
SOLVING A GLOBAL SOFTWARE

PIRACY PROBLEM

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF PHILOSOPHY

Supervisors

Dr Alan Litchfield

August 2017

By

Jeff Herbert

School of Engineering, Computer and Mathematical Sciences

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the

Author and lodged in the library, Auckland University of Technology. Details may be

obtained from the Librarian. This page must form part of any such copies made. Further

copies (by any process) of copies made in accordance with such instructions may not

be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this

thesis is vested in the Auckland University of Technology, subject to any prior agreement

to the contrary, and may not be made available for use by third parties without the

written permission of the University, which will prescribe the terms and conditions of

any such agreement.

Further information on the conditions under which disclosures and exploitation may

take place is available from the Librarian.

© Copyright 2017. Jeff Herbert

2

Declaration

I hereby declare that this submission is my own work and

that, to the best of my knowledge and belief, it contains no

material previously published or written by another person

nor material which to a substantial extent has been accepted

for the qualification of any other degree or diploma of a

university or other institution of higher learning.

Signature of candidate

3

Acknowledgements

I would like to thank my wife Farah, who has encouraged me and patiently supported

me through many weekends and late nights away from home completing my research

and writings. She has worked as hard as I have to make this research a success: through

many life changes, including our wedding, parenting two children and building a house

together. I would also like to thank my oldest children, Jordan and Caitlin, who have

had less father time than I wanted, and to thank my younger children, Alex and Zara,

who have missed me greatly in this last year of research. One day I hope they will

be able to read this. And finally, thanks to Alan Litchfield, my supervisor, for all the

interesting conversations and helping bring my perspective of industry and academia

closer together.

4

Dedication

I dedicate this study to Farah Herbert, who set my journey into academia in motion by

challenging me and convincing me that I would not regret it.

She was, I have discovered, completely correct.

5

Abstract

This thesis presents a novel method to design a global cross-platform Software License

Validation system, using cryptocurrency blockchain technology to ameliorate software

piracy and provide controls for software creators to protect their copyright. Protecting

software copyright has been an issue since the introduction of desktop computers in

the late 1970s and Software License Validation has been a primary method employed

in an attempt to minimise software piracy. More recently, the software piracy problem

has expanded to include mobile platforms, presenting a distinct challenge for software

creators to retain copyright. The objective of this research is to design a system

that demonstrates software piracy prevention and provenance of software applications

through cryptocurrency blockchain technologies.

6

Publications

A Novel Method for Decentralised Peer-
to-Peer Software License Validation Using
Cryptocurrency Blockchain Technology

Herbert, J. & Litchfield, A. (2015). 38th
Australasian Computer Science Confer-
ence (ACSC 2015) (pp. 27–30). Sydney

Bitcoin & Co: An Ontology for
Categorising Cryptocurrencies.

Herbert, J. & Stabauer, M. (2015). M-
Sphere: Book of Papers (2015) (pp.
45-55). Dubrovnik

7

Contents

Copyright 2

Declaration 3

Acknowledgements 4

Dedication 5

Abstract 6

Publications 7

1 Current State of Software Piracy 15
1.1 Introduction . 15
1.2 Evolution of Software Piracy . 16

1.2.1 The 80s – Software Piracy Genesis 16
1.2.2 The 90s – Rise of the Internet 17
1.2.3 The 00s – P2P and Mass Storage 18
1.2.4 The 10s – Mobility and Identity 19
1.2.5 Impact of Software Piracy . 20

1.3 The Blockchain . 20
1.4 Software License Validation . 22
1.5 Thesis Structure . 24

2 Literature Review 27
2.1 Introduction . 27
2.2 Platform Specific Piracy . 28

2.2.1 Desktop Platforms . 28
2.2.2 Mobile Platforms . 31
2.2.3 Software-as-a-Service . 33
2.2.4 Video Game Consoles . 33
2.2.5 Other Platforms . 34
2.2.6 Effect of Digital Distribution Services 36

2.3 Taxonomy of Software Piracy Types . 39
2.3.1 Definition of Software Piracy 39

8

2.3.2 Treaties, Agreements and Acts 41
2.3.3 Types of Software Piracy . 44
2.3.4 Roles of Software Piracy . 47
2.3.5 Taxonomy of Software Piracy by Role 49

2.4 The Software Piracy Process . 52
2.4.1 Role-based Software Piracy Threat Model 52
2.4.2 Methods Employed to Reduce Software Piracy 54
2.4.3 Software Piracy Model . 57
2.4.4 Defeating Prevention Methods 60
2.4.5 Software Piracy Vulnerability Lifecycle 61
2.4.6 Platform Risk . 65
2.4.7 Related Issues . 65
2.4.8 Relationship between Malware and Pirated Software 67
2.4.9 Summary of Software Piracy Review 67

2.5 Blockchain Technology . 69
2.5.1 Introduction . 69
2.5.2 Cryptocurrency Primer . 69
2.5.3 Cryptocurrency Economics . 70
2.5.4 Centricity . 72
2.5.5 Transactions . 73
2.5.6 The Blockchain . 74
2.5.7 Summary of Blockchain Technology 76

2.6 Alternative Applications for Blockchain 77
2.6.1 Transaction-only Cryptocurrency 78
2.6.2 Native Blockchain Application 80
2.6.3 External Blockchain Application 81
2.6.4 Transaction and Application Platform 82
2.6.5 Regulated Virtual Currency . 83
2.6.6 Summary of Alternative Applications for Blockchain 84

2.7 Related Work . 85
2.8 Problem Identification and Motivation 90

2.8.1 Research Questions . 91
2.8.2 Hypotheses . 92

2.9 Conclusion . 92

3 Method 94
3.1 Introduction . 94
3.2 System Design Considerations . 95
3.3 Overview of Requirements . 97
3.4 Methods for Consideration . 99

3.4.1 Formal Methods . 100
3.4.2 Experimental Design Research 101
3.4.3 Design Science Research . 101
3.4.4 Summary . 106

9

3.5 Design Science Research Discussion 106
3.5.1 Agile Software Engineering . 106
3.5.2 Behaviour Driven Development 107
3.5.3 Agent-Oriented Software Engineering 110

3.6 Conclusion . 112

4 Requirements Engineering 113
4.1 Introduction . 113
4.2 Definitions and Process . 114
4.3 Requirements Elicitation . 119

4.3.1 Master Bitcoin Model . 119
4.3.2 ReSOLV Model . 123
4.3.3 Issues Overcome . 129
4.3.4 Summary . 131

4.4 Requirements Specification . 131
4.4.1 Introduction . 131
4.4.2 ReSOLV High Level Architecture 132
4.4.3 ReSOLV Reference Architecture 136
4.4.4 Methods . 139
4.4.5 Non-functional Requirements . 141
4.4.6 Public Key Cryptography and Digital Signatures 144

4.5 ReSOLV User Stories . 147
4.6 Summary . 148

5 Functional Decomposition 152
5.1 Introduction . 152
5.2 Data Flow Diagrams . 153
5.3 ReSOLV Functional Decomposition . 155

5.3.1 Vendor Provenance System . 155
5.3.2 Client User System . 160
5.3.3 Data Dictionary . 164
5.3.4 Analysis . 164

5.4 Summary . 165

6 Discussion 173
6.1 Introduction . 173
6.2 Research Motivation . 174
6.3 ReSOLV: a Native Blockchain Application 177

6.3.1 Findings . 177
6.3.2 RQ1.1 . 181
6.3.3 RQ1.2 . 182
6.3.4 RQ1.3 . 184

6.4 Cryptocurrency-neutral Software License Validation 186
6.4.1 Findings . 186

10

6.4.2 RQ2.1 . 186
6.4.3 RQ2.2 . 187

6.5 Reflections on Design Science Research 189
6.6 Potential Issues . 192

7 Conclusion 194
7.1 The Software Piracy Problem . 194
7.2 The Blockchain . 196
7.3 Software License Validation . 197
7.4 Limitations . 199
7.5 Future Work . 200
7.6 Conclusion . 202

References 206

Appendices 221

A 222
A.1 Definitions . 222
A.2 Bitcoin Protocol Learnings . 223
A.3 Sending the Transaction . 228

11

List of Tables

2.1 Taxonomy of Software Piracy by Role . 51
2.2 Taxonomy of Methods for Software Piracy Prevention (adapted from

Cronin (2002)) . 56
2.3 Types of Piracy Breach categorised into the Technical Class of Piracy

Prevention Methods . 58
2.4 Software Piracy Lifecycle Taxonomy 62
2.5 Threats by State of Vulnerability . 66

4.1 ReSOLV Corp – User Stories . 149
4.2 ReSOLV User – User Stories . 150
4.3 ReSOLV Vendor Provenance Agent User Stories 151

5.1 ReSOLV Data Dictionary . 170
5.1 ReSOLV Data Dictionary . 171
5.1 ReSOLV Data Dictionary . 172

12

List of Figures

2.1 Desktop Operating System Market Share (2015) 28
2.2 Mobile/Tablet Operating System Market Share (Netmarketshare, 2015) 32
2.3 Associating Types of Piracy with Piracy Roles 48
2.4 The Role of the Software Cracker (Adapted from Naumovich and

Memon, 2003) . 50
2.5 Software Piracy Threat model . 53
2.6 Software Piracy Transitive Relationship 57
2.7 The Software Piracy Model . 59
2.8 Software Piracy Vulnerability Lifecycle 64
2.9 Cryptocurrency Economic System . 72
2.10 Centricity (Baran, 1964) . 73
2.11 Transaction Input and Output . 74
2.12 Example of the Blockchain (Brikman, 2014) 77
2.13 Types of Currency Model . 79
2.14 Pirax HLA . 87
2.15 DRM Framework Sequence Diagram 87
2.16 Provenance Graph for Tagged Transaction Protocol 88

3.1 System Development Research Process (Nunamaker Jr. & Chen, 1990) 102
3.2 DSR Contribution Types (Gregor & Hevner, 2013) 103
3.3 DSR Knowledge Contribution Framework (Gregor & Hevner, 2013) . 105
3.4 Agent-Oriented Software Engineering Themes (Shehory & Sturm, 2014)111
3.5 Study Research Methodology . 112

4.1 Types of Non-functional Requirements (Laplante, 2014) 116
4.2 RE Process (Laplante, 2014) . 118
4.3 MBM Transfer of Ownership Sequence Example. 120
4.4 Customised Blockchain Specification for License Validation. 124
4.5 ReSOLV Blockchain Software Upgrade Sequence Example. 129
4.6 Proposed ReSOLV HLA . 133
4.7 The ReSOLV RA . 137

5.1 FD (Hull, Jackson & Dick, 2011) . 154
5.2 VPS – DFD Context Diagram . 156
5.3 VPS – DFD Top Level Diagram . 157

13

5.4 CUS – DFD Context Diagram . 161
5.5 CUS – DFD Top Level Diagram . 163
5.6 VPS – DFD P1.0 Validate Client Address & App:X 166
5.7 VPS – DFD P2.0 Generate App:X License 167
5.8 VPS – DFD 3.0 Generate App:X Sidebar 168
5.9 VPS – DFD P4.0 Publish ReSOLV Package to Blockchain 169

6.1 Simplified ReSOLV – Client-side . 178

A.1 Bitcoin Transaction . 225

14

Chapter 1

Current State of Software Piracy

1.1 Introduction

Since the advent of home computers in the late 1970s, copying software created by

others for the popular computing platforms has become a commonplace activity that has

evolved with technological advances in computing and connectivity. Software piracy,

as it has become known, has resulted in a significant economic loss for the software

creators, at an estimated economic cost of US$132 billion per year. This has heralded a

new challenge for protecting software copyrighted works, in particular as the Internet

and smartphone have evolved.

Software license authorisation has become the primary software piracy prevention

and provenance method for software vendors. However, this can be costly and complex,

and has limited effectiveness as current software license authorisation methods can be

relatively easily overcome or bypassed. These issues reduce incentives for smaller inde-

pendent software vendors and software creators to protect their software, particularly in

respect to the Microsoft Windows and Android platforms.

The objective of this research is to explore the feasibility of using cryptocurrency

blockchain technologies to enable software piracy prevention and provenance and

15

Chapter 1. Current State of Software Piracy 16

provide the controls for software creators to protect their copyright. To this end, this

research proposes a novel method to provide a globally ubiquitous Software License

Validation (SLV) method using cryptocurrency blockchain technology over a distributed

computing model.

1.2 Evolution of Software Piracy

1.2.1 The 80s – Software Piracy Genesis

Software piracy, abbreviated as “piracy”, commonly describes the copying or use of

computer software in violation of its license. It has become a long standing technology

issue, since the advent of the hobbyist home computer (Maude & Maude, 1984; Mooers,

1977) and the introduction of the personal computer in business (Suhler, Bagherzadeh,

Malek & Iscoe, 1986).

Thriving pirate communities were built around the popular home/desktop computers

of the 1980s. The methodology for piracy was the duplication of the storage medium

(typically cassette tape or floppy disk), and distribution was facilitated through Bulletin

Board Systems (BBSes) using modems. This allowed users to digitally exchange

software files, and piracy became an international phenomenon (Holsapple, Iyengar, Jin

& Rao, 2008). In 1985, the Yellow Book CD-ROM standard was released, providing a

significant increase in storage capacity for the medium (ISO/IEC, 1996). In addition to

the capacity benefits, software companies used customised CD-ROM media to prevent

easy duplication, creating a technology barrier to piracy. This barrier was overcome by

the early 1990s with the release of re-writeable CDs (CD-R) (Holsapple et al., 2008)

allowing any actor to engage in piracy through cost-effective duplication of CDs for

illegal distribution and resale.

Chapter 1. Current State of Software Piracy 17

1.2.2 The 90s – Rise of the Internet

In parallel with the evolving optical media in the early 1990s, a number of new tech-

nologies emerged that would accelerate piracy considerably (Athey & Stern, 2013).

The Internet evolved from the ARPANET network into a public network that provided

easier file transfer mechanisms such as File Transfer Protocol for distribution of pirated

software. The invention of the World Wide Web by Tim Berners-Lee (Zimmermann,

2012) led to an increase of piracy through web sites known as “warez” sites (Chaudhry,

Chaudhry, Stumpf & Sudler, 2011). These sites provided an enhanced capability for

actors to share pirated software, license files, software cracks and keygens (software to

re-generate licenses) (Kammerstetter, Platzer & Wondracek, 2012).

In the late 1990s, the introduction of Digital Subscriber Line and Cable improved

digital download speeds by up to 2,600%, which further enhanced piracy by reducing

download times and making pirated software rapidly available. Internet bandwidth

would continue to grow (Nielsen, 2014), and the rate of piracy would continue to

increase (Business Software Alliance (BSA), 2004, 2006) due to the ease of access

to illegal software. Warez operators started to experience technical and commercial

issues with the growing demand for pirated software, creating capacity and scalability

pressures on web servers and Internet connections. The development of "anonymous"

peer-to-peer (P2P) file sharing technology, such as Napster, Gnutella, LimeWire and

Kazaa, solved these issues by enabling direct piracy between actors, bypassing the

requirement for warez websites. P2P file-sharing quickly became a popular vector for

piracy, but was short-lived due to successful litigation of the P2P software vendors and

actors involved in the file-sharing of illegal software (Goldman, 2004).

Chapter 1. Current State of Software Piracy 18

1.2.3 The 00s – P2P and Mass Storage

By the mid-2000s, a new P2P file-sharing protocol called BitTorrent had been developed

to overcome the issues that resulted in the Napster litigation, re-activating the P2P piracy

vector (Chen, Chu & Li, 2014). BitTorrent splits files into segments, encrypts each

segment, and provides actors with a distribution mechanism for the segments across

the P2P network. This process subsequently protects the user from legal jeopardy, as

actors are only sharing encrypted segments. However, BitTorrent trackers, the necessary

index service for BitTorrent, have instead become the focus of litigation – although

this is considered controversial, as BitTorrent trackers do not hold pirated software

themselves (Kigerl, 2013). To further reduce liability, distributed tracker software such

as Azureus/Vuze and Mainline became available. These introduced the concept of

“trackerless torrents” by using a distributed hash table database to protect the identity

and IP address of the actors. Work continues to further enhance BitTorrent anonymity

to protect BitTorrent trackers from litigation risks. One concept is a “virtual torrent”,

which is based on the distributed tracker approach and is used to describe some web

resource, whilst another implementation “Anatomic P2P” uses a distributed network of

nodes that route traffic to dynamic trackers (Meshkova, Riihijärvi, Petrova & Mähönen,

2008).

In addition, the early 2000s gave rise to the Universal Serial Bus (USB) mass storage

market, which introduced a high capacity, mobile storage tool for piracy. USB storage

increased in capacity through a number of different forms of media over the decade:

(i) USB Flash Drives started with a tiny 8MB capacity and grew to 128GB capacity,

providing a resilient and easy-to-conceal form factor to store large volumes of data;

(ii) Portable USB 2.5-inch hard drives were released, providing a very useful tool for

compact storage of large volumes of data, reaching 1TB by 2010; and (iii) DVD and

Blu-ray superseded CDROM and CD-R, increasing the data density of the optical media

Chapter 1. Current State of Software Piracy 19

disk to 8GB and 25GB, providing very cheap long term storage for large volumes of

data. These technologies enabled software pirates to pursue the more classical 1980s

methods of software piracy, providing bulk storage of pirated software on a single media

disc.

1.2.4 The 10s – Mobility and Identity

The evolution of the original hand-held devices, such as the Apple Newton in the 1990s

and the Palm PDA in the 2000s, would herald the innovation of the smartphone. The

smartphone is a converged device that combines the functionalities of a PDA, cell phone,

GPS and camera. It also presents an application development platform and ecosystem

that allows developers to easily write software for the smartphone operating system.

Smartphones are largely recognised as being launched with the release of the Apple

iPhone in 2007, whilst Google’s Android operating system, also released in 2007, grew

rapidly through too 2010, when it overtook Symbian to lead the smartphone market.

Smartphones would introduce a new platform opportunity for piracy, despite the fact

that most smartphone Apps are free or very low cost in comparison to commercial-off-

the-shelf (COTS) software. Smartphone piracy rates can reach 90% on the Android

platform (Davies, 2013; KeyesLabs, 2013; Rasch & Wenzel, 2015; Smith, 2015): much

higher than desktop software (Business Software Alliance, 2014a). In respect to the

Apple ecosystem, although Apple has managed to help developers overcome piracy

issues through mechanisms in the app store (Claburn, 2009; Goodin, 2014), hackers

consistently find a way to overcome new copy protection mechanisms (Haley, 2014;

Panzarino, 2013).

Many software vendors now utilise a cloud Software-as-a-Service (SaaS) deploy-

ment model to facilitate software piracy prevention and provenance, where users sub-

scribe to SaaS with their credentials to access their software. However, a new form of

Chapter 1. Current State of Software Piracy 20

piracy has resulted – identity piracy. This form of piracy occurs where user credentials

are either shared between users within organisations, or have been obtained through

malicious attackers compromising user accounts (Chabinsky, 2015). BSA research has

shown that 52% of users say they share credentials (Business Software Alliance, 2014a).

The BSA categorises credential sharing as a form of “per seat” under-licensing, and as

such is considered piracy. The BSA also notes “as cloud services penetrate emerging

markets, expect the incidence of credential sharing to go up”.

1.2.5 Impact of Software Piracy

The impact of commercial economic loss from software piracy and its breach of

copyright is recognised globally. Analysing the annual BSA piracy reports from 2004

through to 2014 shows that an estimated US$507 billion dollars has been lost to piracy,

with worldwide desktop piracy rates growing from 35% to 43%. Although all platforms

are experiencing piracy, there is, however, very little peer reviewed research investig-

ating the cost of piracy on non-desktop platforms. Arxan Technologies (2015) have

estimated gaming industry losses at US$74 billion in 2015, and assuming gaming piracy

follows a similar piracy growth trend to desktop piracy across the 2004 to 2014 decade,

losses for the gaming industry would be estimated at US$524 billion. Combining this

economic cost with the BSA report results in a cost from software piracy over 10 years

at over one trillion U.S. dollars, excluding software piracy from the mobile platforms or

cloud services.

1.3 The Blockchain

The blockchain is a distributed ledger technology developed by Nakamoto (2008), and

first introduced with the creation of Bitcoin, the first cryptocurrency. Cryptocurrencies

are a new form of digital currency that are distributed peer-to-peer electronic cash

Chapter 1. Current State of Software Piracy 21

systems and are the first technology to successfully overcome the requirement for a

centralised party to validate transactions. The cryptocurrency and blockchain architec-

ture provides several blended features that compromise a cryptocurrency ecosystem

including: (i) cryptographic validation for all transactions; (ii) decentralised money;

(iii) the minting of bitcoins; and (iv) transaction processing functions: all stored on

public ledgers within a quasi-anonymous framework (Brikman, 2014).

Blockchains are a new data structure that are cryptographically secured and distrib-

uted across a network. The technology supports cryptocurrencies such as Bitcoin, and

the transfer of any data or digital asset. Blockchains are economic systems that achieve

consensus among distributed nodes, allowing the transfer of digital goods without the

need for centralised validation of transactions. The present blockchain ecosystem is, like

the early Internet, a permission-free innovation environment in which email, the World

Wide Web, Napster, Skype, and Uber were built. The domain, touted as a disruptive

technology (Underwood, 2016; Ford, 2014; Noyen, Volland, Wörner & Fleisch, 2014),

is expected to mature over time, with industry leading the research and development.

Inside the blockchain is a database that is a public ledger of immutable transactions,

cryptographically secured and distributed across a peer-to-peer network running over the

Internet with many practical use-cases. The database is a chain of transactions, formed

into blocks, that provides non-repudiation of previous transactions, and hence, transac-

tions can never be changed without breaking the chain of blocks. The cryptocurrency

ecosystem is a network of peer-to-peer participants called Miners, all of which have the

blockchain public ledger. Together, they provide a consensus approach for validating

transactions, thereby eliminating the requirement for a central party. Cryptocurrencies

overcome the necessity of a centralised “trusted authority” (Nakamoto, 2008), and thus

remove or significantly reduce transaction fees associated with transactions, such as

those incurred with commercial banking transactions.

There are many different use-cases for cryptocurrency and blockchain technologies.

Chapter 1. Current State of Software Piracy 22

The distributed nature of the blockchain, combined with the ability to verify transactions,

has led to the development of second generation blockchain protocols that have the

capability to perform new functions, supporting innovative on-blockchain services

such as storing data and new scripting capabilities (Bradbury, 2014; Buterin, 2017).

Cryptocurrencies also provide an inherent anonymity for their transactions, and data

stored on the blockchain is mostly encrypted to provide confidentiality in the public

ledger environment. Hence, cryptocurrency and blockchain technologies can be utilised

in different forms by software creators.

Herbert and Stabauer (2015) propose a cryptocurrency model categorising crypto-

currencies, and the different implementations of the cryptocurrency blockchain, for

use by applications. This model considers the characteristics of cryptocurrencies and

presents examples of the use-case applied to a range of cryptocurrencies. Native

Blockchain Applications (NBAs) provide additional application functionality built into

the cryptocurrency or blockchain. This capability allows the software engineer to

customise the cryptocurrency or blockchain to meet a set of specific requirements to

achieve the outcome desired. However, NBAs require careful consideration as there

are many non-functional requirements that must be achieved through the software

engineering process.

1.4 Software License Validation

Historically, many different methods have been proposed or implemented in an effort

to prevent software piracy and to protect software creator copyright. There are many

circumstances in which software piracy may occur, and many forms of software piracy

over many technology platforms. There is currently a gap in protecting software creator

copyrighted works, and there is no mechanism that allows the software creator to en-

force their copyright globally without requiring costly legal enforcement.

Chapter 1. Current State of Software Piracy 23

The review of literature on software piracy reveals that the user is the endpoint for

all piracy, and that focussing on user identity is the key to software piracy prevention. It

concludes that binding user identity to software entitlements is essential to authorising

access to software and for providing an important provenance function. However, there

is no disincentive to sharing credentials that provide access to software, and the software

itself is not protected from other forms of piracy once the initial user authentication

and access to software has been completed. Software-at-rest is particularly vulnerable

to threat actors, who will attack the code structure directly to defeat prevention or

protection mechanisms.

This research contends that SLV using blockchain technologies is feasible for

achieving the outcome of cost-effective software piracy prevention and provenance.

The proposed SLV method, called ReSOLV, uses blockchain technology to address the

main problems identified in literature as follows:

• It needs to be global

• It needs to support multiple platforms

• It needs to be cost-effective

• It places license authorisation in the hands of the software creator

• It protects software-at-rest

• It uniquely binds user identity to software entitlements

• It disincentivises credential sharing

• It provides end user anonymity and data confidentiality

To support these claims, this research presents artefacts from the Literature Review,

Methodology, Requirements Engineering (RE), and Functional Decomposition (FD)

chapters as described in the following section.

Chapter 1. Current State of Software Piracy 24

1.5 Thesis Structure

Using a Design Science Research (DSR) methodology, this research aims to utilise

blockchain technology to provide SLV, where software entitlements are delivered

through data stored cryptographically as transactions in the blockchain. This will

require defining requirements and creating use-case specific data flows for the purpose

of SLV.

The outcome of the research is to design a system that demonstrates that it is feasible

to use a Native Blockchain Application (NBA) for the purpose of SLV. This thesis is

structured as follows:

Chapter 1: Introduction. This chapter is the introduction to the subject of software

piracy, SLV, and the cryptocurrency blockchain.

Chapter 2: Literature Review. This chapter presents a literature review that explores

two separate subject matters, which will be brought together in this thesis:

software piracy, and the cryptocurrency blockchain.

• Current State of Software Piracy

Section 2.2 through 2.4 review the current state of software piracy and

explores the scope of software piracy issues across platforms. There are

distinct questions that have emerged; what is software piracy, who exactly

are the software pirates, and how do they relate to the different methods

used to protect software? The methods of software piracy prevention are

discussed, and a high level software piracy model is presented, which

provides an insight into “who” is undertaking the breach of copyright,

“what” the breach of copyright is, and “how” the breach occurs. The

Software Platform Vulnerability Lifecycle is introduced, and related issues

of enforcement and the relationship between software piracy and malware

are also examined.

Chapter 1. Current State of Software Piracy 25

• Blockchain Technology

Section 2.5 presents the concept of the cryptocurrency blockchain and

describes the characteristics that demonstrate its benefits for a globally

ubiquitous distributed application, such as SLV. Prior research and related

proof-of-concepts are discussed and explored in the context of SLV. This

chapter concludes with hypotheses and research questions.

Chapter 3: Methodology. This chapter outlines the DSR approach that this research

will use. It identifies the intersections that cryptocurrency and blockchain techno-

logies have with existing knowledge domains, and presents a brief overview of

the expected requirements for SLV in order to better determine the appropriate

Research Methodology. A DSR framework is introduced, outlining research

contribution types. This establishes that the blockchain-based SLV research is

classified as an invention, and is considered a valid DSR research opportunity.

Software engineering methodologies, including Agile, Behaviour Driven Devel-

opment, and Agent Oriented Systems Engineering, are introduced and briefly

discussed.

Chapter 4: Requirements Engineering. This chapter discusses the approach to RE

for the ReSOLV method. Definitions and the general RE process and activities

are established. The ReSOLV model is presented, demonstrating the main con-

structs for SLV on the blockchain. The requirements specification establishes

functional and non-functional requirements for the ReSOLV model, culminating

in the design of the ReSOLV High Level Architecture (HLA) and Reference

Architecture (RA), which describe the core functionality of the ReSOLV method.

Chapter 5: Functional Decomposition. This chapter presents a FD of the ReSOLV

RA, to identify what processes need to be built. Data Flow Diagrams (DFDs)

and pseudocode are introduced for two of the main systems established in the

Chapter 1. Current State of Software Piracy 26

ReSOLV RA. These artefacts explain how the functions and processes transform

data, and describe the data flows that demonstrate that the SLV method is feasible.

Chapter 6: Discussion. This chapter recaps the motivations for this research and re-

views the research findings for SLV and discusses the relevance of the artefacts as

outcomes of the research. Each Research Question is addressed with researched

evidence artefacts supporting confirmation of the research questions. RQ1 con-

cludes that NBAs are suitable for the ReSOLV SLV method, whilst RQ2 confirms

that user anonymity and data confidentiality are achieved using blockchain-based

technologies for SLV. Reflections on DSR are provided, discussing how effect-

ive the methodology was for this type of iterative development research, and

commenting on improvements for future research efforts.

Chapter 7: Conclusion. The conclusion summarises the objectives for this research

and the findings, concluding that the researcher is comfortable with the hypotheses.

It also explores limitations and future research opportunities.

Chapter 2

Literature Review

2.1 Introduction

This chapter presents a review of literature of two domains: software piracy and

blockchain technology.

Sections 2.2 through 2.4 examine the scope of software piracy to identify the

problems, actors and processes that surround software piracy. They seek to establish

the common difficulties in protecting software from piracy, and ultimately identify the

underlying "lowest common denominators" for a cross platform method to prevent

software piracy.

Section 2.5 provides an overview of the functionality and characteristics of crypto-

currency and blockchain technologies, whilst Section 2.6 explains a cryptocurrency

taxonomy and demonstrates how blockchain technologies can be applied to distributed

systems. It seeks to establish the capability of the blockchain technology to provide the

required "lowest common denominators" from the software piracy review of the earlier

sections.

The chapter concludes, in Section 2.8 on page 90, with discussion of the feasibility of

utilising blockchain technologies to prevent software piracy, and outlines the Hypotheses

27

Chapter 2. Literature Review 28

and Research Questions for this research.

2.2 Platform Specific Piracy

2.2.1 Desktop Platforms

Desktop computing began in the late 1970s and early 1980s with several well-known

brands establishing their products, including Acorn, Apple, Atari, BBC, Commodore,

IBM, Sinclair, and Tandy (Computer History Museum, 2016). Over the next three

decades, Apple, and the widely cloned IBM PC, would be the only survivors in the

highly competitive hardware manufacturing environment, with the operating system

becoming the dominant differentiator for each of the remaining hardware platforms.

As of December 2015, analysis of the current market share of the operating systems

shows that Microsoft has by far the largest number of installations and number of

torrents, as shown in Figure 2.1 (Netmarketshare, 2015; Steam, 2015; Van der Sar,

2009). Hence, based on quantity relative to operating systems and software from other

vendors, it is expected to have the largest piracy issue.

91.32%

7.02%

1.66%

95.39%

3.56%
0.96%

92.16%

5.46%
2.37%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Windows Mac Linux

Operating System Market Share

Netmarketshare (2015) Steam (2015) Pirate Bay Torrents (2009)

Figure 2.1: Desktop Operating System Market Share (2015)

Chapter 2. Literature Review 29

There is limited objective research available that quantifies the rates of desktop

piracy, especially in the context of quantification of piracy by platform. The majority

of research refers to the BSA reports, acknowledging a potential industry bias in

quantifying the scope and losses that result from piracy. Furthermore, the BSA reports

only pertain to the category of commercial desktop software 1,2,and excludes other

categories such as gaming software. The most recent report from the BSA estimates

that, in 2013, 43% of software on desktop computers around the world was not properly

licensed, with a commercial value of US$62.7 billion (Business Software Alliance,

2014a).

Gaming software industry trade organisations claim piracy rates of 90% (Senior,

2012). However, investigation of piracy rates in the industry shows that most methods

for analysing piracy use BitTorrent activity for piracy measures (Solon, 2013; Van der

Sar, 2009). Unfortunately, using BitTorrent as the method for quantifying piracy creates

inaccuracies due to over-accounting of downloads, resulting in an over-stated piracy

rate (Solon, 2013; Ployhar, 2012). Similarly, Drachen, Bauer and Veitch (2011) find

that quantifying game piracy as a dollar value representing loss of sales is difficult

due to the challenge of reliably identifying unique BitTorrent peers. Hence, a lack of

accurate data means that quantifying piracy rates and estimating commercial value loss

in the gaming industry is difficult.

Van der Sar (2009) uses BitTorrent statistics from pirate site “The Pirate Bay”

to provide an estimation of the proportion of piracy between Windows, MAC and

Linux operating systems. The analysis shows that out of a total of 53,541 torrents,

the Windows torrents have a 92.16% (49,345) share, as compared to the Mac 5.46%

(2,925) and Linux 2.37% (1,271). Despite the difference in time frame between the

desktop operating system market share in 2015 and the BitTorrent analysis undertaken

1 Desktop: includes desktop or laptop computers running Windows or Mac operating systems
2 Software: includes operating systems and Commercial off-the-shelf (COTS)

Chapter 2. Literature Review 30

in 2009, it is shown that piracy rates correlate to operating system market share, and that

Microsoft Windows clearly has the most significant piracy problem due to its market

share.

From a geographic perspective, although piracy rates in first world countries is

decreasing, the BSA reports that developing countries show much higher piracy rates

(Business Software Alliance, 2014a). Developing countries maintain the highest piracy

rates because the end users cannot afford to pay for the software (Asongu, 2014), or,

despite being signatories to World Intellectual Property Organisation (WIPO) (Lu &

Weber, 2009), the cultures of some countries accept piracy as the norm.

Contrary to this, however, Athey and Stern (2013) analyse Windows Automatic

Update telemetry data and conclude that, rather than income of the individual, the

quality of the institutional and infrastructure environment of a country correlates with

the rate of piracy. For example, countries with better broadband infrastructure show

higher piracy rates (Athey & Stern, 2013), and if this is the case, the proposed piracy

prevention strategy of regional pricing (Asongu, 2014) may not have any effect on the

rate of piracy (Athey & Stern, 2013).

There are a number of mechanisms used by desktop software vendors to prevent

piracy. The primary copy protection mechanism is a license key that is used during

the software installation process to provide the end user entitlement to install the

software. Another mechanism is Digital Distribution Systems (DDS), where software is

downloaded online. There are several disadvantages to relying on these mechanisms

to protect software. Software pirates simply need to copy the digitally distributed

media and publish it with the appropriate license key to negate any benefit DDS

has offered. Furthermore, for more advanced license key protection mechanisms,

software crackers can create key generators, or “keygens”, to generate licenses that the

software installation process will accept (Sigi, 2010), again easily overcoming the copy

protection and making DDS irrelevant. Alternatively, software vendors may implement

Chapter 2. Literature Review 31

an activation key mechanism, where the customer is required to authorise the software

via online activation once the software is installed. However, depending on the type of

key, these activation keys may be used many times. As with license keys, a software

pirate just needs to pair the digitally distributed media and publish it with the appropriate

license key. Although activation keys will help reduce illegal installations of software,

the protection mechanism is easily overcome by obtaining a new key. Neither method

offers any further protection mechanism, once the digital media and key are obtained,

and the software installed. In addition, software crackers have developed techniques

to masquerade authorisation services through custom configuration of Domain Name

Service (DNS) records, defeating the authentication mechanism.

2.2.2 Mobile Platforms

With the advent of the iPhone and Android platforms in 2007, a new vector for piracy

was created: mobile applications, or “Apps”. Apps have grown significantly, with

Statista (2015) showing 1.5 million Apps listed on the Apple App Store, and 1.6 million

on Google Play, as at July 2015. Netmarketshare (2015) reports that the Android

ecosystem has the largest share at 57.29%, as shown in Figure 2.2, whilst the Apple

iOS ecosystem comes in at second, contributing to 35.43%.

Despite the low cost of Apps, piracy is a considerable issue for mobile platform

developers. In the Apple ecosystem, Khan, Othman, Ali and Madani (2014) state that

84 of the top 100 iOS applications are affected by piracy, primarily through jailbroken

devices. For Android Apps, the rate of piracy is particularly high, with Android

developers experiencing a consistent 90%-99% piracy rate over the last two years – the

games category having the highest piracy rates (Davies, 2013; KeyesLabs, 2013; Rasch

& Wenzel, 2015; Smith, 2015).

Although Digital Distribution Services (Han & Shon, 2014) are intended as a method

Chapter 2. Literature Review 32

Figure 2.2: Mobile/Tablet Operating System Market Share (Netmarketshare, 2015)

to reduce piracy opportunities, the mobile App stores still have challenges in respect to

piracy. Apple still faces consistent challenges, with crackers discovering new exploits

in the Apple Store (Goodin, 2014), and copying iOS Apps on jailbroken iPhones

(Panzarino, 2013). On the other hand, due to the ease of copying and distribution of

Android Apps, the Google Play DDS for Android, and the open Android platform itself,

exacerbate piracy in the Android ecosystem (Ravenscraft, 2012; KeyesLabs, 2013;

Gurulian, Markantonakis, Cavalaro & Mayes, 2016).

The piracy rate on mobile devices is significantly higher than on desktop computers,

despite the fact that mobile device Apps are usually cheaper than COTS desktop

software. With only 16% of Android users willing to pay for Apps, Choi, Au and Liu

(2014) find that the mobile App market is characterised by a low willingness to pay,

despite the relatively low cost, supporting the reported high piracy rate on the Android

platform. There is anecdotal research on the geographic distribution of App piracy.

KeyesLabs (2010) provides an analysis of Android piracy by country for a single App,

and shows mobile piracy rates over 66% for most first world countries.

Lastly, in addition to the problem of piracy, new issues have been identified that

Chapter 2. Literature Review 33

have resulted from pirated mobile Apps. Pirated mobile Apps now present a new

attack vector for criminals, through hackers pre-infecting an App with malicious code

and re-releasing the malware infected App (Computer Fraud and Security, 2011) for

unsuspecting users to download (Yulong Zhang, Zhaofeng Chen, 2015).

2.2.3 Software-as-a-Service

Business Software Alliance (2014a) highlights the impact of cloud computing on

licensed and unlicensed software use. Public cloud SaaS delivery of software function-

ality, online over the Internet, is intended to reduce unlicensed software use through

a subscription-based model. It requires users to authenticate to a web portal to run

the software solution. However, the analysis by the BSA shows that SaaS model,

encourages credential sharing. Despite the fact that SaaS models show lower unli-

censed software use, the BSA indicates that 52% of online credentials are being shared.

Therefore, the BSA concludes that SaaS models are not expected to have a significant

impact on rates of piracy. In addition, some SaaS vendors allow customers to install the

software on rental virtual infrastructure, a model known as Infrastructure-as-a-Service

(IaaS). In this model, software is more vulnerable to piracy due to the ease of deploying

software across multiple virtual instances (Wang, Cheng, Cho & Wang, 2015). Hence,

a new license model will be required to overcome this challenge.

2.2.4 Video Game Consoles

As video game piracy grew with the consumer adoption of computer games at home,

console platforms from Sega (1984), Nintendo (1984), and Sony PlayStation (1994)

were introduced and had a significant effect on preventing game piracy (Depoorter,

2014; Ployhar, 2012). This was achieved because the consoles used game cartridges

with chips to store the game software. The cartridges were too expensive to duplicate, so

Chapter 2. Literature Review 34

game pirates focused instead on modifying (“modding”) the game consoles themselves

to accept unlicensed games (Tsotsorin, 2013). However, the associated costs of the

cartridge manufacturing, the limited capacity of the cartridges, and availability of

cheap storage alternatives, such as CDROM optical media, resulted in the console

manufacturers moving to optical media for game storage. For example, Sony PlayStation

and Microsoft Xbox have implemented custom encryption and obfuscation software

and hardware techniques to prevent piracy (Khandelwal, 2015; Lejacq, 2013). However,

both Microsoft Xbox and Sony PlayStation consoles have been successfully hardware

modded to enable piracy, leading to definitive responses from both companies. Microsoft

banned one million users with modded consoles (Ionescu, 2010), whilst in 2011 Sony

shut down their PlayStation Network as a result of a jailbroken PlayStation3 hack,

which not only allowed pirated games but led to one of the largest data breaches in

2011 (Lynley, 2011). Hence it is shown that gaming consoles can be “jailbroken” to

achieve piracy, although the risk of detection and the consequences deter mainstream

consumers from piracy (Sony, 2016a, 2016b).

The most significant game piracy threat to the video game console game publishers

is that of the used games and the second hand market, which operate in breach of the

game End User License Agreement (EULA). Most game publishers only grant a license

to use the game software, and expressly prohibit rental or resale (Electronic Arts, 2016;

Sony, 2016b; Ubisoft, 2016).

2.2.5 Other Platforms

Anywhere software is developed, the opportunity for piracy exists. In addition to

discrete software, the scope of piracy targets extends to many different, and largely

unexplored, areas where piracy may occur but has little data or research. To summarise

other forms of piracy, the following further types of platforms have been identified as

Chapter 2. Literature Review 35

potential targets, where piracy may have occurred, or which are vulnerable to piracy in

the future as technology changes and develops.

1. Read-only memory chip (ROM) piracy was occurring from the mid-1980s and the

opportunity for piracy in the context of breach of copyright exists today (Newman,

2013; Folsom, 1985). Early examples of ROM piracy include the IBM PC BIOS

copyright breaches, where IBM clone computer importers, copying the IBM PC

basic input/output system (BIOS) into clone PC’s, were successfully sued for

breaching IBM copyright (Moon, 2009).

2. Software libraries that software distributions use are likely targets for piracy.

Many businesses create and sell libraries, which are then used with common

development platforms. These can be easily pirated and used in breach of the

license agreement.

3. Emulators are third party software that mimic the function of a hardware device:

often legacy proprietary hardware such as Radio Shack TRS-80, Commodore

64, or Nintendo Gameboy. They provide the opportunity for users to use and

enjoy software developed for these systems despite the hardware not having been

manufactured for decades. Although emulators are legal within the United States,

unauthorised distribution of copyrighted software used by the systems (examples

include games, BIOS or firmware code), remains illegal (Karas, 2001; Newman,

2013).

4. Applications that execute in a virtual machine environment locally to the user,

such as the Java Virtual Machine (JVM), or other markup languages such as

HTML5, may be vulnerable to piracy, as the code executed on the local machine

may be copied.

5. Scripting languages with visible source code, such as AppleScript, JavaScript,

Python, Ruby, PHP, and macro languages, such as Visual Basic for Applications,

Chapter 2. Literature Review 36

are vulnerable to piracy due to the direct execution nature of the interpreter

(Patel & Pattewar, 2014; Sharma, Sharma & Tyagi, 2015). Similarly, job control

languages and shell scripts are easily copied.

6. Applications that run on web servers and within application frameworks, such as

JVM, Ruby on Rails, and .NET, may also be vulnerable to piracy (Sharma et al.,

2015).

7. Virtual Machine or Cloud based applications are vulnerable to piracy, as the

underlying virtual machine disk file, containing the operating system and software,

can easily be copied and utilised (Baumann, Peinado & Hunt, 2014; Wang et al.,

2015; Singh, Jeong & Park, 2016).

8. Containers is a concept where applications can be run independently of any host

operating system and it’s libraries (Kang, Le & Tao, 2016; Jaramillo, Nguyen &

Smart, 2016). The objective of Containers is application portability, independent

of the underlying operating system, and it is purpose-built to allow software to

be easily replicated and executed on another Container host, thereby creating a

potential piracy threat.

9. Internet of Things: The number of embedded platforms and Internet of Things

devices is expected to grow rapidly as technology in the mobile, wirelessly

connected world continues to evolve. Examples include devices such as smart

cities, car computers, and wearable technology on every human being. Due to the

distributed and easily accessible nature of these devices, any embedded platform

may be vulnerable to piracy (Kumar, 2017; Singh et al., 2016).

2.2.6 Effect of Digital Distribution Services

This section discusses DDS, and whether DDS has had any effect on reducing piracy.

DDS is now commonly used by vendors, in preference to physical media. It requires

Chapter 2. Literature Review 37

end user authentication to prove identity, prior to downloading software, and may be

successful in reducing piracy by reducing the opportunity to copy physical media and

keys.

DDSs are used to provide an easy mechanism for legitimate purchase of software

and to reduce piracy. As discussed earlier, the mobile and video game platforms natively

provide DDS. Google and Apple have their own DDSs for mobile Apps, through portals

such as Google Play and the Apple App Store. Companies such as Microsoft and Sony

offer DDS for console games, respectively through Xbox Live and PlayStation Network.

Independent DDS, such as Steam, Amazon, Gamersgate, and GoG, provide licensing

and Digital Rights Management (DRM) to a gaming specific demographic. For the most

part, DDS is focused on secure software delivery (via download) and record-keeping of

the license entitlements of the customer, rather than prevention of piracy.

DDS for Desktop can be grouped into three categories: (a) enterprise software

vendors (ESV); (b) independent software vendors (ISV); and (c) games software vendors

(GSV). Whilst ESVs such as Microsoft and Adobe have developed their own DDS

through portals 3, most of the ISVs do not utilise DDS mechanisms for distribution

or to prevent piracy. This lack of utilisation of DDS for Desktop may result from

a commercial cost-benefit decision by the ISV. The complexity of protecting COTS

software piracy from the range of piracy threats means that is likely to be a high cost

investment. An ISV needs to implement several technical piracy prevention mechanisms,

such as: (a) installation license keys; (b) activation keys that require authentication; and

(c) DRM for customers. The ISV also needs infrastructure and management to provide

the DDS. It seems that ISVs either do not perceive a value in DDS, or do not have a

suitable business model to utilise a DDS.

However GSVs are highly invested in DDS. This section specifically examines the

Steam online DDS strategy, and its impact on piracy prevention. Steam is the market

3 Microsoft Office365 portal; Microsoft “Volume License Server Centre”; and Adobe “Creative Cloud”

Chapter 2. Literature Review 38

leader in the games software digital distribution marketplace, with an estimated 50%-

70% market share (Chiang, 2011). Steam provides services to both software publishers

and the players themselves. The Steam approach and strategy to reduce game piracy is

to offer value added services to the player base, such as peer-to-peer gaming and social

networks. Players are incentivised to purchase games through Steam, despite the fact

that the software is subject to DRM, because pirated software cannot match the value

of the services that Steam provides. Tsotsorin (2013) discusses Steam’s statement that

they have been very successful in curbing game piracy in Russia. The fundamental

lesson that Steam provides, is that game piracy is a service issue. The Russian market,

with one of the highest rates of piracy in the world, is now Steam’s largest continental

European market.

Steam protects against piracy via the Steam Anti-Piracy suite, which includes Cus-

tom Executable Generation (CEG), DRM, and Valuable Platform-Dependent Features

(Steam, 2016). Use of a Steam client is also required to run on the player’s computer.

CEG is a mechanism that creates a unique build of game software for each player

when the player purchases the software. This is then linked to the player’s Steam

account, and the player must authenticate to Steam through the Steam client to run the

game software. DRM protects the game software through licensing and encryption,

providing secure distribution mechanisms for the game publisher, including encryption,

whilst the software is in transit, and encryption of the software itself using a private

key belonging to the player. On the player’s computer, the Steam client decrypts the

software during installation (Bilger, 2006), protecting the install package from being

copied. CEG-enabled games, providing the highest level of protection against piracy,

are executed from the Steam agent installed on the computer, and require Internet access

to Steam to login and play the game, making it much harder to pirate the downloaded

software. Steam is cross-platform, providing services to Windows, Mac and Linux

clients.

Chapter 2. Literature Review 39

However, Steam games are still potentially vulnerable to reverse engineering and

attacks aimed at defeating the Steam DRM, with plentiful discussion on various forums

and Github projects (Atom0s, 2016; SteamRE, 2016). Despite Steam’s claims of

success at reducing piracy, Ployhar (2012) points out that nearly 30% of Steam players

have a BitTorrent client installed (according to the Steam Hardware & Software survey

taken in 2012: Steam now do not collect data on installed software in their survey),

indicating that there is still a likelihood that Steam players continue to engage in

software downloads from other sources.

Overall, it is shown that the value added social aspect for gaming encourages

legitimate purchase and discourages piracy, and that the gaming network that also

provides value added entertainment services is more successful at reducing piracy.

Steam’s DDS and anti-piracy features provide considerably improved measures to

prevent game piracy, but is only available for the gaming demographic.

