Niche Filtering of Bacteria in Soil and Rock Habitats of the Colorado Plateau Desert, Utah, USA

Date
2016-09-26
Authors
Lee, KC
Archer, SDJ
Boyle, RH
Lacap-Bugler, DC
Belnap, J
Pointing, SB
Supervisor
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
Frontiers Media S.A.
Abstract

A common feature of microbial colonization in deserts is biological soil crusts (BSCs), and these comprise a complex community dominated by Cyanobacteria. Rock substrates, particularly sandstone, are also colonized by microbial communities. These are separated by bare sandy soil that also supports microbial colonization. Here we report a high-throughput sequencing study of BSC and cryptoendolith plus adjacent bare soil communities in the Colorado Plateau Desert, Utah, USA. Bare soils supported a community with low levels of recoverable DNA and high evenness, whilst BSC yielded relatively high recoverable DNA, and reduced evenness compared to bare soil due to specialized crust taxa. The cryptoendolithic community displayed the greatest evenness but the lowest diversity, reflecting the highly specialized nature of these communities. A strong substrate-dependent pattern of community assembly was observed, and in particular cyanobacterial taxa were distinct. Soils were virtually devoid of photoautotrophic signatures, BSC was dominated by a closely related group of Microcoleus/Phormidium taxa, whilst cryptoendolithic colonization in sandstone supported almost exclusively a single genus, Chroococcidiopsis. We interpret this as strong evidence for niche filtering of taxa in communities. Local inter-niche recruitment of photoautotrophs may therefore be limited and so communities likely depend significantly on cyanobacterial recruitment from distant sources of similar substrate. We discuss the implication of this finding in terms of conservation and management of desert microbiota.

Description
Keywords
Biological soil crust; Cryptoendolith; Cyanobacteria; Desert; Utah
Source
Frontiers of Microbiology, 7:1489. doi: 10.3389/fmicb.2016.01489
Rights statement
© 2016 Lee, Archer, Boyle, Lacap-Bugler, Belnap and Pointing. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.