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Highlights 

 Intrasession reliability of lower limb motor evoked potentials (MEPs) is excellent in 

patients with stroke when using as few as 6 responses 

 Intersession reliability of MEPs is poor in patients with stroke, questioning the ability 

of this measure to reliably capture changes in corticomotor excitability over time 

 Measuring the amplitude of each single MEP or using MEP area provides a more 

reliable measure of MEP size than averaging non-rectified responses 

Abstract 

Objective:  To determine the intra- and inter-session reliability of motor evoked potential 

(MEP) size parameters in the lower limb of patients with stroke, focussing on the number of 

MEPs collected and the method of measuring MEP size. Methods: Transcranial magnetic 

stimulation was used to elicit MEPs in the soleus muscle of patients with stroke (n=13) and 

age-matched healthy participants (n=13) during low level muscle activation. Two sets of 10 

responses were collected in the first session and a further 10 responses collected in a 

second session held 7 days later. Four MEP size measurements were made using 4, 6, 8, or 

all 10 of the MEPs collected. Intra- and inter-session reliability was examined using intraclass 

correlation coefficients (ICC) and typical percentage error. Results: Intrasession ICC statistics 

using 6 or more MEPs were >0.85 in the stroke group but intersession values were all <0.5. 

Reliability was best when measuring parameters from individual MEPs rather than averaged 

responses. Conclusions: Reliability of intrasession MEP size is excellent in the lower limb of 

patients with stroke using as few as 6 MEPs but intersession reliability is poor. Significance: 

Comparing MEP size measures across two or more sessions is questionable in the lower limb 

of patients with stroke.    



3 
 

Introduction 

Studies that have used transcranial magnetic stimulation (TMS) to evaluate the 

corticomotor system in patients with stroke number in the hundreds. TMS has been used as 

a tool for predicting recovery of function (Stinear et al., 2007, Trompetto et al., 2000), to 

determine the type or location of reorganisation occurring within the cortex (Caramia et al., 

2000, Hamzei et al., 2006, Shimizu et al., 2002, Turton et al., 1996), or to investigate the 

neurophysiological effect of interventions designed to enhance recovery (Brouwer and 

Ambury, 1994, Liepert et al., 2000, Wittenberg et al., 2003). The response to TMS is 

primarily recorded using motor evoked potentials (MEPs) obtained from musculature in the 

periphery. While undoubtedly useful for probing the effects of stroke on the motor system, 

the establishment of measurement reliability and the importance of using reliability data to 

determine sample and effect sizes in research trials are paramount to good scientific 

practice. The inherent physiological variability of the corticomotor system is evident in the 

wide variability of MEP amplitudes that are elicited in a train of stimuli, even in healthy 

individuals. Acknowledgement of this variability is seen in the accepted practice of collecting 

6-10 stimuli per condition so that an average response size can be obtained.  

Previous studies examining the reliability of MEPs have mainly focused on hand and forearm 

muscles (Bastani and Jaberzadeh, 2012, Carroll et al., 2001, Christie et al., 2007, Kamen, 

2004, Livingston and Ingersoll, 2008, McDonnell et al., 2004, Mortifee et al., 1994, Ngomo et 

al., 2012), with a smaller number of studies examining muscles from the lower limb (Cacchio 

et al., 2009, Cacchio et al., 2011, Tallent et al., 2012, van Hedel et al., 2007, Wheaton et al., 

2009). Most authors have reported good or excellent reliability of MEP amplitude 

measurements within and between sessions but this is not always consistent (Livingston and 

Ingersoll, 2008, McDonnell, Ridding, 2004). The reliability of MEP characteristics is reduced 
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between sessions compared to within a session (Bastani and Jaberzadeh, 2012, Doeltgen et 

al., 2009), in more distal upper limb muscles compared to proximal (Kamen, 2004, Malcolm 

et al., 2006), and in populations with neurological conditions compared to healthy 

individuals (Cacchio, Paoloni, 2011, Wheaton, Villagra, 2009). Of note, the two studies 

examining responses in patients with stroke found poor-average reliability of MEP 

amplitude in the lower limb muscles on the paretic side. This factor may be compounded by 

the fact that muscle activation is often required to elicit MEPs in paretic muscles, as MEP 

reliability is reduced during muscle activity compared to resting conditions (Kamen, 2004, 

Ngomo, Leonard, 2012, Tallent, Goodall, 2012, van Hedel, Murer, 2007). 