2.3 Taxonomy of Software Piracy Types

This section explores several aspects of software piracy, with the purpose of identifying

the types of software piracy and the piracy actors involved. Firstly, a definition of

software piracy is established through industry literature, treaties, and statute law. The

types of software piracy are defined, and the actors who undertake the various forms

of piracy are identified. Associations between types and actors and roles of piracy are

discovered, and from this a taxonomy of software piracy types is established.

2.3.1 Definition of Software Piracy

Intellectual Property covers three distinct sets of rights: copyrights, patents and trade-

marks (Besen & Raskind, 1991). In respect to intellectual property protection, piracy,

the unauthorised use of copyrighted goods, is of serious concern for copyright holders

Chapter 2. Literature Review 40

(Andrés, 2006). There are many public definitions for piracy, which articulate piracy

to different levels of exactness, including UNESCO (2015), Techopedia (2015) and

Business Software Alliance (2014b).

1. UNESCO defines piracy as: “the reproduction and distribution of copies of

copyright-protected material, or the communication to the public and making

available of such material on on-line communication networks, without the

authorisation of the right owner(s) where such authorisation is required by law”

(UNESCO, 2015).

2. Techopedia is an online expert resource that aims “to help you understand tech-

nology” and claims to have one of the web’s most comprehensive computer

dictionaries. Techopedia has been used in this instance to provide a contrast

to definitions from the larger more formal sources. Technopedia’s definition is:

“Software piracy is the stealing of legally protected software. Under copyright law,

piracy occurs when copyright protected software is copied, distributed, modified

or sold. Software piracy is considered direct copyright infringement when it

denies copyright holders due compensation for use of their creative works.”

(Techopedia, 2015).

3. Business Software Alliance has a comprehensive definition of piracy, but sum-

marises the term as: “the unauthorised copying or distribution of copyright

software, including downloading, sharing, selling, or installing multiple copies of

licensed software”. It defines five primary types of piracy, with sub-categories to

articulate specific methods within the primary type (Business Software Alliance,

2014b).

UNESCO (2015) also makes the point that “Piracy” is the popular term used to

describe the phenomenon, and states “national copyright legislations generally do

not include a legal definition". The website states, “Today, the only international

Chapter 2. Literature Review 41

legal instrument in the copyright arena which provides a definition of “piracy” is the

Agreement on Trade-Related Aspects of Intellectual Property Rights from the World

Trade Organization” (World Trade Organization, 1994 (Art.51, n.14)). However, further

guidance can be provided in jurisdictions such as the European Union. Directive

2009/24/EC enacts specific aspects of rightholder protection into law that correlate

directly with the UNESCO definition by criminalising specific acts of piracy, and

provides remedies for action4.

This section has discussed organisational definitions of software piracy. However it

has excluded statute law and international agreements. The following section explores

how software piracy is defined in statute law, treaties, and agreements.

2.3.2 Treaties, Agreements and Acts

Several international treaties and agreements, as well as Acts within established sover-

eign domains5, form the legal basis for defining the actions that result in a breach of

copyright or intellectual property rights.

These legal instruments address separate forms of breach of copyright and intel-

lectual property, but fall short of providing a consistent definition of software piracy,

or identifying actors that engage in software piracy. The focus is primarily on actions

or methods that constitute a copyright breach. This section compares and contrasts

the Trade Related Aspects of Intellectual Property Rights (TRIPS) Agreement, and

the WIPO Copyright Treaty, the two primary instruments for protecting copyright

and intellectual property. It also provides some perspective on how sovereign states

have enacted these agreement provisions into law. This investigation is relevant to the

examination of software piracy, because the goal of the legal instruments is to protect

the rights of the rightholder. However, success depends on nations being signatories to

4 The European Parliament and the Council of the European Union (2009)
5 Examples include the US Digital Millennium Copyright Act, and the NZ Copyright Act (1994)

Chapter 2. Literature Review 42

the legal instrument, enacting the protection clauses into law, and having the motivation

to police software piracy and enforce copyright. Furthermore, inconsistencies between

the instruments, fast moving technology, and new piracy methods can lead to legal

protections rapidly becoming obsolete.

The TRIPS Agreement is Annex 1C of the Marrakesh Agreement Establishing the

World Trade Organisation, and is a comprehensive multilateral agreement on intellec-

tual property (Nill & Shultz, 2009). It includes areas such as copyright. Computer

programs (Article 10.1), databases, and compilation of data (Article 10.2) are included

in copyright, and it also provides that authors of computer programs have the right to

authorise or prohibit commercial rental or copies (Article 11). However, as the TRIPS

Agreement preceded the popular use of the Internet, it does not include mechanisms

that enable piracy, focussing mainly on the rights holder as the key to authorising the

use of software. Although a new round of TRIPS negotiations was launched at the

Doha Ministerial Conference in November 2001, these primarily cover enacting laws,

technology transfer, and enforcement of intellectual property rights .

Increased Internet popularity has led to an increase of copying and sharing of digital

content, including music, video, and software, mostly in violation of copyright law

that was not explicitly covered by the TRIPS Agreement. The WIPO Copyright Treaty

is an international treaty on copyright law, concluded in 1996, and provides separate

additional protections to the TRIPS Agreement considered necessary due to advances

in information technology. Specifically, the WIPO Copyright Treaty ensures computer

programs and databases are protected, and outlines rights of rental, rights of distribution,

and the right of communication to the public (Sheinblatt, 2014). The WIPO Copyright

Treaty was implemented in the United States via the Digital Millennium Copyright Act

in 1998 (DCMA), and by the European Union through Directive 2001/29/EC of the

European Parliament and of the Council in 2001.

The DMCA increased the punishment for violating copyright using the Internet as

Chapter 2. Literature Review 43

a medium, and also made the creation of software or devices that circumvent access

control illegal (Radcliffe, 1999). Owners of software are entitled to reverse engineer

software (crack copy protection) under the “fair use” privilege. However it is illegal to

create and sell software and devices that undertake this. The DCMA is divided into five

titles of which Titles I and II are relevant to copyright protection of computer software:

1. Title I implements the WIPO Copyright Treaty, and enacts copyright provisions

into US law, as well as extending the scope of copyright protection to include

use of the Internet to access copyrighted materials, and prohibits circumventing

protection measures.

2. Title II protects online service providers who may store, index, cache, or have

involvement in, transitory communication of copyrighted materials, and where

the service provider does not have knowledge of the copyright infringement.

However, there is criticism of the DCMA for being too rigid and taking legitimate

rights away from consumers, especially around circumvention of technology controls,

such as jailbreaking an iPhone (Swanson, 2010), and rights to free speech (Kretschmer,

2003).

Also in response to the WIPO Copyright Treaty, the EU implemented Directive

2001/29/EC in 2001, enacting similar provisions to the DCMA (Parliament & Council,

2001), but still requiring member states to implement the provisions into law. The

Directive also excludes liability for online service providers, who are therefore not

liable for the data they transmit, even if it infringes copyright. Unlike the DCMA, the

Directive also prohibits circumvention of copy protection measures, making it more

restrictive than the DCMA.

New Zealand is party to various international copyright agreements, including:

1. TRIPS Agreement (Annex 1C to the Agreement Establishing the World Trade

Organisation 1994);

Chapter 2. Literature Review 44

2. The Berne Convention for the Protection of Literary and Artistic Works 1928

(Rome Act revision);

3. The Universal Copyright Convention 1952.

In respect of New Zealand legislation, rights for copyright protection are provided

for in the Copyright Act 1994 and the Copyright (New Technologies) Amendment Act

2008. The Copyright Act 1994 is accompanied by the Copyright Regulations 1995.

These Acts define infringement of copyright, acts permitted in relation to copyright

works, and include adaptations, which extend liability to providers or transporters of

copyright material.

The Copyright (New Technologies) Amendment Act 2008 sought to clarify the

application of the Act to digital technology, and to state the provisions of the Act in

technology-neutral language. By adding the technology-neutral category of ‘communic-

ation works’, protection of digital technology was extended beyond broadcasts and cable

programmes. In 2011 the Copyright Act was strengthened by several anti-counterfeiting

provisions, including: (i) empowering border enforcement and criminal authorities to

detain and investigate suspected counterfeit goods; (ii) enacting criminal procedures and

penalties when wilful piracy or counterfeiting is carried out for commercial advantage;

(iii) enhanced ability to obtain authorisation for destruction of fake goods and seizure of

the equipment and materials used in their manufacture; and (iv) seizure of the criminal

proceeds from piracy and counterfeiting offences.

2.3.3 Types of Software Piracy

Types of piracy can be established and categorised from these various treaties, agree-

ments and sovereign acts. The following list provides an outline of the types of piracy.

Items 1 to 5 are defined by the BSA, summarising the objectives of the treaties and

agreements in the context of piracy. Item 6 is established as a result of acts that provide

Chapter 2. Literature Review 45

for reverse engineering of software yet also fit into the expanded piracy definitions as

outlined by the BSA.

1. End User Piracy

This occurs when a user reproduces copies of software without authorisation, and

includes:

(a) using one licensed copy to install a program on multiple computers;

(b) copying disks and keys for installation and distribution;

(c) taking advantage of upgrade offers without having a legal copy of the version

to be upgraded;

(d) acquiring academic, charity, or other restricted or non-retail software, without

a license for commercial use.

2. Client-Server Overuse

Client-server over-use occurs when too many users on a network are using a

central copy of a program at the same time, also known as under-licensing. This

falls into two further sub-categories of common license models:

(a) per device, based on number of devices that have the software installed;

(b) per user, based on the number of concurrent users running the software;

(c) credential sharing of cloud-based services, classed as piracy according

the Compliance Gap report conducted by the Business Software Alliance

(2014a).

3. Internet Piracy

Internet piracy occurs when software is downloaded from the Internet, regardless

of method of purchase. Internet piracy includes:

(a) Pirate websites, known as warez sites, that make software available for free

download or in exchange for uploaded programs;

Chapter 2. Literature Review 46

(b) Internet auction sites that offer counterfeit, out-of-channel, copyright-infringing

software;

(c) Peer-to-Peer networks that enable unauthorised transfer of copyrighted

programs.

4. Hard-disk Loading

Hard-disk loading occurs when a business that sells new computers loads illegal

copies of software onto hard disks. This may also occur through cloning disk

images: a common practice in the reseller channel.

5. Software Counterfeiting

This is the illegal duplication and sale of copyrighted material, with the intent of

directly imitating the copyrighted product.

6. Reverse Engineering

Reverse engineering, as applied to computer software, normally refers to a variety

of practices undertaken to understand how a software program is built and how it

achieves its functionality (Lande & Sobin, 1996). Reverse engineering may be

conducted legally for a number of reasons that have been established in U.S. legal

cases, mainly surrounding fair-use entitlements provided by U.S. Copyright Law.

However, it has been established that the legality of reverse engineering is at the

discretion of the rights holders, who are increasingly specifying the exclusion of

reverse engineering in the software license terms (Electronic Frontier Foundation,

2015). In general, the software license, which must be accepted by the user to

install the software, rescinds the rights of the user to reverse engineer the software.

The user opts-out of their legal rights by agreeing to the license terms. Hence,

users that reverse engineer for “fair use” purposes, or users that reverse engineer

software to remove copy protection or license protection (software crackers), may

be in breach of the software license terms as defined by the rights holder. This can

Chapter 2. Literature Review 47

be considered a license breach similar to End User Piracy, which is a copyright

violation.

2.3.4 Roles of Software Piracy

The types of software piracy acts, as defined by various organisations and legal instru-

ments, have been categorised by the BSA into primary types and sub-types of software

piracy (Business Software Alliance, 2014a). Piracy actors can undertake multiple types

and sub-types of piracy. However to present a cohesive model of how piracy actors

engage in different forms of piracy, this section determines the piracy roles derived

from the piracy types, rather than the actors engaging in the types of piracy itself. The

purpose of this is to disassociate the actor, engaged in software piracy, from the role(s)

that the actor may be actually undertaking during the software piracy process as actors

may have multiple roles (discussed in Section 2.4 on page 52).

Each of the types of piracy has a role that undertakes the activities described by the

types of piracy. Analysing the types of piracy reveals five primary roles; i) End User;

ii) Software Engineer; iii) Cracker; (iv) Distributor; and (v) Profiteer. Figure 2.3 on

page 48 visualises the association between types of software piracy and established the

piracy roles. Definitions for these roles are as follows:

End User: the End User is a user of the software who breaches the EULA through

not-for-profit duplication activities, where a license is misused either deliberately

or accidentally.

Software Engineer: the Dictionary of Information Science and Technology (Mehdi,

2013, p.828) defines a software engineer as “professional software developer

whose focus is on the software (rather than on the science), and who is aware

that software development involves rather more than mere coding”. The software

engineer provides the technical expertise to modify software, for the purpose of

Chapter 2. Literature Review 48

End User Piracy

Install on multiple computers

Copying disks for installation and distribution

Upgrade without having legal copy of the version to be

upgraded

Acquiring academic, charity or non-retail software for

commercial use

Client-Server

Overuse

Per device - insufficient licenses for number of devices

Per user - insufficient licenses for number of users

Credential sharing of cloud-based software services

Reverse

Engineering

Reverse engineering of software in breach of the terms

of the software license agreement

Internet Piracy

Pirate websites (warez sites) that make software

available for free download

Peer-to-Peer networks that enable unauthorised transfer

of copyrighted programs

Internet auction sites offering out-of-channel,

counterfeit, copyright-infringing software

Hard-disk Loading
Occurs when a business that sells new computers loads

illegal copies of software onto hard disks

Software

Counterfeiting

The illegal duplication and sale of copyrighted material

imitating the copyrighted product

End User

Software

Engineer

Cracker

Distributor

Profiteer

TYPE DESCRIPTION ROLE

Figure 2.3: Associating Types of Piracy with Piracy Roles

understanding it and modifying it, for non-piracy purposes, against the terms of

the EULA.

Cracker: crackers remove protections from copy protected software to allow piracy

to occur, and have the most sophisticated, technical, and pivotal role in the piracy

process. Their role is to remove copy protections from software using a variety of

techniques, such as reverse engineering, executable code modification, and creat-

ing keygens (Goode & Cruise, 2006; Kammerstetter et al., 2012). Interestingly,

crackers generally do not involve themselves in the other roles involved in piracy,

having the primary motivation of the challenge of defeating copy protections

(Goode & Cruise, 2006). Figure 2.4 on page 50 illustrates the role of the cracker

Chapter 2. Literature Review 49

as one of removing the protection added to the software source code by the

software vendor. Hence, once the legitimate software is obtained by the cracker,

the software (and the software vendor) has no defence against the cracking reverse

engineering or tampering processes.

All cracking activities are in breach of the rights holder license, as the “fair

use” rights to reverse engineering are excluded in the software license. As most

software requires the license terms to be accepted prior to installation (in this case

for the purpose of preventing reverse engineering), the cracker will be in breach

of the software license in these situations. Figure 2.4 on the following page has

been adapted from Naumovich and Memon (2003), by changing output from a

user perspective to an original/cracked software perspective.

Distributor: the Distributor is the facilitator of piracy through making the software

available for download through the Internet. It is of interest that Distributors do

not necessarily consume the pirated software product, but they provide a service

enabling the piracy process: i.e. online file storage. Examples are businesses such

as the former MegaUpload. Although this distribution is not a defined aspect of

the TRIPS Agreement, it appears that each jurisdiction has made distribution of

pirated software illegal, in order to close the gap created by the Internet.

Profiteer: the profiteer is a black market provider of pirated software that is illegally

sold in breach of the TRIPS Agreement and jurisdictional laws, and as such

denies the rights holder their revenues.

2.3.5 Taxonomy of Software Piracy by Role

Re-arranging the “Type of Software Piracy” from a perspective of the role shows who

is participating in the piracy process and what their contribution is to the piracy process

(Table 2.1 on page 51). This information is useful for understanding the types of threats

Chapter 2. Literature Review 50

Source Code
P

Protection
Tool

Compiler

Source Code
P

Protection

Compiled
Code

P

Protection

(Partial)
Source Code

P’

Decompiler

Reverse
Engineering

Tools

Compiled
Code

P

Protection

(Partial)
Source Code

P

Protection

Software Vendor Cracker

Compiler
Compiled

Code
P’

Original
Software

Cracked
Software

Figure 2.4: The Role of the Software Cracker (Adapted from Naumovich and Memon,
2003)

these roles represent as adversaries to copyright protection.

However, the relationships between the types of piracy is not defined by any of the

sources, nor by the taxonomy presented in this section. Yet there is implied evidence,

from the types of piracy, that relationships occur through the piracy role. For example:

“End User” and “Distributor”, and “Cracker” and “Distributor”, are often associated

with each other in the practice of piracy. Another example would be an “End User” who

“cracks” an application and then distributes it to friends via a private BitTorrent.

The following sections build on the taxonomy of software piracy roles by taking the

position that piracy is a process. It investigates piracy from differing perspectives to

Chapter 2. Literature Review 51

Table 2.1: Taxonomy of Software Piracy by Role

Role Type Type SubCategories References
End User End User

Piracy
Installation of software on multiple
computers

(Mooers, 1977; Im
& Van Epps, 1992)

Copying disks for installation and not-
for-profit distribution

(Suhler et al., 1986)

Upgrade to a legal version of software
without having legal copy of the version
to be upgraded

(Business Software
Alliance, 2014b)

Acquiring academic, charity or non-
retail software for commercial use

(Business Software
Alliance, 2014b)

Client-
Server
Overuse

Per device – insufficient licenses for
number of devices

(Business Software
Alliance, 2014b)

Per user – insufficient licenses for num-
ber of users

(Business Software
Alliance, 2014b)

Credential sharing of cloud-based
software services

(Business Software
Alliance, 2014a)

Software
Engineer

Reverse
Engineer-
ing

Reverse engineering of software in
breach of the terms of the software
license agreement

(Electronic Frontier
Foundation, 2015;
Business Software
Alliance, 2014b)

Cracker

Distributor Internet
Piracy

Pirate websites (warez sites) that make
software available for free download

(Goldman, 2004;
Hétu, Morselli &
Leman-Langlois,
2012)

Peer-to-Peer networks that enable un-
authorised transfer of copyrighted pro-
grams

(Kigerl, 2013; Xiao-
song & Kai, 2009)

Profiteer Internet
Piracy
(profit)

Internet auction sites offering out-
of-channel, counterfeit, copyright-
infringing software

(Palmer, 2014;
Chaudhry et al.,
2011)

Hard-disk
Loading

Occurs when a business that sells
new computers loads illegal copies of
software onto hard disks

(Business Software
Alliance, 2014b)

Software
Counter-
feiting

The illegal duplication and sale of copy-
righted material imitating the copy-
righted product

(Chaudhry et al.,
2011; Yin-Leng,
Wee Teck, May
& Schubert Foo,
2010)

Chapter 2. Literature Review 52

improve the understanding of the piracy process as well as the challenges surrounding

piracy prevention. These ultimately present a piracy model that articulates a transitive

relationship between role and prevention method, and demonstrates that piracy is clearly

a process. Finally, the piracy process is further explored from a platform perspective,

outlining the threats to each type of platform from the different types of piracy in the

piracy process.

2.4 The Software Piracy Process

In this section the software piracy process is investigated, exploring the relationships

between the type of piracy, the role of the actor, and the methods used in attempts

to protect against piracy. A software piracy model is established, demonstrating the

relationship between the protection method and the piracy actors. The types of piracy

are then explored in the context of platforms, and the concept of the software piracy

vulnerability lifecycle is introduced. The section concludes with discussion of related

piracy issues and the documented link between piracy and malware.

2.4.1 Role-based Software Piracy Threat Model

A threat model by role can be derived from the taxonomy in Table 2.1 on the preceding

page, and is shown in Figure 2.5 on the next page. The threat model visualises the

relationship between the role and the type of piracy. This can be used to demonstrate

how an adversary, who may fulfil multiple roles, creates a significant challenge for the

rights holder to protect their copyrighted works. The threat model identifies “who” is

undertaking the breach of copyright specifically, and relates that to “what” the breach

of copyright is. It does not, however, say “how” a breach occurs, or which platforms

are more vulnerable to a particular type of threat. These are new dimensions that the

threat model cannot represent, and will be discussed in the following sections.

Chapter 2. Literature Review 53

Upgrading without legal

version of the software

ThreatsThreatsThreatsThreats

Distributor

End User

Piracy

Profiteer

Illegal duplication and

sale of copyrighted

material

Loading illegal copies of

software onto hard disks

for sale

Acquiring restricted

software license

Under-licensing number

of devices

Copying disks & license

keys

Pirate websites that

make software available

for download

P2P networks that

enable unauthorised

transfer of programs

Installing on multiple

computers

Internet auction sites

offering out-of-channel

software for sale

Cracker

Credential sharing of

cloud-based services

End User

Client-Server

Overuse

Reverse

Engineering

Software

Engineer

Under-licensing

Number of users

Reverse engineering in

breach of license terms

Internet

Piracy

Hard Disk

Loading

Software

Counterfeiting

Internet

Piracy (profit)

Figure 2.5: Software Piracy Threat model

Chapter 2. Literature Review 54

2.4.2 Methods Employed to Reduce Software Piracy

The cracker piracy role exists specifically to overcome software piracy prevention

mechanisms. To prevent piracy, vendors employ technical mechanisms that make it

difficult for unauthorised actors to copy, install, and execute, their software. As vendors

develop these new prevention methods, crackers respond in kind to defeat them.

This section first classifies the methods of protecting software copyright, focussing

on the technical classes of prevention. It then re-categorises the types of software

piracy, from Section 2.3.3 on page 44, into the technical classes of prevention, thereby

demonstrating a transitive relationship, which will be discussed in the following Section.

At this point, it is useful to differentiate the terms “prevention” and “protection”

as these are often used interchangeably in both research and public literature. Oxford

Dictionary (2016) defines prevention as “related to precluding or hindering something”6

or “related to preceding or anticipating something”7, whereas protection is defined as

“the action of protecting someone or something” or “a person or thing which protects

someone or something”. The “prevention” definition conveys a broader sense of

frustrating a piracy actor through methodology and preparation, whilst the “protection”

definition imparts the sense of specific safekeeping or safeguard of an entity from a

specific type of threat. For the purposes of this thesis, “prevention” is defined as a

class of methods that are proactively geared towards hindering piracy activity, whilst

“protection” is defined as a sub-class of prevention, and is focussed on point technical

mechanisms to defeat piracy actors.

Cronin (2002) proposes a taxonomy that defines three classes of methods used

6 Prevention (I):
(i)The action of keeping from happening or making impossible an anticipated event or intended act;
(ii) The action of forestalling or frustrating a person in the execution of an action or plan;
(iii) The action of gaining advantage over a person by previous action;
(iv) Action intended to provide against an anticipated problem or danger; a defensive measure;

7 Prevention (II):
(i) Action or occurrence before or in anticipation of the expected, appointed, or normal time; an
anticipatory action, statement, etc

Chapter 2. Literature Review 55

to prevent piracy – ethical, legal and technical. Ethical and legal piracy prevention

methods are tactical imperatives to reduce piracy by encouraging users to “do the right

thing” and instilling fear and uncertainty through risk of discovery and subsequent legal

action (Wagner & Sanders, 2001; Suduc, Bizoi & Filip, 2009). As passive prevention

methods, ethical and legal methods do not provide any capability to hinder piracy actors

from breaching software copyright.

Protecting software from copyright breaches requires technical protection methods

as shown in the taxonomy in Table 2.2 on the next page (adapted from Cronin’s

taxonomy8). Technical protection mechanisms have been identified as providing active

protection from piracy actors. These include: (i) Copy Protection methods such as

obfuscation, encryption, checking, tethering, observation, and watermarking (Conner,

1991; Naumovich & Memon, 2003; DeMarines, 2008); (ii) Authentication for cloud

SaaS services and portals such as Steam, Adobe and Microsoft (Chaitanya, 2013; Ois,

Sherif & Gamal, 2014); and (iii) Authorisation in the form of a License Key or License

Server (Palmer, 2014).

Analysis of the taxonomy shows that there are gaps in respect to cloud-based

services, and enhancements can be made to the Technical class to reflect these recent

advances in applications, technology and business models. This includes the use of end

user credentials as the means to protect Software-as-a-Service or Cloud-based software,

and the use of license keys as a means of preventing piracy. Hence, revising the

taxonomy to include Authentication and Authorisation Technical prevention methods

increases the robustness of the taxonomy.

Table 2.3 on page 58 shows the types of piracy categorised into relevant protection

methods as established in Table 2.2 on the next page. Each type of piracy was charac-

terised into prevention methods belonging to the Technical Class from Table 2.2, and

8 This taxonomy was adapted from Cronin’s taxonomy by adding Authentication and Authorisation as
additional technical methods of piracy prevention

Chapter 2. Literature Review 56
Ta

bl
e

2.
2:

Ta
xo

no
m

y
of

M
et

ho
ds

fo
rS

of
tw

ar
e

Pi
ra

cy
Pr

ev
en

tio
n

(a
da

pt
ed

fr
om

C
ro

ni
n

(2
00

2)
)

C
la

ss
Pr

ev
en

tio
n

M
et

ho
d

Su
b-

ca
te

go
ri

es
Su

b
su

b-
ca

te
go

ri
es

E
th

ic
al

M
ar

ke
tin

g,
br

an
di

ng
A

m
ne

st
y

A
pp

ea
l

Sh
ar

ew
ar

e

L
eg

al
St

at
ut

es
,C

om
m

on
L

aw
C

op
yr

ig
ht

Pa
te

nt
s

L
ic

en
se

A
gr

ee
m

en
ts

C
om

pu
ls

or
y

A
ud

its

D
up

lic
at

io
n

R
es

tr
ic

tio
ns

Te
ch

ni
ca

l
C

op
y

Pr
ot

ec
tio

n
O

bf
us

ca
tio

n
M

ed
ia

O
bf

us
ca

tio
n

C
od

e
O

bf
us

ca
tio

n
D

yn
am

ic
O

bf
us

ca
tio

n

St
at

ic
O

bf
us

ca
tio

n

E
nc

ry
pt

io
n

C
od

e
E

nc
ry

pt
io

n

I/
O

E
nc

ry
pt

io
n

Si
m

pl
e

C
he

ck
in

g
D

on
gl

e

R
eg

is
tr

at
io

n

G
ua

rd
s

Te
th

er
in

g

O
bs

er
va

tio
n

W
at

er
m

ar
ki

ng

A
ut

he
nt

ic
at

io
n

E
nd

-u
se

rc
re

de
nt

ia
ls

A
ut

ho
ri

sa
tio

n
L

ic
en

se
K

ey
s

Chapter 2. Literature Review 57

Role
Prevention

Method

Type of

Software Piracy

Figure 2.6: Software Piracy Transitive Relationship

in several cases, specific types of piracy could be characterised in both Authorisation

and Copy Protection Prevention Methods. Some types of piracy were characterised

as sub-categories of the Legal class and have been included for completeness of the

model. The outcome of the categorisation determined that most of the sub-types of

piracy are focussed on Authorisation and Copy Protection Prevention Methods, whilst

Authentication is clearly a stand alone method solely used for services such as Software-

as-a-Service and online software marketplaces.

2.4.3 Software Piracy Model

The Role-based Software Piracy Threat Model shown in the previous section was de-

rived from the taxonomy of roles undertaking the types of piracy activities in Table 2.1

on page 51, whilst this section describes the technical Software Piracy Prevention

Methods and categorisation of the types of piracy into these methods. Comparing these

artefacts for common elements, it can be shown that there is a transitive relationship

established between the Prevention Method and Software Piracy Role (abbreviated as

Role) as shown in Figure 2.6.

The relationship between Prevention Method and Role can be demonstrated through a

consolidated model of the piracy process as shown by the Software Piracy Model in

Figure 2.7 on page 59. This model connects the Prevention Method (how software is

protected) with Role-based Threats (who is defeating the Prevention Methods), and

outlines the high level process by which this occurs.

Chapter 2. Literature Review 58

Ta
bl

e
2.

3:
Ty

pe
s

of
Pi

ra
cy

B
re

ac
h

ca
te

go
ri

se
d

in
to

th
e

Te
ch

ni
ca

lC
la

ss
of

Pi
ra

cy
Pr

ev
en

tio
n

M
et

ho
ds

C
la

ss
es

of
Pi

ra
cy

Pr
ev

en
tio

n
A

ut
ho

ri
sa

tio
n

C
op

y
Pr

ot
ec

tio
n

A
ut

he
nt

ic
at

io
n

L
eg

al

In
st

al
la

tio
n

of
so

ft
w

ar
e

on
m

ul
tip

le
co

m
pu

te
rs

In
st

al
la

tio
n

of
so

ft
w

ar
e

on
m

ul
tip

le
co

m
pu

te
rs

C
re

de
nt

ia
lS

ha
ri

ng

U
pg

ra
de

to
a

le
ga

lv
er

si
on

of
so

ft
w

ar
e

w
ith

ou
th

av
in

g
le

ga
lc

op
y

of
th

e
ve

rs
io

n
to

be
up

gr
ad

ed

Pe
rd

ev
ic

e
-i

ns
uf

fic
ie

nt
lic

en
se

s
fo

rn
um

be
ro

fd
ev

ic
es

C
op

yi
ng

di
sk

s
fo

ri
ns

ta
lla

tio
n

an
d

no
t-

fo
r-

pr
ofi

td
is

tr
ib

ut
io

n

A
cq

ui
ri

ng
ac

ad
em

ic
,c

ha
r-

ity
or

no
n-

re
ta

il
so

ft
w

ar
e

fo
r

co
m

m
er

ci
al

us
e

Types of Breach

Pe
ru

se
r-

in
su

ffi
ci

en
tl

ic
en

se
s

fo
rn

um
be

ro
fu

se
rs

R
ev

er
se

en
gi

ne
er

in
g

of
so

ft
w

ar
e

in
br

ea
ch

of
th

e
so

ft
w

ar
e

lic
en

se
ag

re
em

en
tt

er
m

s
ag

re
ed

to

Pi
ra

te
w

eb
si

te
s

(w
ar

ez
si

te
s)

th
at

m
ak

e
so

ft
w

ar
e

av
ai

la
bl

e
fo

r
fr

ee
do

w
nl

oa
d

Pi
ra

te
w

eb
si

te
s

(w
ar

ez
si

te
s)

th
at

m
ak

e
so

ft
w

ar
e

av
ai

la
bl

e
fo

r
fr

ee
do

w
nl

oa
d

Pe
er

to
Pe

er
ne

tw
or

ks
th

at
en

-
ab

le
un

au
th

or
is

ed
tr

an
sf

er
of

co
py

ri
gh

te
d

pr
og

ra
m

s

Pe
er

to
Pe

er
ne

tw
or

ks
th

at
en

-
ab

le
un

au
th

or
is

ed
tr

an
sf

er
of

co
py

ri
gh

te
d

pr
og

ra
m

s

In
te

rn
et

au
ct

io
n

si
te

s
of

fe
ri

ng
ou

t-
of

-c
ha

nn
el

,c
ou

nt
er

fe
it,

in
fr

in
gi

ng
co

py
ri

gh
ts

of
tw

ar
e

In
te

rn
et

au
ct

io
n

si
te

s
of

fe
ri

ng
ou

t-
of

-c
ha

nn
el

,c
ou

nt
er

fe
it,

in
fr

in
gi

ng
co

py
ri

gh
ts

of
tw

ar
e

O
cc

ur
s

w
he

n
a

bu
si

ne
ss

th
at

se
lls

ne
w

co
m

pu
te

rs
lo

ad
s

il-
le

ga
lc

op
ie

s
of

so
ft

w
ar

e
on

to
ha

rd
di

sk
s

O
cc

ur
s

w
he

n
a

bu
si

ne
ss

th
at

se
lls

ne
w

co
m

pu
te

rs
lo

ad
s

il-
le

ga
lc

op
ie

s
of

so
ft

w
ar

e
on

to
ha

rd
di

sk
s

Chapter 2. Literature Review 59

Crackers

(threat)

End User

(threat)

Distributor

(threat)

Authentication

Authorisation

Copy

Protection

End User

(consumer)

Software

Engineer

(threat)

Profiteer

(threat)

PREVENTION

METHOD
BREACHES

CRACKERS REMOVE COPY

PROTECTIONS FROM SOFTWARE

END USER (THREAT)

RE-DISTRIBUTES

CRACKED SOFTWARE,

CREDENTIALS OR KEYS

(ARTEFACTS)

END USER (THREAT) OBTAINS

COMPROMISED ARTEFACT

END USER (THREAT) OBTAINS

CREDENTIALS (AUTHENTICATION) OR

LICENSE KEY (AUTHORISATION)

COMPROMISED ARTEFACTS MADE

AVAILABLE BY DISTRIBUTORS

END USER (CONSUMER)

OBTAINS AND USES

COMPROMISED ARTEFACT

IN BREACH OF SOFTWARE

LICENSE

SOFTWARE ENGINEER REVERSE ENGINEERS

SOFTWARE FOR RESEARCH

THREAT

Software

Engineer

(consumer)

PROFITEER SELLS CRACKED SOFTWARE OR COPIED

LICENSES TO END USER

CRACKERS UPLOAD

CRACKED SOFTWARE

ARTEFACTS TO

DISTRIBUTOR

Defeated by Resulting in

Figure 2.7: The Software Piracy Model

The Software Piracy Model uses the three prevention methods as the obstacles to

be defeated into order to promulgate piracy. Prevention methods of Authentication,

Authorisation and Copy Protection have separate paths into the Software Piracy model,

representing that different prevention methods require different skillsets to defeat them.

Threats are defined by the five roles of piracy, which have inter-relationships as the

role of the software pirate changes for different stages of Software Piracy Model. The

outcome of the Software Piracy Model is a breach of copyright or breach of license

terms, and predominantly represent an economic impact on the rights holder. The

End User (consumer) is the primary role for most piracy cases, where the end user is

consuming pirated software or services, although not necessarily with the knowledge or

realisation that they are using pirated software or services.

Chapter 2. Literature Review 60

2.4.4 Defeating Prevention Methods

This section describes the Software Piracy Model in Figure 2.7 on the preceding page,

and provides an outline of each of the elements identified in the model, and describes

the relationship between the elements.

Authentication-based piracy is achieved through the sharing of credentials for online

services or download portals (Business Software Alliance, 2014a). These credentials

can be shared between End Users, where the initiator End User (threat) is considered the

active threat, as they are the entity distributing the pirated software to other parties, as

well as being the End User (consumer) and using the pirated software. Distribution can

take several forms, including simple file sharing, online warez sites for public access,

and peer-to-peer networks for semi-private sharing of license keys and files.

Authorisation-based piracy is based on the illegal use of license keys, where software

license or activation keys can be distributed and used for non-commercial gain by End

Users in a similar manner as credential sharing (Business Software Alliance, 2014a). In

addition, license keys can also be used by Profiteers, who on-sell the illegal software

either as packaged goods or pre-loaded on a computer, possibly without the End user

(consumer) knowing that the software is illegal.

Copy protection represents the most significant challenge to piracy, requiring tech-

nically skilled Crackers to defeat the copy protection (Naumovich & Memon, 2003;

Moon, 2009). After the cracker has successfully removed the copy protection mechan-

isms, the software vendor has no capability to regain control of the pirated software, and

the “cracked” software can then be released for distribution, usually through warez sites

or peer-to-peer networks, or to Profiteers. They are a key element of the piracy process

and, as such, should be considered a primary adversary for software protection due to

their skills and the fact that their motivation is the challenge, rather than the distribution

of the software (Goode & Cruise, 2006).

Chapter 2. Literature Review 61

2.4.5 Software Piracy Vulnerability Lifecycle

Figure 2.7 on page 59 provides a threat-oriented visualisation of how the piracy roles

are cohesively interconnected to defeat piracy prevention methods. However, viewing

the piracy problem from the platform perspective, as discussed in Section 2.2 on page

28, it can be shown that only certain types of platforms are vulnerable to certain types

of piracy. Comparing each platform’s vulnerabilities to the various types of piracy, it

becomes apparent that the type of platform has relevance in respect to mitigation of

piracy. Software, once released, has “States of Vulnerability” (SoV) relating to threat

type. The more SoV that software traverses, the greater the vulnerability, and thus the

increased risk that the software will be pirated (and copyright breached).

There are four SoV that have been modelled. Each SoV represents a point in the

software lifecycle where the software becomes exposed to a type of piracy. Describing

the relationship between these four SoV leads to the Software Piracy Vulnerability

Lifecycle (SPVL), as shown in Figure 2.8. Therefore, the SoVs within the SPVL

are defined as follows, and as shown by the Software Piracy Vulnerability Lifecycle

Taxonomy in Table 2.4:

Release: where the software is available for purchase and can then be illegally up-

graded, copied or counterfeited for resale, without any major technical impediment;

Installation: where the software needs to be installed, and technical expertise is

required to overcome the piracy protection and prevention mechanisms through

software cracking or reversing engineering;

Illegal Distribution: where the software is made available on the Internet for easy

and convenient download and installation by the End User, with the software

copy protection mechanisms removed;

Use: where the End User breaches the EULA, including renting/selling software,

over-subscribing software use, and credential sharing of SaaS services.

Chapter 2. Literature Review 62
Ta

bl
e

2.
4:

So
ft

w
ar

e
Pi

ra
cy

L
if

ec
yc

le
Ta

xo
no

m
y

St
at

e
T

hr
ea

t
T

hr
ea

tS
ub

-c
at

eg
or

y
R

ef
er

en
ce

s
R

el
ea

se
So

ft
w

ar
e

C
ou

nt
er

fe
iti

ng
C

op
yi

ng
m

ed
ia

&
ke

ys
(S

uh
le

re
ta

l.,
19

86
)

H
ar

d-
di

sk
lo

ad
in

g
(B

us
in

es
s

So
ft

w
ar

e
A

lli
an

ce
,2

01
4a

)

D
up

lic
at

in
g

so
ft

w
ar

e
pa

ck
ag

e
(S

uh
le

re
ta

l.,
19

86
)

D
ir

ec
ts

el
lin

g
so

ft
w

ar
e

pr
od

uc
t

(C
ha

ud
hr

y
et

al
.,

20
11

;Y
in

-L
en

g
et

al
.,

20
10

)

In
st

al
la

tio
n

So
ft

w
ar

e
C

ra
ck

in
g

D
ef

ea
tl

ic
en

se
va

lid
at

io
n

m
ec

ha
ni

sm
s

D
ef

ea
tm

ed
ia

pr
ot

ec
tio

n
m

ec
ha

ni
sm

s

D
ef

ea
ts

of
tw

ar
e

pr
ot

ec
tio

n
m

ec
ha

ni
sm

s

Su
bv

er
ts

of
tw

ar
e

au
th

or
is

at
io

n

R
ev

er
se

E
ng

in
ee

ri
ng

(E
le

ct
ro

ni
c

Fr
on

tie
rF

ou
nd

at
io

n,
20

15
)

Il
le

ga
lD

is
tr

ib
ut

io
n

D
is

tr
ib

ut
io

n
of

Il
le

ga
lS

of
tw

ar
e

In
te

rn
et

-b
as

ed
w

ar
ez

si
te

s
(G

ol
dm

an
,2

00
4;

H
ét

u
et

al
.,

20
12

)
In

te
rn

et
co

un
te

rf
ei

ts
of

tw
ar

e
si

te
s

(C
ha

ud
hr

y
et

al
.,

20
11

)

Pe
er

-t
o-

pe
er

ne
tw

or
ks

(K
ig

er
l,

20
13

;X
ia

os
on

g
&

K
ai

,2
00

9)

Sh
ar

in
g

di
gi

ta
lm

ed
ia

&
ke

ys
(K

ig
er

l,
20

13
;X

ia
os

on
g

&
K

ai
,2

00
9)

U
se

E
nd

U
se

rB
re

ac
he

s
E

U
L

A
Se

lls
or

re
nt

s
so

ft
w

ar
e

(S
on

y,
20

16
a)

B
re

ac
he

s
nu

m
be

r
of

de
vi

ce
s

en
tit

le
-

m
en

ts
(B

us
in

es
s

So
ft

w
ar

e
A

lli
an

ce
,2

01
7)

B
re

ac
he

s
co

nc
ur

re
nt

us
er

en
tit

le
m

en
t

(B
us

in
es

s
So

ft
w

ar
e

A
lli

an
ce

,2
01

7)

C
re

de
nt

ia
ls

ha
ri

ng
(B

us
in

es
s

So
ft

w
ar

e
A

lli
an

ce
,2

01
4a

)

U
se

of
no

n-
co

m
m

er
ci

al
lic

en
se

(B
us

in
es

s
So

ft
w

ar
e

A
lli

an
ce

,2
01

7)

Chapter 2. Literature Review 63

In Figure 2.8 on the following page, each of the primary platforms (Desktop,

Gaming, Mobile and SaaS) enters the SPVL at a different point. Desktop platforms,

which typically run Windows or Apple OSX, and mostly utilise COTS software, are

immediate targets for piracy. These platforms enter at the Release state, because the

COTS physical or digital media and keys are easily copied.

Console Gaming and Mobile platforms join the Desktop platform in the second

SPVL state of exposure, “Installation”. In addition to the Desktop platform software

being a target on Release, Desktop platform software is also exposed to software

cracking after Installation, whilst Console games, Consoles themselves, and the Mobile

platform are targets for software cracking, modding, and jailbreaking.

Similarly, the “Illegal Distribution” state exposes all previous platforms to “Distribution

of illegal software”, and includes Mobile platforms – especially Android, due to its

openness and ease of sharing Apps.

Finally, all previous platforms are joined by SaaS and Gaming Portals in the “Use”

state of exposure, where EULAs for all and any platforms may be breached and

credential sharing occurs.

Hence, the model shows that the Desktop Platform has the highest exposure to

piracy and is the hardest platform for which to prevent piracy. On the other hand, SaaS

services and Gaming Portals have the least exposure to piracy, as credentials form the

basis of entitlement. However, many SaaS services are simply Digital Distribution

Portals for Desktop platforms, and distribute installable software – in which case the

SPVL state is effectively at the “Release” exposure state. It can be concluded that the

vendors who control the authentication, authorisation and the client endpoint, have

better control over their software distribution and less exposure to piracy.

Chapter 2. Literature Review 64

So
ft

w
ar

e
Pi

ra
cy

 V
u

ln
er

ab
ili

ty
 L

if
ec

yc
le

R
el

e
as

e

C
o

p
yi

n
g

M

e
d

ia
 &

 K
e

ys

D
u

p
lic

at
in

g
so

ft
w

a
re

p

ac
ka

g
e

D
e

fe
at

 li
ce

n
se

va

li
d

at
io

n

m
ec

h
an

is
m

s

D
ir

e
ct

 s
e

lli
n

g
so

ft
w

a
re

p

ro
d

u
ct

In
st

al
la

ti
o

n
Il

le
ga

l D
is

tr
ib

u
ti

o
n

D
is

tr
ib

u
ti

o
n

o

f
il

le
ga

l
so

ft
w

a
re

R
ev

er
se

E

n
gi

n
e

e
ri

n
g

So
ft

w
a

re

C
ra

ck
in

g

D
e

fe
at

 m
e

d
ia

p
ro

te
ct

io
n

m

ec
h

an
is

m
s

C
o

p
y

in
g

a
n

d

C
o

u
n

te
rf

e
it

in
g

H
a

rd
 D

is
k

Lo
ad

in
g

D
e

m
o

ns
tr

at
es

 t
he

 in
cr

e
as

in
g

vu
ln

e
ra

b
ili

ty
 t

h
at

 o
cc

u
rs

 f
o

r
 a

 p
la

tf
o

rm
, b

as
ed

 o
n

 t
h

e
 s

o
ft

w
ar

e
p

ir
ac

y
vu

ln
er

ab
ili

ty
 li

fe
cy

cl
e

.

U
se

D
e

fe
at

 s
o

ft
w

ar
e

p
ro

te
ct

io
n

m

ec
h

an
is

m
s

D
e

fe
at

 h
a

rd
w

ar
e

p

ro
te

ct
io

n

m
ec

h
an

is
m

s

D
es

kt
op

 P
la

tf
or

m
s

(C
oT

S)
i.e

. M
ic

ro
so

ft
 W

in
d

o
w

s,
 A

p
p

le
 M

ac
M

ob
ile

 P
la

tf
o

rm
 (

A
p

ps
)

i.e
. A

p
pl

e
iO

S,
 A

n
dr

o
id

Platform

E
n

d
 u

se
r

b
re

ac
h

e
s

E
U

LA

G
a

m
in

g
P

la
tf

o
rm

s
i.e

. S
o

ny
 P

la
yS

ta
ti

o
n

, X
b

o
x

36
0

&
M

ob
ile

 P
la

tf
o

rm
 (

iP
h

o
n

e
)

Threats

Se
lls

 o
r

re
n

ts

so
ft

w
a

re

U
se

 o
f

n
o

n
-

co
m

m
e

rc
ia

l
lic

en
se

B
re

ac
h

es

n
u

m
b

er
 o

f

d
e

vi
ce

s
e

n
ti

tl
em

e
n

t

C
re

d
e

n
ti

al

sh
a

ri
n

g
(A

u
th

e
n

ti
ca

ti
o

n
)

B
re

ac
h

es

co
n

cu
rr

en
t

u
se

r
e

n
ti

tl
m

e
n

t

P
u

rc
h

as
e

so
ft

w
a

re

Su
b

ve
rt

so

ft
w

a
re

au

th
o

ri
sa

ti
o

n

In
te

rn
e

t-
b

as
ed

W

ar
e

z
Si

te
s

In
te

rn
e

t
co

u
n

te
rf

e
it

so

ft
w

a
re

 s
it

es

P
e

er
-t

o
-p

e
er

n

e
tw

o
rk

s
Sh

a
ri

n
g

 d
ig

it
a

l
m

ed
ia

, k
e

ys

Ill
e

ga
l

u
p

gr
ad

e

M
O

ST
 V

U
LN

ER
A

B
LE

 T
O

SO

FT
W

A
R

E
P

IR
A

C
Y

TH

R
EA

TS

LE
A

ST
 V

U
LN

ER
A

B
LE

 T
O

SO

FT
W

A
R

E
P

IR
A

C
Y

TH

R
EA

TS

So
ft

w
ar

e-
a

s-
a-

Se
rv

ic
e

i.e
. A

d
o

b
e

C
re

a
ti

ve
 C

lo
u

d
&

G
am

in
g

Po
rt

al
s

i.e
. P

la
yS

ta
ti

o
n

 N
et

w
or

k,
X

b
o

x
Li

ve

State

M
ED

IU
M

 R
IS

K
 T

O

SO
FT

W
A

R
E

P
IR

A
C

Y
V

ER
Y

H
IG

H
 R

IS
K

 O
F

SO
FT

W
A

R
E

P
IR

A
C

Y
H

IG
H

 R
IS

K
 O

F
SO

FT
W

A
R

E
P

IR
A

C
Y

H
IG

H
 R

IS
K

 O
F

SO
FT

W
A

R
E

P
IR

A
C

Y

Fi
gu

re
2.

8:
So

ft
w

ar
e

Pi
ra

cy
V

ul
ne

ra
bi

lit
y

L
if

ec
yc

le

Chapter 2. Literature Review 65

2.4.6 Platform Risk

Quantifying the number of SoV per platform shows the level of comparative risk that

each platform has to the piracy process (Table 2.5). Although the objective of this

study is not to quantify the actual risk, where possible the Global Unmonetised Demand

for software is provided (shown by the Impact column) to give an indication of the

value lost through piracy across the different platforms. However, aside from the

BSA report for piracy, quantifying loss in respect to desktop operating systems and

productivity software, there seems to be little research quantifying piracy losses across

other platforms. However, one report, from Arxan Technologies (2015), finds that the

Games Global Unmonetised Demand (loss) is estimated at US$74 billion across all

game platforms (Desktop, console, closed mobile and open mobile). Adding this cost

estimate for games to the BSA cost estimate for Operating System (OS) and productivity

software, the impact from piracy goes from US$58 billion to US$132 billion, a 228%

increase9. This demonstrates that the severity of the total piracy issue is considerably

larger than the BSA analysis suggests. The quantities presented in Table 2.5 have been

derived from the position of the SoV shown in Figure 2.8 on the previous page. This

provides an indication of the number of SoV per platform, and the contribution to the

Global Unmonetised Demand cost.

