respect to the be-

haviour of the neurons within the reservoir. The reservoir of LSM is often de-

scribed as a liquid state. Input data feeds to the reservoir resembles "throwing

pebbles into a pond" creating ripples in the fluid in the reservoir. The interac-

tion of the ripples creates useful patterns over space and time. The neurons of

LSM are spiking in nature and due to the biological plausibility are extremely

complex and parameter-heavy in nature. For this reason, the LSMs have proven

to be not only computationally expensive but also difficult to tune. However, a

major advantage of using LSM is its ability to perform complex information pro-

cessing through temporal encoding in a highly efficient manner. I will provide

discussion on this topic in Chapter 6. The main theoretical contributions of the

LSM brand to reservoir computing consist in analytical characterisations of the

computational power of such systems.

4.4 NeuCube Evolving Spatio-temporal Data

Machine

The brain is a complex integrated spatio-temporal information processing ma-

chine. The mammalian brain is made up of spatially distributed structural

and functional areas constrained within a three dimensional space. External

stimuli and/or inner processes are of a varying nature, such as visual, audi-

tory, somatosensory, olfactory and so on, from which emanate a complex spatio-

temporal activity path within the brain leading to highly efficient and accurate

recognition of patterns.

For example Benuskova and Kasabov (2010) provide the following example:

"· · · the language task involves transfer of information from the inner ear through

the auditory nucleus in thalamus to the primary auditory cortex (Brodmanns

area 41), then to the higher-order auditory cortex (area 42), before it is relayed

to the angular gyrus (area 39). Angular gyrus is a specific region of the parietal-
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Figure 4.6.: Schematic architecture diagram of NeuCube.

temporal-occipital association cortex, which is thought to be concerned with the

association of incoming auditory, visual and tactile information. From here, the

information is projected to Wernickes area (area 22) and then, by means of the

arcuate fasciculus, to Brocas area (44, 45), where the perception of language

is translated into the grammatical structure of a phrase and where the memory

for word articulation is stored. This information about the sound pattern of the

phrase is then relayed to the facial area of the motor cortex that controls artic-

ulation so that the word can be spoken. It turns out that a similar pathway is

involved in naming an object that has been visually recognised. This time, the

input proceeds from the retina and LGN (lateral geniculate nucleus) to the pri-

mary visual cortex, then to area 18, before it arrives at the angular gyrus, from

where it is relayed by a particular component of arcuate fasciculus directly to

Brocas area, bypassing Wernickes area."

The example above shows that the brain processes information through the ac-

tivation of complex spatiotemporal trajectories involving multiple functional ar-

eas. The NeuCube evolving Spatio-Temporal Data Machines are derived exactly

from this very philosophy.

The generic principles of the NeuCube architecture was introduced in (N. Kasabov,

2012) and was further elaborated in (N. Kasabov et al., 2014; N. K. Kasabov,

Doborjeh & Doborjeh, 2017; Sengupta, Ramos et al., 2018). Figure 4.6 shows

a schematic diagram of the NeuCube evolving Spatio-Temporal Data Machine

(eSTDM) architecture. This framework is designed to use the spatial and tempo-

ral relationships in the data and therefore expects a spatio-temporal data source
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to feed spatio or spectro temporal data (SSTD) to the system. The NeuCube

framework is a tiered architecture of three layers.

4.4.1 Encoding

The encoding layer is the first layer of NeuCube. This layer is responsible for con-

verting real world continuous SSTD into a sequence of events or binary spikes.

Formally, the encoding layer transforms real continuous data RN×T (N is the fea-

ture count or the spatial component and T is the temporal component) into spike

trains {0, 1}N×T . Numerous temporal encoding algorithms like BSA (Schrauwen

& Van Campenhout, 2003), temporal contrast, GAGamma (Sengupta, Scott &

Kasabov, 2015) are proposed and used in an application specific manner. The

data encoding layer in NeuCube can also be observed as a data compression

layer which has the unique property of compressing data in temporal domain

by representing important events by spike-timings. In the temporal encoding

scheme, the timings of the spikes are considered to be useful rather than the

quantity of the spike. This is in contrast to the traditional data compression algo-

rithms like auto-encoder and PCA, as the compression in the data is performed

in a temporal dimension of the data. Sengupta and Kasabov (2017) discusses

the temporal encoding by spike-time representation in the light of data compres-

sion and information theory, and compares the capabilities of different temporal

encoding algorithms.

4.4.2 SNNc

The SNNc layer is claimed to be the most complex and novel component of this

architecture. It is an unsupervised learning layer composed of a 3D grid of spa-

tially arranged spiking and input neurons. Each neuron inside the grid has a

spatial location and resides within a neighbourhood of other neurons. This grid

is known as the spiking neural network cube (SNNc) in the NeuCube architec-

ture. The purpose of the SNNc layer is to transform the compressed spike rep-

resentation of input data into a higher-dimensional space through unsupervised
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learning (g : {0, 1}N×T → {0, 1}M×T |M >> N) inside an SNNc, using a mod-

ified Hebbian spike-time dependent plasticity (STDP) learning (Song, Miller &

Abbott, 2000). The purpose of learning in the SNNc is to dynamically update the

synaptic strengths within the network to mimic spatio-temporal synchronicity in

the data.

STDP Learning

STDP is a temporally asymmetric form of Hebbian learning induced by temporal

correlations between the spikes generated by the pre and post-synaptic neurons.

With STDP, repeated pre-synaptic spike arrival earlier than post-synaptic spike

release leads to strengthening of the synapse known as long-term potentiation

(LTP), and, in contrast, repeated spike arrival after post-synaptic spikes leads to

weakening of the synapses known as long-term depression (LTD). The change of

the synapse plotted as a function of the relative timing of pre- and post-synaptic

action potentials is called the STDP function or learning window and varies

between synapse types. I will formalise and discuss on the STDP learning rule

and its variations as part of Chapter 5.

4.4.3 Readout

The readout layer is the last layer of the sequence in the NeuCube framework.

This layer digests the spike-time data generated by the SNNc and maps it to

relevant pattern labels (classification) or values (regression). KNN-based models

(N. Kasabov et al., 2013) are the typical choice of supervised learning in almost

all of the work done until now. However, the architecture is flexible enough

to include other supervised learning methods that can perform spike pattern

associations, such as SPAN (Mohemmed, Schliebs, Matsuda & Kasabov, 2012),

SpikeProp (Schrauwen & Van Campenhout, 2004), ReSuMe (Ponulak & Kasiski,

2010) etc.
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4.5 Departure of NeuCube from LSM

The NeuCube framework described in Section 4.4, in many respects, is inspired

from the LSM architecture. In fact, the NeuCube framework can be considered

as the next generation evolution of LSM. From Figure 4.6, it is quite clear that

the second and the third layer of NeuCube architecture is the same as that of the

LSM shown in Figure 4.4.

Prior to discussing the novelty that NeuCube provided in the last couple of lay-

ers, it must be realised that the encoding layer of NeuCube is unique to the

framework. One major disadvantage of the applicability of LSM is its inability

to perform computation in continuous valued data. The encoding layer of Neu-

Cube addresses this disadvantage of LSM by adding the encoding layer. Useful

encoding of high density data is of paramount importance for efficient and effec-

tive recognition of patterns in the spatio-temporal domain. The encoding layer

typically aims to design algorithms to encode data following the temporal encod-

ing paradigm discussed earlier. The objective of these encoding methods is to

minimise the spike density while maximising the information retention in the en-

coded data. Realisation of such an objective ensures that the data encoder acts

as a data compression machine. The data compression by encoding allows for:

(1) Reduction of systematic noise in the data; and (2) Improvement in variability

between patterns, and thus makes it much more recognisable.

The NeuCube SNNc shares numerous conceptual similarities to the LSM, pri-

marily among which is the fading memory of the neurons, ability to transform

otherwise non-linearly separable data to higher-dimensional space. Some of the

limitations of LSM architecture are:

• In contrast to the contentions in (Natschläger, Maass & Markram, 2002),

LSM alone is not sufficient to model human brain functionality.
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• The effectiveness of the reservoir network in LSM is heavily dependent on

a random selection of parameters.

• Due to the random connections within the reservoir, LSMs are spatially

irrelevant and non-analysable. This makes the LSM behave very much like

a black box.

The NeuCube SNNc seeks to address these issues through creating a meaning-

ful structure of the network. The random connectome of LSM is replaced with

a meaningful spatially organised connectome structure in NeuCube. This con-

nectome is designed to physically encode a priori knowledge of the data being

processed. This allows inspection of the evolution of clusters of the model over

space and time. The spatio-temporal knowledge discovery and analysis through

inspection resembles the visualisation and analysis capability of Kohonen’s self

organising maps (Kohonen, 1990). However, the information represented in the

SNNc model is distinctly different from the Kohonen’s map. Contrary to the static

information representation in the synaptic strengths of the SOM, the SNNc can

capture the spatio-temporal dynamics. This feature in conjunction with the com-

mon neural network analysis techniques allows knowledge extraction from the

structure of the network. This means that general patterns, aberrant behaviours,

and insights not otherwise comprehensible can be surfaced by analysis.

4.6 Software Design Architecture of the

NeuCube Framework

Any theoretical and conceptual design of pattern recognition system is invari-

ably followed by implementation and design considerations. The design con-

siderations necessary for applying the generalised NeuCube architecture in an

application specific manner is well elaborated in (Scott, 2015) and provides an

useful insight on how to use a priori knowledge in designing the NeuCube archi-

tecture. The multi-modular and rather minimally-constrained description of the
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Figure 4.7.: Block diagram of the multi-modular NeuCube software architecture.

NeuCube framework allows high flexibility in plugging in variety of algorithms

and innovations as part of the framework. This flexibility also poses a great chal-

lenge in defining a clear ground truth of singularity in NeuCube. The evolution

of NeuCube from a tool to perform neuro-informatic data analysis to a general

purpose pattern recognition machine has also constrained the software develop-

ment process to be unified in a single direction. Figure 4.7 introduces a block

level diagram of the NeuCube software implementation strategy. This thesis di-

rectly contributes towards the development of the blocks highlighted in black.

This architecture uses the core pattern recognition framework described earlier

as the core component, and wraps a set of functionalities around the framework.

There are three configuration abstractions present in the implementation strat-

egy:

• Basic configuration: The basic configuration includes a prototyping and

testing module integrated with the I/O module. The main intention of

this configuration is to use the NeuCube framework for general purpose

pattern recognition, prototype model development and experimentation.

Apart from model development capabilities, this module possesses addi-

tional integrated capabilities, such as dynamic visualisation, knowledge

discovery and model analysis, and parameter optimisation modules. Due

to the requirement of general purpose usage, this implementation is fo-

cused more towards usability and hence graphical user interface driven.
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Figure 4.8.: Standard configuration of the NeuCube software architecture consisting
of the prototyping and testing module, immersive visualisation module
and the SpiNNaker neuromorphic hardware chip.

The basic configuration is developed using Matlab and is freely available

(licensed) for public usage. I will describe the design of the prototyping

and testing software later in this Chapter.

• Standard configuration: The standard configuration is an extension of

the basic configuration and includes development of scalable software for

large scale experiments, and general purpose and neuromorphic hardware

implementations. Since the prime focus is on scalability, the software im-

plementations for large scale simulation are API driven and much more

consideration is given to efficiency of implementation rather than usability.

Additionally, the standard configuration also includes immersive visualisa-

tion of the NeuCube model for deeper analysis and knowledge discovery.

These implementations generally follow strict software patterns and uses

higher level languages like Java and Python. The contribution of this the-

sis towards the large scale implementation and simulation is presented in

Chapter 5.

• Full configuration: In addition to standard configuration, the full config-

uration includes all the application specific implementations of the Neu-

Cube, such as personalised modelling, multi-modal brain data modelling,

seismic event forecasting and so on. These application specific modules
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Figure 4.9.: NeuCube generic prototyping and testing software user interface and
panel descriptions.

are developed for specific application purpose and extends the NeuCube

architecture by adding application specific algorithms or functionality. This

thesis contributes towards the development of methods and functionalities

for multi-modal brain data. Chapters 6 and 7 are dedicated to this topic.

4.6.1 NeuCube for Generic Prototyping and Testing of

Applications

The generic prototyping and testing tool is a GUI based Matlab implementation

for rapid development of SNN application prototype systems for temporal or

SSTD. The software is implemented as a set of continuous signal processing

steps as shown in Figure 4.6. The user interface of NeuCube, as shown in Figure

4.9, is built as a set of functional components. An exhaustive description of the

components can be found in the manual distributed along with the software.

Here, I will briefly describe some of them:
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Table 4.1.: Supported file format for descriptors.

Descriptor type Mat JSON CSV

Dataset 3 3 3

SNNc 3 3 7

Parameter 3 3 7

Result 3 7 3

I/O and Information Exchange

The information exchange component is used to import or export user defined

information to and from the software, which includes temporal or SSTD data,

NeuCube models, parameters and results. This module interacts with the exter-

nal environment using four data descriptors. They are the following:

• Dataset descriptor: The Dataset descriptor consists of the data (and the

meta data), that is to be learned and analysed. In the majority of cases, a

dataset consists of a set of time series samples and the output label/value

for the sample set. It is also possible to add miscellaneous information

like feature name, encoding method and other meta information in the

dataset.

• SNNc descriptor: The SNNc descriptor is essentially the model descriptor

containing all information related to the structure and learning of the SNN.

Some of the most important information stored in this descriptor are the

spatial information of the input and reservoir neurons, structural informa-

tion of the SNNc and the state of the SNNc during learning.

• Parameter descriptor: The parameter descriptor stores all the user defined

parameters including hyperparameters of data encoding algorithms, the

unsupervised learning algorithm and the supervised learning algorithm.

• Result descriptor: The result descriptor stores information about the exper-

imental results produced by NeuCube.
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(a) data encoding. (b) SNNcube initialisation.

(c) Unsupervised learning. (d) Supervised learning.

Figure 4.10.: Algorithmic control UI panels.

This module supports three different file formats, Mat (binary), JSON (struc-

tured text) and CSV (comma separated plain text). Table 4.1 describes the sup-

ported file formats for each of the descriptor type. As a heuristic, the Mat format

is recommended for achieving faster I/O. The CSV files are the recommended

choice for import/export of dataset and results for later analysis. The JSON

format is recommended for inter modular communication.

Algorithm Interactions

This module allow users to interact with the pattern recognition and signal pro-

cessing algorithms via the algorithm controls panel, shown in Figure 4.9. The

algorithm control panel includes a set of buttons for configuring and running
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the step by step process of data encoding, network initialisation, unsupervised

learning (by training the SNNc) and supervised learning. The software uses a

guided approach for performing the algorithmic steps by enabling or disabling

buttons after every operation. Figures 4.10a, 4.10b, 4.10c and 4.10d shows the

individual user interaction panels for encoding, initialisation, unsupervised and

supervised learning respectively. Each panel allows users to choose from a set

of algorithms and corresponding hyperparameters. For example, the data en-

coding panel (Figure 4.10a) that encodes the real-valued signal to spike trains

also provides the option of choosing from a set of encoding algorithms and its

hyperparameters from the drop down menu. The algorithmic control interacts

with the visualisation panels, for visualisation and analysis of the data and the

models.

Integrated Visualisation and Network Analysis

Visualisation and model analysis is an integral feature of this module. Due to

NeuCube’s ability to create an interpretable and analysable model, the visuali-

sation and analysis features plays an important part. Visualisation capabilities

includes: comparative display of real and encoded data; online dynamic visual-

isation of the SNNc learning; Visualisation of the SNNc model and the output

readout layer.

Analysis of an SNNc network can be performed using the network analysis tool-

box. This toolbox includes a bunch of graph analysis capabilities for measuring

and visualising interactions between nodes and edges the SNNc at different lev-

els. The network analysis consists of two major functionalities: (1) Neuron clus-

ter analysis; and, (2) Information route analysis. An example of neuron cluster

analysis is shown in Figure 4.11

Parameter optimisation Parameter optimisation is developed to allow users to

search for the optimal set of hyperparameters for the NeuCube prototype sys-

tem (model). The computational time for parameter optimisation depends on
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Figure 4.11.: Neuron cluster analysis by network analysis toolbox (A)Neuron cluster-
ing based on connection weights of the network (B)average one to one
interaction between the input nodes. The thicker lines signifies more
interaction.

the number of parameters to be optimised and the size of the NeuCube model.

Parameter optimisation, can be performed using various methods, such as: Grid

search; Genetic Algorithm; Differential Evolution; Quantum Inspired Evolution-

ary Algorithms, and PSO. The current release of NeuCube includes two methods

(Grid search and Genetic algorithm).

4.6.2 NeuCube Based Spatio-temporal Data

Research and Applications

Application of NeuCube in Brain Data Modelling

A number of recent studies have applied NeuCube architecture to brain data

modelling, especially using ElectroEncephalography (EEG) data and functional

Magnetic Resonance Images (fMRI) brain data. The spatio-temporal informa-

tion contained in EEG and fMRI data poses challenges to standard statistical or

machine learning techniques. Though, often standard machine learning tech-

niques are used to process spatio-temporal brain data, they lack the ability: (1)

to recognise differences in neurological dynamics that occur over the time; (2)

identify the functional brain area involved; and, (3) to quantify the information

involved. The RNN architecture of NeuCube, however, improves such capabil-
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ities (Taylor et al., 2014; Hu, Hou, Chen, Kasabov & Scott, 2014; N. Kasabov

et al., 2013). In (Capecci, Kasabov & Wang, 2015) for example, NeuCube was

used to study mental tasks using data collected by a 19-channel EEG recorder.

This research showed the ability of NeuCube to classify and analyse changes in

functional brain activities. This study was quite significant for identification of

the appearance of mild cognitive impairment (MCI) and the staging of its de-

generation toward Alzheimers Disease (AD). Recently, there has been a huge

interest in using functional magnetic resonance imaging (fMRI) to understand,

analyse and predict behaviour and cognition. The ability of fMRI to sample high

resolution spatial information over time has been successfully used in correlat-

ing high resolution neural activity with behaviour. NeuCube has been used in

several studies (Doborjeh, Capecci & Kasabov, 2014; N. K. Kasabov et al., 2017)

involving fMRI data.

NeuCube for BCI

The feasibility of using NeuCube with EEG data to develop a functional electrical

stimulation BCI/BMI system that is able to assist in the rehabilitation of complex

upper limb movements was shown in (Taylor et al., 2014). In order to provide

an effective tool for this purpose, a NeuCube model was trained on EEG data for

a series of relatively complex muscle movements. The preliminary experiments

suggest that NeuCube is much more efficient for this task than standard machine

learning techniques, resulting in high recognition accuracy, a better adaptability

to new data, and a better interpretation of the models, leading to a better under-

standing of the brain data and the processes that generated it.

NeuCube for Neuro-rehabilitation

Neuro-rehabilitation is another area of research NeuCube was applied as feasibil-

ity analysis study. Biomimetic learning and information processing time-scales

of NeuCube provides appropriate technology for integration with mental tasks.
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In addition, the fast and incremental learning offered by the framework is capa-

ble of adapting to the users’ changing abilities as their rehabilitation progresses.

Repetitive activities of daily living (ADL) and robotic active training are com-

monly practised in the rehabilitation of paralysed patients, both of which have

been proven effective in the recovery of locomotor function in impaired limbs.

Classification of ADL from EEG is of interest for the active robotic rehabilita-

tion of patients with spinal cord injuries (SCI). This classification is a significant

challenge with classical techniques, as these cannot manage the high noise, vari-

ability, and gradual change (due to the subject learning or rehabilitating the

task) in the EEG signals effectively. Hu et al. (2014) performed an experiment

using the NeuCube eSTDM to identify the upper-limb ADL of three classes with

14-channel EEG data. Classification accuracy using this technique is shown to

be promising despite the highly noisy, low resolution EEG data (Hu et al., 2014).

This experiment indicates strong potential for further exploration of the Neu-

Cube for neuro-rehabilitation tasks.

NeuCube for SSTD Modelling in Other Applications

Several applications of NeuCube in the above areas are described in (N. Kasabov,

Scott et al., 2016; Doborjeh et al., 2018), including: individual risk of stroke

prediction based on personal, static data and temporal climate data; early exper-

imental results on earthquake prediction; predicting establishment of harmful

species in ecology; and stock index prediction.
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4.7 Contributions and Publications

Contributions

1. Introduction to recurrent neural networks and evolution of reservoir

computing and liquid state machines.

2. Overview of the NeuCube evolving spatio-temporal data machine archi-

tecture.

3. Description of the Software design framework of NeuCube and the Neu-

Cube prototyping and testing environment.

Publications

1. Kasabov, N., Scott, N. M., Tu, E., Marks, S., Sengupta, N., Capecci,

E., ... & Espinosa-Ramos, J. I. (2016). Evolving spatio-temporal data

machines based on the NeuCube neuromorphic framework: design

methodology and selected applications. Neural Networks, 78, 1-14.

2. Sengupta, N., Ramos, J.I.E., Tu, E., Marks, S., Scott, N.,... & Abbott,

A. (2018). From von Neumann architecture and Atanasoffs ABC

to Neuromorphic Computation and Kasabovs NeuCube: Principles

and Implementations, Learning Sytems: From Theory to Practice

Springer.
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5Data Structure Optimisation

and Software Architecture

Design for the

Implementation of

Large-Scale Spiking Neural

Networks

5.1 Introduction

Chapters 3 and 4 have, on numerous occasions, discussed the importance of find-

ing a trade-off between the biological plausibility and the computational com-

plexity of computational models. The discussions have, especially, been focused

on the spiking neuron. In this Chapter, the concentration will be on implementa-

tion level design considerations for simulating scalable spiking neural network

architectures. The push towards big data analytics is driving the development of

fast, scalable and real-time pattern recognition systems all over the world. Scala-

bility of the machine learning framework plays a crucial role in realising the big

data dream. Interestingly, this issue of scalability was seldom solved using actual

scaling in machine learning, at least not in the big data sense. Part of the reason

is certainly that multi-core processors did not yet exist on the scale they do today

and that the idea of just scaling out was not as pervasive as it is today. Instead,

‘scalable’ machine learning is almost always based on finding more efficient al-

gorithms, and most often, approximations to the original algorithm which can

be computed much more efficiently. According to Vowpal Wabbit (Langford, Li

& Strehl, 2007):
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"There are two ways to have a fast learning algorithm: (a) start with a slow algo-

rithm and speed it up, or (b) build an intrinsically fast learning algorithm. This

project is about approach (b), and its reached a state where it may be useful to

others as a platform for research and experimentation."

This Chapter will be taking the first approach and will use the second layer or

the SNNc component of the NeuCube framework (Read Chapter 4 for overview)

to drive the discussion. Before moving into the crux of this Chapter, a broad

picture of the contrasting properties of a digital computer will be painted. There

will also be discussions of a biological brain which poses significant challenges

in integrating both in a single framework.

5.2 Brain vs. Digital Computers

Although, the brain-computer metaphor has served cognitive psychology well,

research in cognitive neuroscience has revealed many important differences be-

tween brains and computers.

1. Memory and storage: In computers, data stored in memory is accessed by

looking at a precise memory location. This is known as byte-address mem-

ory. On the contrary, the brain uses content-address memory, such that

data can be addressed in memory through activation spread from closely

related concepts.

2. Parallelism: The brain is naturally a massively parallel machine. Commu-

nication and synchronisations are automatically dealt with by the neuronal

mesh of the brain. On the other hand, von Neumann architecture driven

computer systems are modular and serial. Parallelism cannot be integrated

into such an architecture intuitively.

3. Processing speed and system clock: The speed of neural information pro-

cessing is subject to a variety of constraints, including the time for electro-
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chemical signals to traverse axons and dendrites, axonal myelination, the

diffusion time of neurotransmitters across the synaptic cleft, differences in

synaptic efficacy, the coherence of neural firing, the current availability of

neurotransmitters, and the prior history of neuronal firing. Although there

are individual differences in processing speed, this does not reflect a mono-

lithic or unitary construct, and certainly nothing as concrete as the speed

of a microprocessor. Instead, psychometric processing speed probably in-

dexes a heterogeneous combination of all the speed constraints mentioned

above. Similarly, there does not appear to be any central clock in the brain,

and there is debate as to how clock-like the brains time-keeping devices

actually are.

4. Processing unit and memory interactions: Computers process information

from memory using CPUs, and then write the results of that processing

back to memory. No such distinction exists in the brain. As neurons process

information they are also modifying their synapses which are themselves

the substrate of memory.

5. Heterogeneity and size: The brain in its full maturity is a gigantic net-

work of over 86 billion brain cells (or neurons) with approximately 1750

synapses per neuron. It is estimated that a truly biological model of the

brain would have to include nearly 225 million billion interactions be-

tween cell types, neuro-transmitters, neuro-modulators, axonal branches

and dendritic spines. This means layers of hierarchy and heterogeneity is

present in the brain with complex interactions among them.

5.3 NeuCube SNNc

The second layer or the SNNc layer of the NeuCube (see Figure 4.6) is considered

to be the most complex layer of the NeuCube architecture and it is computation-

ally most expensive. For example, the NeuCube implementation distributed as

part of the prototyping and testing module requires gigabyte order memory for
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running the unsupervised learning for an SNNc of size less than 1000 neurons.

Hence, it is necessary to concentrate on this layer to improve scalability of the

NeuCube system.

5.3.1 SNNc Architecture, Mapping and Initialisation

Scheme

The SNNc architecture of NeuCube consists of a spatially arranged (in three di-

mensions) set of neurons (computational units), denoted by set M (with |M |

defining the cardinality of the set). The neurons are partially connected by re-

current synapses forming a directed incomplete and acyclic graph. The neurons

and synapses form the vertices and the edges of the graph. The SNNc architec-

ture is thus formalised as a directed graph G = {M ,C,W}, consisting of the set

of neurons M , the set of directed synaptic connections, C and the corresponding

strengths or weights of the connections W . The network consists of two types of

neuron:

• Input neurons: The input neurons, denoted by set N ⊂M (with |N | defin-

ing the cardinality of the set), feed the input spike data (generated by the

encoding layer) to the SNNc. These neurons do not have any activations

and do not perform any computations. The input neurons form a similar

level of abstraction as does the input layer in traditional neural networks.

It is apparent that the input neurons do not have pre-synaptic connections,

i.e., a synapse can only originate from such a neuron.

• Spiking neurons: The spiking neurons, denoted by set Q ⊂ M (with |Q|

defining the cardinality of the set), are the computational units, and are

leaky integrate and fire (LIF) in nature. These neurons are responsible for

performing computations on input data. The details of the neuron model

is described later. These neurons can act both as post and pre-synaptic

(connection) neurons, i.e. if one considers a pair of neurons connected by

5.3 NeuCube SNNc 86



a directed synapse, the synapse can both originate and end at a spiking

neuron.

The neurons in the SNNc are arranged spatially following the natural spatial ar-

rangements in the data or by using automated mapping algorithms. Tu, Kasabov

and Yang (2017) maps feature covariance in the data to Euclidean distance in

the SNNc. The spatial arrangement of the neurons are typically done in two or

three dimensional space. The synaptic connectivity of the SNNc graph is created

using the small world connectivity (SWC) algorithm (N. Kasabov et al., 2014; Tu

et al., 2014). The SWC algorithm connects a neuron to its spatial neighbourhood

(controlled by the hyperparameter radial distance rswc) of neurons.

5.3.2 Neuron Dynamics Model

The activation of the spiking neurons present in the SNNc is modelled by the

spike response model (SRM), which is a kernel based simplified realisation of

the LIF model. The SRM model generalises the differential equation based dy-

namics of the LIF model (see Equation 3.7) by replacing them with arbitrary

kernels. SRM is a powerful computational framework for temporal integration

with elegant mathematical formulation.