In addition to biological variability, experimenter and equipment factors can also contribute 

to the variability of MEPs, including the coil type and positioning, recording electrode 

placement, and MEP collection and processing procedures. While the use of 

neuronavigation systems for coil positioning have not yielded notable improvements in 

reliability (Fleming et al., 2012, Jung et al., 2010), it has been consistently reported that 

reliability is enhanced when a greater number of responses to TMS are collected (Bastani 

and Jaberzadeh, 2012, Christie, Fling, 2007, Doeltgen, Ridding, 2009, Kamen, 2004). The 

minimum number of MEPs required to obtain reliable results has been recommended at five 

for intrasession (Bastani and Jaberzadeh, 2012, Christie, Fling, 2007, Doeltgen, Ridding, 

2009) and ten for intersession comparisons (Bastani and Jaberzadeh, 2012, Doeltgen, 

Ridding, 2009). Only one study has investigated the effect of different MEP processing and 

analysis procedures and showed no difference in reliability between the use of MEP area 

and MEP amplitude outcome measures to represent the magnitude of the MEP (McDonnell, 

Ridding, 2004). This study was undertaken in the upper limb and the findings may be 
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different in lower limb muscles where there is less synchronisation of the descending 

cortical volley and polyphasic MEPs are often obtained (Marchand-Pauvert et al., 1999, Soto 

et al., 2006).  

Combined, these factors suggest that additional responses should be collected when 

analysing MEPs from neurological populations or making comparisons across sessions; 

however, prolonged sessions can be fatiguing and uncomfortable for participants. Hence, it 

would be useful to know the minimum number of stimuli and the optimal MEP processing 

and measurement procedures that give rise to the most reliable MEP parameters in patients 

with neurological impairments. The aim of the current study was to determine the intra- 

and inter-session reliability of MEP size parameters in the lower limb of patients with stroke 

during muscle activation. We specifically examined the effect of altering the number of 

MEPs collected and the method of processing and analysing the evoked responses.  

Methods 

Table 1 provides a summary of the methodological quality of the study procedure using the 

checklist recommended by Chipchase and colleagues (2012). Criteria relating to paired-pulse 

stimulation have been removed. 

Participants 

The participants were 13 patients with stroke and 13 age-matched healthy controls. The 

participants with stroke were required to be aged over 18 years, have had a single stroke 

more than 6 months previously, and have a residual impairment in their ability to walk. The 

mean age of the stroke group was 57 years (range 22-78; seven male) and the mean age of 

the control group was 55 years (range 26-73; five male). Seven participants in the stroke 

group had left hemiplegia, the mean time since onset of stroke was 53 months (range 7-
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136), and the mean comfortable treadmill walking speed was 0.72 m/s (range 0.28-1.14 

m/s). Participants from both groups were excluded if they were unable to engage in the 

testing due to cognitive or communication deficits, had another medical condition that 

could impact the results, had an uncontrolled medical problem that prevented maximum 

muscle strength testing, had any contraindications to TMS (including medications 

influencing CNS excitability), or were unable to elicit a response to TMS in the soleus 

muscle. Nine of the participants with stroke and three of the control participants were 

taking medication, predominantly for cardiovascular disease. All participants provided 

informed, written consent prior to inclusion in the study.  

