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Abstract Recent development in artificial neural networks has led to an increase in
performance, but also in complexity and size. This poses a significant challenge for
the exploration and analysis of the spatial structure and temporal behaviour of such
networks. Several projects for the 3D visualisation of neural networks exist, but they
focus largely on the exploration of the spatial structure alone, and are using standard
2D screens as output and mouse and keyboard as input devices.
In this article, we present NeuVis, a framework for an intuitive and immersive 3D
visualisation of spiking neural networks in virtual reality, allowing for a larger variety
of input and output devices. We apply NeuVis to NeuCube, a 3-dimensional spiking
neural network learning framework, significantly improving the user’s abilities to
explore, analyse, and also debug the network.
Finally, we discuss further venues of development and alternative render methods that
are currently under development and will increase the visual accuracy and realism of
the visualisation, as well as further extending its analysis and exploration capabilities.

Keywords spiking neural network · 3-dimensional · visualisation · virtual reality ·
immersive

1 Introduction

NeuVis, the spiking neural network visualisation tool presented in this article, is
designed to work independently of the actual network implementation. Since it was
mainly developed and tested in conjunction with NeuCube, we will briefly present
this specific implementation first. However, we believe that the design implications for
visualisations described towards the end of this section apply for any neural network.
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NeuCube (Kasabov, 2012) is a specific framework for the learning of spatio- and
spectro-temporal data through the use of Spiking Neural Networks. 1 It is designed
for the explicit purpose of incorporating the aspects of spatial, spectral, and tempo-
ral dynamics, and their interdependence. In addition, it can also incorporate prior
knowledge of the data collection context. NeuCube is mainly composed of four main
modules: 1) Input Encoding; 2) NeuCube Reservoir; 3) Gene Regulatory Network;
4) Output/Classification; and an optional fifthmodule, Visualisation, which this article
addresses. Figure 1 shows a block diagram of the NeuCube spatio-temporal frame-
work. For further details of this architecture we refer to related literature (Kasabov
et al, 2016; Scott et al, 2013; Kasabov, 2012).

The primary aspect that needs to be addressed by the visualisation framework
presented in this article is that of enabling users to gain an overview and an un-
derstanding of a complex, large, and interconnected 3-dimensional structure. At the
start of the development of NeuVis, NeuCube typically consisted of roughly 1500
neurons and about 15000 connections. However, the necessity of processing larger
spatio-temporal datasets and the recent developments in hardware simulators such
as SpiNNaker (Furber et al, 2014) will soon push those numbers into the areas of
hundreds of thousands of neurons and millions of connections. This requires that one
of the main design pillars of the visualisation is scalability and throughput.

2 Related Work

In the past, numerous visualisation tools dedicated to the rendering and analysis of
neural network structures have been developed and presented, going back as early as
1990 (Wejchert and Tesauro, 1990) for 2-dimensional networks, followed by tools for

Fig. 1 Overview of NeuCube. From (Kasabov et al, 2016).

1Available from the Knowledge Engineering and Discovery Research Institute (KEDRI), Auckland
University of Technology, http://www.kedri.aut.ac.nz/neucube
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the 3-dimensional domain a fewyears later. The latter can roughly be categorised either
as tools with a focus on analysis, or as tools with a focus on 3D spatial exploration.

BrainGazer (Bruckner et al, 2009), BrainBrowser (Sherif et al, 2015), BrainNet
(Xia et al, 2013) and Neuron Navigator (NNG) (Lin et al, 2011) are examples of
the category of tools for analysis. They are designed for and used in context with
models of realistic biological neural networks such as the human connectome or
the brain of the fruitfly Drosophila melanogaster (Armstrong and van Hemert, 2009).
These tools focus on accurate spatial rendering of pathways and implement interaction
metaphors for selecting, tracing, and querying labelled neuron clusters. Photorealistic
rendering is not the main objective. Colour, transparency, and labels make up the
main visual language. Due to the output medium being a 2D screen, movement and
interaction metaphors for rotating and moving the 3D virtual volume are important for
perception of depth and the spatial structure. Those interactions are usually initiated
and controlled by mouse movement and keyboard controls, so they are indirect and
have the potential of being less intuitive than natural 3D object interaction.