Figure 5.1 shows a typical example of a spiking neuron’s configuration. A spik-

ing neuron has a multi-input, multi-output configuration. A pair of neurons are

connected by synapses. The synaptic strengths are represented by wi. A spiking

neuron receives spike data at different time instances from the pre-synaptic neu-

rons and emit spike data when sufficiently stimulated. The activation state of a

spiking neuron i is described by the membrane potential vi. In a non-stimulated

state, the membrane potential is said to be in a resting state vrest = 0. The SRM

model in the present setup consists of multiple components:
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Figure 5.1.: A typical connectivity configuration of a spiking neuron i.

Post-synaptic Potential Kernel

Firing of pre-synaptic neuron j at time tfj , evokes a post-synaptic potential (PSP)

in neuron i and is modelled by the kernel response function ϵ0.

ϵ0 = exp(−
t− tfj
τm

)H(t− tfj ) (5.1)

where

H(t− tfj ) =

1, if t− tfj ≥ 0

0, otherwise
(5.2)

The PSP kernel is a function of t − tfj , representing the PSP trace over time

generated by the firing of neuron j over time. Figure 5.2 plots the PSP kernel

as the function of t− tf . τm (Equation 5.1) is the membrane constant which

controls the decay rate of the PSP.

Temporal Integration of PSP Kernels and Conditions for Spike Emission

Under the SRM model, the PSPs evoked by the pre-synaptic neurons are tempo-

rally integrated to activate the spiking neuron. The overall contribution of the

pre-synaptic spikes elicited by the pre-synaptic neurons j at any time t is given

as Equation 5.3 describing the SRM model:
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Figure 5.2.: Plot of the PSP trace ϵ0 as a function of t− tf . This figure plots the PSP
simulation for different τm.

vi(t) = vrest +
∑
j∈Ti

wji
∑
tfj ∈Fj

ϵ0(t− tfj ) (5.3)

The temporal summation is a double summation operation. The inner sum adds

up the PSP contributions due to the firings tfj ∈ Fj of one pre-synaptic neuron.

The outer sum adds up the PSP contributions of all the pre-synaptic neurons

j ∈ Ti connected to neuron i. Equation 5.3 describes the membrane potential

(activation state) vi of a spiking neuron i can be calculated by adding the rest-

ing potential term and the temporal PSP sum. Each incoming spike perturbs

the value of vi and if, after the summation of the inputs, the membrane po-

tential reaches the threshold vthr then an output spike is generated. The firing

time is given by the condition vi(t
f
i ) >= vthr. After a neuron fires the neurons’

membrane potential is reset to vrest. In standard NeuCube implementations, the

inner sum is generally set to 1. By setting the inner sum to 1, NeuCube only

uses the information of present instance and forgets the influence of historical

spike-trains, thus demonstrating minimal memory in the neuron model. How-

ever, any instance of the usage of NeuCube based architecture in this thesis uses

the historical information with a preset hyperparameter controlling the memory

horizon.
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Refractory Period

After emitting the spike, a spiking neuron enters a period of quietness known

as the refractory period. During this period, the membrane potential remains

unaffected by incoming spikes. The refractory behaviour can be mathematically

achieved by setting the membrane potential to a infinitely low value. In the SRM

model the neuron behaviour under the influence of refractoriness depends only

on the last firing moment leading to a short-term memory in the neuron. In the

literature, the refractory period is described by absolute and relative refractory

period. During the absolute refractory period, the neurons do not accumulate

membrane potential and hence cannot fire. During the relative refractory pe-

riod, it can be relatively difficult but not impossible to fire the neuron. In this

current implementation, an absolute refractory period for the sake of simplicity

has been used here. The absolute refractory period of a neuron is specified by

the hyperparameter ηthr.

The modified SRM neuronal dynamics of NeuCube is formalised by Equation

5.4. The modifications of the canonical SRM model can be observed in: (1) the

implementation of the PSP kernel which outputs a unit pulse at the time neuron i

receives a spike from neuron j; (2) the implementation of refractoriness, where

the membrane potential is set to negative infinity during the period ηthr after

neuron i fires a spike at time tfi .

vi(t) = vrest +
∑
j∈Ti

wji
∑
tfj ∈Fj

ϵ0(t− tfj ) + η(t− tfi )

ϵ0(t− tfj ) =

1, if t− tfj = 0

0, otherwise

η(t− ti) =

−∞, if t− tfi < ηthr

0, otherwise

(5.4)

Figure 5.3 shows a plot of three simulations of a spiking neuron for 200 discrete

times with random spike inputs. Each simulation uses a preset vthr. At the be-

ginning of the simulation, the neuron is in a resting state vt=0 = vrest. With the
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Figure 5.3.: Plot of the membrane potential traces(vi) of a neuron i simulated over
T = 200 time points using the SRM model. For the simulations, 3 prede-
cessor neurons were connected to a spiking neuron. The spike data from
the predecessor neurons are sampled randomly from uniform random dis-
tribution. The ηthr for the spiking neuron was set to 10. Each of the three
vi traces correspond to a preset vthr mentioned in the label.

arrival of spikes, the membrane potential increases in a linear fashion and when

sufficiently stimulated (sufficiency is determined by vthr), the neuron spikes, and

then goes back to the resting state. At this point, the neuron is said to be in a

refractory state. The neuron stays in this state for a predetermined period ηthr

and then goes back to a non-refractory state.

5.3.3 Unsupervised Weight Adaptation in SNNc

The unsupervised weight adaptation mechanism in the SNNc is an extremely

important aspect of the dynamics. In a neural network paradigm, learning or

plasticity is achieved through the synaptic strength updates of the network. The

learning behaviour of the SNNc can be explained using the learning model of

a single spiking neuron. Considering the single neuron architecture in Figure

5.1, the unsupervised learning problem is to formalise a scheme of updating the

weights W of the network by ∆W (t) over the simulation time T . The NeuCube
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Figure 5.4.: Plot showing the functional dependence of the spike-time dependent plas-
ticity learning rule. The STDP function shows the change of synaptic
weights ∆w as a function of difference in post and pre-synaptic spike-time
difference.

SNNc has employed numerous variations of temporally asynchronous forms of

Hebbian learning in different implementations.

STDP

STDP is a temporally asymmetric form of Hebbian learning induced by temporal

correlations between the spike-timings of pre- and post-synaptic neurons (Song

et al., 2000). As with other forms of synaptic plasticity, it is thought to underlie

learning and memory in the brain, as well as the development and refinement of

neuronal circuits during the development of the brain. With STDP, repeated pre-

synaptic spike arrival, a few discrete times earlier to post-synaptic firing leads to

Long Term Potentiation (LTP) of a synapse, whereas repeated spike arrival after

post-synaptic spike generation leads to Long Term Depression (LTD) of the same

synapse. The synaptic weight changes as a function the relative firing-time of
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the pre- and post-synaptic neurons, also known as the STDP learning window

(Gerstner & Kistler, 2002). The overall significance of STDP lies in the ability

of a spiking neuron to discriminate between, and then integrate, temporally sig-

nificant inputs and transforming that to meaningful output, even though the

actual meaning is not strictly known by the neuron (Markram et al., 2011). Net-

works that employ STDP operates as palimpsests, i.e. older stimuli are forgotten

gradually to make room for new ones.

Gerstner, Kempter, van Hemmen and Wagner (1996), Song et al. (2000) for-

malised the mathematical model of STDP learning as per Equations 5.5 and 5.6.

Symbols j and i are used to indicate pre- and post-synaptic neurons. In STDP

learning, the dynamic change of weight ∆w is estimated using a learning win-

dow function W (·). The learning window takes historical pre-synaptic firing

times {t1j · · · t
f
j } and post-synaptic firing times {t1i · · · t

g
i } as input and calculates

the LTP and LTD traces. These historical firing times are nothing but indices of

a historical spike sequence. For example, a historical spike sequence [01001011]

can be rewritten as sequence of spike-time indices tf := {1, 4, 6, 7}. Exponential

decay functions are a popular choice for the learning window and Equation 5.6

is a good choice of the learning window function. The κ+ and κ− parameters

control the maximum LTP and LTD update respectively and κ− = κ+ = 1 is a

good choice to keep the bounds of weight update between [−1, 1]. From Equa-

tion 5.6, it can be observed that the polarity of (tgi − t
f
j ) defines the polarity of

∆wji. This is Hebbian model of causal relationship where synapses are rewarded

positively (strengthened) for causal firing (i fires later than j i.e. firing of i is

caused by firing of j) and penalised (weakened) for non-causal firing. However,

Equations 5.5 and 5.6 describes a batch update scheme and requires modifica-

tion for on-line learning in the SNNc. Sjöström and Gerstner (2010a) proposed

a modified on-line STDP update rule. In the on-line setting, ∆wji is calculated

every time neuron i fires a spike or receives a spike from neuron j. Equation

5.7 formalises the weight update rule for on-line mode. The first term in the

right hand side of Equation 5.7 corresponds to the LTP update and is calculated

when neuron i fires a spike at time t. The second term is the LTD update and

is calculated when neuron i receives a spike from neuron j at time t. Both the

5.3 NeuCube SNNc 93



batch and on-line formalisations of STDP learning are extended from (Sjöström

& Gerstner, 2010b) which discusses the properties of the STDP learning model

extensively. Figure 5.4 shows the plot of the STDP learning function where the

∆w in quadrants I and III correspond to LTP and LTD respectively.

∆wji :=
∑
f

∑
g
W (tgi − t

f
j ) (5.5)

W (s) :=

 κ+ exp(−s) if s > 0

−κ−exp(−s) if s < 0
(5.6)

∆wji(t) :=
∑
f

κ+ exp(−(t− tfj ))−
∑
g
κ− exp(−(t− tgi )) (5.7)

It is evident from the discussion above that the STDP learning rule enhances or

depletes the synaptic strength of the connections, based on the relative coinci-

dence of the spikes. This behaviour mimics the ability of the biological neurons

to encode information by detecting the occurrence of temporally close but spa-

tially distributed input signals and thus incorporating spatio-temporal informa-

tion in the model.

Modified STDP in NeuCube

The standard NeuCube implementation uses a modified form of the STDP learn-

ing algorithm. The modification mainly relates to when and which neurons are

updated. The contrast between STDP and modified STDP are:

1. As opposed to the STDP learning, in modified STDP learning, synaptic

updates are only performed when a neuron i, fires a spike, and not when

it receives a spike.

5.3 NeuCube SNNc 94



−1.0

−0.5

0.0

0.5

1.0

−100 −50 0 50 100

t − t
ls

δw

Figure 5.5.: Plot of modified spike-time dependent plasticity learning rule imple-
mented in SNNc learning algorithm. The STDP function shows the change
of synaptic weights ∆w as a function of difference in last and present spike-
time difference.

2. When a neuron i fires, both pre- and post-synaptic strengths are updated.

The pre-synaptic connections are strengthened and post-synaptic connec-

tions are depleted.

The weight update rule can be formalised by Equations 5.8 and 5.9, where tls

is the last spike time of a neuron and t is the current time instance. It is quite

evident that the smaller the difference between t and tls the more significant the

weight update is. This weight update rule also implies that enhanced importance

is given to faster firing rate. κ+ and κ−, referred to as learning rate in the

NeuCube literature, control the upper and lower bound of ∆w similar to STDP.

Figure 5.5 shows the functional dependence plot of the modified STDP learning.

It is quite evident from the plot that the weight update curve is very similar to

the STDP weight update rule. The difference, however, lies in the functional

dependence as discussed.

∆wik(t) =
κ+

t− tlsj + 1
(5.8)
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∆wji(t) = −
κ−

t− tlsk + 1
(5.9)

Algorithm 5.1 STDP based SNNc unsupervised learning algorithm

1: input: G = {M ,C,W}, Dseq ∈ {0, 1}|N |×|T |, {hyperparameters :=
vthr, ηthr,κ}

2: output: Oseq ∈ {0, 1}|M |×|T |

3: for all t ∈ T do
4: initialise Clearn ← {}
5: for all i ∈ Q do
6: find firing (at t− 1) pre-synaptic neurons, Jspk(t−1)

i

7: set C ltdi ← (Jspki , i)
8: set Clearn+← C ltdi
9: simulate neuron i as per Equation 5.4

10: if i fires then
11: set Oseq[i, t+ 1]← 1
12: find pre-synaptic neurons, Jspk(t)i

13: set C ltpi ← (Ji, i)
14: set Clearn+← C ltpi
15: end if
16: end for
17: for cji ∈ Clearn do
18: calculate ∆wji(t)←

∑
f κ+ exp(−(t− tfj ))−

∑
g κ− exp(−(t− tgi ))

19: update wji+← ∆wji
20: end for
21: end for

5.3.4 Formal Description of SNNc Unsupervised

Learning Algorithm

A classical implementation of the SNNc unsupervised learning algorithm is for-

mally presented in Algorithm 5.2. This algorithm uses the modified STDP learn-

ing described in Section 5.3.3. The goal of the learning algorithm is to continu-

ously input data sequence Dseq in the form of spikes and simulate the network

G in a way that the synaptic strengths W of the network are updated over time

T to learn poly-synchronous relationships across space and time. The hyperpa-

rameters for neuron simulation (vthr, ηthr) and learning (κ) are also input into

the learning algorithm. At the end of the simulation, the algorithm outputs the

spike sequence Oseq. The simulation of G is performed at every time instance
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Algorithm 5.2 Modified STDP based SNNc unsupervised learning algorithm

1: input: G = {M ,C,W}, Dseq ∈ {0, 1}|N |×|T |, {hyperparameters :=
vthr, ηthr,κ}

2: output: Oseq ∈ {0, 1}|M |×|T |

3: for all t ∈ T do
4: initialise Clearn ← {}
5: for all i ∈ Q do
6: find firing (at t− 1) pre-synaptic neurons, Jspk(t−1)

i
7: simulate neuron i as per Equation 5.4
8: if i fires then
9: set Oseq[i, t+ 1]← 1

10: find pre- and post-synaptic neurons Jspk(t)i and Kspk(t)
i

11: set C ltpi ← (J
spk(t)
i , i) and C ltdi ← (i,Kspk

i )

12: set Clearn+← C ltpi and Clearn+← C ltdi
13: end if
14: end for
15: for {cji, cik} ∈ Clearn do
16: calculate ∆wji ← κ

t−tlsj +1 and ∆wik ← − κ
t−tlsk +1

17: update wji+← ∆wji and wik+← ∆wik
18: end for
19: end for

t ∈ T and is described within the loop between line 3 and 19 in Algorithm 5.2. At

every time instance, an empty variable Clearn is initialised, which stores over the

subsequent steps, a subset of connection identities (Clearn ⊂ C) for the synaptic

strength updates. The simulation is then performed in two subsequent phases.

In the first phase (line 5 to line 14), all the spiking neuronsQ are simulated based

on the spiking neuron model. In NeuCube, the neuron simulations are done fol-

lowing Equation 5.4. In NeuCube, pre- (Jspk(t)i , i) and post-synaptic (i,Kspk(t)
i )

connections of the spiking neurons that fire at time instance t are candidates

for weight evolution. These connections are stored in Clearn for update. The

second step (line 15 to line 18) is the learning stage. During the learning stage,

the connections Clearn are updated according to the learning rule, which in case

of Algorithm 5.2 is the modified STDP learning rule. In addition, Algorithm 5.1

also presented the SNNc unsupervised learning algorithm using the canonical

STDP learning rule described in Section 5.3.3. A careful comparison between

the two algorithms reveal that the synaptic strength update in modified STDP is

drastically different from canonical STDP in regards to when and what synapses

are updated.
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Considerations for Parallelisation

Neural networks are generally considered as a massively parallel problem, i.e.,

the computations are simultaneous rather than sequential in layers of a typi-

cal neural network. Therefore, the divide and conquer type of parallelisation

construct can be very easily achieved in neural networks by using the map and

reduce paradigm of functional programming. However, by observing the char-

acteristics of the SNNc learning algorithm, there does not seem to be a clear

parallelisation approach. This is caused by the recurrence present as the out-

put of the neurons in the SNNc layer, in the form of spike sequences which are

recurrently fed back to other neurons creating a neuron level dependency over

space and time. Therefore, although it is very tempting to merge the learning

step and the neuron simulation step across the spiking neurons together, the

asynchronous nature of the updates deems it an extremely hard parallelisation

problem. The system clock driven computational simulation at the moment is

clearly different from the clock precise parallelised scheme in the brain.

5.4 Analysis of the Data Structure

Representations of SNNc

In this Section, focus of attention will be on the SNNc network structure repre-

sentation G in light of Algorithm 5.2. The overall objective of the network struc-

ture representation analysis is guided by the objective to improve the computa-

tion and storage load of the algorithm as the unsupervised learning mechanism

evolves the network over time. This work specifically looks into the storage and

time complexity of the algorithm with increasing numbers of neurons in the net-

work. During the iterative simulation process, the connections and the weights

of the network are accessed very frequently. Parts of the SNNc network are ac-

cessed specifically in lines 6, 10− 12 and 15− 17. The access to the network is

theoretically a search operation within the search space C for information on

specific neuron identities. In particular, the algorithm needs to access the im-
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Figure 5.6.: Example of the adjacency matrix representation.

mediate neighbours of a given neuron i. These are the pre- and post-synaptic

neurons Jspki and Kspk
i . A data structure that is used for representing the net-

work must, therefore, provide fast accessibility of neighbouring nodes. As an

additional constraint, the present work focuses on the algorithmic implementa-

tion of a general purpose von-Neumann architecture computer (as opposed to

the implementation on a neuromorphic hardware (Scott, 2015) setup), designed

for commodity consumption. Therefore, storage space and computing capacity

are of course constrained and an optimum data structure representation should

be storage- and time-efficient. For the current experiments, a general purpose

PC running a 64 bit Windows 7 enterprise operating system was used; one that

had 16GB RAM, Intel Core i5 processor with 3.20 GHz clock speed. The imple-

mentations of Algorithm 5.2 was done in Matlab version R2014b.

In the Matlab based prototype and testing version of NeuCube, an adjacency

matrix was used to store the connection structure C. According to graph theory,

an adjacency matrix is defined as a square matrix C of order M (number of neu-

rons) where 1 represents an existing edge between the two vertex indices. The

edges correspond to the connections, and the vertices are the neuronal unique

identifiers. In the present implementation, a second adjacency matrix is needed

to store the weights W in order to avoid confusion between the existence of an

edge and the weight values themselves. Figure 5.6 shows an example of an adja-

cency matrix. Since all values in an adjacency matrix can be directly accessed by

using the corresponding neuron IDs as indices, this data structure is extremely

fast. However, due to the nature of storing all relations between vertices, the

storage had grown at a squared rate, and it also showed to be the most storage

demanding option when compared to other data structures.
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Figure 5.7.: Example of the edge-weight table representation.

The second option that was investigated was an edge-weight table. An edge-

weight table stores the connection and their weights in a simple look-up table

with each row containing a pair of neuron indices (identities) i and j, and the

weight of the connection between them, as shown in Figure 5.7. This edge-

weight table used far less storage than the adjacency matrix; however, it was

also considerably slower, because in order to access a connection between a pair

of neurons, the whole table had to be searched, which meant an average time

complexity of O(1
2c). Ordering the table by neuron i to use it as an index could

to some extent alleviate the problem for finding post-synaptic neurons, but not

for pre-synaptic neurons, since in that case only neuron j was given. Therefore,

this data structure is sub-optimal in regards to computation time especially in

case of larger networks.

The third data structure was an adjacency forward list. In graph theory, this is

a list of vertices in which each entry contains a sub-list of neighbouring vertices.

An example for an adjacency forward list is depicted in Figure 5.8. In terms

of storage space, the adjacency list, like the edge-weight table, is considerably

smaller than the adjacency matrix as it only stores the connections. Compared

to the edge-weight table, the adjacency forward list saves space by listing all

neurons connected to neuron i in an indexed list (the index being neuron i) in-

stead of repeating the index for every connection. However, for Algorithm 5.2, a

second adjacency forward list was needed to store the weight values of the con-

nections, which is why this data structure uses slightly more storage space than

the edge-weight table in the experiments. In terms of temporal performance, the

adjacency forward list was also very similar to the edge-weight table in that it

was faster to access post-synaptic connections due to indexing than looking up
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Figure 5.8.: Example of the adjacency forward list representation.

pre-synaptic connections where all sub-lists had to be searched. However, the

indexing mechanism of the adjacency forward list provides a significantly faster

look-up of post-synaptic connections than the edge-weight table. For these rea-

sons, the adjacency forward list is overall expected to scale up best for a larger

number of neurons, compared to the edge-weight table and the adjacency ma-

trix.

Taking into consideration that the adjacency forward list is a very storage-efficient

data structure and that its main bottleneck for temporal performance is the look-

up of pre-synaptic indices, a decision was made to add a second adjacency list

called an adjacency backward list to the structure to represent the connections

from the opposite perspective, thus making the neuron at the end of the con-

nection (neuron j) the index of this second list. A schema of this approach is

shown in Figure 5.9. This backwards indexing mechanism caused a significant

decrease of the algorithm’s execution time, because it effectively reduced the

time complexity of the data structure to O(1) for finding the right pre-synaptic

and post-synaptic indices. In comparison with the other data structures, the

adjacency forward-backward list was now the best alternative for representing

the SNNc network. Table 5.1 gives a comparative overview of the theoretical

complexities in regards to time and storage with the different data structures

discussed here. The complexities are measured by n and c referring to the neu-

ron count and connection count respectively. The relationship between n and c

can be represented by c = α× n2, where α ∈ [0, 1] is the degree of sparseness.

All of the present experiments have used α = 0.02.

The findings from the theoretical analysis of the structures’ complexity could be

verified through the present experimental results. For the experiments, a bench-
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Figure 5.9.: Example of the adjacency forward-backward list representation.

Table 5.1.: Comparison of time and storage complexity for different data structures.

data structure connection type
time

storage
worst average best

adjacency matrix all O(1) S(n2)

edge-weight table all O(c) O(1
2c) O(1) S(c)

adjacency forward list
pre-synaptic O(c) O(1

2c) O(1)
S(2× c)

post-synaptic O(1)

adjacency forward-backward list all O(1) S(3× c)

mark EEG dataset was used. The dataset consisted of EEG data measuring brain

signals during a task of wrist movement. The wrist movements were categorised

into upward, downward, and central directions. This task was performed on a

single subject and EEG data was sampled from 14 channels at a sampling rate of

128 Hz while the subject performed the task. 20 independent trials of one second

duration were collected while the subject performed each movement task. 14 of

the 1485 neurons in the reservoir were randomly chosen as input neurons for the

EEG channels. A network with a highly sparse connectivity (≈ 2% of all possible

connections) was initialised randomly for every experiment. The value of two

per cent was chosen because this was the average amount of connections used

typically during experiments.

Figure 5.10 shows the comparison of storage required in megabytes by each of

the data structures. The graph itself is dependent on the number of neurons in

the SNNc (between 0 and 70, 000 for the storage, and between 500 and 3, 500 for

the execution time). When it was decided that the number of neurons should

be increased further, all values above 80, 000 neurons for the adjacency matrix

and above 120, 000 neurons for the sparse matrix had to be excluded, due to

the above discussed technical restrictions in the experimental setup. In addition,
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Figure 5.10.: Storage space comparison of different data structures with increasing
number of neurons.

it became difficult to distinguish between the curves, especially in the lower

regions of the graph.

It is clearly visible that the adjacency matrix has the steepest increase of stor-

age space needed. The other three data structures are relatively similar in their

development, with the edge-weight table growing slowest. It was interesting to

see that the curve of the sparse matrix was very close to the one of the adjacency

list, which indicates that the internal representation of a sparse matrix in Matlab

is similar to an adjacency list. Figure 5.11 shows the results of comparing the

execution time of the data structures. For the comparison of execution times,

the curve of the edge-weight table showed its disadvantage as it increases near

exponentially. Thus, another graph representation without the edge-weight ta-

ble was created. This showed that the adjacency list was considerably slower

than the matrices and the adjacency backwards list.

These experimental results verify the previous theoretical analysis. The most

promising data structure for representing an SNNc network having a large num-

ber of neurons in the NeuCube SNN is the adjacency list with backwards index-

ing due to its constant complexity in terms of execution time of the algorithm,

and linear storage growth with increasing connection density.
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5.4.1 Large-scale Unsupervised Learning of SNNc

Using the Adjacency Forward-backward List

As a conclusion of the current experimental results, it seemed evident that the

adjacency forward-backward list data structure representation is the most eco-

nomic in regards to storage and temporal complexity. To further demonstrate

this, the NeuCube SNNc learning algorithm in Matlab capable of using the ad-

Figure 5.12.: Snapshot of the spike activity at a time instant inside the SNNc.
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Figure 5.13.: Strongest connections learned by the SNNc at the end of SNNc simula-
tion.

jacency forward-backward list data structure was implemented (see Appendix

C for the Matlab programme). In order to test the efficiency of the implemen-

tation on a much larger scale, Algorithm 5.2 was run on a SNNc consisting of

241, 606 neurons taking the same EEG input data described earlier. The SNNc

was simulated to mimic a brain with neural cells in the order of 106 and connec-

tions in the order of 1010. The spatial coordinates of the neurons were obtained

from the xjView (Cui, Li & Song, 2011) software and resembled the spatial dis-

tribution of the human brain based on the MNI coordinate system. Figure 5.12

shows a snapshot of spiking patterns at a certain time instance during the unsu-

pervised learning simulation. The ripple like behaviour of the liquid state within

the SNNc can be clearly observed in the network. The ripple effect in the SNNc

is of course clearly visible in a dynamic simulation environment. Figure 5.13

shows the strongest connections formed in the brain-like network as a result of

the unsupervised learning.
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5.5 Considerations for Modularity and

Heterogeneity: Towards Graph Based

Software Design of SNNc

In the last Section, the considerations of scalability in regards to the size of the

SNNc was discussed. At this point, it is critical to mention that apart from the

large size, biological brains are considerably modular and heterogeneous. The

theory of modularity suggests that there are functionally specialised regions in

the brain that are domain specific for different cognitive processes. The brain

is often represented as a network of interconnected, dynamically interacting

elements. Cognitive processes are thought to result from the integration of neu-

ronal processing distributed across these complex networks at different temporal

and spatial scales. Several graph theory based methods (Sporns & Betzel, 2016;

Nicolini & Bifone, 2016) have been proposed in analysing the modularity and

heterogeneity in the brain.

The idea of modularity and heterogeneity is of major importance for the neuro-

morphic inspirations of the SNNc architecture design. Heterogeneity and mod-

ularity is observed not only in the brain but is quite prevalent in a broad range

of networks, such as groups in social networks, ensembles of interacting pro-

teins or coregulated genes in cellular network. These clusters or groups of items

have homogeneous property behaviours within the group, and vary considerably

between the groups across the network.

The objective of this Section was to design algorithmic or implementation im-

provements to facilitate heterogeneity and modularity in the SNNc. Let us revisit

the implementation of unsupervised learning algorithms (see Appendix C). The

functional style of implementation constrains the ability to inject heterogeneity

into the network, especially if one considers designing networks with varieties

of neurons, synapses, learning behaviour etc.
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The basic concept behind the template method design pattern is relatively simple.

Generally abstract classes are created representing necessary steps for a general

algorithm operation. An instantiation of the template (class) then implements

these steps with necessary extension. In Algorithm 5.2, the network G is repre-

sented by the tuple < M ,C,W >. M is a list of neuron identifiers and serves

no purpose other than storing the identifiers. The code for neuron simulation

is integrated within the network simulation programme and is independently

treated compared to M . Additionally, weights are modelled independently of

the connections in Algorithm 5.2.