Protocol 

Participants attended two data collection sessions 7 days apart. Participant testing was 

conducted at the same approximate time of day (e.g. morning, afternoon) in the two test 

sessions. In both sessions, responses to TMS were recorded in the soleus muscle during 

activation at 10% of maximum voluntary contraction (MVC). The most affected leg of the 

stroke participants and a randomly assigned limb of the control participants were tested. In 

the first session, responses to TMS were obtained twice (Measurement 1 and 2), while one 

set of responses was collected in the second session (Measurement 3). During all testing 

procedures, participants were seated in a custom chair with the test leg extended (hip 90°, 

knee 120°, ankle 0°) and fully supported, with the foot strapped to a rigid support that 

allowed isometric ankle plantarflexion. Ankle plantarflexor MVC was collected at the start of 

each session prior to TMS testing. 
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Electromyography 

Bipolar surface electrodes (Norotrode 20, Myotronics Inc., USA) were applied to the soleus 

muscle of the selected leg following standard skin preparation (exfoliation, light abrasion, 

and cleansing with alcohol). Following SENIAM guideline recommendations (Merletti et al., 

2001), the electrodes were placed 2/3 of the way between the medial condyle of the femur 

and the medial malleolus and aligned in the direction of muscle fibres. Skin preparation and 

electrode placement were repeated if the impedance was greater than 5 kΩ (Groppa et al., 

2012). Electromyography (EMG) signals were amplified (AMT-8, Bortec Biomedical, Canada), 

bandpass filtered (10-1000 Hz) and sampled at 5,000 Hz using a data acquisition board 

(Micro 1401, CED, UK) and Signal software (CED, UK).  

MVC testing 

A single axis loadcell (Precision Transducers Ltd, New Zealand) attached to the foot support 

enabled collection of ankle plantarflexor force. Participants were asked to push against the 

foot plate as hard as they could for 3-5 s. This was repeated two further times with a 3 min 

break between each repetition. The maximum force recorded during any of the three trials 

was established as the MVC. Constant verbal encouragement was provided during all MVC 

testing. During all subsequent TMS testing, participants were provided with visual feedback 

of plantarflexor force levels along with a target force level of 10% MVC. Magnetic stimuli 

were delivered when the force level was within the target range of 10±2% MVC. 

TMS procedures 

A tightly fitting neoprene cap marked with a 1x1 cm grid relative to the vertex was fitted to 

the head to ensure maintenance of the coil position within sessions. TMS was delivered to 

the selected hemisphere using a Magstim 2002 (Magstim Co, Dyfed, UK) using a double cone 
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coil and monophasic pulses. The juncture of the coil was initially placed over the mid-sagittal 

plane approximately 2 cm posterior to the vertex and 1 cm contralateral to the tested leg 

with a posterior-anterior direction of current flow. The soleus muscle “hot spot” was 

identified by moving the coil around the scalp until the site eliciting MEPs of the largest 

amplitude was detected. This spot was marked on the neoprene cap and all further stimuli 

were delivered over this location. Active motor threshold (AMT) was then determined as 

lowest stimulus intensity to give rise to at least four discernible MEPs in a train of eight 

stimuli while generating plantarflexor force at 10% MVC. 

 Following the establishment of AMT, participants received ten stimuli at an intensity of 

120% AMT while at 10% MVC. At the first session, a further set of ten stimuli were delivered 

approximately 15 minutes later. 

Data processing 

MEPs from the three measurement periods were analysed in four ways. MEPmean amplitude 

was determined by averaging the ten MEPs and then measuring the maximum peak-to-peak 

amplitude of the averaged response. MEPsingle amplitude was determined by measuring the 

maximum peak-to-peak amplitude of each individual MEP and then averaging these 

amplitudes to provide a single value. MEPmean area was determined by rectifying the EMG 

signals, averaging the ten responses, and then measuring the root mean square amplitude 

(rms) of EMG activity in a 30 ms window from MEP onset of the averaged response. MEP 

onset was defined as the first point at which EMG activity exceeded 3 standard deviations 

(SD) of a 30 ms window of pre-stimulus EMG activity. MEPsingle area was determined by 

measuring the rms amplitude in a 30 ms window of each individual MEP and then averaging 

these to provide a single value. To investigate the influence of the number of MEPs 
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recorded, these procedures were also conducted using the first 8, 6, and 4 MEPs in each 

block of 10. 