2.4.7 Related Issues

The responsibility for the detection of breaches of copyright and enforcement of software

copyright and license terms lies with the software vendor. Although the copy protection

rights may be enacted into law, as per the signatories to the TRIPS Agreement, any legal

process is undertaken by the vendor, who may use breach of statute or a commercial

breach of terms as the trigger mechanism for legal action. Alternatively, the BSA

9 This figure excludes: (i) piracy of non-game software on mobile devices; (ii) SaaS related piracy.

Chapter 2. Literature Review 66

Table 2.5: Threats by State of Vulnerability

Platform Release Installation Illegal
Distribution

Use Total
SoV Impact

Desktop OS 4 5 4 5 18 US$58B
(2013)

Closed
Platforms
(Consoles
& iPhone)

5 4 5 14 Games
$74B
(2015)Open

Platforms
(Android)

4 5 9

SaaS 5 5 unknown

provides compliance and enforcement services in over 60 countries, investigating

15,000 reported cases of piracy in 2012 alone. The BSA services include enforcement,

government engagement, public awareness campaigns, techniques to detect/disrupt

piracy, and compliance tools and services (Business Software Alliance, 2015). The FBI

supports this position of enforcement, stating that preventing intellectual property theft

is a priority (Federal Bureau of Investigation, 2015). The FBI has initiatives such as

the FBI Anti-Piracy Warning Seal, which is intended to remind users about the serious

consequences of pirating copyrighted works.

However, when considering piracy from a geographic perspective, enforcement

is clearly a challenge. Piracy rates vary based on geographic national boundaries as

a result of economic differentials between the software cost and affordability in the

country (Asongu, 2014; Moores & Dhillon, 2000). The BSA Compliance Gap report

(Business Software Alliance, 2014a) supports this analysis, revealing piracy rates of

80%-90% for third world countries, compared to 20%-40% in first world countries.

Furthermore, countries such as China, with 77% piracy rate, have social and cultural

values that espouse piracy as the smart and pragmatic choice, from an individual’s

perspective (Rapoza, 2012).

Chapter 2. Literature Review 67

2.4.8 Relationship between Malware and Pirated Software

Pirated software has long been a vector for the distribution of malware, which is often

embedded in the downloaded or distributed software (Gantz et al., 2015). Kammerstetter

et al. (2012) finds, after analysing 43,900 download links and more than 23,100 cracks

and keygens, that over 50% of pirated (desktop) software is infected by malware.

From a smartphone perspective, online application stores are also a means of

distributing malware infected software10. Infected Apps, mimicking genuine Apps,

can easily be uploaded, and are downloaded by unsuspecting end users (“Android

marketplace hit by malware”, 2011; F-secure, 2014).

Gantz et al. (2015) concludes that reducing piracy will have a strong correlation

with a reduction in malware distribution: “For enterprises, governments, and consumers,

the obvious implication is that one way to lower cybersecurity risks is to reduce the use

of unlicensed software”.

2.4.9 Summary of Software Piracy Review

This section first shows that there is a transitive relationship between the type of software

piracy, the piracy role, and the prevention methods the publishers use to reduce piracy

of their software. A software piracy model (see Figure 2.7 on page 59) is established

through these findings, and reveals that the common factor in the software piracy process

is the End User role, despite the involvement of the other roles in the process. These

finding apply regardless of whether the End User actor is aware of the piracy or not. For

example, an End User may be using an unlicensed application in the work environment,

or may have received a copy of software without knowing it was pirated software.

Building on this, the section then explores the SPVL (see Figure 2.8 on page 64), and

demonstrates how vulnerable software is to piracy throughout its lifecycle. It outlines
10 Excluding closed ecosystems such as the Apple App store, where developers must undertake an App

review process to ensure their App complies with Apple policies

Chapter 2. Literature Review 68

software vulnerability in relation to platforms, and how each platform enters the SPVL

based on their software delivery model. The SPVL outlines the SoV for software from

"Release" state, to the "Use" state, and demonstrates that the "Use" state is the least

vulnerable to piracy threats. As an example, migrating to "Use" state business models is

a driver seen in the cloud computing Software-as-a-Service industry, where publishers

have developed a business model for consumers to purchase software legitimately based

on use.

The literature reveals that existing methods to protect software copyright are ineffect-

ive, and that the combative state between publishers and piracy actors to protect software

will likely be on-going. There is little research on estimated losses due to piracy across

platforms other than desktop OS. However, the estimated impact, from current literature,

places this cumulatively at US$132 billion per year, with cross-platform losses higher

than desktop OS. Hence, there is a strong motivation to solve this problem.

The key learning is that to protect software copyright across multiple platforms, the

consumer (end user) is the single common factor. If there is to be a successful method

to prevent software piracy, it will need to be directed at providing some form of SLV

method for the consumer at the time of use.

The following section is the second part of this Chapter and explores cryptocurrency

and blockchain technology to identify the feasibility of applying the blockchain as a

method that may help overcome the challenges around protecting software copyright.

Cryptocurrency and blockchain technologies present an interesting opportunity, and

a possible solution, to the software piracy challenges identified in this Section. The

following Section introduces cryptocurrency and blockchain ecosystems, and explores

the uses for cryptocurrency and blockchain technologies beyond the monetary transac-

tional precepts. It introduces the cryptocurrency model, which categorises the different

implementations of the cryptocurrency blockchain for use by applications.

Chapter 2. Literature Review 69

2.5 Blockchain Technology

2.5.1 Introduction

In the previous section, the software piracy process was reviewed, and the need for a user-

based SLV method to prevent piracy and protect software copyright was established.

This section reviews the literature encompassing cryptocurrency and blockchain

technology, to identify the feasibility of using blockchain technology, both to create a

method to address the software piracy prevention and provenance issues, to provide

controls through which software creators might protect their copyright. It explores

the origin of cryptocurrency, and cryptocurrency’s uses for applications outside the

monetary transaction domain.

2.5.2 Cryptocurrency Primer

Developed by Nakamoto (2008) and first introduced with the creation of Bitcoin,

cryptocurrencies are a new form of virtual currency. A cryptocurrency is a distributed

peer-to-peer electronic cash system and is the first technology to successfully overcome

the requirement for a centralised party to validate transactions. The cryptocurrency and

blockchain architecture provides several blended features, which include: (i) crypto-

graphic validation for all transactions; (ii) decentralised money; (iii) the minting of

bitcoins; and (iv) transaction processing functions, all stored on public ledgers within

a quasi-anonymous framework (Brikman, 2014). Cryptocurrencies use public-key

cryptography to validate transactions between all participants, and digital signatures to

ensure transactional integrity and non-repudiation (Peteanu, 2014). The cryptographic

mechanisms used by cryptocurrencies provide for strong confidentiality, data integrity,

and non-repudiation services that are in use by business, government and military organ-

isations globally. In a cryptocurrency ecosystem, the public key can be considered as

Chapter 2. Literature Review 70

the participant’s account number whilst the private key represents the participant’s own-

ership credentials. All participants have digital wallets, which are used to store private

keys, as well as digital signatures that represent cryptocurrency entitlements (bitcoins)

that the participants own. Wallets can be stored privately, or online on websites or in

exchanges, depending on the requirements of the participant. Needing to be resilient to

threats and attacks, as well as being a stable and liquid currency, cryptocurrencies have

yet to prove their robustness both technologically (Bradbury, 2013; Courtois, 2014) and

economically (Hanley, 2013; Plassaras, 2013).

However, as developers seek to use cryptocurrencies in more practical applications,

it is the cryptocurrency architecture, the blockchain, that is the point of development

of new cryptocurrency based applications (Duivestein & Savalle, 2014; Prisco, 2015b;

Bass, Bault, Baum, Channell & Englander, 2014).

2.5.3 Cryptocurrency Economics

The objective of a cryptocurrency is to overcome the necessity of a centralised “trusted

authority” (Nakamoto, 2008), and thus remove or significantly reduce transaction

fees associated with transactions, such as those incurred with commercial banking

transactions. As a peer-to-peer distributed technology, cryptocurrencies historically

rely on a network of low-cost computers, running software that performs primary

functions within the cryptocurrency ecosystem. The term ecosystem, used in this

context is not the usual portmanteau of “ecological system”, but instead evokes a

new portmanteau: “economic system” (Herbert & Litchfield, 2015). That is, the

cryptocurrency creates an economic system that incentivises the participants to invest in

resources (e.g. purchase computers for running cryptocurrency software), and receive

a return on their investment (transaction fees and bitcoins). The computers running

this software are “Miners”, which create bitcoins (Brikman, 2014), validate bitcoin

Chapter 2. Literature Review 71

transactions, and maintain the integrity of the blockchain public ledger. Miners are

rewarded for their investment in running the bitcoin software by creating the bitcoins

themselves. Miners may also (but not always) receive a transaction fee for validating

bitcoin transactions. For example, participants in the Ripple (Buterin, 2013) and

GridCoin (Halford, 2014) cryptocurrencies run transaction validation software, on a

voluntary, non-profit basis, in return for being allowed to provide compute, and storage

resources to run the mining software.

Figure 2.9 on the following page provides an overview of the cryptocurrency eco-

nomic system, showing how the actors interact with the blockchain. Using a generic

cryptocurrency as an example, the figure shows that the miner runs software that under-

takes three primary functions of minting coins, validating transactions, and managing

the blockchain database, which is stored locally on the miner’s computer. Each actor

has its own wallet, located on its computer, which is used to store the digital signatures

representing bitcoins that each actor owns. Each actor also has software that interacts

with the Bitcoin ecosystem.

When a customer purchases goods from a merchant using bitcoin, the software on

the customer’s computer communicates the transaction details to a pool of the many

cryptocurrency mining nodes, which then jointly validate the transaction within a set

period of time11.

As developers seek to use cryptocurrencies in more practical applications, it is the

blockchain that is the point of interest of new distributed applications (Bass et al., 2014;

Duivestein & Savalle, 2014; Prisco, 2015a). The blockchain itself will be discussed in

further depth in section 2.5.6 on page 74.

11 This is 10 minutes for the Bitcoin protocol. Other cryptocurrencies vary this transaction validation time
parameter to improve certainty.

Chapter 2. Literature Review 72

Figure 2.9: Cryptocurrency Economic System

2.5.4 Centricity

In this section, cryptocurrency centricity is discussed as the fundamental characteristic

(Herbert & Stabauer, 2015) that allows the cryptocurrency to function over a public

domain such as the Internet.

Centricity is the characteristic that makes the cryptocurrency ecosystem of an

attractive proposition to stakeholders. Baran (1964) identifies three types of network

centricity: centralised, decentralised, and distributed, as shown in Figure 2.10. All of

these are used in currency and cryptocurrency systems (Herbert & Stabauer, 2015).

The global fiat currency banking system is centralised as shown in Figure 2.10 (a), to

validate all currency transactions. Most cryptocurrencies are distributed, as shown in

Figure 2.10 (b), where there is no central point of failure and no master node required

for the transaction validation process. A few cryptocurrencies, such as Ripple (Buterin,

2013), are decentralised, with a master node for transaction validation as shown in

Figure 2.10 (c).

Combining distributed centricity with the Internet as a medium of transport results

in an artefact that is accessible from anywhere, creating a new reference characteristic

of ubiquity.

Chapter 2. Literature Review 73

(a) Centralised (b) Distributed (c) Decentralised

Figure 2.10: Centricity (Baran, 1964)

2.5.5 Transactions

Bitcoin transactions are defined as a message between participants and consists of three

segments (Brikman, 2014): (i) Signature – the originator’s digital signature, signed

with the originator’s private key, so that other Bitcoin nodes can verify that the message

came from the originating participant; (ii) Inputs – a list of the signatures of transactions

already in the ledger where the originator was the recipient of bitcoins, and the input

bitcoins are the funds the originator used in the transaction; (iii) Outputs – a list of how

the funds in the inputs are to be distributed. All the fund inputs must be redistributed as

outputs, so the originator will pay the recipient the required amount, and the remainder

is returned as change.

A transaction must have exactly the same number of bitcoins in input and output

lists. Hence, if user U1 has 10 bitcoins and wants to send 2 bitcoins to user U2, then

the transaction will result in U1 receiving 8 bitcoins and U2 receiving 2 bitcoins, as

shown in Figure 2.11 on the following page. That is, 8 bitcoins are reassigned to U1.

Note that if the transaction occurs with an unequal result, then the transaction fails to

Chapter 2. Literature Review 74

U1 U2

8

2

10

Figure 2.11: Transaction Input and Output
(Herbert & Litchfield, 2015)

complete with a valid or consistent state. This is shown by the following, where U1

represents User1, the sender of the 2 bitcoins, and U2 represents User2, the recipient of

the 2 bitcoins.

U1.input(U1, 10)

U1.output(U2, 2)

U1.output(U1, 8)

2.5.6 The Blockchain

In this section, the blockchain mechanisms are explored further. It explains how blocks

are generated, how the chain of blocks is created, and how the transactions stored within

the block are validated.

Blocks are created at regular intervals – for example every 2.5 minutes or every 10

minutes – and each block contains the following properties:

1. Transactions (T) sent between participants

2. Proof of Work (Pw) – a unique digest created when a new block is discovered,

and

Chapter 2. Literature Review 75

3. Reference (R) to the digest of the previous block.

Thus the block (B) is represented as

∃B ∶ B(T,Pw,R)

Wood (2016) defines a block as a collection of transactions that are chained together

with a cryptographic hash that operates as a reference mechanism12. A block functions

“as a journal, recording a series of transactions together with the previous block and

an identifier for the final state” (2015, p 2) although, due to size constraints, the

journal does not record the final state. The key to successful mining is reliant upon a

cryptographically secure proof.

Miner nodes are continuously computing hash values to solve a problem, from which

bitcoins are subsequently rewarded to the miner. Bentov, Gabizon and Mizrahi (2014)

define Pw as the means by which confidence is given to a bitcoin, as a consequence of it

being difficult to replicate in respect to the computation difficulty. The generated hash

values (the values of P) are then inserted into a block.

The purpose of this is to create what is called consensus, which is the process

for agreement that the block and the transactions held within are valid. Consensus

is reached when a majority of nodes on a network that have the capability of mining

bitcoins have voted to accept the validity of a block of transactions. Thus, when a

transaction occurs, the event is broadcast on the cryptocurrency network for verification

by multiple Miner nodes. This verification process is designed to prevent double

spending of the bitcoin. When each node has received the transaction, the node tests the

validity of the transaction. The more nodes that accept the transaction, the less likely it

is that the transaction represents a double spend.

A transaction may end with one of three states:
12 The cryptographic hash is unique for each block, and each block has a reference to the previous block

using the hash. Hence, the chain of blocks can be easily identified and verified.

Chapter 2. Literature Review 76

1. Confirmation of the successful completion of a transaction, which does not occur

until 6 consecutive blocks13 of transactions have been validated14, thereby fully

confirming the transaction within the block is valid.

2. Incomplete transaction, for example if the immediate responding nodes reject the

transaction. Otherwise the transaction has timed out after a period, typically 60

minutes for Bitcoin specifically.

3. Unverified transactions15 are placed in an unverified transaction bucket, and will

be inserted into the next block once it is created. Any node in the Bitcoin network

can put several unverified transactions into a block and send it out to the rest of

the network as the proposed next block in the chain.

The current new block then has a new value P 1
w inserted as its Proof of Work

(Figure 2.12 on the next page). When a block is verified, the value P 1
w is inserted

into the next block. It is this sequence of { P 1
w, P

2
w, . . . , P

n
w} that defines the unique

blockchain and its associated record in the ledger.

2.5.7 Summary of Blockchain Technology

This section has provided a brief overview of how cryptocurrency and blockchain

technologies function to create a distributed consensus ecosystem.

The following sections explore some alternative applications for cryptocurrencies

and the blockchain, finishing with an in-depth exploration of how the blockchain could

be used to prevent piracy.

13 The Bitcoin ecosystem requires 6 subsequent blocks to be completed before a transaction in a block is
considered valid. This gives the Miner nodes the opportunity to arrive at consensus for all transactions
within a block

14 The Bitcoin ecosystem requires 5 Miner nodes to validate transactions
15 Unverified transactions are transactions that are not entered into the blockchain yet, awaiting the next

block to be created

Chapter 2. Literature Review 77

Figure 2.12: Example of the Blockchain (Brikman, 2014)

2.6 Alternative Applications for Blockchain

The distributed nature of the blockchain, combined with the ability to verify transactions,

has led to the development of second generation blockchain protocols. These blockchain

protocols have the capability to perform new functions, supporting innovative on-

blockchain services, such as storing data and new scripting capabilities (Bradbury, 2014;

Buterin, 2017). This section introduces the different methods in which cryptocurrencies

and the blockchain can be implemented to provide a non-financial output, application

service, or function.

Herbert and Stabauer (2015) proposes a model, categorising cryptocurrencies and

the different implementations of the cryptocurrency blockchain for use by applications.

This model, shown in Figure 2.13 on page 79, differentiates several types of blockchain

applications that move beyond solely providing cryptocurrency transaction functions.

Chapter 2. Literature Review 78

The types of cryptocurrency and blockchain applications defined in the model include

the following:

• Transaction-only Cryptocurrency (TOC)

• Native Blockchain Application (NBA)

• External Blockchain Application (EBA)

• Transaction and Application Platform (TAP)

• Regulated Virtual Currency (RVC)

These types of cryptocurrency and blockchain applications are discussed in the following

sections. The “Types of Currency Model” also provides abbreviations for the “type”

of cryptocurrency, based on the term “Virtual Currency Scheme” (VCS) defined by

the European Central Bank (European Central Bank, 2015). This research has used

the terminology in the above list for clarity, rather than the VCS1 through VCS4 types

described in the model.

2.6.1 Transaction-only Cryptocurrency

Applications that utilise an existing transaction-only cryptocurrency for its own pur-

poses are TOC applications, also known as Appcoins. Developers can create custom

applications that store custom data in the blockchain data field, to create an immutable

record. Appcoins utilise the host blockchain ecosystem for the benefits of having an

established ecosystem, and avoiding the overheads associated with running a cryptocur-

rency.

ColoredCoins16 are Appcoins that utilises the Bitcoin blockchain (Assia, Buterin,

Hakim & Rosenfeld, 2014), and supports a limited scripting language, which can be

used to store metadata on the blockchain. By attaching metadata to Bitcoin transactions,

ColoredCoins leverages the Bitcoin infrastructure for issuing and trading immutable
16 http://www.coloredcoins.org

Chapter 2. Literature Review 79

Le
ga
l	S
ta
tu
s

Re
gu
la
te
d

Re
gu
la
te
d

Ce
nt
ric

ity

Fo
rm

at
Ph

ys
ic
al
	o
r	

Di
gi
ta
l

Ph
ys
ic
al

Co
nt
ro
l	a
nd

	Is
su
an

ce
Go

ve
rn
m
en

t
Go

ve
rn
m
en

t

Va
lid

at
in
g	
Sy
st
em

Ba
nk

So
ur
ce

Pu
rp
os
e

Tr
an
sa
ct
io
n	
&
	

Ap
pl
ic
at
io
n	

Pl
at
fo
rm

?

Fu
nc
tio

n	
In
te
gr
at
io
n

Em
be

dd
ed

Ex
te
rn
al

Em
be

dd
ed

?

Ty
pe

FI
AT

LO
CA

L
EC

B	
1

EC
B	
2

EC
B	
3

VC
S	
1

VC
S	
2

VC
S	
3

VC
S	
4

RV
C

De
fin

iti
on

Fi
at

Lo
ca
l	C
ur
re
nc
y

Cl
os
ed

U
ni
-d
ire

ct
io
na

l
Bi
-d
ire

ct
io
na

l
Tr
an

sa
ct
io
n	

on
ly
	C
ry
pt
o-

cu
rr
en

cy

N
at
iv
e	

Bl
oc
kc
ha

in
	

Ap
pl
ic
at
io
n

Ex
te
rn
al
	

Bl
oc
kc
ha

in
	

Ap
pl
ic
at
io
n

Ap
pl
ic
at
io
n	

Pl
at
fo
rm

Re
gu
la
te
d	

Vi
rt
ua

l	
Cu

rr
en

cy

Ex
am

pl
es

US
D/
EU

R
E-
M
on

ey
Co

m
m
un

ity
	

Co
in
s	

De
tr
oi
t	S

cr
ip

Fr
ei
ge
ld

W
ar
cr
af
t	G

ol
d

Fa
ce
bo

ok
	

cr
ed

its
	

Fr
eq

ue
nt
	F
ly
er
	

M
ile
s

Li
nd

en
	D
ol
la
rs

Bi
tc
oi
n,
	

Pe
er
co
in
,	

Ri
pp

le
co
in
,	

So
la
rc
oi
n,
	

Ze
ro
ca
sh
,	

Pr
im

ec
oi
n,
	

Co
lo
re
d	
Co

in
s

N
XT
,	N

am
ec
oi
n,
	

M
ai
ds
af
e

O
m
ni
,	

Si
de

ch
ai
ns
,	

Co
un

te
rp
ar
ty
,	

Gr
id
co
in

"T
ur
in
g	

Co
m
pl
et
e	

Pl
at
fo
rm

"	
"B
itc
oi
n	
2.
0"
	

Et
he

re
um

,	
Ze
ro
ca
sh

RS
co
in
	

(c
on

ce
pt
)	

Fu
tu
re

N
ot
	A
pp

lic
ab
le

M
os
tly

	O
pe

n	
So
ur
ce

N
et
w
or
k/
Pr
iv
at
e

Tr
an
sa
ct
io
n	
&
	A
pp

lic
at
io
n

Un
re
gu
la
te
d

Tr
an
sa
ct
io
n	
O
nl
y

Pr
iv
at
e

Cl
os
ed

	S
ou

rc
e

Ce
nt
ra
lis
ed

De
ce
nt
ra
lis
ed

/D
ist
rib

ut
ed

Di
gi
ta
l

Al
go
rit
hm

	(P
oW

,	P
oS
	e
tc
)

Pr
iv
at
e

Fi
gu

re
2.

13
:T

yp
es

of
C

ur
re

nc
y

M
od

el

Chapter 2. Literature Review 80

digital assets that can represent real world value. The metadata can be used as tokens,

to represent real world assets or represent transactions linked to real world assets.

ColoredCoins allows users to “colour” a token to represent a specific asset such as a car,

home, boat, commodity, shares, or bonds (Rosenfeld, 2012).

Fortin (2011) demonstrates how a TOC can be leveraged to establish provenance of

a software license by associating the real asset (the software license) with a digital asset

(a cryptocurrency coin) and an authorising bitcoin address, called the Master Bitcoin

Model (MBM). This combination establishes the ownership of the software through the

immutability of the blockchain. Whoever has the bitcoin from that specific address in

their wallet has license rights, and the bitcoin can change ownership simply by sending

it to another wallet, as in any standard cryptocurrency transaction.

2.6.2 Native Blockchain Application

NBAs provide additional application functionality built into the cryptocurrency or

blockchain. Although most cryptocurrencies rely on financial oriented transactions, this

type does not require an application to have a monetary purpose. The NBA functionality

provides the capability for design and engineering of customised blockchain applications

that meet specific use-case requirements. Custom applications are clearly being used

within the blockchain industry and community, and blockchains are being advocated

globally through dedicated conferences17 and academic journals18. NBA examples

include:

• MaidSafe19 is a distributed application that provides a fully decentralised platform

on which application developers can build distributed applications where data

17 BraveNewCoin Events Calendar https://bravenewcoin.com/industry-resources/events-calendar/bitcoin-
and-blockchain-events/

18 Elsevier https://www.journals.elsevier.com/future-generation-computer-systems/call-for-papers/special-
issue-on-cryptocurrency-and-blockchain-technology

19 http://www.maidsafe.net

Chapter 2. Literature Review 81

storage is automatically distributed. The MaidSafe ecosystem runs on the Secure

Access For Everyone (SAFE) network, which is an open source, decentralised

data storage and communication platform. Nodes connected to the SAFE network

collectively store data for all MaidSafe users, and provides public and private

cloud data storage and processing (Irvine, 2014).

• NameCoin20 is an experimental open-source technology that improves decentral-

isation, security, censorship resistance, privacy, and speed of certain components

of the Internet infrastructure such as DNS and identities.

• Acronis (2016) is undertaking research and development on blockchain-based

technology to ensure data authenticity, privacy and control.

2.6.3 External Blockchain Application

Similarly to NBAs, EBAs also provide additional application functionality to the

cryptocurrency or blockchain ecosystem, but do so through an external interface to the

blockchain. These applications process the blockchain natively, and are programmed

to interact accordingly with the blockchain. EBAs are alternative currencies with their

own bitcoins, holding their own value, but sitting on the host cryptocurrency ecosystem,

(typically Bitcoin).

However, EBAs are centralised in nature (they run as a service and require their

own server to function), and are under the control of a third party developer. Examples

of EBAs include the following:

• Counterparty21, which uses the Bitcoin core network, enables anyone to write

specific digital agreements and execute them on the Bitcoin blockchain (Winters,

2014).
20 http://namecoin.org
21 https://counterparty.io/

Chapter 2. Literature Review 82

• Gridcoin22 is a blockchain protocol developed for the Berkley Open Infrastructure

for Network Computing (BOINC) hosted network. BOINC provides distributed

computing processes such as SETI@Home (Search for Extraterrestrial Intelli-

gence), and Poem@Home protein folding modelling.

• Omni23, which is a platform for creating and trading custom digital assets and

currencies, utilises the Bitcoin core network.

2.6.4 Transaction and Application Platform

A TAP is defined as a cryptocurrency blockchain that provides an embedded Turing

complete contract language, and which also enables Distributed Applications (DApps)

to run across the blockchain ecosystem (Herbert & Stabauer, 2015). This functionality

is distinct, in that the Turing completeness will allow conditions and loops to be

implemented: something that other cryptocurrencies do not support by design. Each

transaction may have a Smart Contract associated with it to provide transaction level

rules, based on any internal or external factors. For example, an Internet of Things

vending machine can negotiate a contract with suppliers for replacement orders, with

parameters including pricing, delivery schedules, loading the machine, acceptance

and payment. The Ethereum cryptocurrency is the sole example of a Transaction and

Application Platform.

Ethereum aims to overcome many of the threats and issues of first generation

cryptocurrencies, including value-blindness, lack of state, and blockchain blindness

(Buterin, 2017). The objective is to allow creation of distributed applications that auto-

mate intelligent processes between participants, including devices, which will evolve

additional markets such as Machine to Machine (M2M), and Machine to Consumer

(M2C). Duivestein and Savalle (2014) suggests that blending The Internet of Things

22 http://gridcoin.us/
23 http://www.omnilayer.org

Chapter 2. Literature Review 83

and DApps enables all the types of objects to be connected to the Internet to interact

with the blockchain. Examples are given of vending machines being able to re-order

stock directly without the requirement of any fulfilment intermediaries, and the advent

of Business to Machine (B2M), Machine to Business (M2B), Consumer to Machine

(C2M), M2C, and M2M markets (Duivestein & Savalle, 2014). The following list

outlines some of the possibilities for the distributed blockchain applications (Ledra

Capital, 2014; Buterin, 2017).

• Financial Instruments and Records, such as currency, equities, mortgage records,

and crowdfunding

• Public Records, such as land titles, vehicles registries, criminal records, birth

certificates, and voting

• Private Records such as contracts, signatures, wills, trusts, and escrows

• Other Semi-Public Records, such as degrees, grades, medical records, accounting

records, and genome data

• Physical Asset Keys such as home, time share, hotel, car, and rental cars

• Intangibles such as coupons, vouchers, reservations, movie tickets, copyrights,

trademarks, and DRM.

2.6.5 Regulated Virtual Currency

There are distinct advantages of cryptocurrency technology in a government sense,

where transactions are taxed automatically at the time of transaction, regardless of the

global location of the participants, and taxing of micro-transactions are easily supported.

The government could insert various algorithms in a government controlled crypto-

currency to enable and automate many types of financial, health and social support

processes. Danezis and Meiklejohn (2015) proposes RSCoin, which provides a cent-

ralised monetary policy combined with a distributed validating system for prevention

Chapter 2. Literature Review 84

of double-spending. These characteristics make it suitable for government use, where

ownership of the cryptocurrency is essential, as indicated by Herbert and Stabauer

(2015).

Furthermore, World Economic Forum (2015) predicts that tax will be collected for

the first time by a government via the blockchain by 2023, whilst by 2027, 10% of global

GDP will be stored on blockchain technology. The World Economic Forum states that

“Economic and monetary management will be overhauled by new systems anchored in

digital currencies and the blockchain.” Similarly, Moy (2014), former Director of the

U.S. Mint, expresses how cryptocurrencies are evolutionary and government interest is

expected to grow.

2.6.6 Summary of Alternative Applications for Blockchain

This section has discussed several types of uses for blockchain technology, based on

the types of currency model, which is defined through identifying how the application

makes use of the cryptocurrency and blockchain. For the most part, applications

that use the cryptocurrency for monetary transactions use an existing cryptocurrency.

Applications that store metadata on a blockchain also use an existing cryptocurrency.

However, applications that have special requirements in respect to functionality or

resources are created by developers as a NBA, where the entire blockchain is tailored to

the specialised requirements of the application.

The following section explores the literature surrounding related work for SLV,

piracy prevention and provenance.

Chapter 2. Literature Review 85

2.7 Related Work

The previous sections in this chapter have discussed the scope of the software piracy

issue, reviewed the software piracy process, and considered whether blockchain techno-

logy is a feasible method to provide user-based SLV.

This section explores literature for related works that propose methods and frame-

works to prevent software piracy, and compares their functions and capabilities in order

to help determine requirements for a SLV method. The outputs of this review will feed

into both the Methods and the Requirements Engineering chapters.

The identified methods and frameworks for software provenance and software piracy

prevention are outlined as follows. These present a range of approaches for preventing

piracy in different use-cases.

Pirax: Khan et al. (2014) describes a framework for mobile App piracy using a cloud-

based license server. When an App is first run on a mobile device, the App

needs to register with the cloud license server to receive a unique license. This is

achieved by creating a “node locked licensing scheme”. The scheme utilises the

phone’s unique International Mobile Equipment Identity (IMEA) number, and the

cloud server Universally Unique Identifier, to generate a unique registration serial

number and an activation serial number for the App license. Each time the App is

run, it verifies its encrypted activation serial number with the cloud license server,

and if validation is successful, the App is allowed to run. It allows Apps to be

authorised, or revoked, at the cloud license server. Khan et al. (2014) states that

the Pirax framework mitigates several types of hacking, including preventing the

App executing on a cloned image of the phone, and defeating a hacker extracting

the App and executing it on another compatible platform. The Pirax high level

architecture is shown in Figure 2.14.

Chapter 2. Literature Review 86

DRM Framework: Veerubhotla and Saxena (2011) describes a theoretical common

framework to protect digital objects, software libraries, and controlled software

execution, with support for both online and offline models. The framework out-

lines 3 actors: (i) the publisher that produces a digital artefact to be protected;

(ii) the consumer with an encrypted artefact downloaded from the publisher;

and (iii) a DRM server that encrypts the publisher’s artefact (and returns it to

the publisher), and validates user license requests as shown in Figure 2.15 on

page 87. The publisher needs to create a library for the core functions of the

DRM functionality, and distributes it with the software. This becomes a boot-

strap for the encrypted software, as well as being available after the software is

decrypted. The confidentiality of artefacts and transport utilise a combination of

X.509 certificates, and asymmetric and symmetric cryptographic keys, to support

online and off-line capability. Veerubhotla and Saxena (2011) states several

benefits for prevention of piracy, including secure communications, tamper-proof

licenses, protection of cryptographic keys, and protection of software libraries and

applications. Several non-functional benefits are also stated. However, these are

primarily generalised assumptions reflecting architecture, and are not supported

in the paper.

Tagged Transaction Protocol: This is a software license provenance model, created

and defined by Palmer (2014), that enables anonymous transition of licenses

across typical supply chain actors, such as suppliers, resellers, and customers. The

provenance model defines a set of terms and relationships to record provenance

of items in reseller chains, where actors in the supply chain are granted control at

each stage of the supply chain that the item moves through. As each item moves

through the supply chain, it is tagged; hence the model is called Tagged Transac-

tion Protocol (TTP). The Tag Generation Centre (TGC) is responsible for creating

Chapter 2. Literature Review 87

Figure 2.14: Pirax HLA
(Khan et al., 2014)

Figure 2.15: DRM Framework Sequence Diagram
Veerubhotla and Saxena (2011)

Chapter 2. Literature Review 88

Figure 2.16: Provenance Graph for Tagged Transaction Protocol
Palmer (2014)

tags and securely transmitting them to each of the actors in the supply chain, as

shown in Figure 2.16. Palmer (2014) states several benefits of TTP including

prevention of spoofing, fabrication, cloning, identity revelation, linkability and

protection from network sniffing.

Bitcoin: Munter (2016) remarks that Bitcoin may well be the “next big thing in the

fight against piracy”, citing industry interest and possible progress in utilising the

decentralised nature of the blockchain to protect copyright. A review of literature

reveals that a method has been proposed by Fortin (2011) called the Master

Bitcoin Model (MBM), which demonstrates provenance using cryptocurrencies.

A proof-of-concept was subsequently created by Lebo (2014), who named it

“Dissent”, and uses the Namecoin cryptocurrency (Ford, 2014) to demonstrate

license provenance. This model uses the immutable nature of the cryptocurrency

blockchain and the cryptographic proofs to validate that a user owns a specific

Chapter 2. Literature Review 89

bitcoin that is linked to a license. It does not, however, provide any license

validation in itself; it simply provides proof of ownership of a physical or digital

asset.

Comparison and Discussion

Comparing the proposed methods above, most methods have functions such as: (i) gen-

erating a unique license for the client actor; (ii) utilising local device unique identifiers

to prevent the App executing on unauthorised devices; and (iii) using public/private key

encryption to protect the license, to validate the user, and to prevent the license from

being copied. All methods use the Internet for ubiquity.

However, each method has key differences that limit its effectiveness as a SLV

method. Pirax targets the mobile computing device platforms, has “node-locked licens-

ing”, and does not require any encryption of the App. The DRM Framework claims to

provide piracy prevention for cross-platform and multiple content formats, but requires

publishers to encrypt the application or content, and stores decryption keys on the

server. TPP focusses on supply chain license provenance, providing license distribution

and actor anonymity, but by nature is a one way method and does not protect from

piracy once the client actor receives the license. The proposed Bitcoin method is fully

distributed and provides anonymity, but requires a bootstrap application to access the

blockchain, and only validates an entitlement to a license – it does not store any client

actor or license metadata.

The first common element across all methods is the requirement for the user (or

device) to prove that they are the actual entity, and validate themselves through a unique

identifier, such as a private key or an embedded unique identifier. The second common

element, is a license key that is bound to the validated user to establish entitlement.

Together these form the entitlement for use of the software.

Chapter 2. Literature Review 90

2.8 Problem Identification and Motivation

It is established that software piracy is significant problem from an industry perspective,

with estimated US$132 billion losses per year. Also established is that the adversarial

conflict between publishers and piracy actors continues, and piracy actors continue to

develop exploits to break software piracy protections. Hence there is a strong motivation

to address the piracy issue. To overcome the challenges presented by piracy actors, it has

been determined that a ubiquitous SLV method is required, to validate user entitlements

to the software at the time of use.

The objective of reviewing the literature on blockchain technology is to determine

the feasibility of applying blockchain technology to create an SLV method. The findings

of this literature review suggests that using blockchain technology as an approach to

solve the piracy problem is both feasible and desirable. Blockchain technology, using

the Internet as the medium for communication, provides the ubiquity to achieve the

SLV objectives.

There already is a proof-of-concept in the MBM that shows that a cryptocurrency

can be used to establish license provenance: a close requirement match for an SLV

method. However, this presents some practical use-case limitations. MBM only conveys

ownership; it does not have the ability to embed software licensing metadata or data such

as license keys for specific entitlements, authorised end user information, and software

feature and license upgrades. These limitations are caused by the cryptocurrency

protocols and blockchain data structures. Therefore, to create an SLV method, defining

a custom blockchain specifically to meet the requirements for SLV is required, and

necessitates developing a NBA.

In summary, there is a strong motivation to determine if blockchain technology can

be used for SLV. However, due to the scope and effort of creating an NBA, the objective

of this research is limited to the design of the system and to establishing functional

Chapter 2. Literature Review 91

requirements, rather than creation of a proof-of-concept. The system design provides a

license entitlement through an NBA, overcoming the problems presented by the MBM,

whilst meeting the non-functional requirements.24

This summary leads to the research questions and hypotheses to be addressed in this

study.

2.8.1 Research Questions

RQ1: How can the Native Blockchain Application be applied, to meet the functional

requirements of distributed SLV?

RQ1.1: How can the Native Blockchain Application be utilised to protect

software copyright by validating user entitlements?

RQ1.2: How can the Native Blockchain Application validate user entitlements

across multiple platforms?

RQ1.3: How can the Native Blockchain Application be used to identify mali-

ciously modified software?

RQ2: Which cryptocurrency provides the most suitable base for the SLV method?

RQ2.1: What cryptocurrency characteristics are required to achieve data confidentiality

in a blockchain-based SLV method?

RQ2.2: What cryptocurrency characteristics are required to achieve actor pri-

vacy in a blockchain-based SLV method?

24 Blockchain applications have many non-functional requirements, such as scalability, robustness, data
integrity, and security. These are, however, beyond the of scope of this research, and are mentioned for
completeness.

Chapter 2. Literature Review 92

2.8.2 Hypotheses

Two hypotheses are proposed:

H1: To provide an SLV method, a Native Blockchain Application can be applied.

H2: In respect to SLV, the Native Blockchain Application enables a high level of data

confidentiality and user privacy.

2.9 Conclusion

This chapter explores the literature surrounding the issue of software piracy, and whether

blockchain technology can feasibly be utilised to overcome the challenges of protection

of software copyright.

Through the review of literature on software piracy, it is shown that the scope

of protecting software copyright from piracy is considerable. The attack surface for

piracy includes physical media, digital media, diverse hardware platforms, multiple

operating systems and even cloud services. Protection methods for software are routinely

circumvented by technically savvy crackers, whilst software end user license agreements

are consistently breached, both deliberately and accidentally. The outcome is that

software piracy remains rampant, with an estimated economic cost of US$132 billion

per year. The outcome of the research is that a method is required to validate user

entitlements to software, regardless of platform used or location of the user.

Blockchain technologies are reviewed and have been identified as a feasible tech-

nology to overcome the piracy issues. Applications can be written to utilise public

cryptocurrencies such as BitCoin and Ethereum, or can be designed from the ground up

as a new application with its own dedicated blockchain (NBAs). Protecting software

copyright utilising an NBA to overcome the software piracy challenges is feasible, as

existing proof-of-concepts and industry developments demonstrate new use-cases for

Chapter 2. Literature Review 93

blockchain technology. This research presents an interesting opportunity to explore the

functional requirements of SLV utilising blockchain technology.

In the next chapter, the identification of the appropriate Research Methodology is

discussed. This includes an overview of potential research methods and a discussion

of the scope of the cryptocurrency and blockchain domain in respect to research.

Functional and non-functional requirements are briefly explained, for the purpose of

supporting the research methodology selected to test the hypotheses.

Chapter 3

Method

3.1 Introduction

In the previous chapter the problems surrounding software piracy were discussed, and

the scope of the challenges showed that a user-based SLV method was required to

address the problem. Cryptocurrency and blockchain technologies were then examined

to establish the feasibility of using blockchain technology for SLV. Examples of NBA

use-cases by industry demonstrate that NBAs are used to provide ubiquitous, and secure,

access to data over the Internet, and may be applied to for SLV.

In this chapter, the appropriate Research Methodology to test the hypotheses and re-

search questions, is determined. This commences with brief investigation of blockchain

application use-cases across different technology domains, to identify research method-

ologies from a similarly aligned domain. RE and FD software engineering requirements

are considered in the context that the output of this study is to design a system. Formal

Methods and Experimental Design Research (EDR) are discussed. This then leads into

a discussion on DSR, and its suitability to the research outcomes of this study, and

supporting the research methodology, to test the hypotheses.

94

Chapter 3. Method 95

3.2 System Design Considerations

To test the hypotheses, design of the system will necessitate a software engineering

process. This will include RE to describe the blockchain license validation requirements,

and FD to describe the function specifics for SLV. To determine the appropriate research

methodology for this study, a review of the literature is conducted. The focus of the

review is to identify software engineering research methodologies used for systems and

architectures similar to NBAs.

The software engineering requirements for development of distributed ecosystems

are likely to differ from those of centralised software (Shehory & Sturm, 2014). This is

apparent as in principle, centralised software executes within a single operating system

environment and utilises the resources within that execution environment. On the

other hand, distributed systems are factored, necessitating further functional and non-

functional requirements. These include requirements such as: protocols for inter-node

communication, defining interaction mechanisms, architecture of the distributed system,

frameworks, and standards, as shown in Figure 3.4 on page 111. Cryptocurrencies

and NBAs are multiple actor ecosystems (Alqassem & Svetinovic, 2015) and, as such,

utilise several of these elements from Agent Oriented Systems Engineering.

For the purpose of determining the most appropriate research method for this re-

search, it should firstly be recognised that cryptocurrencies and blockchain technologies

are multiple actor ecosystems (Alqassem & Svetinovic, 2015), with research across

multiple domains intersecting with cryptocurrencies and blockchain technologies: re-

search other than software engineering. The nature of these intersecting domains will

influence research methodology selection. Hence this research will need to consider

what domain is sufficiently aligned with the research objectives. Domains that intersect

with cryptocurrencies and blockchain technologies include:

1. Artificial Intelligence: where the blockchain can be used to aggregate data, and

Chapter 3. Method 96

agents process the data and act accordingly (AI Blockchain, 2017; Noyen et al.,

2014).

2. Banking: where both banking industry and governments are considering the ap-

plication of blockchain for tax collection and eliminating fiat currency (Hochstein,

2014; European Central Bank, 2015; Keith et al., 2016; World Economic Forum,

2015).

3. Crime and fraud: criminals and malicious actors have been using cryptocurrencies

for anonymous payments and evasion of authorities (Bryans, 2014; EUROPOL,

2014; Kirkpatrick, 2017).

4. Cryptography: this is the core of cryptocurrencies and blockchains, especially

around proofs and maintaining integrity of the blockchain (Buterin, 2017; Percival,

2009; Eddy, 2016).

5. Data sciences: utilising data exploration and visualisation technologies on the

blockchain and providing analyses (Maesa, Marino & Ricci, 2016; Molina-Solana,

Birch & Guo, 2017).

6. Distributed computing: utilising the computing power of the cryptocurrency eco-

system for large computational projects (Halford, 2014; University of Sheffield,

2016).

7. Economics: similar to banking, but in an macro-economic and reserve banking

context (European Central Bank, 2015; Danezis & Meiklejohn, 2015).

8. Finance: where financial institutions leverage the smart contract capability of

cryptocurrencies for trading and digital representation of tangible assets (Keith et

al., 2016; Bashir, Strickland & Bohr, 2016; Underwood, 2016).

9. Identity: where user identity, access, and authorisation, is managed through the

blockchain (Shea, 2017; Underwood, 2016; Mainelli, 2018).

10. Law: governments are challenged to align virtual currencies and peer-to-peer

contract law, both within local statute and across multiple jurisdictions, and

Chapter 3. Method 97

need to adopt and/or regulate cryptocurrencies (Marian, 2014; Financial Crimes

Enforcement Network, 2014).

11. Mathematics: where mathematical and formal methods are used to logically

describe and validate cryptocurrency and blockchain functions (Sprankel, 2013).

12. Security: there are many aspects of security across the actors of cryptocurrency

and blockchain ecosystems (Courtois & Bahack, 2014; Porter, 2015; Dunn,

2013).

13. Social impact: similar to social media, cryptocurrencies and blockchain techno-

logy have the capability for significant social impact (Chakravorty & Rong, 2017;

Bashir et al., 2016; Bill and Melinda Gates Foundation, 2014).

14. Sustainability (in two contexts): eco-friendly benefits by reducing the carbon

footprint and the long term viability of the cryptocurrency as it grows (McCook,

2014; Chuen, 2015).

In considering the above domains, the closest alignment for this research is Identity,

where the user identity is linked to license entitlements and associated data, crypto-

graphically stored in the blockchain. For the purposes of clarity in this research, the

blockchain-based SLV method being researched will be referred to as “ReSOLV”.

3.3 Overview of Requirements

Although chapter 4 discusses the RE process for ReSOLV, consideration of typical

requirements should be made as these may influence the determination of the most

suitable research method.

In the first instance, chapter 4 identifies that SLV methods and frameworks have

two layers that relate to functional requirements. These functional requirements are

derived from the methods and frameworks identified in Section 2.7 on page 85, Related

Work. The two layers identified are: (i) the human actor layer that represents the

Chapter 3. Method 98

users, merchants and vendor/publishers; and (ii) the technology actors such as servers,

databases and protocols that provide the SLV functions. Secondly, chapter 4 identifies

many non-functional requirements that cryptocurrencies and blockchains share, and

also identifies requirements specifically for a ReSOLV method as discussed in Section

2.7. These include: (i) Design requirements (scalability, robustness, resiliency, data

integrity and security); (ii) Usability requirements (independence, mobility, portability

and flexibility, and standalone); and (iii) Governance considerations (hostile takeover,

ownership, stability, economic design, and code source).

In comparison, a ReSOLV method is likely to require the same human actors as

the SLV method, as the objective to prevent piracy is the same for ReSOLV. However,

from a technology actor perspective, server and database are replaced with miner and

blockchain respectively. Hence, a server-centric method is replaced with a distributed

method 1. SLV non-functional requirements will be similar to ReSOLV requirements.

However, determining these requirements in a distributed cryptocurrency/blockchain

ecosystem requires investigation to select appropriate implementation and approach for

the non-functional requirements in the ReSOLV ecosystem.

Hence, selection of the most suitable research methodology must consider similar

requirements for SLV, but applied to a ReSOLV blockchain method for a successful

outcome. The following section assesses some selected research methodologies for

suitability, given the functional and non-functional requirements.

1 The distributed entities that provide the blockchain functions as shown in Figure 2.9 on page 72.

Chapter 3. Method 99

3.4 Methods for Consideration

There are now a number of uniquely developed cryptocurrencies 2 and NBAs. Examples

these include NXT3, Ethereum4, BlackCoin5, Maidsafe6 and StorJ7. However, from a

research perspective, for most of these examples the requirements definition for the

cryptocurrency or NBA is established, at best, through self-published white papers,

which primarily serve as a high-level design discussion instrument. There is a single

self-published Ethereum cryptocurrency research paper, providing a complete formal

methods definition of Ethereum (Wood, 2016), yet providing no illumination as to any

initial research or software engineering methodologies.

It seems that, as these cryptocurrencies and NBAs are industry initiatives, research

methodologies do not have much weight. The high-level white papers in the unique

cryptocurrency and blockchain applications intimate that the software engineering

process takes a highly agile design approach, whilst the only research paper takes a

formal methods approach, well after the software engineering is complete.

The following sections consider options for suitable research methodologies to test

the hypotheses and research questions. Formal Methods and Experimental Research are

discussed, but do not suit the proposed research objectives, due to the iterative design and

engineering requirements. Subsequent sections then discuss (i) DSR, as the preferred

research methodology; (ii) Agile methodology and Behaviour Driven Development, as

the preferred approach for software engineering; and (iii) and Agent Oriented Software

Engineering, as a potential framework for designing a NBA distributed ecosystem.