In order to overcome these shortcomings, the SNNc network in the graph based

design is constructed as a directed graph data structure. The graph based ar-

chitecture that was designed is summarised in the UML class diagram shown in

Figure 5.14. The graph G =< V ,E > is made of vertices V = {v1, v2, · · · , vm}

and edges E = {e1, e2, · · · , ec}. The class SNNc is designed at the network level

of abstraction, where behaviours and operations are performed on the whole or

part of the network. Some operations on the network are initialiseNetwork():

used to initialise the SNNc network. Several algorithms can be implemented

as part of the SNNc class; learnNetwork(): Method to perform unsupervised

learning on the SNNc network. This method should be used to handle the syn-

chronisation and broadcasting of the data in the form of spikes across the net-

work; visualiseNetwork(): is used to visualise the dynamic and static states of

the network. The output of this method are similar to the ones shown in Figures

5.13 and 5.12. The vertices and edges forming the SNNc graph are designed

to be modelled individually. Personalised models of vertices and edges ensures

the flexibility of implementing varying degrees of heterogeneity in the network

through encapsulation and polymorphism of the objects.

A vertex in graph G is modelled as an object with the following properties:

1. ID: Stores the unique identification of a vertex.

2. Location: Stores the spatial location of the vertex in the 2D/3D space.
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3. Neuron: Refers to an instance of a suitable neuron model. The Neuron

object is modelled as an instantiation of the GenericNeuron class which

can morph into either input or spiking neurons. A couple of implementa-

tions of spiking neuron models that inherits from the GenericNeuron are

shown as LIFNeuron and IzhikevichNeuron. Each of the spiking neu-

rons are initialised by the init() method and simulated over time using the

simulate() method. It is evident that the realisation of any neuron models

or even newer behaviours in the existing neuron models can be achieved

without much effort through this modular design.

An edge in graph G consists of the following properties:

1. ID: Stores the unique identification of an edge.

2. fromVertexID: Stores the source vertex ID of the edge.

3. toVertexID: Stores the destination vertex ID of the edge.

4. synapse: Refers to an instance of a suitable synapse model implemen-

tation. An example synapse model is described in class Synapse. The

primary behaviour of the synapse is controlled updateSynapse() method.

This method modifies the synaptic strength (weight) using learning rules

implemented as static methods.

Overall to inject modularity and variety in the SNNc, the architecture has been

designed in hierarchical layers of abstraction in a top-down manner. At the

highest layer of abstraction, the SNNc network has been designed only at net-

work level, keeping the vertex and edge level implementations abstract. In the

next layer of hierarchy, the individual vertices and edges are modelled and drills

down further into individual neuron models, learning behaviour and so on. Im-

plementing the architecture this way also allows a user to configure the SNNc at

varying degrees of generality.
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5.6 Summary and Conclusion

In this Chapter, the discussions have primarily revolved around the implementa-

tion aspects of the SNNc. This Chapter began by contemplating the discrepancy

between a biological brain and a computer. The discrepancies formed the ba-

sis of the challenges that arises in developing human brain-like computation

algorithms in computers. Then, there was a presentation of an in-depth for-

malisation, discussion and analysis of the several components of the SNNc ar-

chitecture and unsupervised learning algorithms in NeuCube. This discussion

paves the pathway for analysing the data structure representations of the SNNc

network with respect to scalability and heterogeneity. During this discussion, it

was shown how the network representation plays a decisive role in large scale

implementations, especially balancing the storage and execution time. The im-

portance of modularity and heterogeneity in SNNc was further discussed as well

as a proposal put forward for a hierarchical template pattern-based software

architecture for realising such a goal.
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5.7 Contributions and Publications

Contributions

1. There were qualitative comparisons of the contrasting characteristics of

a biological brain and a computer.

2. In-depth descriptions about the SNNc layer of the NeuCube architecture

were made. This included SNNc network initialisation, simulation and

learning with formalisation of the unsupervised learning algorithm.

3. An analyses of the SNNc network storage architecture and data struc-

ture was presented in the light of large scale simulation of the SNNc.

4. A template pattern based software design architecture of SNNc to in-

corporate modularity and heterogeneity in the SNNc was proposed and

implemented.

Publications

1. Abbott, A., Sengupta, N., & Kasabov, N. (2016, July). Which method

to use for optimal structure and function representation of large spik-

ing neural networks: A case study on the NeuCube architecture. In

Neural Networks (IJCNN), 2016 International Joint Conference on

(pp. 1367-1372). IEEE.
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6A Novel a priori Knowledge

Driven Temporal Encoding

Framework for Compressing

and Recognising Pattern on

Temporal Data

6.1 Introduction

Traditionally, data analytics, especially, predictive analytics and machine learn-

ing have focused on computer intensive approaches that are intended to be ap-

plied directly to the raw data present in the continuous space (Bishop, 2006).

These methods aim to take advantage of the flexibility entailed by continuous

mathematics (uncountable sets) to build complex learning theories that can per-

form pattern recognition in data. However, with the rise of big data, the machine

learning technologies are dealing with new challenges with respect to real time

processing of massive volumes of data. Although the machine learning commu-

nity has continuously striven to learn from massive volumes of data, the devel-

opment has been grounded on the assumption that the computation fits into the

memory seamlessly. In contrast, the current data size has grown to such a scale

that the data are becoming harder to store.
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6.2 Data Compression and Inspirations from

Neural Coding

In this Chapter, the focus will be on the inspirations from the human brain that

allows us to see the problem of data processing and predictive analytics prob-

lem under the big data environment from an alternate perspective. It can be

observed that the continuous incoming stimuli in various forms and frequencies

processed by the human brain can indeed be characterised by the properties of

big data, i.e., volume, variety and velocity. The human brain is considered to be

the most resourceful and efficient system which can recognise distinct patterns

in the streaming continuous stimuli (volume) captured by multiple sensory or-

gans (variety) in millisecond resolution (velocity). It is also observed that human

brain cells, when presented with external stimuli, propagates the signal econom-

ically, over long distances using electrical impulses or spikes via the synaptic

action potentials. Hence, it is imperative that there exists an efficient system,

which converts the massive volume of continuous signal to discrete events or

spikes. In neurobiology, the process of such analog to digital signal transforma-

tion is known as neural encoding (Brown, Kass & Mitra, 2004). It is intriguing

that the process of neural encoding not only converts the big streaming con-

tinuous data space into a compressed space of spikes, but the brain cells also

recognise patterns in such a compressed space. The biological organisation of

the brain tends to create signals with a very specific class of distributions, and

it is from the perspective of evolutionary understanding that these distributions

are optimised for fast analysis. The most popular hypothesis states that the sig-

nal strengths are encoded by the mean firing rate, i.e. stronger input signal

produces larger volumes of neuronal firing on an average in the brain. A range

of studies (Mainen & Sejnowski, 1995; Maunsell & Gibson, 1992) across multi-

ple species in the sensory and motor-neuronal system supports the validity of the

mean firing rate hypothesis. A major drawback of this theory, however, lies in

the association of information density with spike density. Determining the spike

density in millisecond resolution from a large volume of spikes leads to a level

of computational inefficiency. As per an alternate theory on neural encoding,
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neurons carry information in the precise timing of the spikes. This is known as

the temporal encoding or spike-time encoding. Numerous research (Gollisch &

Meister, 2008; Hallock & Di Lorenzo, 2006) has shown the presence of temporal

encoding in different parts of the human brain. Temporal encoding supports the

efficient representation of information that is required for very fast processing

(in millisecond scale) of the stimulus presented to the human brain. As opposed

to the rate coding scheme, high fluctuations in mean firing rate, also known as

inter-spike interval (ISI) probability distribution is considered to be informative

rather than noise in this scheme. The temporal spike-time representation of the

data acts as a lossy compression of information. Most forms of learning, though,

could be seen as forms of data compression. In fact, one can, in terms of pattern

recognition, only learn something from data when there is redundancy in the

data. In many data analysis tasks, the data is preprocessed or recoded in a way

that could be seen as a form of data compression. If such preprocessing does

not destroy the patterns of interest, it results in a comparative performance of

the learning algorithms. The motivation of the temporal encoding, thus, in this

context is to reduce large volumes of data into a compressed state with minimal

loss and the maximal presence of discriminable information. Examples of data

sources where such encoding is useful are high-frequency streaming data, such

as the pulsar data in radio astronomy, and seismic activity data.

6.2.1 Information Theory and Data Compression

From the viewpoint of computational theory, the data encoding problem relates

to the concepts of information theory. In the seminal work on information the-

ory, Shannon (1948) proposed a mathematically complete theory to quantify

transmission of information in a communication channel. A conclusive finding

that the amount of information in any object can be estimated as the description

length of the object continues to set the stage for the development of commu-

nications and data processing. Shannon’s information theory is built on a pre-

supposition that the computable information in an object is the characteristic of

a random source with known probability distribution of which the object is a
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part. To realise this idea, Shannon derived the ‘entropy’ from the first principle

of the theory, which is the measure of average information emitted by an object

when observed. It can be described as the functional mapping of the random

variable to a real number. Kolmogorov (1965), later proposed an alternate and

more generalisable notion of information measurement known as algorithmic

information theory. Contrary to Shannon’s theory, Kolmogorov’s theory of com-

plexity (Kolmogorov, 1965; Chaitin, 1966) considers information as the property

of an object in isolation, irrespective of the way the object came into existence

(Grunwald & Vitányi, 2004). It describes information as the minimum number

of bits from which a message or a file can effectively be reconstructed, i.e. the

minimum number of bits suffice to store a reproducible file. A computational

neuron responsible for emitting spikes from sensory data can be regarded as

a logical transmission medium responsible for broadcasting continuous informa-

tion received from the data source. The two neural coding hypotheses hence can

be seen and described in the light of information theory. It can be observed that

the rate coding scheme adheres to Shannon’s interpretation of encoding. The

inherent assumption of the presence of a random source with a known probabil-

ity distribution in Shannon’s theory is much apposite to the mean firing rate as

it relates to the frequency of spikes over time. However, the interest in efficient

compression of a large volume of data by a sequence of spike-timings and using

it for the purpose of pattern recognition is much more in line with Kolmogorov’s

notion of object representation by minimal description length using computer

programs.

6.3 Literature Review on Analog to Digital

Data Transformation Algorithms

A significant amount of research has focused on using the biological realism

of the SNN for information processing applications akin to traditional neural

networks (Maass, 1997). Under the broad umbrella of SNN, the area of data

encoding has been relatively unexplored compared to neuronal dynamics, net-
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work learning behaviours and so on. Human Information Processing Research

Laboratory’s (Advanced Telecommunication Research Institute) artificial brain

(Cellular Automata Machine Brain) project (De Garis, 1994) used data encod-

ing as a part of its large-scale brain-like neural architecture. Hardware acceler-

ated implementation of spike encoding for image and video processing was per-

formed by Iakymchuk et al. (2014). The literature on the application of spike

encoding on the information processing task in data science is restricted to a

few algorithms, such as temporal-contrast (TC) (N. Kasabov, Scott et al., 2016),

Hough spiker algorithm (HSA) (Hough, De Garis, Korkin, Gers & Nawa, 1999)

and Bens spiker algorithm (BSA) (Schrauwen & Van Campenhout, 2003). HSA

and BSA algorithms are event-driven in nature and can be classified under the

temporal encoding paradigm where the time of occurrence of an event (spike)

is considered as a unit of information. The TC algorithm, also known as AER

encoding, is inspired from the human visual cochlea. The TC algorithm uses a

threshold-based method to detect signal contrasts or changes (N. Kasabov, Scott

et al., 2016). A user-defined or auto-generated contrast threshold determines

the spike events in the TC algorithm. The HSA and BSA algorithm, however,

determine a spike event using a deconvolution operation between the observed

signal and a predefined filter. The HSA method which is based on convolution

function produces a biased converted signal where it always stays below the orig-

inal waveform and this would yield an error. The BSA method on the other hand

uses the Finite Impulse Response (FIR) reconstruction filter. Even though BSA

reduces the error in the HSA method and has less optimal threshold sensitivity,

this method like HSA, needed a suitable filter for every type of input. Find-

ing this filter automatically for each image would require a tremendous amount

of work and time. There are some LIF neural network modelling approaches

that for analog to digital transformation applied to computer vision (Van Rullen,

Gautrais, Delorme & Thorpe, 1998). These methods, however, require a large

number of input neurons.
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6.4 A General Framework of Spike-time

Encoding and Compression for Temporal

Data Sequences

The temporal encoding problem for pattern recognition can be formalised as a

data compression problem. An encoder is hence defined as the mapE : RT → tf ,

where the encoder E(·) release spikes at firing times tf := {tf1 , tf2 , · · · tfn|ti ∈ I+}.

The temporal encoding algorithm primarily assumes that the discriminatory in-

formation is encoded by the sequence of discrete spike-timings rather than the

magnitude and/or the spike density. As a consequence of this assumption, the

temporal encoding aims at joint maximisation of information representation and

minimisation of the spike density. Thus, it is in sharp contrast to the rate coding

hypothesis. Next, the proposed a priori knowledge driven generalised frame-

work for temporal encoding will be presented. This framework will be further

extended to formalise a temporal encoding algorithm for fMRI data.

6.4.1 Formalisation of the a priori Knowledge Driven

Optimisation Problem for Data Encoding

If one assumes a continuous source signal is represented by s ∈ RT represent-

ing a vector of continuous values, an encoded data or a spike-train is repre-

sented by b ∈ {0, 1}T as a fixed-length binary sequence. This formalisation

is slightly modified from the variable length sequence formalisation of spike-

timings {tf1 , tf2 , · · · tfn|ti ∈ I+} defined earlier without any loss of generality. For

example, a historical spike sequence [01001011] can be rewritten as a sequence

of spike-time indices tf := {1, 4, 6, 7}. T denotes the length of the temporal sig-

nal to be encoded into spikes. The a priori knowledge driven optimisation based

encoding framework is built on the premise that

• The universal data encoder is non-existent.
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• a priori knowledge about the data generation process or in other words,

prior knowledge of the properties of the data generation source can be

injected into a predictive system that can generate a predicted signal ŝ.

For example, the fMRI data generation process behaves like a linear time in-

variant system, where a spike in the brain cell gives rise to a signal mimicking

the gamma distribution function (Ashby, 2011), whereas the process of EEG

data generation can be modelled as a phase varying mixture model of sinusoidal

waves or multi-source Gaussian noise model (Nunez, Nunez & Srinivasan, 2016).

The notion of knowledge injection is further elaborated in Section 6.5 using fMRI

as an example. If it is possible to formalise a decompression function ŝ from the

spike sequence b, the optimal encoding of data can be formulated as an optimi-

sation problem that minimises the discrepancy between the predicted and the

original signal. One way of realising such a discrepancy is by minimising the

root mean squared error (RMSE) of decompression between the observed signal

s and the predicted signal ŝ := f(b, Θ), Θ being the set of additional parame-

ters required along with b to describe the prediction function. The optimisation

problem can be formulated as:

min
b,Θ

√∑
t(st − ŝ(bt, Θ))2

t

s.t. bt := I+

0 ≤ bt ≤ 1∑
t

bt ≤ α

β ≤ Θ < γ

(6.1)

The above optimiser solves for the RMSE, subject to the following constraints:

1. Binary constraints for spikes: The binary constraint for the spikes are im-

plemented by forcing Bt to be an integer and within a range of [0, 1].

2. Constraint on the number of spikes: The
∑
tBt ≤ α constraint enforces the

maximum number of spikes to be limited to a. This constraint is of major
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importance from a biological plausibility perspective. Since the encoding

scheme discussed here, aims to mimic the temporal coding behaviour of

the human brain, it is always preferable to encode maximal information

with the minimal number of spike.

3. Bounds can be set on the other parameters Θ to be optimised as part of

the prediction model f(B, Θ).

Mixed Integer Optimisation and Genetic Algorithms

The aforementioned optimisation problem is one related to mixed-integer pro-

gramming optimisation. A mixed integer programming problem is an optimisa-

tion problem, linear or nonlinear, with or without constraints, in which some

or all decision variables are restricted to have integer values. Such problems

frequently arise in various application fields such as process industry, finance,

engineering design, management science and others.

Several classical computational techniques (such as, branch and bound tech-

nique, cutting planes technique, and outer approximation technique), which are

reasonably efficient, have been proposed in the literature for solving mixed inte-

ger programming problems (Cooper, 1981; Floudas, 1995; Grossmann, 2002).

Over the last couple of decades, several stochastic algorithms have been de-

veloped and appropriately updated for problems related to mixed integer pro-

gramming, such as simulated annealing, differential evolution and ant colony

optimisation (Dorigo, Maniezzo & Colorni, 1996; Babu & Jehan, 2003; Yiqing,

Xigang & Yongjian, 2007). However, algorithms of this class generally harbour

the capacity to provide near global optimal solutions, although the quality of the

obtained solution is unstable and requires large amount of computation time.

Genetic algorithms (GA) are general purpose population based stochastic search

methods inspired by Charles Darwin’s principles of natural selection and genet-

ics. Holland (1992) introduced the concept of GA, and it was used by Jong

6.4 A General Framework of Spike-time Encoding and Compression for Temporal Data
Sequences 119



(1975) to solve the optimisation problem. Goldberg (1989) presents a detailed

implementation of GA. To describe it in a simple manner, GA searches for sets

of better solutions in the global search space. Potential solutions termed as chro-

mosomes (individuals) are evolved iteratively over generations using a set of

genetic operators such as selection, crossover and mutation. The quality of a

solution or a population is measured by a fitness function, which is equivalent to

a loss function in the field of machine learning and objective function in optimi-

sation. The fitness function is responsible for evaluating how ‘fit’ a chromosome

is for reproduction. The selection operator chooses the best ‘fit’ chromosomes

for reproduction. In the reproduction process, new chromosomes are created by

crossover and mutation operations. The Crossover operator blends the genetic

information between chromosomes to explore the search space, whereas the

mutation operator is used to maintain adequate diversity in the population of

chromosomes to avoid premature convergence. The way the variables are coded

into the chromosome is clearly essential for GAs’ efficiency. Real coded genetic al-

gorithms (RCGAs), which use real numbers for encoding, have fast convergence

towards optima as compared to binary and Gray coded GAs (Deb, 2001). Also,

‘RCGAs’ overcome the difficulty of Hamming Cliff as in binary coded GAs. In the

case of integer and mixed integer programming problems, many applications of

GAs are available in the literature, some of which use binary coded representa-

tion (Cheung, Langevin & Delmaire, 1997; Luo, Guignard & Chen, 2001; Hua &

Huang, 2006) and some use real coded representations (Y.-X. Li & Gen, 1996;

Yokota, Gen & Li, 1996; Maiti, Bhunia & Maiti, 2006).

Integer programming with GA modifies the vanilla GA algorithm in several ways:

1. It requires custom creation, crossover and mutation function in order to

enforce the variables to be integers (see (Deep, Singh, Kansal & Mohan,

2009) for detail).

2. The genetic algorithm attempts to minimise a penalty function, not the

fitness function. The penalty function includes a term for infeasibility. This

penalty function is combined with binary tournament selection to select
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individuals for subsequent generations. The penalty function value of a

member of a population is:

• If the member is feasible, the penalty function is the fitness function.

• If the member is infeasible, the penalty function is the maximum fit-

ness function among feasible members of the population, plus a sum

of the constraint violations of the (infeasible) point. For details of the

penalty function, see (Deb, 2000).

3. GA does not enforce linear constraints when there are integer constraints.

Instead, it incorporates linear constraint violations into the penalty func-

tion.

In the present implementation, the mixed integer genetic algorithm solver (Deb,

2000; Deep et al., 2009) was used. The constraints in Equation 6.1 are imposed

on the parameters of ŝ. The first and second constraints are used to reduce the

search space of the possible values of bt to {0, 1}. The hyperparameter α is used

to control the maximum number of spikes and hence the spike density in the

optimal solution. The other sets of hyper-parameters {β, γ} are used to control

the upper and lower bounds of the model parameter Θ.

The formulation above for the proposed framework for data encoding is generic,

flexible and is driven by knowledge-injection from the data source. The knowledge-

injection component allows the further inclusion of systematic noise as part of ŝ,

if present. Examples of the inclusion of noise models, such as acoustic noise as

part of linear time invariant models of fMRI are treated in (Sierra, Versluis, Hoog-

duin & Duifhuis, 2008; Z. Cho et al., 1997). The hypothesis is that a sufficiently

good choice of ŝ(b, Θ) preserves, in some cases, enhances the discriminative

property of the data in a greatly compressed space. It must also be noted that

this formulation adheres to the concept of the non-existence of a universal com-

pression algorithm for all the data sources. The general framework described

above can be used to derive specific methods for encoding of special types of
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data for which a priori knowledge is available. One such case is fMRI data based

on blood-oxygen level dependent response (BOLD). This is further introduced

and illustrated in Section 6.5.

6.5 GAGamma: A Spike-time Encoding and

Compression Method for fMRI Data

This Section will formalise a sample prediction model f(B, Θ) for functional

Magnetic Resonance Imaging (fMRI) data, and will present experimental results

and evaluation of data encoding by solving Equation 6.1.

6.5.1 fMRI As a Linear Time Invariant System

Functional magnetic resonance imaging (fMRI) is a form of magnetic resonance

imaging that takes advantage of magnetic susceptibility artefacts caused by the

deoxygenated haemoglobin in the brain. Magnetic susceptibility measures the

magnetic properties of the interaction between a tissue or other substance and

the in-scanner magnetic field strength. Magnetically susceptible materials distort

the homogeneity of a magnetic field: materials with negative magnetic suscepti-

bility are known as diamagnetic, and those with positive magnetic susceptibility

are referred to as paramagnetic. Introduction of a paramagnetic substance such

as deoxyhaemoglobin into the scanner magnetic field causes variability in field

strength, spin dephasing, geometric distortion and loss of signal; fMRI exploits

this property by measuring changes in the relative ratio of oxygenated (diamag-

netic) to deoxygenated (paramagnetic) haemoglobin in the blood.

Functional Magnetic Resonance Imaging (fMRI) is most commonly acquired us-

ing Blood Oxygen Level Dependent (BOLD) response. The BOLD response is

measured by the changes in deoxyhaemoglobin at time t, and is caused by neu-

ral activation in the brain. The neural activations are caused by some sequence
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of events driven by the task performed by the subject (Friston et al., 1995). The

BOLD response is mathematically described as a time invariant system, i.e. a

system whose output does not depend explicitly on time. Under the appropriate

experimental protocol, BOLD response also pertain to the superposition principle

and henceforth can be designed as a linear time invariant (LTI) (Vazquez & Noll,

1998). According to C.-T. Chen (1995), a LTI system is said to be completely

characterised by convolution integral functions. The fMRI BOLD is described by

the convolution of the spikes b and the haemodynamic response function (HRF),

h(Θ). This operation is characterised by Equations 6.2 and 6.3.

ŝ :=
∫ t

0
b(τ )h(t− τ )dτ (6.2)

ŝ(b, Θ) := b ∗ h(Θ) (6.3)

h(θ1, θ2) :=
1

θθ1
2 T (θ1)

tθ1−1e
− t

θ2 (6.4)

6.5.2 GAGamma Optimisation Problem for fMRI

Numerous models for HRF have been proposed in the literature (Boynton, Engel,

Glover & Heeger, 1996; Friston, Josephs, Rees & Turner, 1998; Glover, 1999).

The majority of mathematical models for the canonical HRF are found to be

some variant of the gamma function. In all the experiments performed here,

the gamma distribution function has been used as the HRF model (Equation

6.4). This function is characterised by the parameter set Θ := {θ1, θ2}, where

θ1 ∈ R+ and θ2 ∈ R+ controls the shape and the scale of the gamma function

respectively. By substituting Equations 6.3 and 6.4 in Equation 6.1, the encoding

problem can be reduced to solving Equation 6.5 and is referred to as GAGamma

encoding algorithm hereafter.
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min
b,θ1,θ2

√∑
t(st − ŝ(bt, θ1, θ2))2

t

s.t. bt := I+

0 ≤ bt ≤ 1∑
t

bt ≤ α

β1 ≤ θ1 ≤ γ1

β2 ≤ θ2 ≤ γ2

where ŝt(bt, θ1, θ2) := bt ∗
1

θθ1
2 T (θ1)

tθ1−1e
− t

θ2

(6.5)

6.5.3 Distinction of GAGamma from HSA and BSA

At this point, it is imperative to make the distinction between the GAGamma

and the existing HSA and BSA algorithms. Apart from exhibiting similarities

in convolution framework, HSA and BSA also resemble GAGamma as methods

of stimulus estimation using FIR. Nevertheless, the data encoding approach in

HSA and BSA use a deconvolution (of Equation 6.2) approach contrary to the

optimisation approach in GAGamma. The knowledge-injection component of

GAGamma, as part of formalisation of ŝ and the optimisation approach, has two

distinct benefits over the deconvolution-based methods:

• A generic Gamma function has been used as the knowledge-injection com-

ponent to ŝ in GAGamma, which is driven by the existing knowledge about

the fMRI data as opposed to the generic sinusoidal function used as the

FIR in BSA. It is also argued that this formulation allows the inclusion of

additional knowledge about the data source (such as systematic noise) if

present, providing greater flexibility in the formulation of the encoding

algorithm.

• The optimisation problem formulation in GAGamma jointly optimises for

the parameter set Θ and b. This formulation thus includes the parameter

set Θ of the prediction model ŝ and the spike sequence b for each individ-

ual voxel or feature. In HSA and BSA, the equivalent filter parameters are
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predetermined for the whole set of voxels and are not learned from the

data.

• The constraint
∑
t bt ≤ α in GAGamma ensures the flexibility in choosing

the desired spike density, hence the ability to control the compression and

quality of signal reconstruction. The BSA or HSA algorithm, on the con-

trary, accommodates no such control in the encoding framework.

6.6 Experiments and Evaluation

6.6.1 Description of Dataset

The experiments described in this Chapter were performed on the publicly avail-

able benchmark Starplus fMRI dataset (Mitchell & Wang, 2001) collected by The

Centre for Cognitive Brain Imaging, Carnegie Mellon University. The Starplus

experiment was conducted on a set of 7 subjects. Each subject had undergone

multiple trials of exactly the same cognitive experiment. At every trial lasting for

27 seconds, a set of stimuli were presented to a subject in the following order:

1. The first stimulus (picture or sentence) was presented at the beginning for

4 seconds.

2. A blank screen was presented during the interval of 5− 8 seconds.

3. The second stimulus (sentence or picture) was presented during the inter-

val of 9− 12 seconds.

4. A rest period of 15 seconds was added after the presentation of the second

stimulus.
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While the subject performed the cognitive tasks, fMRI images from specific re-

gions of interest (ROI) of the brain were collected at every 500ms interval. The

preprocessed fMRI dataset has been used in a number of pattern recognition

studies (Mitchell et al., 2003; Mitchell et al., 2008; Shinkareva et al., 2008). In

this study, this benchmark dataset was chosen to build pattern recognition sys-

tems that can predict and discriminate between the binary cognitive states of a

subject ‘seeing a picture’ and ‘reading a sentence’. Two subjects were chosen (id:

04847 and 07510) randomly and two spatial ROIs; Calcarine Sulcus (‘CALC’)

and Left Intra-Parietal Sulcus (‘LIPL’) were used for the experiments. The choice

of the ROI is based on previous work (Do & Yang, 2014) that found these ROIs

to be amongst the most discriminatory in the raw continuous data space. The

dataset for each subject is composed of 40 samples (trials) of each class, and

each sample is made up of 452 and 483 voxels in subject 04847 and 07510 re-

spectively. Each cognitive task lasted for a total of 8 seconds emitting 16 fMRI

images for each class within a trial.

6.6.2 Evaluation Metrics

Three metrics have been used to evaluate and compare the performance of

the encoding techniques and the traditional ‘no-encoding’ (raw data) approach.