Statistical analysis 

The intra- and inter-session intraclass correlation coefficient (ICC) and typical percentage 

error (TPE) were calculated for the four MEP measurements using 4, 6, 8, and 10 responses. 

The ICC is a measure of consistency of the data that is based on both the within- and 

between-subject variation. ICC values are bound from 0-1 with those closer to 1 reflecting 

greater reliability. TPE is a relative error score that provides a measure of reproducibility 

within an individual. TPE was calculated using (Hopkins, 2000): 

100 x (sdiff/√2) /  

where sdiff is the standard deviation of the individual difference scores and  is the 

Measurement 1 mean. Intersession ICC and TPE also were determined for the ankle 

plantarflexor MVC and soleus AMT. To examine the relationship between the amplitude and 

area MEP measurements, Pearson correlations were performed between MEPmean 

amplitude and MEPmean area values from Measurement 1. To examine the relationship 

between measurements from individual and averaged responses, Pearson correlations were 

performed between MEPsingle and MEPmean amplitude data from Measurement 1. 

Additionally, separate one-way repeated measures ANOVAs were conducted for the stroke 

and control groups comparing the soleus pre-stimulus EMG rms values among the three 

measurements to verify that a consistent level of soleus activation was achieved during 

testing. 
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Results 

Measurement 3 data from one stroke participant were unable to be analysed due to signal 

noise introduced by a faulty cable. In addition, only 8 MEPs were able to be analysed from 

two stroke and one control participant at Measurement 1 due to problems with data 

collection. The background EMG rms was not different among the three measurement 

periods in the stroke (F2,22 =1.5; P=0.25) or control (F2,24 =9.8; P=0.36) groups. While MEP 

size measurements were smaller in the stroke group for all measurement methods, the 

difference from the control group was only significant for MEPmean amplitude (P = 0.02). 

Reliability of MEP amplitude and area measurements 

Intrasession ICC and TPE data from the stroke and control groups are shown in Table 2. 

According to Fleiss (Fleiss, 1986), all of the ICC values are excellent except for MEPmean 

amplitude in the control group using 4 responses. Overall, the ICC values were higher and 

TPE values lower when more MEPs were collected. ICC and TPE values were consistently less 

reliable for MEPmean amplitude and area compared to MEPsingle amplitude and area, but the 

difference between amplitude and area measures was negligible. ICCs were also higher in 

the control group compared to the stroke group. In contrast, TPE was lower in the stroke 

group across all measurements. 

Intersession ICC and TPE data from the stroke and control groups are shown in Table 3. All 

of the ICC values for the control group are excellent except for MEPmean amplitude using 4 or 

6 responses. The ICC and TPE values for this group are slightly reduced in comparison to the 

intrasession results but still show a pattern of reduced values when collecting fewer 

responses and when measuring the averaged response compared to individual responses. In 
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contrast to the control data, all of the ICC values for the stroke group are classified as poor 

and the TPE are substantial (all ≥ 70%) across all four measurement methods.  

Relationships among MEP processing procedures 

Figure 1 shows scatter graphs of the relationships among the MEP processing and 

measurement procedures. The Pearson correlation coefficients are shown on each graph. 

There is a strong relationship between the amplitude and area measures in both groups, but 

this is particularly marked in the controls. The lower two graphs show that MEPsingle 

amplitude resulted in larger amplitude values compared to the ensemble MEPmean 

amplitude. This is more marked in the stroke group. 

