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Abstract

Convolutional gridding is a technique used in synthesis imaging for the reconstruction of
images from spatial-frequency data. Gridding, as it is referred to, has many applications,
some of which include medical imaging (magnetic resonance imaging, computerized
tomography), synthetic aperture sonar imaging, and radio interferometry. Gridding
is a computationally expensive procedure, with modern gridding algorithms utilizing
many-core accelerators to achieve high performance. The Square Kilometre Array
(SKA) will eventually become the worlds largest radio interferometer ever constructed,
generating enormous volumes of spatial-frequency data. Therefore, an optimized
gridding algorithm is needed. Existing gridding solutions demonstrate the use of
graphics processing units and heterogeneous computing libraries to achieve optimized
gridding performance. However, these solutions are often dependant on additional
data processing mechanisms to maximize gridding throughput. This thesis explores an
implementation of the W-Projection convolutional gridding algorithm which utilizes
Open Graphics Library and the graphics rendering pipeline; informally titled the Hall-
Ensor-Campbell (HEC) gridder. It was hypothesized that efficient and effective gridding
could be achieved and general performance improved by conducting gridding operations
in a graphics rendering environment. A design science approach was employed to design,
develop, and evaluate the efficacy of a graphics based gridding solution. Performance of
the HEC gridder was comparatively evaluated against a leading convolutional gridding
algorithm. It was found that efficient and effective graphics based gridding is feasible
with the use of vertex point sprites, accumulative fragment blending, and a custom
implementation of textured W-Projection kernels.
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Chapter 1

Introduction

Synthesis imaging, also referred to as aperture synthesis, is an advanced imaging tech-

nique used for the production of images from arbitrarily sampled spatial-frequency data.

Traditionally, an array of sensors is used to measure samples of electromagnetic radi-

ation emitted by some observable source. These samples are progressively transformed

into an image using a series of complex algorithms, in a process referred to as imaging.

One of the dominant algorithms used in the imaging process is the convolutional

gridding algorithm, or gridder. The process of gridding observes the integration of

spatial-frequency data samples into a two-dimensional regular Fourier domain grid.

General smoothing functions are typically used to perform this integration, in the form

of two-dimensional convolution kernels. Other algorithms in the imaging pipeline are

responsible for the correction, enhancement, and cleaning of gridded data, to ensure

high quality images are synthesized. Of the algorithms used in imaging, convolutional

gridding is described as the most computationally expensive algorithm in the pipeline

(Romein, 2012).

11
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Gridding has since been adopted by a number of scientific disciplines due to its

effectiveness in synthesizing high quality images. Radio astronomers utilize gridding in

conjunction with radio interferometry, when studying astronomical bodies which lay

beyond the realms of the visible spectrum of light. Figure 1.1 demonstrates the gridding

of astronomical data (left), which is transformed using an inverse Fourier transform

(mid), and is then cleaned to obtain the true image of the astronomical source (right).

(a) Gridded Samples (b) Dirty Image (c) True Image

Figure 1.1: Synthesis imaging in radio astronomy (Wise, 2013)

In the health sector, gridding is commonly used in magnetic resonance imaging

(Schomberg & Timmer, 1995) and computerized tomography (Jackson et al., 1991)

to synthesize image slices of the human form. These image slices allow specialists

to accurately diagnose underlying disease or abnormalities, which would otherwise

require invasive surgery. Synthetic aperture sonar systems utilize gridding to map and

observe the ocean floor (McKay et al., 2017).

Recently, there has been an increase in research for optimized convolutional gridding

algorithms. This stems from the active development of the Square Kilometre Array

(SKA), which will eventually become the worlds largest radio telescope ever constructed.

Featuring a total collection area of one square kilometre, it is anticipated that the SKA

will produce tremendous volumes of observational data. Upwards of 720 gigabytes per
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second is expected during the first phase of the telescope (10% of the total capacity).

The imaging pipeline for the SKA is expected to be as optimized as possible to deal

with these extreme volumes of incoming data, which must incorporate optimized

convolutional gridding.

Hardware accelerators, such as the graphics processing unit (GPU) has become

commonplace for parallelizing convolutional gridding algorithms to achieve improved

performance (Humphreys & Cornwell, 2011). This has introduced new challenges to

gridding, including effective concurrency management and maintaining high gridding

throughput. Various algorithm designs and performance improvement techniques have

ensued. Specialized threaded work-distribution techniques have been demonstrated

to manage concurrency during gridding (Romein, 2012), which is improved with the

coarsening of threads (Merry, 2016b). Gridding throughput can be improved through

z-order tiling of the Fourier domain grid (Du Toit, 2017), in order to maximize grid

locality during convolutional gridding (Veenboer et al., 2017).

