AUT LibraryAUT
View Item 
  •   Open Research
  • Faculties
  • Faculty of Health and Environmental Sciences
  • School of Clinical Sciences
  • View Item
  •   Open Research
  • Faculties
  • Faculty of Health and Environmental Sciences
  • School of Clinical Sciences
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Unsupervised Data-driven Model to Classify Gait Patterns in Children With Cerebral Palsy

Choisne, J; Fourrier, N; Handsfield, G; Signal, N; Taylor, D; Wilson, N; Stott, S; Besier, TF
Thumbnail
View/Open
Journal article (2.673Mb)
Permanent link
http://hdl.handle.net/10292/13487
Metadata
Show full metadata
Abstract
Ankle and foot orthoses are commonly prescribed to children with cerebral palsy (CP). It is unclear whether 3D gait analysis (3DGA) provides sufficient and reliable information for clinicians to be consistent when prescribing orthoses. Data-driven modeling can probe such questions by revealing non-intuitive relationships between variables such as 3DGA parameters and gait outcomes of orthoses use. The purpose of this study was to (1) develop a data-driven model to classify children with CP according to their gait biomechanics and (2) identify relationships between orthotics types and gait patterns. 3DGA data were acquired from walking trials of 25 typically developed children and 98 children with CP with additional prescribed orthoses. An unsupervised self-organizing map followed by k-means clustering was developed to group different gait patterns based on children's 3DGA. Model inputs were gait variable scores (GVSs) extracted from the gait profile score, measuring root mean square differences from TD children's gait cycle. The model identified five pathological gait patterns with statistical differences in GVSs. Only 43% of children improved their gait pattern when wearing an orthosis. Orthotics prescriptions were variable even in children with similar gait patterns. This study suggests that quantitative data-driven approaches may provide more clarity and specificity to support orthotics prescription.
Keywords
3D gait analysis; Ankle foot orthosis; Cerebral palsy; Data-driven model; Gait variable score
Date
2020
Source
Journal of Clinical Medicine, 9(5), 1432.
Item Type
Journal Article
Publisher
MDPI AG
DOI
10.3390/jcm9051432
Publisher's Version
https://www.mdpi.com/2077-0383/9/5/1432
Rights Statement
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Clinical SciencesTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library