By using different output and input mechanisms, it is possible to make the inter-
action more intuitive. von Kapri et al (2011) are using a Computer Assisted Virtual
Environment (CAVE) to visualise the spatial structure and activity of a spiking neu-
ral network. Stereoscopic rendering and tracking of the user’s eye position allows
for an easy perception of the spatial structure and intuitive control of the viewpoint.
However, due to the limited space within a cave environment, navigation within the
workspace restricted by the dimensions of the CAVE. Furthermore, this specific visu-
alisation framework does not provide deeper means of analysis and interaction other
than viewing and exploring the positions and activity of spiking neurons, therefore
falling into the second category of tools.

Similarly, Ridder et al (2015) describe a tool to convert output from a 2D based
analysis tool into a 3-dimensional virtual reality environment, but interaction is merely
limited to viewing from different perspectives with different representations of the
dataset spatially adjacent to each other. However, there is no advanced interaction
possible with the data (yet).

In the following sections, we describe the requirement analysis, implementation,
and evaluation of a tool that combines the 3-dimensional rendering of complex neural
network structures with a 3D virtual environment that allows for an easy navigation
and interaction for the purpose of exploration and analysis of the network.

3 Requirement Analysis

One of the main drivers for the development of NeuVis were the disadvantages of the
previous visualisation built into NeuCube which is using an orthographic perspective
and only offers a limited set of interaction and navigation. As apparent in Figure 2,
an orthographic perspective is not ideal for the display of a large amount of neurons.
Only the points directly at the front of the view volume are visible and, depending on
the view angle, can completely occlude the ones behind.

Camera navigation is only limited to a rotation outside of the NeuCube volume,
providing the user no means of zooming in and looking at details inside. This is also
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a limiting factor when it comes to any selection of neurons, which would be possible
only from the outer regions of NeuCube as well.

Analysis tools have to be invoked using menus and setting dialogues, with a severe
delay between activation and an actual visible output on the screen. It is not possible to
compare several visualisation settings next to each other, except by taking screenshots.

We interviewed data analysts of KEDRI to compile a list ofminimum requirements
for NeuVis, as well as a “wishlist” of features that would increase their analysis
capabilities with respect to structure, feature extraction, temporal behaviour, and
clustering analysis.
Selection It should be easily possible to select/de-select individual neurons or groups

of neurons.
Temporal Control The user should be able to easily control playback of spiking

patterns. This includes controlmechanisms such as start, stop, rewind, fast forward,
slow down.

Neuron and Connection Usage This analysis functionality is helpful to detect areas
of high and low neuron activity and allows for the fine-tuning of NeuCube.

Input Cluster Analysis During the learning process, connection patterns form in
specific ways around the input neurons. An analysis of those input clusters is an
important tool for the understanding of the NeuCube learning process.

Connection Length Analysis By analysis of the average connection length between
neurons, the learning process of NeuCube can be optimised even further.

Feature Cluster Analysis Clusters of neurons encode certain features of the dataset.
Visualisation of the spatial structure and connectivity of those clusters is a further
helpful tool for the understanding of NeuCube.
In addition to this list, the following design pillars were also considered in the

design of the NeuVis (see Sections 1 and 2 for the rationale).
Scalability The tool needs to be capable of visualising and analysing datasets with

millions of neurons and connections.

Fig. 2 Visualisation of NeuCube using an orthographic view. Note the loss of depth perception and how
neurons in the front cover those behind them. This dataset has 1470 neurons, but only a fraction of them is
visible due to occlusion. This is detrimental to any selection mechanism for neurons that are located inside
the NeuCube volume. The display is also cluttered with the large number of input neuron labels (red)
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Fig. 3 Visualisation of aNeuCube dataset. Neurons are shown as stylised spheres.Connections are rendered
green for excitatory and red for inhibitory connections. Thresholding is applied to only show the strongest
connections.

