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Abstract

In this thesis, we study the pricing of the volatility derivatives, including VIX options,

VIX futures, VXX options and S&P 500 variance futures, under Lévy processes with

stochastic volatility. In particular, we investigate the role of different types of jump

structures, such as finite-activity jump, infinite-activity jump and double jump structures,

as well as the role of variance processes with time-varying mean in the valuation of

volatility derivatives. In our models, we assume that the long-term mean of the variance

process follows an Ornstein–Uhlenbeck process and specify the infinity-activity jump

component of the main process in four cases: the variance gamma process (VG), the

normal inverse Gaussian process (NIG), the tempered stable process (TS) and the

generalized tempered stable process (GTS). Then, we apply the combined estimation

approach of an unscented Kalman filter (UKF) and maximum log-likelihood estimation

(MLE) to our models and make an extensive comparison analysis on the performance

among the different models.

Our empirical studies reveal three important results. First, the models with infinite-

activity jumps are superior to the models with finite-activity jumps, particularly in

pricing VIX options and VXX options. Thus, the infinite-activity jumps cannot be

ignored in pricing volatility derivatives. Second, both the infinite-activity jump and

diffusion components play important roles in modelling the dynamics of the underlying

asset returns for the volatility derivatives. Third, the mean of the variance process for

the S&P 500 index returns varies stochastically toward to its long-term mean.
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Chapter 1

Introduction

This chapter introduces the volatility indexes and the volatility derivatives (e.g. VIX

options, VIX futures, VXX options and S&P variance futures). Section 1.1 provides the

background on VIX and its derivatives. Section 1.2 gives a literature review on financial

derivatives pricing. Based on the literature review, we raise our research questions in

Section 1.3. In the end of this chapter, the major contributions of our research are stated

and the thesis structure is outlined.

1.1 Background

It has been widely recognized that the time-varying volatility of an asset return is a

prominent risk measurement for the financial market. Thus, several volatility indexes

and their derivatives have evolved during the last three decades. One of the most

influential volatility indexes, known as the Chicago Board Options Exchange (CBOE)

Volatility Index (VIX), was first introduced in 1993 and its value was calculated based

on the Black-Scholes model from the OEX 100 put and call options (Whaley, 1993;

Carr & Lee, 2003). Ten years later, CBOE extended the underlying of VIX to a much

broader index, S&P 500 composite stock price index (S&P 500), and proposed a more

12



Chapter 1. Introduction 13

robust methodology for valuing the VIX, which is described in details in the CBOE

white paper. It is calculated by the S&P 500 options market over the next 30-day period

and indicates overall stock market fear (Carr & Lee, 2003) 1. It also can be treated

as a risk-neutral gauge of the future implied volatility in the US stock market. Thus,

understanding the dynamics of volatility variation is crucial for market practitioners and

academic researchers.

The VIX is not tradable but can be speculated through the VIX derivatives. Due to

a negative correlation between the VIX and the S&P 500 index, market participants

treat the VIX derivatives as an important trading vehicle for reducing exposure to risk.

Reported by CBOE, the VIX derivatives include VIX futures and VIX options. In 2004,

CBOE introduced VIX futures. Since then, VIX futures have been quickly accepted as

trading instruments in the volatility market. According to Figure 1.1(a), the average

daily trading volume of VIX futures on a half-year basis significantly increased to over

200,000 contracts in October of 2016. From Figure 1.1(b), we observe that the open

interest also has grown quickly since inception. Although it decreased for about one

and half years after the peak in 2007, it bottomed out in the second half year of 2009

and reached over 460,000 contracts in October 2016.

After the successful launch of VIX futures, CBOE introduced VIX options in 2006,

which can provide an alternative way for hedging the market risk with relatively low

costs. Since then, the VIX options have become popular financial tools in the risk

management. Not surprisingly, the average daily volume of VIX options expanded over

25 times between 2006 and 2019, referring to Figure 1.2. In particular, the daily average

trading volume reaches the highest level, over 700,000 per day, in 2007.

Due to the popularity of VIX futures, the first VIX futures exchanged-traded notes

(ETNs), known as the iPath S&P 500 VIX short-term futures ETN (VXX), was intro-

duced by Barclays Bank and listed on the New York Stock Exchange on 29 January

1See https://www.cboe.com/micro/vix/vixwhite.pdf.
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Figure 1.1: Open interest of VIX futures and average daily trading volume, by six
months, from March 2004 to October 2016
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Figure 1.2: Daily average trading volume of VIX options between 2006 and 2019
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Notes: The daily average trading volume of VIX options between 2006 and 2019, by
six months. Source from: http://www.cboe.com/data/historical-options-data/volume-
put-call-ratios.

2009 (Rhoads, 2011). This ETN is an unsecured debt security without principal pro-

tection, which reflects investment performance on short-term VIX futures. 2 The daily

trading volume of the VXX has remained over 10 million and peaked at more than

109 million on 01 August 2019.3 CBOE introduced the VXX option on the May of

2010. Each VXX option contract includes 100 VXX ETN. This option has quickly

become a popular volatility trading vehicle. Figure 1.3 depicts the average daily trading

volume and option interest by quarter for the VXX options. In Figure 1.3(a), we notice

that the average daily open interest for the VXX options increases to a considerably

high level (about 4,200,000) within five years. During the same time, the average daily

trading volume of VXX options displays an upward trend in the first few years and

2Short-term means 1-month average term VIX futures.
3https://www.nasdaq.com/market-activity/funds-and-etfs/vxx/historical. Please be aware that VXX

matured on January 30 January, 2019. Due to the huge demand for VXX, Barclays Bank launched iPath
Series B S&P 500 VIX Short-Term Futures ETN (VXXB) on 17 January 2018 which matures on 23
January 2048. VXXB was identical through to the maturity of VXX, so VXXB is regarded the same as
VXX. See https://www.ipathetn.com/US/16/en/instruments.app#/details/341408.
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then fluctuates over an impressive level (about 218,000 contracts), which is shown in

Figure 1.3(b). In particular, the trading volume reaches a new peak (more than 430,000

contracts) in 2015. These are indications that the VXX option is a very actively traded

product for hedging and speculating in the market.

S&P 500 variance futures (VA) is another type of volatility futures, which were

listed on the CBOE and started for trading on 10 December 2012. The variance futures

contracts are written on the realized variance of S&P 500. The final settlement price

of a VA contract is calculated based on the S&P 500 realized variance from the initial

listing date to the expiration date. The contracts expire at the third Friday of the expiring

month4. In addition, VA are much less liquid than the VIX futures, as we can see that

the trading volume of the VA is much smaller than that of VIX futures 5.

1.2 Literature Review

In this section, we give a comprehensive literature reviews on the history of the financial

derivative pricing in Sub-section 1.2.1, and literature reviews on VIX and pricing

volatility derivatives in Sub-section 1.2.2.

1.2.1 Early History of Financial Derivative Pricing

Research on derivative pricing has been developed over 50 years. In the derivative

pricing theory, the fundamental assumption is that financial markets are efficient. An

efficient market means that the change of asset prices is unpredictable and the asset

prices are always determined by all information available at that time (Fama, 1965).

During the same time period, Samuelson shows that the law of iterated expectations

can be used in the security market analysis (Samuelson, 1965). A couple of years

4See http://www.cboe.com/products/futures/va-s-p-500-variance-futures/contract-specifications
5See https://markets.cboe.com/us/futures/market-statistics/historical-data/
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Figure 1.3: Open interest and average daily trading volume of the VXX options, by
quarters, from July 2010 to December 2017
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later, LeRoy gave more detailed reviews on this application in his paper (LeRoy,

1989). He implies that investing in an efficient market is a fair game. Furthermore,

Malkiel provided a more explicit definition of the market efficiency based on the Fama’s

definition. With respect to the information set, the asset prices must not be influenced by

releasing that information to the public. In addition, no profit can be earned from trading

assets in accordance with that information set (Malkiel, 2003). Malkiel’s definition

provides two practical methods to examine whether a market is efficient or not. The

first method is measuring the change of asset prices if the information is released to

all participants in the market. The second method is measuring the change of profits if

market participants trade assets on that information set. Those theories indicate that the

process of asset returns has martingale property after adjusting in a proper way. The

martingale property led to the random walk hypothesis in modelling asset prices.

Back to 1963, Samuelson connected the stochastic integration with warrant pricing

(Samuelson, 1963). Later, in 1973, Black and Scholes constructed an explicit valuation

formula for pricing European options under the efficient market assumption (Black &

Scholes, 1973). Black and Scholes assumed that: (1) the short-term interest rate and

variance of the stock are constant; (2) the stock market is efficient, so the stock returns

move with a random walk in a continuous-time path and the distribution of the returns

is log-normal; (3) no transaction costs and penalties occur during the trading process;

(4) no other payments (e.g. dividends etc.) are made; (5) options are “European” type,

which means it only can be exercised at maturity date; (6) participants can sell or buy

any fractions of the products at allowed time. In the same year, Merton extended the

equilibrium model of asset prices during the continuous-time under more dynamic

conditions (Merton, 1976). These two papers have become the milestone of continuous-

time pricing theory in the modern financial economics research.

The Black-Scholes model has been shown some obvious drawbacks since the

American stock market crashed in 1987 (Bates, 2000). Many empirical studies on



Chapter 1. Introduction 19

the dynamics of stock returns put forward that: (1) the S&P 500 Index returns do not

follow a log normal distribution but a leptokurtic distribution which has left skewness,

higher kurtosis and fatter tails than a log-normal distribution (Kou, 2002, 2008); (2)

the volatility of stock returns is time-varying (Merton, 1973) and moves randomly (e.g.

Fama, 1965; Hull & White, 1987); (3) the implied volatility curve shows a smile shape

and the smile shape changes at different maturities6 (Kou, 2008); (4) the volatility

of returns has clustering effect7 because the volatility is auto-correlated but the stock

returns have independent increments (Kou, 2008); and (5) jumps (large fluctuation)

occur in continuous stock price movements due to risks, especially during the financial

crisis period (Merton & Samuelson, 1974; Bates, 2000; Eraker, Johannes & Polson,

2003). Therefore, the constant volatility and log-normal distribution assumptions are

not adequate to describe the features of the return dynamics.

A diffusion model with constant volatility does not agree with the observed facts on

the dynamics of the asset returns, so stochastic volatility is taken account into the asset

pricing theory. According to the researches on the dynamics of stock returns, we know

that the high kurtosis of the stock return distribution is caused by the fluctuation of the

volatility in the stock returns (Bates, 1996; Eraker, 2004). Further, the left skewness

in the return distribution is due to the relationship between stock returns and variance

(Bates, 1996). In addition, the stochastic volatility can cope with the clustering effect

and smile effect (Kou, 2008).

The history of stochastic volatility models can be traced back to 1970s. In the

middle of 1970s, Merton introduced the deterministic function of time to replace the

6The option prices which are calculated based on the Black-Scholes model do not exactly match
the market data because the graph of implied volatility against strike price of the option with the same
maturity date exhibits the smile curve (U-shape). The smile curve discloses that the prices calculated
based on the Black-Sholes model with constant volatility are greater than those of out-of-money puts and
those of in-the-money calls (Fouque, Papanicolaou & Sircar, 2000).

7The clustering property in asset price variation was initially observed by Mandelbrot. He clearly
stated that the large changes in asset prices are likely to go after large changes and small changes likely
to go after small changes (Mandelbrot, 1963).
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constant volatility (Merton, 1973). In another paper of Merton, he added a finite jump

process into the stock pricing diffusion model to handle large fluctuation of the stock

price in the continuous sample path (Merton, 1976). In the 1980s, stochastic volatility

was considered into stock pricing models (e.g. Hildebrand, 1987; Johnson & Shanno,

1987). However, it was very difficult to derive a closed-form option price formula from

the model with stochastic volatility at that time and only numerical solutions could be

obtained. In 1990s, Heston provided an approach of deriving analytical expression for

pricing European style options from his stochastic volatility model by using the fast

Fourier transform technique (Heston, 1993). Since then, this approach has been widely

applied in quantitative finance field, refer to in Bates (1996); and Bakshi, Cao and Chen

(1997).

Since late 1990s, stochastic volatility models have dominated the literature on the

financial derivatives pricing because this type of models can provide a more flexible

structure. In a majority of stochastic volatility models, people assume that the volatility

follows an Ornstein-Uhlenbeck process or a CIR process (e.g. Stein & Stein, 1991;

Heston, 1993; Scott, 2002, etc.). This kind of volatility specification is consistent with

the empirical study result that the volatility of the asset returns exhibits mean reversion

property throughout the time (e.g. Grünbichler & Longstaff, 1996; Scott, 2002; Kou,

2008; Psychoyios & Dotsis, 2010; Mencía & Sentana, 2013). In the meanwhile, the

finite-activity jump processes are used for accommodating the sudden changes of the

prices which are caused by the rare events (Kou, 2002; Eraker, 2004; Bates, 2000; Pan,

2002, etc.). In addition, Eraker (2004), Bates (2000), Pan (2002) and Lin (2007) figured

out that the correlated jumps occur simultaneously in the return and volatility processes.
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1.2.2 Literature Review on VIX and pricing volatility derivatives

First, as we know, the VIX is a key index for measuring the volatility of the U.S. stock

market, thus pricing VIX can be treated as modelling the volatility of stock returns.

The methodologies for pricing VIX derivatives can be classified into two directions. In

the first direction, VIX derivatives pricing formulae are derived from the instantaneous

volatilities of the S&P 500 index, which can provide a clear picture of the relationship

among the S&P 500 index, VIX and VIX derivatives. Researchers in this direction

believe that the instantaneous volatility process has a mean-reverting property. In

addition, some of them add finite-activity jumps into the S&P 500 return process, or

instantaneous volatility process, or both of them. However, it is challenging to derive

an analytical VIX derivative pricing formula when more and more notable features are

added to a model. For more information about research work in this direction, we refer

the readers to Zhang and Zhu (2006), Lin (2007), Zhu and Lian (2012), Goutte, Ismail

and Pham (2017), Luo, Zhang and Zhang (2019), etc.

In the other direction, researches directly model VIX dynamics and then derive the

derivatives pricing formulae from the proposed models. In this direction, they employ

different types of mean-reverting processes, such as the squared-root mean-reverting

process, the arithmetic mean-reverting process, and the geometric mean-reverting

process, in modeling the dynamics of the VIX. In addition, Psychoyios and Dotsis

(2010); Mencía and Sentana (2013); Kaeck and Alexander (2013) and Goard and

Mazur (2013) found clear evidence of jumps in the VIX return process, in which a

compound Poisson process is employed to characterize finite-activity jumps triggered

by influential financial events. As an advantage, the analytical pricing formulae for VIX

derivatives can be obtained based on even more complex VIX models. For example,

Mencía and Sentana (2013) extended previous models into a two-factor model with

three major features of VIX dynamics: central tendency, stochastic volatility of VIX
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and finite-activity jumps. They documented that their two-factor model works better

than other existing models, in terms of pricing VIX options and futures.

Second, the growth in VXX ETN trading (the derivative of VIX futures) has caught

the attention of researchers and some research papers regarding to the VXX have

emerged in recent years (e.g. Bao, Li & Gong, 2012; Gehricke & Zhang, 2019, 2020;

Grasselli & Wagalath, 2020, etc.). Bao et al. (2012) and Alexander, Kapraun and

Korovilas (2015) revealed that the VXX highly correlates to the VIX at a positive level.

Due to the close relationship between the VXX and the VIX, VXX modeling8 can

be inspired from the way of modeling VIX, which has been widely discussed in the

literature (e.g., Zhang & Zhu, 2006; Zhu & Lian, 2012; Mencía & Sentana, 2013; Park,

2016; Cao, Ruan, Su & Zhang, 2019, etc.). Bao et al. (2012) modeled the VXX based

on the dynamics of the logarithm of VXX returns. They considered the default risk

factor and positive volatility skew in their models. They found that the mean-reverting

model with correlated stochastic volatility and finite-activity jumps outperforms its

competitors. This paper has become one of the most influential papers related to the

VXX research.

Third, the S&P 500 variance futures are another relatively new volatility products.

Currently, some papers have studied on variance futures contracts with the old spe-

cifications 9. For example, Zhang and Huang (2010) derived the formula for pricing

S&P 500 3-month variance futures based on its underlying model. In their research,

they found that there is a linear relationship between the price of variance futures and

the value of VIX squared. They also detected that volatility risk premium is negative.

Chang, Jimenez-Martin, McAleer and Amaral (2013) found it is difficult to accurately

model the dynamics of the returns of the 3-month and 12-month variance futures,

8Gehricke and Zhang (2018) propose a VXX model based on the underlying (SPX and VIX)
dynamics. They provide more information about the relationship among the SPX, VIX and VXX.

9The old version variance futures contracts are classified into two kinds, the S&P 500 3-month and
12-month variance futures which are delisted on 10 December 2012 and 17 March 2011, respectively.
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because of the small trading volume of the variance futures. Therefore, they applied

three conditional volatility models (GARCH, GJR and EGARCH) with three different

probability densities (Gaussian, Student-t and Generalized Normal distribution errors)

for modelling volatility for the 3- and 12-month of variance futures. They showed that

the values of the VIX are highly correlated to the prices of the 3-month variance futures

and 12-month variance futures. However, pricing the variance futures with the new

specifications has not been studied in the literature yet.

In the remainder part of this sub-section, we present the extensive literature review

on applications of pure infinite-activity jump Lévy processes in the financial modelling

field. There has been a growing interest in pricing stock options with infinite-activity

jump processes (e.g. Clark, 1973; Geman, 2002; Carr, Geman, Madan & Yor, 2003;

Carr & Wu, 2003, 2004; Lian, Zhu, Elliott & Cui, 2017, etc.). Some pieces of credible

evidence show that infinite-activity jumps (a.k.a. high-frequency jumps) occur in the

dynamics of financial asset returns. For instance, Wu (2011) figured out that small jumps

frequently appear in the volatility dynamics based on the analysis of high-frequency

S&P 500 returns. As another example, Yang and Kanniainen (2017) revealed that the

models with infinite-activity jump processes can fit the S&P 500 option data better.

Moreover, Wu (2011), Todorov and Tauchen (2011b) and Cao et al. (2019) discovered

that small oscillations frequently appear in the dynamics of S&P 500 volatility as

well. The major advantage of infinite-activity jump processes over finite-activity jump

processes is that they are able to capture not only finite activities but also infinite

activities within a finite time interval.

Several infinite-activity jump Lévy processes can be applied in financial modelling.

For example, the generalized hyperbolic Lévy process with five parameters is one of

the most fundamental Lévy processes (Barndorff-Nielsen, 1978). It has two impressive

sub-classes, the hyperbolic Lévy process (Eberlein, Keller & Prause, 1988) and the

normal inverse Gaussian process (NIG) (Barndorff-Nielsen, 1997). The main difference
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between these sub-classes is the tail behaviour: the tails of the NIG are thicker than

those of the hyperbolic Lévy process. The variance gamma process (VG) is a Lévy

process with a finite variation sample path which is distinguishing from the NIG that has

an infinite variation sample path (Cont & Tankov, 2004). Both of the VG and the NIG

can be viewed as time-changed Wiener processes 10 but with different subordinators,

i.e., the gamma process and the inverse Gaussian process, respectively. They can

capture the asymmetric decay in the exponential tail behavior but behave differently

in the activity rate of the small jumps (Geman, 2002). Another Lévy jump process

with infinite divisibility, popularly applied in quantitative finance, is the Carr-Geman-

Madan-Yor (CGMY) model introduced by Carr, Geman, Madan and Yor (2002). This

is a generalization of the variance gamma process by adding a parameter Y permitting

finite-activities or infinite-activities with a finite or infinite variation. When Y < 0, the

process permits finite-activity like a compound Poisson process. On the other hand, if

Y is between 0 and 2, the process permits infinite activities. The process has a finite

variation when 0 < Y < 1 and an infinite variation when 1 < Y < 2 (Carr et al., 2002).

Unlike the Lévy processes mentioned above, a generalized tempered stable process

(GTS) does not have a Gaussian part and is softened by an exponential factor (Cont &

Tankov, 2004). It exhibits a symmetrical local behavior, which can generate rich jump

structures based on its parameter values.

1.3 Research Questions

In this research, we mainly focus on building mathematical models for accurately and

efficiently valuing volatility derivatives (e.g. VIX options, VIX futures, VXX options

and S&P 500 variance futures) under different types of Lévy processes. By following

10The time-changed Lévy process refers to a stochastic process with a randomness time clock, where
the time process is a non-decreasing right-continuous process.
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the literature review in the last section, we propose the following research questions.

Question 1: Dose a model with an infinite-activity jump structure capture the charac-

teristics in the dynamics of the VIX or the price of volatility derivatives better than a

model with a finite-activity jump structure?

Question 2: Are there any realistic factors with regard to market circumstances, such

as stochastic volatility with time-varying mean, can be considered into our models? Is it

worth putting these realistic features into our models? What kind of model specifications

can perform better in volatility derivatives pricing?

Question 3: The cost of implementation increases as the models become more and

more complicated. Therefore, it is necessary to investigate which calibration methods

and numerical methods can be applied in our cases. What is the best calibration method

for balancing the computational cost and accuracy of estimation results?

Question 4: How to derive closed-form pricing formulae for different types of volatility

derivatives from the proposed models?

Question 5: To extend the first question, how does a model with double jumps perform

in the pricing of volatility derivatives?

1.4 Research Contributions and Thesis Organization

The main contributions of this research provide critical evidence that infinite-activity

jump models, particularly the jump processes with an infinite variation sample path,

overall outperform finite-activity jump models. Hence infinite-activity jumps cannot

be ignored in pricing volatility derivatives. The presence of infinite-activity jumps

implies that not only big jumps but also frequent small jumps occur in the volatility

derivatives market. From the economic aspect, infinite-activity Lévy jump processes can

accommodate the high-frequency occurrences of small events and the microstructure

of the VIX derivatives market, including some rare events (e.g. financial crisis, etc.).
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We also notice that the advantage of models with infinite-activity jump structures is

highlighted in the VIX and VXX options pricing. In addition, both Brownian motion

and infinite-activity jumps are indispensable parts of the models. Furthermore, the

stochastic mean is a crucial feature of the dynamics of the VIX index and the variance

process of the S&P 500 index returns.

The remainder of this thesis is organized as follows. Chapter 2 illustrates the

mathematical tools (e.g. mathematical concepts, methods, etc.) and financial modelling

approaches and numerical methods, which will be used to solve our proposed questions.

Chapter 3 constructs the two-factor models with infinite-activities jumps of the VIX and

discusses the impacts of infinite-activities jump processes on pricing VIX derivatives .

Chapter 4 discusses the performance of stochastic volatility models with different jump

structures in the VXX options pricing to investigate the impact of the finite-activity

and infinite-activity jumps on American-style option pricing. Chapter 5 derives the

pricing formulae of variance futures based on models with double jumps and other

model specifications. It figures out the features of the dynamics of the S&P 500 variance

futures prices.



Chapter 2

Preliminaries

Modern probability theory has become a fundamental tool for quantifying various

financial products. The risk-neutral valuation approach is a paramount technique

for formulating volatility derivatives based on risk-neutral scenarios. Furthermore,

numerical calculation methods are very effective mathematical tools for solving some

mathematical problems, especially for problems which do not have explicit expression.

This chapter presents theoretical foundation for our research. The key references for

this chapter are Hildebrand (1987), Rossi (2018), Schoutens (2003), Cont and Tankov

(2004), Jacod and Protter (2004), Øksendal and Sulem (2005), and Shreve (2008).

2.1 Mathematical Tools

In this section, we present important mathematical concepts and results in probability

theory, which will be used in the subsequent chapters.

2.1.1 Probability Measures

Measures play a prominent role when we define a stochastic process such as a Lévy

process or a jump process. In real life, the term “measure" can be interpreted as the

27
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length of an cord, the area of a section, and so on. In probability theory, a measure on a

set can be interpreted as the size of set (Cont & Tankov, 2004). In general, this theory

includes three key elements, the state space, events and probability distribution. The

following content in this sub-section is associated to these three elements. The state

space contains all possible outcomes of an experiment, denoted by Ω. We use 2Ω to

express the collection of all subsets of Ω. Let F be a subset of 2Ω. Elements of F are

called events. Before giving the definition of a probability measure, we introduce the

notion of a σ-algebra (Shreve, 2008, p.51).

Definition 2.1.1 (σ-algebra) F is a σ-algebra if it satisfies

1. ∅ ∈ F ,

2. if A ∈ F then Ω ∖A ∈ F , where Ω ∖A is the complement of A, and

3. if A1,A2,A3, ... is a sequence of events in F , then ⋃∞
i=1Ai ∈ F .

When F is a σ-algebra on Ω, according to the properties 2 and 3 in Definition 2.1.1. If

A1,A2, ... is a sequence of events in F , we can conclude that ⋂∞
i=1Ai ∈ F . In addition,

the whole space Ω is also in F because Ω is the complement of ∅. We call (Ω,F) a

measurable space. Now, we introduce the definition of a probability measure on the

measurable space (Ω,F).

Definition 2.1.2 (Probability measure) A probability measure defined on (Ω,F) is

a function P: F → [0,1] that satisfies:

1. P(Ω) = 1, and

2. (countable additivity) for every sequence (Ai)i≥1 of pairwise disjoint elements of

F (that is, An⋂Am = ∅ whenever n ≠m), one has

P(
∞
⋃
i=1

Ai) =
∞
∑
i=1

P(Ai). (2.1)
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In Definition 2.1.2 the value of P(A) represents the probability of the event A. Then,

(Ω,F ,P) is called a probability space. Based on the second condition in Definition

2.1.2, we have P(∅) = 0.

Assume that P and Q are two probability measures, defined on the same measurable

space (Ω,F). The measure P is absolutely continuous with respect to Q (Cont &

Tankov, 2004, p.25), if for any measurable set A ∈ F ,

Q(A) = 0⇒ P(A) = 0. (2.2)

Theorem 2.1.1 (Radon-Nikodym theorem) If P is absolutely continuous with re-

spect to Q then there exists a Q measurable function Z: Ω→ [0,∞) such that for any

measurable set A,

P(A) = ∫
A
ZdQ. (2.3)

The function Z is called the density or Radon-Nikodym derivative of P with respect to

Q and denoted as dP/dQ.

The integral in Eq. (2.3) is Lebesgue integral which is defined in terms of using the

measurable functions. Now, two probability measures P and Q are said to be equivalent

if they are absolutely continuous with respect to each other, that is,

P ∼ Q ⇐⇒ [∀A ∈ F ,P(A) = 0 ⇐⇒ Q(A) = 0] . (2.4)

2.1.2 Random Variables

A random variable refers to an unknown value that fluctuates in accordance with which

random event occurs. On a probability space (Ω,F ,P), a real-valued random variable

refers to a measurable function X on Ω with the property that for each Borel subset
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B ⊆ R, the subset of Ω given by the form of,

{X ∈ B} = {ω ∈ Ω;X(ω) ∈ B}, (2.5)

is in the σ−algebra F 1 (Shreve, 2008, p.7). Let ω ∈ Ω be a scenario of randomness.

Then, X(ω) expresses the outcome of a random variable when the scenario ω occurs

(Cont & Tankov, 2004, p. 27). The distribution measure of X (Shreve, 2008, p.9),

denoted as µX , is defined as,

µX(B) = P{X ∈ B}, (2.6)

where B ⊆ R and the set B can be a number or a set of real numbers.

The real-valued random variable X can be characterized by its cumulative distribu-

tion function (cdf), FX(x), which is given by:

FX(x) = P{X ≤ x} = µX(−∞, x], x ∈ R. (2.7)

So, if the cdf F is known, then we have µX(x, y] = FX(y) − FX(x) for any x ∈ R,

y ∈ R and x < y. On the other hand, the relationship between the cdf and the probability

density function (pdf) of a random variable X is given by,

µX[a, b] = P{a ≤X ≤ b} = FX(b) − FX(a) = ∫
b

a
fX(x)dx, (2.8)

where −∞ < a ≤ b <∞, fX(x) is the pdf which is a non-negative function.

The following properties hold for random variables on a probability space (Ω,F ,P)(Schoutens,

2003, p.16).

1Note: the value range for a random variable can also be allowed to be from +∞ to −∞ in some
situations.
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Theorem 2.1.2 Let X be a random variable on a probability space (Ω,F ,P).

(a) If X takes only finitely many values y0, y1, . . . , yn, then

∫
Ω
X(ω)dP(ω) =

n

∑
k=0

P{X = yk}. (2.9)

(b) (Integrability) X is integrable if and only if

∫
Ω
X(ω)dP(ω) <∞. (2.10)

Now let Y be another random variable on (Ω,F ,P).

(c) (Comparison) IfX < Y almost surely (i.e., P{X < Y } = 1) and if ∫ΩX(ω)dP(ω)

and ∫Ω Y (ω)dP(ω) are defined, then

∫
Ω
X(ω)dP(ω) < ∫

Ω
Y (ω)dP(ω). (2.11)

In particular, if X = Y almost surely and one of the integrals is defined, then they

are both defined and

∫
Ω
X(ω)dP(ω) = ∫

Ω
Y (ω)dP(ω). (2.12)

(d) (Linearity) If α and β are real constants and X and Y are integrable, or if α and

β are non-negative constants and X and Y are non-negative, then

∫
Ω
(αX(ω) + βY (ω))dP(ω) = α∫

Ω
X(ω)dP(ω) + βY (ω)dP(ω). (2.13)

As stated in the beginning of this section, the value of a random variable is unknown

because events happen randomly. However, we can calculate the average value for a
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random variable, which is known as the expectation of a random variable.

