Show simple item record

dc.contributor.authorLozano, Ren_NZ
dc.contributor.authorFullman, Nen_NZ
dc.contributor.authorMumford, JEen_NZ
dc.contributor.authorKnight, Men_NZ
dc.contributor.authorBarthelemy, CMen_NZ
dc.contributor.authorAbbafati, Cen_NZ
dc.contributor.authorAbbastabar, Hen_NZ
dc.contributor.authorAbd-Allah, Fen_NZ
dc.contributor.authorAbdollahi, Men_NZ
dc.contributor.authorAbedi, Aen_NZ
dc.contributor.authorAbolhassani, Hen_NZ
dc.contributor.authorAbosetugn, AEen_NZ
dc.contributor.authorAbreu, LGen_NZ
dc.contributor.authorAbrigo, MRMen_NZ
dc.contributor.authorAbu Haimed, AKen_NZ
dc.contributor.authorAbushouk, AIen_NZ
dc.contributor.authorAdabi, Men_NZ
dc.contributor.authorAdebayo, OMen_NZ
dc.contributor.authorAdekanmbi, Ven_NZ
dc.contributor.authorAdelson, Jen_NZ
dc.contributor.authorAdetokunboh, OOen_NZ
dc.contributor.authorAdham, Den_NZ
dc.contributor.authorAdvani, SMen_NZ
dc.contributor.authorAfshin, Aen_NZ
dc.contributor.authorAgarwal, Gen_NZ
dc.contributor.authorAgasthi, Pen_NZ
dc.contributor.authorAghamir, SMKen_NZ
dc.contributor.authorAgrawal, Aen_NZ
dc.contributor.authorAhmad, Ten_NZ
dc.contributor.authorAkinyemi, ROen_NZ
dc.contributor.authorAlahdab, Fen_NZ
dc.contributor.authorAl-Aly, Zen_NZ
dc.contributor.authorAlam, Ken_NZ
dc.contributor.authorAlbertson, SBen_NZ
dc.contributor.authorAlemu, YMen_NZ
dc.contributor.authorAlhassan, RKen_NZ
dc.contributor.authorAli, Men_NZ
dc.contributor.authorAli, Sen_NZ
dc.contributor.authorAlipour, Ven_NZ
dc.contributor.authorAljunid, SMen_NZ
dc.contributor.authorAlla, Fen_NZ
dc.contributor.authorAlmadi, MAHen_NZ
dc.contributor.authorAlmasi, Aen_NZ
dc.contributor.authorAlmasi-Hashiani, Aen_NZ
dc.contributor.authorAlmasri, NAen_NZ
dc.contributor.authorAl-Mekhlafi, HMen_NZ
dc.contributor.authorAlmulhim, AMen_NZ
dc.contributor.authorAlonso, Jen_NZ
dc.contributor.authorAl-Raddadi, RMen_NZ
dc.contributor.authorAltirkawi, KAen_NZ
dc.contributor.authorAlvis-Guzman, Nen_NZ
dc.contributor.authorAlvis-Zakzuk, NJen_NZ
dc.contributor.authorAmini, Sen_NZ
dc.contributor.authorAmini-Rarani, Men_NZ
dc.contributor.authorAmiri, Fen_NZ
dc.contributor.authorAmit, AMLen_NZ
dc.contributor.authorAmugsi, DAen_NZ
dc.contributor.authorAncuceanu, Ren_NZ
dc.contributor.authorAnderlini, Den_NZ
dc.contributor.authorAndrei, CLen_NZ
dc.contributor.authorAndroudi, Sen_NZ
dc.contributor.authorAnsari, Fen_NZ
dc.contributor.authorAnsari-Moghaddam, Aen_NZ
dc.contributor.authorAntonio, CATen_NZ
dc.contributor.authorAntony, CMen_NZ
dc.contributor.authorAntriyandarti, Een_NZ
dc.contributor.authorAnvari, Den_NZ
dc.contributor.authorAnwer, Ren_NZ
dc.contributor.authorArabloo, Jen_NZ
dc.contributor.authorArab-Zozani, Men_NZ
dc.contributor.authorAravkin, AYen_NZ
dc.contributor.authorAremu, Oen_NZ
dc.contributor.authorÄrnlöv, Jen_NZ
dc.contributor.authorAsaad, Men_NZ
dc.contributor.authorAsadi-Aliabadi, Men_NZ
dc.contributor.authorAsadi-Pooya, AAen_NZ
dc.contributor.authorAshbaugh, Cen_NZ
dc.contributor.authorAthari, SSen_NZ
dc.contributor.authorAtout, MMDWen_NZ
dc.contributor.authorAusloos, Men_NZ
dc.contributor.authorAvila-Burgos, Len_NZ
dc.contributor.authorAyala Quintanilla, BPen_NZ
dc.contributor.authorAyano, Gen_NZ
dc.contributor.authorAyanore, MAen_NZ
dc.contributor.authorAynalem, YAen_NZ
dc.contributor.authorAynalem, GLen_NZ
dc.contributor.authorAyza, MAen_NZ
dc.contributor.authorAzari, Sen_NZ
dc.contributor.authorAzzopardi, PSen_NZ
dc.contributor.authorB, DBen_NZ
dc.contributor.authorBabaee, Een_NZ
dc.contributor.authorBadiye, ADen_NZ
dc.contributor.authorBahrami, MAen_NZ
dc.contributor.authorBaig, AAen_NZ
dc.contributor.authorBakhshaei, MHen_NZ
dc.contributor.authorBakhtiari, Aen_NZ
dc.contributor.authorBakkannavar, SMen_NZ
dc.contributor.authorBalachandran, Aen_NZ
dc.contributor.authorBalassyano, Sen_NZ
dc.contributor.authorBanach, Men_NZ
dc.date.accessioned2020-09-20T21:42:44Z
dc.date.available2020-09-20T21:42:44Z
dc.date.copyright2020en_NZ
dc.identifier.citationThe Lancet (2020), doi: https://doi.org/10.1016/S0140-6736(20)30750-9
dc.identifier.issn0140-6736en_NZ
dc.identifier.issn1474-547Xen_NZ
dc.identifier.urihttp://hdl.handle.net/10292/13671
dc.description.abstractBackground: Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods: Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings: Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach $1398 pooled health spending per capita (US$ adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation: The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC. Funding: Bill & Melinda Gates Foundation.en_NZ
dc.publisherElsevier
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0140673620307509?via%3Dihub
dc.rights© 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
dc.titleMeasuring Universal Health Coverage Based on an Index of Effective Coverage of Health Services in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019en_NZ
dc.typeJournal Article
dc.rights.accessrightsOpenAccessen_NZ
dc.identifier.doi10.1016/S0140-6736(20)30750-9en_NZ
pubs.elements-id392128
aut.relation.journalThe Lanceten_NZ


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record