However, the majority of parallelized convolutional gridding algorithms demon-

strates the need for additional data processing in order to achieve optimized gridding

performance. These data processing techniques include searching (Edgar et al., 2010),

sorting (Du Toit, 2017), or compression/elimination (Muscat, 2014) of observational

data. Evidently, this unnecessary computational overhead is undesired by the SKA, as

it only contributes to the already extensive financial costs needed to produce, operate,

and maintain the radio telescope.

The various algorithms presented in gridding literature typically utilize general-

purpose computing libraries, such as Compute Unified Device Architecture (CUDA),

Open Computing Language (OpenCL), Open Multi-Processing (OpenMP), to name a

few. There appears to be an absence of gridding solutions which utilize traditional GPU

based computing; i.e. graphics rendering. It is speculated that the graphics rendering

pipeline has the necessary functionality to both simplify convolutional gridding, and
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improve general gridding performance. Edgar et al. (2010) states that preliminary

experimentation with graphics based gridding using Open Graphics Library (OpenGL)

demonstrates feasibility, but was discontinued due to a lack of computer graphics

experience by engineers (Edgar et al., 2010). Romein (2012) suggests that texture based

convolution kernels would benefit from hardware accelerated interpolation offered by

graphics rendering hardware. He also suggests textures could demonstrate improved

image quality, and improved execution times for convolutional gridding when efficient

texture caching is used (Romein, 2012).

The speculation surrounding graphics based convolutional gridding is of interest to

demonstrate whether it provides a feasible gridding solution for the SKA. It would be

ideal to maximize gridding performance where possible, and the rendering pipeline is

thought to be a viable option. Furthermore, the pipeline provides a breadth of built-in

functionality which may simplify the overall process of convolutional gridding.

1.1 Statement of the Problem

Current gridding solutions demonstrate a reliance on additional data processing to

achieve optimized gridding performance. These processing mechanisms includes

sorting, searching, compression, or elimination of observational data either before or

during the gridding process. Such mechanisms contribute to the already expensive

computational needs of convolutional gridding, and are undesired for the SKA.

The SKA requires an efficient and effective convolutional gridding algorithm. One

which supports wide-field imaging, as the SKA will facilitate long baseline interfero-

metry. An ideal solution should demonstrate efficient and effective gridding capabilities

with no reliance on additional data processing mechanisms to achieve optimized per-

formance. This is needed as the SKA anticipates extremely large volumes of observa-

tional data which cannot be efficiently cached for offline processing.
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The SKA would stand to benefit financially from optimized convolutional gridding.

The overall production, operation, and maintenance costs for the SKA would be com-

pensated by a reduction in unnecessary computational overhead. In the long run, use of

an optimized gridding algorithm has the potential to save large sums of money.

1.2 Aim and Scope

The aim of this research is to implement and demonstrate the effectiveness of graphically

rendered convolutional gridding using OpenGL and the graphics rendering pipeline. A

secondary aim of this research is to integrate graphics rendering optimizations where

possible. This involves the identification of gridding features which can be optimized to

improve performance, and subsequent implementation of said optimizations.

Formally, these aims are represented by the following two research questions:

1. How can OpenGL and the graphics rendering pipeline be used to facilitate

convolutional gridding?

2. What optimizations can be implemented to improve the performance of graphics

based convolutional gridding?

It is important to note that the definition of performance could be interpreted as

vague. Therefore, the definition of performance used in this thesis is defined as follows

to ensure there is no misunderstanding or ambiguity of its use relative to gridding:

Gridding Speed: Defines how expeditiously the algorithm can complete one single

gridding cycle

Gridding Precision: Defines the level of accuracy achieved by the algorithm, meas-

ured as relative error
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Memory Utilization: Defines the requisite memory footprint for caching a set of

convolution kernels within the GPU

The scope of the research performed is limited to the design, development, and evalu-

ation of a functional OpenGL based convolutional gridding algorithm. The W-Projection

gridding algorithm (Cornwell et al., 2008) will be implemented to provide correction for

non-coplanar baselines1, and provide adequate support for wide-field imaging2 for the

SKA. Evaluating the efficacy of the proposed algorithm will be performed by comparing

gridding performance against a leading W-Projection convolutional gridding algorithm.