2 Cryptocurrencies other than Bitcoin designed and developed from the ground up, rather than a crypto-
currency that uses an existing open source base cryptocurrency with a few modifications.

3 NXT https://nxt.org/
4 Ethereum https://www.ethereum.org/
5 BlackCoin http://blackcoin.co/
6 MaidSafe https://maidsafe.net/
7 StorJ https://storj.io/

Chapter 3. Method 100

3.4.1 Formal Methods

Formal methods require a mathematically rigorous semantics basis to define software

(FormSERA, 2012). Not commonly used in software development (Gnesi & Plat, 2015),

formal methods, however, have many justifications for use in situations that require

a higher quality software output (Hinchey et al., 2008). Examples include use in RE

(Laplante, 2014), critical systems development (Wolff, 2012), addressing scalability

problems using statistical model checking of concurrent systems (Agha, 2013), and

software product line engineering (Schaefer & Hähnle, 2011).

Supporting this, Laplante (2014) observes that development using informal tech-

niques and natural language can result in misinterpretation of an element, requirement,

or specification, of a system. Even a single punctuation error or missing character can

cause a significant problem. In 1962 a missing hyphen character in a FORTRAN code

statement led to the loss of the Mariner 1 spacecraft, the first American probe to Venus

(Laplante, 2014). More recently, in 2017, new cryptocurrency Zcoin8 lost $585,000 due

to one extra character left in the open source Zerocoin source code (Kumar, 2017).

Formal methods are applicable in where the outcomes require reliability and ro-

bustness. However, most of the examples of formal methods in software engineering

pertain to either improving existing systems, or carefully defining the requirements

and testing outcomes (Hinchey et al., 2008). Integration of formal methods into Agile

software engineering, whilst promising, needs to be explored (Wolff, 2012). In the

case of Ethereum, Formal Methods have been used to describe the entire Ethereum

function once it was operational, rather than as a software engineering methodology at

the commencement (Wood, 2016).

Formal methods shows a strong use-case, as cryptocurrencies and NBAs mature,

and non-functional requirements such as reliability, scalability and security become

8 Zcoin http://zcoin.tech/

Chapter 3. Method 101

essential. However, formal methods requires a significant amount of effort to detail

the design and outputs during the software engineering process (Hinchey et al., 2008).

From an NBA perspective, designing a system with no existing artefacts is likely to

require a highly iterative approach to get the functional basics completed. For this

reason, it is concluded that formal methods is not a suitable research methodology to

achieve the research outcomes.

3.4.2 Experimental Design Research

Experimental Design Research is considered because it is used in Information Systems

(IS) research. Experimental design is based on observation (Thurimella, 2014) of exist-

ing artefacts and systems. Levy, Levy and Ellis (2011) states that experimental design

includes four research categories. These include: lab experiment, quasi-experiment,

factorial design and the ex-post facto design. These are primarily focussed on involving

grouped participants and a control group, and require functioning artefacts or systems

to undertake the research.

Hence, given that Experimental Design Research requires an artefact to work with

in the first place, it is not suitable for the type of artefact creation research that the

objectives of this research require.

3.4.3 Design Science Research

DSR is an IS research methodology that is generally accepted as a legitimate approach

to IS research. As IS developed in the 1980s, a need for systems development research

was established in light of IS systems being composed of social-technical artefacts

involving people and technology systems (Silver, Markus & Beath, 1995). Nunamaker

Jr. and Chen (1990) proposed a new framework of research for computing and computer

application research, presenting a Process for Systems Development Research that

Chapter 3. Method 102

parallels research methodologies used by social and behavioural sciences. This five-step

research process requires: (i) constructing a conceptual framework; (ii) developing a

system architecture; (iii) analysing and designing the system; (iv) building the prototype

system; and (v) observing and evaluating the system (Figure 3.1).

Construct a

Conceptual

Framework

Develop a

System

Architecture

Analyse & Design

the System

Build the

(Prototype)

System

Observe &

Evaluate the

System

Research Issues

• State a meaningful research question

• Investigate the system functionalities and requirements

• Understand the system building processes and procedures

• Study relevant disciplines for new approaches and ideas

• Observe the use of the system by case and field

studies

• Evaluate the system by laboratory or field experiments

• Develop new theories/models based on the

observation and experimentation of the system's

usage

• Consolidate experiences learned

• Learn about the concepts, framework, and design,

through the system building process

• Gain insight into the problems and the complexity of

the system

• Design the database/knowledge base schema and

processes to carry out system functions

• Develop alternative solutions and choose one solution

• Develop a unique architecture design for extensibility,

modularity, etc.

• Define functionalities of system components and

interrelationships among them

System Development

Research Process

Figure 3.1: System Development Research Process (Nunamaker Jr. & Chen, 1990)

Literature has progressively built the case for DSR as a valid research methodology for

IS and software development (Hevner, March, Park & Ram, 2004; Peffers, Tuunanen,

Chapter 3. Method 103

Rothenberger & Chatterjee, 2007; Gregor & Hevner, 2013). In DSR, researchers

engage with developers to design and produce an artefact that addresses a specific

problem (Papas, O’Keefe & Seltsikas, 2012; Gregor & Hevner, 2013) or, to attempt to

construct new and innovative artefacts or solution technologies (Iivari & Venable, 2009).

Hevner et al. (2004) states that “effective DSR should make clear contributions to the

real-world application environment from which the research problem or opportunity is

drawn”. Hence, DSR is actively employed for Agile development projects, which take

an iterative approach to create artefacts based on high-level design or user requirements

(Kautz, 2011; Brhel, Meth, Maedche & Werder, 2015).

Figure 3.2: DSR Contribution Types (Gregor & Hevner, 2013)

To determine whether a DSR research objective is contributing sufficiently to a body

of knowledge, Gregor and Hevner (2013) posits a DSR knowledge contribution frame-

work, as shown in Figure 3.3 on page 105. This framework is built on understanding

DSR contribution types as shown in Figure 3.2, where abstraction of knowledge in DSR

is considered. This shows research contributions can be undertaken for “more specific,

limited and less mature knowledge” research (Gregor & Hevner, 2013), through to

“more abstract, complete and mature knowledge” research (Gregor & Hevner, 2013).

Three levels of contribution types are defined, providing guidance for researchers to

evaluate the type of contribution that their research, and to determine the type of artefact

output expected for the research.

Chapter 3. Method 104

Gregor and Hevner (2013) states that the framework for knowledge contribution of

a design research project is predicated on the research skills of the team in appropriately

drawing “useful knowledge” from both descriptive and prescriptive knowledge bases.

Descriptive knowledge includes: (i) observing, classifying, measuring, and cataloguing

phenomena; and (ii) making sense of natural laws, regularities, principles, patterns, and

theories. Prescriptive knowledge includes constructs, models, methods, instantiations,

and design theory. Gregor and Hevner (2013) also points out that a fundamental issue in

DSR is that nothing is really new. Everything is made out of something else, or builds

on some previous idea, so how can a researcher determine when is something really

novel or a significant advance on prior work?

With consideration of Figure 3.2 on the preceding page, a dimension of maturity

in respect to the research is recognised by Gregor and Hevner (2013) in Figure 3.3

on the next page. This reflects the research project’s placement along the timeline of

knowledge growth in the discipline, and is related to the problem maturity and solution

maturity available and relevant to the DSR project. The quadrant model in Figure 3.3

on the following page outlines the types of contribution that can be made in respect to

different levels of DSR. These are described as follows:

• Routine Design: reflects application of known solutions to known problems and,

as such, does not have a major research knowledge contribution.

• Improvement: reflects the development of new solutions for known problems,

resulting in a research opportunity and knowledge contribution.

• Exaptation: reflects extending known solutions (e.g. from other fields) to new

problems, and is considered a research opportunity and knowledge contribution.

• Invention: reflects a new solution for a new problem, and hence also a research

opportunity and knowledge contribution.

Hence, the DSR Knowledge Contribution Framework provides the rationale for selecting

Chapter 3. Method 105

Figure 3.3: DSR Knowledge Contribution Framework (Gregor & Hevner, 2013)

DSR methodology as the most suitable research methodology to address research

objectives. The remaining requirement is to determine the appropriate quadrant for the

research objectives, and provide a compelling argument for this selection.

Blockchain technology is a nascent domain being recognised by industry as a

disruptive technology. There has been a relatively small amount of academic research

opportunity, due to newness of the domain and rapidity of evolution of blockchain

technology. Application of blockchain technology to solve existing problems is resulting

in both innovative and novel outcomes. The contribution type of the proposed research

can be classified as level 2 and level 3 according to Figure 3.2 on page 103, reflecting the

nascent design theory with outputs including constructs, methods, models, and design

principles. The research objectives are thereby classified in the Invention quadrant of the

DSR Knowledge Contribution Framework, and are considered a valid DSR opportunity.

Chapter 3. Method 106

3.4.4 Summary

This section reviewed the methodologies considered feasible to test the hypotheses and

research questions. DSR has been established as the most appropriate methodology

for this research and has met the knowledge contribution requirements, as well as the

innovation and novel characteristics, to be classified as an Invention.

The following section discusses DSR software engineering using Agile methodolo-

gies, with a focus on behaviour driven development as the preferred approach.

3.5 Design Science Research Discussion

In the previous section, formal methods, experimental methods, and DSR were con-

sidered, to determine the most appropriate research methodology to test the hypotheses

and research questions. The DSR approach to defining knowledge contribution and

solution/application domain maturity demonstrated that DSR was the most suitable

methodology for this research.

This section discusses Agile software engineering as the most appropriate software

engineering approach for blockchain artefact creation. It discusses Behavioural Driven

Development as the preferred RE methodology, explaining the use-case for “as-a-user”

and “given-when-then” (GWT) user stories. Agent Oriented Software Engineering

(AOSE) is also discussed as a software design methodology for distributed systems,

drawing parallels with the blockchain ecosystem.

3.5.1 Agile Software Engineering

Cryptocurrency and blockchain research and development has been undertaken primarily

by industry groups, such as the Bitcoin Foundation and Ethereum, using an Agile

software development approach. Commercial and finance businesses are also actively

Chapter 3. Method 107

developing cryptocurrency and blockchain applications9 10. Furthermore, Lewis (2016)

argues that only an agile/lean approach for blockchain development is viable, as a rapid

release cycle and immediate validation is the only way to approach a challenge such

has blockchain development.

The nature of the distributed peer-to-peer cryptocurrency ecosystem means that

there are multiple digital entities and protocols that need to be designed, developed,

and tested, both individually, and within the ecosystem. Unfortunately, due to the

novelty of cryptocurrency and blockchain, access to experienced development resources

is very limited, and open source code often lags the latest cryptocurrency releases.

Furthermore, most source code does not have architecture or design documentation,

creating a reliance on reading the source code and understanding design principles

embedded within.

As a result of the combination of the novelty and the complexity of the ecosystem,

the development methodology for this research will need to be highly agile and iterative.

The software engineering process, of necessity, needs to support the design of individual

artefacts that can be tested as part of the developing ecosystem. Given the challenges

and requirements, and industry software engineering precedent, Agile development

methodologies are clearly the appropriate software engineering approach to undertake

this research.

3.5.2 Behaviour Driven Development

The purpose of this section is to establish the appropriate Agile RE documentation

process for the ReSOLV blockchain prototype.

User stories, prototypes, use-cases, scenarios, and story cards are key artefacts for

the documentation of requirements that are used in RE (Schön, Thomaschewski &

9 Applied Blockchain https://appliedblockchain.com
10 IBM https://www.ibm.com/blockchain/offerings.html

Chapter 3. Method 108

Escalona, 2016). Based on many case studies Schön et al. (2016) finds that user stories,

prototypes and use-case scenarios are the most frequently used artefacts in Agile RE,

with user stories clearly being the preferred RE documentation practice. In discussing

approaches to user stories, Dimitrijevic, Jovanovic and Devedzic (2015) finds that there

is no unique user story process, with different RE practices proposed by several authors.

The authors also state that user stories are not considered to be artefacts of analysis

activities, but rather the medium for communication between customer and developers.

Each user story must articulate the requirement clearly and succinctly, eliminating

ambiguity and supporting a test case.

Hence, a well constructed user story needs to fulfil multiple objectives. It should

have enough details to understand the business intent, the actor roles, the goal, and the

depth, so that the team can understand it to produce a workable prototype or software,

and the business can understand it (Adzic, 2015). User stories generally follow the

INVEST model: (1) Independent, (2) Negotiable, (3) Valuable to users and customers,

(4) Estimable, (5) Small, and (6) Testable (Dimitrijevic et al., 2015).

Most user story templates are focussed on identifying user RE between customer and

developer: for example, the common “as-a-user, I want” story template. This template

does not fit well with service or agent based systems such as blockchain ecosystems, as

these systems are not heavily user oriented. Rather, they are behaviour oriented, where

the system is event driven, rather than user driven. Behaviour driven story templates,

such as GWT, provide for pre- and post-conditions that trigger a user story event, and

allow for easy testing and acceptance criteria (Adzic, 2015).

Specifications should be self-explanatory. GWT is a structured format for clearly

expressing scenarios with example data, including pre- and post-conditions. This

provides the capability to express RE, based on events that may trigger within the

blockchain ecosystem. Adzic (2015) states that when used correctly, GWT helps teams

design specifications and checks that are easy to understand and maintain. As tests will

Chapter 3. Method 109

be focused on one particular action, they will be less brittle and easier to diagnose and

troubleshoot. When the parameters and expectations are clearly separated, it’s easier to

evaluate when more examples are needed, and to discover missing cases.

To illustrate the differences between user and behaviour driven user stories, two

examples are provided for the same user story (below): (1) “As-a-User”, and (2) “Given-

When-Then”.

Objective

The objective in this example is for a ReSOLV Published App (PApp) to execute

the software, after checking if the user has already successfully authenticated to the

ReSOLV User Wallet (UW), and that there is a valid software license residing in the UW.

“As-a-User” User Story Type

• As a user, I want the PApp to check my ReSOLV UW, to validate that I have

already successfully authenticated and that there is a license for the software, so

that the PApp will execute the software.

“Given-When-Then” User Story Type

• GIVEN that I have already successfully authenticated to my UW

• WHEN there is a valid license for the software in my UW

• THEN the software will execute.

Comparing the two user story types, it is shown that the GWT method offers a very

succinct condition-oriented structure and clarity for unit testing, whereas the “as-a-user”

method results in a description of higher complexity, requiring more effort to create a

separate unit test.

In summary, Behaviour Driven Development is clearly the more suitable RE

methodology for this research.

Chapter 3. Method 110

3.5.3 Agent-Oriented Software Engineering

The investigation into a suitable software design methodology for distributed systems

identified the field of AOSE as having distinct parallels to the blockchain ecosystem.

Wooldridge and Jennings (1995) introduces the concept of agents providing intelligence

and knowledge, and proposes architectures and frameworks. Shehory and Sturm (2014)

explores the field of AOSE, as it has evolved over two decades since its inception,

and discusses the core AOSE themes, and distinctions between agents and central-

ised software. Agents and multiple agent systems (MAS) are used where centralised

software does not provide sufficient flexibility or capability to meet requirements, and

functionality is separated accordingly, often dictated by the location of the software.

Shehory and Sturm (2014) establish that agent-based systems focus on dynamically

integrating components. They have their own threads and controls, are engaged in

complex protocols, and have an emphasis on interaction of the components. Five

primary themes have been evolved from these concepts, in the form of methodologies,

modelling techniques, framework implementations, agent-programming languages and

agent communication. These themes are shown in the thematic map in Figure 3.4 on

the following page.

In addition to the five themes, Shehory and Sturm (2014) outlines the four di-

mensions of agents, which are: (i) autonomy; (ii) intelligence; (iii) sociality; and (iv)

mobility. These are described below.

• Autonomy refers to the “ability of an agent to perform unsupervised computation

and action, and to pursue its goals without being explicitly programmed or

instructed”

• Agent intelligence includes capabilities such as learning, reasoning, planning and

decision-making. These, in turn, allow the agent to have abstract goals and to

act accordingly on internal and external data, events and information. These are

Chapter 3. Method 111

Figure 3.4: Agent-Oriented Software Engineering Themes (Shehory & Sturm, 2014)

known as Belief, Desire, Intention (BDI) agents (Wooldridge & Jennings, 1995).

• Sociality reflects the multi-agent environment, where agents may need to interact

with each other to co-ordinate, collaborate or compete.

• Some multi-agent systems exhibit mobility. Agents may change their logical or

physical location (move from one execution environment to another execution

environment), or the system the agent resides on is mobile, such as a smartphone.

In summary, software that executes in the cryptocurrency and blockchain ecosystem

exhibits all four dimensions of MAS, and therefore research methodologies such as

AOSE should be strongly considered for blockchain ecosystem research. However, due

to the complexities of designing an AOSE or blockchain ecosystem, the AOSE software

design methodology is not within the scope of this research.

Chapter 3. Method 112

3.6 Conclusion

The proposed research methods identified for each of the research questions, linked to

the hypotheses, are shown in Figure 3.5. Design Science is the research methodology

selected to determine the validity of the hypotheses, and will be used to demonstrate

how each of the research questions can be confirmed using cryptocurrency or blockchain

systems.

RQ1

RQ1.1

RQ1.2

RQ1.3

RQ2

RQ2.1

RQ2.2

H1

H2

M1 – Design Science Research

Behaviour Driven Development

Figure 3.5: Study Research Methodology

Chapter 4

Requirements Engineering

4.1 Introduction

In the previous chapter, suitable research methodologies for evaluating cryptocurrency

and blockchain related research were explored. Three methodologies were selected

for consideration: Formal Methods, Experimental Design Research, and DSR. Further

consideration was given to Agile RE methodologies and similar SLV constructs, to

provide more research related insights. The outcome of this evaluation resulted in DSR

being determined to be the most suitable research methodology to test the hypotheses

and research questions.

In this chapter, the approach to RE for ReSOLV is discussed, and a requirements

specification developed. Definitions and the general RE process are established and

outline the activities that are involved in the RE process. The ReSOLV model is presen-

ted, building on the previously identified MBM, demonstrating the main constructs

for SLV on the blockchain. The requirements specification establishes functional and

non-functional requirements for the ReSOLV model, culminating in the design of the

ReSOLV HLA and RA, which describes the core functionality of the ReSOLV method.

Finally, user stories for the ReSOLV RA are constructed using a Behaviour Driven

113

Chapter 4. Requirements Engineering 114

Development approach. The output of this RE section are artefacts for the following:

• HLA for the ReSOLV ecosystem

• RA for the core ReSOLV processes

• Requirements specification (user stories) for the RA

4.2 Definitions and Process

Hull et al. (2011) asserts that software is the dominant force of change of new products.

Systems are becoming more complex and have deeply integrated software components,

whilst the demand for instant distribution pressures the development and deployment

methodologies. The challenge is for developers to create the “right product” within

the constraints set out by business, or the requirements outlined by the client. RE is

the discipline that is designed to improve quality and ensure successful outcomes are

achieved for stakeholders. For discussion of RE, it is important to distinguish between

requirements and goals, and to ensure that these concepts are identified and separated

for forward clarity. Laplante (2014) states that goals are high-level objectives of a

business, organisation, or system. However, a requirement specifies how a goal should

be accomplished by a proposed system. Furthermore, Sommerville (2010) observes

that the term ’requirement’ is not used consistently in the software industry. This is

often due to the size and nature of the project, requiring a high level of abstraction at

a business level, which necessitates further analysis to identify complex interactions,

processes and workflows.

The definition of RE has evolved since the mid-1990s, and some examples of these

evolving definitions are provided below:

Zave (1997, p. 315) provides a definition for software RE, described as “more-or-less

Chapter 4. Requirements Engineering 115

universal for RE” by Laplante (2014): “Requirements engineering is the branch

of software engineering concerned with the real-world goals for, functions of,

and constraints on software systems. It is also concerned with the relationship of

these factors to precise specifications of software behaviour, and to their evolution

over time and across software families.”

IEEE Computer Society (IEEE, 1998) defines RE as: “the process of defining, doc-

umenting, and maintaining requirements for a program. This can be applied to

systems and software engineering”.

BSI Standards (2011) defines RE as: “an interdisciplinary function that mediates

between the domains of the acquirer and supplier to establish and maintain the

requirements to be met by the system, software or service of interest.”

Adzic (2011) states RE is defining scope and building the right scope: “Requirements

engineering is concerned with discovering, eliciting, developing, analysing, de-

termining verification methods, validating, communicating, documenting, and

managing requirements.”

The evolution of RE is reflective of the expanding role of software. As software becomes

more complex and has more moving parts1, identifying requirements is increasingly

difficult as requirements become more abstracted out of necessity. RE is used to help

deconstruct the high level abstraction business layer into manageable, understandable,

and sufficiently detailed requirements across the various platforms and layers.

RE is separated into functional requirements, which include user requirements and

system requirements, and non-functional requirements (Sommerville, 2010). Functional

requirements are descriptions of services the system should provide, its inputs, outputs,

and behaviour in particular situations. User requirements are described in a natural

language form that can be understood by users (in Agile methodology these are user

1 Examples include cloud computing, Internet of Things, Agents and Interfaces

Chapter 4. Requirements Engineering 116

stories), whereas system requirements describe function inputs, outputs, and constraints

in detail. Non-functional requirements are not related to specific services, but may

relate to system properties, such as reliability and response time, or characteristics

of the system as a whole, such as performance or security (Sommerville, 2010). As

non-functional requirements apply to the entire system, they may be considered more

critical than individual functional requirement (Laplante, 2014). Figure 4.1 outlines

types of non-functional requirements that may be essential to incorporate into the RE

process at the outset.

Figure 4.1: Types of Non-functional Requirements (Laplante, 2014)

Establishing requirements is a vital part of the software engineering process, and

selecting the appropriate RE process is a critical step towards achieving a successful

development outcome. Both functional and non-functional aspects should be considered

in any blockchain development, due to the multiple actor interactions in the distributed

ecosystem. The method for defining the RE of the blockchain validation artefact is

Chapter 4. Requirements Engineering 117

discussed in Section 4.4 on page 131. The RE process comprises a set of activities that

aims to create consensus amongst the stakeholders, and establishing a requirements

document that satisfies stakeholder requirements (Laplante, 2014). The activities in-

volved in the RE process vary widely, depending on the type of system being developed

and the specific practices of the stakeholders involved. The RE process consists of four

main activities, as described below and shown in Figure 4.2 on the next page.

1. Feasibility Study: assessing that the proposed system is realistic within estab-

lished business and financial constraints.

2. Requirements Elicitation and Analysis: checking functional requirements, resolv-

ing stakeholder conflicts, and systems modelling (e.g. Unified Modelling Lan-

guage (UML) sequence diagrams).

3. Requirements Specification: creating user requirements (user stories) and systems

requirements.

4. Requirements Validation: checking that the documented requirements and models

are consistent and meet stakeholder needs.

Requirements elicitation and analysis has a wide range of methods of engagement,

including face to face engagement with stakeholders such as customers, sponsors, sup-

pliers and technical personnel. The purpose of using a variety of elicitation methods is

to establish a holistic view of requirements from different stakeholders, based on their

particular lens or perspective of the project. To identify the full gamut of requirements

often necessitates different approaches to build a complete and accurate picture of needs

of all the stakeholders and systems. However, for this research, the requirements elicita-

tion is primarily based on constructing a ReSOLV model that derives its functions from

earlier non-blockchain based SLV work. There are no interactions with stakeholders

Chapter 4. Requirements Engineering 118

Figure 4.2: RE Process (Laplante, 2014)

such as end users or software vendors, as the guidance from the earlier, non-blockchain

based SLV work sufficiently describes the needs of these actors.

The Requirements specification introduces Agile methodologies and uses the prin-

ciples outlined in the Agile Manifesto2. These principles are based on creating more

value in the software engineering process and uncovering better ways of developing

software (Williams, 2012), as described below:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

To define the ReSOLV model, user stories will be constructed to describe the various

functions and methods that will be required by the actors in the blockchain ecosys-

tem. These functions will subsequently be defined in detail in Chapter 5, Functional

Decomposition.

2 http://agilemanifesto.org/principles.html

Chapter 4. Requirements Engineering 119

For the purpose of this research and due to time constraints, the activities that this

research will focus on are stated as follows: (i) creation of artefacts for the Require-

ments Elicitation and Analysis (Model and Architecture); and (ii) the Requirements

Specification.

The following section discusses Requirements Elicitation for SLV. It first explores

the MBM (See Section 2.7 on page 85) license provenance functionality and discusses its

application to ReSOLV. The ReSOLV Model and ReSOLV HLA for SLV are introduced.

The ReSOLV Model discusses the fundamental operation of SLV using the blockchain,

building on the MBM, whilst the HLA describes the architecture and vision for ReSOLV

and outlines how the broader elements interact in the blockchain ecosystem.

4.3 Requirements Elicitation

4.3.1 Master Bitcoin Model

The MBM, proposed by Fortin (2011), is a basic form of SLV. Using Namecoin as the

underlying blockchain, the model has been implemented by Lebo (2014) as a proof-of-

concept project called “dissent”. In this model, the vendor address/bitcoin combination

represents license ownership, and if the user has a transaction that shows the bitcoin

originated from a specific vendor address, then the user is considered to have ownership

of the software. This concept is demonstrated in Figure 4.3 on the next page.

The entities illustrated in Figure 4.3 are as follows:

• Vendor1 (V1): owns the Software application S1

• Software1 (S1): the particular Software application

• MasterAddress1 (M1): the address representing S1

• UserAddress1 (U1): the end user address for the wallet that holds the bitcoin

indicating software entitlement.

Chapter 4. Requirements Engineering 120

U1

UserPurchase(1)

U1:S1V1:M1 U2

UserTransfer(1)

U2:S1

X

ValidateBlockchain

ValidateBlockchain

ValidateBlockchain
ExecuteS1

ExecuteS1

Figure 4.3: MBM Transfer of Ownership Sequence Example.

The process steps are described below:

1) V1.create(M1)

2) V1.send(M1, 100)

3) Software purchase

4) M1.send(U1, 1)

5) S1.validate(U1)

where:

1. V1 creates the M1 “MasterAddress1” on the blockchain, representing a particular

Software application.

2. V1 adds 100 bitcoins to M1, loading it with some bitcoins that when transferred

will represent entitlement to the Software application.

3. The end user purchases the Software application through a non-cryptocurrency

transaction.

4. V1 transfers a Master bitcoin from the M1 address to the U1 address. The

transaction itself confers the ownership of the bitcoin, and the end user now has

Chapter 4. Requirements Engineering 121

the bitcoin from M1, the Master bitcoin, in the user’s associated wallet. Hence,

the user’s ownership of a bitcoin from M1 confers entitlement to the Software

application, and is a transaction publicly verifiable on the blockchain.

5. The Software application then validates that U1 has received a transaction from

M1, and is the last transaction in the chain of transactions.

Ownership of the Master bitcoin can be transferred, as shown in Figure 4.3 on the

preceding page, so that the software vendor can be guaranteed that only a single user

is using the software through checking the blockchain “chain of title” for the Master

bitcoin originating address. Hence, U1 can now transfer ownership to a new party, U2.

The transaction confers ownership, and any entity can trace the chain of transactions

from U2 to U1 and back to M1 to confirm that current ownership is held by U2.

M1.send(U1, 1)

U1.send(U2, 1)

Typically, bitcoins do not have serial numbers and, once a non-Master bitcoin is

combined with a Master bitcoin, the originator of each specific bitcoin cannot be identi-

fied because the bitcoins have individual digital signatures that have been combined to

create a new digital signature. However, in the MBM, the value of the Master bitcoin

is not important: only that a transaction history from the originating Master bitcoin

exists. This presents an additional challenge in a cryptocurrency ecosystem, where the

Master bitcoin itself may be combined with non-Master bitcoins, which can then be

used to create multiple subsequent transactions that originate from the same Master

bitcoin address, thereby entitling all recipients in the transaction with a chain-of-title to

the Master bitcoin address. As such, Fortin (2011) proposes that, if a Master bitcoin is

combined with a non-Master bitcoin, then the recipient with the largest numeric value of

the transaction in a “transfer of ownership” transaction is the owner. This characteristic

is defined as the “non-divisible ownership” property of the MBM.

Chapter 4. Requirements Engineering 122

M1.send(U1, 1.0)

U1.send(U2, .4)

U1.send(U3, .6)

→ U3 has ownership.

Where a Master bitcoin is divided exactly in half, the ownership is decided by the

first recipient of the transaction (Lebo, 2014).

M1.send(U1, 1.0)

U1.send(U2, .5)

U1.send(U3, .5)

→ U2 has ownership.

Although the MBM presents an opportunity for a chain-of-title based software

licensing system, there are disadvantages that will deter use in the software industry.

The MBM is essentially a binary system; the end user either has entitlement to run

the software, or they don’t. Although it is possible to create multiple Master bitcoins

to represent individual software features for activation, this creates an overhead for

each software feature, and there is no capability to include additional functions that are

commonly used by software vendors, such as multi-user licensing for organisations, and

management of corporate and private licenses. Furthermore, it is possible to quickly

move Master bitcoins between end users, defeating the intent of the authorisation

method that the MBM intended.

In summary, the entitlement of a user to claim a license to use a software applica-

tion is conferred using a unique blockchain address to represent a particular software

application. The MBM is used to provide immutable proof of ownership of a bitcoin

Chapter 4. Requirements Engineering 123

that originated from a specific address. However, the software application will need to

be built with the capability to read the blockchain. Therefore we contend that the MBM

is too simplistic in that: (i) it fails to take account of the complex nature of software

licensing and distribution; (ii) that it introduces additional complexities into software

development; and (iii) that it provides a means by which an attacker may intentionally

gain access to the application executable and modify it.

4.3.2 ReSOLV Model

In this section, the ReSOLV Model is introduced. It builds on the MBM with the

objective of addressing the principal weaknesses of the MBM.

The ReSOLV Model is notable for a tokenised approach to validation whilst still

referring to a Master bitcoin. This approach offers improvements over the centralised

software validation model, permitting the model to be applied to overcome the limit-

ations outlined in the previous section. The Token in the ReSOLV Model is a digital

signature that represents entitlement to a specific software application. A user address

that holds a particular Token, from a unique vendor address, is entitled to the software

license and therefore is entitled to use the software. The vendor/token combination

represents the entitlement for use of the software.

Blockchain specifications vary across cryptocurrencies and, as such, cryptocurrencies

can be designed and built with unique characteristics to meet specific applications.

The ReSOLV Model uses a custom blockchain transaction specification that includes

additional fields tailored to the requirements of a flexible SLV schema. This provides the

scope needed for the wide range of users and license models in the modern technology

environment. It can also provide several useful mechanisms using the blockchain as the

basis for license validation, license upgrade, transfer of ownership, and even software

integrity checking. A customised blockchain specification (Figure 4.4 on the next page)

Chapter 4. Requirements Engineering 124

may include new blockchain fields, to improve SLV, and to prevent software piracy,

through software integrity checks and protecting the software from reverse engineering

and executable code modification.

License	 Key	 (K1)
(requires	 user’s	 private	 key)

	 Token	 (T1)
(requires	 users	 private	 key)

Bootstrap
(requires	 user’s	 private	 key)

Software	 Hash	 (SH)
(requires	 user’s	 private	 key)

License	 validation License	 type Integrity	 Check Protection	 	

Signature
(requires	 vendors	 public	 key)

Validation

Figure 4.4: Customised Blockchain Specification for License Validation.

The fields in the customised blockchain (Figure 4.4) are stored as data and encrypted

using cryptocurrency public/private key mechanisms, which are also built into the

blockchain. The software vendor uses the user’s public key to encrypt the data being

placed into the fields, but the user’s private key is subsequently required to decrypt the

fields. The user can confirm the transaction integrity signature with the vendor’s public

key.

The custom fields outlined in the proposed specification are described as follows:

• Token: The Token is used for standard license validation mechanisms, where the

ownership of the Token demonstrates entitlement. The Token can be used for

SLV operations such as for software upgrades, or to provide a unique attribute to

the transaction, such as “first 100 purchasers” that may have collectible value in

the future.

• License Key: The License Key provides advantages over the MBM, because

many software applications have specific features within the application that are

activated on a per feature basis. Having the License Key securely held on the

blockchain means software vendors can easily enable “feature activation”, and

have flexibility with software application licensing models, where users could

rent software for short periods, rather than purchasing or renting use on a long

term or monthly basis.

Chapter 4. Requirements Engineering 125

• Software Hash: Similarly, the vendor can place a software hash of the application

on the blockchain. A bootstrap loader, or the software itself, can read the hash

and check the software version. This hash can be updated with every new patch,

plus minor or major releases of the software. This is intended to protect software

from malware infection and some forms of reverse engineering.

• Bootstrap Loader: Additional protection may be provided through a bootstrap

loader, a portion of executable code used to pre-execute the software application

or as an integral part of application execution. The purpose of the bootstrap

loader is to further prevent reverse engineering of the software application. When

the unencrypted bootstrap code is executed and stored in memory, it may be

susceptible to interception. Therefore the bootstrap code can change with every

patch and minor and major release, making reverse engineering of code a constant

effort.

• Signature Field: The signature field is a possible additional field that can be used

by the vendor to sign the entire transaction content using the private/public key

pair of the software MasterAddress.

Existing software validation uses digital signatures to verify downloadable software,

and digital certificates to prevent Man-in-the-Middle attacks during the download

process. However, the proposed custom specification provides validation of installed

software on the user’s device on an ongoing basis, providing risk mitigation against

malware code injection attacks.

Compared with the MBM, the ReSOLV Model presents significantly more oppor-

tunities to use the Token for SLV. In addition to validating that the user owns the Token

and verifying rights to upgrade software versions or transfer of ownership, the Token

may also be used to validate rights while the software is running or at critical moments.

For example, it could be used for reading the Token at a regular time interval, at user

Chapter 4. Requirements Engineering 126

login/logoff, or at software start-up or shutdown. These examples read an existing

transaction on the blockchain but don’t create a transaction.

For updating information on the blockchain (see below), a transaction that includes

the user and software addresses that represents the software application is created. Each

transaction creates a new user address, with its own public/private key pair and with

data encrypted by the user’s new public key. Note that all addresses are unique, with

their own public/private key pairs.

1) S1.read(UserAddress1.transaction)

2) S1.decrypt(UserAddress1.Token)

3) S1.validate(Token)

4) S1.execute

where:

1. S1 reads the blockchain transaction for U1.

2. S1 decrypts the Token from blockchain data for U1.

3. S1 checks the Token originates from M1.

4. S1 continues to execute on the end user’s device.

To upgrade software application versions, for example by applying a service patch

update (see below), the software application periodically requests an update from the

vendor. The new U2 address for the upgraded software application provides a record of

entitlement to earlier software versions is maintained through U1. A practical benefit

of maintaining a previous version allows the potential to roll back an upgrade. All

Ux addresses are stored in the user’s digital wallet and, as such, all entitlements are

associated with the user. To reduce the risk of license key duplication, the vendor may

release new license keys with minor releases such as patch updates.

Chapter 4. Requirements Engineering 127

1) S1.send(MasterAddress1, UserAddress2, Token)

2) M1.validate(UserAddress1, Token)

3) M1.send(UserAddress2, Token)

4) S1.read(UserAddress2, Token, License, Hash)

5) S1.upgrade

where:

1. S1 sends a request to M1 with new U2 address.

2. M1 checks the Token came from U1 and is valid.

3. M1 creates a new transaction with update data.

4. S1 reads data to check if it needs an upgrade.

5. S1 auto-upgrades.

Although similar to existing online software version checking mechanisms such

as Microsoft Update, the process shown below provides the opportunity to “re-cut” a

license key or hash code for the software upgrade and have the software automatically

validated. The process below reframes the transaction process shown in Figure 4.5 on

page 129 to include the additional fields. Both the previous software version and the

upgraded software version are subsequently available for use.

1) S1.send(MasterAddress1, UserAddress2, Token)

2) M1.validate(UserAddress1, Token)

3) M1.createaddress(M2)

4) M2.License(License.new)

5) M2.hash(S1.new)

6) M2.bootstrap(Bootstrap.new)

7) M2.encrypt(M2.License)

8) M2.encrypt(M2.hash)

Chapter 4. Requirements Engineering 128

9) M2.encrypt(Bootstrap.new)

10) M2.sign(Transaction.new)

11) M2.send(UserAddress2, Token)

12) S1.read(UserAddress2, Token, License, Hash)

13) S1.upgrade

14) S1.execute

where:

1. S1 sends an update request to M1 with new U2 address.

2. M1 checks Token came from U1 and is valid.

3. “MasterAddress2”, M2, created for the new transaction.

4. M2 cuts new License Key for new software version.

5. M2 creates Hash for new software version.

6. M2 creates new Bootstrap for new software version.

7. M2 encrypts the new License Key, Hash and Bootstrap using PublicKey(U2).

8. M2 signs the transaction with PrivateKey(M2).

9. A new process is started.

10. M2 creates new transaction with the new data.

11. M2 sends U2 Token with update data.

12. S1 reads new transaction data for upgrade.

13. S1 downloads software and auto-upgrades.

14. S1 runs itself.

In summary, the ReSOLV model demonstrates that license validation can be

achieved with the application of the blockchain and, through the same mechanism,

integrity and security protections can be added. Furthermore, blockchain smart con-

tracts allow for intelligent programming of actions within a transaction. This provides a

Chapter 4. Requirements Engineering 129

U1

OriginalPurchase(1)

U1:S1V1:M1 U2

AuthoriseUpgrade

U2:S1

UpgradeS1

SendS1Token(U2)

RequestUpgrade

SendS1Tokens(2)

SendS1Tokens(2)

CreateU2

Read(Token,	 License,	 Hash)

V1:M2

Figure 4.5: ReSOLV Blockchain Software Upgrade Sequence Example.

new level of dynamism as a transaction may take different actions based on the input,

output, field content, and originating and destination address. Blockchain protocols,

such as Ethereum, that provide Turing completeness capability allow the developer to

write smart contracts and decentralised applications, with arbitrary rules for ownership,

transaction format and state transition functions (Wood, 2016).

4.3.3 Issues Overcome

While the ReSOLV Model overcomes problems noted earlier, and significantly improves

on the MBM, it does require a separate cryptocurrency ecosystem to be developed and

maintained. The MBM can utilise, and run in, an existing cryptocurrency ecosystem

and meets the requirements outlined for a successful SLV method. The MBM has been

demonstrated in a proof-of-concept, but the model also presented limitations that may

detract from its usefulness. The ReSOLV Model overcomes these limitations:

1. Each software license is hard to copy because the license is represented by a

transaction between vendor and user, is cryptographically verifiable, and is stored

in the user’s blockchain wallet. An adversary would require the password to

the user’s wallet in order to access the user’s private key. Already, multi-factor

authentication mechanisms are available to further enhance user wallet security.

Chapter 4. Requirements Engineering 130

In addition, the license key does not have to be disclosed to the user, so the key

cannot be copied. Every transaction is cryptographically secure and cannot be

modified.

2. Software licenses are easily validated, through the blockchain “chain of title”

and the data being held within the blockchain itself. Furthermore, having on-

blockchain license keys allows the vendor to distribute keys for specific feature

activations, and allows keys to be “re-cut” quickly and efficiently without the

need for an intermediary.

3. Software licenses cannot be regenerated because the software application takes

the license key directly from the blockchain, requiring the user’s private key.

Even if the key generator at the vendor is compromised, there is no way to get

the license key onto the blockchain without the vendor’s private key to sign the

transaction.

4. No Man-in-the-Middle attack is possible, using the blockchain. An adversary

cannot make use of any intercepted data in the blockchain, without the user’s

private key. Also, an adversary cannot redirect DNS or IP traffic to an adversary’s

custom server to provide software validation, without the vendor’s private key.

Additionally, the peer-to-peer blockchain architecture means that no single central

point of failure for SLV exists. Licensing validators can be run anywhere and, for

example, could be run either commercially or on a not-for-profit basis. In particular,

a vendor may run vendor-specific software to manage a license creation process and

interaction with the blockchain, but does not need to maintain a dedicated license

validation infrastructure with its associated overheads.

Therefore, the ReSOLV Model provides an opportunity for small to large software

vendors to preserve software copyright and prevent software piracy, whilst having a

flexible mechanism for software licensing.

Chapter 4. Requirements Engineering 131

4.3.4 Summary

In this section, the requirements for the blockchain-based SLV have been discussed,

building on the MBM. The ReSOLV model was discussed, with transaction models

demonstrating how a successful token transfer would occur in blockchain-based SLV.

The ReSOLV Model provides several improvements over the MBM, but also requires

further consideration of potential issues that are likely to occur, due to the complex

actor interaction and scalability of the blockchain ecosystem.

The following section discusses the requirements specification, introducing the

ReSOLV HLA, an overview of an expanded blockchain-based SLV ecosystem, and

the ReSOLV RA, which forms the core functions of ReSOLV. Functional and Non-

functional requirements are also established and discussed.

4.4 Requirements Specification

4.4.1 Introduction

This section discusses the requirements specification for the ReSOLV SLV ecosystem.

The ReSOLV HLA and ReSOLV RA for functional requirements are introduced. Non-

functional requirements, and public key cryptography, which lies at the heart of the

core functions of ReSOLV, are also discussed for completeness. Producing a functional

prototype artefact is beyond the scope of this research. The requirements specification

provides an architecture and design perspective to describe the methods for SLV. The

requirements specification commences with a mission statement, the highest level

of a Goal Breakdown Structure, which is a hierarchical structure linking high-level

objectives or goals to more detailed goals.

Laplante (2014) states that the first requirement for development of a new system,

is to develop a concise description of what it is supposed to do. The product mission

Chapter 4. Requirements Engineering 132

statement acts as a focal point for all involved in the system, and it allows the stakehold-

ers to prioritise features by asking the question, “How does that functionality serve its

intent?”. The Mission Statement for RE is described as follows:

Mission Statement

“The purpose of ReSOLV is to provide software piracy prevention and provenance

(SPPP), using blockchain technology to validate user license entitlements, and to

validate software integrity.”

4.4.2 ReSOLV High Level Architecture

In this section, the ReSOLV HLA is introduced, expanding the ReSOLV Model into

an enlarged blockchain ecosystem of actors, functions, and services. The HLA builds

on the principles described in the ReSOLV model, proposing core actors that form the

basis of the ReSOLV RA. Figure 4.6 on the following page, provides an overview of the

architecture and vision for the ReSOLV blockchain ecosystem, encompassing SLV for

single users, enterprise environments, SaaS providers, and supporting Internet services.

Three Primary Actors (PA) of the ReSOLV HLA are defined, namely the Vendor

(PA1), User (PA2), and ReSOLV Corp (PA3). The high level functions of these PA’s are

described below.

PA1: Vendor

There are three main functional requirements that are needed for the Vendor in the

ReSOLV ecosystem: a provenance agent/service, a software encoding service, and the

vendor wallet.

Provenance Agent/service: provides the front-end interactions with the blockchain

Users and ReSOLV Corp. These include: (i) receiving notification of a software

purchase from an external mechanism; (ii) receiving a license token from the

Chapter 4. Requirements Engineering 133

In
st

a
ll

e
d

 A
p

p

O
n

li
n

e

W
a

ll
e

t

B
lo

ck
ch

a
in

C
lo

u
d

Id
e

n
ti

ty

S
e

rv
ic

e

V
E

N
D

O
R

C
re

d
e

n
ti

a
ls

Local Authentication

P
u

rc
h

a
se

S
o

ft
w

a
re

V
e

n
d

o
r

S
LV

 P
ro

v
e

n
a

n
ce

 A
P

I

M
a

st
e

r
A

p
p

C
o

d
e

M
a

st
e

r
A

p
p

E
xe

M
a

st
e

r
H

a
sh

C
u

st
o

m
 U

se
r

B
o

o
ts

ta
p

B
lo

ck
ch

a
in

S
D

K

M
in

ti
n

g
/

M
in

in
g

S
LV

 P
ro

v
e

n
a

n
ce

 S
e

rv
ic

e

A
d

m
in

 W
e

b
 p

o
rt

a
l

ExtAuth API

E
co

m
m

e
rc

e

P
o

rt
a

l

A
P

I

IntAuthAPI

BlockAPI

P

M
F

A
 S

e
rv

ic
e

U
S

E
R

IN
T

E
R

N
E

T
E

N
T

E
R

P
R

IS
E

R
e

a
d

 B
lo

ck
ch

a
in

Download App

Purchase Approved

T
o

k
e

n
 T

ra
n

sa
ct

io
n

s

Send Token (update blockchain)

B
lo

ck
 c

a
ch

e

M
u

lt
iK

e
y

S
e

rv
ic

e

M
a

st
e

r
P

ri
v
K

e
y
 M

a
n

a
g

e
m

e
n

t

LD
A

P
/A

D

B
lo

ck
ch

a
in

S
e

rv
ic

e

U
se

r

P
ri

v
K

e
y

s

Smart Wallet

P
ro

o
f

o
f

S
ta

k
e

 M
in

in
g

LD
A

P
/A

D

S
e

rv
ic

e

P
ro

o
f

o
f

S
ta

k
e

 M
in

in
g

P

Blockchain API

Req New Token

Send Token

W
a

ll
e

t

ExtAuth API

Vendor License API

BlockAPI

P
ro

o
f

o
f

S
ta

k
e

 M
in

in
g

P
ri

v
K

e
y

D
a

ta
b

a
se

V
e

n
d

o
r

W
a

ll
e

t

A
u

th

E
xt

e
rn

a
l

A
u

th
o

ri
ty

A
d

d
T

o
k

e
n

Add Blocks/Create Tokens

Verify transactions

R
e

S
O

LV
 C

o
rp

LD
A

P
/A

D
 A

u
th

e
n

ti
ca

ti
o

n

G
e

n
e

ra
te

Li
ce

n
se

S
o

ft
w

a
re

 E
n

co
d

in
g

U
se

r

New Purchase

G
e

n
e

ra
te

B

o
o

ts
tr

a
p

S
e

n
d

T
o

k
e

n
 T

ra
n

sa
ct

io
n

s

S
Y

S
T

E
M

S
 A

R
C

H
IT

E
C

T
U

R
E

R
e

S
O

LV
 B

LO
C

K
C

H
A

IN
 -

 D
R

A
F

T
 0

.3

C
o

p
y

ri
g

h
t

©
 2

0
1

7

Je
ff

 H
e

rb
e

rt

A
ll

 R
ig

h
ts

 R
e

se
rv

e
d

S
a

a
S

 S
E

R
V

IC
E

C
lo

u
d

B
lo

ck
ch

a
in

A
P

I

P
ro

v
id

e
r

A
u

th
 S

e
rv

ic
e

P

P
ro

o
f

o
f

S
ta

k
e

 M
in

in
g

S
a

a
S

 A
u

th
e

n
ti

ca
ti

o
n

A
u

th
,

S
y
n

c
W

a
ll

e
t

Online Authentication

P
ri

v
il

e
g

e
d

 I
d

e
n

ti
ty

 S
e

rv
ic

e

M
u

lt
if

a
ct

o
r

A
u

th
e

n
ti

ca
ti

o
n

 S
e

rv
ic

e

G
e

n
e

ra
te

 N
e

w
 U

se
r

A
d

d
re

ss

A
d

m
in

D
e

v
ic

e

Li
ce

n
se

D
a

ta
b

a
se

S
O

F
T

W
A

R
E

 L
IC

E
N

S
E

V
A

LI
D

A
T

IO
N

A
p

p
 I

D

R
u

n
s

S
o

ft
w

a
re

Fi
gu

re
4.