Intuitiveness The tool needs to be intuitive and easy to use, preferably with inter-
action metaphors that do not require any lengthy explanation. This also includes
navigation, which should be as direct as possible.

4 Implementation

4.1 Rendering

We created a specialised neural network renderer using OpenGL as a graphics library
in conjunction with GLSL (OpenGL Shading Language) shaders in order to be able
to render several million neurons together with their connections at a stable framerate
of 60 fps (see Figure 3).

In this visualisation, neurons are displayed as stylised spheres, and connections
are rendered as lines with different colour for excitatory and inhibitory connections
and with different opacities indicating the strength of the connection. Spiking activity
is shown as signals travelling along the connections, and neurons are changing size
and colour based on their potential. The visualisation is purposefully designed as an
analysis tool, therefore not focusing on a realistic depiction of biological neurons and
their axons.

Data transfer between the CPU and the graphics card is optimized to a bare
minimum for the visualisation. Only the neuron states and positions are transferred to
the Graphics Processing Unit (GPU). Vertex Shaders pre-process the data considering
the camera position and the neuron activity. Geometry Shaders convert this pre-
processed information to simplified “billboard” coordinates which are then sent to
Fragment Shaders that construct the final image, applying lighting and shape to the
neurons and connections.
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Fig. 4 Stereoscopic rendering of the 1.5 Million neurons of the Talairach Atlas (Lancaster et al, 1997,
2000), used as a benchmark for the performance of the rendering framework.

Through this technique of “billboard rendering” (Maciel and Shirley, 1995), the
visualisation can display several million neurons in an interactive framerate of 60 fps,
even in a stereoscopic rendering context such as when using a head mounted display
(HMD) like the Oculus Rift (Oculus VR, 2016) Figure 4 shows a visualisation of
the Talairach Atlas dataset which contains 1.5 million neurons (Lancaster et al, 1997,
2000).

4.2 Interaction

NeuVis is designed to be used in a variety of settings, e.g., on a desktop computer with
2D screen and mouse, on a computer with a HMD and a wireless game controller, or
in a motion capture studio with gesture or tracked controller input (see next Section).

We therefore implemented an interaction abstraction layer, that separates the Neu-
Cube simulation and the computer graphics component from the functionality nec-
essary to control and invoke the visualisation. By doing so, a neuron can be selected
by, e.g., directly clicking it with the mouse cursor, by looking at it with the HMD

Fig. 5 User selecting a neuron via a 3D tracked joystick (left image) and a glove (centre image) to observe
the activity of a specific neuron (right image).
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for more than one second, by clicking it with a 3D tracked joystick, or by applying a
“grab” gesture using a motion tracked glove (see Figure 5) (Foottit et al, 2014).

4.3 Analysis

Based on the feature list mentioned in Section 3, the following analysis modes were
implemented in NeuVis:

Connection Weight Threshold This mode allows to show and hide connections
based on a lower and upper threshold weight (see Figure 6).

Connection Length Threshold This mode allows to view the distribution and den-
sity of long, medium, or short connections (see Figure 7).

Connection Usage Threshold This mode allows to visualise connections by the
amount of spikes they have transmitted. By filtering with a low threshold, it
is possible to detect the density and distribution of less important connections
(see Figure 8).

Fig. 6 Screenshots of NeuVis with the connection weight threshold set to show all connections (left) or
only connections with a hight weight (right), revealing connectivity clusters.

Fig. 7 Screenshots ofNeuViswith the length weight threshold set to show short connections (left) or longer
connections (right), allowing an overview of their distribution and density.
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Fig. 8 Screenshots of NeuVis with the connection usage threshold set to show rarely used connections
(left) or frequently used connections (right), allowing an overview of their distribution and density.

4.4 Sentience Lab Framework

Similar to the work of von Kapri et al (2011), we believe in the potential of being
surrounded by the data you are about to analyse and to intuitively move among it.
In contrast to the CAVE used in their work, we utilise a setup with a larger area for
movement and head mounted displays as output devices.