1.3 Significance of the Study

The significance of this study will demonstrate the practical implications of utilizing

graphics rendering technology to facilitate convolutional gridding. There exists a norm

in the development of high performance software; one which observes the default adop-

tion of general-purpose tools such as CUDA or OpenCL. This study will demonstrate

that high performance computing problems can still be effectively solved with the use

of native graphics rendering, and in some situations can outperform the general-purpose

approach.

The findings of this research will benefit gridding algorithm researchers, by demon-

strating rendering techniques which simplify data parallelization, and will show how

thinking outside of the box can result in effective high-performance solutions.

The development of a functional convolutional gridding algorithm will contribute

to the body of knowledge by exhibiting an alternative approach to gridding. This

contribution is not only beneficial for the radio astronomy community and the Square

1 Non-coplanar baselines refers to the situation where baseline recievers do not lay on a common
plane.

2 Wide-field imaging refers to a situation where the portion of the Celestial Sphere under observation
is not planar.
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Kilometre Array - whom of which is this research targets - but also towards other

disciplines which utilize gridding algorithms.

1.4 Thesis Structure

This chapter has stated that an outstanding high performance computing problem exists

for the Square Kilometre Array. A hypothesis was presented, theorizing the feasibility

of the graphics rendering pipeline to facilitate optimized convolutional gridding. Two

research questions have been proposed which require the design, development, and

evaluation of a graphics based gridding algorithm. It has been stated that a GPU

accelerated gridding solution will be implemented using OpenGL and the graphics

rendering pipeline.

Chapter 2 introduces the necessary background information for this research; includ-

ing an overview of existing hardware accelerated gridding algorithms, and information

relative to radio interferometry based imaging.

Chapter 3 describes the application of the design science research methodology

relative to the conducting of this research, including an overview of the gridding

performance evaluation methods.

The implementation of the gridding algorithm will be thoroughly discussed in

Chapter 4; including the design search process, configuration, and operation of the

gridding solution. Several variations of custom fragment shader are presented; demon-

strating improved shader design to achieve optimized gridding performance.

Chapter 5 demonstrates and evaluates the performance and efficacy of the proposed

gridding solution. Gridding performance is measured against a leading CUDA based

convolutional gridding algorithm.

Chapter 6 will discuss the findings of the research obtained from the evaluation

of the gridding algorithm. Additionally, Chapter 6 will highlight critical aspects of
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graphics based gridding which demonstrate improved performance, and to discuss why

some rendering techniques reduce performance and how this can be mitigated.

Finally, Chapter 7 will conclude the thesis, and define additional work to be per-

formed in the near future.

Figure 1.2 presents a high-level overview of the main computing elements for the

OpenGL convolutional gridding algorithm.

Figure 1.2: Overview of the Hall-Ensor-Campbell gridding algorithm



Chapter 2

Literature Review

This chapter will provide the necessary background information and review of relative

literature with respect to convolutional gridding. The first section will cover background

information for radio interferometry, which describes how and why interferometers are

used, as well as how observational data are obtained and processed into a sky image.

This will be followed by a dedicated gridding section, which describes the various

elements used within gridding. This includes a brief history of gridding, convolution

kernels, preparation, and application, and an overview of both general gridding and

modern W-Projection gridding. An overview of graphics processing units (GPU) will

follow, describing why GPUs are utilized to implement high-performance algorithms.

An overview of Open Graphics Library (OpenGL) and CUDA will given, with a

brief description of hardware accelerated general-purpose computing. Lastly, modern

hardware accelerated gridding algorithms will be reviewed to provide context for the

current state of the art.

19
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2.1 Radio Interferometry

Radio interferometry is an advanced technique used in radio astronomy for the observa-

tion and study of astronomical bodies; such as star clusters, galaxies, and nebulae. It

utilizes a complex imaging process, referred to as aperture synthesis, in which advanced

signal processing techniques are used created high quality images from measured

electromagnetic radiation.

Figure 2.1 is one such example of a synthesized image obtained with the use of

aperture synthesis; presenting the distant galaxy Hercules A (3C 348). The use of

radio interferometry has enabled the discovery of massive plasma jets on either side of

Hercules A, thought to be upwards of one million light years in length.