Reliability of MVC and AMT  

Group data and intersession reliability statistics for MVC and motor threshold are shown in 

Table 4. The motor threshold ICC values are excellent for both groups and were associated 

with very low TPE. For the control group, the MVC ICC is also excellent but the TPE is 

substantial.  Reliability of MVC in the stroke group is only fair to good and the TPE is also 

substantial. There was no significant difference in AMT between the two groups (P = 0.2). 

Although the MVC was lower in the stroke group, this was not statistically significant (P = 

0.06). 

Discussion 

This study is the first to compare the reliability of different MEP collection and 

measurement procedures in the lower limb of patients with stroke and healthy participants. 

The main reliability findings were that MEPmean amplitude and area measures were less 

reliable than MEPsingle amplitude and area measures, reliability was reduced when fewer 

responses were collected, intrasession MEP reliability was excellent both for the control and 
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stroke groups, and intersession reliability was excellent for the control group but poor for 

the stroke group. There were strong relationships between the area and amplitude 

estimates of MEP size; however, MEPmean amplitude gave rise to comparatively smaller 

responses than MEPsingle amplitude. These findings are discussed in more detail below. 

Reliability in stroke and control groups 

The ICC values were higher overall for the control group but both groups showed excellent 

intrasession values, suggesting that MEP size measures in the lower limb are reliable in both 

stroke and control participants within a testing session. The control group ICCs were 

comparable to those reported by other studies investigating intrasession reliability of MEPs 

(McDonnell, Ridding, 2004, van Hedel, Murer, 2007). The intersession ICC values were again 

excellent for the control group, indicating that MEPs are a reliable outcome measure to use 

across multiple testing sessions in a healthy population. In contrast, the intersession ICC 

values showed poor reliability in the stroke group.  

Our finding of a poor intersession reliability is in line with two other studies that have 

examined the reliability of lower limb MEP amplitude in patients with stroke. Cacchio et al. 

(2011) reported an intersession ICC value in the paretic leg that had a wide confidence 

interval that spanned 0, while Wheaton et al. (2009) reported intersession ICCs in two 

quadriceps muscles ranging from 0.21-0.54. Both of these studies also required participants 

to generate a low level of muscle activity during collection of MEPs. These consistently low 

ICC values across studies question the ability to reliably monitor responses to TMS over time 

in patients with stroke, even though this is routinely undertaken. Muscle fatigue potentially 

influences the reliability of MEPs collected during muscle activation as there are known 

changes in corticomotor excitability during fatiguing contractions (Taylor et al., 1996). 
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However, neuromuscular fatigue is likely to be minimal at the low level of activation used in 

our study and evidence suggests that any difference between stroke and control 

participants in terms of neuromuscular fatigue is likely to be negligible (Lindström et al., 

1998, Sunnerhagen et al., 1999). Therefore, fatigue is unlikely to account for differences in 

reliability measures between the two populations.  

The intersession TPE of MEP data ranged from 27-150% across both groups; this indicates 

that much of the poor intersession reliability may be explained by biological variability. TPE 

can be interpreted as the amount of error in the measure or the amount the measure would 

have to change by in order to exceed the inherent biological variability. It is generally 

accepted that a TPE of less than 5% reflects a reliable measure (Hopkins, 2011). Our TPE 

values were substantially higher than this, even in the control participants. Our data suggest 

that intersession changes in MEP amplitude need to be greater than 25-35%, depending on 

the MEP processing procedure used, in healthy participants to be considered real changes; 

the equivalent change in patients with stroke is approximately 75%. While modulations of 

MEP size of such magnitude are not unrealistic in the stroke population, it does further 

question the ability of MEPs to reliably capture changes in corticomotoneuronal excitability 

over multiple sessions.  