Definition 2.1.3 (Expectation) Let X be a random variable on a probability space

(Ω,F ,P). The expectation of X is defined as

EP[X] = ∫
Ω
X(ω)dP(ω). (2.14)

Note that if the expectation EP[X] is defined, then at least one of EP[X+] or EP[X−]

is finite, where X+ and X− represent the positive and negative parts of the random

variable X , such that

X+(ω) = max{X(ω),0}, X−(ω) = max{−X(ω),0}. (2.15)

The characteristic function of a random variable is the Fourier transform of its pdf

(Cont & Tankov, 2004, p.29). It is always continuous and plays an important role for

studying the behaviour of random variables.

Definition 2.1.4 (Characteristic function) The characteristic function of a random

variable X is the function ϕX ∶ R→ C defined by

ϕX(θ) = E [eiθx] = ∫
R
eiθxdFX(x) = ∫

R
eiθXfX(x)dx, ∀θ ∈ R, (2.16)

where FX and fX are the cumulative distribution function and probability density

function of X , respectively.

If the characteristic functions of two random variables are the same, then their

distributions are identical. If the random variables, X1,X2, ...,Xn are independent,

the characteristic function of the sum of these random variables is the product of the
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characteristic functions of the individuals, that is,

ϕX(θ) =
n

∏
i=1

ϕXi(θ), (2.17)

where X = ∑
n
i=1Xi. The n-th moment of a random variable X on R is defined by (Cont

& Tankov, 2004, p.30)

mn(X) = E[Xn]. (2.18)

Similarly, we have the n-th absolute moment of X as

mn(∣X ∣) = E[∣X ∣n]. (2.19)

The n-th centered moment µn is the n-th moment of X −E[X], that is

µn(x) = E [(X −E[X])n] . (2.20)

At the end of this sub-section, we take a standard normal random variable X as an

example. The pdf fX(x) of X is defined as

fX(x) =
1

√
2π
e−

x2

2 , (2.21)

and its corresponding cdf FX(x) is

FX(x) = ∫
x

−∞
fX(y)dy. (2.22)

The cdf is strictly increasing, so we have FX(F −1
X (y)) = y. The Fourier transform of a

standard normal density fX(x) in Eq. (2.21) is,

f̂X(θ) = ∫
∞

−∞
fX(x)e−iθxdx = e−

1
2
(σθ)2 . (2.23)



Chapter 2. Preliminaries 34

Then, the characteristic function of this random variable is computed as

ϕX(θ) = E [eiθX] = f̂X(−θ) = e−
1
2
(σθ)2 . (2.24)

2.1.3 Conditional Expectation

If a random experiment is performed and the outcome of the experiment is set as ω, we

may be given some information but not enough to obtain the exact vale of ω. However,

we can narrow down the possibility of ω occurring based on this information. Now,

let us consider σ−algebras, F0,F1,F2, ...,Fm, ...,Fn, indexed by time, where m < n.

Since the time goes from time 0 to time n, we can gain more information. This implies

that Fn contains more information than the other σ−algebras in this series, Fi, for

i = 0,1, ..., n− 1. This series of σ−algebras, F0,F1,F2, ...,Fn, is called a filtration. The

formal definition of the filtration is given below.

Definition 2.1.5 (Filtration) Let Ω be a nonempty set. Let T be a fixed positive

number, and assume that for each t ∈ [0, T ] there is a σ−algebra Ft. Assume further

that if s ≤ t, then every set in Fs is also in Ft. Then we call the collection of σ−algebras

F0≤t≤T , a filtration.

There is an extreme case that the information in F can not provide any clues which

are used for evaluating the random variable X . In this case, we say X is independent of

the information set F . The formal definitions (Shreve, 2008, p.51) about independence

are given below.

Definition 2.1.6 (Independence) Let (Ω,F ,P) be a probability space, and let G ⊂ F

and E ⊂ F be two σ−algebras. We say G and E are independent if

P(A ∩B) = P(A) ⋅ P(B) for all A ∈ G, B ∈ E . (2.25)
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Assume that X and Y are random variables on (Ω,F ,P) and the σ−algebras generated

by X and Y , are denoted by σ(X) and σ(Y ), respectively. We say X and Y are

independent if σ(X) and σ(Y ) are independent. If the σ(X) and G are independent,

then we can say X is independent of the information G.

Theorem 2.1.3 Let X and Y be independent random variables. Then, the following

conditions are equivalent.

1 The joint distribution measure factors:

µX,Y (A ×B) = µX(A) ⋅ µY (B) for all A ⊆ R,B ⊆ R. (2.26)

2 The joint cumulative distribution function factors:

FX,Y (a, b) = FX(a) ⋅ FY (b) for all a ∈ R, b ∈ R. (2.27)

3 The joint moment-generating function factors:

E[euX+vY ] = E[euX] ⋅E[evY ], (2.28)

for all u ∈ R, v ∈ R for which the expectations are finite.

4 The joint density factors:

fX,Y (x, y) = FX(x) ⋅ FY (y) for almost every x ∈ R, y ∈ R. (2.29)

5 The expectation factors:

E[XY ] = E[X] ⋅E[Y ] if E[∣XY ∣] <∞. (2.30)
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In the middle situation, the value of a random variable X can be estimated but not ac-

curately in accordance with the information G. This estimation is called the conditional

expectation of X . So, we can define the conditional expectation (Shreve, 2008, p.68) as

follows.

Definition 2.1.7 (Conditional expectation) LetX be a random variable that is either

non-negative or integrable on a probability space (Ω,F ,P). The conditional expecta-

tion of X given G, denoted E[X ∣G], is any random variable that satisfies

1 (Measurability) E[X ∣G] is G-measurable, and

2 (Partial averaging)

∫
A
E[X ∣G](ω)dP(ω) = ∫

A
X(ω)dP(ω) for all A ∈ G. (2.31)

Now, we assume that X and Y are random variables which are integrable on (Ω,F ,P)

and G ⊆ F . Then, we can have four fundamental properties of conditional expectations

(Shreve, 2008, P.69), which are listed below:

1 (Linearity of conditional expectations) If c1 and c2 are constants, then

E[c1X + c2Y ∣G] = c1E[X ∣G] + c2E[Y ∣G]. (2.32)

2 (Taking out what is known) If XY are integrable and X is G-measurable, then

E[XY ∣G] =XE[Y ∣G]. (2.33)

3 (Iterated conditioning) If H is a sub-σ-algebra of G, then,

E[E[X ∣G]∣H] = E[X ∣H]. (2.34)



Chapter 2. Preliminaries 37

4 (Independence) If X is independent of G, then

E[X ∣G] = E[X]. (2.35)

2.1.4 Stochastic Processes

A stochastic process is defined as a series of random variables which is indexed by time,

denoted by {Xt}t≥0, where time t can be either continuous or discrete (Cont & Tankov,

2004, p.49). In other words, a stochastic process can be viewed as a function of time t

and randomness ω. The sample path of a stochastic process is a function of time for

every observed value of the randomness ω, that is,

X.(ω) ∶ t→Xt(ω).

Assume random variables are defined on a continuous space C([0, T ],R). These

random variables can construct stochastic processes. The usual norm on C([0, T ],R)

(Cont & Tankov, 2004, p.49) is expressed as

∣∣f ∣∣∞ = sup
t∈[0,T ]

∣f(t)∣, (2.36)

where f ∶ [0, T ] → R. The most classical example of the stochastic processes with

continuous sample path is Wiener process. In some cases, the sample may be discon-

tinuous functions. So, a space which allows for the discontinuous cases are needed to

be defined.

Definition 2.1.8 (Cádlág function) A cádlág function f ∶ [0, T ]→ R is right-continuous

with left limits: for every t ∈ [0, T ] the limits,

f(t−) = lim
s→t−

f(s) f(t+) = lim
s→t+

f(s), (2.37)
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exist and f(t) = f(t+).

Note, a cádlág function can be either continuous or discontinuous function. If a

stochastic process is right-continuous with a left limit everywhere in its sample paths,

then this process is called a cádlág process. Now, we discuss about the martingale

property (Cont & Tankov, 2004, p.54) of a cádlág process on a probability space

(Ω,F ,P) with respect to an information flow {Ft}t≥0.

Definition 2.1.9 (Martingale) Let a cádlág process be {Xt}0≤t≤T on a probability

space (Ω,F ,P). The process is martingale if E[∣Xt∣] is finite for any t ∈ [0, T ] and

∀s > t, E[Xs∣Ft] =Xt. (2.38)

According to this definition, we know that the best estimation for a future value of a

martingale is its present value. The martingale definition makes sense only if we specify

the probability measure and the information flow.

Wiener process, {Wt}t≥0, is a classical example of a martingale. The formal defini-

tion of Wiener process is given below.

Definition 2.1.10 (Wiener process) Let (Ω,F ,P) be a probability space. For every

ω ∈ Ω, suppose there is a continuous function W (t) of t ≥ 0 that satisfies W (0) = 0 and

that depends on ω. Then W (t), t ≥ 0, is a Wiener process if for all 0 = t0 < t1 < ⋯ < tm

the increments

W (t1) =W (t1) −W (t0),W (t2) −W (t1), . . . ,W (tm) −W (tm−1), (2.39)
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are independent and each of these increments is normally distributed with

E[W (ti) −W (ti−1)] = 0, (2.40)

Var[W (ti) −W (ti−1)] = ti − ti−1. (2.41)

A Wiener process in the literature is also called a Brownian motion. It has the following

three important properties (Shreve, 2008, p.96).

• The increments of the process are independent and follow a normal distribution

with mean as (2.40) and variance as (2.41).

• The random variables W (t1), W (t2), ..., W (tm) follow a joint normal distribu-

tion with zero mean and co-variance matrix which is given by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E[W 2(t1)] . . . E[W (t1)]E[W (tm)]

E[W (t2)]E[W (t1)] . . . E[W (t1)]E[W (tm)]

⋮ ⋮ ⋮

E[W (tm)]E[W (t1)] . . . E[W 2(tm)]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t1 t1 ⋯ t1

t1 t2 ⋯ t2

⋮ ⋮ ⋮

t1 t2 ⋯ tm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.42)

• The random variablesW (t1),W (t2), ...,W (tm) have the joint moment-generating

function , φ(µ1, µ2, . . . , µm), and given by,

φ(µ1, µ2, . . . , µm)

= E [exp{µmW (tm) + µm−1W (tm−1) + ⋅ ⋅ ⋅ + µ1W (t1)}]

= exp{
1

2
(µ1 + µ2 + ⋅ ⋅ ⋅ + µm)2t1 +

1

2
(µ2 + µ3 + ⋅ ⋅ ⋅ + µm)2(t2 − t1)

+
1

2
(µm−1 + µm)2(tm−1 − tm−2)}

(2.43)
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2.1.5 Poisson Process

A Poisson process is a fundamental stochastic process, which is a pure jump process.

The exponential random variables play very important roles in the construction of a

Poisson process. An exponential random variable τ has the probability density, such

that (Shreve, 2008, p.462),

fτ(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

λe−λt, t ≥ 0,

0, t < 0,
(2.44)

where λ is a positive constant.

Proposition 2.1.1 If {τi}i≥1 are independent exponential random variables with para-

meter λ then, for any t > 0 the random variable

Nt = inf{n ≥ 1,
n

∑
i=1

τi > t} (2.45)

follows a Poisson distribution with parameter λt:

P(Nt = n) = e
−λt (λt)

n

n!
(2.46)

Then, the Poisson process is constructed based on a sequence of independent exponential

random variables (Cont & Tankov, 2004, p.48).

Definition 2.1.11 (Poisson process) Let {τi}i≥1 be a sequence of independent expo-

nential random variables with parameter λ and Tn = ∑
n
i=1 τi. The process {Nt}t≥0

defined by

Nt =∑
n≥1

1t≥Tn (2.47)

is called a Poisson process with intensity λ.



Chapter 2. Preliminaries 41

The Poisson process {Nt}t≥0 is a counting process, so Nt measures the number of jumps

from time 0 to time t:

Nt = #{i ≥ 1, Ti ∈ [0, t]}. (2.48)

If 0 ≤ t < s, then the distribution of Poisson increment Ns −Nt is given by (Shreve,

2008, p.466)

P{(Ns −Nt) = k} =
λk(s − t)k

k!
e−λ(s−t), k = 0,1,2, ... (2.49)

Definition 2.1.12 (Poisson random measure) Let (Ω,F ,P) be a probability space,

E ⊆ R and µ a given (positive) Radon measure µ on (E,E). A Poisson random measure

on E with intensity measure µ is an integer valued random measure:

M ∶ Ω × E → N and (ω,A)↦M(ω,A),

such that

1. For (almost all) ω ∈ Ω,M(ω, .) is an integer-valued Radon measure onE: for any

bounded measurable A ⊂ E, M(A) <∞ is an integer valued random variable.

2. For each measurable set A ⊂ E, M(.,A) =M(A) is a Poisson random variable

with parameter µ(A):

P(M(A) = k) = e−µ(A) (µ(A))
k

k!
, ∀k ∈ N (2.50)

3. For disjoint measurable sets A1, ...,An ∈ E , the variables M(A1), ...,M(An) are

independent.
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2.1.6 Lévy process

A Lévy process is a continuous time stochastic process with independent stationary

increments (Cont & Tankov, 2004, p.68). It is defined below.

Definition 2.1.13 (Lévy process) A cádlág stochastic process {Xt}t≥0 on (Ω,F ,P)

with values in R such that X0 = 0 is called a Lévy process if it possesses the following

properties:

1. Independent increments: for every increasing sequence of times t0...tn, the ran-

dom variables Xt0 ,Xt1 −Xt0 , ...,Xtn −Xtn−1 are independent.

2. Stationary increments: the law of Xt+h −Xt does not depend on t.

3. Stochastic continuity: ∀ε > 0, lim
h→0

P (∣Xt+h −Xt∣ ≥ ε) = 0.

Definition 2.1.14 (Lévy measure) Let {Xt}t≥0 be a Lévy process on a probability

space (Ω,F ,P). The measure ν on R defined by:

ν(A) = E [#{t ∈ [0,1] ∶ ∆Xt ≠ 0,∆Xt ∈ A}] , A ∈ B(R) (2.51)

is called the Lévy measure of X: ν(A) is the expected number, per unit time, of jumps

whose size belongs to A.

The Lévy measure can be either a finite measure or an infinite measure. A process

has a finite measure, which means that the process generates a finite number of jumps.

On the other hand, if the measure is an infinite measure, then the process may have an

infinite number of jumps on the finite time period [0, T ]. For an infinite Lévy process,

we can have the following theorem in regards to the decomposition of an infinite Lévy

process (Øksendal & Sulem, 2005, p.3).
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Theorem 2.1.4 (Lévy-Itô decomposition) Let {Xt}t≥0 be a Lévy process on a prob-

ability space (Ω,F ,P) and ν its Lévy measure, given by Definition 2.1.14. Then Xt has

the decomposition,

Xt = bt + σWt + ∫
∣x∣<1

xÑ(t, dx) + ∫
∣x∣≥1

xN(t, dx), (2.52)

for some constants b ∈ R, σ ∈ R and {Wt}t≥0 is a Wiener process. Here,

Ñ(dt, dx) = N(dt, dx) − ν(dx)dt

is the compensated Poisson random measure of X , where ν is a Radon measure on

R/{0} and satisfies:

∫
∣x∣≤1

∣x∣2ν(dx) <∞, ∫
∣x∣≥1

ν(dx) <∞.

A Lévy process can be denoted by a triplet (b, σ2, ν) which is called characteristic

triplet. The next theorem, Lévy-Khintchine formula, provides a method for characteriz-

ing random variables with infinitely divisibility by using their characteristic functions

(Øksendal & Sulem, 2005, p.4).

Theorem 2.1.5 (Lévy-Khintchine formula) Let {Xt}t≥0 be a Lévy process on a prob-

ability space (Ω,F ,P) with the characteristic triplet (b, σ2, ν), where b ∈ R, σ ∈ R, and

a measure satisfying ν({0}) = 0 and ∫R min(1, x2)ν(dx) <∞, then

ϕXt(θ) = E [eiθXt] = etψ(θ), θ ∈ R, (2.53)

where ψ is called the characteristic exponent of X and is a continuous function. It is

given by,

(θ) ≡ ibθ −
1

2
σ2θ2 + ∫

Rd0
(eiθx − 1 − iθx1∣x∣≤1)ν(dx). (2.54)
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Theorem 2.1.5 is another important tool for Lévy processes. It can be used for

finding the differential form for a Lévy process.

Theorem 2.1.6 (The 1-dimensional Itô formula) Let {Xt}t≥0 be a Lévy process on

a probability space (Ω,F ,P) of the form,

dXt = α(t, ω)dt + σ(t, ω)dWt + ∫
R
γ(t, x, ω)N̄(dt, dx), (2.55)

where

N̄(dt, dx) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

N(dt, dx) − ν(dx)dt, if ∣x∣ ≤ 1,

N(dt, dx), if ∣x∣ > 1.
(2.56)

Let f ∈ C2(R2) and define Yt = f(t,Xt). Then {Yt}t≥0 is again a Lévy process and

dYt =
∂f

∂t
(t,Xt)dt +

∂f

∂X
(t,Xt) [α(t, ω)dt + σ(t, ω)dWt]

+
1

2
σ2(t, ω)

∂2f

∂X2
(t,Xt)dt

+ ∫
∣x∣<1

{f(t,Xt− + γ(t, x, ω)) − f(t,Xt−) −
∂f

∂X
(t,Xt−)γ(t, x, ω)}ν(dx)dt

+ ∫
R
{f(t,Xt− + γ(t, x, ω)) − f(t,Xt−)}N̄(dt, dx).

(2.57)

Note that N(dt, dx) counts the finite number of jumps whose magnitudes are in the

set A (A ⊂ R) within the time interval [t, t + dt] and ν(A) is a Lévy measure which

is defined as ν(A) = E [N(1,A)] and is the compensation of N(dt,A). When ∣x∣ < 1,

the jump component, N(dt, dx) − ν(dx)dt, is martingale. In addition, the jump part

displays finite activity, if the following integral is finite (Carr & Wu, 2004),

∫
R/{0}

ν(dx) = λ <∞, (2.58)

where λ is known as jump intensity.
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2.1.7 Pure Jump Lévy Process

Generally, a Lévy process is characterized by its Lévy triplet (b, σ2, ν) which consists

of the drift, variance and Lévy measure. A pure jump Lévy process refers to a process

which only involves a drift and a jump component. In other words, the Lévy triplet

for this type of processes is denoted by (b,0, ν). A jump process can be either a finite-

activity or an infinite-activity jump process, which is determined by its Lévy measure

(Huang & Wu, 2004). A finite-activity jump process generates a finite number of jumps

in each finite time interval and captures relatively large movements. On the other hand,

an infinite-activity jump process can have infinitely many small jumps within a finite

time interval. A pure Lévy jump process {Jt}t≥0 can be written as,

dJt = bdt + ∫
y∈R

xN̄(dt, dx), (2.59)

where x refers to the magnitude of a jump in {Jt}t≥0, N̄(dt, dx) is specified in Eq. (2.56)

and E[Jt] = bt. Moreover, a sample path of a pure Lévy infinite-activity jump process

may have either a finite variation or an infinite variation (Sato, 1999), which depends

on whether ∫R/{0} min(1, ∣x∣)ν(dx) is bounded or not. In addition, min(1, ∣x∣)ν(dx)

implies the jump behavior around the singular point at y = 0 (Applebaum, 2004).

There are a variety of pure jump Lévy processes which can be applied in the financial

asset pricing theory. In this section, we introduce four types of jump processes, including

compound Poisson jump process of Merton (1976) (MJ), variance gamma process of

Madan and Seneta (1990) (VG), normal inverse Gaussian process of Barndorff-Nielsen

(1997) (NIG) and generalized tempered stable process of Koponen (1995) (GTS).

The MJ is a finite-activity jump process, which is given by Cont and Tankov (2004).
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Definition 2.1.15 (Compound Poisson Process of Merton (1976)) A compound Pois-

son process with intensity λ > 0 is a stochastic process {Xt}t≥0 defined as

Xt =
Nt

∑
i=1

Yi, (2.60)

where jump sizes {Yi}i≥1 are i.i.d. with Gaussian distribution and {Nt}t≥0 is a Poisson

process, independent from {Yi}i≥1.

The Lévy measure of the MJ is expressed as

νMJ(dy) =
λJ

σJ
√

2π
e
− (y−θJ )

2

2σ2
J , (2.61)

where θJ and σ2
J are the mean and variance of the jump size distribution.

The VG and the NIG are the normal tempered stable processes and also are infinite-

activity jump processes. They are constructed by the time-changed Brownian motion

with drift θJ and volatility σJ (Cont & Tankov, 2004, p.117). However, they have

different sample path properties. The VG exhibits finite variation sample path but the

NIG has an infinite variation sample path. The general form for normal tempered stable

processes can be written as

Jt = θJZt + σJW (Zt), (2.62)

where θJ ∈ R, σJ > 0 and {Zt}t≥0 is the subordinating process which is independent

from the Wiener process, W (⋅). The subordinator is set as gamma process for the VG

and inverse Gaussian process for the NIG. The Lévy measure of the VG and NIG are

given in Eq. (2.63) and Eq. (2.64), respectively, by

νV G(dx) =
1

δJ ∣x∣
e

⎛
⎜
⎝
θJ
σ2
J

x−

√
θ2
J
+2σ2

J
/δJ

σ2
J

∣x∣
⎞
⎟
⎠, (2.63)
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and

νNIG(dx) =

√
θ2
JδJ + σ

2
J

2πσJδJ ∣x∣
K1

⎛

⎝

√
θ2
J + σ

2
J/δJ

σ2
J

∣x∣
⎞

⎠
e
θJ
σ2
J

x
, (2.64)

where K1 is the modified Bessel function of the second kind with the following form,

K1(z) =
z

4 ∫
∞

0
t−2e

(−t− z
2

4t
)
dt.

The GTS is obtained by the multiplication of a stable process and a Lévy measure

with a decreasing exponential on both sides of the real axis (Cont & Tankov, 2004,

p.119). The Lévy measure of GTS is given by

νGTS(dy) =
λ−

∣y∣1+α−
e−c−∣y∣1y∈(−∞,0) +

λ+
y1+α+

e−c+y1y∈(0,∞), (2.65)

where the negative sign (−) and positive sign (+) represent downward jumps and upward

jumps, respectively; λ− > 0 and λ+ > 0 measure the jump arrival frequency for the

jumps; c− > 0 and c+ > 0 accommodate the decay rates of the tails and both α+ and α−

should be less than 2. Moreover, the values of α parameters also determine the type of

process sample path and jump behaviour.

The GTS can be either a finite-activity or an infinite-activity jump process, which

is determined by the values of the parameters of α+ and α−. If α+ < 0 and α− < 0, it is

a finite-activity process. The GTS is an infinite-activity process when at least one of

the α parameters’ value is greater than zero (Cont & Tankov, 2004; Kc̈hler & Tappe,

2013). Moreover, the properties of the sample path for the GTS are also determined by

the values of α parameters. The sample path has a finite variation if α− < 1, α+ < 1 and

at least one of them is larger than or equal to 0. It also can have an infinite variation if

α− ≥ 1, α+ ≥ 1, or both of them are larger than or equal to 1. The GTS has a limiting

case if α− = α+ = 0. In this case, it is an infinite-activity jump process and we call this
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process as TS.

The characteristic exponents with a closed-form expression and the expectations of

the four selected jump processes are summarized in Table 2.1.

Table 2.1: Characteristic exponent of the selected pure Lévy jump process

Jt E[Jt] Characteristic Exponent ΨJ(u)

MJ λJθJ t λJ

⎡⎢⎢⎢⎢⎣
e
(−

σ2Ju
2

2 +iuθJ) − 1

⎤⎥⎥⎥⎥⎦
VG θJ − 1

δJ
ln (1 + u2σ2

JδJ
2

− iuθJδJ)

NIG θJ
1
δJ

(1 −
√

1 + u2σ2
JδJ − 2iuθJδJ)

TS 0 −λ+ { iu
c+
+ ln (1 − iu

c+
)} − λ− {− iu

c−
+ ln (1 + iu

c−
)}

GTS 0 Γ(−α+)cα++ λ+ {(1 − iu
c+

)
α+
− 1 + iuα+

c+
} + Γ(−α−)cα−− λ− {(1 + iu

c−
)
α−
− 1 − iuα−

c−
}

2.2 Fundamentals of Quantitative Finance

In this section, we present the risk-neutral pricing theory and techniques for financial

derivatives. The risk-neutral modelling is a fundamental approach in the derivative

pricing theory. We derive the pricing formulae for volatility derivatives based on the

no-arbitrage assumption.

2.2.1 Futures and Options

A financial derivative is a contract whose value depends on the underlying asset per-

formance. The underlying assets can be commodities, currencies, market indexes and

so on. Further, a volatility derivative is a derivative security whose underlying asset is

VIX or a derivative of VIX. In this thesis, we focus on pricing two kinds of volatility

derivatives, futures and options written on volatility products.

A futures contract is a legal agreement which allows the market practitioners to sell
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or buy a financial product at a predetermined price and a specified future time (Capinski

& Zastawniak, 2003, p.134). Assume the price of a financial asset at time t is denoted

by St for 0 ≤ t ≤ T , where T is the maturity date of the contract. The futures price,

Fut,T for each t ≤ T , is unknown at current time (t = 0) and can be treated as a random

variable. Let (Ω,F ,P) be a probability space with respect to a filtration {Ft}t≥0. Then,

the futures price at the maturity time can be calculated as

Fut,T = E[ST ∣Ft]. (2.66)

An option contract gives contract holder the right, but not the obligation, to buy or

sell the underlying asset at a predetermined price before or on the expiration date (Cont

& Tankov, 2004). To be specific, a call option gives the holder the right to buy and a put

option gives the holders the right to sell. In this thesis, we valuate two different types

of options, European options and American options. A European option can only be

exercised at the expiration date, but an American option can be exercised at any time

before the expiration date. The payoffs of a European call and a European put with

strike price K at expiration date T are defined as,

HC(ST ) = max (ST −K,0) , (2.67)

and

HP (ST ) = max (K − ST ,0) , (2.68)

where HC and HP are the payoff of call and put options, respectively.

2.2.2 Risk-Neutral Pricing

In this sub-section, we introduce Girsanov’s theorem which tells how to change between

two equivalent probability measures. We assume that a non-negative random variable,
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Z, on a probability space (Ω,F ,P), satisfies the following equations,

EP[Z] = 1 and P{Z > 0} = 1, (2.69)

where P is called physical measure or original probability measure. Now, we have

another probability measure Q which is equivalent to the probability measure P. The

measure Q is defined as

Q(A) = ∫
A
Z(ω)dP (ω) for all A ∈ F . (2.70)

We say this probability measure a risk-neutral if the price of an asset is exactly equal

to the discounted expectation of the asset price under this measure. Then, we denote

the expectation of a random variable X under physical measure P as EP[X] and the

expectation of X under risk-neutral measure Q as EQ[X]. The relationship between

the two expectations can be formulated as

EQ[X] = EP[XZ]. (2.71)

We also say that Z is the Radon-Nikodým derivative of Q with respect to P. In terms

of the probability space (Ω,F ,P) with a filtration {Ft}0≤t≤T , the Radon-Nikodým

derivative process (Shreve, 2008) can be defined as

Z(t) = EP[Z ∣Ft], 0 ≤ t ≤ T. (2.72)

If X is an Ft-measurable random variable, then we have

EQ[X] = EP[XZt]. (2.73)
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Theorem 2.2.1 (Girsanov, 1-dimension) Let {W P}0≤t≤T be a Wiener process on a

probability space (Ω,F ,P) with respect to a filtration {Ft}0≤t≤T , and Θt be an adapted

process. Define

Zt = e
(− ∫

t
0 ΘsdW P

s − 1
2 ∫

t
0 Θ2

sds), (2.74)

WQ
t =W P

t + ∫

t

0
Θsds, (2.75)

and assume that

EP [∫

T

0
Θ2
sZ

2
sds] <∞, (2.76)

then, EP[ZT ] = 1 and {WQ}0≤t≤T is a Wiener process under the probability measure Q

which is given in Eq. (2.70).

In the following part of this sub-section, we firstly consider an asset price model

under the physical measure P. Let {St}t≥0 be a asset price process on a probability

space (Ω,F ,P) with respect to a filtration {Ft}t≥0. It has the form of,

St = S0 exp{∫

t

0
σsdW

P
s + ∫

t

0
(αs −

1

2
σ2
s)ds} , (2.77)

where the mean rate of return {αt}t≥0 and volatility {σt}t≥0 are the adapted processes,

and {W P
t }t≥0 is the Wiener process under the measure P .

In addition, we have an interest rate process {Rt}t≥0 which is an adapted process.