The evaluation criteria and the baseline encoding techniques are elaborated be-

low:

Bit Compression Ratio

The Bit Compression Ratio (BCR) is defined as the ratio between the average

number of bits required to store an encoded dataset and the number of bits

required to store a raw dataset, respectively. BCR is directly associated with

the relative description lengths (DL) and data type of the datasets. The DL of a

dataset is described by the length of the dataset represented by the number of

values in the dataset. If one assumes a dataset intended for pattern recognition
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is represented by Draw := {x1,x2, · · ·xn|type(xi) = R} which is transformed by

an encoding algorithm to Dencoded := {y1, y2, · · · ym|type(yj) = I+}, where m

and n are the DL of the raw and the encoded data respectively. The BCR is then

estimated as:

BCR :=
m× sizeof(I+)
n× sizeof(R)

(6.6)

The notion of BCR (Equation 6.6) can be analysed from the viewpoint of the

Kolmogorov complexity. As described earlier, Kolmogorov’s descriptional com-

plexity aims at a simpler object representation and simplicity is measured by the

DL of the object. Here, the object being a pattern recognition dataset, the objec-

tive is to achieve simpler representation of the dataset by performing the encod-

ing operation. This is achieved by minimising the numerator m× sizeof(I+).

A compression is said to be achieved, if 0 < BCR < 1 is satisfied. It is also

quite evident from Equation 6.6 that the data type of the objects present in the

dataset contributes significantly to the BCR metric. In this case, the encoded

data being represented by positive integers (spike-timings) as opposed to the

floating-point numbers in the raw data, already contribute significantly to BCR.

Additionally, the temporal encoding algorithms aspire to minimise the DL of the

object (m << n), thus achieving a lower BCR.

Decoding Error

The decoding error metric is the measure of the decompression reliability, i.e. the

ability to recover the original signal from the compressed spike-timings reliably.

RMSE of signal reconstruction between the original signal s, and the predicted

signal ŝ has been used as a measure of decompression reliability in this study.

The RMSE is given by:

RMSE :=

√∑
t(s− ŝ(bt, Θ))2

t
(6.7)

A low RMSE of the signal reconstruction indicates higher preservation of the orig-

inal data in the spike-timings. However, low RMSE is not necessarily indicative

of a better encoding for pattern recognition. For example, an encoder producing
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better reconstruction error for noisy data may indicate inefficient noise filtering.

It must also be noted that the prediction models are built on the spike-time data

and have no knowledge of the mapping s → b being performed beforehand.

Hence, although this metric plays an important role in evaluating the robustness

of the encoding algorithm with respect to the reconstruction of the raw data, the

effect on the quality of pattern recognition performance is unaffected.

Classification Performance

From the pattern recognition viewpoint, due to the balanced nature of the dataset,

the classification accuracy is the most important and relevant measure of success

and this has been used as a measure of classification performance. The mean

accuracy is estimated from thirty independent runs of 50/50 train/test split of

the binary classification data described previously.

As the data that was encoded was intended to be used for pattern recognition

problems, conservation and possible enhancement of the discriminatory infor-

mation in the spike-timings is as crucial as efficient compression of the data.

This is a distinctly different approach from the existing ones in pattern recog-

nition. In the traditional pattern recognition approach, the volume of the data

plays a crucial role in the performance of the pattern recognition algorithms to

produce accurate predictions. In the temporal encoding approach, by keeping

both compressibility and classification performance as the criteria of evaluation,

the aim is to benefit from the efficient representation of information in the data

along with the classification performance. It is, thus, important to have a bal-

ance between compression and conservation of discriminatory information in

the encoded data.
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Figure 6.1.: Flowchart depicting the evaluation criteria and experimental protocol
used in this research.

6.6.3 Design of Experiments

Figure 6.1 shows a flowchart of the experimental design used in this Chapter.

The experimental protocol begins with the raw temporal data s. At the first step,

the encoding operation is performed on s to generate the encoded spike-time

data b. In the second step, a K-NN based prediction model is learned using a

fraction of b. The rest of b is used to test the performance of the model emitting

the prediction performance. The next evaluation criteria relate to the compress-

ibility of the encoding algorithms. To evaluate the compressibility, BCR is calcu-

lated by comparing b and s. Finally, the lossiness of the encoding operation is

evaluated by comparing predicted signal ŝ produced by the decoding algorithm

(corresponding to the encoding algorithm) and the ground truth s to emit the

decoding error.

K-Nearest Neighbour (K-NN) Algorithm with Custom Distance Function

As discussed earlier, the non-parametric K-NN algorithm for building the classifi-

cation model from the data is used. The class label prediction of a new sample
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(in this case a spike-train) in K-NN is a majority vote between the neighbours of

the new sample, where the sample is assigned to the class label most common

among its K nearest neighbours. To evaluate the neighbourhood of a sample,

it is hence necessary to calculate pairwise distances between the sample to be

predicted and the training samples. As the key interest is in learning about a

K-NN model for both raw (in continuous space) and spike-time (discrete space)

data, there have been two different distance functions used: raw and encoded

data. For the raw data in the continuous space, the standard Euclidean distance

or the L2 norm as the distance function was used. On the other hand, for the

spike-time dataset, the spike asynchronicity based distance function was used,

and is described below:

Spike asynchronicity based distance function: Here, I propose a distance func-

tion that can capture the relative distance between a pair of the spike-train sam-

ples. Since the concern is with using spike-timings as a carrier of information,

a useful way to capture similarity between a pair of spike-train samples is to

record if the two samples have spiked at the same time instances. Therefore,

mean absolute asynchronicity has been used as the distance function. The mean

absolute asynchronicity based distance function between two spike-train sam-

ples b1 ∈ {0, 1}T×M and b2 ∈ {0, 1}T×M is formalised as the mean pairwise

Hamming distance between all feature-wise pairs bm
1 and bm

2 , where M is the

feature count. As the spike-time data lies in the binary space, the mean pairwise

Hamming distance is equivalent to the mean XOR distance between the pairs of

spike sequences.

6.6.4 Baseline Encoding Algorithms

In this study, three different encoding methods have been compared and evalu-

ated. It must be noted that for each encoding or compression algorithm, there

is also a decoding algorithm which decompresses the spike-trains into the recon-

structed signal ŝ.
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Algorithm 6.1 BSA encoding algorithm
1: input: s, filter, thresholdBSA
2: output: b
3: b⇐ 0
4: L = length(s)
5: F = length(filter)
6: for t = 1 : (L− F + 1) do
7: e1 ← 0
8: e2 ← 0
9: for k = 1 : F do

10: e1 += |s(t+ k)− filter(k)|
11: e2 += |s(t+ k− 1)|
12: end for
13: if e1 ≤ (e2 − thresholdBSA) then
14: b(t)← 1
15: for k = 1 : F do
16: s(i+ j − 1) −= filter(k)
17: end for
18: end if
19: end for

Algorithm 6.2 BSA decoding algorithm
1: input: b, filter
2: output: ŝ
3: L = length(b)
4: F = length(filter)
5: for t=1:L-F+1 do
6: if b(t) == 1 then
7: for k = 1 : F do
8: ŝ(t+ k− 1) += filter(k)
9: end for

10: end if
11: end for
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• GAGamma: The GAGamma encoding method is outlined and described in

Section 6.5. The encoding and decoding principles are given by Equations

6.3 and 6.5.

• BSA: The BSA encoding and decoding algorithms (Schrauwen & Van Camp-

enhout, 2003) are formalised in Algorithms 6.1 and 6.2, respectively. The

BSA encoding algorithm takes a filter function and a threshold value as

input along with the signal s. The deconvolution approach of BSA begins

with a FIR filter, and at every time instant τ calculates two error metrics:∑P
k=0 abs(s(k + τ ) − h(k)) and

∑P
k=0 abs(s(k + τ ), where P is the num-

ber of filter taps. If the first error is less than the second error minus the

threshold, then the BSA encoder fires a spike and subtracts the filter from

the input (Schrauwen & Van Campenhout, 2003).

• Temporal contrast: The temporal contrast algorithm captures the greater

than average changes in the data as spikes. Algorithms 6.3 and 6.4 presents

the temporal contrast encoding and decoding algorithms respectively. One

major characteristic and deviation of temporal contrast algorithm from the

temporal encoding framework is its ability to generate spikes with positive

and negative polarity. Since the main interest is in the spike-timings, dur-

ing the classification, the polarity of the spikes have been ignored. The

algorithm takes the factor ∈ {0, 1} parameter as input. This parameter

controls the estimate of the thresholdTC variable, which is responsible for

determining the spike-timings.

6.6.5 Results

For the comparative evaluation of the encoding methods with the classical ‘no-

encoding’ (raw data) method, identical experiments were performed for the

subjects 04847 and 07510. For the GAGamma encoding, two sets of hyper-

parameters have been used to demonstrate the tuning capability of the algo-

rithm. In the GAGamma-16 method, the hyperparameter values [α = 16, β =
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Algorithm 6.3 Temporal contrast encoding algorithm
1: input: s, factor
2: output:b, thresholdTC
3: L← length(s)
4: for t = 1 : L− 1 do
5: diff ← |s(t+ 1)− s(t)|
6: end for
7: thresholdTC ← mean(diff) + factor · std(diff)
8: diff ⇐ [0, diff ]
9: for t = 1 : L do

10: if diff(t) > thresholdTC then
11: b(t)← 1
12: else if diff(t) < −thresholdTC then
13: b(t)← −1
14: else
15: b(t)← 0
16: end if
17: end for

Algorithm 6.4 Temporal contrast decoding algorithm
1: input: b, thresholdTC
2: output: ŝ
3: ŝ← 0
4: L← length(b)
5: for t = 2 : L do
6: if ŝ(t) > 0 then
7: ŝ(t)← ŝ(t− 1) + thresholdTC
8: else if ŝ(t) < 0 then
9: ŝ(t)← ŝ(t− 1)− thresholdTC

10: else
11: ŝ(t)← ŝ(t− 1)
12: end if
13: end for

Table 6.1.: Comparative evaluation of the data encoding algorithms applied to subject
04847 and 07510 in the Starplus fMRI dataset.

subject id method data type 1 BCR decoding error classification accuracy (K2)

04847

GAGamma-16 int 0.15 0.07 87.41± 4.80(16)
GAGamma-3 int 0.04 0.29 85.02± 4.76(11)
BSA int 0.08 0.15 84.5± 4.47(3)
TC int 0.06 0.23 54.16± 5.47(1)
No-encoding decimal 1 - 89.55± 4.60(1)

07510

GAGamma-16 int 0.15 0.06 76.00± 5.89(8)
GAGamma-3 int 0.04 0.27 81.16± 7.50(2)
BSA int 0.04 0.15 74.08± 6.71(8)
TC int 0.05 0.26 52.75± 5.84(2)
No-encoding decimal 1 - 79.11± 3.99(5)

Random int 0.11 - 52.58± 4.79(1)

6.6 Experiments and Evaluation 133



0, γ = 10] (see Equation 6.5) were used, and in the GAGamma-3 method, [α =

3, β = 0, γ = 10] were used. The BSA encoding algorithm takes a finite impulse

response filter and a thresholdBSA as input. In the current experiments, the low

pass FIR filter of size 10 and the thresholdBSA = 0.95 have been used. These

values are guided by the existing literature on the application of BSA on brain

data (Nuntalid, Dhoble & Kasabov, 2011). For the temporal contrast encoding,

the hyper-parameter factor = 0.6 has been used. As a baseline, a randomly

generated spike-train dataset has also been included. The random spike-time

dataset was created using a Poisson’s distribution function (λ = 0.6). Varying

the λ parameter affects the BCR directly for random spike generation. It must be

noted that the presented results are non-exhaustive in the hyperparameter space

of different encoding methods. In the ‘no-encoding’ method, the raw dataset

was created by transforming each multi-dimensional time series (set of images)

within a trial into a single static observation by concatenating the feature values

across the 16 time intervals similar to the approach employed by Mitchell et al.

(2003).

Comparison Between ‘Encoding’ and ‘No-encoding’

The advantages of performing encoding as opposed to using the raw data (‘no-

encoding’) is well established in Table 6.1. This table shows the experiments

replicated across subjects 04847 and 07510. For every subject, three temporal

encoding methods were evaluated. They are the proposed GAGamma, BSA and

the temporal contrast encoding. In the GAGamma-X method, X corresponds to

the value of the maximum number of allowed spikes, α (Equation 6.5). The tem-

poral encoding methods are compared against the raw data or the ‘no-encoding’

method along with a random spike-train as a baseline. As discussed earlier, the

encoding methods are evaluated using BCR, decoding error and classification

accuracy as the measures of success. The decoding error metric is not applicable

for the ‘random’ and ‘no-encoding’ method. This is because in ‘no-encoding’ and

‘random’ method, the raw data and a random spike generator were used, respec-

1An integer is assumed to take 8 bits and floating-point number 32 bits.
2K: Number of nearest neighbours used in K-NN algorithm
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Figure 6.2.: Plot illustrating the comparison of the quality of the encoding methods
with respect to the mean classification accuracy and bit compression ratio
across the two subjects. The horizontal and the vertical error bars repre-
sent the standard deviation of accuracy and BCR across experiments.

tively, for pattern recognition and thus, encoding principles are not applied in

these two cases.

It is observed that the encoding operations could compress the data dramatically

and thus attaining BCR values between 0.04 and 0.15 i.e. an approximate com-

pression of 6 to 25 times compared to the raw data. The most important metric

of evaluation, the classification accuracy column in Table 6.1, shows that the

GAGamma and BSA methods achieve comparable classification performances

with respect to the ‘no-encoding’ method, and hence can capture the discrimi-

natory information in the spike-time data well. It should also be noted that for

subject 07510, the GAGamma-3 method achieved a classification performance

of 81.16± 7.50% as opposed to the 79.11± 3.99% by the raw data and thus out-

performing the ‘no-encoding’ method. This, it can be argued is due to the ability

of the encoding algorithms to represent the information in the raw data into the

spike-time and thus concisely present to the classifier.
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Comparison of the Temporal Encoding Algorithms

Figure 6.2 graphically depicts the quality comparison of the different encoding

techniques. The plot shows the mean BCR and the classification accuracy of the

encoding techniques across the two subjects. The horizontal and vertical error

bars are the standard deviations of the BCR and accuracy respectively. It can

be initially observed that the GAGamma-16 and GAGamma-3 encodings show

superior mean performance in the pattern recognition task compared to other

methods. However, the aim is to simultaneously achieve high classification per-

formance and a highly compressed information representation, and thus, the

GAGamma-3 and BSA data points residing on the top left quadrant of the plot

fare better overall in both respects. From the error bar representations, it can

also be seen that the GAGamma method has a negligible deviation on BCR. This

is due to the flexibility that the GAGamma method provides to control the spike

density by the constraint
∑
t bt ≤ α (Equation 6.5) without sacrificing much pat-

tern recognition performance. This can be of significant importance, especially,

for the storage and transmission of large volumes of streaming data within lim-

ited resources, where the encoding operation can precisely tune the compression

rate and hence the storage. It is also recognised from the plot that the temporal

contrast encoding method fares poorly in this experiment and is no better than

a random spike generator.

Table 6.1 also shows an inverse relationship between the BCR and the decoding

error. This is because it requires significantly more effort to accurately represent

the seasonal variations in the data using fewer spikes. However, if decoding

robustness is of major importance, the GAGamma method can be tuned to max-

imise spike density and thus will have minimal loss in the signal reconstruction

and thus sacrificing the compression. Figure 6.3 shows an example of the signal

reconstruction done by the GAGamma-16, BSA and temporal contrast decoding

algorithms. In Figure 6.4, comparisons were also performed on the RMSE of

signal reconstruction across 100 different voxels using spikes encoded by the

encoding methods. It can be clearly observed that the signal reconstruction by

GAGamma (smaller RMSE means better reconstruction) is superior to the others
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Figure 6.3.: Comparison of signal reconstruction (ŝ) from a spike sequence by
GAGamma-16 decoding algorithm (Equation 6.3), BSA decoding algo-
rithm (Algorithm 6.2) and Temporal contrast decoding algorithm (Algo-
rithm 6.4). The true signal is randomly selected from subject 04847 (10th

trial and 23rd voxel).

Figure 6.4.: Comparison of RMSE of reconstruction between GAGamma, BSA and Tem-
poral Contrast across 100 voxels of second trial in subject 04847.
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Figure 6.5.: Comparison of haemodynamic response function learned by GAGamma
encoding method for voxel 8 of subject 04847 across 7 different trials.

as not only can it reconstruct the bigger trends in the signal but also the seasonal

variations.

As part of the optimisation, the GA-gamma encoding method also optimises for

the parameters of the response filter H. Figure 6.5 shows the gamma haemo-

dynamic response filters learned by the model for a single voxel across 7 trials.

It can be seen from the figure, that for a single voxel across trials, the shape

of the HRF is nearly consistent, but varies in the scale. This result is consistent

with the notion of the existence of minor variations of HRF across voxel and/or

subject.

Analysis of the Spike-train Encoded by GAGamma-16 Method

Additionally, GAGamma-16 encoded spikes for the ‘seeing a picture’, and the

‘reading a sentence’ stimuli were independently analysed for interpreting the

discriminating spatio-temporal influence of the spikes. As described earlier in

the experimental protocol, the presentation of a certain stimulus within a trial
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follows an order, i.e. for each stimuli class there exists subclasses of ‘presented

first’ or ‘presented second’. To analyse the effect of the first or second presen-

tation of stimuli, the encoded dataset was separated into four classes, ‘picture

presented first’, ‘picture presented second’, ‘sentence presented first’ and ‘sen-

tence presented second’. Figures 6.6 and 6.7 shows the comparison of the mean

spike percentage across the trials for the four subclasses in subject 04847 and

subject 07510. The points in the 3D plot correspond to the spatial location of

the voxels. Each voxel belongs to two physiologically defined clusters or regions

of interest, namely ‘CALC’ and ‘LIPL.’ The top row plots are the ‘picture’ trials,

and the bottom row trials are the ‘sentence’ plots. The columns correspond to

the stimulus (‘picture’ or ‘sentence’) being presented first or second. The two

clusters in each of the 3D plots relate to the two ROI’s (top left is ‘LIPL’ and

bottom right is ‘CALC’) of the brain structure. Functionally, the ‘CALC’ region is

responsible for central and peripheral vision whereas the ‘LIPL’ region is related

to visual attention. In both the subjects, ‘reading a sentence second’ after ‘seeing

a picture first’ has more spike activity on average across the trials than the other

way around, especially in the ‘LIPL’ region. The mean spike activity in the ‘LIPL’

is observed to be relatively higher (0.59 and 0.57) when the subjects were ‘read-

ing a sentence’ than when the subjects were ‘seeing a picture’ (0.54 and 0.55). A

two-sample T-test was conducted between the ‘seeing a picture’ and the ‘reading

a sentence’ class in the ‘LIPL’ region for the subjects to validate the previous re-

sult. The null hypothesis for the test conducted was the following, H0: ‘there is

no difference between the picture spike activity and sentence spike activity’. The

null hypothesis was rejected at 5% significance level with p = 5.27× 10−18 for

subject 04847 and with p = 7.05× 10−12 for subject 07510. Hence, as per the

T-test, the average spike activity across the trials over time for ‘seeing a picture’

is significantly different from the average spike activity across trials over time for

‘reading a sentence’. Further, it must also be noted the sentences shown as part

of the experiment are highly visual in nature (e.g. ‘It is not true that the dollar

is below the plus.’) and requires a high image comprehension ability. This result

is, therefore, consistent with the experimental results (Just, Newman, Keller,

McEleney & Carpenter, 2004) obtained earlier which shows a greater degree

of activation and functional connectivity in the ‘LIPL’ region during cognitive
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Table 6.2.: Average pairwise asynchronicity of three different voxels at the end of ten
independent runs of GAGamma encoding.

voxel ID dp dvp

30 24.18± 10.15 0.23± 0.09
468 27.78± 11.96 0.26± 0.10
3429 28.03± 11.31 0.28± 0.11

tasks associated with high imagery sentence comprehension. This, in fact, also

validates the ability of the proposed encoding algorithm to preserve the useful

discriminatory information in the compressed encoded space of data.

Table 6.2 relates to the reproducibility of the spike-timings produced by the

mixed integer genetic algorithm solver for the GAGamma encoding. The genetic

algorithm being an evolutionary optimisation solver produces a non-reproducible

result when on multiple iterations. Nevertheless, a pareto-optimal fitness value

is guaranteed on each iteration. To validate the reliability of the GAGamma opti-

misation, in this instance, ten independent runs of GAGamma encoding was ap-

plied on three random voxels (30468 and 3429) from trial 12 of subject 04847.

Table 6.2 compares the similarity of the spike-trains produced by the GAGamma

encoding using two spike-asynchronicity measures. They are the percentage

asynchronicity dp and Victor Purpura distance dvp respectively. The Victor Pur-

pura distance (dvp) (Victor & Purpura, 1997) metric is a cost based distance

metric. The distance is defined by the minimum cost of converting one spike-

train into the other using three operations: insertion (cost 1); deletion (cost 1);

and shifting a spike by an interval δt (cost q|δt|). For the smaller value of q

the distance metric approximates the spike count difference and hence supports

rate coding. A higher penalty value of q, on the contrary, supports the number

of non-coincidental spikes and hence temporal encoding. The comparison of the

spike synchronicity using dp and dvp in Table 6.2 shows that the spike-timings

are correctly reproduced approximately 75% of times.
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6.7 Summary and Conclusion

In this Chapter, the focus was on using temporal encoding as a framework to

concisely represent large volumes of data by spike-timings. By doing so, the ex-

isting discriminatory spatio-temporal information was preserved. In this regard,

apart from using the existing temporal encoding techniques, a novel temporal

encoding framework was formalised and a specific encoding algorithm for fMRI

data, called GAGamma, was proposed. The experimental result on benchmark

fMRI dataset shows the superiority of the temporal encoding algorithms, such

as GAGamma and BSA, to succinctly represent the discriminatory information in

the compressed encoded spike space without losing any appreciable amount of

information. Thus, it achieves comparable or superior pattern recognition perfor-

mance. It can be argued that the flexibility of the proposed encoding framework

lies in its ability to inject known structure information about the data source

and thus, provide the compression/encoding algorithms sufficient redundancy

to represent the large dataset in an optimally concise manner.
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6.8 Contributions and Publications

Contributions

1. A generalised a priori knowledge driven optimisation framework for

spike-time encoding of continuous data was formalised.

2. To elaborate the characteristics of this framework, a realisation of

the proposed framework, namely GAGamma, was proposed for the

purpose of encoding fMRI data using a priori knowledge of the data

source.

3. The proposed encoding algorithm was applied and compared with

state of the art encoding algorithms on a benchmark pattern recog-

nition problem involving fMRI data. The results showed, in general,

the uniqueness of the proposed temporal encoding framework not

only lies in its ability to significantly compress the data, but also in

keeping the discriminatory information intact, which is extremely

useful for pattern recognition tasks.

Publications

1. Sengupta, N., & Kasabov, N. (2017). Spike-time encoding as a data

compression technique for pattern recognition of temporal data. In-

formation Sciences, 406, 133-145.

2. Sengupta, N., Scott, N., & Kasabov, N. (2015). Framework for

knowledge driven optimisation based data encoding for brain data

modelling using spiking neural network architecture. In Proceedings

of the Fifth International Conference on Fuzzy and Neuro Comput-

ing (FANCCO-2015) (pp. 109-118). Springer, Cham.
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7Orientation Influence Driven

Spike-Time Dependent

Plasticity Learning: A Novel

Unsupervised Learning

Algorithm for Integrating

Spatial, Temporal and

Orientation Information

7.1 Introduction

In the recent past, non-invasive brain data collection techniques such as func-

tional magnetic resonance imaging (fMRI), electroencephalography (EEG), dif-

fusion tensor imaging (DTI) and others have made significant contributions to

understanding various structural and functional properties of the human brain.

There has been consistent development in data sampling technology over the

past few years which has enabled simultaneous sampling of multiple modalities

of brain data while a subject performs or does not perform a task. This pro-

vided an opportunity to perform pattern recognition using large quantities of

such data. It is evident that each data modality provides a unique but limited

perspective of the brain. In the past, these data modalities were used indepen-

dently for pattern recognition and overlooked the joint information present in

the data (Sui, Adali, Yu, Chen & Calhoun, 2012). Algorithms with the ability

to extract and integrate relevant information from various data sources into a
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single model are crucial not only for predictive modelling but also in terms of

understanding the spatio-temporal relationships within the data.

Structural dysconnectivity, as measured by DTI, has been demonstrated in sev-

eral psychiatric disorders and has been shown to reflect functional dysconnec-

tivity in some cases (Greicius, Supekar, Menon & Dougherty, 2009; Stephan,

Friston & Frith, 2009). In accordance with these theories, it would be appealing

to incorporate dysconnectivity information into any algorithm that is designed

to classify or predict outcomes in people with psychiatric disorders. This Chap-

ter discusses the steps that have been undertaken to develop a new algorithm

that can incorporate orientation information from DTI along with the EEG/fMRI

activity data as a data fusion approach. The most commonly used method of inte-

grated data analysis for this kind of problem is by converging evidence (Horwitz

& Poeppel, 2002). Typically, each data type is analysed separately, and the re-

sults from other analysis that support one’s findings are discussed. Horwitz and

Poeppel (2002) also put forth discussions about an alternative data fusion anal-

ysis called computation neural modelling. This is done by creating biologically

realistic neural network models, where each network simulates data of a certain

type and is compared with observed data. One major setback of this paradigm of

data analysis is that the hypothesis driven neural network model is built under

several assumptions for simulated data generation. Hence, it would be difficult

to know whether a disagreement between observed and simulated data is due

to the assumptions in the model, or simply wrong. A comprehensive review of

the research in the direction of multi-modal brain data analysis is summarised

by Sui et al. (2012). Some prominent work includes integration of fMRI/EEG

(Valdes-Sosa et al., 2009), fMRI/MEG (Plis et al., 2011), fMRI/DTI (Stämpfli

et al., 2008; Kleiser, Staempfli, Valavanis, Boesiger & Kollias, 2010) and fMRI/-

gene expression (Yang, Liu, Sui, Pearlson & Calhoun, 2010). There is a third

alternative for multi-modal data integration known as data fusion, which is a

more data driven approach. Direct data fusion encompasses the technique of di-

rectly fusing multiple datasets using statistical and machine learning algorithms.

The data-driven methods span across the domain of the combined blind source

separation techniques such as Independent Component Analysis (Calhoun, Liu &
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Figure 7.1.: fMRI scanning device (source NIBIB (2017)).

Adal, 2009; Teipel et al., 2010) and its variants, multi-modal Cross-Correlation

Analysis (N. M. Correa, Li, Adali & Calhoun, 2008; N. M. Correa, Eichele, Adal,

Li & Calhoun, 2010; N. Correa, Li, Adali & Calhoun, 2008), Partial Least Squares

(K. Chen et al., 2009), and others.

7.2 fMRI

Functional magnetic resonance imaging (fMRI) is a form of magnetic resonance

imaging that takes advantage of magnetic susceptibility artefacts caused by the

deoxygenated haemoglobin in the brain. Magnetic susceptibility measures the

magnetic properties of the interaction between a tissue or other substance and

the in-scanner magnetic field strength. Magnetically susceptible materials distort

the homogeneity of a magnetic field: materials with negative magnetic suscepti-

bility are known as diamagnetic, and those with positive magnetic susceptibility

are referred to as paramagnetic. Introduction of a paramagnetic substance, such

as deoxyhaemoglobin, into the scanner magnetic field causes variability in field

strength, spin dephasing, geometric distortion and loss of signal; fMRI exploits

this property by measuring changes in the relative ratio of oxygenated (diamag-

netic) to deoxygenated (paramagnetic) haemoglobin in the blood.
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fMRI measures the haemodynamic response to neuronal excitation and is there-

fore a secondary measure of neuronal activity. As the metabolic demands of neu-

rons increase (as observed during task performance), astrocytes are signalled to

produce prostaglandin E2 and epoxyeicosotrienoic acids, which diffuse to arteri-

olar smooth muscle and cause vasodilation (Hamilton, Attwell & Hall, 2010). In-

dependently, adenosine, a breakdown product of adenosine triphosphate (ATP)

produced during periods of high metabolic demand signals pericytes (contractile

cells surrounding capillaries) to relax, permitting increased blood flow through

capillaries (Hamilton et al., 2010). This increased blood flow delivers high con-

centrations of oxygenated haemoglobin and glucose to the activated region, in-

creasing the ratio of oxygenated to deoxygenated haemoglobin. As discussed

above, deoxyhaemoglobin is paramagnetic and causes dephasing and signal loss

in the MR image. Increasing the ratio of oxyhaemoglobin to deoxyhaemoglobin

reduces signal loss, because oxyhaemoglobin is diamagnetic. It is this decreased

signal loss, corresponding to the peak of the haemodynamic response function

(HRF), that is measured during fMRI experiments. This is referred to as the

blood oxygen-level dependent (BOLD) signal. Importantly, the HRF produces

only a 1− 2% change in signal following a single stimulus. For this reason, it

is required that data be collected over a long period of time so that the signal

to noise ratio can be improved. fMRI may be acquired during performance of a

cognitive task or during rest. During rest, the brain exhibits patterns of sponta-

neous activity that coincide with those present during task performance (S. M.