Similar to other studies (Cacchio, Paoloni, 2011, Carroll, Riek, 2001, Ngomo, Leonard, 2012, 

Wheaton, Villagra, 2009), we found that active motor threshold demonstrated good 

reliability and was superior to the MEP size measures overall. This indicates that differences 

in threshold between sessions did not contribute substantially to the poor intersession 

reliability of MEP size in the stroke group. Motor threshold reflects membrane excitability of 

intracortical neurons as well as the excitability of corticospinal and lower motoneurons, 



14 
 

whereas measures of MEP size reflect the excitability and efficacy of the 

corticomotoneuronal tract. A large cross-sectional study (Wassermann, 2002) demonstrated 

a substantial range in interindividual motor threshold in a group of healthy participants but 

repeated assessments also show a low variability across days. Given the stability of our 

threshold measures, we suggest that variability in corticospinal tract efficacy between days 

contributes to the poor reliability of this measure in the stroke group. Of note, the 

intersession reliability of MVC was only fair to good in the stroke group, a common finding 

for maximum effort testing of ankle plantarflexor muscles in this population (Hsu et al., 

2002, Pohl et al., 2000). This suggests that the stroke participants were likely to be recruiting 

a differing extent of the motoneuron pool between the two sessions, as the target level of 

soleus activation was based on a set percentage of MVC, reflecting differing levels of 

corticospinal tract activation. Indirect descending pathways from the brainstem or spinal 

level influences such as the lumbar propriospinal interneurons may also have contributed to 

muscle activation to varying extents. The fact that active motor threshold remained reliable 

despite these factors indicates that such variation in the level of background muscle 

activation may not be important in terms of overall reliability.  

MEP processing procedures 

The reliability statistics for the four processing procedures were similar but amplitude and 

area measures obtained from single MEPs were consistently superior to those from the 

averaged responses. This difference between the single and averaged measures was more 

marked in the amplitude measures and in the stroke group, suggesting that phase 

cancellation that occurs when averaging responses may make averaged MEP amplitude 

measurements less reliable. Phase cancellation does not occur when the data are rectified 
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prior to averaging and the response area or rms measured. Our finding that MEP measures 

from averaged responses were less reliable outcome measures contrasts with McDonnell 

and colleagues (McDonnell, Ridding, 2004), who did not find any consistent differences in 

reliability between ensemble average or individual MEP measures in healthy participants. 

However, their ICC values were very low overall compared to our intersession values, which 

may have masked any subtle differences between processing techniques.  

Consistent with other studies (Kiers et al., 1995), our overall correlations between MEP 

amplitude and MEP area measurements were very high, suggesting that these two 

outcomes provide a similar reflection of MEP size and corticomotor excitability. The lower 

correlation in the stroke group is suggestive of a greater dispersion of the descending volley 

or a lack of synchrony in the MEPs in the stroke population, creating a distinction between 

MEP amplitude (reduced by lack of synchrony) and MEP area (less affected by synchrony) 

measurements (Groppa, Oliviero, 2012). This variability in responses also explains the 

smaller MEP amplitude when using the ensemble average compared to individual responses 

(Rábago et al., 2009). Thus, from our results, we recommend using either MEPsingle area or 

MEPsingle amplitude as measures of corticomotor excitability. 

Number of responses 

As predicted, the ICC values were higher and the TPE values lower when more MEPs were 

obtained. Despite this, the reliability measures were not markedly impaired when as few as 

six MEPs were analysed. With the exception of the stroke group intersession values, in all 

cases MEPsingle area and amplitude and MEPmean area ICC values were greater than 0.80 

when using six or more MEPs. From these data, and in agreement with previous studies in 

healthy individuals (Bastani and Jaberzadeh, 2012, Christie, Fling, 2007, Doeltgen, Ridding, 
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2009) and guidelines for clinical use of TMS (Groppa, Oliviero, 2012), we recommend that as 

few as six MEPs can be used to achieve reliable within session measures for patients with 

stroke. Six MEPs should also provide reliable intersession measures for people with an intact 

nervous system. This is fewer than others have recommended (Bastani and Jaberzadeh, 

2012, Doeltgen, Ridding, 2009) but may be influenced by the specific muscle tested.  

