Impact of People Movement on Wi-Fi Link Throughput in Indoor Propagation Environments: An Empirical Study

Date
2021-04-03
Authors
Sarkar, N
Mussa, O
Gul, S
Supervisor
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract

There has been tremendous growth in the deployment of Wi-Fi 802.11-based networks in recent years. Many researchers have been investigating the performance of the Wi-Fi 802.11-based networks by exploring factors such as signal interference, radio propagation environments, and wireless protocols. However, exploring the effect of people’s movement on the Wi-Fi link throughout the performance is still a potential area yet to be explored. This paper investigates the impact of people’s movement on Wi-Fi link throughput. This is achieved by setting up experimental scenarios by using a pair of wireless laptops to file share where there is human movement between the two nodes. Wi-Fi link throughput is measured in an obstructed office block, laboratory, library, and suburban residential home environments. The collected data from the experimental study show that the performance difference between fixed and random human movement had an overall average of 2.21 ± 0.07 Mbps. Empirical results show that the impact of people’s movement (fixed and random people movements) on Wi-Fi link throughput is insignificant. The findings reported in this paper provide some insights into the effect of human movement on Wi-Fi throughputs that can help network planners for the deployment of next generation Wi-Fi systems.

Description
Keywords
People movement; Wi-Fi throughput; Experimental setups
Source
Electronics, 10(7), 856.
Rights statement
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).