Smith et al., 2009), making resting-state fMRI (rs-fMRI) an excellent tool for

investigating functional brain connectivity. In a standard setup, fMRI data is

collected using an MRI device such as the one shown in Figure 7.1. Each fMRI

scan is visualised as sequence of 2D slices of a 3D image. The pixel colours

represents the indirect measure of neural activity. An example of fMRI data vi-

sualisation is shown in Figure 7.2. Each image in Figure 7.2 is showing a single

slice horizontal view of the 3D image.
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Figure 7.2.: Example of fMRI data represented as a sequence of images (source Quar-
antelli et al. (2013)).

7.3 DTI and Tractography

DTI is a magnetic resonance imaging technique that uses immense gradient am-

plitudes together with spin-echo or gradient-echo EPI sequences to provide a

measure of the relative diffusion of molecules in tissues. In DTI, each voxel of

the MR image has one or more pairs of parameters: a rate of diffusion and a

preferred direction of diffusion described in terms of three-dimensional space

for which that parameter is valid.

The diffusion of hydrogen within a voxel is described by the diffusion tensor D

as represented by Equation 7.1. D is a reciprocal matrix, with six independent

scalar elements (Dxx, Dyy, Dzz, Dxz, Dxy, Dyz). The six unique elements of the

tensor are the coefficients of the ellipsoid equation given by Dxxx
2 +Dyyy

2 +

Dzzz
2 +Dyxyx+Dzxzx+Dxyxy = 1. This equation can also be expressed in

terms of orthogonal Eigenvectors σ and their respective eigenvalues λ. These

7.3 DTI and Tractography 149



variables describe the elements of the diffusion ellipsoid as shown in Figure

7.3.

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 =


σ1

σ2

σ3




λ1 0 0

0 λ2 0

0 0 λ3


(
σ1 σ2 σ3

)
(7.1)

Isotropic diffusion within a voxel causes the diffusion ellipsoid to take a spher-

ical shape with λ1 = λ2 = λ3. In contrast, restriction of diffusion in certain

directions leads to an elevated eigenvalue coupled with the principal diffusion

direction as opposed to those corresponding to the secondary and tertiary diffu-

sion direction. From the tensor equation depicted in Equation 7.1, a number of

metrics corresponding to the properties of diffusion in the voxel can be derived.

λ1 corresponds to the primary direction of diffusion (principle eigenvector; σ1)

is referred to as the axial diffusivity (AD). Radial diffusivity (RD) is the mean of

λ2 and λ3 and reflects the diffusion behaviour transverse to the axonal path.

From the raw data, it is possible to determine fractional anisotropy but not the

fibre orientation. Diffusion tensor information can also be used to reconstruct

white matter bundles in the brain. This technique is termed tractography. Fi-

bre tractography is a very elegant method for delineating individual fibre tracts

from diffusion images. Tractography uses diffusion orientation information from

tensor imaging to calculate the direction of fibre bundles in-vivo. In determinis-

tic, or streamline tractography, the local tract direction is defined by the major

eigenvector of the diffusion tensor (Alexander, 2010). This causes issues in vox-

els with crossing, kissing or splitting fibres. However, as the algorithm is only

capable of estimating one fibre orientation (Alexander, 2010), probabilistic trac-

tography addresses these issues by estimating the orientations of two or three

different fibre populations within a single voxel (Behrens, Berg, Jbabdi, Rush-

worth & Woolrich, 2007). Thereafter, at every voxel, the algorithm estimates

the most probable fibre orientation and also provides a distribution representing

the probability that every other orientation lies along that fibre. This process is

repeated many times, each time using a slightly different orientation (according
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(a) The primary, secondary and tertiary diffusion directions de-
scribed by the Eigenvectors of Equation 7.1.

λ
2

λ1

λ
3

(b) The primary, secondary and tertiary Eigen values described in
Equation 7.1.

Figure 7.3.: Visual intuition of the ellipsoid representation of a diffusion tensor voxel.
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Figure 7.4.: Orientation information from DTI image. Left image shows an axial slice
of a single subject’s DTI data, registered to structural and MNI standard
space. The Right image shows a close-up of the right posterior corpus
callosum. Directions corresponding to each colour are as follows: Red -
left to right/right to left, green - anterior to posterior/posterior to anterior
and blue - superior to inferior/inferior to superior (source “Medical image
computing” (n.d.)).

to its likelihood). The integration of all estimates provides a collective measure

of connection probability along each tract (Behrens et al., 2007; Behrens et al.,

2003). Figure 7.4 shows an example of a diffusion MRI image of the human

brain.

7.4 NeuCube Architecture for Integrating

Spatial, Temporal and Orientation

Information
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7.4.1 Formalisation of the Machine Learning

Problem

The machine learning problem here is to learn a functional mapping of f(Dseq,Dstat)→

C, given a set of training samples < Dseq,Dstat,C >, so that the spatial tempo-

ral and orientation information present in Dseq and Dstat are used to not only

increase prediction performance, but also impart robustness to the model. Here

Dseq and Dstat represents the fMRI/EEG and DTI data respectively.

7.4.2 NeuCube Personalised SNNc Architecture

Here, a personalised SNNc based NeuCube architecture is proposed for the pur-

pose of learning from multi-modal information. The personalised SNNc based

NeuCube architecture is a modification of the NeuCube architecture described

in Section 4.4 and depicted in Figure 4.6. Before proposing the modified ar-

chitecture, it is necessary to elaborate certain characteristics of the SNNc in a

canonical setting.

Saturation behaviour of canonical NeuCube SNNc: The classical NeuCube ar-

chitecture shown in Figure 4.6 is made up of a single instance of encoder layer,

SNNc layer and supervised readout layer. The instances of these layers are ini-

tialised before the training process and data is passed through sequentially over

time for: (1) Encoding layer to continuously encode the data into spike-timings;

(2) SNNc layer to digest the data and update its state; and (3) supervised read-

out layer to digest the transformed spike-train and create instances in the data

space for the K-NN algorithm to act on. NeuCube is a pattern recognition sys-

tem that learns continuously from data. During the course of development of

NeuCube, it is observed that in a vanilla setting, learning continuously from

streaming input data has some undesirable effects on the run-time efficiency

and performance over time. Upon analysis, it was found this behaviour relates

to the single instantiation of the NeuCube SNNc layer.
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To further describe this behaviour, the spike density of SNNc can be defined as

the number of neurons that fire at a certain time instance. It is observed that

as input data is fed into the SNNc over time, the probability of the neurons in

the SNNc firing increases. The spiking neuron of course has a mechanism, such

as refractoriness, to avoid continuous spiking; however, over time, periodicity

in spike density cannot be avoided. To demonstrate this statement, a set of

experiments were conducted using synthetically generated spike data.

In the experimental setup, a small SNNc was initialised having 27 neurons. The

neurons were spatially distributed in a 3× 3 grid. The network of neurons were

connected following the SWC algorithm (rthr = 0.3). For input data, random

input spikes (with spiking probability 0.3) data Dseq = {0, 1}200×4 were syn-

thetically generated for each sample. Table 7.1 enlists three instances of the

experiment wherein the canonical SNNc unsupervised learning algorithm was

run using varying sample sizes and hyperparameter values. At the end of the

SNNc simulation, the spike-rate over time (or samples as samples are presented

over time) was plotted. It can be observed that irrespective of the hyperparam-

eter settings, a periodicity/total saturation in spike-rate is seen in the SNNc. As

a consequence, the spiking patterns after a certain number of sample presenta-

tions becomes predictable and does not relate to the variabilities in the sample

any more. This fact can be verified from the ‘sample distance matrix’ column

where the pairwise hamming distance matrix was plotted across the sample out-

put of the SNNc. The colours (red is high and blue is low) in the plot represents

the hamming distance between two samples. It must be noted that the ham-

ming distance between samples not only considers how many times SNNc has

spiked for a sample, but also considers when the neurons have spiked. It can

be observed there is a lot of variability in the similarity values initially, but as

more samples are presented, the spike patterns become more and more similar

leading to very small values of dissimilarity.

The point of including the SNNc layer is to improve pattern formation by expand-

ing it into higher dimensional space. However, the behaviour described above

does have a significant impact on pattern generation capabilities of the canon-
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ical NeuCube SNNc beyond a certain time. This can be defined as saturation

threshold time. There are two directions where research can traipse in order to

resolve or further analyse this issue:

• Improve the SNNc mechanisms and principles to keep it within sub-threshold

limit. In this setting, a single instance of the SNNc can be simulated life-

long without reduction in pattern generation abilities.

• Minimise the impact of saturation by using multiple instances of the SNNc

and control the sub-threshold state using the hyperparameter values. This

approach was used in this work.

The personalised SNNc based NeuCube architecture is depicted in Figure 7.5.

In the personalised SNNc approach, usage of multiple instances of SNNc was

proposed. In this approach one instance of SNNc is simulated per sample along

with a single instance of the encoding layer and supervised readout layer. In

this setup, each sample of input data is fed into a unique pre-initialised personal

SNNc. The personal SNNc acts as a filter which evolves over time to capture

the spatio-temporal relationships within a sample in the synaptic strengths. The

knowledge of finite time horizon means the SNNc instance can be kept in a

sub-saturation state by controlling the hyperparameter ranges. The other advan-

tage of the personalised SNNc architecture is the ability to avoid the sequential

sample presentation bias that may exist if all the samples are fed into a single

instance of the SNNc. This means the sequence of the sample presentation does

not have any impact on spike patterns generated by the SNNc. The other im-

portant aspect of the proposed personalised SNNc architecture is the ability to

incorporate multi-modal nature of the input data which will be discussed fur-

ther.
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7.4.3 Multi-modal Information Integration in SNNc

Using Orientation and Spike-time Data

In this Section, the proposed adaptations of the canonical SNNc unsupervised

learning algorithm mentioned earlier in Section 5.3.4, for the purpose of fusing

dynamic spatio-temporal and static orientation information from brain data, will

be discussed.

SNNc Architecture, Mapping and Initialisation

The SNNc architecture, as described elaborately in Section 5.3.1, are spatially

arranged (in three dimensions) set of neurons, partially connected by recur-

rent synapses forming a directed incomplete and acyclic graph G = {M ,C,W}.

The symbols and formalisations are consistent with Chapter 5 unless otherwise

stated. The neurons within the network are input or spiking types. The spatial

arrangement of the neurons follow a natural ordering and in the case of brain

data, integration takes a brain-like shape. The connections of the network are

established following the standard SWC (N. Kasabov et al., 2014) algorithm.

Neuron Dynamics

The SRM model has been used for implementing the leaky integrate and fire like

behaviour of a neuron. The SRM neuron model is used to adapt the membrane

potential v(t) of a neuron over time. This neuron model specifies the membrane

potential as the sum of: (1) temporal integration of the PSPs and (2) the refrac-

toriness. The PSP kernel ϵ0 is a function of t− tf , representing the PSP trace

over time generated by the firing of neuron j over time. τm is known as the

membrane constant which controls the decay rate of the PSP. In the present ex-

periments, a constant τm = 0.5 has been used. This means the influence of a

pre-synaptic spike diminishes from maximum to minimum within approximately
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five discrete time intervals. For a more detailed explanation and behaviour of

the neuron dynamics, see Section 5.3.2.

vi(t) = vrest +
∑
j∈Ti

wji
∑
tfj ∈Fj

ϵ0(t− tfj ) + η(t− tfi )

ϵ0(t− tfj ) = exp(− t−t
f
j

τm
)H(t− tfj )

H(t− tfj ) =

1, if t− tfj ≥ 0

0, otherwise

η(t− ti) =

−∞, if t− tfi < ηthr

0, otherwise

(7.2)

Python implementation: The neuron model dynamics has been implemented

in python v3.5. The neuron model dynamics were implemented as part of the

LeakyIntegrateAndFire class shown below. The simulate() method is imple-

mented to simulate the neuron dynamics using the input spike_train and pre-

synaptic connection weights weight and hyperparameter tau. �� �
1 class LeakyIntegrateAndFireNeuron:

2 def __init__(self, predecessor_count, potential_threshold,

refractory_threshold, potential_resting,

spike_history_length):

3 self.predecessor_count = predecessor_count

4 self.refractory_threshold = refractory_threshold

5 self.potential_threshold = potential_threshold

6 self.potential_resting = potential_resting

7 self.spike_history_length = spike_history_length

8 self.time = 0

9 # initialise neuron state

10 self.potential = self.potential_resting

11 self.refractory_state = 0
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12 self.potential_state_history = [self.potential]

13 self.spike_history = np.zeros((self.spike_history_length,

self.predecessor_count), dtype=int)

14

15 @staticmethod

16 def spike_response_kernel(current_time, spike_time, tau):

17 time_diff = current_time - spike_time

18 potential = np.exp(-time_diff / tau)

19 return potential

20

21 def simulate(self, spike_train, weight, tau):

22 self.time += 1

23 self.spike_history = np.delete(self.spike_history, 0,

axis=0)

24 self.spike_history = np.append(self.spike_history, [

spike_train], axis=0)

25 current_time = self.spike_history_length

26 potential = self.potential

27 spike = 0

28 if self.refractory_state == 0:

29 for k in np.arange(current_time):

30 count = np.count_nonzero(self.spike_history[k, :])

31 indices = np.nonzero(self.spike_history[k, :])

32 for i in range(count):

33 w = weight[indices[0][i]]

34 potential += w * self.spike_response_kernel(

current_time=current_time - 1, spike_time=k, tau=tau)

35 self.potential = potential

36 self.potential_state_history.append(self.potential)

37 if self.potential > self.potential_threshold:

38 self.refractory_state = self.refractory_threshold

39 self.potential = self.potential_resting

40 spike = 1
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41 else:

42 self.refractory_state = max(0, self.refractory_state -

1)

43 self.potential = max(self.potential_resting, self.

potential)

44 self.potential_state_history.append(self.potential)

45 return spike� �
code snippet 7.1: Python code for NeuCube modified SRM neuron model

Adaptation of Synaptic Strengths of the SNNc

The unsupervised learning algorithm in the SNNc is the most important aspect of

the proposed architecture for integrating multi-modal information. In a neural

network paradigm, learning is achieved through the synaptic strength updates

of the network. The learning behaviour of the SNNc can be explained using

the learning model of a single spiking neuron. Considering the single neuron

architecture, as shown in Figure 5.1, the unsupervised learning problem is the

a scheme of updating the wji’s by ∆wji(t) over the simulation time T . In a

recurrent SNNc layer, the aim is to learn dynamic influence from dynamic data

(fMRI) and static orientation influence from static data (DTI).

Dynamic Influence from fMRI/EEG

In the majority of the machine learning applications, models are trained on static

data, where a sample is represented by a vector of numbers d = {d1, d2, · · · },

where each of the elements within the tuple d represents the scalar value of a par-

ticular feature. However, in this case with fMRI or EEG data, a sample is repre-

sented by a matrix Dseq = {d1, d2, · · · , dn}, where di = {di(1), di(2), · · · di(t)}.

The sample representation is not only multidimensional but also is ordered in

time (sequence). Learning from these types of data in machine learning is
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known as sequence learning and techniques, like the hidden Markov model and

flavours of recurrent neural network have shown promise in learning from such

sequences. In this instance, an unsupervised sequence learning algorithm will be

described that is within the NeuCube SNNc layer and utilises the sequential in-

formation as part of its learning mechanism. The sequential information within

the SNNc architecture is named as the dynamic influence and is denoted by ϕ.

The dynamic influence from the spike-time data using the STDP learning algo-

rithm was modelled. As discussed elaborately in Section 5.3.3, STDP is a tem-

porally asynchronous form of Hebbian learning ("neurons wire together, if they

fire together") (Hebb, 1949) induced by the temporal correlation of the spikes.

Due to the online nature of the learning within the SNNc layer, the canonical

online formulation of the STDP learning rule have been used. Sjöström and Ger-

stner (2010a) proposed the on-line STDP update rule by modifying the canonical

STDP rule. In the on-line setting, the ϕji is calculated every time a neuron i fires

a spike or receives a spike from neuron j. Equation 7.3 formalises the weight up-

date rule that was used to calculate the dynamic influence. The first term in the

right hand side of Equation 5.7 corresponds to the LTP update and is calculated

when neuron i fires a spike at time t. The second term is the LTD update and is

calculated when neuron i receives a spike from neuron j at time t.

ϕji(t) =
∑
f

κ+ exp(−(t− tfj ))−
∑
g
κ− exp(−(t− tgi )) (7.3)

Python implementation: The python implementation of Equation 7.3 is given

below. The STDP () method takes the pre- and post-synaptic spike history tfj s

and tgi s along with the learning rate hyperparameter κ to generate the dynamic

influence phi. �� �
1 def STDP(pre_synaptic_spike_history,

post_synaptic_spike_history, kappa):

2 assert isinstance(pre_synaptic_spike_history, list)

3 assert isinstance(post_synaptic_spike_history, list)
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4 if len(pre_synaptic_spike_history) != len(

post_synaptic_spike_history):

5 raise ValueError("Length mismatch of pre and post synaptic

spike history!!")

6 pre_synaptic_spike_energy = 0

7 post_synaptic_spike_energy = 0

8 importance_of_LTP = 0.3

9 importance_of_LTD = 0.3

10 time_history = len(pre_synaptic_spike_history)

11 pre_synaptic_spike_history = np.asarray(

pre_synaptic_spike_history)

12 post_synaptic_spike_history = np.asarray(

post_synaptic_spike_history)

13 """

14 calculation of LTD

15 """

16 if pre_synaptic_spike_history[time_history - 1] == 1:

17 post_spike_indices = np.nonzero(

post_synaptic_spike_history)[0]

18 k = kappa * np.exp(-(1 - importance_of_LTD) * ((

time_history - 1) - post_spike_indices))

19 pre_synaptic_spike_energy = np.sum(k)

20

21 """

22 calculation of LTP

23 """

24 if post_synaptic_spike_history[time_history - 1] == 1:

25 pre_spike_indices = np.nonzero(pre_synaptic_spike_history

)[0]

26 k = kappa * np.exp(-(1 - importance_of_LTP) * ((

time_history - 1) - pre_spike_indices))

27 post_synaptic_spike_energy = np.sum(k)

28 phi = post_synaptic_spike_energy - pre_synaptic_spike_energy
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Figure 7.6.: Plot of the STDP weight update as a function of the relative time difference
of the pre and post synaptic spikes. The data for this plot was generated
using code snippet 7.2 with hyperparameter κ+ = κ− = 0.5.

29 return phi� �
code snippet 7.2: Python code for calculating dynamic influence

Static Orientation Influence from DTI Tractography Data

The present study has used the DTI data in the form of orientation vectors rep-

resenting mean orientation of the fibre tract at different voxel locations. The

process of generating the orientation data from a DTI image is described later in

Section 7.6.3. The orientation vector of a sample DTI image is represented by a

matrix Dstat ∈ R|N |×3, where each feature/voxel is made up of a 3D vector de-

scribing the primary orientation of the fibre in the Cartesian coordinate system.
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Figure 7.7.: Example of a pre-synaptic neuron j connected to two post synaptic neu-
rons i1 and i2. Each neurons spatial location is defined by the polar coor-
dinates (r,α).

Here, the interest lies in establishing a learning rule that does not only utilises

dynamic data influence as described in Section 7.4.3, but can also make use of

the static orientation influence from the DTI data. The intuition behind the orien-

tation influence can be explained again by a small SNNc architecture consisting

of three neurons as shown in Figure 7.7. The figure shows a single pre-synaptic

neuron j connected to two post synaptic neurons i1 and i2. The important as-

pect to note here is that the neurons in this diagram have spatial allocations

contrary to the one in Figure 5.1. The location of the neurons are defined by

the radial and the angular coordinates in the polar coordinate system. Now, the

intent is to measure the orientation influence ψ of neuron j on neurons {i1, i2}.

The neuron j will be referred to as the pivot neuron. The orientation vector of

the pivot neuron (from DTI data) is be represented by (rj ,αj). The orientation

influence of the pivot neuron on the post-synaptic neurons {i1, i2} is defined by

the angular proximity of the pivot neuron’s DTI orientation vector to the synap-

tic orientations of the neuron pairs. In that way, as per the hypothesis, the pivot

neuron wields a stronger angular influence on the neurons that lie in closer an-

gular proximity to the orientation vector of the pivot neuron. Therefore in Figure
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7.7, the orientation influence of neuron j can be arranged as i1 > i2 due to the

angular proximity of i1 and j being greater than i2 and j.

Even though a 2D vector space has been used for explaining the intuition of

angular influence, the SNNc neurons reside in a 3D space. The intuition can be

extended to the 3D vector space by adding another dimension in the coordinate

system. In 3D, the spherical coordinates of a point are given by (r,α, β), where

r is the scalar distance of the point from the centre, α and β are the elevation

and azimuth angle from the centre. A Gaussian radial basis (GRB) kernel has

been utilised to realise the elevation and azimuth orientation influences given

the elevation and azimuth data of the neurons. ψ is calculated as the mean of

azimuth and elevation influences between pre- and post-synaptic neurons j and

i according to Equation 7.4.

ψji =
ψα

ji+ψ
β
ji

2

ψαji = exp( ||αji−αdti
j ||2

2γ2 )

ψβji = exp( ||βji−βdti
j ||2

2γ2 )

(7.4)

Python implementation: The python implementation of Equation 7.4 is given

below. The angular_influence() method takes the coordinates of two neurons

and the orientation information, and outputs the orientation influence psi. �� �
1 def angular_influence(pivot_coordinate, sphere_coordinate,

elevation_angle, azimuth_angle):

2 assert isinstance(pivot_coordinate, np.ndarray)

3 assert isinstance(sphere_coordinate, np.ndarray)

4 assert isinstance(elevation_angle, float)

5 assert isinstance(azimuth_angle, float)

6

7 standard_deviation = 8
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8 relative_sphere_coordinate = np.subtract(sphere_coordinate,

pivot_coordinate)

9 radius, elevation, azimuth = cart2sph(

relative_sphere_coordinate[0], relative_sphere_coordinate

[1], relative_sphere_coordinate[2])

10 el_prob = radial_decay(elevation, elevation_angle,

standard_deviation)

11 az_prob = radial_decay(azimuth, azimuth_angle,

standard_deviation)

12 psi = (el_prob + az_prob) / 2

13 return psi

14

15 def cart2sph(x, y, z):

16 radius = math.sqrt(x ** 2 + y ** 2 + z ** 2)

17 elevation = math.atan2(math.sqrt(x ** 2 + y ** 2), z)

18 azimuth = math.atan2(y, z)

19 elevation *= 180 / math.pi

20 azimuth *= 180 / math.pi

21 return (radius, elevation, azimuth)

22

23 def radial_decay(x, mu, sigma):

24 return math.exp(-1 * (x - mu) ** 2 / (2 * sigma ** 2))� �
code snippet 7.3: Python code for calculating static orientation influence

The GRB kernels exponentially decay the orientation influence as the Euclidean

norm ||αji− αj || and ||βji− βj || increases. The variance hyperparameter γ2 con-

trols the speed with which the orientation influence decays with increasing ra-

dial distance (see Figure 7.8). The overall orientation influence is calculated as

the mean of the elevation and azimuth influence, as shown in Equation 7.4.
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Figure 7.8.: Plot of the elevation influence ψα as a function of the radial distance αji−
αdti

j and γ = 8.

7.4.4 Orientation Influence Driven STDP (oiSTDP)

Learning in SNNc

Algorithm 7.1 describes the oiSTDP learning algorithm step by step. The unsu-

pervised learning is executed on a preinitialised SNNc. The algorithm takes: (1)

the dynamic data Dseq (fMRI/EEG) in the form of spikes; (2) the static orienta-

tion data Dstat as 3D orientation vectors; and (3) the coordinates of the SNNc

neurons as the input. The output of the learning algorithm are the spikes in

the higher dimensional space in the form of Oseq. Over simulation time T , the

execution of the algorithm can be divided into two sequential blocks:

1. Block 1 (line 6 to 17): First, each spiking neuron in set Q is queried for

the pre-synaptic neurons Jspki , that has fired a spike at time t . These

connections are stored in Clearn for later updating the weights as per the

LTD rule. Then the spiking neuron is simulated to update the membrane

potential. If the neuron spikes as a result of neuron simulation (line 10),
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Algorithm 7.1 oiSTDP-based SNNc learning algorithm

1: input: G = {M ,C,W}, Dseq ∈ {0, 1}|N |×|T |, Dstat ∈ R|N |×3, loc ∈
R|M |×3,{hyperparameters = vthr, ηthr,κ}

2: output: Oseq ∈ {0, 1}|M |×|T |

3: Oseq[N ,T ]← Dseq

4: for t ∈ T do
5: initialise Clearn ← {}
6: for i in spiking neurons Q do
7: find firing(at time t− 1) pre-synaptic neurons, Jspk(t)i

8: set C ltdi ← (Jspki , i)
9: Clearn+← C ltdi

10: simulate i as per Equation 5.4
11: if i fires a spike then
12: Oseq[i, t+ 1]← 1
13: find pre-synaptic neurons, Ji
14: set C ltpi ← (Ji, i)
15: set Clearn+← C ltpi
16: end if
17: end for
18: for cji in Clearn do
19: initialise ψji ← 1
20: if j in N then
21: (rdtij ,αdtij , βdtij )← cart2sph(Dstat[j])
22: (rji,αji, βji)← cart2sph(loc[i]− loc[j])
23: calculate ψji as per Equation 7.4
24: end if
25: calculate ϕji as per Eq. 5.7
26: set ∆wji ← ψji · ϕji
27: update wji ← wji + ∆w
28: end for
29: end for
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a spike is added to Oseq and the pre-synaptic connections are again added

to the variable Clearn for later weight update as per the LTP rule.

2. Block 2 (line 18 to 28): This block implements the weight update rule.

At every time iteration t, synaptic strengths are updated for all the con-

nections stored in Clearn. Lines 20 to 24 are the steps for calculating the

orientation influence ψ. The function cart2sph(.) takes a 3D Cartesian co-

ordinate (x, y, z) as input and outputs the spherical coordinate (r,α, β).

The following formulae are used for this conversion:

r =
√
x2 + y2 + z2

α = tan−1
√
x2+y2

z

β = tan−1 y
z

The weight update ∆wji for connection Cji is the product of ψji and ϕji

(line 27). In this way, the orientation influence has been used as a modula-

tion factor of the dynamic influence. phi and psi are bound to [−1, 1] and

[0, 1] respectively. Henceforth, Deltaw is bound between [−1, 1]. The most

important characteristic of this learning rule is, of course, the inclusion of

the orientation influence along with the dynamic influence in the weight

update rule formulation. The rationale behind this formulation is to bind

the coincidence (STDP) and tract information together in a way such that

the strongest weight update occurs between a neuron pair when (1) there

is maximal coincidence between the pre-synaptic and post-synaptic firing,

and (2) the orientation of a neuron pair matches the DTI orientation data

of the pre-synaptic neuron. Hence, the relations observed in the synap-

tic strengths of the SNNc network are representative of both the spatio-

temporal coincidence generated from the encoded spike sequence and the

orientation information produced by the DTI data. In this way, the spatial,

temporal and orientation information in the synaptic strengths are able to

be captured. Figure 7.9 shows the behaviour of the oiSTDP update rule.