6:
Pr

op
os

ed
R

eS
O

LV
H

L
A

Chapter 4. Requirements Engineering 134

Software Encoding Service; (iii) sending a license token to the purchaser (the

user); (iv) receiving tokens from the ReSOLV Corp mining/minting function

(purchasing tokens); and (iv) receiving software encoded with a wrapper that

provides the user authentication method. This software can be published through

normal mechanisms or provided to the user as a download.

Software Encoding Service: provides the back-end software encoding and licensing

services. These include: (i) receiving a license key from the Vendor Wallet, which

defines the user entitlements for the purchased software; (ii) digitally encrypting

the license with the users public key, which is subsequently published to the

blockchain, thereby making the key publicly available; (iii) constructing metadata,

such as a software bootstrap and master hash, which are also published onto the

blockchain with the license key and are used by the SmartWallet to validate the

integrity of the software installed on the user’s computer; (iv) encoding software

with a wrapper to provide user authentication prior to executing the software,

which is used by the SmartWallet and App to validate the user.

Vendor Wallet: provides two functions: a secure database function, and a mining

function. The secure database contains a list of keys for license entitlements, user

public keys that each license has been allocated for, and a unique private key for

each license, which is used throughout the lifecycle of the license. The vendor

wallet participates in the blockchain ecosystem by providing mining functions

to validate transactions, and also includes the possibility of minting new coins,

(creating free tokens, thereby incentivising the vendor).

PA2: User

The User actor requires two main functions in the ReSOLV ecosystem: the SmartWallet,

and the encoded software.

SmartWallet: is an application that is a service that is part secure database, part

Chapter 4. Requirements Engineering 135

cache, and part miner, and provides the front-end interactions with the blockchain

externally, as well as internal functions, servicing requests from software for

license validation. The SmartWallet functions include: (i) securely storing all

the private keys of the user; (ii) caching specified blockchain blocks that contain

the user’s license validation metadata, so that licenses can be validated offline;

and (iii) participating in the blockchain ecosystem, providing Proof-of-Stake

mining/minting and transaction validation, and similarly to the vendor, includes

the possibility of minting new coins (creating free tokens which may be used to

purchase software, thereby incentivising the User).

Encoded Software: is downloaded from the Vendor, requires an authentication mech-

anism to the SmartWallet in order to validate user entitlements to run the software.

PA3: ReSOLV Corp

ReSOLV Corp is the actor that has the primary off-blockchain role of supporting

the on-going development of the ReSOLV ecosystem, and providing a governance

framework required to mitigate risks associated with the blockchain and increase value

to the ecosystem actors. The on-blockchain functions are limited to:

Minting: ReSOLV Corp provides the initial blockchain genesis block, minting of the

initial tokens, and managing the token supply to all the Vendors, using its own

wallet to store the tokens.

Mining: ReSOLV Corp also provides blockchain ecosystem mining functions on an

ongoing basis, as the most trusted actor on the blockchain.

The HLA also extends the architecture to include: (i) Enterprises, where integra-

tion into Lightweight Directory Access Protocol (LDAP) or Active Directory (AD)

services is required for corporate user identity validation; (ii) SaaS services, which may

potentially prefer a blockchain authentication method over a centralised OAuth3 type
3 https://oauth.net/

Chapter 4. Requirements Engineering 136

service; and (iii) Supporting Internet actors that may include proof of identity, multiple

signature support, and online wallets secured by hardware wallets such as the Trezor4

and LedgerWallet5.

4.4.3 ReSOLV Reference Architecture

This section describes the ReSOLV RA as shown in Figure 4.7 on the next page. The

RA shows the human actors as the starting point to describe the primary processes and

methods of the ReSOLV blockchain ecosystem. It also shows the related technology

actors such as mining agents, wallet agents, encoding service, and provenance agents.

Primary processes, which are related to the human actors, group the ReSOLV Methods

and are shown using colour coding of the Methods. The ReSOLV Methods themselves

demonstrate the flows of data in the ReSOLV blockchain ecosystem (described below),

and are labelled according the human actor (U=User, V=Vendor, C=Corp).

Similar to the lack of research methodologies for new cryptocurrencies, RAs for

cryptocurrencies tend to be limited to white papers. However, there are examples of RAs

available. Wood (2016) published a RA for Ethereum proof-of-work method, whilst

Alqassem and Svetinovic (2015) proposed a Bitcoin RA focussing on the fundamental

methods for the Bitcoin protocol. For the purpose of this research, the ReSOLV RA

provides an overview of the fundamental actors and methods for SLV, but does not

provide the details for the entire ecosystem. This allows the focus to be on the SLV

process itself, rather than the supporting blockchain ecosystem methods (which are

vital in the distributed system, but not the core aspect of this research).

Human Actors

There are three human actors described in the ReSOLV blockchain ecosystem: “Corp”,

“User”, and “Vendor”. Corp represents the ReSOLV corporation physical entity that

4 https://trezor.io/
5 https://www.ledgerwallet.com/products

Chapter 4. Requirements Engineering 137

B
lo

ck
ch

a
in

 E
co

sy
st

e
m

N
o

n
-r

e
p

u
d

ia
b

le
 d

is
tr

ib
u

te
d

 d
a

ta
b

a
se

ru
n

n
in

g
 o

v
e

r
th

e
 I

n
te

rn
e

t
th

a
t

re
co

rd
s

a
ll

 l
ic

e
n

se
 p

ro
v

e
n

a
n

ce
 t

ra
n

sa
ct

io
n

s
a

n
d

p
u

b
li

sh
e

d
 a

p
p

li
ca

ti
o

n
 m

e
ta

d
a

ta

P
ro

v
e

n
a

n
ce

D
a

ta
b

a
se

M
in

e
r

A
g

e
n

t

(R
e

S
O

LV
 C

o
rp

)
T

ra
n

sa
ct

io
n

 V
a

li
d

a
ti

o
n

&
 T

o
k
e

n
 m

in
ti

n
g

R
e

S
O

LV
 C

o
rp

P
ro

v
e

n
a

n
ce

A
g

e
n

t
M

in
e

r
A

g
e

n
t

(U
se

r)

T
ra

n
sa

ct
io

n
 V

a
li

d
a

ti
o

n

&
 T

o
k
e

n
 m

in
ti

n
g

M
in

e
r

A
g

e
n

t

(V
e

n
d

o
r)

T
ra

n
sa

ct
io

n
 V

a
li

d
a

ti
o

n

&
 T

o
k
e

n
 m

in
ti

n
g

R
e

S
O

LV
 V

e
n

d
o

r

W
a

ll
e

t
S

to
re

s
p

ri
v
a

te
 k

e
y
s

R
e

S
O

LV
 C

o
rp

W
a

ll
e

t
S

to
re

s
p

ri
v
a

te
 k

e
y
s

V
e

n
d

o
r

P
ro

v
e

n
a

n
ce

A
g

e
n

t
G

e
n

e
ra

te
s

li
ce

n
se

s

a
n

d
 a

d
d

re
ss

e
s

[V
0

5
]

Is
su

e
 L

ic
e

n
se

 M
e

th
o

d

[M
0

1
]

V
a

li
d

a
te

 T
ra

n
sa

ct
io

n
 M

e
th

o
d

[M02] Mint Token Method

[V07] Get Private Key Method

[M
0

1
]

V
a

li
d

a
te

 T
ra

n
sa

ct
io

n
 M

e
th

o
d

[V
0

4
]

R
e

q
u

e
st

 A
p

p
:X

(S
)

M
e

ta
d

a
ta

 M
e

th
o

d

[M
0

2
]

M
in

t
T

o
k

e
n

s
M

e
th

o
d

[C
0

3
]

G
e

t
P

ri
v
a

te
 K

e
y

M
e

th
o

d

V
e

n
d

o
r

S
ta

rt
:A

[M
0

1
]

V
a

li
d

a
te

 T
ra

n
sa

ct
io

n
 M

e
th

o
d

[M
0

2
]

M
in

t
T

o
k

e
n

M
e

th
o

d

[V
0

6
]

P
u

rc
h

a
se

 T
o

k
e

n
 M

e
th

o
d

A
p

p
:X

(S
) U
se

r

S
ta

rt
:A

R
e

S
O

LV
 U

se
r

W
a

ll
e

t
A

g
e

n
t

S
to

re
s

p
ri

v
a

te
 k

e
y
s

S
to

re
s

Li
ce

n
se

s

V
a

li
d

a
te

s
U

se
rs

[U
0

2
]

U
se

r
 R

u
n

s
A

p
p

:X
(S

)
a

p
p

li
ca

ti
o

n
 a

n
d

is
 p

ro
m

p
te

d
 f

o
r

a
u

th
e

n
ti

ca
ti

o
n

 t
o

 A
p

p
:X

(S
)

(A
ct

io
n

)

[U
0

3
]

V
a

li
d

a
te

 U
se

r

M
e

th
o

d

[U
0

7
]

P
u

sh
 E

n
ti

tl
e

m
e

n
ts

M
e

th
o

d

 [
U

0
4

]
O

rd
e

r
A

p
p

:X
(S

)
Li

ce
n

se
 &

 p
ro

v
id

e
 m

e
ta

d
a

ta
 t

o
 V

e
n

d
o

r
M

e
th

o
d

[U
0

6
]

V
a

li
d

a
te

 L
ic

e
n

se
 M

e
th

o
d

[U
0

5
]

R
e

ce
iv

e
 L

ic
e

n
se

 M
e

th
o

d

C
o

rp

S
ta

rt
:A

[C
0

1
]

In
it

ia
l
T

o
k
e

n
 p

re
-m

in
e

M
e

th
o

d

[C
0

2
]

R
e

ce
iv

e
 T

o
k
e

n

R
e

q
u

e
st

 M
e

th
o

d

S
o

ft
w

a
re

D
o

w
n

lo
a

d
 S

it
e

A
p

p
:X

(S
)

S
o

ft
w

a
re

E
n

co
d

in
g

 S
e

rv
ic

e
[V

0
2

]
A

p
p

:X

w
ra

p
p

e
d

 t
o

 c
re

a
te

A
p

p
:X

(S
)

a
n

d

u
p

lo
a

d
e

d
 M

e
th

o
d

[V
0

1
]

V
e

n
d

o
r

d
e

v
e

lo
p

s
a

p
p

li
ca

ti
o

n

A
p

p
:X

 (
A

ct
io

n
)

[U
0

1
]

U
se

r
d

o
w

n
lo

a
d

s
&

in
st

a
ll
s

A
p

p
:X

(S
)

(A
ct

io
n

)

[V
0

3
]

G
e

n
e

ra
te

A
p

p
:X

(S
)

h
a

sh
 a

n
d

b
o

o
ts

tr
a

p
 M

e
th

o
d

LE
G

E
N

D

Li
ce

n
se

 P
ro

ce
ss

T
o

k
e

n
 P

ro
ce

ss

V
a

li
d

a
ti

o
n

 P
ro

ce
ss

M
in

in
g

 P
ro

ce
ss

A
ct

o
r

A
ct

io
n

[C
0

4
]

Is
su

e
 T

o
k
e

n
 M

e
th

o
d

Fi
gu

re
4.

7:
T

he
R

eS
O

LV
R

A

Chapter 4. Requirements Engineering 138

is responsible for the creation, development, governance, and ongoing operation of

the ReSOLV blockchain ecosystem. The Vendor is the software company that has

developed an application that will be protected using ReSOLV, whilst the User is the

consumer that downloads, installs and runs the application from the Vendor. Note that

each of the human actors has their own Wallet Agent to store tokens and private keys.

Primary Processes

The primary processes provide a visualisation of how the methods are related in

the ecosystem. The Token processes (shown in purple) are related to the creation

and transfer of unserialised tokens: that is, tokens that have not been distributed to

a User with a license key. License processes (shown in brown) are associated with

the encoding of the Vendor application and license generation and issuance, whilst

Validation processes (shown in green) are the processes surrounding user execution,

authentication, and license validation. Actor actions are events initiated by the actor

and are shown as dashed lines.

Technology Actors

Technology actors include the provenance agents, mining agents, user wallet agent,

and the software encoding service. The ReSOLV Corp provenance agent is responsible

for token issuance to vendors, whilst the Vendor provenance agent is responsible for

license issuance to the User. The Vendor also has a Software Encoding Service, which is

responsible for wrapping the application with an executable wrapper that enforces user

authentication, when executed, to determine license entitlements. For the purpose of the

research objectives, there is no actual encryption of the application being undertaken

within the wrapper. This extension of protecting the application could be implemented

as a future requirement. The Mining agents participate in the transaction validation and

token minting processes, with newly minted tokens being stored in each actor’s wallet.

Implementing this concept provides an economic incentive for Vendor and User actors

to create tokens for use within the ecosystem. Although these methods are essential for

Chapter 4. Requirements Engineering 139

the operational blockchain ecosystem, they are not fundamental to the ReSOLV process,

and are not defined in the requirements specification.

4.4.4 Methods

Following on from the previous section, the methods for the ReSOLV RA are explained

briefly below, illustrating the activities between the Agent actors.

CORP

C01: Initial Token Pre-mine Method: the blockchain ecosystem will require an ini-

tial pre-mine of tokens to get the system running and commence the minting of

new blocks. Pre-mined tokens are stored in the ReSOLV Corp wallet.

C02: Receive Token Request Method: vendors must request (purchase) tokens from

the ReSOLV Corp Provenance Agent for use in the license issuance process.

C03: Get Private Key Method: the ReSOLV Corp Provenance Agent requests the

required private key from the Corp Wallet.

C04: Issue Token Method: the ReSOLV Corp Provenance Agent issues the required

Tokens to the Vendor Wallet Agent.

VENDOR

V01: Vendor develops application App:X (Action): this is the initiating trigger for

the vendor, who develops application App:X and submits it to the Software

Encoding Service.

V02: App:X wrapped to Create App:X(S) Method: App:X is “wrapped” with an

executable that provides the front-end authentication to establish entitlements and

execute the application. For the purposes of testing the ReSOLV method, this can

be a stand-alone application that calls the executable software.

V03: Generate App:X(S) and bootstrap Method: the hash of App:X(S), and the

bootstrap, are stored in the Provenance database. These are used by the ReSOLV

Chapter 4. Requirements Engineering 140

user Wallet Agent to validate that App:X(S) has not been tampered with, and to

provide the code segment that will allow the App to boot.

V04: Request App:X metadata Method: when the User orders a license for App:X(S),

the Vendor provenance agent triggers a request for App:X(S) hash and bootstrap.

V05: Issue license Method: the Vendor provenance agent generates the license re-

quested by the User, and a unique blockchain address for the license. It then

creates a Sidebar, which is defined as “a set of data fields containing the license

key, hash and bootstrap, all encrypted with the User’s Public key, and signed with

the Vendor private key.” It then places the Sidebar on the blockchain from the

unique address.

V06: Purchase Token Method: the Vendor provenance agent requires tokens to which

the Sidebar is attached. The Vendor must acquire the tokens from the ReSOLV

Corp (or have minted tokens through mining). This method will trigger when the

number of tokens in the Vendor Wallet is low or nil.

V07: Get Private Key Method: when the Vendor provenance agent requires a private

key for a ReSOLV address from the Vendor Wallet for a software license, it

receives the next available private key.

USER

U01: User downloads and installs App:X(S) (Action): the User downloads and in-

stalls App:X(S). This is the initiating trigger action by the User.

U02: User runs App:X(S): the User executes the App:X(S) and is prompted for au-

thentication by the App:x(S) wrapper.

U03: Validate User Method: App:X(S) sends the username and password hash to

the User Wallet Agent via an ephemeral port or through a secure Application

Programming Interface (API).

U04: Order App:X(S) license Method: the User Wallet Agent authenticates the credentials

Chapter 4. Requirements Engineering 141

against those entered into its database. If there is no entry in the database, the User

Wallet Agent sends an order for an App:X(S) license to the Vendor Provenance

Agent.

U05: Receive License Method: the User Wallet Agent receives a token representing

the purchase of App:X(S) from the Vendor.

U06: Validate License Method: the User Wallet Agent validates the license by read-

ing Sidebar from the blockchain, using the Vendor address and the User’s private

key.

The following sections discuss the non-functional requirements for the ReSOLV blockchain

ecosystem, and introduce public key cryptography, which is at the heart of blockchains,

cryptocurrencies, and ReSOLV itself.

4.4.5 Non-functional Requirements

The non-functional requirements defined in this section are focussed on blockchain

requirements rather than SLV requirements, as the blockchain is the underlying platform

that ReSOLV will run on. These requirements are established for completeness of

specifying requirements of the ReSOLV blockchain ecosystem. Each requirement in

itself requires significant investigation and, as such, these non-functional requirements

are out of the scope of this research.

The requirements are established through the following Related Works: (i) SLV

in Section 2.7 on page 85; and (ii) alternative blockchain applications in Section 2.6

on page 77. Building on these requirements, the non-functional requirements in the

ReSOLV blockchain ecosystem are considered from the following common perspectives:

(i) Design/architecture; (ii) Usability; and (iii) Governance Considerations. These

requirements are explained below, with each requirement being described succinctly to

demonstrate the purpose of each characteristic for the ReSOLV blockchain ecosystem.

Chapter 4. Requirements Engineering 142

There has been diverse industry discussion on these requirements through various

discussion forums, and the consensus is that these types of non-functional requirements

need to be addressed during the design phase of the cryptocurrency or blockchain.

Such problems are currently (as at the date of submission) being seen in the Bitcoin

design stand-off between miners and developers, arguing over how to improve the

Bitcoin protocol scalability, which was not factored into the original Bitcoin design.

These non-functional requirements also provide the impetus for the creation of new

cryptocurrencies, collectively known as distributed ledger systems, such as Dash6, and

blockchain alternatives such as hashgraph (Baird, 2016).

• Design Requirements

Scalability: where blockchain design needs to consider many parameters sur-

rounding long-term scalability, including transactions per second, block size,

blockchain bloat, validation period, capability to handle micro-transactions,

mining requirements (Wood, Zamfir & Coleman, 2015; Danezis & Meikle-

john, 2015; Oberhauser, 2015).

Robustness: reflecting the need for the blockchain ecosystem to be hard to

disrupt through bugs, growth, delays in transaction validation, changing

environment, or malicious attacks on the blockchain miners and protocols

(Mazières, 2015; Kondor, Pósfai, Csabai & Vattay, 2014; Glaser & Bezzen-

berger, 2015).

Resiliency: the ability to be able to provide continuity of operation if an unexpec-

ted event occurs, or to recover to full operation without manual intervention

or corrective actions required (Bott & Milkau, 2016; Glaser & Bezzenberger,

2015).

Data Integrity: to ensure full data integrity of the blockchain through proven

6 https://www.dash.org

Chapter 4. Requirements Engineering 143

and trusted cryptographic methods (Alqassem & Svetinovic, 2015; European

Central Bank, 2015).

Security: the blockchain ecosystem can demonstrate that the bitcoin transac-

tion are secure throughout the transaction and consensus process, ensuring

double-spending does not occur. This includes ensuring the blockchain

proofs are valid. (Miers, Garman, Green & Rubin, 2013; Meiklejohn et al.,

2013; Xiaochao, 2014).

• Usability Requirements

From a ReSOLV user perspective, several non-functional requirements must be

considered to ensure the ReSOLV method will continue to function, given the

varying environments in which a user may be consuming the software. Typical

usability requirements are defined as follows:

Platform Independence: where the User may be using the software on different

devices (e.g., a Windows PC at home and a Windows PC at a Net cafe).

Mobility: where the User may be using the software across different geographic

locations (e.g., using the software on a device whilst in an office or using it

on the same device whilst on a ship at sea).

Portability: where the User may be consuming the software on different platforms

(e.g. the user wants to play a game on a PC or a PlayStation 4).

Flexibility: where different license types can be assigned to the user depending

on their need (e.g. where the vendor licenses specific feature sets in software,

which the User can select, or licenses can be revoked or expire).

Standalone: where the user can use the software without being connected to

the Internet (e.g. where Internet is not available, such as, desert region).

• Governance Considerations

Chapter 4. Requirements Engineering 144

Cryptocurrency and blockchain technologies introduce a new dynamic of gov-

ernance over the ecosystem, which should be established during the development

process phase and to provide on-going direction (Peck, 2017; Millar, 2017).

Hostile Takeover: controls are required to prevent hostile takeover of the crypto-

currency or blockchain by the Miners, or pools of Miners, forming 51%

collective mining power (Buterin, 2014; Ali et al., 2016).

Ownership: controls are required to ensure the funding entity retains ownership

of the cryptocurrency or blockchain development once it has reached go-live

(NXT Community, 2014; Millar, 2017).

Stability: methods are required to ensure Miners are mining the blockchain

using the latest stable release of mining software (Millar, 2017).

Economic Design: decisions need to be made as to what economic parameters

will be incorporated into the cryptocurrency or blockchain design to ensure

sustainable functionality (Millar, 2017; Fry & Cheah, 2016).

Code Source: policies need to be established to determine whether existing

source code is used, private source code is released, or if the development is

closed-sourced (Martin, 2014; Millar, 2017).

4.4.6 Public Key Cryptography and Digital Signatures

Cryptocurrencies and blockchain technology use a range of cryptographic primitives

to enable the decentralised trust and the immutability of the blockchain ledger. There

are two primary cryptographic functions used by cryptocurrencies: (a) public key cryp-

tography to store and spend money and; (b) cryptographic validation of transactions

using digital signatures (Böhme, Christin, Edelman & Moore, 2015).

Public Key Cryptography

Chapter 4. Requirements Engineering 145

Public key cryptography is a form of asymmetric cryptography, which uses key pairs (a

public key and private key) to provide authentication and encryption of data (messages)

that are exchanged between two parties over an insecure medium (such as the Internet).

The public key is a public identifier that can be freely shared with others, which is used

by others to encrypt data being sent to the owner of the public key. The private key is a

secret or password that must never be shared with anyone, and is used by the owner to

decrypt received messages that have been encrypted with the public key (Rivest, Shamir

& Adleman, 1978; Boneh, Sahai & Waters, 2012). For example, when Alice wants to

send a message securely to Bob over the Internet, she uses Bob’s public key to encrypt

the message and then sends it to Bob. When Bob receives the encrypted message from

Alice, he uses his private key to decrypt the message. If Bob wants to reply to Alice, he

uses Alice’s public key to encrypt the message and then sends it to Alice, who in turn,

uses her private key to decrypt the message.

Unlike symmetric key cryptography, public key cryptography does not require

a secure exchange of secret keys and functions securely based on full disclosure of

the public key. Public key cryptography relies on cryptographic algorithms based on

mathematical problems. Cryptocurrencies primarily utilise elliptic curve cryptography

(ECC), which provides for fast, efficient computations with low key size and high

security (Singh et al., 2016; Wood, 2016).

Digital Signatures

The second cryptographic function used by cryptocurrencies, digital signatures, also

uses public key cryptography. Digital signatures mathematically prove authenticity that

a message received is really from the person expected, and that the message contents

have not been modified during transmission over the insecure medium (Rivest et al.,

1978). The sender “signs” the message, and the output value of the “sign” function is

called the digital signature. Even a single character difference in a message will result

Chapter 4. Requirements Engineering 146

in an entirely different digital signature.

As shown below, Alice may input a Hello Worldmessage, along with her private

key (priv_key) through a sign function, to create a unique digital signature. If a single

character such as an “!” is added, the digital signature is completely different.

Original message:

sign("Hello World", priv_key) = n67n54n6l10xf15

Modified message:

sign("Hello World!", priv_key) = vk34jxl140501025

Bob, the recipient of the message from Alice, can use Alice’s public key to verify

the message digital signature to guarantee both the integrity of the message and that the

message was sent by Alice. If a single character has been changed and a man-in-the-

middle or forgery attack was attempted by a threat actor, the digital signature, validated

using Alice’s public key, would not match, and Bob would know the message integrity

was compromised.

Public key cryptography and digital signatures are essential for data integrity and

authenticity (non-repudiation in a legal sense) in the transmission of secure messages

over insecure, and indeed hostile, mediums, such as the Internet. Public usage of

both cryptographic functions has increased, as innovation over the Internet drives new

use-cases, such as cryptocurrency and blockchain applications.

As Applied to Cryptocurrencies

Cryptocurrencies use public-key cryptography to validate transactions between all

participants, and digital signatures to ensure transactional integrity and non-repudiation

(Peteanu, 2014). The cryptographic mechanisms used by cryptocurrencies provide

for strong confidentiality, data integrity, and non-repudiation services that are in use

by business, government, and military organisations, globally. In a cryptocurrency

ecosystem, the public key can be considered as the participant’s account number, whilst

Chapter 4. Requirements Engineering 147

the private key represents the participant’s ownership credentials. All participants have

digital wallets that are used to store private keys, as well as digital signatures that

represent cryptocurrency entitlements (bitcoins) that the participants own.

As Applied to ReSOLV

ReSOLV utilises public key cryptography and digital signatures, as applied to crypto-

currencies, for the transfer of the token (the digital signature) between accounts (user

wallets). It also utilises public key cryptography for encryption of the Sidebar data,

namely the software license, the hash of the software, and the software bootstrap. This

process maintains confidentiality and integrity of the data that resides on the blockchain.

ReSOLV also utilises digital signatures to provide authenticity of the Sidebar itself, and

places the Sidebar digital signature on the blockchain, so that any party can validate

that the Sidebar is from the expected software vendor.

Each software item, shown as App:X in the RA in Section 4.7 on page 137, requires

a new public-private key pair that will be used to store the digital signature for the

license in the User Wallet Agent. The User Wallet Agent, as the master repository of

all the private keys, will also need to be strongly protected itself, as a compromise of

the wallet will expose all the private keys, to decrypt the software Sidebar and access

software license information.

4.5 ReSOLV User Stories

The following User Stories reflect the functional requirements for the human and

technology actors identified in the ReSOLV RA. The User Stories have been structured

as described below.

• ReSOLV Corp user stories are established in Table 4.1 on page 149.

• ReSOLV User user stories are established in Table 4.2 on page 150.

• ReSOLV Vendor user stories are established in Table 4.3 on page 151.

Chapter 4. Requirements Engineering 148

Notes:

• [U03] Validate User Method user stories have been deconstructed to reflect the

different resulting states that may result from the [U02] user authentication, such

as a failed authentication or not having a license for the application, App:X(S).

• [U06] Validate License Method reflects user stories for both successful and failed

validation of App:X(S).

• App:X(S) is used to denote that Application X has been wrapped with the SLV

wrapper that enables authentication by the user.

4.6 Summary

In this chapter the RE discipline and process was discussed and applied to the ReSOLV

SLV method. The requirements elicitation process built on the MBM, identified in

the literature, to establish the requirements for the ReSOLV model blockchain-based

SLV method. To further define the ReSOLV model requirements, a requirements

specification is established. The requirements specification introduces a ReSOLV HLA

that outlines the entire ReSOLV blockchain ecosystem. It also introduces the ReSOLV

RA that describes the core methods for ReSOLV SLV, from which User Stories are

established. Non-functional requirements are discussed for completeness, but are out of

the scope of this research.

In the next chapter, a FD of key ReSOLV methods is presented, and DFDs are

introduced with minispec examples in pseudocode, which describe processes in more

detail. The DFDs provides the fundamental description of the core ReSOLV processes.

Chapter 4. Requirements Engineering 149

Table 4.1: ReSOLV Corp – User Stories

Ref GIVEN WHEN THEN
#C01 that the ReSOLV genesis

block has not been created
the Corp Miner is first
executed

generate the genesis block
with pre-mined tokens

#C02 that a token is requested
by a Vendor Provenance
Agent

at any time send a token request to
the Corp Wallet agent with
the required number of
Tokens

#C03 that the Corp Wallet agent
receives a token request
from the Provenance
Agent

at any time generate a new blockchain
address and provide
the required quantity of
tokens to the ReSOLV
Corp Provenance Agent
using the new address

#C04 that the Corp Provenance
agent has a new ReSOLV
blockchain address
generated

at any time update the blockchain
with the new address and
tokens

Chapter 4. Requirements Engineering 150

Table 4.2: ReSOLV User – User Stories

Ref GIVEN WHEN THEN
#U01 that the user downloads

App:X(S)
the user installs App:X(S)
on the user device

App:X(S) is ready to run

#U02 that the user runs
App:X(S) and the
App:X(S) wrapper
presents an authentication
window

the User enters their
credentials

the App:X(S) wrapper will
push the hashed User
credentials and App:X(S)
details to the User Wallet
Agent to validate the User

#U03A the hashed User
credentials received
by the User Wallet are
successfully validated
against the database

App:X(S) entitlements are
successfully validated in
the database

push App:X(S) entitle-
ments to App:X(S)

#U03B the hashed credentials
received by the User
Wallet are unsuccessfully
validated against the
database

at any time push App:X(S) invalid
credential message to
App:X(S)

#U03C the hashed credentials
received by the User
Wallet are successfully
validated against the
database

App:X(S) entitlements are
found in the database but
are invalid

push App:X(S) invalid
entitlement message to
App:X(S)

#U04 the hashed credentials
received by the User
Wallet are successfully
validated against the
database

App:X(S) entitlements are
not found in the wallet
database

order a license for
App:X(S) from the
Vendor Provenance Agent
and provide the metadata
including the App:X(S)
identifier, User name,
User Wallet address & the
Wallet address public key

#U05 that an order exists for a
license for App:X(S) from
the Vendor Provenance
Agent

each 15 seconds has
elapsed

query the User Wallet
address on blockchain for
the new App:X(S) Sidebar

#U06A that license App:X(S)
exists and a minimum
of 24 hours from the
previous App:X(S)
validation has elapsed

the agent connects to
blockchain to read license
Sidebar and successfully
validates App:X(S)

update database validation
log for a successful
validation check

#U06B that license App:X(S)
exists and a minimum
of 24 hours from the
previous App:X(S)
validation has elapsed

the agent connects to
blockchain to read license
Sidebar and unsuccess-
fully validates App:X(S)

update database validation
log for an unsuccessful
validation check and alert
the User

Chapter 4. Requirements Engineering 151

Table 4.3: ReSOLV Vendor Provenance Agent User Stories

Ref GIVEN WHEN THEN
#V01 that the vendor develops

App:X
App:X is uploaded into
the Software Encoding
Service

App:X is ready for wrap-
ping

#V02 App:X is ready for wrap-
ping

App:X has the ReSOLV
wrapper applied by the
Software Encoding Ser-
vice to become App:X(S)

then the Vendor can up-
load App:X(S) to an ex-
ternal software repository
or portal for download by
any public user

#V03 App:X has the ReSOLV
wrapper applied to
become App:X(S)

the App:X(S) hash
and bootstrap has been
generated by the Software
Encoding Service

store the App:X hash
and bootstrap in the
Provenance Database

#V04 the User Wallet Agent
has ordered a license for
App:X(S)

when the App:X(S) hash
and bootstrap have been
read from the Provenance
Database

generate a new license
address, license key and
create the App:X(S)
Sidebar. The Sidebar con-
sists of AppX:(S) license
key, hash & bootstrap
all encrypted with the
User public key, plus the
hash of the previous three
artefacts digitally signed
with the Vendor private
key.

#V05 the App:X(S) Sidebar has
been created

at any time update the blockchain
with the App:X(S) Sidebar

#V06 that the Vendor Wallet has
less than ten Tokens

when a Token is requested
from the Vendor Wallet

purchase ten Tokens from
the Corp Provenance
Agent through the
ReSOLV blockchain
ecosystem

#V07 that the Vendor
Provenance Agent re-
quires a new address for a
software license

an order for a license for
App:X(S) is approved

generate a new address
from the next available
private key in the Vendor
Wallet

Chapter 5

Functional Decomposition

5.1 Introduction

In the previous chapter, the RE approach for establishing the ReSOLV method require-

ments was discussed. The ReSOLV blockchain-based SLV model was proposed, and a

HLA and RA established and described. RE focusses on the functional requirements

for ReSOLV, resulting in user stories for the RA core processes being created as the

primary output from the RE research activities. Consideration was also given to the

non-functional requirements for ReSOLV. Although these are out-of-scope of this re-

search, they provide a useful overview which establishes the characteristics required to

achieve the ReSOLV mission statement.

In this chapter, an FD of the ReSOLV RA is undertaken to identify what processes

need to be built. DFDs are introduced for two of the main systems established in

the ReSOLV RA (see Section 4.7 on page 137) as follows: (i) the Vendor Provenance

System (VPS), relating to the Vendor Provenance Agent; and (ii) the Client User System

(CUS), relating to the Client User Wallet. As core actors in ReSOLV, these systems

represent roles that are similar to a client\server interaction, where both sides of the

conversation are captured in the DFDs. The chapter concludes with a discussion of

152

Chapter 5. Functional Decomposition 153

the effectiveness of using DFDs to produce artefacts that describe the ReSOLV core

processes.

5.2 Data Flow Diagrams

To further the research objectives of “designing a system, not making a prototype”,

an FD of the ReSOLV core actors is required to determine the processes that need

to be built for the system. FD is the process where a higher level function is divided

into identifiable sub-functions, corresponding to sub-tasks, and is a method for making

part of the transition from function to structure in the design process (Al-fedaghi,

2016). FD can be contrasted with non-functional requirements, which specify overall

characteristics such as scalability, usability, and reliability of a system (see Section 4.4.5

on page 141).

DFDs are system models, which show a functional perspective where each transform-

ation represents a single function or process (Sommerville, 2010), and are traditionally

used to model the system structure and interfaces as graphical representations. The

purposes of DFDs are, to show data flowing through the system at an iteratively lower

level, until all the processes that change data are identified, and to show where all

the data is stored. DFDs differ from UML activity diagrams, which show transitions

between activities and do not represent data flow. For the purpose of refining the

ReSOLV process and functions, DFDs present a useful modelling approach to the data

that flows between the various core actors within the ReSOLV ecosystem.

The structure of DFDs defines external entities that have system inputs and outputs

to processes and data stores. DFDs are created in layers, which progressively drill

into the functions where data is changed and stored (Hull et al., 2011). There are

three principle layers for DFD modelling. The first layer is the Context Diagram,

which represents a system that links only to external entities only (which be may other

Chapter 5. Functional Decomposition 154

systems). The second layer is the “Top level DFD” layer that outlines the processes

and data that flows between external entities, data stores, and to other processes. The

third layer (and any further layers) is used to further refine the data flows in each of the

sub-processes that compromise the higher layer processes. In this manner, all data flows

between entities, data stores and processes can be defined to the lowest atomic level,

as required. Hence, as each layer is decomposed into its sub-processes, a greater level

of detail is established, and a more accurate understanding of the function or process

is also established. Figure 5.1 illustrates the DFD Layers, from the Context Diagram

through to the sub-process layers.

Figure 5.1: FD (Hull et al., 2011)

For the purpose of clarity in describing the data flows between the external entities,

data stores, and processes, within the ReSOLV blockchain ecosystem, the following

methodology has been applied to each DFD. The left side of the DFD is used for

external entities, the right side of the DFD is used for data stores, and the centre of

the DFD is used for the processes. The rules that are applied to the DFD to maintain

consistency between the entities are:

Chapter 5. Functional Decomposition 155

• A process MUST change the data in some way

• Data can only come from a data store or an external entity

• Data cannot flow from one data store to another

• Data cannot flow from one external entity to another; it can only go through a

process

There are two exceptions to these rules: (i) the Context Diagram only presents data

from entities into a system, and hence data flows between external entities in a Context

Diagram; and (ii) the cryptocurrency blockchain ecosystem introduces some complexit-

ies that necessitate the breaking of the data flow rules in some cases, requiring data to

flow between external entities.

5.3 ReSOLV Functional Decomposition

5.3.1 Vendor Provenance System

This section presents the ReSOLV FD for the VPS, based on the ReSOLV RA. The

VPS is fully defined through the Context Diagram, Top level DFD, and third level

sub-process layers. Pseudocode (also known as mini-spec in DFD parlance) is included,

which provides the context around the DFD process data flows. The last section also

includes a data dictionary that explains the purpose for each data element and the

processes that utilise it. In the blockchain ecosystem, some data elements are used in

different ways, and may have different explanations.

The following figures present the DFDs for the VPS actor, taken from the ReSOLV

RA. In the DFDs, each data flow represents data within a process, when a VPS actor for

CUS is participating in the ReSOLV SLV method. The DFDs are, however, defining

the required data for the VPS to function, whereas the ReSOLV RA simplifies the

transaction process, without providing the detail necessary for developing a system.

Chapter 5. Functional Decomposition 156

Vendor Provenance

System
Client User System

App:X_ID, Client Address,

Client Public Key

License Notification

Blockchain

Peer Pool

ReSOLV Package

Validation Result

ReSOLV package

Client User System

Previous

transactions

Figure 5.2: VPS – DFD Context Diagram

VPS Context Diagram

The VPS has inputs and outputs from two external entities: the CUS and the Blockchain

Peer Pool (BPP) (Figure 5.2). The CUS sends the application related information to

the VPS1, and receives validation and license results. The VPS also has an input and

an output from the BPP. In order to complete a licensing transaction, the VPS must

validate the token it is holding, by reading the blockchain2. The output data from the

VPS is the ReSOLV package that contains all the license information for the application.

The final element to the Context Diagram is the ReSOLV package being sent to the

CUS outside the VPS.

1 Blockchain protocol transactions are inherently peer-to-peer. Architecturally, the information from the
CUS is broadcast to the BPP, where the VPS will listen for information relating to it. For example, the
application identifier can be the unique identifier that the VPS listens for.

2 The VPS key store store has previously received a token from a different external entity, and separate
DFD system.

Chapter 5. Functional Decomposition 157

VPS Top Level Diagram

The Top Level Diagram (Figure 5.3), is representative of all the processes in the

underlying DFDs, with every entity, data store, and data flow mapped out in the Top

Level Diagram. The Top Level Diagram shows that the VPS has been deconstructed

into four sub-processes (third level processes), as listed below. All inputs and outputs to

external entities shown in this DFD should reflect the Context Diagram.

P1.0

Validate

Client User & App:X
Client User

System

App:X_ID,

Client Address,

Public Key

P2.0

Generate new

license for App:X

Application

List (App:X)

App names

Client

Addresses

New Client address

App:X(S) hash, bootstrap

App:X Licenses

New App:X(license)

P3.0

Generate App:X

sidebar

P4.0

Publish ReSOLV Package

to blockchain

App:XE sidebar

Client Address

R
e

S
O

LV
 S

id
e

b
a

r

App:X(license)(priv key)

Blockchain

Peer Pool
ReSOLV Package

Validation Result

License Notification

App:X_ID

App:X(license)
App:X(S)

metadata

App:X(license)(address)

App:X License

Addresses

Client

Addresses

App:X(license)(priv key)

Client address

Client

Addresses

App:X License

Key Store

Client

Public Keys

New Client(pub key)

Client

Public Keys

Client(pub key)

Miner address
ReSOLV Miner

Addresses

App:X License

Key Store

Client address

App:X(license)(pub key)

Figure 5.3: VPS – DFD Top Level Diagram

Chapter 5. Functional Decomposition 158

The four VPS DFD sub-processes, deconstructed and explained below, are:

• P1.0 Validate Client Address

• P2.0 Generate App:X License

• P3.0 Generate App:X Sidebar

• P4.0 Publish ReSOLV package to blockchain

P1.0 Validate Client Address

The Validate Client Address DFD (Figure 5.6 on page 166), deconstructs P1.0 into two

sub-processes, P1.1 and P1.2. The DFD and pseudocode, together, show the purpose of

this process is to validate the Client and store new Client details. The CUS also receives

validation results from the VPS that ultimately can provide status information back to

the human actor. This step is important as it creates the new client record if it does not

already exist, and validates that the application is one that belongs to the Vendor. Where

the new client record is being created, the premise is that the client has made payment

for the software, and that a new license is to be issued to the end user (P2.0 below).

This process satisfies RQ2.2, maintaining anonymity of the actors in a transaction.

P2.0 Generate App:X License

P2.0 is a single process that simply reflects generation of the license for the application

(Figure 5.7 on page 167). The DFD and pseudocode together shows that the process is

intended to utilise unique information from the Client to generate the license, called

a tethered-license. In principle, this could provide a unique license that can only be

executed from the Client User Wallet associated with the Client Address, rendering

piracy through license copying impossible. This process is important because it is

binding the end user identity with the application identity, and generating a new unique

license that is entitled to run for an end user with a specific address. If the license is

obtained through some man-in-the-middle type attack, the license is prevented from

executing from any other address other than the one is bound to. However, the process

Chapter 5. Functional Decomposition 159

for license creation is beyond the scope of this research. This process supports satisfying

RQ1.1 by ensuring that the validated user is assigned entitlements, and that the license

cannot be used by any other actor.

P3.0 Generate App:X Sidebar

This DFD deconstructs the process for building the transaction Sidebar, which will be

used by the User Wallet Agent when the application requests validation of a human

actor (the user) into two separate processes, P3.1 and P3.2 (Figure 5.8 on page 168).

The data contained within the Sidebar is critical to the process of preventing software

piracy and protecting the application from at rest piracy. The DFD and pseudocode

shows the data in the Sidebar includes the tethered-license, a hash of the application so

that the application executable can be validated by the User Wallet Agent, and bootstrap

code that will allow the application to run. Each individual data element in the Sidebar

is then encrypted with the Client public key for confidentiality of the data on a public

blockchain, and then a signature for the encrypted Sidebar (data only) is generated

(using the private key associated with the license) and added to the Sidebar.

This DFD constructs the critical data for the ReSOLV method, and reflects the inten-

tion of the proposed ReSOLV model that was introduced in Section 4.3.2 on page 123.

This process supports satisfying RQ2.1, ensuring that confidentiality of private data is

maintained across the public blockchain, and supports RQ1.2 by demonstrating that

platform-neutral data is placed on the blockchain.

P4.0 Publish ReSOLV package to blockchain

The purpose of P4.0 (Figure 5.9 on page 169), is to publish the ReSOLV package

to the blockchain, so that the CUS can obtain the ReSOLV information required to

validate the application and user entitlements. P4.0 is deconstructed into three separate

processes, which first construct the blockchain protocol transaction inputs (P4.1). Then

the outputs are constructed (P4.2) where the Client Address and license public key are

added to the Sidebar. The license private key is used for signing the transaction, which

Chapter 5. Functional Decomposition 160

is needed when assigning the token to the Client User. This forms the ReSOLV package

(a blockchain transaction), which is then broadcast to the BPP (P4.3) after receiving the

reference ReSOLV mining DNS addresses.

P4.0 reflects the assembly of the necessary data to perform a transaction in a

cryptocurrency or blockchain ecosystem, and transmit that transaction to the peer-to-

peer mining network. This process supports RQ1.1, whereby the process actually

"saves" the data to the blockchain as a transaction.

5.3.2 Client User System

In this section a partial ReSOLV FD for the CUS, based on the ReSOLV RA, is presented.

The CUS is functionally established using the Context Diagram and Top Level DFDs.

However, due to time constraints, DFDs that deconstruct the Top Level Diagram into the

third level sub-process layers are not presented, and hence, no pseudocode is provided.

CUS Context Diagram (Figure 5.4 on the next page)

The CUS has inputs and outputs from three external entities: the Application System

(AS), VPS and the BPP. The AS first initiates a request to the CUS to validate the human

actor and receive the entitlements and data necessary to execute the application. This

triggers the CUS to validate the user and the application identifier. If the application has

been registered and licensed, the CUS will read the license Sidebar from the blockchain

and send the necessary data to the AS. Where no license is stored, the CUS initiates a

request license process to the VPS, to obtain a new license, as outlined in the previous

section.

Client User System Top Level Diagram

The CUS Top Level Diagram (Figure 5.5 on page 163), shows that the CUS has been

deconstructed into five sub-processes as described below. The descriptions are brief,

reflecting the intended functions and possible sub-processes.

Chapter 5. Functional Decomposition 161

Client User

System

Application

System

Vendor Provenance

System

App:X_ID,

Port Acceptance,

Username,

pw_hash

App:X_ID, Client(address),

Client(public key)

License Notification

Blockchain

Peer Pool

ReSOLV sidebar

Validation Result

ReSOLV package

Vendor Provenance System

Port,

App:X Validation Result,

Validate User Result,

App:X(license),

bootstrap

Figure 5.4: CUS – DFD Context Diagram

P1.0: Negotiate Protocols: when the AS communicates with the CUS, the two sys-

tems negotiate an ephemeral port unique to the application. This concept is

similar to a Transmission Control Protocol / Internet Protocol (TCP/IP) three-way

handshake. Because the port assignment is dynamic, the established port will be

stored for use by all processes on a per session basis. This process is important

because the CUS needs determine a unique port to maintain confidentiality of

data over a separate channel, which supports satisfying RQ2.2.

Chapter 5. Functional Decomposition 162

P2.0: Validate Application: the CUS will first validate if a license for the application

exists. If a license exists, the CUS will validate the application hash and a return

result will be sent to the AS. This process is important because it determines if the

application is valid and has maintained a state of integrity. If the AS application

ID does not exist in the CUS, the CUS will initiate a process to request a new

license from the Vendor (see P5.0 below). If the application ID exists, the AS

will validate the integrity of the AS using the hash of the AS that is stored in the

database (the blockchain). This process satisfies RQ1.3 though validation of the

application by the CUS, using the stored hashes in the blockchain.

P3.0: Validate User: this process will likely have two sub-processes (P3.1 and P3.2)

that reflect the clearly different functions. In P3.1, the User credentials from the

AS are checked, and if no credentials exist a failed status result will be returned to

the AS. Otherwise the credentials will be checked and passed/failed accordingly.

P3.2 would facilitate the new user creation process to add a new credentials to the

User database. This process is important for verification of the actor intending

to use the application. Ultimately, this process will need to support multiple

user authentication on a single device. It will also need to validate users against

the blockchain, if no local Wallet for the specific user is present. This process

supports RQ1.1 user validation requirements.

P4.0: Validate Entitlements: this process checks the license database for the applic-

ation, and downloads the Sidebar from the BPP to validate or save the license

entitlements. It sends the license and the application bootstrap back to the AS.

This process is important because it determines any features within the application

that the user is entitled too, and provides the bootstrap code that allows the AS to

execute. This process supports RQ1.1 user validation requirements by validating

the user against the ReSOLV blockchain, and also supports RQ 2.2, providing

confidentiality of the actors.

Chapter 5. Functional Decomposition 163

P5.0: Request license from Vendor: where there is no license record on the license

database, the CUS initiates a request to the VPS for a new license for the applic-

ation. This process is important because it presents the user the opportunity to

purchase a license from the Vendor through a disintermediated purchase process.

This process also supports RQ1.1 user validation requirements.

P1.0

Negotiate

protocols

Application

System

App:X_ID

P2.0

Validate

Application

pw_hash
P3.0

Validate User

Username, pw_hash,

App:X_ID

P4.0

Validate

entitlements

Blockchain

Peer Pool
ReSOLV Sidebar

Port

Port

New Username, pw_hash

App:X License

DB

App:X_ID

App:X(license),

 hash, bootstrap,

App:X(license)(address)

App:X License

DB

App:X_ID, hash

App:X_ID,

Client(address),

Client(pub key)Vendor

Provenance

System

P5.0

Request license from

Vendor

Port acceptance

App:X_ID

App:X Validation

Result

Validate User Result
User DB

App:X(license)

New App:X(license),

 hash, bootstrap,

App:X(license)(address)

App:X(license),

bootstrap

App:X License

DB

New Client(priv key)

New Client(pub key)

New Client(address)

ReSOLV Package

App:X

Portlist

Port

Port

Port

Port

App:X

Portlist

App:X License

DB
New App:X_ID

Username User DB

App:X_ID

Validation Result

License Notifiation

Figure 5.5: CUS – DFD Top Level Diagram

Chapter 5. Functional Decomposition 164

5.3.3 Data Dictionary

DFDs themselves do not provide any context around the purpose of the data and what

the data flow relates to. Data Dictionaries are used to complement the DFDs and

pseudocode to provide context for the data, to provide a brief explanation for the use of

the data, and to describe the type of data being used (Crowder & Friess, 2013). A Data

Dictionary for the VPS is introduced that provides the context around the data flows in

the VPS process as shown in Table 5.4 on page 170. A Data Dictionary for the CUS is

not presented as the sub-processes were not defined due to time limitations.