Study limitations 

We evaluated the methodological quality of our study using the consensus checklist for TMS 

studies (Table 1). The study scored highly with 21 out of a possible 25 criteria controlled. We 

did not control the hand dominance of participants but instead included people with both 

dominant and non-dominant side lesions. While we restricted people taking medication 

known to influence CNS excitability from participating, other forms of medication were 

allowed but were documented. The participants’ history of lower limb activity was not 

recorded or controlled. While altered cortical representation has been documented in 

people with a history of skilled motor training, e.g. braille readers (Pascual-Leone et al., 

1993), this is unlikely to be a marked factor in the soleus muscle. A limitation of the study 

methodology was that we did not control the level of activation of other lower limb muscles 

during the motor task, and therefore the recruitment of synergist or antagonist muscles 

could have altered the excitability of the target soleus muscle. One further limitation of our 

study is that, due to our method of participant recruitment, we were unable to determine 

the mechanism or location of stroke in our participants. Thus, we are unable to evaluate if 

the reliability of responses is different between patients with cortical and subcortical 

lesions. 
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Conclusion 

Overall, we found excellent intrasession reliability for MEP measures in stroke patients 

when recorded within a session. We recommend using a minimum of six stimuli and using 

MEPsingle amplitude or area to analyse the data. Given the poor reliability of intersession 

data, we caution the use of MEPs to monitor changes in lower limb corticomotor excitability 

over time in this population.   
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Figure Legend 

Figure 1. Graphs showing the relationship between the motor evoked potential (MEP) 

measurement procedures in the healthy control (left) and stroke (right) groups. The Pearson 

correlation coefficient is shown for each relationship. The top figures compare amplitude 

and area measurements, while the lower figures compare amplitude measures from single 

and averaged responses. 
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Table 1. Checklist of transcranial magnetic stimulation (TMS) methodology. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CNS = central nervous system; EMG = electromyography; MEP = motor evoked potential. 
 

Participant factors Controlled 

Age of subjects Y 

Gender of subjects N/A 

Handedness of subjects N 

Subjects prescribed medication N 

Use of CNS active drugs (e.g. anti-convulsants) Y 

Presence of neurological/ psychiatric disorders in healthy subjects Y 

Any medical conditions Y 

History of specific repetitive motor activity N 

Methodological factors 

 Position and contact of EMG electrodes Y 

Amount of relaxation/contraction of target muscles Y 

Prior motor activity of the muscle to be tested Y 

Level of relaxation of muscles other than those being tested N 

Coil type (size and geometry) Y 

Coil orientation Y 

Direction of induced current in the brain Y 

Coil location and stability (with or without a neuronavigation system) Y 

Type of stimulator used (e.g. brand) Y 

Stimulation intensity Y 

Pulse shape (monophasic or biphasic) Y 

Determination of optimal hotspot Y 

The time between MEP trials Y 

Time between days of testing Y 

Subject attention (level of arousal) during testing Y 

Method for determining threshold (active/resting) Y 

Number of MEP measures made Y 

Analytical factors 

 Method for determining MEP size during analysis Y 



 

Table 2. Intrasession reliability measures for the stroke and control groups. 
 
 

 

 

 

 

 

 

 

 

 

MEP = motor evoked potential; ICC = intraclass correlation coefficient with 95% confidence interval; TPE = typical percentage error. 

