Backward Running Training: Applications for Improving Athleticism in Male High-school Athletes

aut.author.twitter@amuthoff
aut.embargoNoen_NZ
aut.thirdpc.containsNoen_NZ
dc.contributor.advisorHarrison, Craig
dc.contributor.advisorOliver, Jon
dc.contributor.advisorWinwood, Paul
dc.contributor.advisorCronin, John
dc.contributor.authorUthoff, Aaron
dc.date.accessioned2019-07-05T04:14:35Z
dc.date.available2019-07-05T04:14:35Z
dc.date.copyright2019
dc.date.issued2019
dc.date.updated2019-07-05T03:05:44Z
dc.description.abstractNovel training methods such as backward running (BR) may promote unique adaptations to athletic performance compared to more traditional training methods, like forward running (FR). While advocates have recommended BR for athletes over 18 years of age, no empirical information existed as to the utility of unresisted or resisted BR in athletes around their adolescent growth spurt. This thesis sought to understand whether BR training modalities promote positive adaptations in athletic performance among male youth athletes. An introduction and review provided an overview of BR and the natural development and trainability of speed in males around the time of adolescence, establishing the thesis framework and need for further investigation into the use of BR modalities. To understand how unresisted and resisted BR could be progressed in training, two repeated cross-sectional studies investigated the reliability of unresisted and resisted BR. In Chapter 3, it was found that after two habituation sessions, 34 high-school male athletes demonstrated good coefficient of variation for BR and FR (CV = 0.99% to 4.2%) and good to excellent intraclass correlational coefficients for BR and FR (ICC = 0.89 to 0.99). In Chapter 4, the load-velocity relationships of 21 high-school male athletes demonstrated that increases of ~13% (r2 = 0.99) and ∼15% (r2 = 1.00) body mass respectively, resulted in ∼10% decreases in running velocity during resisted BR and FR compared to unresisted maximal effort velocities in the respective running direction (CV ≤ 7.2%; ICC ≥ 0.83 – 0.91). Chapters 5 and 6 used matched-paired randomised control designs to determine the effectiveness of unresisted and resisted BR training on sprinting, jumping, and leg compliance measures in high-school male athletes. Chapter 5 compared the effects of eight weeks of progressively overloaded BR training (BRT) versus volume matched FR training (FRT) in 67 boys. The main findings were that a) all measures improved in both training groups (p ≤ 0.01; effect size [ES] = 0.25 to 1.56), b) compared to the control group (CON), BRT improved all performance tests (p ≤ 0.001; ES = 0.63 to 1.59) and FRT enhanced sprinting and stiffness performance (p ≤ 0.01; ES = 0.45 to 1.29), and c) BRT demonstrated greater training effects for sprint and countermovement jump performance (p ≤ 0.05; ES = 0.54 to 0.76) compared with FRT. Chapter 6 compared the effects of eight weeks of progressively overloaded backward resisted sprint (BRS) training versus forward resisted sprint (FRS) training using equal loading strategies from 20% to 55% body mass in 115 boys. The main findings were that a) all performance metrics improved following BRS (p ≤ 0.01; ES = 0.22 to 0.79), b) all except 10 m performance enhanced following FRS (p ≤ 0.05; ES = 0.16 to 0.90), c) compared to the control group (CON), BRS resulted in improved performances for all tests except 10 m sprint time (p ≤ 0.05; ES = 0.15 to 0.94) and FRS improved 10-20 m sprint times, jump height, and stiffness (p ≤ 0.05; ES = 0.11 to 0.69), and e) no differences (p ≤ 0.05) were found between training groups. The culmination of the experimental studies is provided in Chapter 7 as a practitioner-orientated guide for why strength and conditioning coaches may wish to implement BR into their athletes’ training and how to integrate BR into their overall strength and conditioning programme. Chapter eight is a summary of the findings, their applications, and future research directions in BR as a tool to develop athleticism.en_NZ
dc.identifier.urihttps://hdl.handle.net/10292/12637
dc.language.isoenen_NZ
dc.publisherAuckland University of Technology
dc.rights.accessrightsOpenAccess
dc.subjectYouthen_NZ
dc.subjectSprint trainingen_NZ
dc.subjectStrength and conditioningen_NZ
dc.subjectResisted sprintingen_NZ
dc.subjectBackward runningen_NZ
dc.titleBackward Running Training: Applications for Improving Athleticism in Male High-school Athletesen_NZ
dc.typeThesisen_NZ
thesis.degree.grantorAuckland University of Technology
thesis.degree.levelDoctoral Theses
thesis.degree.nameDoctor of Philosophyen_NZ
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
UthoffA.pdf
Size:
5.31 MB
Format:
Adobe Portable Document Format
Description:
Thesis
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
889 B
Format:
Item-specific license agreed upon to submission
Description:
Collections