Then, the discount process {Dt}t≥0 can be defined as

Dt = exp{−∫

t

0
Rsds} . (2.78)

Thus, the discounted asset price process is given by,

DtSt = S0 exp{∫

t

0
σsdW

P
s + ∫

t

0
(αs −Rs −

1

2
σ2
s)ds} (2.79)
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and the differential form of Eq. (2.79) is

d(DtSt) = (αt −Rt)DtStdt + σtDtStdW
P
t

= σtDtSt [
αt −Rt

σt
dt + dW P

t ] .
(2.80)

We let Θt be equal to

Θt =
αt −Rt

σt
. (2.81)

According to Theorem 2.2.1, we can define the Wiener process {WQ
t }t≥0 under the

probability measure Q, such that

W P
t =WQ

t − ∫

t

0
Θsds, (2.82)

where Θs is given in Eq. (2.81). Therefore, the discounted asset price under the measure

Q can be written as

DtSt = S0 + ∫

t

0
σsDsSsdW

Q
s , (2.83)

and ∫
t

0 σsDsSsdW
Q
s is a martingale under Q. The undiscounted asset price process

{St}t≥0 under the Q measure can be written as,

St = S0 exp{∫

t

0
σsdW

Q
s + ∫

t

0
(Rs −

1

2
σ2
s)ds} . (2.84)

Furthermore, the generalized pricing formula of a derivative under the measure Q

can be defined as,

Vt = EQ [e− ∫
T
t RsdsVT ∣Ft] , 0 ≤ t ≤ T, (2.85)

where {Vt}0≤t≤T is a payoff process which is Ft-adapted, and VT denotes the payoff of

a derivative at expiration time T .
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2.2.3 Implied Volatility

The payoff of a European call option at expiration date is given in Eq. (2.67). Substitut-

ing the payoff function into Eq. (2.85), we can obtain the call option pricing formula

with constant interest rate r, that is,

HC(St) = EQ [e−r(T−t) max (ST −K,0) ∣Ft] , 0 ≤ t ≤ T. (2.86)

The process {St}0≤t≤T under Q is shown in Eq. (2.84), but the volatility and interest

rate are assumed to be constants in the Black-Scholes model. Then the Black-Scholes

price formula (Shreve, 2008, p.220) of a European call option can be derived as

CBS(St,K, τ, σ) = StN(d1) −Ke
−rτN(d2), (2.87)

with

d1 =
log (St

K
) + (r + σ2

2 ) τ

σ
√
τ

and d2 = d1 − σ
√
τ ,

where τ = T − t, and

N(u) ≡ (2π)−1/2
∫

u

−∞
e−z

2/2dz.

If all other parameters are set to be constants, then Eq. (2.87) is a function of σ. Assume

the market price of a European call option is CM(K,T ), then the implied volatility

Σt(T,K) can be gained by solving the following equation,

CBS(St,K, τ,Σt(T,K)) = CM(K,T ). (2.88)

The function Σt ∶ (T,K)→ Σt(T,K) is known as the implied volatility surface at time

t. Some features for implied volatility surfaces in exponential-Lévy models are stated

below (Cont & Tankov, 2004, p.359):
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1. Skew/smile features: a negatively skewed jump distribution gives rise to a skew

in implied volatility and a strong variance of jumps causes smile pattern in the

implied volatility.

2. Short term skew: contrarily to diffusion models which produce little skew for

short maturities, the models with jumps in the price process lead to short term

skew.

3. Flattening of the skew/smile with maturity: for a Lévy process with finite variance,

the central limit theorem shows that when the maturity T is large, the distribution

of (ST − E[ST ])/
√
T becomes approximately Gaussian. In other words, the

implied volatility smile will become flat as T →∞.

2.2.4 VIX and S&P 500 variance futures

This subsection presents the construction of VIX index valuation and the valuation of

S&P 500 variance futures, based on the fair value of the contracts on S&P 500 realized

variance. It is well known that squared VIX can be formulated based on a strip of S&P

500 options. The cash-and-carry arbitrage relationship does not exist because VIX is

not tradable, however the call-put parity still holds (Rhoads, 2011). Assume the price

process of S&P 500, {St}t≥0, is a diffusion process under the risk-neutral measure Q,

dSt = (r − q)Stdt + σtStdW
Q
t , (2.89)

where r and q are the risk-free interest rate and stock dividend respectively, {σt}t≥0 is

an adapted stochastic process and {WQ
t }t≥0 is Wiener process. Applying Itô’s lemma to

Eq. (2.89), we gain the following equation,

d lnSt = (r − q −
1

2
σ2
t )dt + σtdW

Q
t . (2.90)
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If we let the forward price of S&P 500 at current time t = 0 be F0,T , then we have the

relationship between the forward price and the spot price as

F0,T = S0e
(r−q)T , (2.91)

where T is delivery date. The fair value of realized variance can be computed as

Kvar

1002
= EQ

0 [
1

T ∫
T

0
σ2
t dt] , (2.92)

where Kvar is the fair variance strike. Combining with Eq. (2.90), the following

equations can be obtained

Kvar

1002
= EQ

0 [
1

T ∫
T

0
σ2
t dt] = −

2

T
EQ

0 [ln(
ST
F0,T

)] . (2.93)

If the strikes of the S&P 500 options are assumed to be continuous, then the price

formulae for S&P 500 call and put options with strike K and maturity T are given by

Brennan (1979) as

C0,T (K) = e−rT ∫
∞

0
(ST −K)

+
q(ST )dST , (2.94)

P0,T (K) = e−rT ∫
∞

0
(K − ST )

+
q(ST )dST , (2.95)
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where C0,T (K) and P0,T (K) represent the call and put option prices at time 0, respect-

ively. By using the general pay-off function (Carr & Madan, 2001) 2, we obtain

EQ
0 [ln(

ST
F0,T

)] = − ln(
F0,T

K0

) + (
F0,T

K0

− 1)

− erT {∫

K0

0

P0,T

K2
dK + ∫

∞

K0

C0,T

K2
dK} .

(2.96)

Then, CBOE makes two approximations in Eq. (2.96). First, Taylor expansion is used

for approximating ln (
F0,T

K0
). Second, the integrals in this equation are converted to

sums of all existing S&P 500 options, excluding the options without bids. Finally, the

discrete version of VIX valuation formula is obtained as

(
V IX

100
)

2

≈ −
2

T
EQ

0 [ln(
ST
F0,T

)] =
2

T
∑
i

△Ki

K2
i

erT q(Ki) −
1

T
(
F0,T

K0

− 1)
2

, (2.97)

where q(Ki) is the mid-point of the bid-ask spread, and dK →△Ki =
(Ki+1−Ki−1)

2 .

According to the specification of the variance futures provided on CBOE website,

we know that variance futures is quoted based on volatility points and vega notional. At

the end of trading date, the realized variance of the current day is calculated by using

the daily S&P 500 closing value. Then, the price is required to change volatility points

to an adjusted futures price. Note that the closing price of the S&P 500 of that day

should be treated as the realized observation. The conversion formula from volatility

points to adjusted futures price, Ft, is given by,

Ft =DFt,T (k − k0) −ARMVM + 1000, (2.98)

2Let the forward stock price be F0,T = E0[ω(ST )] and EQ
0 [ω(ST )] = ∫

∞

0 ω(ST )q(ST )dST . The
general pay-off function is given by,

EQ
0 [ω(ST )] = ω(K0) + ω′(K0) (F0,T −K0)

+ erT {∫
F0,T

0
ω(K)′′P0,T (K)dK + ∫

∞

F0,T

ω(K)′′C0,T (K)dK} ,

where K0 is strike price and preferred value for K0 is set as F0,T .
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where DFt,T denotes the discount factor from current time t to maturity date T ;

ARMVM refers to accumulated return on modified variation margin; k0 is the ini-

tial variance strike, which is set at 3:15 pm (Chicago time) on business day. In addition,

k in Eq. (2.98) can be calculated as,

k =
252

Ne − 1
× (volatility strike2

×
(Ne − 1 − n)

252
+

n

∑
i=1

R2
i × 10000) ,

where Ne is the number of days from the time t to maturity date T ; n is the number of

returns to the current date; and Ri = ln(Si+1/Si) is the daily log return of the S&P 500.

Moreover, the conversion formula from vega notional to variance units is given by,

variance units =
vega notional

2 × volatility strike
×

Ne − 1

Ne − 1 − n
. (2.99)

From Eq. (2.98) and Eq. (2.99), the final settlement price of VA can be calculated as

FT = realized variance − k0 −ARMVM + 1000, (2.100)

where realized variance is formulated as

realized variance = (252 ×
Na−1

∑
i=1

R2
i

Ne − 1
) ,

where Na represents actual number of days between the contract listed date and settle-

ment date.

2.3 Numerical Methods

In this section, we introduce the numerical methods for evaluating the improper integrals,

solving the ordinary differential equations, estimating the unobserved state variables
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and estimating the values of parameters in the model.

2.3.1 Gauss-Laguerre Quadrature Method

The Gauss-Laguerre quadrature method (Burnett, 1937) is widely applied to approxim-

ate the value of a particular integral over [0,∞), which has the form of,

∫

∞

0
xme−xf(x)dx, (2.101)

where m > 0. According to Burnett (1937) and Concus, Cassatt, Jaehnig and Melby

(1963), the above integral can be estimated by

∫

∞

0
xme−xf(x)dx =

n

∑
i=1

Wif(ai) +En, (2.102)

where ai is the ith zero of the Laguerre polynomial Lmn (ai), Wi is the corresponding

weight, and En is the error term. Here, Lmn (ai) is given by,

Lmn (ai) =
n

∑
k=0

(
n +m

n − k
)
(−ai)k

k!
.

Then, the weight is represented as

Wi =
Γ(n +m + 1)ai

n! [(n + 1)Lmn+1(ai)]
2 , i = 1,2, ..., n,

and the error term is defined as

En =
n!Γ(n +m + 1)

(2n)!
f (2n)(ξ).
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2.3.2 4th-order Runge-Kutta Method

The Runge-Kutta method is a relatively efficient numerical method for solving ordinary

differential equation which is the form of,

dy

dx
= f(x, y), y(x0) = y0. (2.103)

In the Runge-Kutta method, Eq. (2.103) can be effectively solved by substituting the

following Taylor-series expansion (Hildebrand, 1987, p.285)

yn+1 = yn + h
dy

dx
+
h2

2

d2y

dx2
+
h3

6

d3y

dx3
+⋯, (2.104)

by an approximation of yn+1

yn+1 =yn + h [α0f(xn, yn) + α1f(xn + µ1h, yn + b1h)

+α2f(xn + µ2h, yn + b2h) +⋯ + αPf(xn + µph, yn + bph)] ,

(2.105)

where α’s, µ’s and b’s are deterministic. The advantage of this method is that the method

can be employed when the function, f(x, y), does not have a closed-form because it

does not need to evaluate the derivatives of f(x, y).

The classic Runge-Kutta method is also known as the 4th-order Runge-Kutta method

which can be possible to approximate a function value with fourth-order accuracy.

Consider a problem with initial condition which is specified in Eq. (2.103). Now

choose a step size h > 0, then we have (Hildebrand, 1987, p.290)

yn+1 = yn +
1

6
(k0 + 2k1 + 2k2 + k3) +O(h5),

xn+1 = xn + h,

(2.106)
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with

k0 = hf(xn, yn),

k1 = hf(xn +
1

2
h, yn +

1

2
k0),

k2 = hf(xn +
1

2
h, yn +

1

2
k1),

k3 = hf(xn + h, yn + k2).

(2.107)

This method also can be applied in a simultaneous system which has the form of,

dy

dx
= f(x, y, z), y(x0) = y0,

dz

dx
= g(x, y, z), z(x0) = z0.

(2.108)

Similarly, we can get following estimations,

yn+1 = yn +
1

6
(k0 + 2k1 + 2k2 + k3) +O(h5),

zn+1 = zn +
1

6
(m0 + 2m1 + 2m2 +m3) +O(h5),

(2.109)

with

k0 = hf(xn, yn, zn),

k1 = hf(xn +
1

2
h, yn +

1

2
k0, zn +

1

2
m0),

k2 = hf(xn +
1

2
h, yn +

1

2
k1, zn +

1

2
m1),

k3 = hf(xn + h, yn + k2, zn +m2),

(2.110)
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and

k0 = hg(xn, yn, zn),

k1 = hg(xn +
1

2
h, yn +

1

2
k0, zn +

1

2
m0),

k2 = hg(xn +
1

2
h, yn +

1

2
k1, zn +

1

2
m1),

k3 = hg(xn + h, yn + k2, zn +m2).

(2.111)

2.3.3 Unscented Kalman Filtering

The unscented kalman filter (UKF) is widely used for estimating a nonlinear system

based on the sigma-point sampling and weighting strategies (Grewal & Andrews, 2014).

The unscented transform is the core of UKF. An abstract general-form of nonlinear

system can be represented as

dXt = h(Xt, t)dt +Ltdβt,

dYt = f(Xt, t)dt + Vtdηt,

(2.112)

where Xt ∈ Rn represents the state process; Yt ∈ Rm is the measurement process and f

is the measurement function. The processes Xt and Yt are independent, and βt and ηt

are independent Brownian motions. The UKF is applied in the above problem in the

following two steps.

In the prediction step, we apply the linear forecast. Based on the information up to

time t − 1, we denote the predicted state mean by X̂t∣t−1 and predicted state covariance

by Σ̂X
t∣t−1

(for detailed discussions on linear forecasts, see Grewal and Andrews (2015)).

In the update step, we employ scaled unscented transformation. As in Särkkä (2007),

we generate 2n + 1 sigma points where n is the dimension of Xt. These sigma points
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are computed as follows:

S 0
t = X̂t∣t−1,

S i
t = X̂t∣t−1 + [Chol ((n + λ) Σ̂X

t∣t−1)]i
, i = 1, . . . , n

S i
t = X̂t∣t−1 − [Chol ((n + λ) Σ̂X

t∣t−1)]i−n
, i = n + 1, . . . ,2n

(2.113)

with the weights

W
(m)
0 =

λ

n + λ
, (2.114)

W
(Σ)
0 =

λ

n + λ
+ (1 − α2 + β) , (2.115)

W
(m)
i =W

(Σ)
i =

1

2 (n + λ)
, i = 1, . . . ,2n, (2.116)

where Chol(⋅) means the Cholesky factorization, [⋅]i denotes the ith column of the

matrix, and λ = α2 (n + β). For the normal distribution, the optimal value of β is 2. We

choose α to be 10−3.

Then, the predicted mean of the measurements (for the measurement function see,

Eq. (3.15)), variance of the measurements, and covariance of the latent variables and

measurements can be computed by using the sigma points (2.113) as

Ŷt∣t−1 =
2n

∑
i=0

W
(m)
i f(S i

t ;xt,Θ), (2.117)

Σ̂Y
t∣t−1 =

2n

∑
i=0

W
(Σ)
i (f(S i

t ;xt,Θ) − Ŷt∣t−1) (f(S
i
t ;xt,Θ) − Ŷt∣t−1)

⊺
+Σε

t, (2.118)

Σ̂X,Y
t∣t−1

=
2n

∑
i=0

W
(Σ)
i (S i

t − X̂t∣t−1) (f(S
i
t ;xt,Θ) − Ŷt∣t−1)

⊺
. (2.119)

Finally, we calculate the Kalman filter gain, the state mean, and state covaraince
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conditional on the measurements as

Kt = Σ̂X,Y
t∣t−1

(Σ̂Y
t∣t−1)

−1
, (2.120)

X̂t = X̂t∣t−1 +Kt (Yt − Ŷt∣t−1) , (2.121)

Σ̂X
t = Σ̂X

t∣t−1 −KtΣ̂
Y
t∣t−1K

⊺
t . (2.122)

2.3.4 Maximum Likelihood Estimation

Likelihood-based estimation methods (Rossi, 2018, p.234) are widely used for eval-

uating the estimators. Assume that a random sample Xi for i = 1, ..., n has a joint

probability density function f(⋅), such that

L(θ) = f(X1, ...,Xn; θ), (2.123)

and the log-likelihood function is defined as l(θ) = ln[L(θ)]. If this sample, Xi for

i = 1, ..., n, is i.i.d. random variables, then we have

L(θ) = Πn
i=1f(xi; θ) (2.124)

Definition 2.3.1 (The Law of Likelihood) Let Xi for i = 1, ..., n be a sample of i.i.d.

random variables with common pdf f(x ∶ θ) and parameter space Θ. For θ ∈ Θ, the

larger the value of L(θ) is, the more θ agrees with the observed data. Thus, the degree to

which the information in the sample supports a parameter value θ0 ∈ Θ, in comparison to

another value θ1 ∈ Θ, is equal to the ratio of their likelihoods Λ(θ0, θ1) = L(θ0)/L(θ1).

In particular, the information in the sample is in better agreement with θ1 than θ0 when

Λ < 1, and the information in the sample agrees better with θ0 than θ1 when Λ > 1.

The maximum likelihood estimation (MLE) method is one of the likelihood-based

estimation methods. It is used for finding the estimators of unknown parameters by
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maximizing the value of the likelihood function. The definition of maximum likelihood

principle is given below (Rossi, 2018, p.223).

Definition 2.3.2 (The Maximum Likelihood Principle) Given a random sample Xi

for i = 1, ..., n and a parametric model f(x1, ..., xn ∶ θ), choose as the estimator of θ,

say θ̂(X), the value of θ ∈ Θ that maximizes the likelihood function.

Definition 2.3.3 The MLE of θ, denoted by θ̂, is a solution to the maximization problem

maxθ∈ΘL(θ).
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Pricing VIX Derivatives with

Infinite-Activity Jumps

This chapter is joint work with J. Cao, X. Ruan and W. Zhang. Its earlier version was

presented at AUT Mathematical Sciences Symposium, November 2018, AUT, Auckland,

New Zealand; 2018 Derivative Markets Conference, August 2019, Queenstown, New

Zealand; and Quantitative Methods in Finance 2019 Conference, December 2019,

Sydney, Australia.

In this chapter, we derive the price formula for VIX options and futures based on the

two-factor model with infinite-activity jumps and investigate the model performance

in capturing the features of the dynamics for the VIX derivatives market data. This

chapter is organized as follows. In Section 3.1, we conduct a preliminary analysis on

the VIX and VIX derivatives data. In Section 3.2, we introduce our two-factor model

with infinite-activity jumps. In Section 3.3, we derive the pricing formulae for VIX

options and futures. In Section 3.4, we select market data to calibrate our two factor

model and others. In Section 3.5, we conduct various goodness-of-fit tests and compare

the performance of the models with different jump structures. Proofs and UKF method

performance test are given in Appendix A.

65
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3.1 Data

In this section, we conduct a preliminary analysis on VIX data by focusing on analyzing

the features of the dataset and whether the jumps occur in the VIX dynamics. We also

describe how we select the data of VIX option and VIX futures and present a summary

on data statistics.

3.1.1 A Preliminary Analysis on VIX Data

In this subsection, we analyze the VIX daily data, which span over 26 years, from 1992

to 2017, with a total of 6,550 days. We also compare the characteristics of the full

sample with the Wednesday sample which consists of all VIX close prices and their

logarithm on Wednesdays during the sample period. Table 3.1 presents the descriptive

statistics of the full sample and the Wednesday sample. From this table, we find the

statistics of the full sample are considerably close to the statistics of the Wednesday

sample. Particularly, the absolute differences of mean and standard deviation between

the two samples under Log VIX panel are 0.09% and 0.01%, respectively. If we have a

closer look at the Table 3.1, we can find that the kurtoses of VIX for the full sample and

Wednesday sample are around 10.50 which is much bigger than 3, so it clearly shows

that each of these two samples has positive excess kurtosis. However, the kurtosis of

log VIX for each of the two samples is very close to 3, so it is important to do further

investigation on the significance of excess kurtosis. Then, a normality test is applied

to the log VIX data (for the details about this test, see (Duncan, 1998)). The results

of this test on log VIX data are computed as 5.26 for the full sample and 2.15 for the

Wednesday sample, which are greater than 1.96. Therefore, each of the two samples

has positive excess kurtosis. Moreover, both of the samples have positive skewness.

Based on the above observation, we figure out that the distributions of the VIX index

and log VIX are asymmetry and leptokurtotic. There may have some jump parts in the
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VIX dynamics.

Table 3.1: Descriptive statistics of VIX 1992-2017

Mean Std. Skew. Kurt. Min. Med. Max.

VIX
Full Sample 19.2652 8.0508 2.1089 10.5107 9.1400 17.1950 80.8600
Wednesday 19.2441 8.0183 2.0973 10.5308 9.3100 17.2400 74.2600

Log VIX
Full Sample 2.8893 0.3569 0.6788 3.3176 2.2127 2.8446 4.3927
Wednesday 2.8884 0.3568 0.6645 3.2827 2.2311 2.8472 4.3076

This table presents the statistics summary of the VIX close values and logarithm of VIX close
values for the full sample and the Wednesday sample during the period between 1992 and
2017. It includes the information about mean, standard deviation (Std.), skewness (Skew.),
kurtosis (Kurt.), minimum value (Min.), median value (Med.) and maximum value (Max.) of
the samples.

Alternatively, we examine whether jumps present in the log VIX return process

by the statistical test proposed by Aït-Sahalia and Jacod (2009). Under a given test

statistics ŜT and time interval from 0 to T , if ŜT is less than a critical value c95%
n,T ,

then the null hypothesis of no jumps should be rejected at the 95% confidence level.

Theoretically, ŜT approaches to 1 as ∆n = T /n goes to 0, if jumps present in a process.

Following the suggestions from Aït-Sahalia and Jacod (2009), we compute c95%
n,T based

on the thresholds 5σ∆ω̄
n where ω̄ = 0.48 and σ is the average standard deviation.

We conduct jump test on both VIX and log VIX data. Based on the above setting,

the test statistics (ŜT ) and their corresponding critical values (c95%
n,T ) on the full sample

and the Wednesday sample are calculated and shown in Table 3.2. From Table 3.2, we

can see that the values of ŜT under the VIX and log VIX column are much smaller than

their corresponding critical values. Thus, we should reject the null hypothesis at the

95% confidence level for all the samples. So, we can conclude that there are jumps in

the process of the daily level and daily log return as well as in the Wednesday sample.

According to the studies of Todorov and Tauchen (2011a) and Aït-Sahalia and Jacod

(2011), infinite-activity jump test is required to be applied to high-frequency data set
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Table 3.2: Test statistics and critical values for the jump test

VIX Log VIX

Test statistics Critical Value Test statistics Critical Value
(ŜT ) (c95%

n,T ) (ŜT ) (c95%
n,T )

Full Sample 0.4771 1.8982 0.4270 1.8752
Wednesday 0.2940 1.7560 0.3607 1.7881

This table presents the test statistics and critical values which are calculated based on the jump
test method of (Aït-Sahalia & Jacod, 2009) for the full sample and Wednesday sample.

(e.g. 5 seconds or 1 minute time frequencies) for the satisfied results. Therefore, it is

difficult to detect whether infinite-activity jumps occur in the process, as we do not

access the high-frequency VIX data. The purpose of this paper is to propose a new

model which can improve the pricing performance of VIX derivatives compared with

the existing models. Detecting whether jumps are finite- or infinite-activity in the VIX

dynamics is not our focus. At this stage, we expect that infinite-activity jumps can

improve the pricing performance of VIX derivatives.

3.1.2 Sample Construction and Sample Summary of VIX Derivat-

ives Data

Our sample consists of VIX options and VIX futures data within the period between

July 2006 and April 2016, with a total of 509 weeks. The data are collected from

OptionMetrics and Bloomberg. The futures data set contains spot prices, the time-to-

maturity, and the trading volume. The option data set contains strike prices, bid and ask

prices, time-to-maturity, interest rates, market vega, implied volatility, and VIX index

levels.

The massive data set causes a significant increase in the computational cost, thus

we apply a series of filters on our data set to reduce the data size. In line with Yang

and Kanniainen (2017) and Du and Luo (2019), we only use each Wednesday’s data.
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We filter out all anomalous data, which are the entries that do not contain either price

value or implied volatility value, or contain other irrational values. We focus on the VIX

options and futures with time-to-expiration being greater than two weeks. To address

the illiquidity issues, we delete the futures whose trading volumes are less than 50 and

the options whose trading volumes are less than 120. We choose the out-of-money

(OTM) options because the OTM options tend to be more liquid. Also, we only use the

VIX futures whose maturities are the same as those of options, so the total number of

futures contracts in our full sample is 2,562. We take the average price of the best bid

and best offer prices of each option as our option price. We select the options whose

average prices are greater than or equal to 0.1 and the bid-ask spread less than or equal

to 0.3. So it leaves us a total of 12,921 call options and a total of 5,249 put options.

We separate the full sample into two sub-samples. The first sub-sample is termed

as in-sample and its period is from July 2006 to January 2013 (a total of 342 weeks)

and the second sub-sample is termed as out-of-sample and its period is from February

2013 to April 2016 (a total of 167 weeks). Table 3.3 describes the statistics summary

for VIX options and futures according to this split. Overall, the total numbers of

futures and option contracts in the in-sample are greater than those in the out-of-sample,

respectively.

In Table 3.3, the futures panel summarizes the number of futures contracts and

average futures prices in the different maturity groups. The number of futures contracts

increases as the time to maturity increases for both in-sample and out-of-sample. The

in-sample average future prices are over 3 under all categories, while the out-of-sample

average future prices are less than 3.

The options panel reports the number of option contracts, average option prices,

average Black-Scholes implied volatility, and average Black-Scholes vega by time to

maturity and moneyness. In terms of the moneyness, the average option prices vary

from 0.95 to 2.78 for the in-sample data and from 0.71 to 2.14 for the out-of-sample
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data. We find that the average implied volatility increases as the value of moneyness

rises and decreases as the τ increases. We also observe that the average price and

average vega of call options are less than those of put options, but the average implied

volatility of call options is higher than that of put options in both samples.

3.2 A Two-factor Model with Infinite-activity Jumps

In this section, we introduce our two-factor model with infinite-activity jumps and

derive the characteristic function from the proposed model.

3.2.1 Model Specifications

Psychoyios and Dotsis (2010) compare modelling VIX in the original index level and

the logarithm of the original level by using mean reverting process. Their empirical

results conclude that the modelling of VIX with logarithm can improve the goodness-of-

fit from modelling of the original level. Later on, Mencía and Sentana (2013) conduct

the same comparison but on a different time period and show that the VIX model in the

logarithm outperforms that in the original level. Based on these researches, we directly

model VIX dynamics in the logarithm.

Furthermore, Mencía and Sentana (2013) also find that the dynamics of the VIX

exhibit highly persistent variations from the long-term mean. Thus, the VIX reverts

stochastically towards the long-term mean, which means that an additional process of

the long-term mean can help improve the performance of the model. Moreover, the

instantaneous volatility has been widely studied in the option pricing models (Stein

& Stein, 1991; Heston, 1993; Duffie, Pan & Singleton, 2000; Park, 2016, etc.). For

example, Heston (1993) uses the CIR process to model instantaneous volatility.