5.3.4 Analysis

Throughout the FD process, DFDs are found to be effective, particularly where new

ground is being covered, such as the process of creating a NBA, and very little reference

information is available. Where Agile and SCRUM methodologies rely on existing ref-

erences and expertise in creating particular types of systems, constructing the ReSOLV

blockchain DFDs required a clear understanding of the blockchain functions to create

the new artefact, and to understand the data flows between systems. DFDs force the

understanding of the processes, and in this case the learnings were regarding the actual

protocol level mechanisms of the Bitcoin protocol transaction. These learnings have

been provided in Appendix A.2 on page 223.

A key interesting discovery, in respect to constructing DFDs, is that the blockchain

protocol utilises a broadcast mechanism, where actors listen to broadcasts (which is

facilitated by Miners), and don’t interact with each other directly. This mechanism

requires a modification to the DFD rules, as data needs to flow from sub-processes to

other external entities (other systems) in the blockchain ecosystem.

Chapter 5. Functional Decomposition 165

5.4 Summary

This chapter discussed FD, and introduced DFDs as the method to determine the

processes that need to be built for the ReSOLV system. DFDs and pseudocode are

established for the VPS, and partially established for the CUS, to demonstrate how data

flows between the two core technology actors. A Data Dictionary was also presented

for the VPS, to provide the full context around each of the data elements.

This section concludes the artefact creation aspects of this research. The next

chapter discusses the outcomes and findings during the artefact development process,

and reflects on the Research Questions, hypotheses, and research methodology. It

explores whether this research has succeeded in establishing that the ReSOLV method

is viable for SLV.

Chapter 5. Functional Decomposition 166

P1.1
Create new Client Record

Client

User

System

App:X_ID, Client Address

New Client address

P1.2
Validate App:X ID

Application List

(App:X)
App names

P1.0

Validate Client Address & App:X

Pseudocode

If client address = null then

 Store Client address

 Store Client(pub key)

 Return Validation Result App:X_ID Received to Client

End If

If App:X_ID = null then

 Return Validation Result App:X_ID Unknown to Client

End if

Client

Addresses

Validation Result

P1.1

P1.2

Client addresses

Client

Public Keys

New Client(pub key)

Figure 5.6: VPS – DFD P1.0 Validate Client Address & App:X

Chapter 5. Functional Decomposition 167

P2.0

Generate new license for

Client App:X

P2.0

Generate App:X License

Pseudocode

Use Client Address AND App:X_ID to generate license key for App:X_ID

Store App:X(license)as new license

App:X

Licences

New App:X(license)

Client

User

System License Notification

P2.0

Client Address
Client

Addresses

App:X_ID

Application

List (App:X)

Figure 5.7: VPS – DFD P2.0 Generate App:X License

Chapter 5. Functional Decomposition 168

P3.1
Build App:X Sidebar

P3.2
Sign & Encrypt

App:X Sidebar

App:X Sidebar

P3.0

Generate App:X Sidebar

Pseudocode

Create Sidebar As String

Append App:X(license) to Sidebar

%% hash and bootstrap relate to the wrapped App:X(S) not App:X

Append App:X(S) hash to Sidebar

Append App:X(S) bootstrap to Sidebar

Get Client(pub key)

Encrypt App:X(license) with Client(pub key)

Encrypt App:X(S)hash with Client(pub key)

Encrypt App:X(S)bootstrap with Client(pub key)

Get App:X(license)(priv key)

Hash Sidebar with Client(pub key)

Digitally sign Sidebar with App:X(license)(priv key)

Append Digital Signature to Sidebar

App:X(S) hash

App:X(priv key)

P3.1

P3.2

P4.0

App:XE Sidebar

App:X(license)

App:X(S) bootstrap

App:X

Licences

App:X(S)

Metadata

Client Public

Keys
Client(pub key)

App:X License

Key Store

Figure 5.8: VPS – DFD 3.0 Generate App:X Sidebar

Chapter 5. Functional Decomposition 169

P4.1
Construct App:X

transaction input

App:XE Sidebar

P4.2
Construct App:X

transaction output

Validation Input

P4.0

Publish ReSOLV package to blockchain

Pseudocode

Transaction As String

Append App:X(license)(address) to Transaction %% FROM address

Get input transactions from blockchain

Create hash digests of input transactions

Append hash digests to Transaction %% Current validation

Append Client address to Transaction %% TO address

Append App:XE Sidebar to Transaction %% License data

Append App:X(license)(pub key) %% Future validation

Create ReSOLV package Signature using App:X(license)(priv key)

Append ReSOLV package Signature to Transaction

%% ReSOLV package now created

Get Miner Address to resolve blockchain Peer Pool

Push ReSOLV package to blockchain Peer Pool

%% Miners now need to validate transaction and add to blockchain

P3.0

P4.1

P4.2

Client address

App:X(license)(address)

App:X

License

Addresses

P4.3
Publish ReSOLV package

to blockchain

Blockchain

Peer Pool

ReSOLV package

ReSOLV package

Client

Addresses

App:X(license)(priv key)

Miner address

ReSOLV

Miner

Addresses

Previous transactions

P4.3

App:X(license)(pub key)

App:X License

Key Store

Figure 5.9: VPS – DFD P4.0 Publish ReSOLV Package to Blockchain

Chapter 5. Functional Decomposition 170

Ta
bl

e
5.

1:
R

eS
O

LV
D

at
a

D
ic

tio
na

ry

Va
ri

ab
le

_N
am

e
Va

ri
ab

le
_D

es
cr

ip
tio

n
U

se
d_

B
y

Ty
pe

C
lie

nt
_P

ub
lic

_K
ey

St
or

es
th

e
C

lie
nt

pu
bl

ic
ke

y
th

at
w

ill
be

us
ed

to
en

cr
yp

tt
he

lic
en

se
da

ta
in

th
e

si
de

ba
r

P1
.1

:
U

se
d

to
st

or
e

ne
w

cl
ie

nt
pu

bl
ic

ke
ys

;r
eq

ui
re

d
fo

r
en

cr
yp

tin
g

cl
ie

nt
da

ta
P3

.2
:

U
se

d
to

en
cr

yp
tc

lie
nt

da
ta

in
th

e
Si

de
ba

rt
ha

tw
ill

be
pl

ac
ed

on
th

e
bl

oc
kc

ha
in

St
ri

ng
:

E
C

D
SA

:
Pu

bl
ic

_K
ey

C
lie

nt
_A

dd
re

ss
es

St
or

es
th

e
re

qu
es

tin
g

cl
ie

nt
ad

dr
es

s
so

th
at

th
e

co
rr

ec
t

ad
dr

es
s

fo
rt

he
lic

en
se

is
pl

ac
ed

on
th

e
bl

oc
kc

ha
in

P1
.1

:
U

se
d

to
va

lid
at

e
th

e
cl

ie
nt

ad
dr

es
s

(P
ub

lic
K

ey
an

d
C

lie
nt

A
dd

re
ss

sh
ou

ld
m

at
ch

,b
ot

h
ca

n
on

ly
be

cr
e-

at
ed

w
ith

th
e

C
lie

nt
Pr

iv
at

e
K

ey
)

an
d

ad
d

a
N

ew
C

lie
nt

ad
dr

es
s

P2
.0

:
U

se
d

to
ge

ne
ra

te
a

C
lie

nt
ad

dr
es

s
te

th
er

ed
-l

ic
en

se
A

pp
:X

(l
ic

en
se

)
P4

.2
:

U
se

d
in

th
e

co
ns

tru
ct

io
n

of
th

e
tra

ns
ac

tio
n

ou
tp

ut
.I

t
is

th
e

de
st

in
at

io
n

ad
dr

es
s(

th
e

C
lie

nt
)f

or
th

e
R

eS
O

LV
pa

ck
ag

e

St
ri

ng
:

E
C

D
SA

:
Pu

bl
ic

_K
ey

A
pp

_X
_I

D
T

he
un

iq
ue

ID
fo

r
ea

ch
ap

pl
ic

-
at

io
n

re
le

as
ed

by
th

e
so

ft
w

ar
e

ve
nd

or

P1
.2

:
U

se
d

to
va

lid
at

e
th

at
th

e
A

pp
:X

ID
ex

is
ts

.
In

th
e

fu
tu

re
,

th
is

m
ay

al
so

in
di

ca
te

an
y

lic
en

se
sp

ec
ifi

c
te

rm
s

re
la

te
d

to
th

e
lic

en
se

P2
.0

:
us

ed
in

th
e

cr
ea

tio
n

of
A

pp
:X

(l
ic

en
se

)

St
ri

ng
:

To
ke

n_
A

dd
re

ss

Va
lid

at
io

n
R

es
ul

t
St

or
es

th
e

re
su

lt
st

at
us

fo
r

th
e

U
se

r
an

d
A

pp
:X

_I
D

va
lid

at
io

n
fu

nc
tio

n

P1
.1

:
U

se
d

to
re

tu
rn

st
at

us
of

va
lid

or
in

va
lid

fo
rt

he
C

lie
nt

va
lid

at
io

n
P1

.2
:

U
se

d
to

re
tu

rn
th

e
st

at
us

of
va

lid
or

in
va

lid
fo

rt
he

A
pp

:X
_I

D
va

lid
at

io
n

In
te

ge
r

Chapter 5. Functional Decomposition 171

Ta
bl

e
5.

1:
R

eS
O

LV
D

at
a

D
ic

tio
na

ry

Va
ri

ab
le

_N
am

e
Va

ri
ab

le
_D

es
cr

ip
tio

n
U

se
d_

B
y

Ty
pe

L
ic

en
se

N
ot

ifi
ca

tio
n

St
or

es
th

e
re

su
lt

st
at

us
fo

r
th

e
lic

en
se

ge
ne

ra
tio

n
fu

nc
tio

n
P2

.0
:

U
se

d
to

re
tu

rn
st

at
us

of
co

m
pl

et
e

or
fa

ile
d

fo
r

th
e

lic
en

se
ge

ne
ra

tio
n

In
te

ge
r

A
pp

N
am

es
St

or
es

th
e

re
su

lt
of

a
qu

er
y

fo
r

A
pp

:X
_I

D
P1

.2
:

U
se

d
to

de
te

rm
in

e
if

A
pp

:X
_I

D
is

va
lid

St
ri

ng

A
pp

:X
(li

ce
ns

e)
St

or
es

lic
en

se
fo

rA
pp

:X
_I

D
P2

.0
:

U
se

d
to

re
co

rd
th

e
ne

w
lic

en
se

in
th

e
lic

en
se

da
ta

ba
se

P3
.1

:
U

se
d

fo
rt

he
co

ns
tr

uc
tio

n
of

th
e

A
pp

:X
Si

de
ba

r

St
ri

ng

A
pp

:X
(S

)h
as

h
St

or
es

th
e

A
pp

:X
(S

)h
as

h
P3

.1
:

U
se

d
fo

rt
he

co
ns

tr
uc

tio
n

of
th

e
A

pp
:X

Si
de

ba
r

St
ri

ng

A
pp

:X
(S

)b
oo

ts
tr

ap
St

or
es

th
e

A
pp

:X
(S

)b
oo

ts
tr

ap
P3

.1
:

U
se

d
fo

rt
he

co
ns

tr
uc

tio
n

of
th

e
A

pp
:X

Si
de

ba
r

St
ri

ng

A
pp

:X
(li

ce
ns

e)
(p

ri
v

ke
y)

St
or

es
th

e
pr

iv
at

e
ke

y
of

A
pp

:X
(l

ic
en

se
)

P3
.2

:
U

se
d

to
di

gi
ta

lly
si

gn
th

e
A

pp
:X

Si
de

ba
r

P4
.2

:
U

se
d

to
di

gi
ta

lly
si

gn
th

e
R

eS
O

LV
tr

an
sa

ct
io

n
St

ri
ng

:
E

C
D

SA
:

Pr
iv

at
e_

K
ey

A
pp

:X
(li

ce
ns

e)
(p

ub
ke

y)
St

or
es

th
e

pu
bl

ic
ke

y
of

A
pp

:X
(l

ic
en

se
)

P4
.2

:
A

pp
en

de
d

to
th

e
R

eS
O

LV
tr

an
sa

ct
io

n
an

d
us

ed
by

an
yo

ne
to

va
lid

at
e

th
e

tr
an

sa
ct

io
n

in
th

e
fu

tu
re

an
d

pr
ov

id
e

au
th

or
is

at
io

n
“s

pe
nd

”
th

e
to

ke
n

St
ri

ng
:

E
C

D
SA

:
Pr

iv
at

e_
K

ey

A
pp

:X
(li

ce
ns

e)
(a

dd
re

ss
)S

to
re

s
th

e
ad

dr
es

s
of

A
pp

:X
(l

ic
en

se
)

P4
.2

:
T

hi
s

is
th

e
so

ur
ce

or
cu

rr
en

ta
dd

re
ss

of
th

e
to

ke
n

be
in

g
us

ed
in

th
is

tr
an

sa
ct

io
n

St
ri

ng
:

E
C

D
SA

:
Pu

bl
ic

_K
ey

Chapter 5. Functional Decomposition 172

Ta
bl

e
5.

1:
R

eS
O

LV
D

at
a

D
ic

tio
na

ry

Va
ri

ab
le

_N
am

e
Va

ri
ab

le
_D

es
cr

ip
tio

n
U

se
d_

B
y

Ty
pe

M
in

er
A

dd
re

ss
St

or
es

an
IP

ad
dr

es
s

P4
.3

:
T

hi
s

is
th

e
IP

ad
dr

es
s

of
th

e
D

N
S

se
rv

er
s

us
ed

to
re

so
lv

e
th

e
co

re
M

in
er

s
to

es
ta

bl
is

h
w

ho
to

co
nn

ec
t

to
in

th
e

B
lo

ck
ch

ai
n

Pe
er

Po
ol

St
ri

ng
:

R
eS

O
LV

Pa
ck

ag
e

St
or

es
th

e
fu

lly
co

ns
tr

uc
te

d
R

eS
O

LV
pa

ck
ag

e
da

ta
P4

.3
:

T
hi

s
is

fu
ll

tr
an

sa
ct

io
n

th
at

w
ill

be
pr

oc
es

se
d

by
th

e
M

in
er

s
in

th
e

B
lo

ck
ch

ai
n

Pe
er

Po
ol

St
ri

ng
:

A
pp

:X
ε

Si
de

ba
r

St
or

es
th

e
en

cr
yp

te
d

A
pp

:X
Si

de
ba

r
P3

.2
:

T
hi

s
us

ed
to

ho
ld

th
e

en
cr

yp
te

d
Si

de
ba

rt
ha

tw
ill

be
ap

pe
nd

ed
to

th
e

R
eS

O
LV

tr
an

sa
ct

io
n

St
ri

ng
:

Chapter 6

Discussion

6.1 Introduction

In the last chapter, FD for the ReSOLV method was discussed, and Data Flow Diagrams

were introduced, as the method for determining the processes required in the ReSOLV

RA. This resulted in the creation of Data Flow Diagrams for the core VPS and CUS,

with pseudocode completed to provide context for the data flows between these two

core technology actors. Together, these artefacts demonstrated how the hypothetical

SLV method would function.

In this chapter, the findings from the RE and FD chapters are presented and discussed

in respect to the Research Questions established in Section 2.8.1 on page 91. Each

Research Question is examined, to determine the level of success resulting from the

research outputs, and the overall success of the research outputs is evaluated, with

outcomes confirming the hypotheses established in Section 2.8.2 on page 92. Lastly,

reflections are provided, to evaluate the suitability of the DSR approach to test the

Research Questions, and to consider improvements that could be made for future

research.

173

Chapter 6. Discussion 174

6.2 Research Motivation

For the purpose of grounding this chapter, a review of the motivations and drivers for

this research into solving a global software piracy problem is required.

The review of literature in Chapter 2 on page 27 explored the scope and depth of

software piracy, and confirmed the complexity of addressing the issues surrounding

it. Several models that improved the understanding of piracy issues were presented,

forming a clearer picture of how piracy occurs, and the relationships and methods used

to obtain pirated software. Together, these define the software piracy attack surface, and

are summarised as follows:

Establishing the scope of software piracy in respect to global impact, and expansion

of platform piracy issues into the mobile computing world and gaming platforms

(as discussed in Section 2.2 on page 28).

Identifying, defining and relating software piracy types and actors involved in soft-

ware piracy, concluding by introducing a taxonomy of software piracy types (and

roles (as shown in Table 2.1 on page 51).

Determining the methods used to protect software from piracy, and how threat act-

ors defeat piracy protection mechanisms(Section 2.2 on page 56) and overcome

prevention methods (as discussed in Section 2.4.4 on page 60).

Relating how the threat actors interact and engage in the software piracy process,

either deliberately or unwittingly, through the software piracy model (as shown

in Figure 2.7 on page 59.

Identifying the points where software piracy can occur as shown by the Software

Vulnerability Piracy Lifecycle (Figure 2.8 on page 64).

Identifying related software piracy issues such as enforcement, jurisdictional bound-

aries (see Section 2.4.7 on page 65), and how pirated software is a well known

vector for malware (see Section 2.4.8 on page 67).

Chapter 6. Discussion 175

The attack surface shows that the path to software piracy prevention, and protection

of software creator copyright, is challenging. Piracy is still rife across all ecosystems

other than Apple IOS, and even cloud computing business models suffer considerable

piracy due to credential sharing. The aggregated opportunity cost of software piracy

across the various platforms is estimated to be USD $132 billion annually, excluding

economic costs from mobile and cloud platforms – because there is little or no peer

reviewed research available for these platforms. Hence, there is strong motivation to

solve this problem.

A blockchain-based SLV method for software piracy prevention and provenance

needs to:

Be Global: it should be available online so that software creators have knowledge of

use of their software.

Support Multiple Platforms: it needs to be a single system that is supported cross-

platform, so that it is straightforward for software creators building on any plat-

form.

Be Cost-effective: this is mainly a product of being homogeneous and simple,but also

reflects a requirement for minimal infrastructure.

Place license authorisation in the hands of the software creator: the software cre-

ator should have control over license issuance.

Protect software at rest: to prevent reverse engineering and cracking of software by

threat actors or malware.

Uniquely bind user identity to software entitlements: so that only licenses issued

legitimately, to unique users, are valid.

Disincentivise credential sharing: by multiple parties using the same software.

Provide end user anonymity and data confidentiality: by reducing the attack sur-

face across all states of the software piracy vulnerability lifecycle.

Chapter 6. Discussion 176

There is one final requirement for this method, which derives from the literature review.

A key learning from that review was that the actor role is the fundamental lowest

common denominator in software piracy (as shown in the software piracy process in

Figure 2.7 on page 59), and that user oriented entitlements ensure that only a specific

user has software entitlements, as shown in the SPVL in 2.8 on page 64. The requirement

then, is for a strong mechanism to be established between the User and the Software

Entitlement, where end users cannot, or are very unlikely to, share credentials.

Further to this, the review of literature shows that cryptocurrency and blockchain

technologies1 are a feasible technology to meet the requirements to protect software

across the attack surface and, therefore to overcome the piracy issues. The findings show

that blockchains are global, distributed, cost-effective, and customisable. Applications

can be written to leverage existing cryptocurrencies, or can be designed or created as a

new ecosystem dedicated to a specific use-case, called NBAs. Based on existing proof-

of-concepts and industry developments that demonstrate new use-cases for blockchain

technology, it was determined that SLV could feasibly be constructed using the techno-

logy. Building on this, the literature review discovered that an existing proof-of-concept,

called the MBM, had proven that a cryptocurrency could be used to convey license

entitlement in a basic sense.

In summary, a motivation with clearly stated problems has been defined, and a

potential method to address the problems, using blockchain technologies (specifically a

NBA), has been established. With the motivation established, the following sections

discuss the findings and outcomes of this research.

1 It should be noted that since the inception of this research, a new term has evolved within industry to
describe systems that utilise blockchain-like technology, called “Distributed Ledger Technologies” or
DLTs. DLTs use new mechanisms such as hashgraph (Baird, 2016), and can be quite different from
the blockchain, but solve inherent problems that blockchains can present for certain use-cases. For
consistency of this research, blockchain technologies will continue to be used.

Chapter 6. Discussion 177

6.3 ReSOLV: a Native Blockchain Application

6.3.1 Findings

The purpose of RQ1, as established in Section 2.8.2 on page 92, was to determine

if the Native Blockchain Application (defined in Section 2.6.2 on page 80) can be

applied to meet the functional requirements of a distributed SLV method. A review

of methodologies, in Chapter 3, determined that DSR was the most suitable research

methodology given that cryptocurrency software engineering is highly iterative as new

ideas are designed, tested and evaluated.

RE in Chapter 4 on page 113, examined the MBM license provenance proof-of-

concept, and its application to SLV (Section 2.7 on page 85). The findings demonstrated

that the MBM was applicable to aspects of SLV. However, MBM is too simplistic in

that it fails to take account of the complex nature of software licensing and distribution,

as identified by proposed alternative SLV methods, such as Pirax, DRM Framework and

Tagged Transaction Protocol (Section 2.7 on page 85). Furthermore, MBM provides

no protection against most of the forms of software piracy identified in Section 2.4.5

on page 61. Examination of the software piracy process (Section 2.4 on page 52)

also demonstrates that there are many methods that circumvent the MBM protection

mechanism. These include techniques such as removing the code that validates the

entitlement on the blockchain, or sharing of the cryptocurrency private keys used by the

software licensing method.

Building on this, the ReSOLV Model was proposed to overcome the limitations of

the MBM by including license data stored on the immutable blockchain in encrypted

form, using well established public-key cryptography methods. The proposed license

data stored on the blockchain includes license key, software hash, bootstrap loader, and

a digital signature field, providing a global method for software license distribution.

Chapter 6. Discussion 178

Alice’s

Wallet

Agent

Blockchain

Peer Pool

Application

Wrapper

User &

License

Information

Store

License

Information

Alice has

credentials to her

wallet and has

software linked to

her credentials

When Alice runs the

application she is

actually running the

wrapper which asks

Alice for her

credentials.

Although the

wrapper is

executable, the

application is not,

because it does not

have its bootstrap

Bootstrap, a small

amount of code on

the blockchain,

linked to Alice’s

blockchain address

�

Application license

linked to Alice’s

blockchain address

Hash of the

wrapper +

application to

validate integrity

Alice’s Wallet Agent

reads blockchain

license information

1. Check hash

3. Alice’s license

2. Alice’s credentials

4. Bootstrap

Alice’s Wallet Agent

saves blockchain

license information

for offline validation

Future: Wrapper

reads blockchain

license information

for mobility

Wallet ���� Wrapper

Exchange

Figure 6.1: Simplified ReSOLV – Client-side

ReSOLV Client-side Research Outcomes

From a post-requirements specification and design perspective, Figure 6.1 illustrates the

ReSOLV SLV concept from the client-side. This simplified diagram is taken from the

ReSOLV RA and presents the core client-side innovation – a ReSOLV wallet agent and

an application that has a wrapper applied, which is executed ahead of the application

to validate the user. Using Alice as the user, Figure 6.1 shows that Alice has a Wallet

Agent that reads license information from the BPP, which it also stores in its local

database (User and License Information Store). The database also holds user credentials

and private keys related to the licenses, an essential requirement for the blockchain

Chapter 6. Discussion 179

method to function. The application is “wrapped” with a ReSOLV executable, which

first communicates with the Wallet Agent to validate the application’s integrity using

the stored hash of the application. It then requires Alice to enter her credentials to

authenticate to her Wallet Agent, which, if Alice’s credentials are correct, matches her

entitlements and provides the application wrapper with the license and bootstrap.

Some key considerations from the discussion include the following:

• For the purpose of this research, the ReSOLV wrapper itself has not been defined.

From a proof-of-concept perspective, it may just be a separate application that

subsequently launches the application. In practice, the wrapper may indeed

wrap the application, or it may utilise libraries that are included during software

development.

• Using the Wallet Agent as an independent active agent, it provides the validation

of both the application and the user. The hash check of the application is fun-

damentally powerful because it prevents application execution in the event the

application has been modified through malicious cracking or malware behaviours.

The hash itself cannot be modified because the hash is digitally signed by the

vendor and held on the immutable blockchain, so an attack on the Wallet Agent

will not result in a compromised license.

• As demonstrated in Section 4.3.2 on page 123, the ReSOLV model supports

application changes such as patching or upgrades. The application integrity is pro-

tected throughout its lifecycle, and vendors can manage re-licensing applications

throughout the software development lifecycle. However, it should be noted that

this research has only explored the process of upgrading a single executable. As

applications may have many libraries and executables, consideration should be

given to what needs to be included as part of the ReSOLV model.

• The FD of the ReSOLV Vendor Provenance function resulted in the proposition

Chapter 6. Discussion 180

of the license key being generated, utilising the Client license address to provide

an entirely unique license that may only be run from the User Wallet address.

This prevents any utilisation of the license key if the threat actor has obtained the

user’s private key and has successfully hacked the license from the Wallet Agent

database. In this instance, the license will not function in any other Wallet Agent.

Furthermore, as the license key is digitally signed by the vendor, a threat actor

cannot sign a license with his own key. Hence, this method protects the license

integrity and ensures the license used is the one issued by the vendor.

High Level Architecture

The HLA provided more of an enterprise perspective of ReSOLV and what the eco-

system may look like when integrated into third-party services for authorisation and

support of enterprise directory environments, such as Microsoft’s Active Directory.

There will be future challenges, managing license entitlements for employees who

will eventually depart the business that hired them. There will need to be a method

for licenses to expire to allow for fluid situations, such as a dynamic workplace. The

ReSOLV mechanism already supports this through the software update mechanism

described in Section 4.3.2 on page 123, but would need to be refined.

Further challenges are identified in the HLA, primarily concerning the non-functional

requirements, where scalability and robustness of the ReSOLV ecosystem must be con-

sidered as part of the RE process.

Vendor Provenance Agent

The Vendor Provenance Agent presented an interesting challenge during the require-

ments specification and FD. It was quickly, apparent during requirements specification,

that where detailed requirements were needed, they would need to be limited to func-

tional requirements. The non-functional requirements for an NBA are considerable,

and require research in their own right. In addition, the ReSOLV HLA was far too

Chapter 6. Discussion 181

large from a functional requirements perspective. This resulted in the development of

the ReSOLV RA, to provide focus, and identify the core actors and functions of the

ReSOLV model.

The ReSOLV RA also lacked detail for the DFDs in the FD (see Chapter 5 on

page 152). This required some careful investigation and consideration of the underlying

Bitcoin protocols used by the ecosystem actors, necessitating a re-architecture of the

Wallet Agents in the ReSOLV RA.

A useful outcome of the DFD process was to identify that Bitcoin as a cryptocurrency

was not suited to the ReSOLV model. Bitcoin supports up to 80 bytes of data in the

Bitcoin protocol. However, ReSOLV utilises 76 bytes across license key, hash digest,

and signature, leaving no room for the bootstrap. Ethereum supports larger data amounts,

and could feasibly be used for ReSOLV except that every transaction incurs an individual

gas charge, which would render ReSOLV non-viable from a cost perspective.

The following sections respond directly to the Research Questions proposed for this

research.

6.3.2 RQ1.1

How can the Native Blockchain Application be utilised to protect software

copyright by validating user entitlements?

Through the RE and FD design process, it was established that NBA would be the most

suited for developing the ReSOLV model. The blockchain based method provides the

core mechanisms for storage and distribution of the software licenses and data used to

validate the application. This method eliminates man-in-the-middle attacks by using

digital signatures from the vendor. The key points supporting this finding are:

• Licenses are protected from any copying process, as they are uniquely keyed to

the Wallet Agent address and will not function anywhere else.

Chapter 6. Discussion 182

• Applications will not execute if any unauthorised modification of the application

is undertaken.

• Applications will not execute without the bootstrap. If an attack attempts to

capture the bootstrap in memory and insert it into the application, the application

hash will not match, and the application will not execute in any case.

• Although a user can disclose their credentials and private keys to the Wallet

Agent, the user is disincentivised to do so, because that would expose the license

details for all their license entitlements. This is similar to giving someone your

EFTPOS card and PIN to keep, so they can withdrawn money once. It would be

a high risk proposition.

On reviewing suitability of existing cryptocurrencies, such as Bitcoin and Ethereum,

for SLV, it was found that these could provide the required technical functionality.

However, the research contends that non-functional considerations, such as cost, and

ecosystem considerations such as scaling, will create a persuasive weighting towards

implementing ReSOLV as an NBA.

6.3.3 RQ1.2

How can the Native Blockchain Application validate user entitlements across

multiple platforms?

Given that the requirements specification is platform neutral, it is considered practical to

state that the ReSOLV agents can be written for multiple platforms, such as Microsoft

Windows and Android. This is demonstrated through the ReSOLV RA, the DFDs, and

associated pseudocode, which demonstrate there is no bias for operating system or

platform.

The ReSOLV method utilises the blockchain for license and application protection

purposes, without a requirement for knowledge of the platform. This is shown by:

Chapter 6. Discussion 183

• The license and hash mechanisms are not application data, and hence are defined

as platform neutral data.

• The bootstrap must be operating system specific, but it is related to the application

identity (App_ID), as shown by the DFDs for the Vendor Provenance Agent.

Although the FD for the Software Encoding Service is not included in the scope

of this research, it will extract a bootstrap from the application code and store

it in the Provenance Database (as shown in Figure 4.7 on page 137). This will

subsequently be used in the ReSOLV Sidebar, as shown in the VPS Top Level

Diagram (Figure 5.3 on page 157).

• Blockchain client applications support multiple platforms, with cryptocurrency

wallets being developed for multiple operating systems, including Windows,

Apple MacOS, Apple IOS and Android.

Finally, to achieve validation of user entitlements across multiple platforms, each

supported platform will require a User Wallet Agent and Application wrapper, developed

for that platform.

Further Considerations

Other considerations, in respect to multiple platforms, became apparent during this

research. Although this instantiation of design shows the ReSOLV method supports

multiple platforms, the practical aspect of User Wallet mobility needs to be considered.

The User Wallet Agent contains the private keys that relate to each application license

stored in the User Wallet database. For a user to be fully mobile, the User Wallet must

also be mobile, to support the user authenticating from multiple devices. In addition,

User Wallet security must be considered, as the User Wallet holds all the keys to the

“crown jewels” and cannot be recreated if lost.

In respect to cryptocurrencies, this problem has been partially addressed by wallet

Chapter 6. Discussion 184

developers, such as those who developed the Jaxx wallet2 or Exodus wallet3. Known as

“hot wallets”, these applications have the capability to store private keys locally, and

provides a 12-word backup phrase that can be entered into a wallet on another device,

to allow a synchronisation of private keys. Whilst this is a useful backup mechanism,

which provides a modicum of license mobility4, it does not solve the user authentication

problem if the User Wallet is not present.

Some approaches for addressing these problems may include: (i) using a portable

device to store the license private keys (for example, a special hardware wallet, such

as the Trezor5); (ii) developing the Application wrapper to read license information

directly from the blockchain; and (iii) using cloud-based authentication services for the

users, as shown in the HLA (Figure 4.6 on page 133).

6.3.4 RQ1.3

How can the Native Blockchain Application be used to identify maliciously

modified software?

For clarity, the context for this RQ is in respect to the ReSOLV SLV method. The

findings that relate to this question show that the ReSOLV client can detect unauthorised

changes to a file with certainty, but it cannot ascertain if the unauthorised changes were

malicious (it simply detects that the hashes do not match). ReSOLV has two processes

supporting identification of unauthorised, modified software:

2 https://jaxx.io/
3 https://www.exodus.io/
4 From a user experience perspective, it is onerous to enter in a 12-word backup phrase. Furthermore,

wallet developers are increasing the backup phrase to 24 words for improved security, as a result of a
client-side hack on the Jaxx wallet. http://bitcoinchaser.com/jaxx-hack-400k-stolen.

5 https://trezor.io/

Chapter 6. Discussion 185

• The software upgrade mechanism, as described in the ReSOLV Model (Sec-

tion 4.3.2 on page 123), ensures that every hash of every authorised application

and its subsequent patches are recorded on the blockchain.

• The ReSOLV User Wallet Agent acts as an independent authority, checking the

hash of the application, based on the digitally signed hash on the blockchain (or

in its database).

Further Considerations

From a practical perspective, applications may comprise hundreds or thousands of

files. The ReSOLV method in this initial design is predicated on preventing the main

application executable file from being tampered with, rather than detecting modifications

to files within the entire file structure. It would be impractical to have a hash of every

executable, library, or file that applications may require during installation.

However, this problem could well be solved by borrowing a cryptographic mechan-

ism from the Bitcoin design. In each block of transactions, Merkle Trees are used to

consolidate transaction hashes into a single hash to provide an integrity statement for

all the transactions in the block (Nakamoto, 2008). Applying this method to a ReSOLV

application, the vendor could provide a single hash for all the files required for the

application, thereby allowing the ReSOLV User Wallet Agent to detect unauthorised

modifications to any files. This would not be able to provide information about which

file had been modified, however; this would need to be completed through some other

installation integrity checking process.

Chapter 6. Discussion 186

6.4 Cryptocurrency-neutral Software License Validation

6.4.1 Findings

The purpose of RQ2, as established in Section 2.8.2 on page 92, was to determine which

cryptocurrency provides the most suitable base for the SLV use-case.

The intention for these research questions was to investigate the non-functional

requirements related to the ReSOLV method. It also was intended to create an enquiry

into the characteristics of existing cryptocurrency ecosystems, to determine their suit-

ability for the ReSOLV method. Non-functional requirements are researched, briefly

discussed, and outlined, in Chapter 4 on page 113 for completeness. However, the

scope of non-functional requirement research was subsequently deemed too large, for

the purposes of this research in respect to time constraints. Hence, although valuable

insights would be provided, research of cryptocurrencies and their characteristics was

not pursued, due to the depth required for each non-functional requirement.

Having said this, the ReSOLV RA (Figure 4.7 on page 137) and the Vendor

Provence System High Level Diagram (Figure 5.3 on page 157) demonstrated that

data confidentiality and user privacy requirements are independent of the base crypto-

currency used. Hence, the ReSOLV model can be determined to be cryptocurrency

neutral in respect to data confidentiality and privacy requirements.

The following sections respond to their respective research questions pertaining to

how data confidentiality and user privacy are maintained independent, of the underlying

cryptocurrency or blockchain.

6.4.2 RQ2.1

What cryptocurrency characteristics are required to achieve data confidentiality

in a blockchain-based SLV method?

Chapter 6. Discussion 187

The research determined that data confidentiality is a functional requirement. Any

data that is placed on the blockchain is expected to be encrypted, as the blockchain

is a public ledger, which any actor can read. Hence, to maintain data confidentiality,

encryption is required. This is supported by the following findings:

• The most common form of encryption is asymmetric private-public key, which

cryptocurrency and blockchains are built on and is explained in Section 4.4.6 on

page 144.

• Utilisation of existing private/public key pairs for encryption of data on the

blockchain provides effective encryption of data on the blockchain, and therefore,

effective confidentiality.

• Only the private key holder can decrypt the data on the blockchain. In the

ReSOLV method, this is the User Wallet Agent.

In response to RQ2.1, this research contends that data confidentiality is independent

of blockchain characteristics and is a functional requirement defining data encryption

requirements. Data confidentiality is confirmed using standard private-public encryption

methods.

6.4.3 RQ2.2

What cryptocurrency characteristics are required to achieve actor privacy in a

blockchain-based SLV method?

Anonymity on cryptocurrencies and blockchain is an inherent characteristic, due to the

address creation mechanisms using ECDSA private-public key cryptographic methods.

This requirement is determined to be a functional requirement, which is considered to

be cryptocurrency neutral. However, for Bitcoin it has been possible to identify actors,

through identification of address endpoints in the real world. Anti-money laundering and

Chapter 6. Discussion 188

fraud investigators have concentrated on this, in an effort to prevent Bitcoin being used

for payment in illegal transactions. However, actor privacy is considered a fundamental

requirement in the cryptocurrency world, with new architectures introduced to solve

the quasi-anonymity problem of Bitcoin. Cryptocurrencies such as Dash6, Zcash7 and

Monero8 are all providing fully anonymous transaction capabilities.

Confirmation of actor privacy in the ReSOLV model is supported by the following

findings and outcomes of the research:

• Anonymity is achieved through the cryptocurrency address creation mechanisms,

which generate strongly unique addresses with a negligible chance of collision

(the Bitcoin address space is 2160 addresses). Addresses are then used as the

identifiers for accounts in the cryptocurrency ecosystem.

• Each license has a source unique address from the Vendor. This means that every

software item purchased from this Vendor has a unique address, and transactions

to other clients cannot be identified as being initiated from the Vendor.

• Each User Wallet Agent creates a new license address when requesting a license

from the Vendor Provenance Agent, as shown in Figure 5.3. This ensures that the

Clients cannot be identified by parties reading the blockchain.

• Data confidentiality through private-public encryption maintains the confidentiality

of any Client information contained within the transaction.

Further Considerations

As a counterpoint to the anonymity that is expected from the cryptocurrency ecosystems,

ReSOLV software Vendors will want to know their customer base. Customer identity is

relevant to provenance and pricing, whilst "knowing your customer" will be valuable for

the Vendor to help them define and add features to their products. Financially speaking,

6 https://dash.org
7 https://z.cash
8 https://getmonero.org/

Chapter 6. Discussion 189

the value of products, and intangibles such as goodwill, requires that customer purchase

history is easily available to the Vendor (but unavailable to everyone else).

Furthermore, from the Client perspective, there may be other Client information

that needs to be announced to the BPP, which requires consideration of privacy. Most

examples will be provenance or pricing related. For example: (i) a student may have

a cheaper price; (ii) a corporate may have a special agreement with a Vendor; (iii) a

supply chain re-marketer receives a commission for orders through their business; or

(iv) a Client may need to update their business details. Hence, data identifying the User

may need to be included in the license request process, and will need to be encrypted

for confidentiality, using the Vendor’s public key for the license.

6.5 Reflections on Design Science Research

The objective of this research was to design a system and create artefacts that supported

the testing of the Research Questions. The DSR methodology was selected, based on

the likely requirement for iterative design through the RE and design process.

Key Findings

The requirements specification was highly iterative, particularly for development of the

ReSOLV HLA (Figure 4.6 on page 133) and the ReSOLV RA (Figure 4.7 on page 137).

Development of the GWT user stories provided context to the RA, and also identified

further refinements required to achieve the SLV functions. Once the requirements

specification was completed, it transpired that there was insufficient detail to be able

to describe the data flows involved in the transactions between actors in the ReSOLV

model. In addition, the user stories lacked clarity as to how the ReSOLV architecture

supported the Research Questions, and how the actual transaction occurred within the

blockchain protocol.

Chapter 6. Discussion 190

To remedy this lack of clarity, a deeper investigation into the blockchain protocols

was required. A FD was undertaken to define the processes and data flows for two

key actors: (i) the Vendor Provenance Agent; and (ii) the User Wallet Agent. DFDs

were completed for these, to determine the processes and data transformations that

occur, within the Agents and between the Agents, in the ReSOLV ecosystem, for an

end-to-end SLV transaction. This required further research into the Bitcoin transaction

to a protocol level9, to learn how transactions are crafted, byte by byte (similar to how

TCP/IP packets are constructed). These findings necessitated a further modifications to

the ReSOLV RA, with changes flowing through to the user stories.

For the situation where the system is an unknown quantity during the RE design

phase, completing the DFDss produced an effective outcome that increased clarity

of the design requirements. The UML sequence diagrams, shown in the ReSOLV

model in Section 4.3.2 on page 123, are helpful in articulating the process state, but

were insufficient to describe the requirements from a specification perspective. Other

considerations included whether AOSE (Section 3.5.3 on page 110) would be an

effective design methodology for the cryptocurrency and blockchain ecosystem.

DSR is found to be an effective research methodology for testing the hypotheses

and Research Questions, and creation of the supporting artefacts.

Improvements

Although using a DSR methodology has been effective in achieving the research

outcomes, there are several improvements that have been identified and provide useful

discussion points.

• The Agile methodology is most commonly used for software development, from

the perspective of software engineering, a SCRUM type approach is likely to

find development of a novel artefact challenging, unless there is reasonable prior

9 A summary of the Bitcoin transaction findings can be found in Appendix A.2 on page 223.

Chapter 6. Discussion 191

experience in the product that is being created. The observations made during the

RE process demonstrated that, if we attempted to start coding the Agents even

as a proof-of-concept, lack of understanding would quickly be discovered. The

FD forced the elicitation of the process, and sub-process details, required for the

ReSOLV method.

• UML sequence diagrams would be a useful addition to the research process, as

these successfully illustrate the end-to-end process, and would have been a useful

artefact for FD, by providing context around the order in which processes occur

and data is used.

• Both DFDs and UML did not naturally fit the blockchain ecosystems where

multiple actors are involved. This was particularly so, where Agents do not

engage specifically with each other. Although both methods are intended to be

network architecture independent, in the blockchain distributed system, inter-

agent communication is facilitated by the BPP as a necessary intermediary. The

learning in this instance, is to explore how to better utilise DFDs and UML for

blockchain software engineering.

• AOSE should be explored for the blockchain software engineering use-case.

As cryptocurrency and blockchain agents become more intelligent, the new

blockchain distributed system architectures (and in particular the ReSOLV ar-

chitecture) are comparable to multiple agent architectures, which AOSE is spe-

cifically designed for. AOSE may be essential in developing the core ReSOLV

distributed agent ecosystem, to achieve successful outcomes when developing the

protocols and methods between distributed agents.

• As cryptocurrencies and blockchain technologies mature, there are a growing

requirements for formal definitions to improve the quality of the software. Ex-

tensions to this research will benefit from using a Formal Methods research

methodology to validate the software.

Chapter 6. Discussion 192

6.6 Potential Issues

A multiple agent distributed system has many design and architectural challenges requir-

ing consideration for appropriate methodologies. The HLA (Figure 4.6) presents many

possibilities, and consequently, many issues would be expected to be discovered during

research, development and production. The most significant issues for ReSOLV are

primarily orientated around non-functional requirements. These need to be considered

during the RE phase, and will likely result in fundamental architectural changes similar

to the changes, implemented in the second generation of cryptocurrencies such as

Ethereum10 and Dash11. However, in the context of this research, the following potential

issues have been identified for discussion.

• User authorisation is a critical process in the ReSOLV method, and may be easy

to attack and exploit. Using a cloud authentication service, such as OpenID or

OAuth, or an authorisation service provider, such as Facebook or Google, may be

required.

• The User Wallet Agent is responsible for validating the vendor application. How-

ever, the User Wallet Agent itself should also undergo validation, to detect if the

Agent itself has experienced an unauthorised modification. This process is not

incorporated into the RE process, and protecting the User Wallet Agent will need

to be considered, to prevent compromise.

• Key management and security may become a challenge, with many public-private

key pairs existing in ReSOLV, as each application has a new key pair for every

transaction. Key loss or corruption will result in loss of licenses.

• The ReSOLV transaction protocol is likely to have different requirements to the

Bitcoin transaction protocol, and may require extensive adaptation of an existing

10 https://ethereum.org/
11 https://www.dash.org/

Chapter 6. Discussion 193

cryptocurrency protocol. Examples include: (i) changes to the transaction output

script, because Users are not spending ReSOLV tokens like bitcoins – it’s a

different use-case; (ii) the ReSOLV design may deliberately not support transfer

of ReSOLV tokens once sent to the User Wallet Agent, as Vendors may not want

software entitlement to be transferable; and (iii) the Bitcoin scripting language

may be unsuitable for ReSOLV, and a customised scripting language or Turning

complete transaction protocol may be required for ReSOLV transactions.

Chapter 7

Conclusion

7.1 The Software Piracy Problem

Since the late 1970s, software piracy has become commonplace, impacting software

creators and affecting their ability to retain control of copyright of their works. Each

decade has seen significant developments in computing technologies. New platforms

such as Windows, MacOS, and Linux have become the dominant desktop platforms,

whilst gaming platforms such as Xbox and PlayStation continue have grown to be

mainstream household devices. In 2007, the introduction of the smartphone platform

resulted in an entirely new industry being created; development of mobile Apps for the

Apple IOS and Android platforms. Smartphones are the mostly widely used computing

platform, with more than half the world’s population using smartphones as of 2017.

Software piracy has expanded across all these platforms, with methods constantly

evolving to enable illegal use of software.

In addition to the developments in computing technologies, advances in commu-

nications technologies have facilitated software piracy, by providing faster delivery,

portability, and mobility of software. Bandwidth continues to increase and enables

faster downloads of software, with speeds of 100Mbps commonplace in 2017: up from

194

Chapter 7. Conclusion 195

2.4Kbps in 1987. With the introduction of the Internet into the public domain in the

late 1980’s, a global communications mechanism was provided for all participants to

share information. The advent of the World Wide Web in 1993 further enabled users to

connect to any site to upload or download software, and supporting technologies, such

as search engines, were created to solve the problem of indexing the web. As wireless

technology matured, 3G and 4G high-speed wireless provided the communications

platform needed for the smartphone industry to burgeon.

In an effort to reduce software piracy, software piracy protection and license

provenance moved to online portals that provide software creators a platform to distrib-

ute and license software. These methods, however, do not prevent piracy; they lower

the barrier to software acquisition and facilitate provenance. Software creators wanting

to prevent software piracy are required to manage their own software piracy prevention

methods, presenting a difficult hurdle for the smaller and independent developers, who

are less likely to have the resources to manage the associated costly and complex

processes. Unfortunately, threat actors continue to defeat these piracy protection and

prevention methods.

Software piracy continues unabated across all platforms, creating a significant loss

of revenue to software developers both large and small. For desktop platforms, many

major software titles continue to be made available through piracy warez sites via

BitTorrent, and the corporate vendors, despite their resources, are still finding proactive

and reactive protection of their software challenging. Mobile App developers, especially

game developers on Android, suffer heavy piracy due to the open nature of the Android

platform and ease of copying Apps between devices. Closed systems, such as Apple

iOS and the console game vendors, still experience piracy issues, but successfully

discourage mainstream piracy.

The BSA piracy reports from 2004 through to 2014 shows that the economic loss

Chapter 7. Conclusion 196

of desktop software piracy is estimated to be US$507 billion dollars, with world-

wide desktop piracy rates growing from 35% to 43%. However, there is little peer

reviewed research encompassing other software and hardware platforms. Gaming

industry economic losses are estimated at US$74 billion in 2015, and there was no

research found investigating software piracy in the smartphone App platforms or in

cloud-based software piracy. This means that the researched estimate is likely to be an

underestimate of the total economic loss.

Hence, a strong motivation to address software piracy has been demonstrated. The

challenge that is identified is that many attempts at protecting software and allow-

ing software creators to benefit from their copyrighted works have failed over many

years. Online user authentication is revealed as the most common method for license

authorisation, but does not prevent any subsequent software piracy efforts.

7.2 The Blockchain

The blockchain is a distributed ledger technology, first introduced with the creation

of Bitcoin, the first cryptocurrency. It is a new data structure that is cryptographically

secured and distributed across a network, typically the Internet. Blockchains are eco-

nomic systems that achieve consensus among distributed nodes, allowing the transfer of

digital goods without the need for centralised validation of transactions. The distributed

nature of the blockchain, combined with the ability to verify transactions, has led to

the development of second generation blockchain protocols that have the capability

to perform new functions. NBAs have been found to provide additional application

functionality built into the blockchain, allowing the software engineer to customise the

blockchain protocol.