 10 MEPs 8 MEPs 6 MEPs 4 MEPs 

 ICC TPE ICC TPE ICC TPE ICC TPE 

Stroke  n=11 n=13 n=13 n=13 

MEPmean amplitude 0.81 (0.26-0.95) 35 0.76 (0.24-0.93) 40 0.86 (0.64-0.96) 34 0.76 (0.27-0.93) 43 

MEPsingle amplitude 0.97 (0.88-0.99) 36 0.95 (0.84-0.98) 38 0.94 (0.80-0.98) 43 0.88 (0.58-0.97) 55 

MEPmean area 0.93 (0.74-0.98) 18 0.90 (0.69-0.97) 23 0.88 (0.61-0.96) 26 0.87 (0.56-0.96) 26 

MEPsingle area 0.96 (0.84-0.99) 35 0.94 (0.79-0.98) 38 0.92 (0.73-0.97) 41 0.86 (0.52-0.96) 51 

Control  n=12 n=13 n=13 n=13 

MEPmean amplitude 0.90 (0.65-0.97) 44 0.88 (0.62-0.96) 44 0.85 (0.51-0.95) 47 0.74 (0.12-0.92) 55 

MEPsingle amplitude 0.94 (0.80-0.98) 30 0.93 (0.78-0.98) 32 0.92 (0.75-0.98) 31 0.84 (0.46-0.95) 41 

MEPmean area 0.93 (0.77-0.98) 32 0.92 (0.75-0.98) 33 0.92 (0.75-0.98) 32 0.86 (0.52-0.96) 39 

MEPsingle area 0.94 (0.80-0.98) 30 0.94 (0.80-0.98) 30 0.93 (0.79-0.98) 29 0.84 (0.46-0.93) 39 



 

Table 3. Intersession reliability measures for the stroke and control groups. 
 

 

 

 

 

 

 

MEP = motor evoked potential; ICC = intraclass correlation coefficient with 95% confidence interval; TPE = typical percentage error. 

 

 10 MEPs 8 MEPs 6 MEPs 4 MEPs 

 ICC TPE ICC TPE ICC TPE ICC TPE 

Stroke  n=12 n=12 n=12 n=12 

MEPmean amplitude 0.30 (-1.2-0.79) 150 0.36 (-1.0-0.81) 127 0.36 (-1.0-0.81) 111 0.28 (-1.2-0.78) 95 

MEPsingle amplitude -0.1 (-3.4-0.71) 76 -0.1 (-3.3-0.71) 77 -0.1 (-3.5-0.70) 75 0.0 (-2.8-0.72) 72 

MEPmean area 0.25 (-1.5-0.78) 79 0.27 (-1.5-0.79) 80 0.33 (-1.3-0.81) 76 0.30 (-1.4-0.80) 74 

MEPsingle area 0.18 (-2.0-0.77) 74 0.14 (-2.1-0.76) 77 0.20 (-1.9-0.77) 74 0.29 (-1.4-0.80) 70 

Control  n=12 n=13 n=13 n=13 

MEPmean amplitude 0.82 (0.36-0.95) 49 0.78 (0.25-0.93) 47 0.71 (0.01-0.91) 50 0.65 (-0.2-0.90) 49 

MEPsingle amplitude 0.94 (0.79-0.98) 27 0.93 (0.76-0.98) 28 0.92 (0.75-0.98) 29 0.84 (0.48-0.95) 35 

MEPmean area 0.89 (0.60-0.97) 35 0.88 (0.60-0.96) 34 0.85 (0.50-0.96) 37 0.75 (0.15-0.92) 44 

MEPsingle area 0.91 (0.68-0.97) 31 0.90 (0.65-0.97) 33 0.88 (0.60-0.96) 35 0.80 (0.31-0.94) 41 



Table 4. Group data (Session 1) and intersession reliability measures for maximum voluntary 

contraction (MVC) and active motor threshold (AMT).  

 

 

 

 

 

 

SD = standard deviation; ICC = intraclass correlation coefficient with 95% confidence interval; TPE = 

typical percentage error; N = newtons. 

 Mean±SD ICC TPE 

Stroke    

MVC 196±95 N 0.62 (-0.23-0.89) 37 

AMT 58±7% 0.82 (0.34-0.95) 7.9 

Control    

MVC 277±137 N 0.81 (0.37-0.94) 30 

AMT 55±7% 0.92 (0.75-0.98) 4.8 