In this paper, we model the VIX with stochastic volatility and time-varying mean in

terms of log price, and allow the model to have the central tendency property. Following
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Table 3.3: Summary statistics for VIX derivatives by time to maturity

In-Sample Out-of-Sample

τ ≤ 30 30 < τ ≤ 90 τ > 90 All τ ≤ 30 30 < τ ≤ 90 τ > 90 All

Futures
No. 235 604 804 1643 113 308 498 919
Average prices 3.0999 3.1688 3.2278 3.1878 2.7783 2.8350 2.9017 2.8642

Options
The number of options

All 2236 5395 2316 9947 1411 4188 2624 8223
All calls 1576 3687 1570 6833 1070 3130 1888 6088
All puts 660 1708 746 3114 341 1058 736 2135
K/F ≤ 0.9 319 1066 479 1864 129 559 442 1130
0.9 < K/F ≤ 0.98 278 501 206 985 172 409 223 804
0.98 < K/F ≤ 1.02 125 260 132 517 75 176 158 409
1.02 < K/F ≤ 1.1 257 536 241 1034 165 385 215 765
K/F > 1.1 1257 3032 1258 5547 870 2659 1586 5115

Average prices
All 0.9396 1.3830 1.8957 1.4027 0.6616 1.0229 1.3721 1.0724
All calls 0.9033 1.3708 1.9128 1.3875 0.6425 1.0295 1.4015 1.0586
All puts 1.0263 1.4093 1.8598 1.4360 0.7214 1.0566 1.3715 1.1116
K/F ≤ 0.9 0.6531 0.9155 1.2129 0.9470 0.4339 0.6340 0.8771 0.7063
0.9 < K/F ≤ 0.98 1.2836 2.0662 2.8022 1.9992 0.8217 1.4086 1.9899 1.4443
0.98 < K/F ≤ 1.02 1.8282 2.7871 3.6839 2.7842 1.3507 2.0726 2.5921 2.1409
1.02 < K/F ≤ 1.1 1.6226 2.4568 3.2426 2.4326 1.0917 1.7964 2.4263 1.8214
K/F > 1.1 0.7082 1.1242 1.5616 1.1292 0.5228 0.8639 1.1588 0.8973

Average implied volatility
All 1.0798 0.8760 0.7010 0.8810 1.1246 0.9209 0.7199 0.8917
All calls 1.1664 0.9437 0.7453 0.9495 1.2166 0.9844 0.7604 0.9668
All puts 0.8729 0.7298 0.6078 0.7309 0.8357 0.6956 0.5788 0.6777
K/F ≤ 0.9 0.8815 0.7115 0.5898 0.7093 0.8527 0.6654 0.5516 0.6423
0.9 < K/F ≤ 0.98 0.8529 0.7560 0.6344 0.7579 0.8130 0.7188 0.6145 0.7100
0.98 < K/F ≤ 1.02 0.9191 0.7780 0.6539 0.7805 0.9104 0.7864 0.6428 0.7537
1.02 < K/F ≤ 1.1 0.9798 0.8128 0.6641 0.8196 0.9592 0.8153 0.6781 0.8078
K/F > 1.1 1.2166 0.9732 0.7662 0.9814 1.2763 1.0299 0.7950 0.9990

Average vega
All 1.7087 2.9579 4.6707 3.0759 1.1898 2.1327 3.4157 2.3803
All calls 1.6526 2.9443 4.7510 3.0615 1.1571 2.1691 3.5487 2.3513
All puts 1.8428 2.9872 4.5017 3.1075 1.2927 2.2125 3.3654 2.4630
K/F ≤ 0.9 1.6533 2.6483 3.9989 2.8251 1.1249 1.9320 3.0040 2.2592
0.9 < K/F ≤ 0.98 2.0211 3.4831 5.2754 3.4453 1.3835 2.4761 3.8678 2.6284
0.98 < K/F ≤ 1.02 2.0803 3.7292 5.7809 3.8544 1.5279 2.7150 4.1311 3.0444
1.02 < K/F ≤ 1.1 2.1736 3.7854 5.7947 3.8531 1.4863 2.6844 4.1805 2.8464
K/F > 1.1 1.5217 2.7675 4.4956 2.8771 1.0758 2.0036 3.2919 2.2453

The futures prices are obtained from Bloomberg. The option prices, implied volatility, and vega are obtained from Op-
tionMetrics. Wednesday futures and options are used. In this table, time to maturity is denoted as τ and the moneyness is
defined as the ratio of strike price (K) to the future price (F ). Under the options panel, “All" refers to all options including
both call and put options.
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Mencía and Sentana (2013), we assume that stochastic mean process {mt}t≥0 is mean-

reverting. However, we assume that the dynamics of volatility process {vt}t≥0 follows

the CIR process, which is one of differences from the best model in Mencía and Sentana

(2013) (for more details about this model, refer to Eq. (3.12)). Let xt denote the

logarithm of VIX at time t in a fixed filtered probability space (Ω,F ,{Ft}t≥0,Q). In

order to investigate the influence of infinite-activity Lévy jumps on the price change of

VIX derivatives, we allow infinite-activity jumps in the log VIX process and correlation

between log VIX and volatility process. These are another two differences from the

Mencía and Sentana (2013) model. We specify the dynamics of the log VIX under the

risk-neutral measure Q as follows:

dxt = κ(mt − xt)dt + ρ
√
vtdW

v
t +

√
(1 − ρ2)vtdW

x
t + dJt,

dmt = κm(θm −mt)dt + σmdW
m
t ,

dvt = κv(θv − vt)dt + σv
√
vtdW

v
t ,

(3.1)

where W x
t , Wm

t and W v
t are independent and Ft-adapted Wiener processes; ρ is the

correlation coefficient of the process {xt}t≥0 and {vt}t≥0; κ, κm and κv are constants;

θm and θv are the long-term means for {mt}t≥0 and {vt}t≥0 respectively; σm and σv are

the volatility of the process {mt}t≥0 and {vt}t≥0, respectively, and {Jt}t≥0 denotes the

infinity-activity jump process which has been described in Section 2.1.7. The jump

compensator, θJdt, allows the jump part to be a martingale (Madan & Milne, 1991),

where EQ[J1] = θJ . In this chapter, the jump process in Eq. (3.1) is chosen to be

either the VG process or the NIG process. The model with the VG process is referred

to as OU-VG, and the model with NIG process is referred to as OU-NIG. For the

simplicity, we introduce a new set of parameters for the jump processes, see Table 3.4.

Additionally, in this model, the correlation coefficient, ρ, can control the leverage effect

(Duffie et al., 2000; Kiesel & Rahe, 2017; Du & Luo, 2019). The constants κ, κm and
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κv accommodate the speed of reverting to their long-term means, respectively.

Table 3.4: VG and NIG processes

Process VG Process NIG Process

Lévy measure ν(y) = λ
∣y∣e

αy−
√
α2+2β2 ∣y∣
β2 ν(y) = λα

π∣y∣e
βyK1(α∣y∣)

α = θJδJ α =
√

1/δJσ2
J + θ

2
J/σ

4
J

β =
√
σ2
JδJ β = θJ/σ2

J

λ = 1/δJ λ = σJ

ΨJ(u) −λ ln (1 − iαu + 1
2β

2u2) λ [
√
α2 − β2 −

√
α2 − (β + iu)2]

EQ[J1] αλ βλ2

In this table, the characteristic exponent of a Lévy process is denoted by ΨJ(u). The
general form of the normal tempered stable process is shown in the Eq. (2.62).

There are two main economic reasons why we select the NIG and VG processes.

Firstly, both of them are the subordinate Brownian motion with exponential tails

which tally with the features of VIX data. According to (2.62), each unit of calendar

time may be viewed as having an economically relevant time length given by an

independent random variable that has a gamma or inverse Gaussian density with unit

mean and positive variance. Under the VG or NIG process, the unit period continuously

compounded return is normally distributed, conditional on the realization of a random

time which has a gamma or inverse Gaussian density. The parameters in the VG or

NIG process could separately control tail probabilities of the return distribution: tail

heaviness of steepness (i.e., kurtosis) and symmetry (i.e., skewness). Secondly, the

VG process has a finite variation with a moderately low activity rate of small jumps,

whereas the NIG process has an infinite variation with a stable arrival rate of small

jumps (Cont & Tankov, 2004). For the VG process, the sum of the absolute log price

changes is finite (i.e., a finite variation). So it can be written as two gamma processes,

accounting for the price increases and the price decreases, respectively. For the NIG
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process, it has a infinite variation, which well captures log prices if trading is continuous

and frictionless, according to Harrison, Pitbladdo and Schaefer (1984).1

3.2.2 Characteristic Function

A tractable pricing formula for a VIX derivative can be derived from the characteristic

function of the log VIX by using the inverse Fourier transform (for more details, see

Heston, 1993; Carr & Madan, 1999). Our characteristic function can be obtained by

solving a system of ordinary differential equations which is derived from the two-factor

model (3.1) and the results are summarized in following proposition.

Proposition 3.2.1 Under (3.1), we assume that the characteristic function of {xt}t≥0

has an exponential-affine form. Then it can be given by

f(t, T, xt,mt, vt;u) = EQ[eiuxT ∣Ft] = e
ψ0(τ)+ψx(τ)xt+ψm(τ)mt+ψv(τ)vt , (3.2)

where τ = T − t, ψ0(τ) and ψv(τ) satisfy the following system of ordinary differential

equations

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ψ′0(τ) = κmθmψm(τ) + κvθvψv(τ) +
1
2σ

2
mψ

2
m(τ) − θJψx(τ) +ΨJ(−iψx(τ)),

ψ′v(τ) = −κvψv(τ) + ρσvψx(τ)ψv(τ) +
1
2ψ

2
x(τ) +

1
2σ

2
vψ

2
v(τ),

(3.3)

where ψ0(0) = 0, ψv(0) = 0, a and ΨJ(x) are specified in Table 3.4; and ψx(τ) and

ψm(τ) have the closed-form expressions

ψx(τ) = iue
−κτ ,

ψm(τ) =
iuκ

κm − κ
(e−κτ − e−κmτ) .

1This is because log prices with bounded variation admit arbitrage opportunities.



Chapter 3. Pricing VIX Derivatives with Infinite-Activity Jumps 75

Proof. See Appendix A.1.

Generally, the system (3.3) in Proposition 3.2.1 cannot be solved analytically, but

it can be solved by applying the 4th-order Runge–Kutta method (for the 4th-order

Runge–Kutta method, see Section 2.3.2, and for the application in financial research,

see Kiesel and Rahe (2017)).

3.3 VIX Derivative Pricing

In this section, we derive the formulae for VIX options and VIX futures by using the

characteristic function of the log VIX in Section 3.2.2, and the risk-neutral pricing

approach is applied.

3.3.1 Futures Valuation

The price of a VIX futures contract is the expectation of the VIX value at a specified

trading time in the future (CBOE, 2019). Let F (t;Tj,Θ) be the price of jth futures

contract at the current time t and the expiry time Tj under Q, where j = 1,2,3, . . . ,NF .

By definition, we have

F (t;Tj,Θ) = EQ[VIXTj ∣Ft], (3.4)

where VIXTj is the VIX value at time Tj and VIXTj = e
xTj . According to Proposition

3.2.1, we know that f(t, Tj, xt,mt, vt;u) is the expectation of exTj , conditional on the

current information when the value of u is set as −i. So, we can get the valuation

formula for a futures contract in terms of the characteristic function, that is,

F (t;Ti,Θ) = f(t, Tj, xt,mt, vt;−i). (3.5)
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3.3.2 Options Valuation

VIX options are European-style. We assume that the value of the VIX at maturity time

Tj is VIXTj with the strike price Kj . The price of the jth call option is denoted by

C(t;Tj,Kj,Θ), where j = 1,2,3, . . . ,NC . Similarly, the price of the jth put option

is denoted by P (t;Tj,Kj,Θ), where j = 1,2,3, . . . ,NP . We value options under the

discounted cash flow with the risk-free interest rate, rt, at t.2 Then we have

C(t;Tj,Kj,Θ) = e−rt(Tj−t)EQ[(VIXTj −Kj)1VIXTj
>Kj ∣Ft]

= e−rt(Tj−t) [EQ[VIXTj1VIXTj
>Kj ∣Ft] −EQ[Kj1VIXTj

>Kj ∣Ft]] ,

(3.6)

and

P (t;Tj,Kj,Θ) = e−rt(Tj−t)EQ[(Kj −VIXTj)1Kj>VIXTj
∣Ft]

= e−rt(Tj−t) [EQ[Kj1Kj>VIXTj
∣Ft] −EQ[VIXTj1Kj>VIXTj

∣Ft]] .

(3.7)

In order to reduce the complexity of calculation, following Garman and Kohlhagen

(1983), we introduce the new measure Q1 with VIXt as numeraire for the first term in

Eq. (3.6) and the second term in Eq. (3.7). Based on Girsanov’s theorem, we can get

the Radon-Nikodym derivative dQ1/dQ,

dQ1

dQ
=

VIXTj

e−rt(Tj−t)VIXTj

=
exTj

EQ[exTj ∣Ft]
, (3.8)

where the expectation of dQ1/dQ under Q always equals to 1. According to the

2The interest rate at time t is denoted as rt because we use the daily interest rate. We assume that the
interest rate is not a constant over the whole period and varies daily.
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definition of the characteristic function, we have

f1(t, T, xt,mt, vt;u) = EQ1[eiuxTj ∣Ft]

= ∫

∞

∞
eiuxTj dQ1

= ∫

∞

∞
eiuxTj

dQ1

dQ
dQ

= EQ[eiuxTj
dQ1

dQ
∣Ft].

Then we plug Eq. (3.8) into above equation and get the new characteristic function,

f1(t, Tj, xt,mt, vt;u), under the new measure Q1 is

f1(t, Tj, xt,mt, vt;u) =
f(t, Tj, xt,mt, vt;u − i)

f(t, Tj, xt,mt, vt;−i)
. (3.9)

In line with Bakshi and Madan (1999), the price formulae of a call option and a put

option, which can be derived in a standard process, are expressed as

C(t;Tj,Kj,Θ) = e−rt(Tj−t) [f(t, Tj, xt,mt, vt;−i)Φ1(t;Tj,Kj,Θ) −KΦ2(t;Tj,Kj,Θ)] ,

P (t;Tj,Kj,Θ) = e−rt(Tj−t)[K(1 −Φ2(t;Tj,Kj,Θ))

− f(t, Tj, xt,mt, vt;−i)(1 −Φ1(t;Tj,Kj,Θ))],

(3.10)

where Φ1(t;Tj,Kj,Θ) = EQ1[1VIXTj>Kj ∣Ft] and Φ2(t;Tj,Kj,Θ) = EQ[1textV IXTj
>

Kj ∣Ft], which are given by

Φ1(t;Tj,Kj,Θ) =
1

2
+

1

π ∫
∞

0
Re [

e−iu lnKjf1(vt, µt,wt, t, Tj;u)

iφ
]du,

Φ2(t;Tj,Kj,Θ) =
1

2
+

1

π ∫
∞

0
Re [

e−iu lnKjf(vt, µt,wt, t, Tj;u)

iφ
]du.

(3.11)

In the next section, we use the Gauss-Laguerre quadrature method with an order of 10
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to calculate numerically the integrals in Eq. (3.11).

3.4 Model Calibration

In this section, we outline the estimation procedure for our two-factor models and the

best two-factor model (OU-VJ) of Mencía and Sentana (2013), by using the joint data

set of VIX and VIX derivatives. Mencía and Sentana (2013) employ the log-normal

OU process to model the VIX under the risk-neutral measure. They consider stochastic

volatility and central tendency in their best model. Also, they specify the jump process

in the volatility process, that is,

dxt = κ(mt − xt)dt +
√
vtdW

x
t ,

dmt = κm(θm −mt)dt + σmdW
m
t ,

dvt = λJvtdt + dJt,

(3.12)

where {Jt}t≥0 is a compound Poisson process (CP) with jump intensity λJ , and the

jump size follows an exponential distribution with mean δJ . There is no correlation

between the jump process and the Wiener processes.

3.4.1 Estimation Procedure

Pan (2002) and Eraker (2004) suggest that a joint model estimation approach can be used

in estimating more complicated models and this approach can generate more accurate

estimation results than a simple estimation method. Kandepu, Foss and Imsland (2008)

notice that the optimal filter can help to significantly reduce the computational cost and

improve the performance for the large data set. Based on their suggestions, we estimate

our models by applying the UKF on our latent state variables and combining it with the

MLE.



Chapter 3. Pricing VIX Derivatives with Infinite-Activity Jumps 79

Kalman filters are a group of filters (e.g. basic Kalman filter, extended Kalman filter,

unscented Kalman filter, and Kalman-Bucy filter) for estimating every instantaneous

state of a process (Grewal & Andrews, 2015). The UKF is one of the most popular

estimation techniques for the processes with continuous-time state space and can deal

with non-linear stochastic systems (e.g. Julier & Uhlmann, 1997; Wan & Merwe,

2000; Särkkä, 2007; Kiesel & Rahe, 2017, etc.). The core of the UKF is the unscented

transformation (known as deterministic sampling method) which is proposed by (Julier

& Uhlmann, 1997). The UKF has two steps, prediction step and updating step. The

two steps link the latent state space and the observation status. Also, we can apply

different transformations in each step because the two steps are independent. Based on

the characteristics of our models, we use linear transformation in the prediction step

and unscented transformation in the updating step. We give the details of applying the

UKF in Section 2.3.3 and how it performs for our two-factor model in Appendix A.2.

In order to apply the UKF for estimating the values of latent variables in the

calibration process, we have to specify the observation equation (measurement function,

see Eq. (3.15)) and the state equations which describe the dynamics of latent variables

under the physical condition (Wehn, Hoppe & Gregoriou, 2013). Therefore, we think

it is necessary to re-state our state processes in the physical measure, rather than the

risk-neutral measure. In our estimation procedure, we treat the processes {mt}t≥0 and

{vt}t≥0 as latent processes. We denote them in the vector form Xt = [mt, vt]
⊺. All the

parameters in the models are stacked in Θ. Firstly, we discretize the latent processes

by the Euler discretization method under the physical measure. To do so, we introduce

new parameters for risk premiums which are related to the Wiener processes and jump
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process. Then, the discrete version for our models can be written as

Xt =

⎛
⎜
⎜
⎝

κmθm∆t

κvθv∆t

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

1 + (ηm − κm)∆t 0

0 1 + (ηv − κv)∆t

⎞
⎟
⎟
⎠

Xt−1

+

⎛
⎜
⎜
⎝

σm
√

∆t 0

0 σv
√
vt−1∆t

⎞
⎟
⎟
⎠

et,

(3.13)

where et = [emt , e
v
t ]
⊺, {emt }t≥0 and {emt }t≥0 follow different standard normal distribu-

tions, ηm and ηv are the risk premia of the volatility and log-term mean processes,

respectively.

Similarly, the discretized version for OU-VJ model can be written as

Xt =

⎛
⎜
⎜
⎝

κmθm∆t

ηλλJ(δJ + ηδ)∆t

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

1 + (ηm − κm)∆t 0

0 1 − ηλλJ∆t

⎞
⎟
⎟
⎠

Xt−1

+

⎛
⎜
⎜
⎝

σm
√

∆t 0

0 2(δJ + ηδ)
√

2ηλλJ∆t

⎞
⎟
⎟
⎠

et,

(3.14)

where et and ηv have the same specification as those in Eq. (3.13), and ηδ and ηλ are

the risk premia related to the jump size and jump jump intensity, respectively.

Secondly, the measurement errors between our estimated prices and market prices

are considered in the procedure. For this purpose, we let the measurement function be

Yt = f(Xt;xt,Θ) + εt, (3.15)

where the vector Yt represents the log market prices of futures and market prices of op-

tions, the vector f denotes the proposed VIX derivatives’ pricing formulae including the

futures pricing formula (lnF (t;Ti,Θ)) and the option pricing formulae (C(t;Ti,Ki,Θ)

and P (t;Ti,Ki,Θ)), and εt is the term for measurement error. Following Yang and
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Kanniainen (2017), we adjust the measurement errors for options with their market

vegas (V(t;Ti,Ki)). If there are a total of kt derivatives’ contracts at time t, then εt is

a kt-dimensional random vector, which follows an independently multivariate normal

distribution (N (0,Σε
t)), where Σε

t is the covariance matrix,

Σε
t =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
ε 0 0 . . . 0

0 σ2
ε 0 . . . 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 . . . σ2
ε

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.16)

with σε = σF for futures and σε = V(t;Ti,Ki)σO for options. We assume that σF and

σO are constants for all futures and options, respectively.

Finally, in line with Christoffersen, Dorion, Jacobs and Karoui (2014) and Du and

Luo (2019), we construct the daily log-likelihood function of VIX derivatives at time t

as

lt(Θ) = −
1

2
[kt ln 2π + ln ∣ΣY

t ∣ + ε⊺t (Σ
Y
t )−1εt] , (3.17)

where ΣY
t is the variance matrix of Yt at time t. The likelihood function for our whole

sample period can be computed as

l(Θ) =
T

∑
t=1

lt(Θ), (3.18)

where T is the total number of weeks. Our parameters are estimated by minimizing

negative log-likelihood (−l(Θ)). This is equivalent to the maximum log-likelihood

estimation (MLE). In optimization, we employ a quasi-Newton algorithm and the

Hessian matrix updated by Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (see

Broyden, 1956; Fletcher, 1987; Lewis & Overton, 2013).
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3.4.2 Parameter Estimation Results

Table 3.5 presents the estimated results for the OU-VJ model and our two models with

infinite jumps, that is, the OU-VG and OU-NIG models. We notice that the standard

errors for all parameters are relatively small, except for the parameters ηm and ηv. This

indicates that the majority of parameters in the models are accurately estimated. Please

note that ηm and ηv are not our key parameters, so it does not matter whether they

have slightly high standard errors. In the following, we will analyze and compare our

estimates.

Table 3.5: Model parameter estimates

OU-VJ OU-VG OU-NIG OU-VJ OU-VG OU-NIG

ρ 0.5584 0.6350 λJ 3.4332
(0.0216) (0.0177) (0.2420)

κ 7.6175 7.5579 7.8276 δJ 0.2684
(0.0373) (0.0797) (0.0737) (0.0000)

κm 0.9108 0.7194 0.7314 ηδ -0.0010
(0.0049) (0.0252) (0.0242) (0.0000)

κv 1.2510 1.1977 ηλ 1.1347
(0.1010) (0.0612) (0.0800)

θm 2.9495 3.2421 3.2729 α 0.3875 2.3837
(0.0004) (0.0090) (0.0087) (0.0554) (0.0208)

θv 2.0366 2.2883 β 0.3681 0.8479
(0.1269) (0.1449) (0.0623) (0.0262)

σm 0.3412 0.4355 0.3940 λ 0.9717 0.8689
(0.0005) (0.0188) (0.0122) (0.1168) (0.0125)

σv 2.7902 3.0377
(0.0720) (0.0609)

ηm -0.0065 -0.0815 -0.0560 σO 0.0847 0.0653 0.0652
(0.0001) (0.0472) (0.0300) (0.0000) (0.0005) (0.0005)

ηv -2.1331 -2.1267 σF 0.0327 0.0284 0.0285
(0.4263) (0.7345) (0.0006) (0.0006) (0.0006)

The model parameters are estimated through the procedure as described in Section 3.4.1 by using the
in-sample data from July 2006 to January 2013 (total 342 weeks). The standard errors of the estimators
are presented in parentheses.

The parameters κ and κm measure the reverting speed towards their means. Intu-

itively, the smaller value of the reverting speed parameter suggests that the process is

more persistent. The value of κ varies between 7.56 and 7.83 across the three models,

which does not exhibit a significant difference among them. However, the value of
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κm in the OU-VJ model is relatively higher than the values of our two infinite-activity

jump models. This fact implies that the long-term mean process in the OU-VJ model is

less persistent and has faster reverting speed than those processes in the OU-VG and

OU-NIG models. Moreover, the parameter σm, denoting the volatility of the long-term

mean process, is estimated at 0.34, 0.44, and 0.39 for the OU-VJ, OU-VG and OU-NIG,

respectively. This indicates that the long-term mean process in the infinite-activity

models is more volatile than that in the OU-VJ model. In addition, the risk premium

(ηm) related to the long-term process has a negative value in all models. This means that

the long-term mean reverts to the long-term level under the physical measure, which is

lower than that under the risk-neutral measure.

Our estimates of variance risk premium (ηv) in our two infinite-activity jump models

are negative values, which is consistent with the previous literature (Park, 2015). The

estimated value of ηv for the OU-VG model is −2.13 which is very close to the ηv value

(−2.13) of the OU-NIG model. This result supports the economic interpretation that

the volatility of volatility has a negative market price. The correlation coefficient ρ is

estimated to be greater than 0.5 for both models. The positive ρ value implies that there

is a positive interaction between the logarithmic VIX process and its variance process.

The larger ρ is, the stronger interaction is. In our estimated results, the value of ρ in

the OU-NIG model is greater than that in the OU-VG model. Thus, different jump

structures can affect the degree of the interaction between the two processes.

3.5 Model Performance Analysis

In this section, we investigate what kind of model specification (e.g., jump structure and

jump type) have the best pricing performance in pricing VIX derivatives and how the

different jump structures affect both in-sample and out-of-sample model performance.

To answer these questions, we compare the performance of the models, based on
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comparison criteria such as root mean squared errors and log-likelihood values.

3.5.1 Criteria of Performance

We use the root mean square error (RMSE) as our primary model comparison criterion.

A smaller value of the RMSE indicates the model fits the data better on average. Firstly,

we define the squared pricing error (SE) of a futures contract at time t as

SEF (t, i; Θ) = (ln F̂ (t;Ti,Θ) − lnF (t;Ti))
2
, (3.19)

where F̂ (t;Ti,Θ) is the estimated futures price by the model and F (t, Ti) is the market

price of futures. Then the RMSE for the futures is calculated as

RMSEF (Θ) =

¿
Á
Á
ÁÀ 1

NF

NT

∑
t=1

NF
t

∑
i=1

SEF (t, i; Θ), (3.20)

where NT is the total sample period, NF
t is the total number of future contracts at time

t, and NF = ∑
NT
t=1 N

F
t .

Following Kanniainen, Lin and Yang (2014), we scale the squared errors of call and

put options by the market vegas. The SE of an option contract at time t is defined as

SEO(t, i; Θ) = (
Ô(t;Ti,Ki,Θ) −O(t;Ti,Ki)

V(t;Ti,Ki)
)

2

, (3.21)

where Ô(t;Ti,Ki,Θ) is the estimated price of the ith option contract at time t by the

model, O(t;Ti,Ki) is the market price of this option, and V(t;Ti,Ki) is its correspond-

ing market vega. The RMSE for call and put options are calculated as

RMSEO(Θ) =

¿
Á
Á
ÁÀ 1

NO

NT

∑
t=1

NO
t

∑
i=1

SEO(t, i; Θ), (3.22)
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where NT is the same as that in Eq. (3.20), NO
t is the total number of options at time t,

and NO = ∑
NT
t=1 N

O
t .

To compare the pairwise models, we apply the comparison procedure in Kaeck,

Rodrigues and Seeger (2018) and Hansen, Lunde and Nason (2011). We define the

performance criteria between Model i and Model j at time t as di,jt = lit(Θ) − ljt (Θ)

where lit is the negative log-likelihood function of Model i. The log-likelihood function

is defined in Eq (3.17). We let ui,j be the expectation of di,jt , which is

ui,j = E[di,jt ] =
∑
T
t=1 d

i,j
t

T
, (3.23)

where T is total number of weeks in the sample. Note that ui,j measures the performance

loss of Model i compared with Model j. The negative value of uij indicates an average

performance loss of Model i against Model j. Conversely, the positive value implies an

average performance gain of Model i against Model j.

3.5.2 Model Performance Comparison

In this section, we compare the overall performance of the OU-VG, OU-NIG and OU-

VJ models in terms of log-likelihood values. Table 3.6 reports the model performance

ranking based on this criterion. Panel A in this table presents the total log-likelihood

values of each model, and Panel B provides the pairwise model comparison based on

the average daily log-likelihood value. According to Panel A, we can explicitly see

that the performance of our two-factor models (OU-VG and OU-NIG) is significantly

better than that of the OU-VJ model because both the in-sample and out-of-sample

log-likelihoods of our models are three times more than that of the OU-VJ model.

Among these three models, the OU-NIG model has the highest log-likelihood values

(5,391.84 for in-sample and 5,120.83 for out-of-sample); thus this model is superior to

the others in pricing VIX derivatives.
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In the pairwise model comparison, we focus on analyzing the model performance

loss (ui,j) which can provide more information about the comparison of model per-

formance. In Panel B, we find that there are negative entries ui,j in the upper triangular

parts of pairwise performance measure matrices, which leads to the same conclusion as

that from Panel A. In contrast to the OU-VG and OU-NIG models, the OU-VJ model

has a performance loss more than 20 during the in-sample period and more than 40

during the out-of-sample period. This implies that the OU-VG and OU-NIG models are

more reliable than the OU-VJ model in forecasting. Furthermore, the OU-NIG model is

slightly superior to the OU-VG model.

Table 3.6: Model performance comparison – log-likelihood

In-Sample Out-of-Sample

OU-VJ OU-VG OU-NIG OU-VJ OU-VG OU-NIG

Panel A: Total log-likelihood values
l(Θ) 1677.04 5377.20 5391.84 1564.30 5046.01 5120.83

Panel B: Pairwise model comparison - performance loss (ui,j)
OU-VJ — -22.81 -22.89 — -41.70 -42.59
OU-VG 22.81 — -0.09 41.70 — -0.90
OU-NIG 22.89 0.09 — 42.59 0.90 —

This table shows the total log-likelihood values of the models and performance loss matrices which are
computed based on the estimated parameters in Table 3.5. The in-sample and out-of-sample periods
are from July 2006 to January 2013 and from February 2013 to April 2016, respectively. The total log-
likelihood values are evaluated by Eq. (3.18) are presented in Panel A. Panel B presents pairwise model
comparison evaluated by Eq. (3.23), where Model i is listed vertically and Model j listed horizontally.

3.5.3 Fit to VIX Futures and Options Pricing

In this subsection, we examine the model performance in pricing futures and options in

order to investigate which model specification can better capture the dynamics of VIX

futures and options prices, in terms of the SE and the RMSE.

Figure 3.1 illustrates the empirical CDFs of the squared futures pricing errors. In

these CDF graphs, the OU-VJ curve (blue) is below the OU-NIG curve (yellow) and

the OU-VG curve (red). Also, the yellow curve is slightly above the red curve. This
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indicates that the OU-VG and OU-NIG models significantly outperform the OU-VJ

model in pricing futures.

Table 3.7 compares the model performance in terms of the RMSE. Overall, the

OU-VJ model has the largest in-sample RMSE (0.0318) and out-of-sample RMSE

(0.0474). The differences between the OU-VG and the OU-NIG models are 0.0001 for

the in-sample and 0.0002 for the out-of-sample, respectively. These differences are

insignificant.