Our immersive virtual reality research facility, Sentience Lab, comprises of the
following major components: 1) a wide area motion capture suite, 2) wireless and
head mounted displays, and 3) several types of render engines (see Figure 9).

The motion capture system uses an infrared optical marker based solution. It is
currently installed in a dedicated room that allows for a capture volume of 6m × 6m
× 6m, but can be configured differently to cover an even larger volume. A total of
24 cameras enable a positional accuracy of up to 0.1mm at 120 fps. The cameras
are connected to a computer with software that captures and processes the location
of markers in the space and can reconstruct the position and orientation of sets of
markers in space, e.g., markers attached to a HMD (see Figure 10). This information
stream is then broadcast into the network by a specialised motion capture server and
can be received via wired or wireless connections. For maximum speed and minimum
latency, we employ a Gigabit wired network and an 802.11ac wireless access point.

Computers with render engines use the information provided in this data stream
to render scenes based on the positions and orientations of the headsets and other
objects like handheld pointers or joysticks. Wired or wireless HMDs then display the
video stream to the user on a stereoscopic display. Due to the positional and rotational
tracking, of the HMD, the user can simply change the view of the virtual scene by
moving the head or walking around.

Rendering of the visualisation can be implemented in three ways. The first option
is a small but portable render machine, e.g., a laptop or a small computer that receives
the motion capture data wirelessly and renders directly to the HMD (see Figure 9,
lower part). The advantage of this solution is a fast response of the display to user
movement, which is vital to avoid motion sickness (see Section 5.2). The disadvantage
is the weight and power consumption of such a render unit, requiring a compromise
between render quality, runtime, and wearability.
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The second option is a dedicated render machine which is connected to the wired
network and transmits the video signal to a tethered HMD. The advantage of this
solution is that the render machine itself can be equipped with a high-performance
graphics card which enables high and stable framerates and therefore achieves a better
visual quality. The disadvantage is the limited range and potential for accidents caused
by the cable.

The third option is to replace the tether of the second option by a wireless signal
transmission system (see Figure 9, centre part).

The wireless HDMI transmitter we employed to implement the third variant can
transmit a standard 1080p video signal with up to 75Hz refresh rate and a maximum
of 2ms signal delay. The headset is a standard Oculus Rift DK1 and its 1280 × 800
pixel resolution and 60Hz framerate, connected to the HDMI receiver and a battery
in a small pouch that can be attached to a belt (see Figure 11).

We attached 3D-printed custom marker mounts to the headset to enable full
positional and rotational tracking (see Figure 10). Six markers are more than sufficient
to prevent loss of tracking due to occluded markers. By being able to configure the
location of some markers, it is possible to have several independently tracked headsets
in the motion capture space at the same time, allowing for collaboration between
several users, either in the same physical space, or even remotely in different physical
facilities.

Fig. 9 Diagram of the Sentience Lab framework used to enable fully immersive movement and interaction
within a virtual environment for the visualisation and analysis of NeuCube. 24 cameras allow for sub-
millimetre precision tracking of several users within the same physical space. Wireless data transmission
enables untethered operation of render engines and head mounted displays. Wireless sensors integrated in
tracked controllers, e.g., joysticks, allow for intuitive control and interaction within the virtual environment.
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Fig. 10 Head mounted display with markers attached for positional and rotational tracking.

Fig. 11 Left: Components of the wireless HDMI transmitter system used for un-tethering users within the
motion capture space (from left to right: Battery, transmitter, Oculus Rift breakout box, HDMI receiver).
Right: Belt pouch containing all receiver and power components. The sender unit in front is connected to
the stationary render computer.

To allow for intuitive control of the immersive 3D visualisation, we integrated
wireless sensor technology into controllers, e.g., joysticks, that allow not only for the
tracking of their position and orientation, but also for events such as pressing a button
or triggering a vibration motor within the controller.

5 Results

The following section describes the observations of users exploring and analysing
NeuCube with the help of NeuVis. Due to the limited number of NeuCube experts
within our institution, quantitative studies are currently difficult to conduct. For this
article, we rely on observations and qualitative data of around 15 specialists of KEDRI
and about 30 non-specialists (visitors to Sentience Lab).