The X and Y axes are the radial orientation distance between the neuron

pair and the temporal difference between the pre and post-synaptic firing

times, respectively. The figure shows a mirrored inverted half Mexican hat

behaviour. It is visible that every slice across rji axis mimics the STDP
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Figure 7.9.: Graph showing the relationship of oiSTDP weight update ∆w with post
and pre synaptic firing time difference ti − tj and orientation distance rji.
As the temporal difference between neuronal spikes decreases, the effect
on weight updating increases, so that spikes timed closely together lead
to greater increases in weight updating than spikes timed further apart.
The order of spikes also affects weight updating. If neuron j fires before
neuron i consistently, then the synaptic weight between them continues
to increase; however, if the order switches, the weight is reduced.

behaviour shown in Figure 7.6. The top half of the Mexican hat relates

to the positive LTP weight update, which peaks at the minimum angular

distance and decays with increasing angular distance. The bottom inverse

half, on the contrary, relates to negative LTD weight update which achieves

a negative peak at the minimum angular distance. In this way, the angular

proximity of the neurons plays a role in modulating the spike synchronicity

driven dynamic influence.

7.5 Analysis of oiSTDP Algorithm Using

Synthetic Data

To analyse the behaviours of the oiSTDP learning algorithm, synthetically gen-

erated dynamic spatio-temporal data Dseq and static orientation data Dstat have

been used. The input spike data Dseq is of size 128× 14, and was generated in a

way that it mimics a random one second sample of a 128Hz 14 channel EEG de-

vice. The current experiment included M = 1485 neurons with sparse recurrent

connections. The neurons in the SNNc are spatially distributed to resemble the
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shape of the brain (N. K. Kasabov, 2014). The location of the input neurons in

the SNNc are resolved as per the natural spatial ordering of EEG channels-AF3,

F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4 and F8. For connection generation,

rswc = 0.02 (meaning connect neurons within 2% of the maximum distance),

and W0 = 0.05, have been used. The spiking neurons are simulated using the

parameters (ηthr = 4, vthr = 0.1,κ− = κ+ = 0.01).

7.5.1 Effect of the Orientation Information on SNNc

This segment demonstrates the systematic effect of orientation information in

the SNNc map via the orientation influence ψ. The oiSTDP learning rule repre-

sents orientation information in conjunction with the spatio-temporal informa-

tion in the connection strengths. The sample Dseq was taken from a Poissons’

distribution to keep minimal spike synchronicity in the data. This is done to

minimise the influence of synchronicity to the maximum. As per Algorithm 7.1,

absence of synchronicity will mean that the spike data has minimal influence in

the SNNc weight update. Figure 7.10 shows the systematic effect of different

input orientation information on the final 3D SNNc map. In first of three ex-

periments, all the SNNc neurons were fed with input orientation data (α = 0°,

β = 0°), i.e. parallel to the X axis and perpendicular to the Z axis. It is clearly

visible from Figures 7.10a, 7.10b and 7.10c that the strongest connections in

the SNNc are formed in the direction of the orientation information provided.

The second and third experiment use (α = 45°, β = 45°), and no orientation

information respectively. It is evident from Figure 7.10 that in absence of the

temporal information (synchronicity), the orientation information is reflected in

the strongest connections of the SNNc, and, as such, in simple cases, they are

visually discriminatory.

7.5.2 Effect of the spike synchronicity on SNNc

The aim of this experiment is to show the effect of spike synchronicity, i.e. the

effect of STDP learning (Equation 5.7) on the SNNc map for different spatio-
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(a) Synchronous input spike train at locations
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P7, O1, O2 and P8 (Horizontal view)

Figure 7.11.: Comparison of the effect of synchronous input spikes on the SNNc map
generated by Algorithm 7.1. The blue dots show the synchronous input
channels.

temporal patterns. Per the STDP learning rule, greater synchronicity leads to

stronger connections through LTP. To demonstrate the effect of the spatio-temporal

synchronicity, two samples of the input spike data have been created. In the first

sample, the spike sequences corresponding to the channels in the frontal lobe of

the brain are kept the same (mimicking 100% synchronicity) and in the second

sample, 100% spike synchronicity is kept at the occipital and parietal lobe. Figure

7.11 shows the comparison between the two SNNc maps created by the oiSTDP

learning algorithm when fed with these two samples. The ‘strongest connection’

density is clearly more prominent in the frontal lobe in Figure 7.11a due to the

greater input spike synchronicity in that region. Similar clusters (Figure 7.11b)

at the parietal and occipital lobe can be seen with when the second sample is

used. Through these analyses, it has been demonstrated how different temporal

patterns and the spatial arrangement of such patterns can affect the visual map

of SNNc through the oiSTDP learning.
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7.6 Personalised Predictive Modelling of

Treatment Outcome using NeuCube with

oiSTDP Learning

This study was conducted as part of a large cross-sectional TRS study investigat-

ing Clozapine (CLZ) response in people with treatment resistant schizophrenia

using EEG, MRI and genetic information. This study is a collaborative work with

the school of pharmacy, University of Auckland. The University of Auckland

conducted the participant recruitment, data collection and preprocessing. The

current study’s concentration and contribution lies in the data preprocessing,

computational method development and data analysis. Strong efforts have been

made to include all the relevant information in this study. However, for in-depth

detail about the study, participants, data acquisitions and so on, the PhD thesis

of McNabb (2017) is a highly recommended read. This study was approved by

the Health and Disability Ethics Committee and received locality approval from

Auckland and Counties Manukau, District Health Boards of New Zealand. The

ethical approval was obtained by the University of Auckland and a copy of the

approval is attached in Appendix E.

7.6.1 Schizophrenia and Antipsychotics

The Global Burden of Disease Study, in 2013, estimated that 23 million peo-

ple, across the globe, were living with schizophrenia (Vos et al., 2015). Taking

into account fewer than 0.01% of the total population (though it was previously

reported by McGrath, Saha, Chant and Welham (2008) the prevalence rates be-

tween 0.3% and 0.7%), schizophrenia was found as a leading cause of years lived

with disability and contributed to 3.7% of the global burden of disease (Vos et

al., 2015). The annual national expenditure of schizophrenia, in a systematic

review, was estimated to range between USD 92 billion and USD 102 billion,
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with indirect costs accounting for 50% to 85% of the overall cost (Chong et al.,

2016).

Schizophrenia most commonly emerges during adolescence or early adulthood

(Spitzer & Williams, 1980). This disease is a leading cause of disability in indi-

viduals aged between 15 and 44 years (Rössler, Salize, van Os & Riecher-Rössler,

2005). Schizophrenia affects its targets through hallucination, reduced emo-

tional expression and relapsing episodes of delusions, along with persistent cog-

nitive dysfunction and several other disruptive symptoms that hinder an individ-

uals capacity to be an active and engaged member of society, thereby greatly

diminishing their quality of life (Spitzer & Williams, 1980). Pharmacological

treatment is one of the most successful tools for managing the symptoms affili-

ated with schizophrenia and has been shown to be effective in the majority of in-

stances (Matheson, Shepherd & Carr, 2014). Nevertheless, despite best-practice,

there are a small number of individuals who remain symptomatic. It has been

estimated that as few as 5% to as much as 60% of the population inflicted with

schizophrenia are resistant to first-line treatment (Elkis, 2007; Lehman et al.,

2004; Essock et al., 1996; Juarez-Reyes et al., 1995). Contributing to some of

the highest rates of hospitalisation and diminished functioning in mental health

(Iasevoli et al., 2016; Lieberman & Murray, 2012), resistance to first-line antipsy-

chotic intervention is estimated to cost USD 34 billion per annum in healthcare

expenditure within the US alone (Kennedy, Altar, Taylor, Degtiar & Hornberger,

2014). Relieving patients of their most incapacitating symptoms, the atypical an-

tipsychotic clozapine (CLZ) has been shown to be effective for treating between

30% and 70% of individuals who fail first-line treatment (Elkis, 2007; Essali, Al-

Haj Haasan, Li & Rathbone, 2009; J. M. Kane & Correll, 2016). The severe and

potentially life-threatening side-effects linked to CLZ, however, restrict its use in

the clinic. There are no current means for identifying those who will respond to

treatment with CLZ, or alternatively, for identifying who will fail to respond to

first-line therapy.
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7.6.2 Treatment Outcome in People with

Schizophrenia

Since the advent of chlorpromazine during the middle of the twentieth century,

pharmacological interventions have been recognised as an integral component

of treatment of people with schizophrenia. Nevertheless, treatment using first-

line antipsychotics has been shown to be effective in only 60% to 80% of individ-

uals. Fewer options for treatment exist for those who do not respond to first-line

therapy, thereby leaving many patients without an effective means for managing

their symptoms. Research suggests that CLZ can successfully treat treatment-

resistant schizophrenia (TRS) (Meltzer, 2010; J. Kane, Honigfeld, Singer &

Meltzer, 1988), resulting in significant enhancements towards quality of life,

as well as positive long-term functional outcomes in some individuals (Essali et

al., 2009). However, CLZ also has the potential to cause serious, life-threatening

side effects, such as agranulocytosis, myocarditis and cardiomyopathy, and has

therefore, been restricted in its use, leading to delayed access for many individ-

uals (Wheeler, 2008). Due to its noteworthy potential to cause improvement,

psychiatrists are in need of reliable tools that can predict whether CLZ will be

both an effective and a safe option for clients with schizophrenia.

Evidence suggests that schizophrenia is linked to disruptions to structural and

functional connectivity (Yu et al., 2012; Fitzsimmons, Kubicki & Shenton, 2013).

Work from previous research also suggests that functional connectivity may be

different between individuals who respond to CLZ and those who are ultra-

treatment-resistant (UTRS) (Creese, Burt & Snyder, 1976; Knott, Labelle, Jones

& Mahoney, 2000). (Rodrguez, Andreé, Castejón, Garca et al., 1996) found

that lower perfusion in the thalamus, left basal ganglia and right prefrontal

regions are poor responders to CLZ prior to treatment, and that individuals

who have high metabolic activity in the dorsolateral prefrontal cortex were

more likely to experience improvements in negative symptoms after administrat-

ing CLZ. Another study found improvements in the Positive and Negative Syn-

drome Scale (PANSS) correlated with pretreatment inter- and intra-hemispheric
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spectral power asymmetry, which was measured using electroencephalography

(EEG) (Knott et al., 2000).

Pattern recognition algorithms can provide a novel and practical means to un-

derstand the differences between patients and healthy controls and predict in-

dividual patients’ responses to treatment. Within psychiatric research, in par-

ticular, machine learning has gained considerable momentum as a useful tool

for developing predictive models of treatment response. Incorporation of multi-

ple imaging modalities into these algorithms could provide increased reliability,

especially in disorders where clinical diagnosis does not necessarily guide treat-

ment. M. J. Patel et al. (2015) recently applied machine learning algorithms to

predict treatment response in late-life depression using a combination of clinical

and imaging data. Comparing several algorithms, they determined that alternat-

ing decision trees could most accurately predict treatment outcome in this cohort

using a combination of structural and functional connectivity data (M. J. Patel

et al., 2015). Khodayari-Rostamabad, Reilly, Hasey, de Bruin and MacCrimmon

(2013) have used EEG data to predict the response to selective serotonin reup-

take inhibitors in major depressive disorder and to CLZ in people with treatment-

resistant schizophrenia (Khodayari-Rostamabad, Hasey, MacCrimmon, Reilly &

de Bruin, 2010). C.-C. Lin et al. (2008) also employed machine learning algo-

rithms to predict the response to CLZ, instead of using a combination of clinical

and pharmacogenetic data as input. Doehrmann et al. (2013) employed ma-

chine learning techniques to predict treatment outcome in social anxiety disor-

der. Using task-based fMRI, they accounted for 40% of the variance in treatment

response (Doehrmann et al., 2013). The challenge now is to create an algorithm

that can incorporate brain data from different modalities.
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7.6.3 Method

Participants

In accordance with the Diagnostic and Statistical Manual of Mental Disorders

(DSM-IV), persons with a diagnosis of schizophrenia were recruited from mental

health clinics within the Waitemata and Counties Manukau districts of Auckland,

New Zealand. Participants were required to be: between the ages of 18 and 45;

and clinically stable for at least six weeks prior to their inclusion in the study and

also receiving atypical antipsychotics for the treatment of schizophrenia. Approx-

imately twenty psychiatrically healthy control participants were also recruited as

part of the research. The exclusion criteria involved current or previous diagno-

sis of any other axis I disorder, history of traumatic brain injury producing loss of

consciousness of longer than three minutes, along with other significant physical

disorders that were uncontrolled and may have affected brain structure, active

substance dependence and contraindications for MRI. It is also noteworthy that

participants were excluded from analysis if their functional image or supporting

fieldmap image was overwhelmingly disrupted by motion.

As per the history of treatment and current antipsychotic regimen, participants

were assigned into one of three studies: first-line responder (FLR); treatment

resistant (TRS); and ultra-treatment resistant (UTRS). The FLR group involved

those responding well to first-line atypical antipsychotic mono-therapy. The TRS

group consisted of participants who failed at least two previous six-to-eight-week

trials of atypical antipsychotics and were now receiving CLZ. Lastly, those who

failed at least two previous six-to-eight-week trials of atypical antipsychotics and

had also failed a trial of CLZ monotherapy were enrolled in the UTRS group.

Participants in the UTRS group all received a mixture of two antipsychotic drugs;

79% received CLZ as part of an augmented treatment method.

The demographics of the participants were compared across cohorts using IBM

SPSS Statistics Version 24. The Students t-test was used to analyse the variables
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that satisfied assumptions of homoscedasticity (Brown-Forsythe test for equality

of variances) and normality (Shapiro-Wilk test for normality). Variables that

violated assumptions of homoscedasticity and/or normality were analysed using

the Mann-Whitney U tests or Z-score.

Data Acquisition

The Siemens Mangetom Skyra 3T scanner at the Centre for Advanced MRI (Uni-

versity of Auckland, New Zealand) was used to acquire the diffusion and resting-

state (rs) functional magnetic resonance images. Magnetisation prepared 180-

degrees radio-frequency pulses and rapid gradient-echo (MPRAGE) sequence

were used to obtain Structural T1-weighted images. These were the acquisition

parameters: Repetition time (TR) 1900 ms; echo time (TE) 2.39 ms; inversion

time (TI) 900 ms; flip angle 9°; repetition 1; acceleration (GRAPPA) factor of 2;

field of view (FOV) 230 mm; matrix 256× 256; voxel size 0.9× 0.9× 0.8 mm.

Diffusion-weighted (DWI) images were obtained through an echo planar imag-

ing (EPI) sequence with the following parameters: TR 8900 ms, TE 95 ms,

FOV 240 mm, 122 × 122 matrix, 2.0 mm slice thickness, isotropic voxel size

2.0× 2.0× 2.0 mm. An acceleration factor of 2 was used. 67 slices were acquired

parallel to the anterior commissure-posterior commissure (A >> P ) direction

with diffusion-weighting factor b = 1000 s/mm2 in 64 gradient directions. There

were a further 8 scans without diffusion weighting (b = 0 s/mm2) which were

also acquired.

Gradient distortion (fieldmap) images for diffusion data were acquired using a

gradient echo pulse sequence with the following parameters: TR 655 ms; TE1

4.92 ms; TE2 7.38 ms; voxel size 3.8x3.8x2.0 mm; phase encode direction R >>

L; FOV 240 mm.

Rs functional images were acquired using EPI with the following parameters: TR

3000 ms, TE 30 ms; echo spacing 0.65 ms (0.62 ms for last 4 participants, follow-
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ing software upgrade); phase-encode direction A >> P ; slices 54; volumes 160;

FOV 192 mm; acceleration factor of 2; matrix 64× 64; voxel size 3.0× 3.0× 3.0

mm. Participants were requested to lie immobile with eyes open and to focus

their attention on a fixation cross that was presented on a screen in front of the

scanner. Participants were given the instruction to keep a blank state of mind by

not thinking of anything in particular.

Gradient distortion images for functional data were acquired using a gradient

echo pulse sequence with the following parameters: TR 655 ms; TE1 4.92 ms;

TE2 7.38 ms; voxel size 3.4× 3.4× 2.4 mm; phase-encode direction A >> P ;

FOV 220 mm.

fMRI Image Preprocessing

fMRI image preprocessing was performed using FSL version 5.0.7 (S. M. Smith

et al., 2004). Brain tissue was extracted from raw magnitude files using FSLs

BET (S. M. Smith, 2002), after which brain-extracted images were eroded to

ensure that no voxels containing non-brain tissue remained. Fieldmaps were

then created using the fsl_prepare_fieldmap function. Functional image regis-

tration to high resolution structural and MNI152 standard space was performed

using FMRIB’s Expert Analysis Tool (FEAT). Preprocessing parameters in FEAT

were as follows: motion correction = MCFLIRT; b0 unwarping = on; echo spac-

ing = 0.325 (0.31 for last 5 participants); TE = 30; spatial smoothing = 5mm;

global intensity normalisation = on; temporal filtering = off; MELODIC = off;

registration to structural image = boundary-based registration; registration to

MNI152_2mm = non-linear; warp resolution = 10 mm.

ICA-based Automatic Removal Of Motion Artefacts (ICA-AROMA) (Pruim et al.,

2015) was used to remove motion artefacts from the fMRI data utilising FSLs

FEAT output as input. White matter and cerebro-spinal fluid (CSF) maps were

segmented from high resolution structural images using FSLs FAST (Yongyue

Zhang, Brady & Smith, 2001) and warped to functional space using linear reg-
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istration to FEAT output (FSLs FLIRT (Jenkinson & Smith, 2001)). Nuisance

time-series were generated from ICA-AROMA output (denoised functional data)

using CSF and white matter maps as input. A general linear model (GLM) of

residual activity was then generated from the denoised functional data and nui-

sance time-series using FSLs GLM. A temporal mean file of denoised functional

data was created, to which high-pass temporal filtering (sigma=16.7) was ap-

plied in addition to removal of residual activity attributed to CSF and white

matter. Filtered, de-noised functional data was then warped to MNI standard

space for use in further analysis.

DTI Image Preprocessing

DTI image preprocessing was performed using FSL version 5.0.7 (S. M. Smith

et al., 2004). Structural images were reoriented to a standard template and

brain tissue was extracted from raw image files using FSLs brain extraction tool

(BET) (S. M. Smith, 2002). If automatic brain extraction failed to eliminate all

non-brain tissue, the excess was removed manually. Magnitude images were

subjected to the same process, after which brain-extracted images were eroded

to ensure that no voxels containing non-brain tissue remained. Fieldmaps were

then created using the fsl_prepare_fieldmap function. The gradient-free image

was used to create a binary mask with BET. Gradient distortions were corrected

using FSLs fugue function and output registered to gradient-free images using

the linear registration function (FLIRT) (Jenkinson & Smith, 2001). Data were

then corrected for head movement and eddy current distortions using FSLs eddy

tool (Andersson & Sotiropoulos, 2016). Slices with average intensity at least

four standard deviations lower than the expected intensity were interpolated

with predictions made by the Gaussian Process (Andersson, Graham, Zsoldos

& Sotiropoulos, 2016). DTIfit was used to independently fit diffusion tensors

to each voxel, limited to brain space using the binary brain mask. Crossing fi-

bres were modelled using Bayesian Estimation of Diffusion Parameters Obtained

using Sampling Techniques (BEDPOSTX) (Behrens et al., 2003). BEDPOSTX es-

7.6 Personalised Predictive Modelling of Treatment Outcome using NeuCube with oiSTDP
Learning 182



timates of primary fibre orientations (dyads1) were then warped to a standard

MNI template for use in the initial NeuCube construction.

The second stage of data processing focused on selecting a set of voxels from the

fMRI and DTI to be used to build the multi-modal NeuCube model. As discussed

in Section 7.4.3, since a major component of this model captures temporal vari-

ations in data and the noise reduction capabilities of SNN architectures through

encoding (N. Kasabov, Scott et al., 2016), it was hypothesised that the discrim-

inatory information is hidden in the voxels with significant variability in the

activity over time. A set of voxels with an absolute mean standard deviation of

greater than 105 were selected for the experiments. Figure 7.12 shows the 3D

atlas locations of the selected voxels in the MNI coordinate system. The selected

voxels are found to be predominantly (> 67%) located in the cerebellum area

of the brain. The second and third column of the ROI frequency table (see Ta-

ble 7.2) also lists to the number and the percentage of voxels belonging to the

different ROIs.

In this study, the aim was to build a model for discriminating CLZ mono-therapy

respondent and non-respondent individuals from multi-modal fMRI and DTI

brain data. For this investigation, a subset of data was collected from the TRS

study with the intention of classifying subjects into groups with either TRS or

UTRS using resting-state fMRI and DTI data. A total of 30 subjects were chosen

for the study. Sixteen subjects belonged to the TRS group and fourteen to the

UTRS group.

Experimental Results

The final preprocessed dataset consists of dynamic fMRI trials Dseq ∈ R30×2318×80

and static DTI orientation vector data Dstat ∈ R30×2318×3 of 30 subjects and 2318

voxels. Each fMRI voxel is sampled over 80 time points within a trial. The voxels

of the DTI orientation data are represented by 3D vectors signifying the primary

orientation of the fibre tract at the voxel location.
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Table 7.2.: Frequency table of ROI’s of the selected voxels.

ROI # voxel %

Frontal Lobe 177 7.64
Insula 16 0.69

Temporal Lobe 138 5.95
Cerebellum 1557 67.17

Occipital Lobe 25 1.08
Parietal Lobe 134 5.78

Thalamus 187 8.07
Caudate 84 3.62
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Figure 7.12.: Voxel selection using absolute mean standard deviation.
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The NeuCube personalised architecture consists of three modules as described

in Section 7.4.3. The first step of the process was to compress or encode the

dynamic fMRI data from continuous real space to binary spike space. For the

encoding step, the BSA (Schrauwen & Van Campenhout, 2003) algorithm was

chosen due to its ability to represent brain data as important spike event and

has shown promising results in (Sengupta & Kasabov, 2017; Nuntalid et al.,

2011). For the second step, subject-specific SNNc’s were initialised with Q =

1000 spiking neurons, N = 2318 input neurons and synapses were initialised

using the SWC algorithm within the radial neighbourhood of rswc = 0.05 and

wij = 0.05. The spiking neurons were set with the hyperparameters {vrest =

0, vthr = 0.1, ηthr = 8}. These along with other hyperparameters were chosen

by a grid based hyperparameter search strategy. The encoded fMRI data and

the DTI orientation vector data for each subject were then passed through the

initialised SNNc, generating Oseq for each subject using Algorithm 7.1. In the

final step, a lazy K-NN binary classification model using 50% of the randomly

chosen subjects was learned. It is to be noted that a custom distance function as

part of the K-NN algorithm for learning binary spike data was used. A custom

spike asynchronicity-based distance function as described in Section 6.6.3 and

in (Sengupta & Kasabov, 2017) has been utilised. The K-NN learning algorithm

can of course be replaced by any supervised learning module that can learn from

discrete or binary input data.

Due to the multi-modular and rather flexible nature of the NeuCube architecture,

selecting baselines for comparison is a challenging task. In this work, the Neu-

Cube architecture was used as a combination of temporal feature compressor,

spatial expander and classifier. The compressor and the SNNc module together

are used as a spatio-temporal feature extraction module. The supervised read-

out layer then learns a model from the transformed feature transformed data.

Hence it is appropriate to compare the BSA+oiSTDP feature extraction mod-

ule against other feature extraction methods in continuous data domain. The

following feature extraction algorithms have been compared:
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1. Sparse autoencoder (Ng, 2011): Autoencoders are shallow single hidden

layer neural networks that can perform identity mapping of the input. The

hidden layer of the autoencoder learns non linear lower dimensional data

representations. The sparse autoencoders are an extension of regular au-

toencoders that impose sparsity regularisation constraints on the loss func-

tion. In these present experiments, the fMRI data was used to learn a

sparse autoencoder (with 1000 relu units in the hidden layer and L1 regu-

larisation constraint of 10−5) that encodes the data into 1000 dimensional

feature space using the python keras API (Chollet et al., 2015).

2. Principal component analysis (PCA): PCA is a standard orthogonal linear

feature transformation technique that transforms features into principal

components. Using the scikit-learn API, 1000 principal components were

fitted and transformed on the fMRI data.

3. Independent component analysis (ICA): ICA is another statistical feature

transformation technique used to decompose feature space to statistically

independent component space by maximising statistical independence of

the estimated components. Once again, scikit-learn (Pedregosa et al., 2011)

API’s FastICA algorithm was used to fit and transform the fMRI data to 1000

independent components.

4. Restricted Boltzman’s machine (RBM) (Hinton & Salakhutdinov, 2006):

RBM is an unsupervised nonlinear feature learner based on a probabilistic

model that has gained much popularity in the deep neural network do-

main. The scikit-learn API (Pedregosa et al., 2011) was used to learn a

Bernoulli RBM network, with 1000 components using stochastic Maximum

likelihood (Tieleman, 2008) learning.

Table 7.3 presents the experimental results. The rows of the table compares

the methods for the classification task. (C) and (E) in the method names cor-

1TFC=Temporal feature compressor, NTFC=No-temporal feature compressor, SE=Spatial ex-
pander, C=classifier

2The performance metrics are computed as mean ± standard deviation of 10 independent
train/test runs of the classification module
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Table 7.3.: Comparison of the pattern recognition methods on the binary classification
task.

Method Framework1 Data
Relation learning capabilities Performance2

Temporal
Multi-
modal Accuracy (%) Cohen’s κ

BSA+oiSTDP+K-NN(C) TFC+SE+C fMRI+DTI 3 3 72.3± 12.3 0.44± 0.25
BSA+STDP+K-NN(C) TFC+SE+C fMRI 3 7 69.4± 13.9 0.38± 0.28
BSA+K-NN(C) TFC+C fMRI 7 7 64.2± 12.4 0.22± 0.26
Sparse Autoencoder+K-NN(E) NTFC+C fMRI 7 7 56.1± 7.2 0.01± 0.11
PCA+K-NN(E) NTFC+C fMRI 7 7 56.1± 11.3 0.13± 0.18
ICA+K-NN(E) NTFC+C fMRI 7 7 62.8± 12.3 0.26± 0.23
RBM+K-NN(E) NTFC+C fMRI 7 7 36.2± 4.9 −0.23± 0.11
LSTM C fMRI 3 7 45.7± 9.6 −0.15± 0.14
GRU C fMRI 3 7 45.2± 7.5 −0.018± 0.13

respond to the custom and euclidean distance function used as part of K-NN

respectively. The framework column specifies the role of each component in the

method names. For example, the proposed BSA+oiSTDP+K-NN is a combina-

tion of temporal feature compressor (TFC), spatial expander (SE) and classifier

(C). The Performance of the binary classification task is measured by overall ac-

curacy and Cohen’s κ statistic. The first 3 rows of the table compare the different

NeuCube architectures. The BSA+oiSTDP+K-NN is the proposed architecture

for fMRI and DTI integrated learning. The next two methods systematically re-

moves (1) orientation influence from SNNc learning (STDP) and (2) the SNNc

module to show the effect of inclusion of these artefacts on the performance.

