AUT LibraryAUT
View Item 
  •   Open Research
  • Faculties
  • Faculty of Health and Environmental Sciences
  • School of Science
  • View Item
  •   Open Research
  • Faculties
  • Faculty of Health and Environmental Sciences
  • School of Science
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physicochemical and sensory characteristics of fermented sheepmeat sausage

Lu, Y; Young, OA; Brooks, JD
Thumbnail
View/Open
Physicochemical and sensory characteristics of fermented sheepmeat sausage..pdf (164.7Kb)
Permanent link
http://hdl.handle.net/10292/9987
Metadata
Show full metadata
Abstract
The aim of the study was to compare the physicochemical and sensory characteristics of fermented, cured sausages made from equivalent muscle groups of beef, pork, and sheepmeat. The last has no commercial examples and represents an unexploited opportunity. Using seven replicates of shoulder meat and subcutaneous fat, sausages were made with 64%, 29%, 4%, 2%, 0.2%, and 0.01% of lean meat, fat, NaCl, glucose, sodium pyrophosphate, and lactic culture, respectively. Following anaerobic fermentation (96 h, 30°C), there were no significant differences between the species in mean texture (hardness, springiness, adhesiveness, cohesiveness) and pH, and only minor differences were seen in color. However, although not consumer tested, it is argued that consumers would be able to pick a texture difference due to different fat melting point ranges, highest for sheepmeat. This work was followed by a sensory experiment to find out if characteristic sheepmeat flavors could be suppressed to appeal to unhabituated consumers. To simulate a very strongly characteristic sheepmeat, beef sausage mixtures (above) were spiked, or not, with 4-methyloctanoic, 4-methylnonanoic acid, and skatole (5.0, 0.35, and 0.08 mg kg(-1), respectively). Sodium nitrite (at 0.1 g kg(-1)) and a garlic/rosemary flavor were variably added to create a 2(3) factorial design. In a randomized design, 60 consumers found that spiked sheepmeat flavors caused an overall significant decrease in mean liking on a 1-9 scale (5.83 vs. 5.35,P = 0.003), but this was completely negated by the garlic/rosemary addition (5.18 vs. 6.00,P < 0.001). Nitrite had no effect on liking (5.61 vs. 5.58,P = 0.82), although nitrite might be included in commercial examples to minimize fat oxidation and suppress growth of clostridia. Thus, sheepmeat flavors could be suppressed to appeal to unhabituated consumers. Commercial examples could thus be made for these consumers, but the mandatory use of the name "mutton" in some markets would adversely affect prospects.
Keywords
4-methyloctanoic acid; Fermentation; Sheepmeat; Skatole; Spicing
Date
2014
Source
Food Science and Nutrition, vol.2(6), pp.669 - 675
Item Type
Journal Article
Publisher
Wiley Periodicals, Inc.
DOI
10.1002/fsn3.151
Publisher's Version
http://dx.doi.org/10.1002/fsn3.151
Rights Statement
@ 2014 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of ScienceTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library