Figure 2.1: The galaxy Hercules A (3C 348) (Thompson et al., 2017)

Two major components of radio interferometry are needed to perform aperture

synthesis: the first being the data collection mechanism, and the second being the
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data processing mechanism. Data collection in radio interferometry is performed with

the use of the radio interferometer, which consists of many connected pairs of radio

antennae ("elements"), distributed over some defined region. Each pair of elements

is referred to as a baseline, for which the radio interferometer will consist of many

baselines of various length (distance between the two elements). By utilizing many

baselines of varying distance, the interferometer is capable of simulating one giant radio

telescope of large aperture, capable of measuring a range of spatial frequencies. This

synthetically large aperture provides a large collection area, increased sensitivity of

electromagnetic radiation, and increased angular resolution for higher quality images.

Figure 2.2 demonstrates several existing radio interferometers in use around the

world. Different forms of antennae are utilized, which is dependant on the frequency

bandwidth the interferometer is expected to support.

(a) Low-Frequency Array (LOFAR, 2017) (b) Very Large Array (VLA, 2017)

(c) MeerKAT (meerKAT , 2017) (d) Australian SKA Pathfinder (ASKAP, n.d.)

Figure 2.2: Various radio interferometers
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The second major component of the interferometer is the processor, responsible for

the execution of various signal processing algorithms. This is often referred to as the

imager or imaging pipeline, as it iteratively synthesizes a sky image from measured

spatial-frequency data.

During an observation of the sky, each baseline pair of elements continuously feeds

electromagnetic radiation into a correlator. The correlator digitizes the signals of both

elements into a complex number which represents the amplitude and phase of the

measured signal. This number is referred to as a visibility in radio astronomy, which

describes the intensity (or brightness) of the observed source in the sky, in the frequency

domain.

Additionally, each visibility is paired with a (u, v,w) coordinate vector, which is

used to position the visibility during subsequent imaging pipeline procedures. The

(u, v,w) coordinates for a visibility are dependant on the position of the elements

relative to the source of the sky, which changes as the Earth rotates (Romein, 2012).

The correlator will periodically sample (integrate) visibilities to ensure the rest of the

imaging pipeline can manage the large volume of incoming data.

Figure 2.3 demonstrates the basic principal of single channel interferometry. Visib-

ilities are sent from the correlator to the imager, which performs the complex synthesis

imaging process. The output of the imaging process is a synthetic approximate image

of the sky. The finer details of the image processor will be described shortly.

The ability to synthesize an image from spatial-frequency data is dependant on

the use of Fourier transform procedures. Fourier transformations such as the discrete

Fourier transform (DFT) allow for signals sampled over time to be separated into

individual spectral components. This means a signal can be divided into singular

sinusoidal oscillations of distinct frequencies, including the amplitude and phase per

frequency component.
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Figure 2.3: High-level overview of signal to image processing (Veenboer et al., 2017)

Figure 2.4 demonstrates this process of separation. Imaging pipelines utilize the

fast Fourier Transform (FFT) as it can compute the DFT in n logn operations instead

of n2 (Cooley & Tukey, 1965).

Figure 2.4: A signal in both the time and frequency domain (FFT Basics, n.d.)

Figure 2.5 demonstrates the relationship between a typical image (a) and the Fourier

domain representation of the image; the magnitude (b) and phase (c). Aperture synthesis

focuses on the distribution of signal components into the Fourier domain using a

technique known as gridding, and subsequently uses an inverse FFT to obtain the

image.
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(a) Image (b) Magnitude (c) Phase

Figure 2.5: Image and frequency domain components. (Lena Söderberg, n.d.)

Generally speaking, the magnitude is used to describe the frequencies of the image,

and the phase describes the positioning of the frequency information. However, there

does exist some overlap between the two components. Figure 2.6 demonstrates how a

color image is reconstructed using a combination of magnitude and phase. It can be

seen how the absence of either component negatively impacts the image, and how both

components contributes to the quality of information.

(a) Magnitude and Phase (b) Magnitude Only (c) Phase Only

Figure 2.6: Image and frequency domain components. (Lena Söderberg, n.d.)

In aperture synthesis, images are synthetically coloured as radio waves lay beyond

the spectrum of visible light. Multiple images sampled at different frequencies (a

spectral cube), or one image of an averaged frequency are used.
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2.1.1 The UVW Coordinate System

The UVW coordinate system is used when describing the position of a baseline pair

of elements on the Earths surface, in relation to the fixed phase center at some given

time during observation. The coordinate system represents a right handed Cartesian

system, where the U and V axes represents East-West and North-South, with the W-axis

representing the direction of the phase center.

The (u, v,w) coordinate vector bound to each visibility is measured in wavelengths

for convenience, and is converted to meters prior to the gridding phase of the imaging

pipeline. The components of the coordinate vector are described as a measurement

of the baseline against the phase center, such that (u, v,w) =
Ð→
B
λ for some channel

wavelength λ (Muscat, 2014).