Panel B presents the RMSE of each model by time to maturity. We classify time

to maturity into three categories: short-term (τ ≤ 30), middle-term (30 < τ ≤ 90) and

long-term (τ > 90). In comparing with the OU-VJ model, we observe that our jump

models take more advantages in pricing middle-term futures than other term futures for

both in-sample and out-of-sample because our models improve the RMSE over 24%

in-sample and over 50% out-of-sample, respectively. Furthermore, the OU-VG model

can best capture the features of long-term futures price data. In contrast, the OU-NIG

model outperforms in the long-term category.

Table 3.7: Model performance comparison pricing futures – RMSE

In-Sample Out-of-Sample

OU-VJ OU-VG OU-NIG OU-VJ OU-VG OU-NIG

Panel A: Overall
0.0318 0.0278 0.0279 0.0474 0.0347 0.0349

Panel B: Sorting by time to maturity
τ ≤ 30 0.0275 0.0240 0.0239 0.0245 0.0230 0.0222
30 < τ ≤ 90 0.0277 0.0209 0.0205 0.0398 0.0186 0.0190
τ > 90 0.0356 0.0329 0.0333 0.0551 0.0434 0.0438

This table shows the average RMSE of futures prices. The in-sample and out-of-sample periods are from
July 2006 to January 2013 and from February 2013 to April 2016, respectively. The RMSE is computed
from Eq. (3.20) based on the estimated parameters in Table 3.5. In Panel B, the time to maturity is
denoted by τ .

Figure 3.2 compares the difference of the half-yearly average SE for the paired

models from 2006 to 2016 (full-sample period). From the subplots (a) and (b), we find
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Figure 3.1: CDF of the squared pricing errors for futures

0 0.005 0.01 0.015

x - Futures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)
Empirical CDF

OU-VJ Model
OU-VG Model
OU-NIG Model

Notes: CDF is the abbreviation of empirical cumulative distribution function. The
squared pricing errors are calculated from Eq. (3.19) by using the full sample data from
July 2006 to April 2016, based on the estimated parameters in Table 3.5.

that the half-yearly average SE of OU-VJ is significantly larger than that of OU-VG

and OU-NIG through the whole sample period. It is not surprising that the pattern in

the subplot (a) is very similar to that in the subplot (b). This is because the difference

between squared pricing errors of the OU-VG model and squared pricing errors of

the OU-NIG model is incredibly tiny, which can be observed from the subplot (c).

Therefore, we can conclude that the OU-VG and OU-NIG models perform significantly

better than the OU-VJ model in pricing options.

Table 3.8 reports the RMSE under different categories: time to maturity, moneyness,

and volume. Overall, we can find that the RMSE of the OU-VJ model is two times more

than those of the OU-VG and OU-NIG models. Thus, the OU-VG and OU-NIG models

are dramatically superior to the OU-VJ model during both in-sample and out-of-sample



Chapter 3. Pricing VIX Derivatives with Infinite-Activity Jumps 89

periods. More specifically, the OU-VG and OU-NIG models can fit both call and put

option price dynamics significantly better than the OU-VJ model during the whole

sample period because the OU-VG and OU-NIG models decrease the errors by over

50% in pricing both call and put options. Then, we further investigate how the models

perform under the different categories. Under Panel B, the OU-VJ model underperforms

our two models in every case. The OU-NIG model is the best model in most cases, but

the OU-VG model has the best performance when the time to maturity is greater than 90

days. Under Panel D, we observe that the RMSE of the OU-VG and OU-NIG models

increase for both in-sample and out-of-sample periods, whereas the RMSEs of the

OU-VJ model decreases when the trading volume increases. The in-sample RMSEs of

the OU-VG and OU-NIG models increase by 17.64% and 17.18%, respectively and the

out-of-sample RMSEs increase by 24.80% and 22.22%, respectively. The in-sample and

out-of-sample RMSEs of the OU-VJ model decrease by 9.33% and 4.25%, respectively.

3.5.4 Finite- vs. Infinite-activity Jumps

To further investigate the evidence of infinite-activity jumps in pricing VIX derivatives,

we examine the performance of the finite-activity jump model which has the same

specifications of long-term mean and volatility process as our models (OU-VG and

OU-NIG), but the jump component is assumed to be a compound Poisson process

(CP). This finite-activity jump model is the best model in Park (2016), in which the

jump part in Eq. (3.1) can be further assumed as dLJt = dJ+t + dJ−t − λ+δ+dt − λ−δ−dt,

where J+t and J−t follow compound Poisson processes with positive and negative jump

intensity λ+ and λ−, respectively. The two jump processes are also independent from

each other and from the Wiener processes in Eq. (3.1). Their jump sizes follow different

exponential distributions. But the positive jumps have a positive jump size with mean

δ+. The negative jumps have a negative jump size with mean δ−.
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Table 3.8: Model performance comparison in pricing options – RMSE

In-Sample Out-of-Sample

OU-VJ OU-VG OU-NIG OU-VJ OU-VG OU-NIG

Panel A: Overall
All 0.1435 0.0662 0.0658 0.1571 0.0739 0.0725
Calls 0.1320 0.0638 0.0634 0.1433 0.0657 0.0634
Puts 0.1660 0.0713 0.0708 0.1910 0.0935 0.0937

Panel B: Sorting by time to maturity
τ ≤ 30 0.1530 0.0891 0.0887 0.1911 0.1230 0.1200
30 < τ ≤ 90 0.1400 0.0576 0.0569 0.1471 0.0632 0.0615
τ > 90 0.1420 0.0587 0.0590 0.1523 0.0511 0.0517

Panel C: Sorting by moneyness
K/F ≤ 0.9 0.1833 0.0639 0.0632 0.2127 0.0890 0.0908
0.9 < K/F ≤ 0.98 0.1382 0.0798 0.0796 0.1708 0.0982 0.0969
0.98 < K/F ≤ 1.02 0.1620 0.0914 0.0915 0.1944 0.0901 0.0898
1.02 < K/F ≤ 1.1 0.1648 0.0834 0.0838 0.2076 0.0635 0.0635
K/F > 1.1 0.1214 0.0573 0.0567 0.1250 0.0653 0.0625

Panel D: Sorting by volume
Vol ≤ 500 0.1501 0.0618 0.0617 0.1601 0.0653 0.0648
500 < Vol ≤ 3000 0.1430 0.0652 0.0647 0.1596 0.0728 0.0715
3000 < Vol ≤ 8000 0.1400 0.0693 0.0685 0.1567 0.0764 0.0748
Vol > 8000 0.1361 0.0727 0.0723 0.1533 0.0815 0.0792

This table lists the average RMSEs of option prices in terms of time to maturity (Panel B), moneyness
(Panel C), and volume (Panel D) for the in-sample and out-of-sample periods from July 2006 to January
2013 and from February 2013 to April 2016, respectively. The RMSEs are computed from Eq (3.22)
based on the estimated parameters in Table 3.5. In Panel B, the time to maturity is denoted by τ .
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Figure 3.2: Comparison of half-yearly average SEs
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(c). OU-VG vs. OU-NIG
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Notes: The period for comparison is between 2006 and 2016 (full-sample period). The
y-axis represents the differences between the average SEs of Model A and the average
SEs of Model B. For example, in the subplot (a), the magnitude of each bar equals to
average SE of the OU-VJ model subtracts the average SE of the OU-VG model. The
x-axis represents the sample period. The squared pricing errors are calculated by Eq.
(3.21) based on estimated parameters in Table 3.5.

We apply the same model estimation procedure to calibrate the OU-CP model. The

estimation results are reported in Table 3.9. In this table, we find that the OU-CP

model has a positive ρ and a negative ηv. This fact is consistent with the economic

phenomenon discussed in Section 3.4.2. In comparison with the results in Table 3.5, the

values of κ, κm, κv and σv in the OU-CP model are smaller than those in our models.

Therefore, the infinite-activity jump structure makes the model more flexible and the

variance process of the model fluctuates more.
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Table 3.9: Parameter estimates - OU-CP

Para. ρ κ κm κv θm θv σm σv

Est. 0.5887 6.6532 0.6297 0.8860 3.2436 2.0028 0.3819 2.1640
Sd. err. 0.0256 0.0758 0.0274 0.0807 0.0110 0.1250 0.0161 0.0677

Para. ηm ηv σO σF λ+ δ+ λ− δ−

Est. -0.0557 -2.1484 0.0677 0.0285 2.5948 0.2675 2.0418 -0.1414
Sd. err. 0.0432 0.3974 0.0006 0.0006 0.2675 0.0104 0.2766 0.0036

The model parameters are estimated through the procedure in Section 3.4.1. by using the in-sample data
from July 2006 to January 2013 (total 342 weeks). Para. is the abbreviation of parameter. The estimated
results are listed in the Est. row, and standard errors of the estimators are listed in the Sd. err. row.

Moreover, we compare the performance of the OU-CP model with our infinite-

activity jump models regarding the log-likelihood and the RMSE. Firstly, comparing

with the log-likelihood values of our infinite-activity jump models in Table 3.6, the

log-likelihood value of the OU-CP model, in Table 3.10, drops by at least 200 in-sample

from 5,377.20 (OU-VG) or 5,391.84 (OU-NIG) and at least 350 out-of-sample from

5,046.01 (OU-VG) or 5,120.83 (OU-NIG), respectively.

From Table 3.10 and Table 3.7, we do not observe big differences among the overall

RMSEs of future prices of OU-CP, OU-VG, and OU-NIG. The infinite-activity jump

structures seem not to improve substantially the overall model performance in pricing

VIX futures. However, the infinite-activity jumps can achieve improvement in pricing

VIX futures with relatively short-term maturities which are less than or equal to 90

days.

Comparing Table 3.10 with Table 3.8 , we find that the VG jump structure reduces

the RMSE in pricing VIX options by 0.0012 from 0.0674 (OU-CP) to 0.0662 (OU-VG),

and NIG jump structure reduces the RMSE by 0.0016 from 0.0674 (OU-CP) to 0.0658

(OU-NIG) during the in-sample period. For the out-of-sample period, the RMSE drops

by 0.0006 from 0.0745 (OU-CP) to 0.0739 (OU-VG) and by 0.0020 from 0.0745 (OU-

CP) to 0.0725 (OU-NIG). To test whether the improvements are significant or not, we

apply the t-test on the daily option RMSE of the whole sample. The p-value of t-test
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is 0.0146 between the OU-CP and OU-VG models, and 0.0001 between the OU-CP

and OU-NIG models. Both of p-values are less than 0.0500, so we can conclude that

the VG and NIG jump structures make statistically significant improvement in pricing

VIX options. Particularly, the infinite-activity jump structures noticeably improve the

accuracy in pricing put options.

Table 3.10: Model performance – OU-CP

Properties In-Sample Out-of-Sample

Log-likelihood l(Θ) 5154.55 4693.61

RMSE

Options Futures Options Futures

Overall
All 0.0674 0.0277 0.0745 0.0350
Calls 0.0635 — 0.0659 —
Puts 0.0752 — 0.0948 —

Sorting by time to maturity
τ ≤ 30 0.0942 0.0249 0.1193 0.0242
30 < τ ≤ 90 0.0579 0.0215 0.0661 0.0210
τ > 90 0.0562 0.0322 0.0525 0.0431

Sorting by time to moneyness
K/F ≤ 0.9 0.0669 0.0915
0.9 < K/F ≤ 0.98 0.0844 0.0978
0.98 < K/F ≤ 1.02 0.0934 0.0949
1.02 < K/F ≤ 1.1 0.0821 0.0669
K/F > 1.1 0.0575 0.0647

This table reports the OU-CP performance in terms of log-likelihood values and RMSEs for the in-sample
and out-of-sample period from July 2006 to January 2013 and from February 2013 to April 2016,
respectively. The log-likelihoods are evaluated by Eq. (3.18), and the RMSEs are computed from the Eq.
(3.22) based on the estimated parameters in Table 3.5. The time to maturity is denoted by τ .

In summary, in addition to that the pricing errors can be reduced by introducing an

infinite-activity jump structure instead of a finite-activity jump structure to our model,

we also find that our model has two additional advantages over the OU-CP model.

First, the number of parameters for describing the jump structure in the OU-VG and

OU-NIG models is less than that in the OU-CP model. As a result, for the OU-VG and

OU-NIG models, the computational cost can be reduced and the calibration accuracy

can be increased. Although the VG and NIG processes have complex Lévy measures,

their characteristic exponents have simple representations. Second, the OU-VG and
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OU-NIG models have better out-of-sample prediction performance, which is considered

as an important factor in the model comparison. By using Eq. (3.23), we can calculate

the average daily model performance loss against the OU-CP model as 4.22 and 5.12,

respectively, for the out-of-sample period.
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Since the models with an infinite-activity jump process show better performance

in pricing VIX derivatives, we think that infinite-activity jumps may also occur in the

VXX ETN returns. In this chapter, we introduce more types of infinite-activity jump

structures, including the normal tempered stable processes and generalized tempered

stable processes, in modelling the VXX ETN returns, to figure out the “real” dynamics

of the returns. First, we conduct a comprehensive analysis on the VXX and VXX

options data in Section 4.1. In Section 4.2, we construct the model for the VXX ETN

returns. In Section 4.3, we derive the VXX option pricing formulas. In Section 4.4, we

calibrate the models, analyze the estimation results and compare the performance of

different models. In the last section of this chapter, we compare and analyze the model

performance. The measure change of a Lévy process with different jump structures and

the characteristics function derivation by using the time-changed method are given in

95
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Appendix B.

4.1 Data

Our sample includes daily VXX and VXX options data. The selected sample period

starts on 25 May 2010, and ends on 28 December 2017, including a total of 1,912

trading days, which covers a much wider time frame than that in Bao et al. (2012).1 We

equally split the full sample period into an in-sample period from 28 May 2010 to 27

March 2014 and an out-of-sample period from 28 March 2014 to 28 December 2017.

In the following sub-sections, we focus on analyzing the VXX and VXX options data

for both the full sample and the two sub-samples.

4.1.1 VXX

The VXX consists of the first-month and the second-month VIX futures contracts and

their weights are adjusted daily (Rhoads, 2011). In the contango market, VIX futures

prices decrease slowly, resulting in a reverse split on the stock. Thus, Barclays Bank

splits VXX reversely with a ratio of 1-to-4 to avoid the share price of VXX dropping

to an extremely low level. Here, the split ratio means that the shareholder owns four

shares before the split and then owns one share after the split. There is a total of five

reverse-splits on the VXX since the inception of VXX trading. The detailed information

on the reverse-splits is shown in Table 4.1. During the model calibration procedure, the

price of VXX should be adjusted in accordance with the information in Table 4.1.

Figure 4.1 demonstrates the evolution of the daily VXX close price (in graph (a))

and its logarithm (in graph (b)), with the reverse split dates, between 28 May 2010

and 28 December 2017. According to graph (a) in this figure, we find that the VXX

1VXX was launched on 29 January 2009. Our sample period starting on 25 May 2010 is due to the
availability of the VXX options data. The data end in 2017 when this work was undertaken.
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Table 4.1: VXX reverse split

Event Split Date Split Ratio Close price Months

1st Rev. Split 09 November 2010 4:1 11,563.52 21
2nd Rev. Split 05 October 2012 4:1 2,214.40 23
3rd Rev. Split 08 November 2013 4:1 812.80 13
4th Rev. Split 09 August 2016 4:1 148.80 34
5th Rev. Split 23 August 2017 4:1 47.36 12

This table shows the VXX reverse splits information from 28 May 2010 to 28 December
2017. The price under the fourth column is the close price right before the reverse split.
These prices are not adjusted in accordance with the reverse splits. The number in the
last column refers to the total number of months since inception or the previous split
date.

price drops from a considerably high value (29,265.92) to a relatively low value (only

27.47, which is the lowest price level during the whole sample period). Due to the large

difference in the prices, we apply a logarithmic transformation to the VXX daily close

prices to smooth the data and reduce the skewness of the original data; see graph (b) in

Figure 4.1. Overall, both graphs display a downward trend during the whole sample

period, although it has fluctuated all the time.
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Figure 4.1: Daily close price evolution of the VXX and logarithmic VXX during the
period between 25 May 2010 and 18 December 2017.

We also notice that the VXX close price is considerably volatile between the first

and second reverse-splits in Figure 4.1. During this period, it drops to a relatively lower
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point at 5,148.16 on 07 July 2011, then rises to a local maximum point at 14,551.04

on 03 October 2011. After reaching the local maximum, it decreases again to a much

lower price level (2,193.92) just before the second split. This period takes a total of

about 23 months. From 2012 to 2013, we do not observe big rises or falls in Figure

4.1, and the period between the second and third reverse-splits only takes about 13

months. Furthermore, the fourth reverse-split is conducted in about 34 months after the

third reverse-split. This is because the volatility market is relatively stable in this time

period, with the result that the price of VXX decays at a lower rate2 (less than 5% per

month) than in the other periods. After the fourth reverse-split, the low volatility of the

stock market accelerates the speed of splitting. Thus, the fifth reverse-split occurs in 12

months after the fourth reverse-split.

The statistics of VXX and logarithmic VXX series are summarized in Table 4.2.

The range of VXX is wide, from 27.47 to 33044.48. After taking the logarithm of VXX,

the range becomes much more narrow, between 3.31 and 10.41. The higher moments

confirm that the distribution of VXX is highly skewed to the left with tails heavier than

those of the normal distribution. In the logarithm scale, the distribution of the VXX

ETN returns is more symmetric with lighter tails and the kurtoses value is very close

to zero. Then, we investigate the statistical properties of their first differences. From

Table 4.2, we can observe that the kurtosis of ∆VXX and ∆ log(VXX) are much greater

than 3 and the skewness of them are also larger than zero, so we can conclude that the

distributions have negative mean values, heavier tails and left skewness. In Table 4.2,

the auto-correlations of VXX and log(VXX) at lag one and lag two are very close to

1 and decay slowly, which indicates these series behave with high persistence in the

2The decay rate can be obtained by solving the following equation:

f = a(1 − r)t,

where f is the final VXX value of the period, a is the VXX value at the beginning of the period, t is the
total time, and r is the decay rate.
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sample period.

Table 4.2: Descriptive statistics of daily VXX

VXX log(VXX) ∆VXX ∆ log(VXX)

Mean 3482.3857 6.7809 -15.3483 -0.0037
Standard Deviation 5824.4943 1.8025 267.9216 0.0386
Skewness 2.5407 0.0800 1.2291 0.7051
Kurtosis 9.9195 2.0902 29.6603 6.0197
Min 27.4700 3.3131 -1843.2000 -0.1424
Median 674.4800 6.5139 -1.3200 -0.0058
Max 33044.4800 10.4056 2959.3600 0.2177
ρ(1) 0.9937 0.9978 0.0817 -0.0204
ρ(2) 0.9866 0.9956 0.0286 0.0000
ρ(50) 0.6950 0.8942 0.0000 -0.0198

This table statistically summarizes the VXX, the logarithmic VXX (denoting log(VXX)),
and the first differences of VXX (∆VXX) and the first differences of logarithmic VXX
(denoting ∆ log(VXX)) from 25 May 2010 to 28 December 2017. ρ(n) is the auto-
correlation at lag n.

To further investigate the characteristics of the dynamics of the logarithmic VXX

return (i.e., ∆ log(VXX)), we plot the annualized mean and volatility of the log return,

with a rolling window of 30 days, for the whole sample period in Figure 4.2. Inter-

estingly, from Figure 4.2, we can see that the volatility of the logarithmic return is

characterised by stochastical swings around the blue dash line which represents the

average values of the volatility process. To be more specific, this process tends to drive

back to the long-term mean level when the values are higher or lower than the mean

level, so it displays the mean-reverting property.

4.1.2 VXX Options

Following Bao et al. (2012), we only consider the VXX options with time-to-maturity

from one-week to one-year. To avoid getting abnormal results, we delete all options

with no values in implied-volatility. To avoid an illiquid problem, we only select the



Chapter 4. Pricing VXX Options under Lévy Process 100

2011 2012 2013 2014 2015 2016 2017

Year

0

0.2

0.4

0.6

0.8

1

1.2

V
ol

at
ili

ty

Figure 4.2: Annualized volatility of the VXX logarithmic returns, with 30-day rolling
window, from 25 May 2010 to 28 December 2017.

options whose middle price3 is greater than 0.1 and moneyness4 is between −0.17 and

0.17 (Park, 2016; Yang & Kanniainen, 2017). We focus on analyzing more actively

traded options, so we filter out the options whose daily trading volume is less than 100.

Finally, we randomly select five options in each trading day 5 in the selected sample

period. We note that the number of option contracts in some days is less than five after

data pre-processing. In such cases, we use all the options in those days.

Table 4.3 summarizes the VXX options data by time-to-maturity and moneyness.

Our sample consists of a total of 9,528 option contracts, including 4,803 and 4,725

contracts in the in-sample and out-of-sample, respectively. Panel A of Table 4.3 reveals

that the number of option contracts distributes unevenly in different splits of time-to-

maturity due to the random data selection. In particular, the number of option contracts

with a long time-to-maturity (τ > 90) is much smaller than that of option contracts with

3Middle price refers to the average price of the bid and ask price of each day.
4Based on Mencía and Sentana (2013), the log moneyness is defined as ln(Strike/Forward price).
5We conduct several experiments. We find that using three observations (options) in each day can

get desirable estimation results. We believe that five options per day should be sufficient for the model
estimation. Using a larger number of options will increase the computation cost.



Chapter 4. Pricing VXX Options under Lévy Process 101

a relatively short time-to-maturity (τ ≤ 90). From Panel B, we find that the overall

average price of the options fluctuates between 1.99 and 2.58 for the in-sample data,

and between 1.61 and 1.90 for the out-of-sample data. In addition, the options with

longer time-to-maturity tend to have a higher average price. Moreover, in Panel C, the

overall average implied volatilities exhibit a volatility smirk (reverse skew) for both

of the two sub-samples. A good option pricing model should be able to capture these

characteristics in the VXX options data.

Table 4.3: Summary for VXX options

In-sample Out-of-sample

τ ≤ 30 30 − 90 τ > 90 All τ ≤ 30 30 − 90 τ > 90 All

Panel A: Number of option contracts
Call 1102 1091 382 2575 1524 763 223 2510
Put 973 966 289 2228 1281 701 233 2215
All 2075 2057 671 4803 2805 1464 456 4725

Panel B: Average option prices
M ≤ −0.1 1.3152 2.0462 3.2669 1.9913 0.9008 1.8344 3.2205 1.6207
−0.1 <M ≤ −0.06 1.4532 2.3682 4.6020 2.2426 1.0913 1.8584 3.3167 1.6126
−0.06 <M ≤ −0.02 1.4558 2.4439 4.1024 2.2129 1.1452 2.1662 3.7089 1.6376
−0.02 <M ≤ 0.02 1.5348 2.7512 4.5093 2.4870 1.2781 2.5597 3.9418 1.9040
0.02 <M ≤ 0.06 1.7345 2.8873 4.0880 2.5769 1.3267 2.4770 3.8078 1.8678
0.06 <M ≤ 0.1 1.5390 2.5899 4.1256 2.3263 1.3018 2.3082 4.0291 1.8583
M > 0.1 1.6027 2.4902 4.5042 2.3547 1.0644 2.3225 3.7915 1.7163

Panel D: Average implied volatilities
M ≤ −0.1 0.8006 0.7762 0.7647 0.7854 0.8081 0.7697 0.7412 0.7900
−0.1 <M ≤ −0.06 0.7371 0.7399 0.7431 0.7391 0.7172 0.7165 0.7271 0.7179
−0.06 <M ≤ −0.02 0.7087 0.7258 0.7422 0.7210 0.6622 0.6946 0.6870 0.6734
−0.02 <M ≤ 0.02 0.6477 0.7070 0.7296 0.6849 0.6140 0.6676 0.7151 0.6392
0.02 <M ≤ 0.06 0.6019 0.6729 0.7320 0.6487 0.5800 0.6471 0.6838 0.6076
0.06 <M ≤ 0.1 0.6020 0.6655 0.7342 0.6457 0.5788 0.6180 0.6747 0.6033
M > 0.1 0.6159 0.6512 0.7100 0.6485 0.6040 0.6025 0.6756 0.6132

The VXX options data are obtained form OptionMetrics and filtered in accordance with the rules in
Section 4.1.2. The second row in the table is the information about the time-to-maturity, denoted by τ . In
this row, 30-90 means that τ is within the range between 30 days and 90 days, which is 30 < τ ≤ 90. The
symbol “M" in the first column refers to log moneyness which is defined in Section 4.1.2. The implied
volatility is computed from the Black-Scholes formula by using the market data.
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4.2 Model Specifications

In this section, we construct the models for the dynamics of the logarithmic VXX

returns under Lévy processes with respect to a filtered probability space (Ω,F ,Q) with

a complete filtration (Ft)t≥0. Here, Q refers to a risk-neutral probability measure. An

analytical expression for the characteristic function of the logarithmic VXX returns can

be derived from the given model. The VXX option pricing formulae can be converted

from the characteristic functions via the inverse Fourier transform.

As stated in Section 4.1.1, the logarithmic transformation not only narrows down the

range of the VXX data but also makes the distribution more symmetric. In most cases,

the modeling techniques can cope with the data with a narrow range and symmetric

distribution better. Therefore, we directly model the dynamics of the logarithmic VXX

time series, not the original VXX. The VXX ETN is tradeable. So, we clarify that

the discounted price of VXX under risk-neutral measure should remain a martingale

unconditionally (e.g. Shreve, 2008, Carr & Wu, 2010). In terms of modelling the

dynamics of the VIX under the risk-neutral measure, a mean-reverting process is often

used, e.g., Mencía and Sentana (2013), Park (2016), Cao et al. (2019). Because the

VIX is a non-tradable volatility index, the VIX process does not need to satisfy the

martingale condition. For modelling the VXX, however, the literature also often uses

the same mean-reverting process motivated by the VIX studies, for example Bao et al.

(2012) and Tan et al. (2021). This mean-reverting setting makes the VXX fail to satisfy

the martingale condition. As we know that the VXX ETN is an exchange-traded debt

security, unlike the VIX (a non-tradable volatility index), the discounted price of the

VXX, as a tradable asset, under the risk-neutral measure, should remain a martingale

unconditionally (e.g., Carr and Wu (2004)).

Thus, under Q, we denote the process of the logarithmic VXX by {xt}t≥0. Incor-

porating the stochastic volatility feature in the logarithmic VXX (See Figure 4.2), we
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assume that the dynamics of {xt}t≥0 follow:6

dxt = (rt −ΨJ(−i) −
1

2
vt)dt +

√
vtdW

Q
t,1 + dJt,

dvt = κv (θv − vt)dt + σv
√
vtdW

Q
t,2,

(4.1)

where WQ
t,1 and WQ

t,2 are Wiener processes with correlation ρ; κv and σv captures the

reverting speeds and the volatility level of vt, respectively; θv represents the long-term

average for vt; rt is a risk-free interest rate and Jt refers to a jump process. In this

chapter, we select four different jump processes (MJ, NIG, TS, and GTS) from Section

2.1.7 based on the structure of the jumps. Our selections include a finite-activity jump

process (MJ) and three infinite-activity jump processes with finite or infinite variation

(NIG, TS and GTS). Furthermore, the jump compensator, ΨJ(−i), is calculated from

the characteristic exponent of the jump process, referring to Table 2.1. In order to

investigate the role of the jumps in pricing VXX options, we also consider the models

without jumps. Under the no jump assumption, we set the terms dJt and ΨJ(−i) to be

zero. Thereafter, we call the model without jumps as the SV model, and the models

with the different types of jumps as the SV-MJ, SV-NIG, SV-TS, and SV-GTS models,

respectively.

4.3 Option Pricing Approach

Denote the prices of the VXX call and put options at time t with the strike price K and

the maturity T as c(t;xt, vt, T,K,Θ) and p(t;xt, vt, T,K,Θ) respectively, where Θ is

the vector of the model parameters. We set time-to-maturity as τ = T − t. Based on the

information available upon time t, the theoretical European call option price with an

6The relationship between the VIX and the VXX has been discussed in Appendix B.1. Our model
(4.1) is consistent with (B.8).
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instantaneous interest rate rt under risk-neutral measure Q is defined by

c(t;xt, vt, T,K,Θ) = exp{−rtτ}EQ [max(exp(xt) −K,0)∣Ft] . (4.2)

In the same manner, the European put option price is defined by

p(t;xt, vt, T,K,Θ) = exp{−rtτ}EQ [max(K − exp(xt),0)∣Ft] . (4.3)

In analogy to Heston (1993), the European call and put option price formulae can

be derived from the characteristic function f(u; t, T, xt, vt,Θ) of the logarithmic VXX

return. The option price formulae for the specified models can be expressed as,

c(t;xt, vt, T,K,Θ) = exp{−rtτ} [f(−i)Φ1(t) −KΦ2(t)] , (4.4)

p(t;xt, vt, T,K,Θ) = exp{−rtτ} [K(1 −Φ2(t)) − f(−i)(1 −Φ1(t))] , (4.5)

where f(u) is the short-form of f(u; t, T, xt, vt,Θ), and Φ1(t) and Φ2(t) are the short-

form of Φ1(t;T,xt, vt,K,Θ) and Φ2(t;T,xt, vt,K,Θ) which can be interpreted as the

probabilities of xt > lnK under the two different risk-neutral measures, respectively. 7

The formulae for Φ1(t) and Φ2(t) are given as follows:

Φ1(t) =
1

2
+

1

π ∫
∞

0
Re [

exp{−iu lnK}f(u − i)

iuf(−i)
]du, (4.6)

Φ2(t) =
1

2
+

1

π ∫
∞

0
Re [

exp{−iu lnK}f(u)

iu
]du. (4.7)

It is difficult to derive the exact expressions for the integrals in Eq. (4.6) and (4.7), so

we apply the Gauss–Laguerre quadrature method to evaluate these integrals. In this

numerical evaluation, the higher the degree of Laguerre polynomial is used, the more
7In line with Appendix A in Park (2016), a change of measure from Q to Q1 is based on a Radon-

Nikodym derivative dQ1

dQ = exp(vT )

EQ
t [exp(vT )]

.
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accurate is the result gained, but a longer time is taken for the calculation. To balance

the computational cost and the results accuracy, we choose the degree of the Laguerre

polynomial as 10.