5.1 Intuitiveness

All specialist users unanimously reported that using NeuVis was 1) a clear improve-
ment to the limited previous 2.5-dimensional version, and 2) that navigation within
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NeuCube, selection of neurons, and identifying clusters of connectivity was intuitive
and easy to accomplish.

For a desktop setting with a 2D screen, mouse and keyboard, the controls were
configured such that the keys W and S would move the virtual camera forwards and
backwards, while A and D would move it sideways. The cursor keys would tilt the
camera around its vertical and horizontal axis. This provides a sort of flight control,
specifically tailored for people who have experience with video games where WASD
or cursor key control is an accepted standard. We purposefully did not use the mouse
for camera control because in a desktop setting, the mouse cursor is more suitable for
selection.

In the motion capture setting, the intuitiveness was even more pronounced. After
a short period of getting used to the HMD, users freely walked around and explored
NeuCube, making use of natural movements like looking from underneath or from
above, using the joystick controller intuitively and without any disorientation or other
difficulties.

5.2 Simulator Sickness

One of the major issues in fully immersive VR using HMDs is that of latency between
physical motion of the head and the actual change in the visible image according to that
motion. “Cue conflict”, i.e. a difference in motion perceived by the vestibular organ
and as seen by the eyes can easily lead to nausea and other negative physiological
effects (Kolasinski, 1995). The Best Practices Guide of Oculus VR provides a very
useful and exhaustive list of factors that need to be addressed during the design of VR
scenarios (Oculus VR, 2015). One of the most crucial recommendations is to keep
the latency below 20ms.

Surprisingly, we found that users are less prone to simulator sickness within the
immersive VR space compared to configurations where the user is confined to a
stationary location, e.g., an office chair using a desktop computer, and has to move
their camera by means of a joystick or mouse/keyboard controls. A high latency seems
to bemore critical in the latter case compared to when the user is directly in full control
of every movement. We currently assume that due to the natural inertia of the human
body, movement is less rapid and also less “clean” compared to movement controlled
by external input devices. This hypotheses still need to verified by quantitative and
qualitative studies.

However, as noted in the subsection above, we had around 45 people experiencing
NeuVis in Sentience Lab to this date without major motion sickness problems as a
result.

5.3 Analysis Capabilities

The capability to repeatedly play back neuron firing patterns and to observe their
propagation through the system, to slow down or speed up the playback rate, provided
valuable insights into timing related issues and properties ofNeuCube instances based
on EEG or fMRI datasets.
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Another outcome of using NeuVis was the discovery of minor bugs in some Neu-
Cube structures, such as duplicate input neurons, or wrong EEG electrode mappings.
These bugs were not apparent beforehand mostly because of the inadequacy of the
orthogonal 2.5-dimensional projection (see Figure 2).

6 Conclusion and Future Work

In this article, we have presented NeuVis, a generic visualisation and analysis frame-
work for spiking neural networks, and its specific application to NeuCube.

NeuVis is designed with flexibility and scalability in mind, allowing for a range
of input and output device combinations. Furthermore, it integrates a large variety of
analysis tools that are helpful in gaining insights to NeuCube that were not possible
with the previous visualisation tool.

Its full potential is achieved when using it in a motion capture setup with stereo-
scopic rendering, improving the spatial perception and making navigation as intuitive
as moving the user’s own head and body.

While we agree that using a full motion capture system is a very costly investment
for a visualisation, the flexible design of NeuVis addresses this point by allowing
different input and output devices such as mouse, gamepad, stereoscopic HMDs, or
motion tracking data from different sources, such as an HTC Vive (HTC Corporation,
2016).

In the future, we are going to explore additional output and tracking mechanisms
such as the HTC Vive which is much more affordable, covers a bigger capture volume
than the Oculus Rift system and is also shipped with motion tracked hand controllers.
We will also further explore improved interaction metaphors for the operation of the
visualisation, and implement advanced analysis tools for a better understanding of
NeuCube.
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