This research concludes that the characteristics of blockchain technologies suggest

that NBAs can be harnessed to address existing problems, and that there is a potential

Chapter 7. Conclusion 197

use-case for addressing the problem of software piracy prevention and provenance.

7.3 Software License Validation

The review of literature on software piracy reveals that focussing on user identity is the

key to software piracy prevention. The review concludes that binding user identity to

software entitlements is essential to authorising access to software and for providing

an important provenance function. The drawback of user authorisation is that the user

credentials can be shared between users, and that there is insufficient disincentive to

sharing credentials that provide access to software. In addition, there is no protection for

software-at-rest, which is vulnerable to threat actors who will attack the code structure

directly to defeat prevention or protection mechanisms. These challenges help define

the success criteria for an SLV mechanism.

To achieve the outcome of a cost-effective method for prevention of software piracy,

it was postulated that the SLV method needs to address specific problems areas. Through

this research, the requirement to address these problems areas have been determined, as

described below.

It needs to be global: this requirement is supported by the determination that the end

user can be located anywhere in the world, and is highly mobile. Therefore, any

SLV must be global to allow ubiquitous access.

It needs to support multiple platforms: this requirement is supported by understand-

ing that the software creator should have a single SLV mechanism for any software

they create. As most ISVs release software across multiple platforms, and require

a simple SLV mechanism, the need is clearly established.

It needs to be cost-effective: this requirement is supported by the understanding that

smaller ISV does not have the resources or capacity to operate a SLV, and absorb

Chapter 7. Conclusion 198

its associated operational costs. Hence SLV is mostly found on global multi-

nation vendors, or through portals such as Steam, which have a narrow focus.

Hence, the ISV needs a SLV with minimal overheads.

It places license authorisation in the hands of the software creator: this requirement

is supported through understanding of the Software Piracy Model and the Software

Piracy Vulnerability Lifecycle, where software licenses can be disclosed and

copied at various stages. Enabling the software creator to allocate licenses using

ReSOLV ensures end user entitlements are paid for and valid.

It protects software-at-rest: this requirement is supported through the Software Piracy

Lifecycle Taxonomy, which shows the many methods of removing software pro-

tection mechanisms from software-at-rest. Any modification to software-at-rest

needs to prevent the software from being executed in an unauthorised manner.

It uniquely binds user identity to software entitlements: this requirement is shown

through the Software Piracy Lifecycle where end users can effect software piracy.

The end user needs to be linked to the software they are authorised to execute,

and should not be able to distribute software they have validly purchased.

It disincentivises credential sharing: this requirement is shown through the Software

Piracy Vulnerability Lifecycle for Software-as-a-Service, where credential shar-

ing is common, resulting in unauthorised use of software. Users need to be

incentivised to maintain credential confidentiality.

It provides end user anonymity and data confidentiality: this requirement is estab-

lished through the fact that the blockchain is a public ledger. Transactions need

to be anonymous to maintain end user privacy, and data needs to be encrypted to

maintain information confidentiality.

The broad objective for this research was to design a system that demonstrates that

blockchain-based technologies can be utilised to create an SLV method. This research

Chapter 7. Conclusion 199

has built on the Master Bitcoin Model to develop the ReSOLV SLV method. The

ReSOLV SLV method leverages a user identity, combined with uniquely authorised

application entitlements and software validation, to achieve a viable software piracy

prevention and provenance method. For the purpose of defining the research objectives,

the Hypotheses are stated as follows.

H1: To provide a Software License Validation method, a Native Blockchain Applica-

tion can be applied.

H2: In respect to Software License Validation, the Native Blockchain Application

enables a high level of data confidentiality and user privacy.

Research Questions were further developed to allow research to determine the

validity of the hypotheses.

7.4 Limitations

There are several limitations with the ReSOLV method that have been identified. In the

first instance, the scope of the cryptocurrency and blockchain ecosystem is significant,

with many functional and non-functional requirements to be considered when imple-

menting a NBA. Whilst the design of a system for SLV, such as ReSOLV, is essential,

the research effort in the design phase requires significantly more time than this research

permits. Further to this, a working proof of concept would demonstrate the viability

of the proposed ReSOLV method, rather than establishing the feasibility through the

Requirements Engineering and specification processes.

The ReSOLV method requires further research into the blockchain-based preventive

mechanisms. In particular, the bootstrap method that is intended to protect the software-

at-rest. This is in recognition of the fact that software-at-rest protection mechanisms

will ultimately be overcome, despite separation of the bootstrap and application. With

Chapter 7. Conclusion 200

sufficient time and motivation, an adversary will crack even complex protective mech-

anisms and piece together an executable, like a jigsaw, without the ReSOLV wrapper.

The core issue is that all executables run in memory, and necessary information can

be captured to complete the executable. Ultimately, software requires some aspect of

execution or validation on a completely separate system in the ReSOLV ecosystem. The

Ethereum blockchain lends itself well to this concept, with its Turing-complete smart

contracts and Distributed App capability.

Investigation into protecting the ReSOLV User Agent itself is required to determine

the risks to the User Agent or its database. If either of these are successfully attacked,

the private keys that relate to the licenses may be stolen, resulting in the user identity

and the licenses associated with the private keys being compromised.

A further limitation is that, although the user is disincentivised from sharing

credentials because all their software license entitlements are disclosed, it is still

possible for such sharing to occur. Additional research would be required to better

understand how ReSOLV can be utilised to discourage credential sharing or encourage

confidentiality. It could be possible that an adversary purchases genuine licenses, shares

the private keys, and then piracy actors would be able to execute the protected software

because the ReSOLV metadata can be decrypted and used.

Finally, this research focusses only on the functional requirements for the ReSOLV

method. For an operational ReSOLV system, all non-functional requirements will need

to be considered and addressed.

7.5 Future Work

There are many opportunities for future work in developing an NBA for the ReSOLV

method. Some of these focus on the software piracy prevention and provenance, whilst

others are reflect on the scale that the ReSOLV ecosystem represents.

Chapter 7. Conclusion 201

• The most valuable future contribution is to establish a functional prototype for

the ReSOLV model. This artefact will prove the fundamental SLV mechanism

described in this research.

• Modelling scalability requirements for the ReSOLV method will be required to es-

tablish its viability with increasing number of users. This reflects the growth of the

blockchain database, which must contain information on all license transactions,

and is likely to result in blockchain bloat.

• Complementing the scalability model, a blockchain block archiving mechanism

will need to be investigated, to provide controls around the size of the blockchain

database. The High Level Architecture model should be further developed and

revised to provide reliability and robustness across the ReSOLV ecosystem.

• As Distributed Ledger Technologies evolve, investigating the application of a non-

blockchain method would be useful, to determine if blockchain non-functional

requirements limitations can be overcome.

• As ReSOLV expands, in the corporate world, there will be challenges managing

the user identity that is entitled to use the corporate software. This will require

the capability to revoke authorisation and entitlements, even if the user is running

their own personal User Wallet Agent. This may lead to the creation of a new

actor such as a Corporate Provenance Agent for integration into organisations.

• The User Wallet Agent ultimately does not have to be software based. This could

be an opportunity to explore using an external system or secure cloud storage.

• Most blockchains support “multi-sig”, a multiple key mechanism for authorising

transactions. This would be a valuable contribution to the ReSOLV ecosystem, to

protect users and prevent private key theft or unauthorised license transactions.

• The ReSOLV ecosystem presents an identity management challenge, because

Chapter 7. Conclusion 202

user mobility will require a global mechanism to validate the user. Another future

contribution would be to investigate utilising an external identity management

system to provide the necessary validation.

• Investigation into a suitable Proof-of-Stake mining mechanism will be essential

to determine the cryptographic security of the ReSOLV ecosystem.

• Further investigation into types of security attacks on the ReSOLV ecosystem

will help identify vulnerabilities for remediation and improve confidence in the

system.

• Further peer-reviewed research into the scope of piracy, and economic losses

resulting from piracy across OS, mobile, gaming and cloud platforms, taking

into account the gaming demographic, would be valuable in improving the under-

standing of the size of the piracy issues.

7.6 Conclusion

Blockchain-based technologies can be used to create innovative methods that can be

applied to many use-cases that enable authorised access to data and information held

in a public ledger database. Blockchain technologies can enable new processes and

systems through disintermediation, and hence are considered a disruptive technology to

many industries.

This research has investigated the use of a Native Blockchain Application to address

the problem of software piracy prevention and provenance. It first examined the Master

Bitcoin Model license provenance proof-of-concept, but identified that it was too

simplistic for license provenance, in that it fails to take account of the complex nature

of software licensing and distribution. Furthermore, Master Bitcoin Model provides no

protection against most of the forms of software piracy as established in the literature

review. The ReSOLV model was proposed to overcome the limitations of the Master

Chapter 7. Conclusion 203

Bitcoin Model. It utilises the immutable blockchain and well established public-key

cryptography methods to ensure confidentiality of proposed license data stored on

the blockchain, including license key, software hash, bootstrap loader, and a digital

signature field. The ReSOLV model demonstrates it provides a global method for

software license provenance and software piracy protection. It thereby demonstrates

that it meets the fundamental requirements to solve a global piracy problem.

Building on the ReSOLV model as the suitable method for solving the global piracy

problem, this research further sought to determine which cryptocurrency provides the

most suitable base for the SLV use-case, and how privacy and confidentiality of data on

the blockchain could be maintained. It investigated the non-functional requirements

related to the ReSOLV method, with the intention of starting an enquiry into the

characteristics of existing cryptocurrency ecosystems, to determine their suitability for

the ReSOLV method. Unfortunately, after initial research, the scope of non-functional

requirements was subsequently deemed too large, for the purposes of this research in

respect to time constraints, and consequently this research did not investigate suitable

base cryptocurrencies. However, the Vendor Provence System demonstrated that data

confidentiality and user privacy requirements are independent of the base cryptocurrency

used. Hence, the ReSOLV model can be determined to be cryptocurrency neutral in

respect to data confidentiality and privacy requirements.

The outcomes have resulted in new artefacts being created to support the hypotheses

established in Section 2.8.2 on page 92, and the Research Questions presented have

been satisfied as demonstrated below.

RQ1.1 is satisfied by describing how an NBA can be utilised for validating user

entitlements through a ReSOLV method. The blockchain-based method provides

the core mechanisms for storage and distribution of the software licenses and

data used to validate the application. Licenses are protected from any copying

Chapter 7. Conclusion 204

process, and applications will not execute if any unauthorised modification of the

application is undertaken. The concept of the application bootstrap being stored

in the blockchain helps protect software-at-rest, as the application cannot execute.

The basis of the ReSOLV method is indeed that the application can be easily

copied, as authorisation to execute is user-centric.

RQ1.2 is satisfied by showing that the ReSOLV method requirements specification are

platform neutral, and that ReSOLV agents can be written for multiple platforms,

such as Microsoft Windows and Android. The ReSOLV blockchain data consists

of licenses, hashes and digital signatures, which are independent of the application

platform. The bootstrap by definition must be operating system specific, but it is

related to the application identity, and is extracted from the application code to

be inserted on the blockchain. This allows a software creator to use ReSOLV to

protect their software across multiple platforms.

RQ1.3 is satisfied by demonstrating that the software upgrade mechanism ensures that

every hash of every authorised application and its subsequent patches are recorded

on the blockchain. The ReSOLV User Wallet Agent acts as an independent

authority, checking the hash of the application, based on the digitally signed hash

on the blockchain, thereby identifying if the application has been modified.

RQ2.1 is satisfied through the use of asymmetric private-public key encryption, com-

monly used to encrypt data traversing public mediums. As the blockchain is a

public ledger, any data that is placed on the blockchain is in full public view, and

expected to be encrypted. Utilisation of existing ReSOLV private/public key pairs

for encryption of data on the blockchain provides effective encryption of data on

the blockchain, and therefore, maintains effective confidentiality.

RQ2.2 is satisfied by demonstrating that cryptocurrency methods, using private-public

keys for address creation, provide anonymity and actor privacy. Anonymity

and privacy in the ReSOLV method is achieved through the cryptocurrency

Chapter 7. Conclusion 205

address creation mechanisms, each license having a source unique address from

the Vendor, and each User Wallet Agent creates a new license address when

requesting a license from the Vendor Provenance Agent, ensuring that the Clients

cannot be identified by parties reading the blockchain.

This research concludes that the hypothesis of using the NBA for SLV is confirmed.

The research further confirms the hypothesis that a high level of data confidentiality and

user privacy can be attained, not only through NBA, but using other cryptocurrencies.

This research therefore confirms both hypotheses as stated.

References

Acronis. (2016). Acronis Launches Blockchain Technology Initiative with Availab-
ility of Prototype Data Authenticity Solution for Service Providers and Busi-
nesses. Retrieved from http://www.acronis.com/en-us/business/
blockchain-notary/

Adzic, G. (2011). Specification by Example. Manning Publications Co.
Adzic, G. (2015). How to get the most out of Given-When-Then. Re-

trieved from https://gojko.net/2015/02/25/how-to-get-the
-most-out-of-given-when-then/

Agha, G. (2013). Software Engineering and Formal Methods. In 14th international
conference, sefm 2016, held as part of staf 2016, vienna, austria, july 4-8, 2016,
proceedings (Vol. 8137, pp. 16–30). doi: 10.1007/978-3-319-41591-8_1

AI Blockchain. (2017). Artificial Intelligence BlockChain Technology. Retrieved from
http://ai-blockchain.com/

Al-fedaghi, S. (2016). Design Functional Decomposition Based on Flow. In 2016
ieee international conference on systems, man, and cybernetics (pp. 2693–2698).
Budapest, Hungary.

Ali, M., Nelson, J., Labs, B., Shea, R., Labs, B., Freedman, M. J., . . . Freed-
man, M. J. (2016). Blockstack : A Global Naming and Storage Sys-
tem Secured by Blockchains. USENIX Annual Technical Conference, 181–
194. Retrieved from https://www.usenix.org/conference/atc16/
technical-sessions/presentation/ali

Alqassem, I. & Svetinovic, D. (2015). Towards reference architecture for
cryptocurrencies: Bitcoin architectural analysis. Proceedings - 2014 IEEE Inter-
national Conference on Internet of Things, iThings 2014, 2014 IEEE International
Conference on Green Computing and Communications, GreenCom 2014 and
2014 IEEE International Conference on Cyber-Physical-Social Computing, CPS
20(iThings), 436–443. doi: 10.1109/iThings.2014.78

Andrés, A. R. (2006). The relationship between copyright software protection and
piracy: Evidence from europe. European Journal of Law and Economics, 21(1),
29–51. doi: 10.1007/s10657-006-5670-5

Android marketplace hit by malware [Journal]. (2011). Computer Fraud & Security,
2011(3), 3. doi: 10.1016/S1361-3723(11)70025-2

Arxan Technologies. (2015). 4th Annual State of Application Security Report: A Look
Inside the Universe of Pirated Software and Digital Assets [report].

206

http://www.acronis.com/en-us/business/blockchain-notary/
http://www.acronis.com/en-us/business/blockchain-notary/
https://gojko.net/2015/02/25/how-to-get-the-most-out-of-given-when-then/
https://gojko.net/2015/02/25/how-to-get-the-most-out-of-given-when-then/
http://ai-blockchain.com/
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali

References 207

Asongu, S. (2014). Software piracy, inequality and the poor: evidence from Africa.
Journal of Economic Studies, 41(4), 526–553. doi: 10.1108/JES-10-2012-0141

Assia, Y., Buterin, V., Hakim, L. & Rosenfeld, M. (2014). Colored Coins Bit-
coinX. Retrieved from https://docs.google.com/document/d/
1AnkP{_}cVZTCMLIzw4DvsW6M8Q2JC0lIzrTLuoWu2z1BE/edit

Athey, S. & Stern, S. (2013). The Nature and Incidence of Software Piracy : Evidence
from Windows. NATIONAL BUREAU OF ECONOMIC RESEARCH. Retrieved
from http://www.nber.org/papers/w19755

Atom0s. (2016). Steamless. Retrieved 2016-01-25, from https://github.com/
atom0s/Steamless

Baird, L. (2016). Hashgraph consensus: fair, fast, byzantine fault tolerance.
Retrieved from http://www.the-blockchain.com/docs/Swirlds
-Consensus-Algorithm.pdf

Baran, P. (1964). On distributed communications networks. Communications Systems,
IEEE Transactions, 12(1), 1–9. Retrieved from https://www.rand.ngo/
content/dam/rand/pubs/papers/2005/P2626.pdf

Bashir, M., Strickland, B. & Bohr, J. (2016). What Motivates People to Use Bitcoin?
BT - Social Informatics: 8th International Conference, SocInfo 2016, Bellevue,
WA, USA, November 11-14, 2016, Proceedings, Part II. In E. Spiro & Y.-Y. Ahn
(Eds.), (pp. 347–367). Cham: Springer International Publishing. Retrieved from
http://dx.doi.org/10.1007/978-3-319-47874-6{_}25 doi:
10.1007/978-3-319-47874-6_25

Bass, E., Bault, T., Baum, A., Channell, J. & Englander, S. (2014). Disruptive
Innovations II. Citi GPS. Retrieved from https://www.citivelocity
.com/citigps/ReportSeries.action?recordId=25

Baumann, A., Peinado, M. & Hunt, G. (2014). Shielding applications
from an untrusted cloud with Haven. Broomfield, CO: Microsoft Re-
search. Retrieved from https://www.usenix.org/system/files/
conference/osdi14/osdi14-paper-baumann.pdf

Bentov, I., Gabizon, A. & Mizrahi, A. (2014). Cryptocurrencies without Proof of Work
[White paper].

Besen, S. M. & Raskind, L. J. (1991). An Introduction to the Law and Economics of
Intellectual Property. The journal of economic perspectives, 5(1), 3–27.

Bilger, J. (2006). The Role of Cryptography in Combating Software Piracy.
Retrieved from https://courses.cs.washington.edu/courses/
csep590/06wi/finalprojects/bilger.pdf

Bill and Melinda Gates Foundation. (2014). Fighting poverty, profitably (Tech. Rep.).
Retrieved from https://docs.gatesfoundation.org/Documents/
FightingPovertyProfitablyFullReport.pdf

Böhme, R., Christin, N., Edelman, B. & Moore, T. (2015). Bitcoin: Economics,
Technology, and Governance. Journal of Economic Perspectives, 29(2), 213–238.
Retrieved from http://pubs.aeaweb.org/doi/10.1257/jep.29.2
.213 doi: 10.1257/jep.29.2.213

Boneh, D., Sahai, A. & Waters, B. (2012). Functional Encryption : A New Vision for

https://docs.google.com/document/d/1AnkP{_}cVZTCMLIzw4DvsW6M8Q2JC0lIzrTLuoWu2z1BE/edit
https://docs.google.com/document/d/1AnkP{_}cVZTCMLIzw4DvsW6M8Q2JC0lIzrTLuoWu2z1BE/edit
http://www.nber.org/papers/w19755
https://github.com/atom0s/Steamless
https://github.com/atom0s/Steamless
http://www.the-blockchain.com/docs/Swirlds-Consensus-Algorithm.pdf
http://www.the-blockchain.com/docs/Swirlds-Consensus-Algorithm.pdf
https://www.rand.ngo/content/dam/rand/pubs/papers/2005/P2626.pdf
https://www.rand.ngo/content/dam/rand/pubs/papers/2005/P2626.pdf
http://dx.doi.org/10.1007/978-3-319-47874-6{_}25
https://www.citivelocity.com/citigps/ReportSeries.action?recordId=25
https://www.citivelocity.com/citigps/ReportSeries.action?recordId=25
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-baumann.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-baumann.pdf
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/bilger.pdf
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/bilger.pdf
https://docs.gatesfoundation.org/Documents/FightingPovertyProfitablyFullReport.pdf
https://docs.gatesfoundation.org/Documents/FightingPovertyProfitablyFullReport.pdf
http://pubs.aeaweb.org/doi/10.1257/jep.29.2.213
http://pubs.aeaweb.org/doi/10.1257/jep.29.2.213

References 208

Public-Key Cryptography. Communications of the ACM, 55(11), 56–64. doi:
10.1021/ac60289a702

Bott, J. & Milkau, U. (2016). Towards a Framework for the Evaluation and Design of
Distributed Ledger Technologies in Banking and Payments. Journal of Payments
Strategy & Systems, 10(2), 153–171.

Bradbury, D. (2013). The problem with Bitcoin. Computer Fraud & Security, 2013(11),
5. doi: 10.1016/S1361-3723(13)70101-5

Bradbury, D. (2014). Bitcoin Core Development Update #5 brings
better transaction fees and embedded data. Coindesk. Retrieved
from http://www.coindesk.com/bitcoin-core-dev-update-5
-transaction-fees-embedded-data/

Brhel, M., Meth, H., Maedche, A. & Werder, K. (2015). Exploring principles of
user-centered agile software development: A literature review. Information and
Software Technology, 61, 163–181. Retrieved from http://dx.doi.org/
10.1016/j.infsof.2015.01.004 doi: 10.1016/j.infsof.2015.01.004

Brikman, Y. (2014). Bitcoin by analogy. Retrieved 2017-04-17, from http://www
.ybrikman.com/writing/2014/04/24/bitcoin-by-analogy/

Bryans, D. (2014). Bitcoin and money laundering: mining for an effective solution.
Indiana Law Journal, 89(1), 441.

BSI Standards. (2011). BSI Standards Publication Systems and software engineering —
System life cycle processes.

Business Software Alliance. (2014a). The Compliance Gap (Tech. Rep.). Retrieved
from http://goo.gl/9WZYz6

Business Software Alliance. (2014b). Types of Piracy [Internet Web Page]. Retrieved
from http://ww2.bsa.org/country/Anti-Piracy/What-is
-Software-Piracy/TypesofPiracy.aspx?sc{_}lang=en-AU

Business Software Alliance. (2017). Compliance and Enforcement. Retrieved 2017-07-
31, from http://www.bsa.org/anti-piracy

Business Software Alliance (BSA). (2004). First Annual BSA And IDC
Global Software Piracy Study 2004 (Tech. Rep.). Retrieved from
http://www.bsa.org/{~}/media/Files/ResearchPapers/
GlobalStudy/2004/IDC{_}GlobalPiracyStudy{_}2004.pdf

Business Software Alliance (BSA). (2006). Third Annual BSA and IDC Global Software
Piracy Study 2006 (Tech. Rep.). Retrieved from http://www.bsa.org/
{~}/media/Files/ResearchPapers/GlobalStudy/2005/
IDC{_}Global{_}Software{_}Piracy{_}Study{_}2005.pdf

Buterin, V. (2013). Introducing Ripple. Bitcoin Magazine. Retrieved from http://
bitcoinmagazine.com/3506/introducing-ripple/

Buterin, V. (2014). Mining Pool Centralization At Crisis Levels. Bitcoin Magazine.
Retrieved from http://bitcoinmagazine.com/9402/mining-pool
-centralization-crisis-levels/

Buterin, V. (2017). A Next-Generation Smart Contract and Decentralized Applica-
tion Platform. Retrieved from https://github.com/ethereum/wiki/
wiki/White-Paper

http://www.coindesk.com/bitcoin-core-dev-update-5-transaction-fees-embedded-data/
http://www.coindesk.com/bitcoin-core-dev-update-5-transaction-fees-embedded-data/
http://dx.doi.org/10.1016/j.infsof.2015.01.004
http://dx.doi.org/10.1016/j.infsof.2015.01.004
http://www.ybrikman.com/writing/2014/04/24/bitcoin-by-analogy/
http://www.ybrikman.com/writing/2014/04/24/bitcoin-by-analogy/
http://goo.gl/9WZYz6
http://ww2.bsa.org/country/Anti-Piracy/What-is-Software-Piracy/TypesofPiracy.aspx?sc{_}lang=en-AU
http://ww2.bsa.org/country/Anti-Piracy/What-is-Software-Piracy/TypesofPiracy.aspx?sc{_}lang=en-AU
http://www.bsa.org/anti-piracy
http://www.bsa.org/{~}/media/Files/ResearchPapers/GlobalStudy/2004/IDC{_}GlobalPiracyStudy{_}2004.pdf
http://www.bsa.org/{~}/media/Files/ResearchPapers/GlobalStudy/2004/IDC{_}GlobalPiracyStudy{_}2004.pdf
http://www.bsa.org/{~}/media/Files/ResearchPapers/GlobalStudy/2005/IDC{_}Global{_}Software{_}Piracy{_}Study{_}2005.pdf
http://www.bsa.org/{~}/media/Files/ResearchPapers/GlobalStudy/2005/IDC{_}Global{_}Software{_}Piracy{_}Study{_}2005.pdf
http://www.bsa.org/{~}/media/Files/ResearchPapers/GlobalStudy/2005/IDC{_}Global{_}Software{_}Piracy{_}Study{_}2005.pdf
http://bitcoinmagazine.com/3506/introducing-ripple/
http://bitcoinmagazine.com/3506/introducing-ripple/
http://bitcoinmagazine.com/9402/mining-pool-centralization-crisis-levels/
http://bitcoinmagazine.com/9402/mining-pool-centralization-crisis-levels/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

References 209

Chabinsky, S. (2015). The Future of Cyber Crime (Vol. 52) (No. 3). Troy: BNP Media.
Chaitanya, K. K. (2013). Architecting the Network for the Cloud using Security

Guidelines. International Journal of Computer Applications, 81(8). doi: 10.5120/
14035-2186

Chakravorty, A. & Rong, C. (2017). Ushare: User Controlled Social Media Based on
Blockchain. Proceedings of the 11th International Conference on Ubiquitous
Information Management and Communication, 99:1—-99:6. Retrieved from
http://doi.acm.org/10.1145/3022227.3022325 doi: 10.1145/
3022227.3022325

Chaudhry, P., Chaudhry, S., Stumpf, S. & Sudler, H. (2011). Piracy in cyber space:
consumer complicity, pirates and enterprise enforcement. Enterprise Information
Systems, 5(2), 255–271. doi: 10.1080/17517575.2010.524942

Chen, X., Chu, X. & Li, Z. (2014). Improving sustainability of BitTorrent darknets.
Peer-to-Peer Networking and Applications, 7(4), 539–554. doi: 10.1007/s12083
-012-0149-3

Chiang, O. (2011). The Master of Online Mayhem [Internet Web Page]. Forbes.
Retrieved from http://www.forbes.com/forbes/2011/0228/
technology-gabe-newell-videogames-valve-online-mayhem
.html

Choi, H., Au, Y. & Liu, C. (2014). Is Digital Piracy An Enemy of the Mobile App
Industry? An Empirical Study on Piracy of Mobile Apps. AMCIS 2014 Proceed-
ings, 1–9. Retrieved from http://aisel.aisnet.org/amcis2014/
Posters/eBusiness/7

Chuen, D. L. E. E. K. (2015). Handbook of Digital Currency. Saint Louis, UNITED
STATES: Elsevier Science. Retrieved from http://ebookcentral
.proquest.com/lib/aut/detail.action?docID=2042366

Claburn, T. (2009). Apple Expands In App Purchasing To Fight Piracy. Information-
Week(Generic). Retrieved from http://www.informationweek.com/
apple-expands-in-app-purchasing-to-fight-piracy/d/
d-id/1084052?cid=nl{_}iw{_}daily{_}html

Computer History Museum. (2016). Computer History Museum [Internet Web Page].
Retrieved from http://www.computerhistory.org/

Conner, K. R. (1991). Software piracy: an analysis of protection strategies. Management
Science, 37(2), 125–139. doi: 10.1287/mnsc.37.2.125

Courtois, N. T. (2014). Crypto Currencies And Bitcoin [White pa-
per]. Retrieved from http://www.nicolascourtois.com/bitcoin/
paycoin{_}may{_}2014.pdf

Courtois, N. T. & Bahack, L. (2014). On Subversive Miner Strategies and Block
Withholding Attack in Bitcoin Digital Currency. University College London.
Retrieved from http://arxiv.org/pdf/1402.1718.pdf

Cronin, G. (2002). A Taxonomy of Methods for Software Piracy Prevention.
Auckland. Retrieved from http://www.veryquick.org/writing/
piracytaxonomy.pdf

http://doi.acm.org/10.1145/3022227.3022325
http://www.forbes.com/forbes/2011/0228/technology-gabe-newell-videogames-valve-online-mayhem.html
http://www.forbes.com/forbes/2011/0228/technology-gabe-newell-videogames-valve-online-mayhem.html
http://www.forbes.com/forbes/2011/0228/technology-gabe-newell-videogames-valve-online-mayhem.html
http://aisel.aisnet.org/amcis2014/Posters/eBusiness/7
http://aisel.aisnet.org/amcis2014/Posters/eBusiness/7
http://ebookcentral.proquest.com/lib/aut/detail.action?docID=2042366
http://ebookcentral.proquest.com/lib/aut/detail.action?docID=2042366
http://www.informationweek.com/apple-expands-in-app-purchasing-to-fight-piracy/d/d-id/1084052?cid=nl{_}iw{_}daily{_}html
http://www.informationweek.com/apple-expands-in-app-purchasing-to-fight-piracy/d/d-id/1084052?cid=nl{_}iw{_}daily{_}html
http://www.informationweek.com/apple-expands-in-app-purchasing-to-fight-piracy/d/d-id/1084052?cid=nl{_}iw{_}daily{_}html
http://www.computerhistory.org/
http://www.nicolascourtois.com/bitcoin/paycoin{_}may{_}2014.pdf
http://www.nicolascourtois.com/bitcoin/paycoin{_}may{_}2014.pdf
http://arxiv.org/pdf/1402.1718.pdf
http://www.veryquick.org/writing/piracytaxonomy.pdf
http://www.veryquick.org/writing/piracytaxonomy.pdf

References 210

Crowder, J. A. & Friess, S. (2013). Systems engineering agile design methodologies
(Nos. Book, Whole). New York, NY: Springer. doi: 10.1007/978-1-4614-6663-5

Danezis, G. & Meiklejohn, S. (2015). Centrally Banked Cryptocurrencies.
Davies, C. (2013). 95% Android game piracy experience highlights app

theft challenge (Vol. 2015) (No. 22/03/2015). Slashgear. Retrieved
from http://www.slashgear.com/95-android-game-piracy
-experience-highlights-app-theft-challenge-15282064/

DeMarines, V. (2008). Obfuscation - how to do it and how to crack it. Network Security,
2008(7), 4–7. doi: 10.1016/S1353-4858(08)70085-0

Depoorter, B. (2014). What happened to video game piracy? Communications of
the ACM, 57(5), 33–34. Retrieved from http://dl.acm.org/citation
.cfm?doid=2594413.2594289 doi: 10.1145/2594289

Dimitrijevic, S., Jovanovic, J. & Devedzic, V. (2015). A comparative study of software
tools for user story management. Information and Software Technology, 57(1),
352–368. doi: 10.1016/j.infsof.2014.05.012

Drachen, A., Bauer, K. & Veitch, R. W. D. (2011). Distribution of Digital Games via
BitTorrent (Pre-print). Proceedings of the 15th International Academic MindTrek
Conference on Envisioning Future Media Environments - MindTrek ’11, 233.
Retrieved from http://dl.acm.org/citation.cfm?doid=2181037
.2181077 doi: 10.1145/2181037.2181077

Duivestein, S. & Savalle, P. (2014). Bitcoin: It’s the platform, not the currency,
stupid! Retrieved from http://thenextweb.com/insider/2014/02/
15/bitcoin-platform-currency/1/

Dunn, J. (2013). Bitcoin startup BIPS loses $1 million after DDoS heist. Tech-
world. Retrieved from http://news.techworld.com/security/
3490907/bitcoin-startup-bips-loses-1-million-after
-ddos-heist/

Eddy, M. (2016). Crypto-Wars: Why the Fight to Encrypt Rages On. PC Magazine,
p114–135, 22p.

Electronic Arts. (2016). Electronic Arts EULA. Retrieved 2016-01-22, from http://
goo.gl/8Ob5Ay

Electronic Frontier Foundation. (2015). Coders’ Rights Project Reverse Engineering
FAQ (Vol. 2015) (No. 27/09/2015). Retrieved from https://www.eff.org/
issues/coders/reverse-engineering-faq

European Central Bank. (2015). Virtual Currency Schemes (2015) (No. February). doi:
ISBN:978-92-899-0862-7(online)

EUROPOL. (2014). The Internet Organised Crime Threat Assessment (Tech. Rep.).
Europol.

Federal Bureau of Investigation. (2015). Intellectual Property Theft (Vol. 2015).
Retrieved from https://www.fbi.gov/about-us/investigate/
white{_}collar/ipr/ipr

Financial Crimes Enforcement Network. (2014). FIN-2014-R012: Request for Adminis-
trative Ruling on the Application of FinCEN ’ s Regulations to a Virtual Currency
Payment System. FinCEN.

http://www.slashgear.com/95-android-game-piracy-experience-highlights-app-theft-challenge-15282064/
http://www.slashgear.com/95-android-game-piracy-experience-highlights-app-theft-challenge-15282064/
http://dl.acm.org/citation.cfm?doid=2594413.2594289
http://dl.acm.org/citation.cfm?doid=2594413.2594289
http://dl.acm.org/citation.cfm?doid=2181037.2181077
http://dl.acm.org/citation.cfm?doid=2181037.2181077
http://thenextweb.com/insider/2014/02/15/bitcoin-platform-currency/1/
http://thenextweb.com/insider/2014/02/15/bitcoin-platform-currency/1/
http://news.techworld.com/security/3490907/bitcoin-startup-bips-loses-1-million-after-ddos-heist/
http://news.techworld.com/security/3490907/bitcoin-startup-bips-loses-1-million-after-ddos-heist/
http://news.techworld.com/security/3490907/bitcoin-startup-bips-loses-1-million-after-ddos-heist/
http://goo.gl/8Ob5Ay
http://goo.gl/8Ob5Ay
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.fbi.gov/about-us/investigate/white{_}collar/ipr/ipr
https://www.fbi.gov/about-us/investigate/white{_}collar/ipr/ipr

References 211

Folsom, T. C. (1985). Is it cheaper in Hong Kong? PC Magazine, 215–221. Retrieved
from https://goo.gl/yOrD9i

Ford, P. (2014). Marginally useful: Bitcoin itself may not flourish as a currency, but
the underlying technology is beginning to suggest valuable new applications
(Vol. 117) (No. Generic). MIT Technology Review, Inc.

FormSERA. (2012). Formal Methods in Software Engineering: Rigorous and Agile
Approaches (FormSERA) [Welcome]. In 2012 first international workshop
on formal methods in software engineering: Rigorous and agile approaches
(formsera) (pp. iii–v). doi: 10.1109/FormSERA.2012.6229781

Fortin, C. (2011). Master Bitcoin - The Proof of Ownership [White paper].
Retrieved from http://frozenlock.files.wordpress.com/2011/
11/master-bitcoin.pdf

Fry, J. & Cheah, E. T. (2016). Negative bubbles and shocks in cryptocurrency
markets. International Review of Financial Analysis, 47, 343–352. Re-
trieved from http://dx.doi.org/10.1016/j.irfa.2016.02.008
doi: 10.1016/j.irfa.2016.02.008

F-secure. (2014). Mobile Threat Report Q1 2014. Retrieved from
https://www.f-secure.com/documents/996508/1030743/
Mobile{_}Threat{_}Report{_}Q1{_}2014.pdf

Gantz, J. F., Vavra, T., Lim, V., Soper, P., Smith, L. & Minton, S. (2015).
Unlicensed Software and Cybersecurity Threats (White paper). BSA |
The Software Alliance: BSA | The Software Alliance. Retrieved from
http://www.bsa.org/{~}/media/Files/ResearchPapers/
IDCMalware/FinalIDCMalwareWPJan2015.pdf

Glaser, F. & Bezzenberger, L. (2015). Beyond Cryptocurrencies - A Taxonomy Of
Decentralized Consensus. In 23rd european conference on information systems
(ecis 2015) (pp. 1–18).

Gnesi, S. & Plat, N. (2015). 2nd FME Workshop on Formal Methods in Software
Engineering (FormaliSE 2014). Icse(FormaliSE), 977–978. doi: 10.1109/
ICSE.2015.313

Goldman, E. (2004). Warez trading and criminal copyright infringement. Journal of
the Copyright Society of the U.S.A, 51(2), 395.

Goode, S. & Cruise, S. (2006). What Motivates Software Crackers? Journal of business
ethics, 65(2), 173–201. doi: 10.1007/s10551-005-4709-9

Goodin, D. (2014). Apple’s “in-app purchase” service for iOS by-
passed by Russian hacker | Ars Technica [Internet Web page]. Re-
trieved from http://arstechnica.com/security/2012/07/ios
-in-app-purchase-service-hacked/

Gregor, S. & Hevner, A. R. (2013). Positioning and Presenting Design Science
Research for Maximum Impact. MIS Quarterly, 37(2), 337–355. doi: 10.2753/
MIS0742-1222240302

Gurulian, I., Markantonakis, K., Cavalaro, L. & Mayes, K. (2016). You can’t touch
this: Consumer-centric android application repackaging detection. Future Gen-
eration Computer Systems, 65, 1–9. Retrieved from http://dx.doi.org/

https://goo.gl/yOrD9i
http://frozenlock.files.wordpress.com/2011/11/master-bitcoin.pdf
http://frozenlock.files.wordpress.com/2011/11/master-bitcoin.pdf
http://dx.doi.org/10.1016/j.irfa.2016.02.008
https://www.f-secure.com/documents/996508/1030743/Mobile{_}Threat{_}Report{_}Q1{_}2014.pdf
https://www.f-secure.com/documents/996508/1030743/Mobile{_}Threat{_}Report{_}Q1{_}2014.pdf
http://www.bsa.org/{~}/media/Files/ResearchPapers/IDCMalware/FinalIDCMalwareWPJan2015.pdf
http://www.bsa.org/{~}/media/Files/ResearchPapers/IDCMalware/FinalIDCMalwareWPJan2015.pdf
http://arstechnica.com/security/2012/07/ios-in-app-purchase-service-hacked/
http://arstechnica.com/security/2012/07/ios-in-app-purchase-service-hacked/
http://dx.doi.org/10.1016/j.future.2016.05.021
http://dx.doi.org/10.1016/j.future.2016.05.021

References 212

10.1016/j.future.2016.05.021 doi: 10.1016/j.future.2016.05.021
Haley, A. (2014). How Bad is App Piracy Really? Retrieved

2015-12-12, from http://www.multipie.co.uk/2014/04/bad-app
-piracy-really/

Halford, R. (2014). Gridcoin: Crypto-Currency using {B}erkeley {O}pen
{I}nfrastructure {N}etwork {C}omputing {G}rid as a {P}roof {O}f {W}ork [White
paper]. Retrieved from http://www.gridcoin.us/images/gridcoin
-white-paper.pdf

Han, K. & Shon, T. (2014). Software authority transition through multiple distributors.
The Scientific World Journal, 2014, 295789. doi: 10.1155/2014/295789

Hanley, B. P. (2013). The False Premises and Promises of Bitcoin. Retrieved from
http://arxiv.org/pdf/1312.2048.pdf

Herbert, J. & Litchfield, A. (2015). A Novel Method for Decentralised Peer-to-Peer
Software License Validation Using Cryptocurrency Blockchain Technology. In
38th australasian computer science conference (acsc 2015) (pp. 27–30). Sydney.

Herbert, J. & Stabauer, M. (2015). Bitcoin /& Co: An Ontology for Categorising
Cryptocurrencies. In M-sphere: Book of papers (pp. 45–55). Dubrovnik.

Hétu, D. D., Morselli, C. & Leman-Langlois, S. (2012). Welcome to the Scene: A
Study of Social Organization and Recognition among Warez Hackers. Journal
of Research in Crime and Delinquency, 49(3), 359–382. doi: 10.1177/
0022427811420876

Hevner, A. R., March, S. T., Park, J. & Ram, S. (2004). Design Science
in Information Systems Research. MIS Quarterly, 28(1), 75–105. Re-
trieved from http://dblp.uni-trier.de/rec/bibtex/journals/
misq/HevnerMPR04 doi: 10.2307/25148625

Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J. P. & Margaria, T. (2008,
sep). Software Engineering and Formal Methods. Communications of the ACM,
51(9), 54–59.

Hochstein, M. (2014). Why bitcoin matters for bankers. American Banker, March
2014. Retrieved from http://goo.gl/lYRycw

Holsapple, C. W. ., Iyengar, D., Jin, H. & Rao, S. (2008). Parameters for Software
Piracy Research. The Information Society, 24(4), 199–218. doi: 10.1080/
01972240802189468

Hull, E., Jackson, K. & Dick, J. (2011). Requirements Engineering. doi: 10.1007/
978-1-84996-405-0

IEEE. (1998). IEEE Recommended Practice for Software Requirements Specifications.
Iivari, J. & Venable, J. (2009). Action Research and Design Science Research. Action

Research, 1–13.
Im, J. H. & Van Epps, P. D. (1992). Software piracy and software security measures in

business schools. Information & Management, 23(4), 193–203. doi: 10.1016/
0378-7206(92)90044-G

Ionescu, D. (2010). Microsoft Bans Up to One Million Users From Xbox Live.
PC World. Retrieved 2016-01-26, from http://www.pcworld.com/
article/182010/xbox{_}users{_}banned.html

http://dx.doi.org/10.1016/j.future.2016.05.021
http://dx.doi.org/10.1016/j.future.2016.05.021
http://www.multipie.co.uk/2014/04/bad-app-piracy-really/
http://www.multipie.co.uk/2014/04/bad-app-piracy-really/
http://www.gridcoin.us/images/gridcoin-white-paper.pdf
http://www.gridcoin.us/images/gridcoin-white-paper.pdf
http://arxiv.org/pdf/1312.2048.pdf
http://dblp.uni-trier.de/rec/bibtex/journals/misq/HevnerMPR04
http://dblp.uni-trier.de/rec/bibtex/journals/misq/HevnerMPR04
http://goo.gl/lYRycw
http://www.pcworld.com/article/182010/xbox{_}users{_}banned.html
http://www.pcworld.com/article/182010/xbox{_}users{_}banned.html

References 213

Irvine, D. (2014). MaidSafe.net announces project SAFE to the com-
munity. MaidSafe. Retrieved from https://github.com/maidsafe/
Whitepapers/blob/master/Project-Safe.md

ISO/IEC. (1996). ISO 9660: Color books of standards. Retrieved from http://
www.cdfs.com/cdfs-color-books.html

Jaramillo, D., Nguyen, D. V. & Smart, R. (2016). Leveraging microservices architecture
by using Docker technology. Conference Proceedings - IEEE SOUTHEASTCON,
2016-July, 0–4. doi: 10.1109/SECON.2016.7506647

Kammerstetter, M., Platzer, C. & Wondracek, G. (2012). Vanity, cracks and malware:
insights into the anti-copy protection ecosystem. In (pp. 809–820). ACM. doi:
10.1145/2382196.2382282

Kang, H., Le, M. & Tao, S. (2016). Container and microservice driven design for
cloud infrastructure DevOps. Proceedings - 2016 IEEE International Conference
on Cloud Engineering, IC2E 2016: Co-located with the 1st IEEE International
Conference on Internet-of-Things Design and Implementation, IoTDI 2016, 202–
211. doi: 10.1109/IC2E.2016.26

Karas, S. (2001). Sony Computer Entertainment Inc. v Connectix Corp.
Berkeley Technology Law Journal, 16(1), 1–8. Retrieved from
http://scholarship.law.berkeley.edu/cgi/viewcontent
.cgi?article=1299{&}context=btlj doi: 10.15779/Z38S10B

Kautz, K. (2011). Investigating the Design Process: Participatory Design in
Agile Software Development. Information Technology & People, 24(3), 217–
235. Retrieved from http://www.emeraldinsight.com/10.1108/
09593841111158356 doi: 10.1108/09593841111158356

Keith, J. B., Nick, D., Peter, K., Veena, P., Likhit, W. & Wallis. (2016). Leading
the pack in blockchain banking. IBM Research, 1–20. Retrieved from
https://www.hyperledger.org/wp-content/uploads/2016/
10/Leading-the-pack-in-blockchain-banking-1.pdf

KeyesLabs. (2010). A Global Piracy Heatmap. Retrieved from http://
keyeslabs.com/joomla/projects/auto-app-licensing/
152-a-global-piracy-heat-map

KeyesLabs. (2013). Android – The Perfect Piracy Storm. Retrieved from
http://keyeslabs.com/joomla/blogs/i-think-im-becoming
-an-android/136-android-the-perfect-piracy-storm

Khan, A. u. R. A. N., Othman, M., Ali, M. & Madani, S. A. (2014). Pirax: framework
for application piracy control in mobile cloud environment. The Journal of
Supercomputing, 68(2), 753–776. doi: 10.1007/s11227-013-1061-1

Khandelwal, S. (2015). Hacker confirms Playstation 4 Jailbreak Exploit
cloud open doors for pirated games. The Hacker News. Retrieved
2016-01-26, from http://thehackernews.com/2015/12/sony-ps4
-playstation-jailbreak.html

Kigerl, A. C. (2013). Infringing Nations: Predicting Software Piracy Rates, BitTorrent
Tracker Hosting, and P2P File Sharing Client Downloads Between Countries.
International Journal of Cyber Criminology U6, 7(1), 62.

https://github.com/maidsafe/Whitepapers/blob/master/Project-Safe.md
https://github.com/maidsafe/Whitepapers/blob/master/Project-Safe.md
http://www.cdfs.com/cdfs-color-books.html
http://www.cdfs.com/cdfs-color-books.html
http://scholarship.law.berkeley.edu/cgi/viewcontent.cgi?article=1299{&}context=btlj
http://scholarship.law.berkeley.edu/cgi/viewcontent.cgi?article=1299{&}context=btlj
http://www.emeraldinsight.com/10.1108/09593841111158356
http://www.emeraldinsight.com/10.1108/09593841111158356
https://www.hyperledger.org/wp-content/uploads/2016/10/Leading-the-pack-in-blockchain-banking-1.pdf
https://www.hyperledger.org/wp-content/uploads/2016/10/Leading-the-pack-in-blockchain-banking-1.pdf
http://keyeslabs.com/joomla/projects/auto-app-licensing/152-a-global-piracy-heat-map
http://keyeslabs.com/joomla/projects/auto-app-licensing/152-a-global-piracy-heat-map
http://keyeslabs.com/joomla/projects/auto-app-licensing/152-a-global-piracy-heat-map
http://keyeslabs.com/joomla/blogs/i-think-im-becoming-an-android/136-android-the-perfect-piracy-storm
http://keyeslabs.com/joomla/blogs/i-think-im-becoming-an-android/136-android-the-perfect-piracy-storm
http://thehackernews.com/2015/12/sony-ps4-playstation-jailbreak.html
http://thehackernews.com/2015/12/sony-ps4-playstation-jailbreak.html

References 214

Kirkpatrick, K. (2017). Financing the dark web. Communications of the ACM, 60(3),
21–22. Retrieved from http://dl.acm.org/citation.cfm?doid=
3055102.3037386 doi: 10.1145/3037386

Kondor, D., Pósfai, M., Csabai, I. & Vattay, G. (2014). Do the rich get richer? An
empirical analysis of the bitcoin transaction network (Vol. 9) (No. 2). United
States. doi: 10.1371/journal.pone.0086197

Kretschmer, M. (2003). Digital copyright: the end of an era. European Intellectual
Property Review, 25(8), 333–341.

Kumar, M. (2017). A Typo in Zerocoin’s Source Code helped Hackers Steal ZCoins
worth $585,000. Retrieved from http://thehackernews.com/2017/
02/zcoin-zerocoin-typo.html

Lande, R. H. & Sobin, S. M. (1996). Reverse engineering of computer software and
U.S. antitrust law. Harvard Journal of Law & Technology, 9(2), 237.

Laplante, P. A. (2014). Requirements Engineering for Software and Systems (Second
edi ed.). Boca Raton : CRC/Taylor & Francis.