The best performance across the different methods is achieved by the proposed

BSA+oiSTDP+K-NN architecture with overall accuracy of 72.4± 12.3% and Co-

hen’s kappa of 0.44± 0.25. The classification accuracy increases by ≈ 8% and

doubles the mean Cohen’s κ statistic when oiSTDP-based SNNc learning is per-

formed in the middle using fMRI and DTI data. Rows 4 to 7 are the non temporal

feature extraction baselines described earlier. Due to the non temporal nature of

the baseline feature compressors, the fMRI data for each subject is input to these

feature extractors as a single vector (created by concatenating the temporal di-

mension) leading to a massive feature vector space. K-NN (K = 1) classifier was

used for the classification task to keep the comparisons as fair as possible. The

disadvantage of the large feature space is quite imperative as it leads to potential

over fitting of the data. The DTI data was not added to the already large feature

space to avoid further over fitting. As the SNNc of NeuCube is a spiking recurrent

neural network framework with temporal or sequential learning capabilities, the

binary classification task with other single hidden layer recurrent neural network
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framework, such as long short term memory (LSTM) (Hochreiter & Schmidhu-

ber, 1997b) and gated recurrent units (GRU) (K. Cho et al., 2014) was also

brought to light. Both LSTM and GRU networks were designed as shallow single

hidden layered neural networks having 50 LSTM and GRU units. These networks

were implemented in keras API (Chollet et al., 2015) and learned by optimising

the binary crossentropy loss function using the adaptive momentum optimiser.

The results for the baselines show that K-NN performs best on ICA-based feature

representation. PCA and sparse autoencoders are similar in accuracy, but PCA

achieves a stronger κ statistic. On the other hand, the baseline recurrent neural

networks fail to learn the task, leading to poor performance statistics.

Furthermore, connection weights have been individually scrutinised for the TRS

and the UTRS group, generated by the oiSTDP learning algorithm. Figure 7.13

shows a comparison of the strongest mean connection weights of the TRS and

the UTRS groups. Most of the strong connections are shown to be created in

the lower cerebellum and thalamus across UTRS and TRS group. It has been

shown that by connections via the thalamus, the cerebellum innervates with mo-

tor cortical, pre-frontal and parietal lobes (W. Ou, Cameron & Thomas, 1992).

Following cerebellar damage, neuro-cognitive symptoms and a cognitive affec-

tive syndrome including blunted affect and inappropriate behaviour have been

shown (Baillieux, Verslegers, Paquier, De Deyn & Mariën, 2008). Recent fMRI

and PET studies have also demonstrated the involvement of cerebellum and

thalamus in sensory discrimination (Gao, Parsons, Bower, Xiong et al., 1996),

attention (Courchesne, Akshoomoff, Townsend & Saitoh, 1994), and complex

problem solving (S. Kim, Ugurbil, Strick et al., 1994). All of which may be im-

paired in people with schizophrenia (Yeganeh-Doost, Gruber, Falkai & Schmitt,

2011). A recent study also has shown that the administration of CLZ in people

with schizophrenia can restore cerebellar functions by altering the glutamater-

gic system and neuro-plasticity (Yeganeh-Doost et al., 2011). The present study

has additionally shown (Figure 7.13) the presence of a large density of strong

connections in the cerebellum region of the model in the UTRS group compared

to the TRS group. Similarly, a large number of strong connections are present in

the thalamic region of the TRS as opposed to UTRS. As the oiSTDP learning reg-
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ulates the connection strength based on the joint information extracted from the

spike activity and angular information, it can be stated that the distinctive con-

nection density in the cerebellum and thalamus regions of the two groups in the

Figure 7.13 is due to distinctive fMRI activity and DTI orientation information

in the input data.

7.7 Summary and Conclusion

This is the first attempt to integrate multiple modalities of information in a spik-

ing neural network architecture. The novelty of this approach lies in the pro-

posed personalised SNNc-based architecture of NeuCube, and most importantly

the proposed oiSTDP learning algorithm, which can integrate multiple modal-

ities of information including time, space and orientation from data. Despite

some assumptions being made on multi-modal brain data, the proposed algo-

rithm is not limited to brain data and can be extended to data having spatial, tem-

poral and orientation information. Examples of such data are weather (change

in temperature, wind movement, and cloud movement) and traffic data.

The experiments shown here were conducted to demonstrate the ability of the

algorithm to capture discriminative joint information present in the data and rep-

resent this information within its connection strengths. The current design has

incorporated DTI and fMRI from individuals initiating antipsychotic therapy to

create a personalised classifier of treatment response in people with schizophre-

nia. Interrogation of the SNNc network revealed increased network connectivity

in the cerebellar region of the model, potentially implicating activity in this area

of the brain as a bio-marker of treatment response in schizophrenia. Inclusion of

more participants and studies using specific task-based designs may expose other

markers not currently identified in the literature and provide novel hypotheses

regarding why some individuals respond to CLZ mono-therapy while others do

not. Additional applications of the algorithm may include other disorders where

treatment or clinical outcome is poorly understood.

7.7 Summary and Conclusion 190



The ability to incorporate data from multiple imaging modalities simultaneously

could increase the reliability of the model to predict treatment outcomes in fu-

ture. To date, studies have achieved high rates of accuracy in patient samples

combining single imaging techniques alongside clinical and pharmaco-genetic

data (M. J. Patel et al., 2015; Khodayari-Rostamabad et al., 2013), though none

have led to changes in clinical practice. This could potentially be a result of over

fitting during training, which the algorithm proposed would be less likely to do.

The learning algorithm is formulated in a way that it favours joint information

over information that is contradictory. In this way the predictive outcomes are

robust and trustworthy.

In the future, apart from algorithmic refinement to further improve the perfor-

mance, the aim is also to include EEG data as part of the integrated brain data

modelling using the NeuCube personalised SNNc. Further improvement of the

classification performance through the addition of EEG data to the model. This

strand of work will lead to new methods for integration of multi-modal data

with heterogeneous spatial and temporal resolutions.
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7.8 Contributions and Publications

Contributions

1. This Chapter has put forth a proposal for an unsupervised SNN learning

algorithm for learning and recognising patterns in the form of spatial,

temporal and orientation information from data.

2. A novel personalised SNNc based architecture of NeuCube has also been

proposed for achieving sub-criticality in the SNNc network.

3. The proposed algorithm has been applied to a case study of predict-

ing treatment response in people with schizophrenia. The results have

shown the superior ability of the proposed SNNc architecture to incor-

porate multiple dimensions of information and generate a better per-

forming model when compared to the other state-of-the-art technique.

Publications

1. Sengupta, N., McNabb, C. B., Kasabov, N. & Russell, B. (2018),

integrating space, time and orientation in spiking Neural Net-

works: A case study on multi-modal brain data modelling, IEEE

Transactions on Neural Networks and Learning System. DOI:

https://doi.org/10.1109/TNNLS.2018.2796023.
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8Conclusion

This thesis has delved into numerous areas relating to both the theory and prac-

tice in neuromorphic pattern recognition systems and advanced the current sta-

tus quo in various ways. This final Chapter discusses the major contributions

this present thesis has made towards the literature and further articulates the

ways in which the research questions that were posed at the beginning in Sec-

tion 1.2 have been answered. The key caveats and limitations of this work are

then examined along with the review of future research and open questions

identified.

8.1 Research Questions and Contributions

From Chapter 3 onwards, at the end end of each chapter, a list of contributions

has been enumerated. Additionally, a list of peer-reviewed publications that has

resulted from that Chapter has also been mentioned. Here, I summarise the

key-contributions towards answering the research questions. The novel contri-

butions on the basis of the research questions are as follows:

8.1.1 How to Design Architectures of SNN that are

Capable of Digesting and Processing Large Volumes

and Variety of Spatio-temporal Data?

It is no doubt that in the era of big data, a multitude of research is ongoing

which delves into the subject of handling large volumes of data. Many of the

research in this area concentrate on improving the processing capacities of the

infrastructures, such as using GPUs or building elastic cloud infrastructures. This
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research, however, investigates the large volume data processing problem in the

light of efficient data representation in the form of binary spikes, and therefore,

aims to build SNN pattern recognition systems that can recognise patterns from

such binary spikes. Through the research performed in this thesis, I have delved

into various aspects of the ways in which such scalable SNN architectures can be

built.

Neuromorphic Computing Beyond von Neumann Architecture

Chapter, 3 has followed the development of brain-inspired spiking neural net-

works and presented the basis of the present research as being paradigm-shifting

in regards to computation architecture. This Chapter presented the neuromor-

phic thinking and design that has the potential of creating a novel, efficient and

low power echo-system between neuromorphic hardware (such as SpiNNaker)

and neuromorphic pattern recognition systems (such as, the NeuCube) architec-

ture.

Software Design Principles of NeuCube SNN architecture

Through the work in Chapter 4 and 5, an in-depth overview of NeuCube, an

SNN architecture was presented at first. The focus was especially on the Neu-

Cube generic prototyping and testing tool as a case of implementation frame-

work. Recognising the NeuCube SNNc layer as the scalability bottleneck of the

system, the focus was centered around the scalability of the SNNc layer. It

has been elaborated through experimentation and analysis that the adjacency

forward-backward list serves as the most optimal data structure for represent-

ing the SNNc graph in relation to optimal storage (S(3× C) complexity), and

execution time (O(1)) of the SNNc unsupervised learning algorithm. Through

simulation in a commodity hardware, it was demonstrated that using the adja-

cency forward-backward list data structure, it is possible to run neuromorphic

SNNc with neurons in the order of 106 and connections in the order of 1010.
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Beyond volume, the human brain is extremely good at processing a variety of

data, which relates to the modularity (functional specialisation of the parts of

the brain) and heterogeneity (variety in the components such as learning mech-

anisms, synapses, neuron dynamics and so on) inside the brain. Incorporating

modularity and heterogeneity, thus, is an important aspect of any SNN system.

The design principles with which one can achieve such modular and heteroge-

neous architectures was demonstrated in these Chapters.

8.1.2 How to Perform Neural Encoding on Real-world

Data to Represent Information as Timings of Spikes?

At the start of the research, incorporation of neural, and especially the temporal

encoding, was envisioned to be a critical piece of the puzzle towards solving neu-

romorphic pattern recognition in large volume data. Chapter 6 was dedicated

towards exploring this idea.

Neural Encoding from the Perspective of Data Compression and

Information Theory

This research began with the very notion that, in terms of pattern recognition,

one can in fact, only learn from data when there exists redundancy. In many data

analysis tasks, the data is preprocessed or re-coded in a way that could be seen as

a form of data compression. If such a preprocessing does not destroy the patterns

of interest, it results in comparative performance of the learning algorithms.

The motivation of the temporal encoding, thus, was to reduce large volumes

of data into a compressed state with minimal loss and the maximal presence

of discriminable information. Then, a qualitative comparison of temporal and

rate encoding schemes was made, as per Shannon and Kolmogorov’s information

theory principles. It was found the main interest, the temporal encoding scheme,

to be adherent to Kolmogorov’s algorithmic information theory.
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Framework for a priori Knowledge Driven Optimisation Based Temporal

Encoding

The a priori knowledge driven encoding framework was proposed on the premise

that (1) a universal data encoder does not exist; and (2) a priori-knowledge of

a data source can be injected into a prediction system that can predict the data

generation process. Temporal data encoding was formalised as a generalised

constrained optimisation problem (Equation 6.6), where a priori-knowledge of

data generation process is injected into the problem formulation.

GAGamma Encoding Algorithm and Case Study on Benchmark Data

To illustrate a concrete example, an encoding algorithm based on the a priori-

knowledge driven optimisation framework, namely GAGamma, was proposed,

and applied as part of a pattern recognition framework (encoding and classifi-

cation) on the benchmark StarPlus fMRI dataset. A comparison of the proposed

GAGamma algorithm against the state-of-the-art temporal encoding algorithms

such as BSA and TC not only demonstrated its superior data compression quality

in regards to decoding error and bit compression ratio, but also achieved supe-

rior classification performance (Table 6.1). Additionally, it was observed that

on the benchmark data, applying temporal encoding operation compressed the

data dramatically, between 6 to 25 times compared to the raw data, still keeping

the classification performance high and thus could capture the discriminatory

information well.
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8.1.3 How to Integrate Spatial, Temporal and

Orientation Information Present in Multi-modal Brain

Data using SNN Architecture?

This research question relates to Chapter 7. This research question was envis-

aged as a direction towards the data fusion approach for pattern recognition

in multi-source multi-modal data. In order to keep the research focused and

constrained, this research question was directed towards specific use-case, in

this case, recognising patterns in multi-modal brain data. The rationale behind

fusing multiple modality of brain data revolved around not only a hypothesised

improved performance, but superior reliability of the model as well.

Personalised SNNc Architecture of NeuCube

From a methodological point-of-view, the current research stayed within the

NeuCube framework and proposed modification of the NeuCube architecture

for dealing with large volumes of multi-modal data. Sub-criticality and satu-

ration behaviours in the NeuCube SNNc unsupervised learning algorithm were

analysed, and discussed how such criticality can be minimised by using the per-

sonalised SNNc architecture depicted in Figure 7.5.

Orientation Influence Driven Spike-time Dependent Plasticity (oiSTDP)

Learning for NeuCube SNNc

A novel online unsupervised learning algorithm for the SNNc layer of NeuCube

was proposed, namely oiSTDP learning algorithm (see Algorithm 7.1), that can

jointly fuse and learn from the spatial, temporal and orientation information

from multi-source brain data.
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Case Study on Predicting Treatment Outcomes of Clozapine on People

with Schizophrenia

A case study was performed in collaboration with the University of Auckland on

predicting treatment outcomes of clozapine in schizophrenia patients. The re-

sults presented in Table 7.3 summarise the comparative performances and capa-

bilities of the proposed method against numerous other state-of-the-art methods,

including deep learning algorithms. The proposed method of BSA+oiSTDP+KNN

has shown best performance in regards to accuracy and Cohen’s kappa statistic

for the classification task. Further, interrogation of the SNNc network revealed

increased network connectivity in the cerebellar region of the model, potentially

implicating activity in this area of the brain as a bio-marker of treatment re-

sponse in schizophrenia.

8.2 Limitations of the Thesis

Generally, the limitations of the individual pieces of work in this thesis have

been discussed in context in all of the Chapters. Here, thus, only the overall

limitations of this work will be discussed.

The studies performed as part of this thesis are proof-of-concept, rather than

comprehensive studies. These works provide certain empirical support towards

the systems introduced. It was never the researcher’s intention to perform large-

scale comprehensive experiments, instead, the intention was to provide the sys-

tems and methodologies to support the empirical studies, which are in turn,

handled in other literature.
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8.3 Future Direction and Closing remarks

Concluding a research is almost always the most difficult part because a signif-

icant piece of research typically asks more than what it answers. During the

process of conducting this research as well, the same was found to be true. It

is rather an impossible task to exhaustively list the open-ended questions and

future directions. Throughout the Chapters of this thesis, possible future direc-

tions of the research have been discussed. Therefore, here, without elaborating

too much, some potentially interesting research directions this thesis could open

up in the future are mentioned:

• Towards more efficient representation of real world data through data

encoding. The efficiency (both time and power consumption) with which

the brain can recognise patterns is second to none. The current state-of-the-

art in pattern recognition and artificial intelligence is significantly lagging

in this domain. The inherent sequential processing architecture of the

von Neumann computer architectures is a significant bottleneck towards

achieving efficiency. Through the present work, there has potentially been

a paradigm shift in research towards more efficient and accurate pattern

recognition algorithms made through highly compressed representation

of data using data encoding. This, in conjunction with developments in

neuromorphic hardware systems over the next decade, can push AI to be

more neuromorphic.

• How to fuse multi-modal data with heterogeneous spatio-temporal

resolution? A significant future direction towards pattern recognition

by fusing multi-modal brain data would be to focus on methods for fus-

ing data with heterogeneous spatio-temporal resolutions such as fMRI and

EEG.

• Towards brain-like multi-modular heterogeneous architecture for pat-

tern recognition? This direction in research relates to the domain of neu-
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ral networks. Through the work in Chapter 5 possibilities and opportuni-

ties (from a software design perspective) have been discussed to create het-

erogeneous and modular neural network consisting of spatially distributed

components of different types that mimics the human brain. However, the

open question that remains is the type of scenario where such architecture

could be used, and then, the ways in which it could be built in a way that

is useful to the field of AI.
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ASequential eSNN

Architectures for Cyber

Fraud Detection

The sequential eSNN classifier is inspired by the architecture proposed in (Dora,

Suresh & Sundararajan, 2015). The proposed architecture is a two layer fully

connected feed-forward network as shown in Figure A.1. The input layer con-

sists of m input neurons that convert real-valued inputs to spike-patterns (Figure

A.2) and the output layer consist of spiking neurons (Figure A.3), The network

consists of a decision block which monitors the output of the intermediate neu-

rons to determine the predicted class for the presented sample. The intermedi-

ate neurons are modelled as IF neurons. These neurons can generate multiple

spikes. The intermediate neurons process the input spike patterns from the in-

put neurons. Each intermediate neuron is associated with a particular class and

this association is stored in the decision block. The decision block identifies the

intermediate neuron that fires first and returns its associated class label as the

predicted class label. It should be noted here that although, an intermediate

neuron can generate multiple spikes,the decision block uses only the first spike

to determine the predicted class.

The proposed method is based on the evolving spiking neural network model for

classification. It builds on the Thorpes model (S. Thorpe et al., 2001), in which

early spikes are given more importance. Thorpe’s model is highly influenced by

the visual pattern recognition system. This method has fast supervised one pass

learning. The eSNN have two layers:(1) an input layer and (2) an output layer.

Initially, the output layer is empty. The output neurons are added to the output

layer depending on the input samples during the training phase.
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Figure A.1.: Proposed eSNN architecture for phishing website classification problem.

Figure A.2.: Input neuron model
Figure A.3.: Intermediate neuron model

To deal with real-valued data sets, each data sample needs to map with the

sequence of spikes using a precise neural encoding technique. Rank order pop-

ulation encoding is used for this purpose. The population encoding uses the

Gaussian receptive fields (GRF) to encode the real-valued data. In this method,

each input goes through a fixed number of GRF, and it generates a peak at the

certain point of time. Following steps are performed during the classification

process:

In rank order coding, every input is encoded individually using a set of P respon-

ders (i.e. receptive fields). For ith input neuron with P receptive fields (P > 2)
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whose input feature varies from Iimin to Iimax. The centre and width of the hth

receptive field is given by:

µhi = Iimin +
(2h− 3)

2
(Iimax − Iimin)

(P − 2)
(A.1)

and

σhi =
1
γ

(Iimax − Iimin)
(P − 2)

(A.2)

where γ directly controls the width of the receptive field. The width controls the

overlap between the two receptive fields. The τhi is the firing time of the neuron

calculated using:

τhi =
⌊
T (1− ϕhi )

⌋
(A.3)

Where T is the simulation interval and ϕhi is the GRF output defined as follows:

ϕhi = exp(−(x
i
r − µhi )2

2(σhi )2 ) (A.4)

The output of the hth responder of the ith input neuron is given by:

uhi (t,xir) = fhi (x
i
r)δ

h
i (t− τhi ) (A.5)

Where fhi (·) is the spike amplitude function and δhi (.) is the dirac delta function

or firing time function.

The amplitude of the spikes

fhi (x
i
r)−

λr
h
i

1 + |xir − µhi |
(A.6)
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Where rhi is the rank of the hth responder of ith neuron and λ is the slope of

the amplitude function. The rank of the spikes is determined using the ranking

function as follows:

FR(x, y) =

1, if ϕxi ≥ ϕyi

0, otherwise
(A.7)

Where x and y are the indices of any two receptive fields of the ith neuron is

given by:

rhi = 1 +
P∑

y=1,y ̸=h
FR(h, y) (A.8)

The equations above describes the spike generation process using the population

encoding framework and forms the first layer. The second layer also known

as the output layer consists of another set of neurons and next, we describe

the rules for the establishment of the synaptic connection between the input

and output neuron and synaptic weight initialisation scheme. It is a sequential

learning architecture that starts with no output neuron. The algorithm either

chooses to add the new neuron at output layer or update the synaptic weight for

training sample.

• Addition of output neuron: output neuron addition strategy to evolve the

neuron if the current sample satisfies the following condition:

ĉ = {ϕ} OR (c /∈ coverall) OR (c ̸= ĉ AND ||f −wnrs|| > βa) (A.9)

Where nrs is nearest output neuron of same class, βa is distance threshold

constant. f is the set of current sample spike-amplitude-response and wnrs

is the existing weight of synapse of the same class in the network. ϕ rep-

resents for the current sample none of the output neurons fired. coverall

is the class label associated with the current output layer neurons and c
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is the actual class label input training sample. The nearest output neuron

is evaluated using the Euclidean distance between the current sample am-

plitude response and existing synaptic weight of all the output neurons of

the same class. If the new sample satisfies the above condition then new

output (k + 1) neuron is added its synaptic weight and threshold is given

as:

wk+1 = f (A.10)

θk+1 = αwTk+1wk+1 (A.11)

• In this strategy, the training sample associated class is not the same as the

class associated with the fired output neuron. It means the different class

label neuron fire first (nrl) and there exists another nearest output neuron

of the same class (nrs). So the weight vector of different classes associated

with output neurons is conflicting in nature. To detect this conflict problem

following condition should be satisfied:

c ̸= ĉ AND ||f −wnrs|| < βa (A.12)

To resolve this conflict, the nearest neuron of the same class goes into long-

term potentiation and the output neuron goes into different class goes into

long-term depression. The synaptic weight update is as follows:

wnrs = (1− ηnrs)wnrs + ηnrsf (A.13)

θnrs = (1− ηnrs)θnrs + ηnrsαf
T f (A.14)

Where ηnrs is self-adaptive learning factor. It is also called self-adaptive

potentiation factor of output neuron. The factor ηnrs for output neuron

given as:

ηnrs =
ηnrs

1 + ηnrs
(A.15)
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The output neuron of the other class goes to long-term depression. Due

to the effect of this, the output neuron will not fire for the similar samples

and the weights are updated as follows:

wnrl = (1 + k)wnrl − kf (A.16)

Where k is the depression factor, which controls the synaptic weight de-

pression factor. It is close to zero because the higher value of k results in

a massive shift in the synaptic weight. Resulting information loss is stored

in the network.

• Synaptic weight update approach: If the actual class label c is same as

the class label associated with the fired output neuron then the synaptic

weight of connection and threshold of the output neuron are updated as

following:

wnrs = (1− ηnrs)wnrs + ηnrsf (A.17)

θnrs = (1− ηnrs)θnrs + ηnrsαf
T f (A.18)

The voltage of the output neuron at any time calculated as follows:

vj(t1) =
t+1∑
t=0

P∑
h=1,i=1

uhi (t,xir)whij (A.19)

A.1 Hyperparameter Selection of eSNN

Classifier

There are a number of hyperparameters that needs to be set for the algorithm

described above. The first parameter is the number of receptive fields P . During

the experiment, we observed that the number of receptive field increases as

the firing time decreases. The number of receptive fields also depends on the
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dataset. P also controls the amplitude of the input neuron. For our dataset, the

number of the receptive field is set to 8. The second parameter is the overlap

factor γ, which controls the overlap between receptive fields and regulates the

width of the receptive field. γ the width of the receptive field and thus impact

only the firing time function. In the experiment, the γ value is set to 3, which

means 30% overlap exists between two subsequent receptive fields. It controls

the range of the of receptive field and useful for temporal coding. The third

factor is λ. It represent the slope of the amplitude function f(·). There are other

parameters as well. The parameter α is the threshold fraction which controls

the firing time of the output neuron and is set between 0.5 and 0.9. γ is the self-

adaptive potential factor. Its value is initialised to 0.5 and decayed to 0. β is a

constant that controls the addition of the neuron at the output layer. The range

of the parameter β depends on the feature count and has an inverse relationship

with values ranging between 0.5 and 0.8. The depression factor k controls if the

neuron fired wrongly during training, the corresponding weights goes into long-

term depression. The value of k is typically set to a very small value between

0.01 to 0.35. Large value of k leads to information loss in the network.

A.2 Testing Method of eSNN Classifier

At the end of the training phase, the knowledge is stored in the network. For test-

ing, first, need to convert the real-valued input data into the spikes. Each output

neuron associated with certain threshold value are chosen during the training.

If the incoming potential (signal) summation crosses the specific threshold value

of the particular neuron, then the neuron is fired, and the corresponding class

label is predicted. It is often the case that many output neurons fire for the given

input. To resolve this issue, k-nearest neighbour is applied to predict the class

label. To get the optimal accuracy we check the different values of k to predict

the class label, the value of k are 3, 5, 7, 9, 11, 13, 15 and so on. The k-nearest

neighbour is performed using the Euclidean distance between the amplitude of

spikes of the current input testing sample and the synaptic weight correspond-
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ing to the fired neuron which is stored by the network at the time of training i.e.

||f −w|| with weights corresponding to each fired output neuron.
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BeSNN Architectures for

Stock Price Movement

Forecast

In the last few years, there have been a large number of studies performed on

predicting the stock market trend. Both researchers and practitioners have used

numerous approaches to predict the stock market trend. Due to the chaotic

nature and the complexity of the stock market indices, researchers are still strug-

gling to design techniques that can accurately model the behaviour of their

trends. In Table B.1, we have given an overview of the different prediction

techniques and stock market indices used in the literature to predict the stock

price direction by taking technical indicators as input variables.

Table B.1 presents a concise literature review on machine learning techniques

applied on stock price movement prediction. It is clear that many traditional

machine learning techniques have been explored to predict stock price direction

and also most of the algorithms have been applied to a single stock index to mea-

sure the performance of the model. In the third generation of neural networks

the spiking neural networks (SNN) now offers a new perspective to explore for

the solution of the problem. SNN uses spike information representation and

spike-time learning rules to capture temporal associations between a large num-

ber of temporal variables in streaming data and to predict future events. One

of the successful SNN models is the eSNN model, where the number of spik-

ing neurons evolve incrementally in time to capture temporal prototypes from

data.
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Figure B.1.: Architecture of the proposed technical stock indicator SI-eSNN model for
stock price direction prediction

B.1 The SI-eSNN Model for Stock Trend

Prediction Based on Stock Indicators

B.1.1 Overall Architecture

The architecture of the SI-eSNN model is presented in Figure B.1. The first layer

is the set of inputs to the model, each of them representing a technical stock

indicator. The research so far has demonstrated that using technical indicators

can lead to better results than using real stock values as time series and also

that there is a lot of research done on selecting the most appropriate technical

indicators. In the model presented in Figure B.1 the input technical indicators

have been selected from (J. Patel et al., 2015; K.-j. Kim, 2003; Kara et al., 2011)

and explained in Table B.2, but these indicators can vary across stock prediction

applications.

0Ct is the closing price, Lt is the low price and Ht is the high price at time t, DIFFt =
EMA(12)t − EMA(26)t, EMA is the moving average, EMA(k)t = EMA(k)t−1 + α ×
(Ct −EMA(k)t−1), α is the smoothing factor which is equal to 2

k+1 , k is the time period of

B.1 The SI-eSNN Model for Stock Trend Prediction Based on Stock Indicators 231



.

Layer 2 is the encoding layer, where the real value of each input variable (tech-

nical indicator) is encoded as trains of spikes generated by several encoding

spiking neurons (or also, pre-synaptic neurons), each of them having a receptive

field. The receptive fields of neighbouring neurons are overlapping as Gaussian

or Logistic functions and all of them covering the whole range of the values of

this variable. The number of these encoding neurons (receptive fields) can vary,

and this is a user-defined parameter that is optimised for a better performance

of the model.

Layer 3 is the output evolving layer, which evolves output spiking neurons that

represent clusters (prototypes) of input vectors that belong to the same class, in

this case class UP and class DOWN. Each output neuron is connected to all the

input neurons, and the connection weights are subject to learning from data.

The architecture of the SI-eSNN model for stock price direction prediction allows

for incremental learning. It is adaptive to new data when it becomes available.