As in Cont and Tankov (2004), the spot characteristic function of the logarithmic

VXX returns, at time t, under Q is defined by

f(u; t, T, xt, vt,Θ) = EQ
t [exp(iuxT )∣Ft]. (4.8)

Under the Model 4.1, we assume Eq. (4.8) has an affine form, that is,

f(u; t, T, xt, vt,Θ) = exp [iuτ(rt −ΨJ(−i)) − ψ0(τ) − ψv(τ)vt + iuxt] . (4.9)

Then, we assume that the jump components are independent of the continuous

parts in the model, so the characteristic function can be derived in two steps. First, we

calculate the characteristic function of the continuous part of xt, which we denote by

xct . Second, we multiply the characteristic function of xct by the characteristic function

of jump process described in Section 2.1.7. Thus, the characteristic function for our

models can be expressed as

f(u; t, T, xt, vt,Θ) = exp [iuτ(rt −ΨJ(−i)) − ψ0(τ) − ψv(τ)vt + iuxt + τΨJ(u)] ,

(4.10)

where ΨJ(u) is specified in Table 2.1, τ = T − t and ψ0(τ) and ψv(τ) are given by

ψv(τ) =
u2 + iu

ξ coth (
τξ
2
) + b

, (4.11)

ψ0(τ) = −
κvθvbτ

σ2
v

+
2κvθv
σ2
v

ln [cosh(
τξ

2
) +

b

ξ
sinh(

τξ

2
)], (4.12)

where b = κv − iuρσv and ξ =
√
b2 + σ2

v (u
2 + iu). In the SV model, both ΨJ(−i)
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and ΨJ(u) are set to be zero. We use the time changed method for the derivation of

f(u; t, T, xt, ut,Θ), see Appendix B.3 for more details.

4.4 Model Calibration

We use both the VXX option price data and the VXX data to calibrate our models. The

prices of VXX options include the premium of early exercise, since the VXX options

are American-style. Thus, by following Carr and Wu (2010), we convert the option

prices into European-style options prices by using quoted implied volatility via the

Black and Scholes (1973) option pricing model.

4.4.1 Calibration Procedure

In the calibration procedure, we apply the MLE to estimate the values of parameters

in the models. For the models which contain latent processes, we use the UKF for

estimating the values of latent variables to accelerate the speed of calibration. In order

to search the maximum value of the total log-likelihood function, we employ the Nelder-

Mead simplex algorithm which is a derivative-free method. We use this algorithm

because it can be applied in the non-linear objective function which can be either

continuous or discontinuous (Wouk, 1987; Barati, 2011). According to Aït-Sahalia

and Kimmel (2007) and Du and Luo (2019), the log-likelihood function at time t + 1

conditional on time t is defined as,

lt+1∣t(Θ) = −
1

2
{nt ln(2π) + ln ∣ΣO

t+1∣t∣ + (Ot+1 − Ôt+1)
⊺
(ΣO

t+1∣t)
−1

(Ot+1 − Ôt+1)}

(4.13)

where nt denotes the total number of options contracts during that day, Ot+1 is the vector

of actual option prices in day t + 1, Ôt+1 is the vector of estimated option prices in the

same day, and ΣO
t+1∣t refers to the covariance of option prices which is conditional on
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time t. The total log-likelihood function is the sum of the daily log-likelihood function

(4.13), that is,

L(Θ) =
T

∑
t=1

lt+1∣t(Θ), (4.14)

where T is the total sample period.

In order to apply the UKF, it is necessary to convert the latent process in our

proposed models from Q to a physical measure P by introducing a risk premium, ηv

(Wehn et al., 2013; Park, 2016). The latent process {vt}t≥0 under Q is given in Section

4.2. After converting to P, the dynamics of the processes are expressed as

dvt = κv (θv − vt)dt + ηvvtdt + σv
√
vtdW

P
t,2, (4.15)

where W P
t,2 is a Wiener process under P. Next, we need to discretize Eq. (4.15) by using

the Euler approximation. The discretized version of Eq. (4.15) can be expressed as

∆vt = κv (θv − vt)∆t + ηvvt∆t + σv
√
vt∆tεt,2, (4.16)

where εt,2 is a standard normal random variable.

Suppose there are N call option contracts and M put option contracts at the time t.

According to Yang and Kanniainen (2017), the measurement equations are defined by
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, (4.17)

where σ0 measures the size of pricing error, ci(t), for i = 1, . . . ,N , and pj(t), for
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j = 1, . . . ,M , are the market prices of call and put options respectively, the notations

ĉ and p̂ refer to the option prices which are estimated by Formula (4.4) or (4.5), and

Vk(t), for k = c1, . . . , cN , p1, . . . , pM , is their corresponding market vega. Moreover,

ec1 , . . . , epM are the independent normal variables with zero mean and unit variance.

4.4.2 Model Estimation Result Analysis

Table 4.3 reports the parameters which are estimated by using the in-sample data across

the proposed models and the standard errors which are computed from the estimation

results. First, we analyze the variation among the common parameters estimates under

the no jump specification and different jump structures. According to this table, after

considering the jump processes in the model, the mean reverting speed of the variance

process decelerates as the estimated value for κv decreases from 9.68 to under 8.00.

The estimates of κv in the jump models vary from 6.69 to 7.45. Generally, the infinite-

activity jump models with infinite variation sample paths come with the smaller κv

values. The table also shows that the estimates for the long-term mean (θv) and volatility

(σv) of {vt}t≥0 decrease slightly after adding the jump processes into the model. For

example, θv and σv are 0.55 and 3.19 in the SV model, respectively, while they decrease

to 0.46 and 2.76 in the SV-MJ model, respectively. In addition, the jump influences the

value of the leverage factor parameter, ρ. The correlation between the VXX ETN return

and its variance (i.e., ρ) becomes more positive in the SV model than those in the jump

diffusion models. The positive correlation suggests the positive volatility skew in the

VXX option market, which aligns with the observation in Bao et al. (2012).

Second, the estimated results for the jump processes reveal several features in the

dynamics of VXX ETN returns. The key difference between MJ jump and other selected

jumps is the jump frequency. MJ jump is a finite-activity jump and its frequency is

measured by λJ . The estimate for λJ is 0.40 which indicates the big jump (a rare event)
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occurs around every two and half year. Interestingly, we find a roughly similar big

jump frequency in the VXX ETN returns and S&P 500 index returns processes, refering

to Huang and Wu (2004). On the contrary, the NIG, TS and GTS jump structures in

the SV-NIG, SV-TS and SV-GTS models can generate infinitely many jumps during

a finite time period. Here, we think the GTS jump process in the SV-GTS model

is an infinity-activity jump process with infinity variation because α+ is estimated at

1.48 which is greater than 1.00. In addition, the estimates of jump parameters in the

infinite-activity jump models imply an asymmetry tail behaviour in the jump process.

We also investigate whether the diffusion part is important when an infinite-activity

jump component is included in the models. Some literature points out that it may be

not essential to include a diffusion component if a pure infinite-activity jump process is

adopted (Carr et al., 2002; Carr & Wu, 2003). Based on the analysis in Section 4.5.3, we

can observe that the estimated latent process (variance process) substantially fluctuates

above zero. Hence, we believe that both the infinite-activity jump and the diffusion

component are essential in this case.

4.5 Model Performance Analysis

In this section, we compare and analyze the performance of the five proposed models.

We use the average root mean square error (RMSE) as our key measurement because

the RMSE accommodates the higher magnitude error with relatively higher weight. As

in Kanniainen et al. (2014) and Park (2016), the VXX options pricing error needs to be

scaled by the corresponding market vega (V). Then, the RMSE is defined by

RMSE =

¿
Á
Á
ÁÀ

1

M

M

∑
t=1

⎡
⎢
⎢
⎢
⎢
⎣

1

Nt

Nt

∑
j=1

⎛

⎝

O(t;Ttj ,Ktj) − Ô(t;Ttj ,Ktj)

V(t;Ttj ,Ktj)

⎞

⎠

2⎤
⎥
⎥
⎥
⎥
⎦

, (4.18)
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Table 4.3: Parameter estimates

SV SV-MJ SV-NIG SV-TS SV-GTS

Common parameters
κv 9.6834 7.3750 6.8753 7.4452 6.6937

(0.2590) (0.2833) (0.2166) (0.2224) (0.2232)
θv 0.5504 0.4599 0.4388 0.4549 0.4202

(0.0030) (0.0083) (0.0078) (0.0075) (0.0058)
σv 3.1909 2.7576 2.9801 2.8808 3.0213

(0.0410) (0.0699) (0.0744) (0.0729) (0.0704)
ηv 0.1756 -0.0644 0.3058 0.0608 0.1746

(0.3124) (0.5871) (0.2777) (0.2683) (0.1341)
ρ 0.7890 0.6627 0.7265 0.6862 0.7387

(0.0007) (0.0184) (0.0224) (0.0164) (0.0215)
σo 0.0384 0.0372 0.0356 0.0357 0.0354

(0.0005) (0.0004) (0.0004) (0.0004) (0.0004)

Jump parameters
λJ 0.3959

(0.0536)
λ+ 4.3320 1.5290

(0.2654) (0.3811)
λ− 0.6893 4.8272

(0.0942) (0.5322)
θJ 0.4027 0.5193

(0.0312) (0.0010)
σJ 0.0872 0.2524

(0.0598) (0.0157)
δJ 0.1749

(0.0158)
c+ 1.3544 0.0875

(0.1902) (0.0204)
c− 0.0175 0.2503

(0.0027) (0.0907)
α+ 1.4802

(0.0543)
α− -1.8082

(0.3498)

The parameters are estimated by maximizing the value of the log-likelihood function and the UKF for all
the models. The data used include the VXX index and VXX option prices between the period from 25
May 2010 and 27 March 2014. The values in parentheses show the standard errors which are obtained by
the inverse of the Hessian matrix at the optimal situation.
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where O(t;Ttj ,Ktj) represents the market option price, Ô(ttj ;Ttj ,Kj) represents the

estimated price from our models, M denotes the total number of days in the selected

sample, and Nt represents the total number of option contracts at time t.

We also examine the statistical significance of the models’ performance difference

by using the t-test which is applied in Huang and Wu (2004). This test is calculated

through the daily average squared pricing error. The test statistic Ŝ is formulated as

follows:

Ŝ =
MSE

i
−MSE

j

SE(MSE
i
−MSE

j
)
, (4.19)

where superscripts i and j represent the model i and the model j respectively, and MSE

denotes the sample mean of squared errors. Similar to the notations in Eq. (4.18), the

daily average squared pricing error, MSEt, can be computed as

MSEt =
1

Nt

Nt

∑
j=1

⎛

⎝

O(t;Ttj ,Ktj) − Ô(t;Ttj ,Ktj)

V(t;Ttj ,Ktj)

⎞

⎠

2

.

4.5.1 Performance Analysis on VXX Option Pricing

Table 4.4 compares the in-sample and out-of-sample performances of the models with

different jump structures in terms of the RMSE. In this section, we investigate the

performance in all pricing options but also the performance in pricing call and put

options, respectively. Overall, the RMSEs for both of the in-sample and out-of-sample

periods are improved by at least 2.931% after considering jumps into the model. When

the jump structure is changed from finite-activity to infinite-activity, the in-sample’s and

out-of-sample’s RMSEs can be further improved. Moreover, the models with jumps

perform better in pricing put than in pricing call options.

We conduct a further performance comparison among our jump models by applying

the t-test (Eq. (4.19)) on the pairwise models since the performance difference between

the two jump models seems to be minor in Table 4.4. The t-test statistics are reported
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Table 4.4: Root mean square error (RMSE)

In-sample RMSEs Out-of-sample RMSEs

Overall Call Put Overall Call Put

SV 3.5218% 3.5145% 3.5303% 4.4503% 4.5633% 4.3186%
SV-MJ 3.4378% 3.4715% 3.3983% 4.3170% 4.3767% 4.2483%
SV-TS 3.2934% 3.3354% 3.2442% 4.2364% 4.2738% 4.1937%
SV-NIG 3.2875% 3.3307% 3.2368% 4.2538% 4.2901% 4.2121%
SV-GTS 3.2742% 3.3088% 3.2337% 4.2516% 4.2678% 4.2331%

The RMSE is computed in accordance with Eq. (4.18) by using the estimated results in Table 4.3 in
Section 4.4.2. The in-sample RMSE and out-of-sample RMSE are based on the period from 25 May
2010 to 27 March 2014 and the period from 28 March 2014 to 28 December 2017, respectively.

in Table 4.5. According to Table 4.5, we observe that all test statistics are greater than

the t-statistic critical value 1.6450 in Panel A, thus the infinite-activity jump models

perform significantly better in pricing VXX options than the finite-activity jump model

does. However, the performance difference between two infinite-activity jump models

is not statistical significance for the in-sample period. During the out-of-sample period,

we notice that the performance of the SV-TS model is significantly better than the

SV-NIG model because the t statistics under MJ-NIG column in Panel B is −1.9305

which is less than −1.6450. In addition, the positive values for the t statistics in Panel C

only indicate that the SV-GTS model slightly outperforms the SV-NIG model.

4.5.2 Fitting to the Term Structures of Options and Implied Volat-

ility

In this sub-section, we investigate how our models perform under different degrees of

moneyness and different ranges of maturities because model performance may vary

under different conditions. Table 4.6 reports the RMSEs of our models by the moneyness

and time to maturity based on the whole sample data. Overall, the full-sample RMSEs

yielded by the infinite-activity jump models (SV-TS, SV-NIG and SV-GTS) are smaller

than those yielded by the finite-activity jump model (SV-MJ) and the model without
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Table 4.5: Pairwise model performance comparison

In-sample Out-of-sample

Panel A Finite-activity jumps vs. infinite-activity jumps
MJ-TS MJ-NIG MJ-GTS MJ-TS MJ-NIG MJ-GTS

SV 5.9484 6.1165 6.5942 4.0848 3.0003 3.0004

Panel B Finite variation vs. infinite variation
- TS-NIG TS-GTS - TS-NIG TS-GTS

SV - 0.0929 0.1155 - -1.9305 -1.2909

Panel C Comparing infinite-variation jumps with a infinite variation
- - NIG-GTS - - NIG-GTS

SV - - 0.8542 - - 0.3495

This table reports the test statistic of a t-test (Ŝ), which is given by Eq. (4.19). The tests in different
panels compare the performance of different jump structures in pricing VXX options. In this table, we
compare five different types of jump structures, including finite-activity jumps (MJ), infinite-activity
jumps with finite variation (TS), infinite-activity jumps with infinite-variation (NIG and GTS), each of
which is under the given drift and volatility specifications. The first column lists the drift and volatility
specification of the model. The first row in each panel gives information about the jump structure. For
example, MJ-TS refers to the comparison between the compound Poisson jump process and the tempered
stable jump process, and so on in a similar fashion. In the test for the model i and the model j, if the
value for the test statistic Ŝ is greater than 1.6450,then the model j is superior to the model i at a 95%
confidence interval, and vice versa. The in-sample covers the period from 25 May 2010 to 27 March
2014 and the out-of-sample covers the period from 28 March 2014 to 28 December 2017.

jumps (SV) across all degrees of moneyness and all ranges of maturities, so the infinite-

activity jump models can capture more features in the term structures of the VXX

options than the finite-activity jump model does. Moreover, the stochastic volatility

models (including all proposed models) generally fit the market data better if the time

to maturity of an option is between 30 and 90 calendar days.

In order to examine the ability of capturing the features in the implied volatility

for different types of models, we calculate the average in- and out-of-sample model

implied volatilities for different ranges of moneyness and time-to-maturity based on the

Black-Scholes model. Figure 4.3 exhibits the comparison between the market implied

volatilities and the model implied volatilities. According to Figure 4.3, the implied

volatilities of our five models can fit the implied volatility smirk quite well across all

the moneyness when the time-to-maturity is less than or equal to 90 days. However,

the infinite-activity jump models can take more advantages than the model with a
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Table 4.6: RMSEs of option prices by moneyness and maturity

Moneyness SV SV-MJ SV-TS SV-NIG SV-GTS

Panel A: τ ≤ 30

M ≤ −0.1 0.0568 0.0536 0.0538 0.0536 0.0529
−0.1 <M ≤ −0.06 0.0402 0.0420 0.0419 0.0415 0.0401
−0.06 <M ≤ −0.02 0.0350 0.0362 0.0345 0.0346 0.0345
−0.02 <M ≤ 0.02 0.0331 0.0314 0.0313 0.0315 0.0314
0.02 <M ≤ 0.06 0.0394 0.0380 0.0370 0.0375 0.0379
0.06 <M ≤ 0.1 0.0392 0.0394 0.0380 0.0385 0.0390
M > 0.1 0.0471 0.0475 0.0463 0.0459 0.0462

Panel B: 30 < τ ≤ 90

M ≤ −0.1 0.0324 0.0319 0.0306 0.0309 0.0309
−0.1 <M ≤ −0.06 0.0299 0.0294 0.0287 0.0289 0.0290
−0.06 <M ≤ −0.02 0.0326 0.0319 0.0306 0.0306 0.0307
−0.02 <M ≤ 0.02 0.0323 0.0310 0.0295 0.0298 0.0299
0.02 <M ≤ 0.06 0.0326 0.0317 0.0298 0.0299 0.0300
0.06 <M ≤ 0.1 0.0345 0.0328 0.0318 0.0326 0.0328
M > 0.1 0.0395 0.0375 0.0355 0.0362 0.0369

Panel C: τ > 90

M ≤ −0.1 0.0507 0.0462 0.0460 0.0461 0.0467
−0.1 <M ≤ −0.06 0.0522 0.0495 0.0454 0.0456 0.0459
−0.06 <M ≤ −0.02 0.0501 0.0461 0.0440 0.0432 0.0432
−0.02 <M ≤ 0.02 0.0490 0.0468 0.0431 0.0428 0.0428
0.02 <M ≤ 0.06 0.0548 0.0520 0.0485 0.0476 0.0473
0.06 <M ≤ 0.1 0.0515 0.0492 0.0446 0.0440 0.0437
M > 0.1 0.0471 0.0465 0.0462 0.0460 0.0459

The RMSEs are computed in accordance with Eq. (4.18) by using the estimated results in Table 4.3 in
Section 4.4.2. The full-sample data are used to calculate the RMSEs, including the period from 25 May
2010 to 28 December 2017. The moneyness refers to log moneyness which is defined in Section 4.1.2.
The symbol τ denotes the time-to-maturity.
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finite-activity jump or without jumps on capturing the dynamics of implied volatility

for the options with the long-term time-to-maturity (τ > 90).

4.5.3 Evolution of the Instantaneous Variance

Figure 4.4 compares the historical evaluations of the instantaneous variance states

which are estimated by using the in-sample data based on the different models. From

the first four sub-figures, we notice that the patterns of the variance series for the SV,

SV-MJ, SV-TS, SV-NIG and SV-GTS models are almost identical during the period

between 25 May 2010 and 28 December 2017. However, the variance of the SV model

is substantially larger than those of the jump models. Furthermore, these figures also

indicate that the our stochastic volatility models are sensitive to the changes in the log

VXX. In other words, the instantaneous variance becomes large when the one-day-ahead

absolute difference of the log VXX is large, and vice versa. In addition, we can observe

five significant changes in the last panel of Figure 4.4, but the estimated variance states

did not increase significantly in order to capture suddenly big changes. This is because

these five changes are corresponding to the five reverse-splits on the VXX, but not

because of big events occurring in the market.
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Figure 4.3: Fit to the implied volatility
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Note: These curves in the figures display the average implied volatility for the different
range of moneyness and time-to-maturity (τ ). The left and right columns show the
average implied volatilities for in-sample and out-of-sample respectively. The model
implied volatility is calculated from the Black-Scholes model by using the model
estimated price. The moneyness is given in Section 4.1.2. The in-sample covers the
period from 25 May 2010 to 27 March 2014 and the out-of-sample covers the period
from 28 March 2014 to 28 December 2017.
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Figure 4.4: Historical evolution of the vt from 25 May 2010 to 28 December 2017
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Notes: The instantaneous variances (vt) of different models are computed by using
the estimated parameter values in Table 4.3. The sub-figures in the last row show the
evolution of the one-day-ahead difference of the log VXX during the same period.



Chapter 5

Pricing S&P 500 Variance Futures

This chapter is joint work with J. Cao, X. Ruan and W. Zhang. In this chapter, we

incorporate jumps not only in the process S&P 500 index returns but also in the variance

process of our two-factor model. In addition, we allow the correlation between the

two jump processes and the time-varying mean of the variance process. The model is

described and explained in Section 5.2 and the subsequent section is about the derivation

of a formula for the VIX squared and integrated variance premium. In Section 5.4, we

derive a S&P 500 variance futures pricing formula based on the results of the previous

section. We then calibrate the models and analyze the calibration results, in Section 5.5.

At the end of this chapter, we conduct a comparison among performance of the models.

The proofs of the formulae are given in Appendix C.

5.1 Data

We select the S&P 500 variance future contracts which expire between 17 January 2014

and 18 December 2020. The trading period of the selected contracts covers about seven

and a half years from 24 June 2013 to 14 February 2020. Our sample consists of 83

variance future contracts in total, which is downloaded from the CBOE website. We

118
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filter out the entries that the number of days between issue date and trade date is less

than 90 days. It is very difficult to accurately estimate annualized realized variance of

the S&P 500 index returns if the observed periods are not long enough. After filtering,

42 variance futures contracts remain in our sample. A descriptive statistics summary of

the all selected contracts is reported in Table 5.1.

According to Table 5.1, the total number of business days between issue date and

final settlement date fluctuates from one variance contract to another. The range is from

105 to 755 days. The contracts that are settled in December of each year have a trading

period longer than those of contracts settled in the other periods of the year. The daily

average settle price varies between 113.77 and 441.92. Generally, the contracts with a

longer trading period have a higher daily average settle price, and vice versa. We also

find that the average settle price of the contracts matured in 2016 reaches to a highest

point at about 403.53.

Table 5.2 reports the descriptive statistics of the S&P 500 index, the VIX, the VIX

squared and the settle price of S&P 500 variance futures in terms of index level in Panel

A and in terms of the log levels in Panel B. In this table, only the logarithm of S&P

500 index displays negative skewness. In addition, the skewnesses of both of the index

and the log levels are not close to zero. Moreover, except for the S&P 500 index, the

kurtosises of others are greater than 3. The kurtosises of the VIX and the VIX squared

are higher than those of S&P 500 index and S&P 500 variance futures prices. Therefore,

we can conclude that distributions for the values of S&P 500 index, the VIX, the VIX

squared and the variance futures are asymmetry.

Then, we investigate the relationship between the variance futures prices and the

VIX squared across different years. In order to avoid cluttering in the figure, we select

six variance futures contracts whose trading periods are longer than 600 business days.

Figure 5.1 indicates that, overall, the S&P 500 variance futures prices of the selected

six contracts (Z15,Z16, Z17, Z18, Z19, and Z20) increase as the value of the VIX
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Table 5.2: Descriptive statistics of the index levels and log levels

S&P 500 VIX VIX2 VF S&P 500 VIX VIX2

Panel A: Index levels Panel B: log levels

Mean 2330.7632 14.9101 237.3767 339.4294 0.0005 -0.0002 -0.0004
Median 2175.4399 13.9500 194.6025 333.9756 0.0006 -0.0054 -0.0109
Std. 423.3635 3.8826 143.7013 117.5299 0.0081 0.0791 0.1582
Skewness 0.3836 1.6664 3.0137 0.5671 -0.5149 1.2116 1.2116
Kurtosis 2.0283 7.2992 18.2327 5.4451 6.6986 10.8514 10.8514
Min 1573.0900 9.1400 83.5396 15.4056 -0.0418 -0.2998 -0.5997
Max 3379.4500 40.7400 1659.7478 1560.2500 0.0484 0.7682 1.5365

This table shows the descriptive statistics of the index level and the logarithm of the S&P 500 in-
dex, the VIX, the VIX squared and variance futures prices. Std. is the abbreviation of the standard
deviation. The data are downloaded from the CBOE website: https://markets.cboe.com/us/futures/market-
statistics/historical-data and the Yahoo Fiance website: https://nz.finance.yahoo.com.

squared goes up. We also notice that there seems to be a non-linear relationship between

them. Next, we conduct a linear regression analysis to investigate further. It is well

known that R-squared and root mean squared error are the important measures of the

goodness of fit in this analysis. The values of R-squared for the most variance contracts

range from 60% to 19% and most of them are less than 50%. Combining with the

considerably large root mean squared errors and low value for R-squared, we believe

that the relationship between them are not linear.

5.2 Model Specifications

We price the S&P 500 variance futures based on the instantaneous variance of the S&P

500 index. The instantaneous variance is related to the squared VIX. Thus, we need

to build a model for the dynamics of the S&P 500 index first. Then, we can derive a

formula for the instantaneous variance from the model. The prominent features for the

dynamics of the S&P 500 index return have been discussed in the subsequent studies.

First, Bakshi et al. (1997) found the empirical evidence that the volatility of the index

returns changes stochastically and jumps occur in the index return process. Second,
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Figure 5.1: Variance futures prices vs. the VIX squared

0 200 400 600 800 1000

VIX2

0

500

1000

1500

2000

V
ar

ia
nc

e 
F

ut
ur

es
 P

ric
es

Z15

0 200 400 600 800

VIX2

0

500

1000

1500

2000

V
ar

ia
nc

e 
F

ut
ur

es
 P

ric
es

Z16

0 200 400 600 800

VIX2

0

500

1000

1500

2000

V
ar

ia
nc

e 
F

ut
ur

es
 P

ric
es

Z17

200 300 400 500 600 700

VIX2

0

500

1000

1500

V
ar

ia
nc

e 
F

ut
ur

es
 P

ric
es

Z18

0 200 400 600

VIX2

0

500

1000

1500

V
ar

ia
nc

e 
F

ut
ur

es
 P

ric
es

Z19

300 400 500 600

VIX2

0

500

1000

1500

V
ar

ia
nc

e 
F

ut
ur

es
 P

ric
es

Z20

Notes: Every sub-figure shows the relationship between the prices of a particular
variance futures contract and the VIX2. The subtitles, Z15, Z16, Z17, Z18, Z19, and
Z20, represent the codes of the contracts. For the descriptive statistics of each contract,
see Table 5.1.
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Eraker et al. (2003) observed that jumps contemporaneously appear in both of the

return and volatility processes, and these two processes are correlated. Third, a number

of literature (see Pan, 2002; Eraker, 2004; Lin, 2007; Andersen, Fusari & Todorov,

2015) pointed out that the jump intensity of these jump processes is time-varying and

state-dependent. Forth, the volatilities of the index returns stochastically revert to their

long-term mean level (e.g. Mencía & Sentana, 2013; Bardgett, Gourier & Leippold,

2019, etc.).

Inspired by the literature above, we allow correlated jumps in both of the return and

the variance processes. We also assume the variance mean to be stochastic. So we call

this model SVSMCJ. Now, let {lnSt}t≥0 be the process of the S&P 500 index log return

on a probability space with filtration (Ω,F ,{Ft}t≥0,P), where P refers to the physical

measure, such that

d lnSt = [a −ΛP
t k̄

P + ηSvt −
1

2
vt]dt +

√
vtdW

P
S,t + dJ

P
S,t,

dvt = κv (mt − vt)dt + σv
√
vtdW

P
v,t + dJ

P
v,t,

dmt = [κm (θm −mt) + ηmmt]dt + σm
√
mtdW

P
m,t,

(5.1)

where {vt}t≥0 is the process for variance of the return process; {mt}t≥0 represents the

stochastic long-term mean level of varince process; W P
S,t and W P

v,t are correlated Wiener

processes with covariance ρ; W P
m,t is also a Wiener process which is independent of

W P
S,t and W P

v,t; ηS is the risk premium for the stock; ηm are the diffusion risk premium

associated with {mt}t≥0; a is a constant; κv and κm accommodate reverting speeds; σv

and σm measure the volatilities of {vt}t≥0 and {mt}t≥0, respectively; and θm refers to

the long-term mean of {mt}t≥0. Morevoer, we specify the jump processes, {JP
S,t}t≥0

and {JP
v,t}t≥0 in Eq. (5.1), as compound Poisson processes with a jump intensity
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ΛP
t = λ

P
0 + λ

P
1vt + λ

P
2mt, such that,

JP
S,t =

Nt

∑
i=1

xPS,i, (5.2)

JP
v,t =

Nt

∑
i=1

xPv,i, (5.3)

where the process Nt measures the number of jumps in the index return and variance

processes; the jump size of variance process, xPv , follows an exponential distribution

with mean µP
v ; and the jump size (xPS) of {JP

S,t}t≥0 follows a normal distribution, which

is conditional on xPv , that is, xPS ∣xPv ∼ N(µP
J + ρJx

P
v , σ

2
J). According to Pan (2002), the

mean jump size related to the process of S&P 500 index return is given by

k̄P = E [exp(xPS) − 1] = exp (µP
J + σ

2
J/2) /(1 − ρJµ

P
v) − 1.