Lebo, A. (2014). Implementation of a decentralized, transferable, and open software
license system using the Bitcoin protocol. Retrieved from https://github
.com/fisher-lebo/dissent

Ledra Capital. (2014). The Mega-Master Blockchain* List (Vol. 2014). Re-
trieved from http://ledracapital.com/blog/2014/3/11/
bitcoin-series-24-the-mega-master-blockchain-list

Lejacq, Y. (2013). Microsoft Threatens Lifetime Xbox Live Ban To Pirates
After ‘Gears of War: Judgement’ Leaked Online. International Business
Times. Retrieved 2016-01-26, from http://www.ibtimes.com/
microsoft-threatens-lifetime-xbox-live-ban-pirates
-after-gears-war-judgement-leaked-online-1093418

Levy, Y., Levy, Y. & Ellis, T. J. (2011). A Guide for Novice Researchers on Exper-
imental and Quasi-Experimental Studies in Information Systems Research A
Guide for Novice Researchers on Experimental and Quasi-Experimental Stud-
ies in Information Systems Research. Interdisciplinary Journal of Information,
Knowledge, and Management, 6. Retrieved from http://www.ijikm.org/
Volume6/IJIKMv6p151-161Levy553.pdf

Lewis, R. (2016). Five blockchain development challenges for legacy organisations.
Retrieved 2017-05-02, from https://medium.com/yope-chain/
five-blockchain-development-challenges-for-legacy
-organisations-e0f57e6b808c

Lu, J. & Weber, I. (2009). Internet Software Piracy in China: A User Analysis of Res-
istance to Global Software Copyright Enforcement. Journal of International and
Intercultural Communication, 2(4), 298–317. doi: 10.1080/17513050903177300

Lynley, M. (2011). Did Sony shut down PSN to prevent “extreme” piracy? VentureBeat.
Retrieved 2016-01-26, from http://venturebeat.com/2011/04/25/
playstation-network-outage-piracy/

Maesa, D. D. F., Marino, A. & Ricci, L. (2016). Uncovering the Bitcoin Blockchain: An
Analysis of the Full Users Graph. 2016 IEEE International Conference on Data

http://dl.acm.org/citation.cfm?doid=3055102.3037386
http://dl.acm.org/citation.cfm?doid=3055102.3037386
http://thehackernews.com/2017/02/zcoin-zerocoin-typo.html
http://thehackernews.com/2017/02/zcoin-zerocoin-typo.html
https://github.com/fisher-lebo/dissent
https://github.com/fisher-lebo/dissent
http://ledracapital.com/blog/2014/3/11/bitcoin-series-24-the-mega-master-blockchain-list
http://ledracapital.com/blog/2014/3/11/bitcoin-series-24-the-mega-master-blockchain-list
http://www.ibtimes.com/microsoft-threatens-lifetime-xbox-live-ban-pirates-after-gears-war-judgement-leaked-online-1093418
http://www.ibtimes.com/microsoft-threatens-lifetime-xbox-live-ban-pirates-after-gears-war-judgement-leaked-online-1093418
http://www.ibtimes.com/microsoft-threatens-lifetime-xbox-live-ban-pirates-after-gears-war-judgement-leaked-online-1093418
http://www.ijikm.org/Volume6/IJIKMv6p151-161Levy553.pdf
http://www.ijikm.org/Volume6/IJIKMv6p151-161Levy553.pdf
https://medium.com/yope-chain/five-blockchain-development-challenges-for-legacy-organisations-e0f57e6b808c
https://medium.com/yope-chain/five-blockchain-development-challenges-for-legacy-organisations-e0f57e6b808c
https://medium.com/yope-chain/five-blockchain-development-challenges-for-legacy-organisations-e0f57e6b808c
http://venturebeat.com/2011/04/25/playstation-network-outage-piracy/
http://venturebeat.com/2011/04/25/playstation-network-outage-piracy/

References 215

Science and Advanced Analytics (DSAA), 537–546. Retrieved from http://
ieeexplore.ieee.org/document/7796940/ doi: 10.1109/DSAA
.2016.52

Mainelli, M. (2018). Blockchain Will Help Us Prove out Identities in a Digital World.
Harvard Business review(March), 2–7.

Marian, O. (2014). A Conceptual Framework for the Regulation of Cryptocurrencies.
The University of Chicago Law Review, 2423461(forthcoming), 53–68.

Martin, K. (2014). Regulating Code: Good Governance and Better Regulation in the In-
formation Age, by Ian Brown and Christopher Marsden. Cambridge, Mass.: MIT
Press, 2013. ISBN: 978-0262018821. Business Ethics Quarterly, 24(04), 624–
627. Retrieved from https://www.cambridge.org/core/product/
identifier/S1052150X00013282/type/journal{_}article
doi: 10.5840/beq201424420

Maude, T. & Maude, D. (1984). Hardware protection against software piracy. ACM,
27(Generic), 950–959. doi: 10.1145/358234.358271

Mazières, D. (2015). The Stellar Consensus Protocol: A Federated Model for Internet-
level Consensus. Retrieved from https://www.stellar.org/papers/
stellar-consensus-protocol.pdf

McCook, H. (2014). An Order-of-Magnitude Estimate of the Relative Sustainability of
the Bitcoin Network. Retrieved from http://goo.gl/M8741r

Mehdi, K.-P. (2013). Dictionary of Information Science and Technology (2nd Edition).
Hershey, PA, USA: IGI Global. doi: 10.4018/978-1-4666-2624-9

Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G. M.
& Savage, S. (2013). A fistful of bitcoins. A Fistful of Bitcoins: Characterizing
Payments Among Men with No Names, 59(4), 127–140. Retrieved from http://
dl.acm.org/citation.cfm?id=2504730.2504747 doi: 10.1145/
2504730.2504747

Meshkova, E., Riihijärvi, J., Petrova, M. & Mähönen, P. (2008). A survey on resource
discovery mechanisms, peer-to-peer and service discovery frameworks. Com-
puter Networks, 52(11), 2097–2128. Retrieved from http://linkinghub
.elsevier.com/retrieve/pii/S138912860800100X doi: 10
.1016/j.comnet.2008.03.006

Miers, I., Garman, C., Green, M. & Rubin, A. D. (2013). Zerocoin: Anonymous
Distributed E-Cash from Bitcoin. In 2013 ieee symposium on security and
privacy (pp. 397–411). IEEE. doi: 10.1109/SP.2013.34

Millar, J. (2017). Enterprise Ethereum Alliance - Vision paper. Re-
trieved from https://entethalliance.atlassian.net/
wiki/download/attachments/37151/EntEthVision-v3.1
-24February2017.pdf?version=1{&}modificationDate=
1488946292762{&}cacheVersion=1{&}api=v2

Molina-Solana, M., Birch, D. & Guo, Y.-k. (2017). Improving data exploration in graphs
with fuzzy logic and large-scale visualisation. Applied Soft Computing, 53, 227–
235. Retrieved from //www.sciencedirect.com/science/article/
pii/S1568494616306731 doi: http://dx.doi.org/10.1016/j.asoc.2016.12

http://ieeexplore.ieee.org/document/7796940/
http://ieeexplore.ieee.org/document/7796940/
https://www.cambridge.org/core/product/identifier/S1052150X00013282/type/journal{_}article
https://www.cambridge.org/core/product/identifier/S1052150X00013282/type/journal{_}article
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
http://goo.gl/M8741r
http://dl.acm.org/citation.cfm?id=2504730.2504747
http://dl.acm.org/citation.cfm?id=2504730.2504747
http://linkinghub.elsevier.com/retrieve/pii/S138912860800100X
http://linkinghub.elsevier.com/retrieve/pii/S138912860800100X
https://entethalliance.atlassian.net/wiki/download/attachments/37151/EntEthVision-v3.1-24February2017.pdf?version=1{&}modificationDate=1488946292762{&}cacheVersion=1{&}api=v2
https://entethalliance.atlassian.net/wiki/download/attachments/37151/EntEthVision-v3.1-24February2017.pdf?version=1{&}modificationDate=1488946292762{&}cacheVersion=1{&}api=v2
https://entethalliance.atlassian.net/wiki/download/attachments/37151/EntEthVision-v3.1-24February2017.pdf?version=1{&}modificationDate=1488946292762{&}cacheVersion=1{&}api=v2
https://entethalliance.atlassian.net/wiki/download/attachments/37151/EntEthVision-v3.1-24February2017.pdf?version=1{&}modificationDate=1488946292762{&}cacheVersion=1{&}api=v2
//www.sciencedirect.com/science/article/pii/S1568494616306731
//www.sciencedirect.com/science/article/pii/S1568494616306731

References 216

.044
Mooers, C. N. (1977). Preventing Software Piracy. Computer, 29(3), 29–30. doi:

10.1109/C-M.1977.217671
Moon, K. (2009). IBM v Computer Imports [1989] 2 NZLR 395. AJ

Park. Retrieved from http://www.ajpark.com/media/98134/
the{_}nature{_}of{_}computer{_}programmes.pdf

Moores, T. & Dhillon, G. (2000). Software piracy: a view from Hong Kong. Commun.
ACM, 43(12), 88–93. doi: 10.1145/355112.355129

Moy, E. C. (2014). The Currency Revolution, Courtesy Of Bitcoin. Retrieved
from http://edmoy.com/the-currency-revolution-courtesy
-of-bitcoin/

Munter, J. (2016). Is Bitcoin the Next Big Thing in the Fight Against Piracy? Copyright
Alliance. Retrieved 2017-04-08, from http://copyrightalliance
.org/ca{_}post/bitcoin-next-big-thing-fight-piracy/

Nakamoto, S. (2008, jan). Bitcoin: A peer-to-peer electronic cash system (Vol. 1)
[White paper]. Retrieved from https://bitcoin.org/bitcoin.pdf

Naumovich, G. & Memon, N. (2003). Preventing piracy, reverse engineering, and
tampering. Computer, 36(7), 64–71. doi: 10.1109/MC.2003.1212692

Netmarketshare. (2015). Netmarketshare [Internet Web Page]. Retrieved from
http://netmarketshare.com/

Newman, J. (2013). Illegal deposit: Game preservation and/as software piracy. Con-
vergence: The International Journal of Research into New Media Technologies,
19(1), 45–61. Retrieved from http://con.sagepub.com/content/19/
1/45.abstract doi: 10.1177/1354856512456790

Nielsen, J. (2014). Nielsen’s Law of Internet Bandwidth. Nielsen Norman Group.
Retrieved 2016-04-12, from https://www.nngroup.com/articles/
law-of-bandwidth/

Nill, A. & Shultz, C. J. (2009). Global software piracy: Trends and strategic considera-
tions. Business Horizons (2009), 52, 289–298. doi: 10.1016/j.bushor.2009.01
.007

Noyen, K., Volland, D., Wörner, D. & Fleisch, E. (2014). When Money Learns to Fly:
Towards Sensing as a Service Applications Using Bitcoin. , 6. Retrieved from
http://arxiv.org/abs/1409.5841

Nunamaker Jr., J. & Chen, M. (1990). Systems development in information systems
research. Twenty-Third Annual Hawaii International Conference on System
Sciences, iii(3), 89–106. doi: 10.1109/HICSS.1990.205401

NXT Community. (2014). Nxt Whitepaper. Retrieved from https://nxtwiki
.org/wiki/Whitepaper:Nxt

Oberhauser, A. (2015). Decentralized Public Ledger as Enabler for the Gift Eco-
nomy at Scale. University of Amsterdam. Retrieved from https://goo.gl/
ajvqZf

Ois, S. N. A., Sherif, F. F. & Gamal, I. S. (2014). MCSAuth: A New Authentication
Mechanism for Cloud Systems. International Journal of Computer Applications,
88(15). doi: 10.5120/15428-3934

http://www.ajpark.com/media/98134/the{_}nature{_}of{_}computer{_}programmes.pdf
http://www.ajpark.com/media/98134/the{_}nature{_}of{_}computer{_}programmes.pdf
http://edmoy.com/the-currency-revolution-courtesy-of-bitcoin/
http://edmoy.com/the-currency-revolution-courtesy-of-bitcoin/
http://copyrightalliance.org/ca{_}post/bitcoin-next-big-thing-fight-piracy/
http://copyrightalliance.org/ca{_}post/bitcoin-next-big-thing-fight-piracy/
https://bitcoin.org/bitcoin.pdf
http://netmarketshare.com/
http://con.sagepub.com/content/19/1/45.abstract
http://con.sagepub.com/content/19/1/45.abstract
https://www.nngroup.com/articles/law-of-bandwidth/
https://www.nngroup.com/articles/law-of-bandwidth/
http://arxiv.org/abs/1409.5841
https://nxtwiki.org/wiki/Whitepaper:Nxt
https://nxtwiki.org/wiki/Whitepaper:Nxt
https://goo.gl/ajvqZf
https://goo.gl/ajvqZf

References 217

Oxford Dictionary. (2016). Retrieved from http://www.oed.com/
Palmer, B. P. (2014). Anonymously Establishing Digital Provenance in Reseller Chains

(thesis, Victoria University Of Wellington, Wellington). Retrieved from http://
researcharchive.vuw.ac.nz/xmlui/handle/10063/2281

Panzarino, M. (2013). iOS App Piracy Continues, Now Without Jailbreak. Re-
trieved 2015-12-12, from http://thenextweb.com/apple/2013/01/
01/low-down-dirty-iphone-app-pirates/

Papas, N., O’Keefe, R. M. & Seltsikas, P. (2012). The action research vs design science
debate: reflections from an intervention in eGovernment. European Journal of
Information Systems, 21(2), 147–159. doi: 10.1057/ejis.2011.50

Parliament, E. & Council, E. U. (2001). Directive 2001/29/EC. Official Journal of the
European Union, L167(February), 12–25.

Patel, S. J. & Pattewar, T. M. (2014). Software birthmark based theft detection
of JavaScript programs using agglomerative clustering and Frequent Subgraph
Mining. International Conference on Embedded Systems, ICES 2014, 63–68. doi:
10.1109/EmbeddedSys.2014.6953052

Peck, M. (2017). TalkComputingNetworks Corporate Titans Unite to
Build an Enterprise Version of the Ethereum Blockchain. Retrieved
from http://spectrum.ieee.org/tech-talk/computing/
networks/enterprise-ethereum-alliance-launches

Peffers, K., Tuunanen, T., Rothenberger, M. A. & Chatterjee, S. (2007). A Design
Science Research Methodology for Information Systems Research. Journal
of Management Information Systems, 24(3), 45–77. doi: 10.2753/MIS0742
-1222240302

Percival, C. (2009). Stronger key derivation via sequential memory-hard functions.
Retrieved from http://www.tarsnap.com/scrypt/scrypt.pdf

Peteanu, R. (2014). Fraud Detection in the World of Bitcoin. Coin Publishing
Ltd. Retrieved from http://bitcoinmagazine.com/11599/fraud
-detection-world-bitcoin/

Plassaras, N. A. (2013). Regulating Digital Currencies: Bringing Bitcoin within the
Reach of the IMF. Chicago Journal of International Law, 14(1), 377.

Ployhar, M. (2012). Gaming Piracy - Separating Fact from Fiction [Internet
Web Page]. Retrieved from https://software.intel.com/en-us/
blogs/2012/09/22/gaming-piracy-separating-fact-from
-fiction

Porter, R. (2015). Digital currencies: response to the call for information (No. March).
Retrieved from http://www.pwc.co.uk/en{_}UK/uk/assets/pdf/
hm-treasury-call-for-information-digital-currencies
.pdf

Prisco, G. (2015a). The New Stellar Consensus Protocol Could Permit Faster and
Cheaper Transactions. Bitcoin Magazine. Retrieved from https://
bitcoinmagazine.com/20044/new-stellar-consensus
-protocol-permit-faster-cheaper-transactions/

Prisco, G. (2015b). Peter Diamandis: Blockchain Technology Will Enable

http://www.oed.com/
http://researcharchive.vuw.ac.nz/xmlui/handle/10063/2281
http://researcharchive.vuw.ac.nz/xmlui/handle/10063/2281
http://thenextweb.com/apple/2013/01/01/low-down-dirty-iphone-app-pirates/
http://thenextweb.com/apple/2013/01/01/low-down-dirty-iphone-app-pirates/
http://spectrum.ieee.org/tech-talk/computing/networks/enterprise-ethereum-alliance-launches
http://spectrum.ieee.org/tech-talk/computing/networks/enterprise-ethereum-alliance-launches
http://www.tarsnap.com/scrypt/scrypt.pdf
http://bitcoinmagazine.com/11599/fraud-detection-world-bitcoin/
http://bitcoinmagazine.com/11599/fraud-detection-world-bitcoin/
https://software.intel.com/en-us/blogs/2012/09/22/gaming-piracy-separating-fact-from-fiction
https://software.intel.com/en-us/blogs/2012/09/22/gaming-piracy-separating-fact-from-fiction
https://software.intel.com/en-us/blogs/2012/09/22/gaming-piracy-separating-fact-from-fiction
http://www.pwc.co.uk/en{_}UK/uk/assets/pdf/hm-treasury-call-for-information-digital-currencies.pdf
http://www.pwc.co.uk/en{_}UK/uk/assets/pdf/hm-treasury-call-for-information-digital-currencies.pdf
http://www.pwc.co.uk/en{_}UK/uk/assets/pdf/hm-treasury-call-for-information-digital-currencies.pdf
https://bitcoinmagazine.com/20044/new-stellar-consensus-protocol-permit-faster-cheaper-transactions/
https://bitcoinmagazine.com/20044/new-stellar-consensus-protocol-permit-faster-cheaper-transactions/
https://bitcoinmagazine.com/20044/new-stellar-consensus-protocol-permit-faster-cheaper-transactions/

References 218

Extraordinary Transform. Bitcoin Magazine. Retrieved from https://
bitcoinmagazine.com/20407/peter-diamandis-blockchain
-technology-will-enable-extraordinary-transformation/

Radcliffe, M. (1999). Digital Millennium Copyright Act: Forging the Copyright
Framework for the Internet: First Steps. Journal of Internet Law, 2(9), 1.

Rapoza, K. (2012). In China, Why Piracy Is Here To Stay (Vol. 2015). Forbes.
Retrieved from http://www.forbes.com/sites/kenrapoza/2012/
07/22/in-china-why-piracy-is-here-to-stay/

Rasch, A. & Wenzel, T. (2015). The impact of piracy on prominent and non-
prominent software developers. Telecommunications Policy, 39(8), 735–744. Re-
trieved from http://linkinghub.elsevier.com/retrieve/pii/
S0308596114001839 doi: 10.1016/j.telpol.2014.11.003

Ravenscraft, E. (2012). Just How Bad Is App Piracy On Android Any-
way? Hint: We’re Asking The Wrong Question. Retrieved from
http://www.androidpolice.com/2012/07/31/editorial
-just-how-bad-is-app-piracy-on-android-anyways-hint
-were-asking-the-wrong-question/

Rivest, R. L., Shamir, A. & Adleman, L. (1978). A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2), 120–
126. Retrieved from http://portal.acm.org/citation.cfm?doid=
359340.359342 doi: 10.1145/359340.359342

Rosenfeld, M. (2012). Overview of Colored Coins. Retrieved from https://
bitcoil.co.il/BitcoinX.pdf

Schaefer, I. & Hähnle, R. (2011). Formal Methods in SPL. IEEE Computer, 82–85.
Schön, E.-m., Thomaschewski, J. & Escalona, M. J. (2016). Agile Requirements

Engineering: A Systematic Literature Review. Computer Standards & Interfaces,
49, –. doi: http://dx.doi.org/10.1016/j.csi.2016.08.011

Senior, T. (2012). PC gaming has "around a 93-95% piracy rate" claims Ubisoft
CEO [Internet Web Page]. Retrieved from http://www.pcgamer.com/
pc-gaming-has-around-a-93-95-per-cent-piracy-rate
-claims-ubisoft-ceo/

Sharma, S., Sharma, C. S. & Tyagi, V. (2015). Plagiarism detection tool "Parikshak".
2015 International Conference on Communication, Information & Computing
Technology (ICCICT), 1–7. doi: 10.1109/ICCICT.2015.7045739

Shea, R. (2017). Blockstack. Retrieved 2017-04-17, from https://blockstack
.org/intro

Shehory, O. M. & Sturm, A. (2014). Agent-oriented software engineering : reflections
on architectures, methodologies, languages, and frameworks. Berlin : Springer,
[2014].

Sheinblatt, J. S. (2014). The WIPO Copyright Treaty. Berkeley Tech. L.J., 13(1),
535–550. Retrieved from http://scholarship.law.berkeley.edu/
btlj/vol13/iss1/34

Shirriff, K. (2014). Hidden surprises in the Bitcoin blockchain and how they
are stored. Retrieved from http://www.righto.com/2014/02/ascii

https://bitcoinmagazine.com/20407/peter-diamandis-blockchain-technology-will-enable-extraordinary-transformation/
https://bitcoinmagazine.com/20407/peter-diamandis-blockchain-technology-will-enable-extraordinary-transformation/
https://bitcoinmagazine.com/20407/peter-diamandis-blockchain-technology-will-enable-extraordinary-transformation/
http://www.forbes.com/sites/kenrapoza/2012/07/22/in-china-why-piracy-is-here-to-stay/
http://www.forbes.com/sites/kenrapoza/2012/07/22/in-china-why-piracy-is-here-to-stay/
http://linkinghub.elsevier.com/retrieve/pii/S0308596114001839
http://linkinghub.elsevier.com/retrieve/pii/S0308596114001839
http://www.androidpolice.com/2012/07/31/editorial-just-how-bad-is-app-piracy-on-android-anyways-hint-were-asking-the-wrong-question/
http://www.androidpolice.com/2012/07/31/editorial-just-how-bad-is-app-piracy-on-android-anyways-hint-were-asking-the-wrong-question/
http://www.androidpolice.com/2012/07/31/editorial-just-how-bad-is-app-piracy-on-android-anyways-hint-were-asking-the-wrong-question/
http://portal.acm.org/citation.cfm?doid=359340.359342
http://portal.acm.org/citation.cfm?doid=359340.359342
https://bitcoil.co.il/BitcoinX.pdf
https://bitcoil.co.il/BitcoinX.pdf
http://www.pcgamer.com/pc-gaming-has-around-a-93-95-per-cent-piracy-rate-claims-ubisoft-ceo/
http://www.pcgamer.com/pc-gaming-has-around-a-93-95-per-cent-piracy-rate-claims-ubisoft-ceo/
http://www.pcgamer.com/pc-gaming-has-around-a-93-95-per-cent-piracy-rate-claims-ubisoft-ceo/
https://blockstack.org/intro
https://blockstack.org/intro
http://scholarship.law.berkeley.edu/btlj/vol13/iss1/34
http://scholarship.law.berkeley.edu/btlj/vol13/iss1/34
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html

References 219

-bernanke-wikileaks-photographs.html
Sigi, G. (2010). Exploring the supply of pirate software for mobile devices: An analysis

of software types and piracy groups. Information Management & Computer Se-
curity & Computer Security, 18(4), 204–225. doi: 10.1108/09685221011079171

Silver, M. S., Markus, M. L. & Beath, C. M. (1995). The Information Technology
Interaction Model: A Foundation for the MBA Core Course. MIS Quarterly,
19(3), 361–390. doi: 10.2307/249600

Singh, S., Jeong, Y. S. & Park, J. H. (2016). A survey on cloud computing security:
Issues, threats, and solutions. Journal of Network and Computer Applications,
75, 200–222. Retrieved from http://dx.doi.org/10.1016/j.jnca
.2016.09.002 doi: 10.1016/j.jnca.2016.09.002

Smith, D. (2015). Android Still Has A Massive Piracy Problem [In-
ternet Web Page]. Business Insider Australia. Retrieved from
http://www.businessinsider.com.au/android-piracy
-problem-2015-1

Solon, O. (2013). BitTorrent study challenges videogame piracy misconceptions
(Wired UK). Retrieved 2016-01-18, from http://www.wired.co.uk/
news/archive/2013-05/15/bittorrent-gaming-study

Sommerville, I. (2010). Software Engineering, Ninth Edition (Ninth Edit ed.). doi:
10.1111/j.1365-2362.2005.01463.x

Sony. (2016a). Information on Banned Accounts and Consoles. Retrieved 2016-
02-29, from https://support.us.playstation.com/articles/
en{_}US/KC{_}Article/Information-on-Banned-Accounts
-and-Consoles/?

Sony. (2016b). Playstation Software Usage Terms. Retrieved 2016-
01-22, from https://www.playstation.com/en-nz/legal/
software-usage-terms/

Sprankel, S. (2013). Technical Basis of Digital Currencies.
Steam. (2015). Steam Hardware & Software Survey [Internet Web

Page]. Retrieved from http://store.steampowered.com/hwsurvey
?platform=combined

Steam. (2016). Steam Anti-Piracy Suite. Retrieved from https://www
.steampowered.com/steamworks/publishingservices.php

SteamRE. (2016). Open-Steamworks. Retrieved 2016-01-25, from https://
github.com/SteamRE/open-steamworks

Suduc, A.-M., Bizoi, M. & Filip, F. G. (2009). Ethical Aspects on Software Piracy
and Information and Communication Technologies Misuse (Vol. 42) (No. 25).
IFAC. Retrieved from http://dx.doi.org/10.3182/20091028-3
-RO-4007.00008 doi: 10.3182/20091028-3-RO-4007.00008

Suhler, P. A., Bagherzadeh, N., Malek, M. & Iscoe, N. (1986). Software Authorization
Systems. IEEE Software, 3(5), 34–41. doi: 10.1109/MS.1986.234396

Swanson, S. D. (2010). The Digital Millennium Copyright Act and the Iphone: An
Unnecessary Proceeding. Journal of Internet Law, 14(August), 3–6.

Techopedia. (2015). Software Piracy (Vol. 2015) (Internet Web Page No. 03/09/2015).

http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
http://dx.doi.org/10.1016/j.jnca.2016.09.002
http://dx.doi.org/10.1016/j.jnca.2016.09.002
http://www.businessinsider.com.au/android-piracy-problem-2015-1
http://www.businessinsider.com.au/android-piracy-problem-2015-1
http://www.wired.co.uk/news/archive/2013-05/15/bittorrent-gaming-study
http://www.wired.co.uk/news/archive/2013-05/15/bittorrent-gaming-study
https://support.us.playstation.com/articles/en{_}US/KC{_}Article/Information-on-Banned-Accounts-and-Consoles/?
https://support.us.playstation.com/articles/en{_}US/KC{_}Article/Information-on-Banned-Accounts-and-Consoles/?
https://support.us.playstation.com/articles/en{_}US/KC{_}Article/Information-on-Banned-Accounts-and-Consoles/?
https://www.playstation.com/en-nz/legal/software-usage-terms/
https://www.playstation.com/en-nz/legal/software-usage-terms/
http://store.steampowered.com/hwsurvey?platform=combined
http://store.steampowered.com/hwsurvey?platform=combined
https://www.steampowered.com/steamworks/publishingservices.php
https://www.steampowered.com/steamworks/publishingservices.php
https://github.com/SteamRE/open-steamworks
https://github.com/SteamRE/open-steamworks
http://dx.doi.org/10.3182/20091028-3-RO-4007.00008
http://dx.doi.org/10.3182/20091028-3-RO-4007.00008

References 220

Retrieved from https://www.techopedia.com/definition/4361/
software-piracy

Thurimella, A. K. (2014). Using Case-Based Methods in an Experimental Design
: A Mixed-Method Approach for Evaluating Collaboration-Intensive Software
Modeling Approaches. Journal of Case Research, V(02), 80–91.

Tsotsorin, M. (2013). Piracy and Video Games: Is There a Light at the
End of the Tunnel? Retrieved from http://works.bepress
.com/cgi/viewcontent.cgi?article=1002{&}context=
maxim{_}tsotsorin

Ubisoft. (2016). Ubisoft EULA. Retrieved 2016-01-22, from https://legal.ubi
.com/eula/en-US

Underwood, S. (2016). Blockchain beyond bitcoin. Communications of the ACM,
59(11), 15–17. Retrieved from http://dl.acm.org/citation.cfm
?doid=3013530.2994581 doi: 10.1145/2994581

UNESCO. (2015). World Anti-Piracy Observatory (Vol. 2015) (Internet Web
Page No. 03/09/2015). Retrieved from http://portal.unesco
.org/culture/en/ev.php-URL{_}ID=39397{&}URL{_}DO=
DO{_}TOPIC{&}URL{_}SECTION=201.html

University of Sheffield. (2016). CFP: Blockchain Applications In Artificial Intelligence
And Cognitive Science. Retrieved from http://blockchainstudies
.org/BlockchainCogAI.html

Van der Sar, E. (2009). MAC vs PC: The Pirate Edition. Torrentfreak. Retrieved
from https://torrentfreak.com/why-mac-users-are-better
-pirates-090206/

Veerubhotla, R. S. & Saxena, A. (2011). A DRM framework towards preventing digital
piracy. Proceedings of the 2011 7th International Conference on Information
Assurance and Security, IAS 2011, 1–6. doi: 10.1109/ISIAS.2011.6122785

Wagner, S. C. & Sanders, G. L. (2001). Considerations in ethical decision-making and
software piracy. Journal of business ethics, 29(1-2), 161–167.

Wang, C.-w., Cheng, M., Cho, Y. & Wang, C.-w. (2015). Combating Software Piracy
in Public Clouds. Computer, 48(10), 88–91. doi: 10.1109/MC.2015.317

Williams, L. (2012). What agile teams think of agile principles. Communications
of the ACM, 55(4), 71. Retrieved from http://dl.acm.org/citation
.cfm?doid=2133806.2133823 doi: 10.1145/2133806.2133823

Winters, T. (2014). Proof of Burn and the Counterparty Approach. Retrieved
from http://bitscan.com/articles/proof-of-burn-and-the
-counterparty-approach

Wolff, S. (2012). Scrum Goes Formal : Agile Methods for Safety-Critical Systems.
In 2012 first international workshop on formal methods in software engineering:
Rigorous and agile approaches (formsera) (pp. 23–29).

Wood, G. (2016). Ethereum: A Secure Decentralised Generalised Transaction Ledger
EIP-150 Revision. Retrieved from http://gavwood.com/Paper.pdf
?TB{_}iframe=true{&}width=288{&}height=432

Wood, G., Zamfir, V. & Coleman, J. (2015). Notes on Scalable Blockchain Protocols.

https://www.techopedia.com/definition/4361/software-piracy
https://www.techopedia.com/definition/4361/software-piracy
http://works.bepress.com/cgi/viewcontent.cgi?article=1002{&}context=maxim{_}tsotsorin
http://works.bepress.com/cgi/viewcontent.cgi?article=1002{&}context=maxim{_}tsotsorin
http://works.bepress.com/cgi/viewcontent.cgi?article=1002{&}context=maxim{_}tsotsorin
https://legal.ubi.com/eula/en-US
https://legal.ubi.com/eula/en-US
http://dl.acm.org/citation.cfm?doid=3013530.2994581
http://dl.acm.org/citation.cfm?doid=3013530.2994581
http://portal.unesco.org/culture/en/ev.php-URL{_}ID=39397{&}URL{_}DO=DO{_}TOPIC{&}URL{_}SECTION=201.html
http://portal.unesco.org/culture/en/ev.php-URL{_}ID=39397{&}URL{_}DO=DO{_}TOPIC{&}URL{_}SECTION=201.html
http://portal.unesco.org/culture/en/ev.php-URL{_}ID=39397{&}URL{_}DO=DO{_}TOPIC{&}URL{_}SECTION=201.html
http://blockchainstudies.org/BlockchainCogAI.html
http://blockchainstudies.org/BlockchainCogAI.html
https://torrentfreak.com/why-mac-users-are-better-pirates-090206/
https://torrentfreak.com/why-mac-users-are-better-pirates-090206/
http://dl.acm.org/citation.cfm?doid=2133806.2133823
http://dl.acm.org/citation.cfm?doid=2133806.2133823
http://bitscan.com/articles/proof-of-burn-and-the-counterparty-approach
http://bitscan.com/articles/proof-of-burn-and-the-counterparty-approach
http://gavwood.com/Paper.pdf?TB{_}iframe=true{&}width=288{&}height=432
http://gavwood.com/Paper.pdf?TB{_}iframe=true{&}width=288{&}height=432

References 221

Wooldridge, M. & Jennings, N. R. (1995). Intelligent Agents : Theory and Practice.
The Knowledge Engineering Review, 10(2), 115–152.

World Economic Forum. (2015). Deep Shift Technology Tipping Points and Societal
Impact (Tech. Rep. No. September). World Economic Forum.

Xiaochao, Q. (2014). A Bitcoin system with no mining and no history transactions:
Build a compact Bitcoin system.

Xiaosong, L. & Kai, H. (2009). Collusive Piracy Prevention in P2P Content Delivery
Networks. Computers, IEEE Transactions on, 58(7), 970–983. doi: 10.1109/
TC.2009.26

Yin-Leng, T., Wee Teck, T., May, O. L. & Schubert Foo, S.-B. (2010). An Exploratory
Study of Determinants and Corrective Measures for Software Piracy and Coun-
terfeiting in the Digital Age. Computer and Information Science, 3(3), 30. doi:
10.5539/cis.v3n3p30

Yulong Zhang, Zhaofeng Chen, Y. K. (2015). Guaranteed Clicks: Mo-
bile App Company Takes Control of Android Phones. Retrieved from
https://www.fireeye.com/blog/threat-research/2015/09/
guaranteed{_}clicksm.html

Zave, P. (1997). Classification of Research Efforts in Requirements Engineering. Pro-
ceedings of 1995 IEEE International Symposium on Requirements Engineering
(RE’95), 29(4), 315–321. doi: 10.1109/ISRE.1995.512563

Zimmermann, K. A. (2012). Internet History Timeline: ARPANET to the World Wide
Web (Vol. 2015) (No. 18/04/2015). LiveScience. Retrieved from http://
www.livescience.com/20727-internet-history.html

https://www.fireeye.com/blog/threat-research/2015/09/guaranteed{_}clicksm.html
https://www.fireeye.com/blog/threat-research/2015/09/guaranteed{_}clicksm.html
http://www.livescience.com/20727-internet-history.html
http://www.livescience.com/20727-internet-history.html

Appendix A

A.1 Definitions

AD Active Directory
AOSE Agent Oriented Systems Engineering
API Application Programming Interface
AS Application System
BSA Business Software Alliance
BPP Blockchain Peer Pool
CEG Custom Executable Generation
COTS Commercial off-the-shelf (software)
CUS Client User System
DApps Distributed Apps
DCMA Digital Millennium Copyright Act
DDS Digital Distribution Services
DFD Data Flow Diagram
DNS Domain Name Service
DRM Digital Rights Management
DSR Design Science Research
EBA External Blockchain Application
ECDSA Elliptic Curve Digital Signature Algorithm
EULA End User License Agreement
GWT Given-When-Then
HLA High Level Architecture
IS Information Systems
ISV Independent Software Vendor
LDAP Lightweight Directory Access Protocol
M2C Machine to Consumer

222

Appendix A. 223

M2M Machine to Machine
MDM Master Bitcoin Model
NBA Native Blockchain Application
OS Operating System
PApp Published App
PC Personal Computer
RA Reference Architecture
RE Requirements Engineering
ReSOLV The blockchain-based SLV method being researched
RVC Regulated Virtual Currency
SaaS Software-as-a-Service
SAFE Secure Access For Everyone
SLV Software License Validation
SoV States Of Vulnerability
SPVL Software Piracy Vulnerability Lifecycle
TAP Transaction and Application Platform
TCP/IP Transmission Control Protocol / Internet Protocol
TOC Transaction-only Cryptocurrency
TTP Tagged Transaction Protocol
TRIPS Trade Related Aspects of Intellectual Property Rights
UML Unified Modelling Language
USB Universal Serial Bus
VPS Vendor Provenance System
WIPO World Intellectual Property Organization

A.2 Bitcoin Protocol Learnings

There were several learnings in respect to the Bitcoin protocol that resulted from the

detail and pseudocode required to produce the data flow diagrams. The underlying

bitcoin transaction process requires a careful understanding of the elements involved to

determine the data flows. Furthermore, although the data flow diagrams are independent

of system architecture, data relationships, and state, their relevance became important

in the context of understanding the bitcoin ecosystem. This was determined because the

concept of a “chain of digital signatures” requires potentially different sets of data from

earlier transactions that are stored by the Miners in the blockchain public ledger.

In summary, the bitcoin transaction process between two actors has two parts, inputs

Appendix A. 224

and outputs, that must balance for each transaction as discussed in Chapter 2.5.5 on

page 73. Expanding on this, when an actor wants to send a bitcoin of some value

to another actor, the sending actor transmits a message using the Bitcoin protocol

to the Bitcoin peer group (the Miners) to update the public ledger (the blockchain),

and awaits confirmation of the transaction to be announced to the Bitcoin network.

During the creation of the data flow diagrams, this simplistic explanation required

further investigation to unravel the mechanics of the transaction process and determine

what data is utilised during the end to end of the transaction process. The Bitcoin

protocol was used as the basis for describing how ReSOLV might interact within a

ReSOLV ecosystem. Despite many available sources of information describing the

Bitcoin protocol, the information is often confusing, as references to which public key,

private key, and address are often omitted from explanations. The best deconstruction of

a Bitcoin ecosystem transaction was provided by Shirriff (2014), who manually created

a bitcoin transaction using Python coding language.

A concise explanation of the Bitcoin transaction process is described below, with

some precursory information provided that establishes the basic elements of a bitcoin

transaction. For clarity of the explanation, Alice and Bob are used as the primary actors,

where Alice is sending bitcoins to Bob. Jim, Kate and Linda are secondary actors,

used to demonstrate the how Alice received her bitcoins and the authenticity of the

transactions. Figure A.1 shows the various elements that are used to construct the

bitcoin transaction, and these are explained in the following sections.

A.2.1 Precursor

In the Bitcoin cryptocurrency ecosystem, bitcoins do not exist as an entity. Bitcoins are

simply signed data on a public ledger (the blockchain), where one actor can digitally

sign data over to another actor: hence the original definition of a bitcoin as “a chain

Appendix A. 225

PubKeyBOB , PrivKeyBOB

Alice Bob
50 Bitcoins

[20 PubKeyJIM] ���� DigestJIM PubKeyBOB ,50

[10 PubKeyKATE] ���� DigestKATE PubKeyALICE ,14

[35 PubKeyLINDA] ���� DigestLINDA SignatureALICE

INPUTS OUTPUTS

PubKeyALICE , PrivKeyALICE

Alice signs

transaction data

Alice’s digital signature

of the transaction data is

appended to the

transaction

A hash digest of each

input is created from the

respective previous

transactions to Alice

Broadcast to Bitcoin

peer-to-peer

network

Bitcoin addresses are

derived from a Public Key,

which in turn is derived

from the Private Key

The inputs show that Alice has the

required bitcoins to spend,

validated using the Public Keys

from Jim, Kate and Linda

Transaction Mining Fee, 1 bitcoin

Output transactions show 50

bitcoins to be sent to Bob’s

address, and 14 bitcoins

returning to Alice’s address

The mining fee that is

paid to the Miner for

validation of the

transaction

Figure A.1: Bitcoin Transaction

of digital signatures” (Nakamoto, 2008). Essentially, what one owns in the Bitcoin

cryptocurrency ecosystem is transaction receipts.

Each actor has at least one bitcoin address, which is derived from the actor’s public

key, which in turn is created using an Elliptic Curve Digital Signature Algorithm

(ECDSA) that generates a private-public key pair. The algorithm to derive the public

key is itself public, meaning than anyone can use a public key to validate that a specific

bitcoin address has the correct association with that specific public key. Actors have

digital wallets that store the private key, and may well store the associated public key,

bitcoin addresses and the data that represents bitcoin value. However, the primary

purpose of the wallet is to store the actor’s private key.

Each bitcoin transaction has two scripts associated with it, written in the Bitcoin

scripting language. These are: (i) “scriptPubKey” (used to spend bitcoins by signing

them to another actor); and (ii) “scriptSig” (used to prove that an actor is allowed

Appendix A. 226

to spend bitcoins). These scripts must both be successfully run by the Miner that is

validating the transactions, with each script needing to meet the checks to prove that

the transaction is valid. Data pushed to the Miner, also includes the sender’s signature

and public key. The Miner then derives the sender’s bitcoin address using the sender’s

public key (both of which can only have been created with the sender’s private key). If

the resultant sender address matches the actual sender address for the transaction, and

the signature packaged within the transaction is confirmed, the transaction is considered

valid. The Miner will then add the transaction to the queue of transactions, and when

the next block is mined (discovered) the transaction will be added into the new block.

To get the transaction mechanism between Alice and Bob started, Alice first requires

bitcoins and an address. Let us say that Alice had previously created a private key and a

public key from which her bitcoin address was generated. Alice had also previously

received bitcoins from Jim (20 bitcoins), Kate (10 bitcoins) and Linda (35 bitcoins) to

her bitcoin address: a total of 65 bitcoins. There are two key details in respect to the

transactions from Jim, Kate and Linda to Alice:

1. The blockchain transaction mechanism requires Jim, Kate and Linda to sign each

of their transactions to Alice’s bitcoin address with their own private key related

to the bitcoin address that the bitcoins are being sent from. Anyone with the

public key of Jim, Kate or Linda’s bitcoin addresses can validate that they actually

had entitlement to the bitcoins contained in the “send” transaction to Alice in the

first place.

2. As part of the Bitcoin transaction protocol, Alice’s bitcoin address is included

in the transaction. This means that only the person with the private key to that

address (Alice!) will be able to spend the bitcoins (by re-signing a new transaction

to a new bitcoin address).

These precursory transactions are essential for explaining the chain of digital signatures,

Appendix A. 227

as Alice now has digital signatures from Jim, Kate and Linda signed to her bitcoin

address that represent the bitcoin inputs for her transaction to Bob.

A.2.2 Inputs

Transaction inputs are created from the hash digest of the transactions from Jim, Kate

and Linda that have the bitcoin values that Alice wants to send. For example, if Alice

wants to send Bob 50 bitcoins, she needs to have sufficient “bitcoins” in her “Bitcoin

wallet”. These are the transactions in the public ledger that have been signed over

to Alice’s bitcoin address, and each transaction holds the respective public keys for

Jim, Kate and Linda in the output scripts, as well as the bitcoin values. Since Alice

has received 20 bitcoins from Jim, 10 from Kate and 35 from Linda, there are 3 input

addresses required for Alice to send 50 bitcoins to Bob.

These input transactions, originally from Jim, Kate and Linda, are individually

hashed to create a series of digests that relates to the addresses that Alice received the

bitcoins from. Each digest is then included as an input on the new transaction. This

allows anyone to verify chain of ownership of the previous transactions, because the

public key of each source address is stored in the transaction script, and is used by the

Miner to validate the input transactions from Jim, Kate and Linda.

A.2.3 Outputs

The output transaction requires a list of destination addresses and the bitcoin values.

Any balance from the input quantity of coins must be returned to a sender address or

as a Miner fee, as outlined in Chapter 2.5.5 on page 73. Hence, for Alice to send 50

bitcoins to Bob, the outputs would include the destination address for Bob with 50

bitcoins, and an output back to Alice’s address of 14 leftover bitcoins (for example)

and 1 bitcoin in mining fees to pay to the Miner (for example), ensuring a total of 65

Appendix A. 228

bitcoins are spent in the output of the transaction. Finally, Alice digitally signs the entire

transaction data of inputs and outputs with her private key relating to the address that is

sending the bitcoins to to Bob, and includes the digital signature in the transaction itself

(which is ultimately immutably stored on the blockchain).

It should be noted that Alice’s private keys are never exposed throughout the

transaction process. Otherwise, Alice’s private key information would be exposed either

in transit between Alice and the Miner, exposed at the Miner during processing, or

exposed on the public blockchain itself.

A.3 Sending the Transaction

Sending the transaction to the Miners in a cryptocurrency peer-to-peer network is a

transport mechanism rather than a data mechanism. The processes that discover the P2P

network, and subsequently the actual IP (Internet Protocol) addresses of the Miners,

does not change the data. All nodes in the Bitcoin ecosystem listen to broadcasts from

clients or other Miners and decide if they need to act on the message contained within

the broadcast.

Beyond Bitcoin, other cryptocurrencies utilise a similar mechanism to connect

clients and Miners, although there are some varying architectures in respect to Miner

status and discovery. Cryptocurrencies such as Ripple1 and Dash2 use a “Master-node”

concept to establish the authoritative level of the Miners and level of trust. Ripple utilises

a closed Master-node system that Ripple explicitly approves, whilst Dash Master-nodes

literally buy in to the Dash network to fund being a Master-node.

1 https://www.ripple.com
2 https://www.dash.org

	Copyright
	Declaration
	Acknowledgements
	Dedication
	Abstract
	Publications
	Current State of Software Piracy
	Introduction
	Evolution of Software Piracy
	The 80s – Software Piracy Genesis
	The 90s – Rise of the Internet
	The 00s – P2P and Mass Storage
	The 10s – Mobility and Identity
	Impact of Software Piracy

	The Blockchain
	Software License Validation
	Thesis Structure

	Literature Review
	Introduction
	Platform Specific Piracy
	Desktop Platforms
	Mobile Platforms
	Software-as-a-Service
	Video Game Consoles
	Other Platforms
	Effect of Digital Distribution Services

	Taxonomy of Software Piracy Types
	Definition of Software Piracy
	Treaties, Agreements and Acts
	Types of Software Piracy
	Roles of Software Piracy
	Taxonomy of Software Piracy by Role

	The Software Piracy Process
	Role-based Software Piracy Threat Model
	Methods Employed to Reduce Software Piracy
	Software Piracy Model
	Defeating Prevention Methods
	Software Piracy Vulnerability Lifecycle
	Platform Risk
	Related Issues
	Relationship between Malware and Pirated Software
	Summary of Software Piracy Review

	Blockchain Technology
	Introduction
	Cryptocurrency Primer
	Cryptocurrency Economics
	Centricity
	Transactions
	The Blockchain
	Summary of Blockchain Technology

	Alternative Applications for Blockchain
	Transaction-only Cryptocurrency
	Native Blockchain Application
	External Blockchain Application
	Transaction and Application Platform
	Regulated Virtual Currency
	Summary of Alternative Applications for Blockchain

	Related Work
	Problem Identification and Motivation
	Research Questions
	Hypotheses

	Conclusion

	Method
	Introduction
	System Design Considerations
	Overview of Requirements
	Methods for Consideration
	Formal Methods
	Experimental Design Research
	Design Science Research
	Summary

	Design Science Research Discussion
	Agile Software Engineering
	Behaviour Driven Development
	Agent-Oriented Software Engineering

	Conclusion

	Requirements Engineering
	Introduction
	Definitions and Process
	Requirements Elicitation
	Master Bitcoin Model
	ReSOLV Model
	Issues Overcome
	Summary

	Requirements Specification
	Introduction
	ReSOLV High Level Architecture
	ReSOLV Reference Architecture
	Methods
	Non-functional Requirements
	Public Key Cryptography and Digital Signatures

	ReSOLV User Stories
	Summary

	Functional Decomposition
	Introduction
	Data Flow Diagrams
	ReSOLV Functional Decomposition
	Vendor Provenance System
	Client User System
	Data Dictionary
	Analysis

	Summary

	Discussion
	Introduction
	Research Motivation
	ReSOLV: a Native Blockchain Application
	Findings
	RQ1.1
	RQ1.2
	RQ1.3

	Cryptocurrency-neutral Software License Validation
	Findings
	RQ2.1
	RQ2.2

	Reflections on Design Science Research
	Potential Issues

	Conclusion
	The Software Piracy Problem
	The Blockchain
	Software License Validation
	Limitations
	Future Work
	Conclusion

	References
	Appendices
	
	Definitions
	Bitcoin Protocol Learnings
	Precursor
	Inputs
	Outputs

	Sending the Transaction