Hence, it can learn new samples without retraining the model on old data. The

details of the functioning of the SI-eSNN model is presented below.

B.1.2 Neural Encoding

To learn real-valued data, each instance or sample (input vector) is encoded

in the form of spikes over time using a neural encoding technique such as

rank order population coding (S. J. Thorpe & Gautrais, 1997; Bohte, Kok &

La Poutre, 2002). In our study, we have used rank order population encoding

as per (Schliebs, Defoin-Platel, Worner & Kasabov, 2009). Population encoding

maps the input value into a series of spikes over time using an array of Gaussian

receptive fields that describe pre-synaptic neurons. The center (Cj) and width

k-day exponential moving average, LLt and HHt implies lowest low and highest high in the

last t days respectively. Mt =
Ht+Lt+Ct

3 , SMt =

∑n

i=1 Mt−i+1
n , Dt =

∑n

i=1 |Mt−i+1−SMt|
n , UPt

means upward price change while DWt is the downward price change at time t
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(Wj) of each of the Gaussian or Logistic receptive field of pre-synaptic neurons

j are defined as:

Cj = Inmin +
2j − 3

2
× Inmax − Inmin

N − 2
(B.1)

and

Wj =
1
β
× Inmax − Inmin

N − 2
, 1 ≤ β ≤ 2 (B.2)

Where N is the number of receptive fields; n is the range of input variable n =

[Inmin, Inmax] , the parameter β defines the width of each receptive field. Output

of each of the pre-synaptic neuron j using Gaussian receptive field is defined

as:

outputj = exp(−(x−Cj)
2

2 ·W 2
j

) (B.3)

Output of each of the pre-synaptic neuron j using Logistic receptive field is de-

fined as:

outputj =
exp(−(x−Cj)

Wj
)

(1 + exp(−(x−Cj)
Wj

))2
(B.4)

The firing time of each of the pre-synaptic neurons is defined as:

τj = ⌊T (1− outputj)⌋ (B.5)
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where: T is the simulation or spike time interval.

When a real value input is presented to the N pre-synaptic spiking neurons, the

first spike is generated by this neuron to which receptive field the input value

belongs to the highest degree, etc.

B.1.3 Neural Model

For the context of SI-eSNN, Thorpes neuron model (S. J. Thorpe & Gautrais,

1997) has been used since it is simple and effective. The Thorpes model is based

on the timing of each spike, that is, earlier spike defines stronger weight as

compared to the later spike. Each neuron in this model can spike at most once.

A neuron in this model fires when its post-synaptic potential (PSP) reaches the

threshold value. The PSP of neuron i is defined as:

PSPi =


0, if fired∑
wji ∗modorder(j), otherwise

(B.6)

Where wji represents the weight of the synaptic connection between pre-synaptic

neuron j to the output neuron i; mod represents modulation factor with a range

in between 0 to 1; order(j) defines the rank of pre-synaptic neurons spike. The

first rank will be assigned as 0 and subsequently, rank will be increased by 1

based on firing time of each pre-synaptic neurons.

B.1.4 Learning in the Output Neurons

The eSNN algorithm was first introduced in (Wysoski, Benuskova & Kasabov,

2006; N. Kasabov, 2007). The learning techniques used by the eSNN model is

one-pass learning, that is, the model requires one-time presentation of a sample

in a feed-forward manner. It will create an output neuron for each input sample.
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The weight vector and a threshold value for each of the output neuron generated

towards the training pattern are learned and stored in the repository. However,

if this weight vector is similar to the weight vector of the already trained neuron

in the repository with some similarity threshold, then it will merge with the most

similar one. Merging here means updating the weights and the threshold value

of the merged neurons. The weight vector and threshold value of the merged

neurons update their values by taking the average value of new output neuron

weight vector and merged neuron weight vector and the average value of new

output neuron threshold and merged neuron threshold respectively.

B.1.5 Algorithm for eSNN Training

Algorithm B.1 eSNN training algorithm
1: Initialize neuron repository, R = {}
2: Set eSNN parameter mod = [0, 1],C = [0, 1], sim = [0, 1]
3: for ∀ input pattern i that belongs to the same class do
4: Encode input pattern into firing time of multiple pre-synaptic neurons j
5: Create a new output neuron i for this class and calculate the connection

weights as wji = modorder(j)

6: Calculate PSPmax(i) =
∑
j wji ×modorder(j)

7: Get PSP threshold value γi = PSPmax(i) ×C
8: if The new neuron weight vector ≤ sim of trained output neuron weight

vector in R then
9: Update the weight vector and threshold of the most similar neuron in

the same output class group
10: w = wnew+w∗N

N+1
11: γ = γnew+γ∗N

N+1
12: where N is the number of previous merges of the most similar neuron
13: else
14: Add the weight vector and threshold of the new neuron to the neuron

repository R
15: end if
16: end for
17: Repeat above for all input patterns of other output classes

The eSNN algorithm creates a repository of output neurons for the training pat-

terns. For each training pattern that belongs to the same class, a new output

neuron is created and connected to all the pre-synaptic neurons in the previ-

ous layer. The weight for each of the connection from pre-synaptic neuron j to

output neuron i is denoted as wji. The value of wji is calculated based on the
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spike order through a synapse j, which is given in line 5 of Algorithm B.1 as

wji = modorder(j),∀j where j is the pre-synaptic neuron of output neuron i.

The threshold γi of newly created output neuron would be defined as the fraction

C ∈ R, 0 < C < 1, of the maximum post-synaptic potential PSPmax(i): γi =

PSPmax(i) ×C

The weight vector of newly created output neuron is then compared with the

already trained output neurons in the repository. If the newly created output

neuron weight vector is less than sim of trained neuron weight vectors, then

the threshold and weight vector of newly created output neuron is merged with

most similar neuron according to w =
wnew +w ∗N

N + 1
and γ =

γnew + γ ∗N
N + 1

.

Here, N is the number of previous merges of the most similar neurons. After the

merge operation, the newly created output neuron weight vector is discarded,

and the new pattern is presented to model. If none of the trained neurons in the

repository is similar, the new output neuron is added to the repository.

B.1.6 Testing (Recall of the Model on New Data)

The testing process is done by propagating the spikes that encode the test vector

(sample) to all trained output neurons. The class label for the testing sample

will be defined based on the output class label of the output neuron which fires

first.

B.2 The CUDA-SI-eSNN Model: A Parallel

eSNN Model for GPU Machines

The training and recall procedures for the SI-eSNN model consists of two op-

erations. In the first stage, encoding of the input patterns, calculations of the
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Algorithm B.2 CUDA-SI-eSNN algorithm
1: Initialize input patterns array in device memory with size is equal to N ×M ,

Where N is number of input patterns and M is number of input variable.
2: Declare weights matrix in device memory with size is equal to N ×P Where
P is number of pre-synaptic neurons which is equal to the number of input
variable multiplied by number of Gaussian receptive fields.

3: Transfer the input patterns data into the GPU memory.
4: Encode input patterns into firing time of multiple pre-synaptic neurons j. In

this step, each of the threads in the GPU device will calculate the firing-time
of each of the pre-synaptic neurons independently. The number of threads
is equal to N × P .

5: Calculate the connection weights as wji = modorder(j). In this step, each
tread in the GPU device will calculate the weight independently.

6: Transfer the resulted weight matrix into CPU memory.
7: Calculation of maximum post-synaptic potential PSPmax(i), threshold value
γi and the merging operation are similar to the equivalent operations of
eSNN, which are performed on CPU sequentially.

weights and the thresholds are performed, which is from step-4 to step-7 of

the eSNN algorithm. In the second stage, merging of the output neurons is

performed, which is from step-8 to step-14 of the eSNN algorithm. Since the

encoding and learning of weights of one input pattern is independent of others

except for the merging operation, it is possible to perform both encoding and

weight learning operations parallelly in GPU device using multiple threads. The

procedure for the GPU-based eSNN algorithm is described in Algorithm B.2.

B.3 Sliding Window (SW)-eSNN for

Incremental Learning and Stock Movement

Prediction

While learning in the SI-eSNN and CUDA-SI-eSNN models were vector by vector

and each vector was learned separately from the others even though the vectors

of consecutive days would have some temporal associations. Here we present

an SW-eSNN model where a window based block of the time series of technical

indicator data is used for training a model and a future section to test it. Then
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Algorithm B.3 SW-eSNN learning algorithm
1: Train an eSNN model on the whole existing historical data of a stock till time
t (as per Algorithm B.1)

2: Recall the model to predict the next month (t+1) stock movement.
3: When the next month results are known, train the model incrementally on

this data.
4: Aggregate the output neurons if necessary using the aggregation operator

and the sim parameter.
5: Evaluate the classification error and the AUC so far.
6: Optimize parameters to improve future time accuracy.

the window moves in time, to select the next section for training and testing,

etc.
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Table B.2.: Selected technical indicators and their formulas

Name of the technical indicators (SI) Formulas 1

Simple 10-day moving average
Ct +Ct−1 + · · ·+Ct−9

10
Weighted 10-day moving average

(n)×Ct + (n− 1)×Ct−1 + · · ·+Ct−9
(n+ (n− 1) + · · ·+ 1)

Stochastic K%
Ct −LLt−(n−1)

HHt−(n−1) −LLt−(n−1)
× 100

Stochastic D%
∑n−1
t=0 Kt−i

10
%

Disparity 5
Ct
MA5

× 100

Disparity 10
Ct

MA10
× 100

OSCP
MA5 −MA10

MA10
Momentum Ct −Ct−9

RSI (Relative Strength Index) 100− 100

1 +
∑n−1

i=0 UPt−i/n∑n−1
i=0 DWt−i/n

Larry William R%
Hn −Ct
Hn −Ln

× 100

A/D (Accumulation/Distribution) Ht−Ct−1
Ht−Lt

CCI (Commodity Channel Index) Mt−SMt
0.015×Dt

MACD (moving average convergence divergence) MACD(n)t−1 +
2

n+1 × (DIFFt −MACD(n)t−1)

Table B.3.: The number of instances of UP and DOWN categories in Stock Market
Indices

Datasets (No. of instances) Years Covered Training (70%) Testing (30%)

UP Down Total UP DOWN Total

BSE Jan 2005- Dec 2015 1020 892 1912 437 382 819
Nikkie-225 Jan 1987 - Jul 2016 2609 2483 5092 1115 1067 2182
NASDAQ Jan 2005 - Dec 2015 1058 865 1923 446 378 824
NIFTY-50 Jan 2008 - Dec 2015 709 644 1353 300 279 579
S&P-500 Jan 1962 - July 2016 5118 4473 9591 2146 1964 4110

Sanghai Stock Exchange Jan 1998 - July 2016 1679 1470 3149 685 665 1350
DJUS Apr 2005 - July 2016 997 827 1824 438 344 782

DAX Index Jan 1991 - July 2016 2413 2114 4527 1044 897 1941
NYSE-Amex Jan 1996 to July 2016 1957 1668 3625 850 704 1554

Table B.4.: GPU Specifications

GeForce GT 730 Specifications

Version GT 730 DDR3, 64-bit
CUDA Cores 384
Base Clock (MHz) 902
Memory Clock 1.8 Gbps
Standard Memory Config 2048 MB
Memory Interface DDR3
Memory Interface Width 64-bit
Memory Bandwidth (GB/sec) 14.4
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CMiscellaneous Code

Snippets

C.1 Matlab Code for the SNNc Unsupervised

Learning Using Forward Adjacency Lists for

Connection C and Weight W �� �
1 function [O] =

neucube_unsupervised_learning_forward_adjacency_list( W,C,D,

indices_of_input_neuron, V_THR, ETA_THR, KAPPA)

2 N=128;

3 Q=1485;

4 T=size(D,1);

5 O= int16(zeros(T,Q));

6 for t=1:T

7 if(mod(t,N)==1)

8 firing_neuron=int16(zeros(1,Q));

9 last_spike_time=uint16(zeros(1,Q));

10 eta=int16(zeros(1,Q));

11 v=single(zeros(1,Q));

12 end

13 last_spike_time(firing_neuron==1)=t;

14 firing_neuron_indices=find(firing_neuron==1);

15 for i=1:size(firing_neuron_indices,2)

16 index_i=firing_neuron_indices(i);

17 post_synaptic_neuron_indices=C{index_i};

18 if(~isempty(post_synaptic_neuron_indices))

19 for j=1:size(post_synaptic_neuron_indices,2)

241



20 index_j=post_synaptic_neuron_indices(j);

21 if(eta(index_j)==0)

22 v(index_j)=v(index_j)+W{index_i}(1,j);

23 end

24 end

25 end

26 firing_neuron(index_i)=0;

27 end

28 a=find(v>=V_THR);

29 not_a=find(v<V_THR);

30 v(a)=0;

31 eta(a)=ETA_THR;

32 firing_neuron(a)=1;

33 eta(not_a)=max(0,eta(not_a)-1);

34 v(not_a)=max(0,v(not_a)-0.002);

35 firing_neuron_indices=find(firing_neuron==1);

36 if(~isempty(firing_neuron_indices))

37 for i=1:size(firing_neuron_indices,2)

38 index_firing=firing_neuron_indices(i);

39 for k=1:Q

40 if(find(C{index_firing}==k))

41 index_j=find(C{index_firing}==k);

42 deltaw=KAPPA/single(t-last_spike_time(k)+1);

43 W{index_firing}(1,index_j)=W{index_firing}(1,

index_j)-deltaw;

44 end

45 if(find([C{k}]==index_firing))

46 index_k=find([C{k}]==index_firing);

47 deltaw=KAPPA/single(t-last_spike_time(k)+1);

48 W{k}(1,index_k)= W{k}(1,index_k)+deltaw;

49 end

50 end

51 end
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52 end

53 firing_neuron(indices_of_input_neuron)=D(t,1:14);

54 firing_neuron(end-14+1:end)=D(t,14+1:end);

55 O(t,:)=firing_neuron;

56 end

57 end� �
code snippet C.1: Matlab code for SNNc unsupervised learning algorithm using

forward adjacency list data structure for storing connection C

and weight W

C.2 Matlab Code for the SNNc Unsupervised

Learning Using Forward-backward Adjacency

Lists for Connection C and Weight W �� �
1 function [O] =

neucube_unsupervised_forward_backward_adjacency_list( W,C,D,

indices_of_input_neuron, V_THR, ETA_THR, KAPPA )

2 N=128;

3 Q=1485;

4 T=size(D,1);

5 O= int16(zeros(T,Q));

6 for t=1:T

7 if(mod(t,N)==1)

8 firing_neuron=int16(zeros(1,Q));

9 last_spike_time=uint16(zeros(1,Q));

10 eta=int16(zeros(1,Q));

11 v=single(zeros(1,Q));

12 end

13 last_spike_time(firing_neuron==1)=t;

14 firing_neuron_indices=find(firing_neuron==1);

15 for i=1:size(firing_neuron_indices,2)
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16 index_i=firing_neuron_indices(i);

17 post_synaptic_neuron_indices=find(C(index_i,:));

18 if(~isempty(post_synaptic_neuron_indices))

19 for j=1:size(post_synaptic_neuron_indices,2)

20 index_j=post_synaptic_neuron_indices(j);

21 if(eta(index_j)==0)

22 v(index_j)=v(index_j)+W(index_i,index_j);

23 end

24 end

25 end

26 firing_neuron(index_i)=0;

27 end

28 a=find(v>=V_THR);

29 not_a=find(v<V_THR);

30 v(a)=0;

31 eta(a)=ETA_THR;

32 firing_neuron(a)=1;

33 eta(not_a)=max(0,eta(not_a)-1);

34 v(not_a)=max(0,v(not_a)-0.002);

35 firing_neuron_indices=find(firing_neuron==1);

36 if(~isempty(firing_neuron_indices))

37 for i=1:size(firing_neuron_indices,2)

38 index_firing=firing_neuron_indices(i);

39 post_neuron_indices=find(C(index_firing,:)==1);

40 for k=1:size(post_neuron_indices,2)

41 index_j=post_neuron_indices(1,k);

42 deltaw=KAPPA/single(t-last_spike_time(index_j)

+1);

43 W(index_firing,index_j)=W(index_firing,index_j)-

deltaw;

44 end

45 pre_neuron_indices=find(C(:,index_firing)==1);

46 for k=1:size(pre_neuron_indices,1)
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47 index_j=pre_neuron_indices(k,1);

48 deltaw=KAPPA/single(t-last_spike_time(index_j)

+1);

49 W(index_j,index_firing)=W(index_j,index_firing)+

deltaw;

50 end

51 end

52 end

53 firing_neuron(indices_of_input_neuron)=D(t,1:14);

54 firing_neuron(end-14+1:end)=D(t,14+1:end);

55 O(t,:)=firing_neuron;

56 end

57 end� �
code snippet C.2: Matlab code for SNNc unsupervised learning algorithm using

forward-backward adjacency list data structure for storing

connection C and weight W

C.3 Python Code for the Modular

Implementation of the SNNc �� �
1 class SNNc:

2 def __init__(self, spiking_neuron_coordinates,

input_neuron_coordinates, SNNc_max_distance=None,

connection_algorithm="swc", radial_distance_coverage=0.1):

3 assert isinstance(connection_algorithm, str)

4 assert isinstance(radial_distance_coverage, float)

5 assert isinstance(spiking_neuron_coordinates, np.ndarray)

6 assert isinstance(input_neuron_coordinates, np.ndarray)

7

8 if connection_algorithm not in "swc":
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9 raise ValueError(’see doc string for possible values

of connection algorithm parameter!!’)

10 if not 0 < radial_distance_coverage <= 1:

11 raise ValueError(’The radial distance coverage

parameter should be between (0,1]!!’)

12 self.spiking_neuron_coordinates =

spiking_neuron_coordinates

13 self.input_neuron_coordinates = input_neuron_coordinates

14 self.SNNc_coordinates = np.vstack((

input_neuron_coordinates, spiking_neuron_coordinates))

15 self.spiking_neuron_count = len(self.

spiking_neuron_coordinates)

16 self.input_neuron_count = len(self.

input_neuron_coordinates)

17 self.SNNc_neuron_count = self.input_neuron_count + self.

spiking_neuron_count

18

19 self.input_coordinate_indices = np.arange(self.

input_neuron_count)

20 self.spiking_coordinate_indices = np.arange(self.

input_neuron_count, self.SNNc_neuron_count)

21 """

22 Calculate maximum distance between the SNNc neurons if

SNNc_max_distance=None. Uses a brute force approach due

23 to the irregularity in the shape. Consider updating it to

a non bruteforce approach later.

24 """

25 if SNNc_max_distance is None:

26 self.SNNc_MAX_DISTANCE = 0

27 for ind1, neuron1 in enumerate(self.SNNc_coordinates):

28 for ind2, neuron2 in enumerate(self.

SNNc_coordinates):

29 distance = np.linalg.norm(neuron1 - neuron2)
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30 if distance > self.SNNc_MAX_DISTANCE:

31 self.SNNc_MAX_DISTANCE = distance

32 else:

33 self.SNNc_MAX_DISTANCE = SNNc_max_distance

34

35 self.network = None

36 self.create_network(connection_algorithm,

radial_distance_coverage)

37

38 def create_network(self, connection_algorithm,

radial_distance_coverage):

39 self.network = nx.DiGraph()

40 nodes_list = []

41 for neuron in np.arange(self.SNNc_neuron_count):

42 if neuron in self.input_coordinate_indices:

43 attributes = dict(type="i", location=self.

SNNc_coordinates[neuron, :])

44 attributes["neuron"] = None

45 nodes_list.append((neuron, attributes))

46 else:

47 attributes = dict(type="s", location=self.

SNNc_coordinates[neuron, :])

48 nodes_list.append((neuron, attributes))

49 self.network.add_nodes_from(nodes=nodes_list)

50 if connection_algorithm is "swc":

51 self.swc(radial_distance_coverage=

radial_distance_coverage)

52 self.network = nx.freeze(self.network)

53

54 def swc(self, radial_distance_coverage):

55 abs_radial_distance_coverage = radial_distance_coverage *

self.SNNc_MAX_DISTANCE

56 edge_list = []
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57 points = self.SNNc_coordinates

58 points_tree = scipy.spatial.cKDTree(points)

59 input_neuron_indices = self.input_coordinate_indices

60 for query_index in np.arange(self.SNNc_neuron_count):

61 neighbour_indices = points_tree.query_ball_point(

points[query_index], abs_radial_distance_coverage)

62 neighbour_indices_without_input = [index for index in

neighbour_indices if index not in input_neuron_indices]

63 for index in neighbour_indices_without_input:

64 edge_list.append((query_index, index))

65 if (index, query_index) not in edge_list:

66 self.network.add_edge(query_index, index, w

=0.05)

67

68 def create_spiking_neurons(self, neuron_type=’lif’, **

parameters):

69 """

70

71 Parameters

72 ----------

73 neuron_type:str

74 current options: ’LIF’(Leaky integrate and fire).

75 potential_threshold: float

76 ’lif’ parameter(optional, default=1.0). The firing

threshold potential

77 refractory_threshold: int

78 ’lif’ parameter(optional, default=1.0). The number of

discrete times

79 the neuron stays quiet after it fires a spike

80 leak_rate: float

81 ’lif’ parameter(optional, default=0.000). The absolute

leak of

82 potential when the neuron is refractory
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83 potential_resting: float

84 ’lif’ parameter(optional, default=0.0). The resting

potential of the neuron.

85 spike_history_length:int

86 ’lif’ parameter(optional, default=10. The historical

spike information that

87 the neuron remembers and calculates the states upon

88

89

90 Returns

91 -------

92 None

93

94 """

95 if neuron_type not in ("lif"):

96 raise ValueError("See docstring for possible values of

neuron_type!!")

97 if neuron_type is "lif":

98 for neuron_index in self.spiking_coordinate_indices:

99 predecessor_count = len(self.network.predecessors(

neuron_index))

100 self.network.node[neuron_index]["neuron"] =

LeakyIntegrateAndFireNeuron(

101 predecessor_count=predecessor_count, **parameters)

102

103 def learn_stdp(self, sample, learning_rate):

104 """

105

106 Parameters

107 ----------

108 sample: numpy.ndarray

109 input samples consisting of spike data(time x feature)

110 input_learns: boolean(optional, default:True)
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111 Input connections weights are not changed during learning

if set to False

112 learning_rate: float(optional, default:0.5)

113 The learning rate of the learning algorithm

114

115 Returns

116 -------

117 numpy.ndarray

118 The array of spikes generated by the SNNc for the given

input sample. The dimension of the array is

119 time x SNNc neuron count

120

121

122 """

123

124 assert isinstance(sample, np.ndarray)

125

126 input_data = sample

127 (simulation_time, _) = input_data.shape

128 spike_data = np.zeros(shape=(simulation_time, self.

SNNc_neuron_count), dtype=int)

129 spike_data[:, self.input_coordinate_indices] = input_data

130

131 for time in np.arange(simulation_time):

132 connections_of_neuron_receiving_spike = []

133 connections_of_neuron_emitting_spike = []

134 """

135 block for network simulation using spike information

present in spike data

136 """

137 for neuron_id in self.spiking_coordinate_indices:

138 predecessor_indices = self.network.predecessors(

neuron_id)
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139 predecessor_spike_data = spike_data[time,

predecessor_indices]

140

141 """

142 Block to compute values to be used during learning

143 """

144 s_ind = np.nonzero(spike_data[time,

predecessor_indices])[0]

145 predecessor_spike_indices = []

146 if len(s_ind) != 0:

147 predecessor_spike_indices = list(np.array(

predecessor_indices)[s_ind])

148 for identifier in predecessor_spike_indices:

149 connections_of_neuron_receiving_spike.append((

identifier, neuron_id))

150 predecessor_weight_data = []

151 for k in self.network.predecessors(neuron_id):

152 predecessor_weight_data.append(self.network[k][

neuron_id]["w"])

153 spk = self.network.node[neuron_id]["neuron"].

simulate(spike_train=predecessor_spike_dat,

154 weight=

predecessor_weight_data)

155 """

156 Block to compute values to be used during learning

157 """

158 if spk == 1:

159 predecessor_indices = self.network.predecessors(

neuron_id)

160 for identifier in predecessor_indices:

161 connections_of_neuron_emitting_spike.append((

identifier, neuron_id))

162
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163 if time < simulation_time - 1:

164 spike_data[time + 1, neuron_id] = spk

165 """

166 block for learning

167 """

168 for connection in

connections_of_neuron_receiving_spike:

169 pre_spike = spike_data[0:time + 1, connection[0]]

170 post_spike = spike_data[0:time + 1, connection[1]]

171 deltaw = self.stdp(pre_synaptic_spike_history=np.

abs(pre_spike).tolist(),

172 post_synaptic_spike_history=np.abs(

post_spike).tolist(),

173 max_weight_update=learning_rate)

174 self.network[connection[0]][connection[1]][’w’] +=

deltaw

175 for connection in connections_of_neuron_emitting_spike

:

176 pre_spike = spike_data[0:time + 2, connection[0]]

177 post_spike = spike_data[0:time + 2, connection[1]]

178 deltaw = self.stdp(pre_synaptic_spike_history=np.

abs(pre_spike).tolist(),

179 post_synaptic_spike_history=np.abs(

post_spike).tolist(),

180 max_weight_update=learning_rate)

181 self.network[connection[0]][connection[1]][’w’] +=

deltaw

182

183 return spike_data

184

185 @staticmethod

186 def stdp(pre_synaptic_spike_history,

post_synaptic_spike_history, max_weight_update):
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187 """

188

189 Parameters

190 ----------

191 pre_synaptic_spike_history: list

192 It is the binary vector of size n specifying the

presynaptic spike history of the neuron.

193 The last element signifies a spike/no spike at current

timepoint t, second last element

194 signifies a spike/no spike at t-1 and so on.

195

196 post_synaptic_spike_history: list

197 It is a binary vector of size n specifying the post

synaptic spike history.

198 The last element signifies a spike/no spike at current

timepoint t, second

199 last element signifies a spike/no spike at t-1 and so on.

200

201 max_weight_update: float

202 hyperparameter to control the upper bound of deltaw.

203

204

205 Returns

206 -------

207 float

208

209 """

210

211 assert isinstance(pre_synaptic_spike_history, list)

212 assert isinstance(post_synaptic_spike_history, list)

213 if not 0 < max_weight_update <= 1:

214 raise ValueError("See docstring for value range of

learning_rate")
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215 if len(pre_synaptic_spike_history) != len(

post_synaptic_spike_history):

216 raise ValueError("Length mismatch of pre and post

synaptic spike history!!")

217 pre_synaptic_spike_energy = 0

218 post_synaptic_spike_energy = 0

219 importance_of_LTP = 0.3

220 importance_of_LTD = 0.3

221 time_history = len(pre_synaptic_spike_history)

222 pre_synaptic_spike_history = np.asarray(

pre_synaptic_spike_history)

223 post_synaptic_spike_history = np.asarray(

post_synaptic_spike_history)

224 """

225 calculation of LTD

226 """

227 if pre_synaptic_spike_history[time_history - 1] == 1:

228 post_spike_indices = np.nonzero(

post_synaptic_spike_history)[0]

229 k = max_weight_update * np.exp(

230 -(1 - importance_of_LTD) * ((time_history - 1) -

post_spike_indices))

231 pre_synaptic_spike_energy = np.sum(k)

232

233 """

234 calculation of LTP

235 """

236 if post_synaptic_spike_history[time_history - 1] == 1:

237 pre_spike_indices = np.nonzero(

pre_synaptic_spike_history)[0]

238 k = max_weight_update * np.exp(

239 -(1 - importance_of_LTP) * ((time_history - 1) -

pre_spike_indices))
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240 post_synaptic_spike_energy = np.sum(k)

241

242 deltaw = post_synaptic_spike_energy -

pre_synaptic_spike_energy

243 return deltaw� �
code snippet C.3: Python code for modular implementation of SNNc
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