In addition, we have E[xPS] = µP
J + ρJµ

P
v and Var(xPS) = σ2

J + ρ
2
J(µ

P
v)

2. Then, the

correlation between xPS and xPv is calculated as ρJµP
v/

√
σ2
J + ρ

2
J(µ

P
v)

2.

According to the financial derivatives pricing theory, we can find a risk-neutral

measure Q whcih is equivalent to P, if the market is efficient. The risk-neutral dynamics

of {lnSt}t≥0 is given by

d lnSt = [r − q −ΛQ
t k̄

Q −
1

2
vt]dt +

√
vtdW

Q
S,t + dJ

Q
S,t,

dvt = [κv (mt − vt) + ηvvt]dt + σv
√
vtdW

Q
v,t + dJ

Q
v,t,

dmt = κm (θm −mt)dt + σm
√
mtdW

Q
m,t,

(5.4)

where ηv is the risk premium related to the diffusion component of {vt}t≥0. Similarly,

the jump intensity can be expressed as ΛQ
t = λQ0 + λ

Q
1 vt + λ

Q
2mt. The distributions of the

jump size for {JQ
v,t}t≥0 and {JQ

S,t}t≥0 are given by xQv ∼ exp(µQ
v ) and xQS ∣x

Q
v ∼ N(µQ

J +

ρJx
Q
v , σ2

J), respectively. So, the expectation and variance of xQS are E[xQS ] = µ
Q
J + ρJµ

Q
v
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and Var(xQS) = σ2
J + ρ

2
J(µ

Q
v )

2, respectively. The Q-mean jump size associated with

the index return process is of the form k̄Q = exp (µQ
J + σ

2
J/2) /(1 − ρJµ

Q
v ) − 1. The

jump-related risk premiums for the index return (ηSJ ) and the variance (ηvJ ) are defined

by

ηSJ = ΛP
t (µ

P
J + ρJµ

P
v) −ΛQ

t (µQ
J + ρJµ

Q
v ) , (5.5)

ηvJ = ΛP
t µ

P
v −ΛQ

t µ
Q
v . (5.6)

5.3 VIX Squared and Integrated Variance Premium

The CBOE volatility index (VIX) is defined as a sum of stock call and put options’

prices. To derive a formula for the VIX squared based on our model, we follow the

methodology which is applied by Lin (2007) and Duan and Yeh (2010). Then, the VIX

squared can be computed as the expectation of the log contract under Q, that is,

(
VIXt

100
)

2

=
2

τ
[∫

F

0

dY

Y 2
P (Y ) + ∫

∞

F

dY

Y 2
C(Y )] = −

2

τ
EQ
t [ln

ST
F

] , (5.7)

where Y represents the strike price of the options, P (Y ) and C(Y ) denote the forward

prices of call and put options, respectively, the forward price of a stock is defined by

F = St exp (r − q) τ and τ = 30/365. Thus, based on Eq. (5.4), the formula for the VIX

squared can be derived as

(
VIXt

100
)

2

=
2

τ
[
1

2
+ λQ1 (k̄Q − µQ

J − ρJµ
Q
v )]E

Q
t [∫

t+τ

t
vudu]

+ 2λQ0 (k̄Q − µQ
J − ρJµ

Q
v ) +

2λQ2
τ

(k̄Q − µQ
J − ρJµ

Q
v )E

Q
t [∫

t+τ

t
mudu] .

(5.8)

Then, we substitute EQ
t [∫

t+τ
t vudu] and EQ

t [∫
t+τ
t mudu] into the above equation, and

obtain the following proposition.
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Proposition 5.3.1 Under the given model (5.4), the VIX squared at time t can be

expressed as a linear function of mt and vt:

(
VIXt
100

)
2

= αQ
VIXmt + β

Q
VIXvt + γ

Q
VIX, (5.9)

where αQ
VIX, βQ

VIX and γQVIX are given by

αQ
VIX =

αQ
v

τ
+

2

τ
(k̄Q − µQ

J − ρJµ
Q
v ) (α

Q
v λ

Q
1 + α

Q
mλ

Q
2 ) ,

βQ
VIX =

βQ
v

τ
[1 + 2λQ1 (k̄Q − µQ

J − ρJµ
Q
v )] ,

γQVIX = 2 (k̄Q − µQ
J − ρJµ

Q
v )(λ

Q
0 +

γQv
τ
λQ1 +

γQm
τ
λQ2 ) +

γQv
τ
.

where τ = 30/365, αQ
m, αQ

v , βQ
v , γQm and γQv are given as follows:

αQ
m = (1 − eκm(t−T ))/κm,

αQ
v =

κv + λ
Q
2 µ

Q
v

bQ − κm
(αQ

m − βQ
v ) ,

βQ
v =

1

bQ
[1 − eb

Q(t−T )] ,

γQm = θm [(T − t) − αQ
m] ,

γQv =

⎡
⎢
⎢
⎢
⎢
⎣

λQ0 µ
Q
v

bQ
−
κmθm (κv + λ

Q
2 µ

Q
v )

bQ(bQ − κm)

⎤
⎥
⎥
⎥
⎥
⎦

(T − t − βQ
v ) +

γQm (κv + λ
Q
2 µ

Q
v )

bQ − κm
.

Proof. See Appendix C.1.

The variance risk premium (VRP) is the difference of the quadratic variation (QV)

for the log index return process under P and Q (Bardgett et al., 2019). The VRP from

time t to T is defined by

VRPt,T =
1

T − t
(EP

t [QVt,T ] −EQ
t [QVt,T ]) . (5.10)
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According to Carr and Wu (2009), the QV of the jump-diffusion model within the time

interval [t, T ] is given by

QVt,T = ∫

T

t
vudu +

NT

∑
i=Nt

(xS,i)
2. (5.11)

Then, the expectations of QVt,T under P and Q can be calculated as

EP
t [QVt,T ] = α

P
QVmt + β

P
QVvt + γ

P
QV, (5.12)

EQ
t [QVt,T ] = α

Q
QVmt + β

Q
QVvt + γ

Q
QV, (5.13)

where the coefficients αQ
QV, βQ

QV, γQQV, αP
QV, βP

QV and γPQV are given as follows:

αQ
QV = [σ2

J + ρ
2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
] (λQ1 α

Q
v + λ

Q
2 α

Q
m) + αQ

v ,

βQ
QV = βQ

v {1 + λQ1 [σ2
J + ρ

2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
]} ,

γQQV = [σ2
J + ρ

2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
] [λQ0 (T − t) + λQ1 γ

Q
v + λ

Q
2 γ

Q
m] + γQv ,

αP
QV = [σ2

J + ρ
2
J(µ

P
v)

2 + (µP
J + ρJµ

P
v)

2
] (λP1α

P
v + λ

P
2α

P
m) + αP

v ,

βP
QV = βP

v {1 + λP1 [σ2
J + ρ

2
J(µ

P
v)

2 + (µP
J + ρJµ

P
v)

2
]} ,

γPQV = [σ2
J + ρ

2
J(µ

P
v)

2 + (µP
J + ρJµ

P
v)

2
] [λP0(T − t) + λP1γ

P
v + λ

P
2γ

P
m] + γPv .

Thus, the VRP measures the average difference between the realized variance and

the variance swap strike. In other words, an investor is willing to pay the difference to

hedge the future variation of the index return. If we plug Eq. (5.12) and Eq. (5.13) into

Eq. (5.10), we can gain the following formula for the VRP,

VRPt,T =
1

T − t
[(αP

QV − α
Q
QV)mt + (βP

QV − β
Q
QV) vt + (γPQV − γ

Q
QV)] . (5.14)



Chapter 5. Pricing S&P 500 Variance Futures 128

5.4 Variance Futures Valuation

In contrast to the old version of variance futures, the total time period for computing the

variance of the S&P 500 index is not fixed at 3-month or 12-month. Now, we assume

that an S&P 500 variance futures contract is issued at time t0 and settled at time T .

According to the contract specification of the S&P 500 variance futures on the CBOE

website1, we evaluate the variance futures at the current time t based on two parts: the

historical part (t0, t] and future part (t, T ), see Figure 5.2. The price for the historical

part is calculated from the annualized realized variance (RV) up to the date, and the

price for future part is calculated as the implied variance strike (IV) during the period

between current date and the expire date. Then, the price of the variance futures can be

expressed as (Biscamp & Weithers, n.d.),

variance future price =
(N − 1)RV × 10,000 + (Ne −N)IV

Ne − 1
, (5.15)

where N is the total number of the S&P 500 index prices which are observed from t0 to

t; Ne is the total number of the days between the issue date and the settlement date; and

RV is defined in Zhang and Huang (2010) as

RV = 252 ×
N−1

∑
i=1

R2
i

N − 1
, (5.16)

where Ri = ln(Si+1/Si) is the log return of the S&P 500 index.

Let F T
t be the price of variance future at time t. Then, it can be formulated as

F T
t

10,000
=

1

T − t0
[(t − t0)RV +EQ

t [QVt,T ]] . (5.17)

From Eq. (5.17), we can have the following proposition which establishes the price

1http://www.cboe.com/products/futures/va-s-p-500-variance-futures/contract-specifications
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Issue date

t0

Trade date

t

Settlement date(Maturity date)

T

Realized variance Implied variance strike

Figure 5.2: S&P 500 variance futures

formula for the S&P 500 variance futures and the relationship between the variance

future and the VIX.

Proposition 5.4.1 Consider a variance futures contract issued at t0 and expired at T .

Under the given model (5.4), the price of the S&P 500 variance futures at current time

t is formulated as

F T
t

10,000
= (

t − t0
T − t0

)RV +
1

T − t0
(αQ

QVmt + β
Q
QVvt + γ

Q
QV) ,

= (
t − t0
T − t0

)RV +
1

T − t0
[ξ∗ (

VIXt
100

)
2

+ (αQ
QV − ξ

∗αQ
VIX)mt + (γQQV − ξ

∗γQVIX)] ,

(5.18)

where (VIXt/100)
2 is given in Eq. (5.7); ξ∗ = βQ

QV/β
Q
VIX; αQ

VIX, βQ
VIX and γQVIX are given

in Proposition 5.3.1; and αQ
QV, βQ

QV, and γQQV have the forms of

αQ
QV = [σ2

J + ρ
2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
] (λQ1 α

Q
v + λ

Q
2 α

Q
m) + αQ

v , (5.19)

βQ
QV = β

Q
v {1 + λQ1 [σ2

J + ρ
2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
]} , (5.20)

γQQV = [σ2
J + ρ

2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
] [λQ0 (T − t) + λQ1 γ

Q
v + λ

Q
2 γ

Q
m] + γQv , (5.21)
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where αQ
m, αQ

v , βQ
v , γQm and γQv are given as follows

αQ
m = (1 − eκm(t−T ))/κm,

αQ
v =

κv + λ
Q
2 µ

Q
v

bQ − κm
(αQ

m − βQ
v ) ,

βQ
v =

1

bQ
[1 − eb

Q(t−T )] ,

γQm = θm [(T − t) − αQ
m] ,

γQv =

⎡
⎢
⎢
⎢
⎢
⎣

λQ0 µ
Q
v

bQ
−
κmθm (κv + λ

Q
2 µ

Q
v )

bQ(bQ − κm)

⎤
⎥
⎥
⎥
⎥
⎦

(T − t − βQ
v ) +

γQm (κv + λ
Q
2 µ

Q
v )

bQ − κm
.

Proof. See Appendix C.2.

5.5 Model Calibration and Estimation Results

In this section, we employ the joint estimation method which combines the MLE with

the UKF. This method has been proved to work efficiently with the jump diffusion

model which contains the diffusion latent processes in Chapter 3 and Chapter 4. As

mentioned in previous two chapters, we conduct the Euler approximation on the latent

process {mt}t≥0 under P, see Eq. (5.1), before applying the UKF. The discrete version

of {mt}t≥0 is written as,

∆mt = [κm (θm −mt) + ηmmt]∆t + σm
√
mt∆tεt, (5.22)
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where εt denotes a standard normal random variable. Next, we define the measurement

function of the time t as

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎝
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, (5.23)

whereM counts the number of variance futures contracts which are traded at time t, F Ti
t

and F̂ Ti
t , for i = 1,2, . . . ,M , represent the market data and estimated variance futures

prices, respectively; e1
t , e

2
t , . . . , e

M
t are independent standard normal random variables,

and σe captures the average size of estimation errors. For the detailed information about

the joint method implementation, see Section 2.3.3 and Section 3.4.1.

In the calibration, we use the joint data set, including the S&P 500 index, the

VIX and the variance futures data. The summary statistics of the selected data has

been described in Section 5.1. We split the data into in-sample and out-of-sample.

The in-sample data cover the period from 24 June 2013 to 31 October 2016 and the

out-of-sample data cover period from 01 November 2016 to 14 February 2020. The

average variance futures prices of in-sample and out-of-sample are 380.24 and 306.23,

respectively. The in-sample data are used for the parameter estimation while the out-of-

sample data are used for the model performance validation.

We not only calibrate the most complicated model (SVSMCJ) but also the simplified

version of the SVSMCJ model to investigate how the different model specifications

impact on the model performance. First, by removing the long-term mean process

{mt}t≥0 from the SVSMCJ model, we gain the SVSCJ model which is the best model in

Lin (2007) and Eraker (2004). Second, by restricting λP2 = 0 and λQ2 = 0 in the SVSMCJ

model, we obtain the state-dependent jump intensity as λP0 + λ
P
1vt and λQ0 + λQ1 vt,
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respectively. This model is called SVSMCJ-R. Third, by letting ρJ = 0, we set the two

jump processes (the one is in the return process and the other is in the variance process)

in the SVSMCJ model to be uncorrelated, so we call this model SVSMJ. The estimation

results of these four models are reported in Table 5.3.

Table 5.3: Parameter estimates

Parameters SVSCJ SVSMJ SVSMCJ-R SVSMCJ

ρ -0.2913 -0.5990 -0.8232 -0.6402
(0.0021) (0.0035) (0.0029) (0.0057)

κv 5.0103 6.7582 8.5001 7.0064
(0.1350) (0.8508) (0.5164) (0.1848)

σv 0.1877 0.3049 0.0590 0.3520
(0.0005) (0.0020) (0.0008) (0.0007)

ηv -2.9873 -1.9803 -2.4728 -5.6115
(0.1350) (0.8487) (1.0318) (0.1863)

κm 0.1849 4.8718 0.0822
(1.0435) (0.3594) (0.0298)

θm 0.1334 0.0025 0.0003
(0.0149) (0.0473) (0.0017)

σm 0.2422 0.2152 0.0047
(0.4530) (0.0642) (0.0245)

ηm -0.1161 -0.1716 0.2828
(0.5626) (1.9625) (0.4482)

λQ0 0.0088 0.2212 0.0035 0.0000
(0.0061) (0.2218) (0.0167) (0.0035)

λQ1 6.1212 2.7393 2.5135 1.1716
(0.1138) (1.2604) (0.5571) (0.0990)

λQ2 3.9805 20.9468
(3.1681) (0.4534)

µQ
v 0.8631 -0.8674 1.3193 4.0525

(0.0257) (0.1253) (0.0785) (0.1727)
µQ
J -0.1257 -0.1602 0.1096 -0.1136

(0.0559) (0.0855) (0.4750) (0.2238)
ρJ -0.9839 -0.9966 -0.9423

(0.0338) (0.0669) (0.1558)
σJ 0.0219 0.0893 0.0001 0.4264

(0.3245) (0.1629) (0.2309) (0.6774)
σe 0.0086 0.0082 0.0080 0.0072

(0.0059) (0.0029) (0.0046) (0.0033)

The model parameters are estimated through the joint estimation method by using the in-sample data from
24 June 2013 to 31 October 2016. The standard errors of the estimators are presented in parentheses.

According to Table 5.3, the estimated values of ρ for the models with mean factor

(the SVSMJ, SVSMCJ-R, and SVSMCJ models) are smaller than those of the SVSCJ
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model which does not contain this factor. So, the stochastic mean factor affects the

degree of correlation between the S&P 500 index return and variance processes. In

addition, this factor makes the mean-reverting speed for the {vt}t≥0 much faster, as

we can see that the mean reversion coefficient κv increases from 5.01 in the SVSCJ

model to over 6.7582 in the other three models. Further, the estimates of the premium

parameter, ηv, are negative across all the models, which are consistent with the finding

in Bardgett et al. (2019). The result implies that the half-life (between around 30 and

50 days) under P is shorten than that under Q. In addition, there is a relatively large

fluctuation in the estimated values for the volatility parameter σ, which is from 0.06 to

0.35.

Furthermore, we also find that the two jump processes in the SVSCJ, SVSMCJ-R

and SVSMCJ models are significantly negatively correlated as the estimators of ρJ are

very close to −1. Finally, the mean-reverting parameter κm is estimated at 4.87 in the

SVSMCJ-R model. In contrast, the estimators of κm are much smaller in the SVSMJ

and SVSMCJ models.

5.6 Empirical Results Analysis

In this section, we focus on analyzing both the in-sample and out-of-sample performance

to figure out the “true” behaviour of underlying asset returns in accordance with the

selected performance measure criteria. The two selected performance measure criteria

are the root mean squared error (RMSE) and the mean absolute percentage error

(MAPE).

5.6.1 Criteria for Performance Measure

The RMSE has been frequently used for measuring the model performance in the

literature (e.g. Park, 2016; Du & Luo, 2019; Bardgett et al., 2019, etc.). It is the
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standard deviation of the estimates errors. In other words, it is the average squared

difference of the real market value (F Ti
t ) and model estimated value (F̂ Ti

t ), that is,

RMSEs =

¿
Á
ÁÀ 1

N

N

∑
t=1

[
1

Mt

Mt

∑
i=1

(F Ti
t − F̂ Ti

t )
2
], (5.24)

where N measures the total number of business days in the sample, and Mt is the total

number of variance futures contracts which are traded on day t.

The MAPE is another important criterion for measuring the accuracy of the model

estimation in terms of percentage. It is defined by

MAPEs =
1

n

n

∑
i=1

RRRRRRRRRRR

(F Ti
t − F̂ Ti

t )

F Ti
t

RRRRRRRRRRR

, (5.25)

where n is the total number of the entries in the sample, that is n = ∑N
t=1Mt.

5.6.2 Model Performance Comparison

This sub-section focuses on comparing the in-sample and out-of-sample performance in

pricing the S&P 500 variance futures based on the RMSE and MAPE. Table 5.4 reports

the RMSEs and MAPEs of the SVSCJ, SVSMJ, SVSMCJ-R and SVSMC models,

including the overall estimated errors and the estimated errors for the S&P 500 variance

futures whose day-to-maturity is less than 180 business days or greater than or equal to

180 business days, respectively.

The results in Table 5.4 show that the most complicated model (SVSMCJ) leads

to the smallest overall RMSEs and MAPEs for both in-sample data (RMSE 0.0072

and MAPE 11.78%) and out-of-sample data (RMSE 0.0116 and MAPE 34.69%), thus

it can capture the most economic information of the variance futures prices among

these four models. Further, the models with the mean factor outperform the model

without this factor (SVSCJ) under all categories in Table 5.4. The implication of this
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finding is that the stochastic mean of the volatility process is an important feature in the

dynamics of the S&P 500 index returns. Besides, from this table, we also observe that

the overall RMSE and MAPE drop by 0.0011 and 1.63%, respectively, for the in-sample

and 0.0014 and 2.81%, respectively, for the out-of-sample if the correlation between two

jump processes is not considered. Thus, we can conclude that the correlation between

jumps also cannot be ignored in the model. Moreover, our four stochastic volatility

models perform better for the S&P 500 variance futures with a longer time-to-maturity

(τ > 180) than for those with a relatively shorter time-to-maturity (τ ≤ 180), during both

of the in-sample and out-of-sample periods.

Table 5.4: Root mean squared errors and mean absolute percentage errors

Measure criteria Model Overall
Days to Maturity

< 180 ≥ 180

In-sample
RMSEs SVSCJ 0.0086 0.0109 0.0051

SVSMJ 0.0083 0.0108 0.0043
SVSMCJ-R 0.0079 0.0103 0.0043
SVSMCJ 0.0072 0.0095 0.0036

MAPEs SVSCJ 0.1507 0.2528 0.0901
SVSMJ 0.1341 0.2349 0.0698
SVSMCJ-R 0.1271 0.2226 0.0664
SVSMCJ 0.1178 0.2086 0.0591

Out-of-sample
RMSEs SVSCJ 0.0130 0.0141 0.0117

SVSMJ 0.0125 0.0143 0.0099
SVSMCJ-R 0.0121 0.0138 0.0099
SVSMCJ 0.0116 0.0138 0.0084

MAPEs SVSCJ 0.3916 0.5074 0.2581
SVSMJ 0.3750 0.5153 0.2132
SVSMCJ-R 0.3628 0.4935 0.2122
SVSMCJ 0.3469 0.4948 0.1763

The RMSEs and MAPEs are computed in accordance with Eq. (5.24) and Eq. (5.25), respectively, by
using the estimated results in Table 5.3 in Section 5.5. The in-sample RMSE and MAPE are based on the
period from 24 June 2013 to 31 October 2016. The out-of-sample RMSE and MAPE are based on the
period from 01 November 2016 to 14 February 2020.

Next, we explore the model performance for a particular variance futures contract

during the whole sample period. We select three variance contracts (Z15, Z18 and Z19)
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which have relatively longer trading periods. Figure 5.3 provides an insight into the

evolution of the daily estimated settle prices for the S&P 500 variance futures based on

the four models during the period between 17 January 2014 and 18 December 2020.

In each plot in Figure 5.3, the solid blue curve represents the market data. We observe

that the four models have similar performance in general, but we still can tell that the

estimated prices based on the SVSMCJ model fit the market data best. On the other

hand, the four models do not capture the feature of rapid declines in the data, for the

period between March 2018 and December 2018 in sub-figure Z18 as well as the period

between 2019 and 2020 in sub-figure Z19, but they can capture the movement patterns

of the market data.
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Figure 5.3: Market data vs. estimated data
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Notes: Each sub-figure shows the comparison of the variance futures market prices
and estimated prices of a particular variance futures contract (Z15, Z18 and Z19) based
on the SVSCJ, SVSMJ, SVSMCJ-R and SVSMCJ models and using the parameter
estimators results in Table 5.3.



Chapter 6

Conclusion and Future Work

In this thesis, we aim to construct models which can capture characteristics of the

dynamics of the indexes better and derive pricing formulae for the volatility derivatives

from the proposed models. In this chapter, we summarize the major results of our

research and give some suggestions which can be possible used to improve our works

in the future.

6.1 Conclusion

We conduct an extensive analysis of the data about the VIX, VIX derivatives, the VXX,

VXX options and variance futures. Then, we make a comprehensive performance

comparison among different models to identify what kind of the model specifications

can capture the characteristics of the market data best. To this end, we propose the

models with different jump structures and specifications of the long-term mean process

for the variance process. Then, we use the joint data set to calibrate our models by using

the joint estimation method which combines the MLE and the UKF, to gain the desirable

estimation results. The periods of the selected samples cover two serious financial crises,

the European debt crisis and the Russian financial crisis, and fast economic growth

138
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since the deep recession. In other words, the selected periods include both tranquility

and turbulence periods, which is remarkably helpful to test how well the model can fit

the real economic circumstances.

Although substantial progress has been made in applications of finite-activity jump

processes in pricing volatility derivatives (e.g. Lin, 2007; Psychoyios & Dotsis, 2010;

Mencía & Sentana, 2013; Park, 2016), it is unknown whether more generalized jump

processes, infinite-activity jump Lévy processes, can be employed to improve the model

performance in this field. It is interesting to investigate this because these types of

processes can describe the phenomena where jumps frequently occur during a finite

time interval. These phenomena have attracted more and more attentions in the current

research. To fill this gap, we introduce four representative infinite-activity jump Lévy

processes – variance gamma process, normal inverse Gaussian process and two tempered

stable processes – into our models. In addition, we not only investigate the performance

of infinite-activity jumps but also the double jumps in pricing volatility derivatives.

Furthermore, we explore the importance of time-varying drift of the variance process.

In Chapter 3, we focus on modelling VIX index and compare the performance

of our two-factor infinite-activity jump model with the OU-VJ model which is the

best model in Mencía and Sentana (2013). In addition, we investigate whether having

an infinite-activity jump is a feature of the VIX dynamics based on the performance

analysis of the VIX derivatives pricing. Our empirical results provide critical evidence

that the infinite-activity jump models (OU-VG and OU-NIG) overall outperform the

finite-activity models (OU-VJ and OU-CP), hence infinite-activity jumps cannot be

ignored in pricing the VIX derivatives. The presence of infinite-activity jumps implies

that not only big jumps but also frequent small jumps occur in the VIX derivatives

market. From the economic aspect, Lévy-type jump structures can accommodate

the high-frequency occurrences of small events and the microstructure of the VIX

derivatives market, including some rare events, such as a financial crisis. We also notice
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that the advantage of the infinite-activity jump structures is highlighted in pricng VIX

options but not in pricing the VIX futures.

Between two different infinite-activity models, we observe that the OU-NIG model

is superior to the OU-VG model in general, which implies that small events tend to

occur at a stable arrival rate. Notably, the OU-NIG model has better performance in

pricing VIX derivatives with relatively short maturity which is less than or equal to 90

days, while the OU-VG model performs better in pricing VIX derivatives whose time

to maturity is greater than 90 days.

In Chapter 4, more types of infinity-activity jumps, including a normal tempered

stable process (NIG) and two tempered stable processes (TS and GTS), are examined

in formulating the VXX options prices. According to the comparison of the model

performance, we gain the following three main conclusions. First, we find that the

infinite-activity jump structures (TS, NIG and GTS) are significantly superior to the

finite-activity jump structure (MJ) in pricing VXX options across all the degrees of

moneyness and the ranges of the maturities during the whole sample periods, which is

similar to the conclusion obtained in Chapter 3. In addition, the infinite activity jump

process with an infinite variation sample path (NIG or GTS) performs similarly to that

with a finite variation sample path (TS) in this case. According to our observations, the

in-sample pricing errors for the SV-NIG and SV-GTS models are smaller than that for

the SV-TS model, but this is not the case for the out-of-sample pricing errors.

Second, the stochastic volatility models can capture the feature of the volatility

smirk well when the time-to-maturity is less than or equal to 90 days. For estimating

the prices of VXX options with a longer time-to-maturity, the infinite-activity jump

models can capture the dynamics of the implied volatility better than the finite-activity

model or models with no jumps for both of the in-sample and out-of-sample periods.

Third, our research results indicate that the diffusion component plays an important
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role in modelling the dynamics of the VXX log returns, even if there is an infinite-

activity jump component in the model. In addition, the jump components yield smaller

variance and the variance series are sensitive to the variation of the VXX ETN price.

In Chapter 5, we investigate how a double jump structure affects the pricing perform-

ance of S&P 500 variance futures and what kind of the double jump specification can

capture the dynamics of its underlying asset returns (S&P 500 index) best. Moreover,

we allow the long-term mean of the variance process to be a mean-reverting process

(CIR process) in the model. Our empirical studies show that the SVSMCJ model

yields the smallest RMSEs and MAPEs, which are calculated based on the in- and

out-of-sample data. Thus, we believe that jumps occur in both of the S&P 500 index

returns and its variance process. In addition, the long-term mean of the variance process

is time-varying. Moreover, the intensities of the jumps depend on all latent processes

(the variance and long-term mean processes).

Furthermore, our variance futures pricing formula yields more accurate estimation

results for the variance futures contracts with the time-to-maturity more than or equal

to 180 days than those with time-to-maturity less than 180 days. However, none of our

models can capture suddenly drops well in the prices of the S&P 500 variance futures.

6.2 Future Work

The research presented in this thesis has raised some new issues. Many different

experiments and algorithm implementations have been left for the future due to the

time and resource limitations. In the future research, it is worth to conduct deeper level

analysis of the mechanisms in volatility derivatives. To address this point, we will try to

use new theoretical methods and new available resources. The possible future works

are listed below,
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1. In Chapter 3, although our infinite-activity jump models do not show a distinct ad-

vantage in pricing VIX derivatives by using weekly data, more evidence indicates

that their performance might be remarkably improved when high-frequency data

are applied. For example, Eberlein and Özkan (2003) found that financial asset

prices become more volatile on daily data or intraday data. In the future, we may

use high-frequency data to conduct more empirical research on infinite-activity

jump models.

2. The VXX, as an ETN, is a senior, unsecured, insubordinated debt security issued

by Barclays Bank. We believe that our model can be extended to more sophistic-

ated settings, for example, considering the instantaneous default rate following

Carr and Wu (2010). If we assume that the arrival rate of a default event follows

the CIR process on the filtered probability space (Ω,F ,Q), denoted by {λt}t≥0,

then Model (4.1) can be extended to

dxt = (rt + λt −
1

2
vt)dt +

√
vtdW

Q
t,1,

dvt = κv (θv − vt)dt + σv
√
vtdW

Q
t,2,

dλt = κλ (θλ − λt)dt + σλ
√
λtdW

Q
t,3,

(6.1)

where the process {λt}t≥0 is independent of the other processes in the model.

Model (6.1) can be rewritten in the form of

xT = xt + rtτ + T
λ
t −

1

2
Tt +W

Q
Tt,1, (6.2)

where τ = T − t; and Tt and T λt are the random time clocks which are the

non-decreasing functions. They are defined by

Tt = ∫

T

t
vsds, and T λt = ∫

T

t
λsds.
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So, the characteristic function of Model (6.1) can be expressed in the form of

f(u; t, T, xt, vt,Θ) = EQ
t [exp(−∫

T

t
λsds + iuxT)] . (6.3)

Then, substituting Eq. (6.2) into the above characteristic function, we have

f(u) = EQ
t [exp(−T λt + iurtτ + iuT

λ
t −

1

2
iuTt + iuW

Q
Tt,1)] , (6.4)

where f(u) is the abbreviation of f(u; t, T, xt, vt,Θ). Now, we define a new

complex-valued measure M such that

dM
dQ

= exp(iuWQ
Tt,1 +

1

2
u2Tt) .

Under M, the diffusion term of {λt}t≥0 remains unchanged and the drift term

of {vt}t≥0 is adjusted to βM = κvθv − (κv − iuσvρ)vt. For simplicity, we let

b = κv − iuσvρ. For more details about this change, see Appendix B.3. We assume

that the process {λt}t≥0 is uncorrelated to the Wiener process in Model (4.1).

Then, we obtain

f(u) = exp (iuxt + iurtτ)EM
t [−∫

T

t
αy⊺sds] , (6.5)

where ys = [λs, vs], α = [αλ, αv], αλ = 1 − iu and αv = 1
2 (iu + u2). Finally, we

can gain the characteristic function f(u) in the form of

f(u) = exp (iuxt + iurtτ) exp [−ψ0(τ) − ψλ(τ)λt − ψv(τ)vt] , (6.6)
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where ψ0(τ), ψv(τ) and ψλ(τ) can be solved from the following ordinary differ-

ential equations,

ψ′λ(τ) = αλ − κλψλ(τ) −
1

2
σ2
λψ

2
λ(τ),

ψ′v(τ) = αv − bψv(τ) −
1

2
σ2
vψ

2
v(τ),

ψ′0(τ) = −κλθλψλ(τ) − κvθvψv(τ),

(6.7)

with initial condition ψ0(0) = 0, ψv(0) = 0 and ψλ(0) = 0. Solving the Eq. (6.7),

we get,

ψλ(τ) =
2αλ [exp (−

√
∆λτ) − 1]

(κλ −
√

∆λ) [exp (−
√

∆λτ) − 1] − 2
√

∆λ

, (6.8)

ψv(τ) =
2αv [exp (−

√
∆vτ) − 1]

(b −
√

∆v) [exp (−
√

∆vτ) − 1] − 2
√

∆v

, (6.9)

and

ψ0(τ) =
κλθλ
σ2
λ

{2 ln [1 −
κλ −

√
∆λ

2
√

∆λ

(exp(−
√

∆λτ) − 1)] − (κλ −
√

∆λ) τ}

+
κvθv
σ2
v

{2 ln [1 −
b −

√
∆v

2
√

∆v

(exp(−
√

∆vτ) − 1)] − (b −
√

∆v) τ} ,

(6.10)

where ∆λ = κ2
λ + 2σλαλ and ∆v = κ2

v + 2σvαv. Then, the option price formulae

can be derived based on characteristic function.

In addition, we can further study whether jumps occur in the VXX return process,

or its variance process or both of them.

3. The MLE conjoint with UKF can not be applied for estimating the latent processes

with finite-activity jumps or infinite-activity jumps. to improve the calibration

performance, we can try to employ the particle filter which has been used in

Bardgett et al. (2019) to replace the UKF.
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Appendix A

Pricing VIX Derivatives with

Infinite-Activity Jumps

A.1 Proof of Proposition 3.2.1

Under the given model in Eq. (3.1), according to Ito’s lemma, the characteristic function

f(t, T, xt,mt, vt;u) of {xt}t≥0 satisfies the following equation:

df =
∂f

∂t
dt +

∂f

∂x
dxc +

∂f

∂m
dmc +

∂f

∂v
dvc +

∂2f

∂x∂m
dxcdmc +

∂2f

∂x∂v
dxcdvc

+
∂2f

∂m∂v
dmcdvc +

1

2
[
∂2f

∂x2
(dxc)2 +

∂2f

∂m2
(dmc)2 +

∂2f

∂v2
(dvc)2]

+ ∫
∣y∣<1

[f(t, T, xt− + y,mt, vt;u) − f(t, T, xt− ,mt, vt;u) − y
∂f

∂x
]ν(dy)dt

+ ∫
R
[f(t, T, xt− + y,mt, vt;u) − f(t, T, xt− ,mt, vt;u)]µ

L(dy, dt),

(A.1)

152



Appendix A. Pricing VIX Derivatives with Infinite-Activity Jumps 153

where c represents the continuous part in a process. We allow the correlation between

the process {xt}t≥0 and the process {vt}t≥0, so Eq. (A.1) can be converted to

df ={
∂f

∂t
+ κ (m − x)

∂f

∂x
+ κm(θm −m)

∂f

∂m
+ κv(θv − v)

∂f

∂v
+ ρσvv

∂2f

∂x∂v

+
1

2
[v
∂2f

∂x2
+ σ2

m

∂2f

∂m2
+ σ2

vv
∂2f

∂v2
]}dt +

√
v
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dW x

t + σm
∂f
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dWm

t + σv
√
v
∂f

∂v
dW v

t

+ ∫
∣y∣<1

[f(t, T, xt− + y,mt, vt;u) − f(t, T, xt− ,mt, vt;u) − y
∂f

∂x
]ν(dy)dt

+ ∫
R
[f(t, T, xt− + y,mt, vt;u) − f(t, T, xt− ,mt, vt;u)]µ

L(dy, dt).

(A.2)

We assume that the characteristic function has an exponential-affine form, as mentioned

in Eq. (3.2). Thus, we have

df

f
=[ − ψ

′
0(τ) − xψ

′
x(τ) −mψ

′
m(τ) − vψ

′
v(τ) + κ(m − x)ψx(τ)

+ κm(θm −m)ψm(τ) + κv(θv − v)ψv(τ) + ρσvvψx(τ)ψv(τ)

+
1

2
(vψ2

x(τ) + σ
2
mψ

2
m(τ) + σ2

vvψ
2
v(τ)) + ∫

∣y∣<1
(eyψx(τ) − 1 − yψx(τ))ν(y)]dt

+ (
√
vψx(τ)dW

x
t + σmψm(τ)dWm

t + σvψv(τ)dW
v
t )

+ ∫
R
(eyψx(τ) − 1)µL(dy, dt).

(A.3)
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By taking expectation with respect to the risk-neutral measure Q for both sides of Eq.

(A.3), we have,

EQ
t [
df

f
] =[ − ψ

′
0(τ) − xψ

′
x(τ) −mψ

′
m(τ) − vψ

′
v(τ) + κ(m − x)ψx(τ)

+ κm(θm −m)ψm(τ) + κv(θv − v)ψv(τ) + ρσvvψx(τ)ψv(τ)

+
1

2
(vψ2

x(τ) + σ
2
mψ

2
m(τ) + σ2

vvψ
2
v(τ)) + ∫

∣y∣<1
(eyψx(τ) − 1 − yψx(τ))ν(y)

+ ∫
R
(eyψx(τ) − 1)ν(dy)]dt.

(A.4)

We know that EQ
t [df] = 0, then we can get the following ordinary differential equations,

ψ
′
0(τ) = κmθmψm(τ) + κvθvψv(τ) +

1

2
σ2
mψm(τ)2 − θJψx(τ) +ΨJ(−iψx(τ)), (A.5)

ψ
′
x(τ) = −κψx(τ), (A.6)

ψ
′
m(τ) = κψx(τ) − κmψm(τ), (A.7)

ψ
′
v(τ) = −κvψv(τ) + ρσvψx(τ)ψv(τ) +

1

2
ψ2
x(τ) +

1

2
σ2
vψv(τ)

2, (A.8)

where

ΨJ(−iψx(τ)) = θJψx(τ) + ∫
R
(eyψx(τ) − 1 − ψx(τ)y1∣y∣<1)ν(dy),

and θJ = αλ for the OU-VG model or θJ = βλ2 for the OU-NIG model. Applying the

initial conditions, ψx(0) = iu and ψm(0) = 0, Eq. (A.6) and Eq. (A.7) can be solved

analytically with closed form solutions as given in Proposition 3.2.1. Generally, Eq.

(A.5) and Eq. (A.8) can only be solved numerically.
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A.2 UKF Method and Test

We use the UKF method to estimate the latent state vector (Xt) with the non-linear

measurement equations. In terms of the models of the latent vectors under physical

measure, see Eq. (3.13) for OU-CP, OU-VG, and OU-NIG and Eq. (3.14) for OU-VJ.

Furthermore, we test the performance of the UKF method by our artificial data. In

this test, we perform the UKF on the following two-factor model without jumps,

dxt = κ(mt − xt)dt + ρ
√
vtdW

v
t +

√
(1 − ρ2)vtdW

x
t ,

dmt = κm(θm −mt)dt + σmdW
m
t ,

dvt = κv(θv − vt)dt + σv
√
vtdW

v
t .

(A.9)

We simulate time series data xt, mt and vt, by using the Monte Carlo method under

10,000 simulated paths. The total sample length is 3,650 days. In the simulation

procedure, we set the values of the model parameters which are shown in Table A.1. We

fix the initial values for the processes xt, mt and vt as 2.90, 2.50 and 0.90, respectively.

Then, we use the simulated data set to compute the prices of VIX futures with three

different maturities (30 days, 90 days and 270 days) through Eq. (3.5).

Table A.1: Parameters

Parameter κ κm κv θm θv σm σv ρ r

Value 7.39 0.32 1.55 3.00 1.63 0.42 0.80 0.87 0.05

This table provides the setting values of the parameters which are used in the data simulation. The first
eight parameters are for Model (A.9). The last parameter, r, referring to the fixed interest rate, is used to
compute the futures prices.

In Figures A.1 and A.2, we compare the “true" values of latent variables from the

real data set with the estimated values by the UKF method. The blue and orange curves

represent the real values and estimated values, respectively. We can observe that the

orange curve highly overlaps with the blue curve in both figures, which means the

difference between the real data and the estimated results is insignificant. Therefore, we
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Figure A.1: “True" mt vs. Predicted mt
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Notes: This graph compares the “true” mt with the mt which is estimated by the UKF
method. We treat the Monte Carlo simulation results as “true” mt.

Figure A.2: “True" vt vs. Predicted vt
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Notes: Predicted vt. This graph compares the “true” vt with the vt which is estimated
by the UKF method. We treat the Monte Carlo simulation results as “true” vt.

can conclude that the UKF method is an appropriate filtering method for estimating the

latent variables in this case.



Appendix B

Pricing VXX Option under Lévy

Processes

B.1 The relationship between the VIX and the VXX

To briefly build the relationship between the VIX and the VXX, we simply borrow the

results from Cao et al. (2019). First we specify the dynamics of the log VIX under the

risk-neutral measure Q as follows:

d log VIXt = κ(m − log VIXt)dt +
√
vtdW

Q
x,t + dJt,

dvt = κv(θv − vt)dt + σv
√
vtdW

Q
2,t,

(B.1)

where WQ
x,t and WQ

2,t are correlated with a correlation coefficient %; κ and m are

constants; other parameters and variables are the same as those in the model (4.1).

Based on Proposition 1 in Cao et al. (2019), the characteristic function of {log VIXt}t≥0

is given in the form of

f(t, T, log VIXt,mt, vt;u) = EQ[eiu log VIXT ∣Ft] = e
ψ0(τ)+ψVIX(τ) log VIXt+ψv(τ)vt , (B.2)
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where τ = T − t. According to Eq. (B.1)-(B.3) in Cao et al. (2019),

df

f
=Drift Term ⋅ dt + ψV IX(τ)

√
vdWQ

x,t + ψv(τ)σv
√
vtdW

Q
2,t + dJt −ΨJ(−i)dt,

(B.3)

and ψ0(τ), ψV IX(τ) and ψv(τ) could be solved from

Drift Term = 0, (B.4)

using the martingale condition, i.e.,

EQ [
df

f
] = 0. (B.5)

Actually, the VIX futures price could be expressed as

F (t, T, log VIXt,mt, vt) ∶= EQ[VIXT ∣Ft] = EQ[elog VIXT ∣Ft] = f(t, T, log VIXt,mt, vt;−i).

(B.6)

Based on the VXX Prospectus provided by Barclays Bank and (Gehricke & Zhang,

2018), the VXX tracks the performance of a position in the nearest and second-nearest

maturing VIX futures contracts, which essentially creates a nearly constant 1-month

maturity. Therefore, in continues-time, under the risk-neutral measure Q,

dVXXt

VXXt

= rdt +
dF 1M

t

F 1M
t

, (B.7)

where F 1M
t ∶= F (t, t + 1/12, log VIXt,mt, vt) is the constant 1-month maturity VIX

futures price.

Due to the fact that EQ [
dF 1M
t

F 1M
t

] = 0, under the risk-neutral probability measure Q, the

discounted price of {VXXt}t≥0 is a martingale.
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Finally, using Eq. (B.4) and Eq. (B.3) leads to

dVXXt

VXXt

= rdt + ψVIX(1/12)
√
vdWQ

x,t + ψv(1/12)σv
√
vtdW

Q
2,t + dJt −ΨJ(−i)dt,

dvt = κv (θv − vt)dt + σv
√
vtdW

Q
t,2.

(B.8)

B.2 Change of Probability Measure

According to Proposition 9.8 in Cont and Tankov (2004) (Sato Theorems), the Radon-

Nikodym derivative of our jump diffusion models is given by

dQ
dP

= exp{∫

t

0
ηx

√
vsdW

P
s,1 − ∫

t

0

ηv
√
vs

σv
dW P

s,2 −
1

2
[∫

t

0
(η2

xvs +
η2
vvs
σ2
v

)ds] +Ut} ,

(B.9)

where ηx
√
vt and ηv

√
vt

σv
are the risk premia for the dWt,1 and dWt,2, respectively; and

Ut is corresponding to the Lévy jump part. Assume that the characteristic triplets are

(b, σ2, ν) and (bP, (σP)2, νP) under Q and P, respectively. Based on the Sato Theorems,

if Q and P are equivalent, then σ2 must be equal to (σP)2. If σ = σP = 0, then we must

have,

bP − b = ∫
1

−1
y (νP − ν) (dy). (B.10)

In our selection (TS, NIG and GTS), the characteristic triplets are in the form of (b,0, ν)

and (bP,0, νP). Thus, Ut can be expressed as

Ut = −ηJb
Pt + lim

ε→0

⎛

⎝
∑

s≤t,∣∆ys∣>ε
φ(∆xs) − ∫

t

0
∫

∣xs∣>ε
(exp (φ(y)) − 1)νP(dy)dt

⎞

⎠
,

(B.11)
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where φ(y) = ln (dQ
dP ), y denotes the jump size and xt is the return process which is

given in the model (4.1). For the compound Poisson process, Ut is given by

Ut = t (λ
P − λ) +∑

s≤t
φ(∆xs), (B.12)

where λP and λ are the jump intensities under P and Q, respectively.

B.3 Derivation of Characteristic Function by Using the

Time Changed Method

In this section, we only derive the characteristic function of the continuous part xct of

our models. According to Carr and Wu (2004), the continuous part of the model can be

change to the form of

xT = xt + (rt −ΨJ(−i)) τ −
1

2
Tt +W

Q
Tt,1, (B.13)

where τ = T − t, and Tt is a random time clock which is a non-decreasing function. It

can be defined as

Tt = ∫

T

t
vsds, (B.14)

where vs is the instantaneous activity rate and given by the variance process in the

model (4.1). Note that the conversion between
√
vtdW

Q
t,1 and WQ

Tt,1 uses Theorem 4.3

in Ikeda and Watanabe (1992). Then, the characteristic function of the model without

jumps is given by

f(u; t, T, xt, vt,Θ) = EQ
t [exp(iuxt + iu (rt −ΨJ(−i)) τ −

1

2
iuTt + iuW

Q
Tt,1)] .

(B.15)
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Now, we introduce a new complex-valued measure M with respect to Q, which is

defined by the exponential martingale (Radon-Nikodym derivative) below:

dM
dQ

= exp(iuWQ
Tt,1 −

1

2
iuTt +

1

2
(iu + u2)Tt)

= exp(iuWQ
Tt,1 +

1

2
u2Tt) .

(B.16)

Under M, the diffusion term of vt remains unchanged and the drift term of vt, denoted

by βM, is adjusted to βM = κv (θv − vt) + iuσvρvt. For simplicity, we let b = κv − iuσvρ.

Then, the characteristic function (f(u; t, T, xt, vt,Θ)) under M is given by

f(u; t, T, xt, vt,Θ) = exp (iuxt + iu (rt −ΨJ(−i)) τ)EM
t [−

1

2
(iu + u2)Tt]

= exp (iuxt + iu (rt −ΨJ(−i)) τ)EM
t [−∫

T

t

1

2
(iu + u2) vsds] .

(B.17)

Applying the Laplace transform on the random time Tt, then we can get

g(u; t, T, vt,Θ) = EM
t [−∫

T

t

1

2
(iu + u2) vsds] = exp [−ψ0(τ) − ψv(τ)vt] , (B.18)

where ψ0(τ) and ψv(τ) can be obtained by solving the following ordinary differential

equations:

ψ′v(τ) =
1

2
(iu + u2) − bψv(τ) −

1

2
σ2
vψ

2
v(τ),

ψ′0(τ) = −κvθvψv(τ).

(B.19)
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S&P 500 Variance Futures

C.1 Derivation for the VIX Squared

We derive the formula of VIX squared in three steps under the given model (5.4). In the

first step, we multiply the equation of mt by eκmt, and obtain

eκmtdmt + e
κmtκmmtdt = e

κmt(κmθmdt + σm
√
mtdW

Q
m,t),

which implies

deκmtmt = e
κmt(κmθmdt + σm

√
mtdW

Q
m,t).

Integrating both sides of the last equation, we obtain

∫

T

t
deκmsms = ∫

T

t
eκmsκmθmds + ∫

T

t
eκmsσm

√
mtdW

Q
m,s,

i.e.,

eκmTmT − e
κmtmt = θm(eκmT − eκmt) + σm∫

T

t
eκms

√
mtdW

Q
m,s,
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where T > t. Now, mT can be calculated as

mT = eκm(t−T )mt + θm (1 − eκm(t−T )) + e−κmTσm∫
T

t
eκms

√
mtdW

Q
m,s. (C.1)

Based on above Eq. (C.1), we can gain the mean of {mt}t≥0 as

EQ
t [mT ] = e

κm(t−T )mt + θm (1 − eκm(t−T )) . (C.2)

Thus, the expected integrated long-term mean over [t, T ] is calculated as

EQ
t [∫

T

t
mudu] = α

Q
mmt + γ

Q
m, (C.3)

where αQ
m = (1 − eκm(t−T ))/κm and γQm = θm [(T − t) − αQ

m].

In the second step, we apply Ito’s lemma to e(κv−ηv−λ
Q
1µ

Q
v )tvt and obtain

d [eb
Qtvt] = (κv − ηv − λ

Q
1 µ

Q
v ) e

bQtvtdt + e
bQtdvt

= eb
Qt [(κv + λ

Q
2 µ

Q
v )mt + λ

Q
0 µ

Q
v ]dt + e

bQtσv
√
vtdW

Q
v,t

+ eb
Qt (dJQ

v,t − µ
Q
v ΛQ

t dt) ,

where bQ = κv − ηv − λ
Q
1 µ

Q
v . Integrating both sides of the above equation for T > t, we

can get vT as

vT =
1

bQ

⎡
⎢
⎢
⎢
⎢
⎣

λQ0 µ
Q
v −

κmθm (κv + λ
Q
2 µ

Q
v )

bQ − κm

⎤
⎥
⎥
⎥
⎥
⎦

[1 − eb
Q(t−T )]

+ eb
Q(t−T )vt + σme

−bQT
∫

T

t
eb

QsdWQ
m,s + σve

−bQT
∫

T

t
eb

Qs√vsdW
Q
v,s

+ e−b
QT
∫

T

t
eb

Qs (dJQ
v,s − µ

Q
v ΛQ

s ds) +
κv + λ

Q
2 µ

Q
v

bQ − κm
[mT −mte

bQ(t−T )] .

(C.4)

By substituting Eq. (C.2) into Eq. (C.4), we can compute the mean of the instantaneous
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variance {vt}t≥0 as

EQ
t [vT ] =

κv + λ
Q
2 µ

Q
v

bQ − κm
[eκm(t−T ) − eb

Q(t−T )]mt +
θm (κv + λ

Q
2 µ

Q
v )

bQ − κm
[1 − eκm(t−T )]

+ eb
Q(t−T )vt +

⎡
⎢
⎢
⎢
⎢
⎣

λQ0 µ
Q
v

bQ
−
κmθm (κv + λ

Q
2 µ

Q
v )

bQ(bQ − κm)

⎤
⎥
⎥
⎥
⎥
⎦

[1 − eb
Q(t−T )] .

(C.5)

The expected integrated variance over [t, T ] is calculated as

EQ
t [∫

T

t
vudu] =α

Q
vmt + β

Q
v vt + γ

Q
v , (C.6)

where αQ
v , βQ

v and γQv are given by

αQ
v =

κv + λ
Q
2 µ

Q
v

bQ − κm
(αQ

m − βQ
v ) ,

βQ
v =

1

bQ
[1 − eb

Q(t−T )] ,

γQv =

⎡
⎢
⎢
⎢
⎢
⎣

λQ0 µ
Q
v

bQ
−
κmθm (κv + λ

Q
2 µ

Q
v )

bQ(bQ − κm)

⎤
⎥
⎥
⎥
⎥
⎦

(T − t − βQ
v ) +

γQm (κv + λ
Q
2 µ

Q
v )

bQ − κm
.

From Eq. (5.7), we can calculate the VIX squared, denoted by (VIXt
100

)
2
, by substituting

Eq. (C.3) and Eq. (C.6) as

(
VIXt

100
)

2

= −
2

τ
EQ
t [ln

ST
F

] = 2(r − q) −
2

τ
EQ
t [lnSt − lnSt]

=
2

τ
EQ
t [∫

T

t
((λQ0 + λ

Q
1 vu + λ

Q
2mu) k̄

Q +
1

2
vu)du − ∫

T

t
(
√
vudW

Q
S,u + dJ

Q
S,u)]

= 2λQ0 (k̄Q − µQ
J − ρJµ

Q
v ) +

2

τ
[
1

2
+ λQ1 (k̄Q − µQ

J − ρJµ
Q
v )]E

Q
t [∫

T

t
vudu]

+
2λQ2
τ

(k̄Q − µQ
J − ρJµ

Q
v )E

Q
t [∫

T

t
mudu]

= αQ
VIXmt + β

Q
VIXvt + γ

Q
VIX,

(C.7)



Appendix C. S&P 500 Variance Futures 165

where αQ
VIX, βQ

VIX and γQVIX are given by

αQ
VIX =

αQ
v

τ
+

2

τ
(k̄Q − µQ

J − ρJµ
Q
v ) (α

Q
v λ

Q
1 + α

Q
mλ

Q
2 ) ,

βQ
VIX =

βQ
v

τ
[1 + 2λQ1 (k̄Q − µQ

J − ρJµ
Q
v )] ,

γQVIX = 2 (k̄Q − µQ
J − ρJµ

Q
v )(λ

Q
0 +

γQv
τ
λQ1 +

γQm
τ
λQ2 ) +

γQv
τ
.

Similarly, under the model (5.1), mT is given in the following equation:

mT = e(κm−ηm)(t−T )mt +
κmθm

(κm − ηm)
(1 − e(κm−ηm)(t−T ))

+ e−(κm−ηm)Tσm∫
T

t
e(κm−ηm)s√mtdW

P
m,s.

(C.8)

Then, the expected integrated long-term mean over [t, T ] is expressed as

EP
t [∫

T

t
mudu] = α

P
mmt + γ

P
m, (C.9)

where αP
m = [1 − e(κm−ηm)(t−T )] /(κm − ηm) and γPm = κmθm

(κm−ηm) [(T − t) − αP
m]. We also

can get vT as

vT =
1

bP
[λP0µ

P
v −

κmθm (κv + λP2µ
P
v)

bP − κm + ηm
] [1 − eb

P(t−T )]

+ eb
P(t−T )vt + σme

−bPT
∫

T

t
eb

PsdW P
m,s + σve

−bPT
∫

T

t
eb

Ps√vsdW
P
v,s

+ e−b
PT
∫

T

t
eb

Ps (dJP
v,s − µ

P
vΛ

P
sds) +

κv + λP2
bP − κm + ηm

[mT −mte
bP(t−T )] ,

(C.10)

where bP = κv − λP1µP
v . The expected integrated variance over [t, T ] is expressed as

EP
t [∫

T

t
vudu] =α

P
vmt + β

P
v vt + γ

P
v , (C.11)



Appendix C. S&P 500 Variance Futures 166

where αP
v , βP

v and γPv are given by

αP
v =

κv + λP2µ
P
v

bP − κm + ηm
(αP

m − βP
v ) ,

βP
v =

1

bP
[1 − eb

P(t−T )] ,

γPv = [
λP0µ

P
v

bP
−
κmθm (κv + λP2µ

P
v)

bP (bP − κm + ηm)
] (T − t − βP

v ) +
γPm (κv + λP2µ

P
v)

bP − κm + ηm
.

C.2 Derivation for Quadratic Variation

Based on the given model (5.1), the expectation of future realized variance from time t

to T under Q is

EQ
t [QVt,T ] = EQ

t [∫

T

t
vudu +

NT

∑
i=Nt

(xQS,i)
2] = EQ

t [∫

T

t
vudu] +EQ

t [
NT

∑
i=Nt

(xQS,i)
2] .

From above equation, the expectation of jump part is derived as follows

EQ
t [

NT

∑
i=Nt

(xQS,i)
2] ={λQ0 (T − t) + λQ1 E

Q
t [∫

T

t
vudu] + λ

Q
2 E

Q
t [∫

T

t
mudu]}

× [σ2
J + ρ

2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
] .

Thus, we have

EQ
t [QVt,T ] = [σ2

J + ρ
2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
] (λQ0 (T − t) + λQ2 E

Q
t [∫

T

t
mudu])

+ {1 + λQ1 [σ2
J + ρ

2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
]EQ

t [∫

T

t
vudu]} .
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Then, plugging Eq. (C.3) and Eq. (C.6) into the last equation, we can get

EQ
t [QVt,T ] = [σ2

J + ρ
2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
] [λQ0 (T − t) + λQ1 γ

Q
v + λ

Q
2 γ

Q
m] + γQv

+ {[σ2
J + ρ

2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
] (λQ1 α

Q
v + λ

Q
2 α

Q
m) + αQ

v }mt

+ βQ
v {1 + λQ1 [σ2

J + ρ
2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
]} vt.

Thus, EQ
t [QVt,T ] can be expressed as a linear function of mt and vt as

EQ
t [QVt,T ] = α

Q
QVmt + β

Q
QVvt + γ

Q
QV, (C.12)

where αQ
QV, βQ

QV and γQQV are given by

αQ
QV = [σ2

J + ρ
2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
] (λQ1 α

Q
v + λ

Q
2 α

Q
m) + αQ

v ,

βQ
QV = βQ

v {1 + λQ1 [σ2
J + ρ

2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
]} ,

γQQV = [σ2
J + ρ

2
J(µ

Q
v )

2 + (µQ
J + ρJµ

Q
v )

2
] [λQ0 (T − t) + λQ1 γ

Q
v + λ

Q
2 γ

Q
m] + γQv .

Similarly, the expectation of future realized variance from time t to T under P is in the

form of

EP
t [QVt,T ] = α

P
QVmt + β

P
QVvt + γ

P
QV, (C.13)

where αP
QV, βP

QV and γPQV are given by

αP
QV = [σ2

J + ρ
2
J(µ

P
v)

2 + (µP
J + ρJµ

P
v)

2
] (λP1α

P
v + λ

P
2α

P
m) + αP

v ,

βP
QV = βP

v {1 + λP1 [σ2
J + ρ

2
J(µ

P
v)

2 + (µP
J + ρJµ

P
v)

2
]} ,

γPQV = [σ2
J + ρ

2
J(µ

P
v)

2 + (µP
J + ρJµ

P
v)

2
] [λP0(T − t) + λP1γ

P
v + λ

P
2γ

P
m] + γPv .
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