Figure 2.7 demonstrates how the (u, v,w) coordinates for the baseline map to a

point on the celestial sphere (image plane). This is represented by the directional cosines

(l,m) where the direction vector is calculated as (l,m,
√

1 − l2 −m2) with respect to

the UV axes.

Figure 2.7: The uvw coordinate system (Veenboer et al., 2017)
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2.1.2 Visibilities

Briefly introduced earlier, visibilities represent the measurement of the correlation of

signals from each baseline pair of elements. Each element provides one X and Y polar-

ization signal, which results in four correlated visibilities per baseline, per frequency.

The relationship between visibilities V (u, v,w) in three dimensions and the intensity

distribution of the observed sky I(l,m) for direction cosines (l,m) is presented in

Equation 2.1 as the Van Cittert-Zernike theorem (van Cittert, 1934), (Zernike, 1938).

V (u, v,w) = ∬
I(l,m)

√
1 − l2 −m2

e−i2π(ul+vm+w(
√
1−l2−m2−1))dldm (2.1)

Equation 2.2 describes the state of a visibility when observed using a small field of

view, where the spheroid form of the sky under observation is close to planar (flat). If

each baseline pair of receivers is also coplanar, then the effect of the w term becomes

insignificant, such that the visibility can be simplified as Equation 2.2:

V (u, v) = ∬ I(l,m)e−i2π(ul+vm)dldm (2.2)

This demonstrates that the sky image is a two-dimensional inverse Fourier transform

of the visibilities. The imaging process shown in Figure 2.8 obtains the intensities

I(l,m) from the visibilities V (u, v) by means of convolutional gridding and an inverse

Fourier transform.

However, when performing wide-field imaging, the w term of a visibility cannot be

ignored. Using a delta function, the visibility can be expressed by Equation 2.3. This

shows that I(l,m) can be obtained by an inverse three-dimensional Fourier transform,

which would require a gridding algorithm that operates in three-dimensions.



Chapter 2. Literature Review 27

V (u, v,w) =∭
I(l,m) δ(n −

√
1 − l2 −m2)

n
e−i2π(ul+vm+wn)dldmdn (2.3)

This can be expressed using Equation 2.4, where G(l,m,w) = e−i2πw(
√
1−l2−m2−1) ≅

eiπw(l2+m2). This method is used in the W-Projection algorithm (Cornwell et al., 2008)

to correct the w term, by deconvolving the visibilities V (u, v,0) with the inverse Fourier

transform i
we

−iπ(u2+v2)/w of G.

V (u, v,w) = ∬
I(l,m)

√
1 − l2 −m2

G(l,m,w)e−i2π(ul+vm)dldm (2.4)

2.1.3 Imaging Pipeline

The imaging pipeline is responsible for the synthesis of the image using the visibilities

obtained through correlation. Several different processing steps are needed to synthesize

the approximate sky image, with Figure 2.8 demonstrating a basic single channel

imaging pipeline.

Figure 2.8: Imaging pipeline for a single channel image (Veenboer et al., 2017)
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It is typical for 10 major cycles to be performed during imaging, as at this point

no additional information can be extracted from the residual (dirty) image. A brief

description of the imaging pipeline processes is described as follows:

Gridding Performs the convolutional gridding of visibilities into the UV-grid. This

process is the focal point of this thesis.

Inverse Fourier Transform A standard inverse Fourier transform to convert the UV-

grid into the residual ("dirty") image for additional processing

Cleaning Performs the cleaning of the residual image to extract weak sources which

are masked by brighter sources. The weaker sources are extracted using some

variation of CLEAN algorithm, such as Högsboms CLEAN (Högbom, 1974) or

Cotton-Schwab CLEAN (Schwab, 1984), and are added to the current sky model

Fourier Transform A standard forward Fourier transform to convert the clean model

image into the UV-grid for further processing

Degridding Performs the "prediction" and extraction of visibilities from the UV-grid

to identify bright model visibilities

Subtraction Performs the subtraction of "predicted" visibilities from the incoming

measured visibilities, to ensure fainter sources are revealed through further itera-

tions (Veenboer et al., 2017)

Perfect Imaging

Perfect imaging is a process in which an image is synthesized through a fully sampled

UV-plane using non-uniformly sampled visibilities which are neither binned nor res-

ampled across a regular grid (unlike gridding). This technique still produces a dirty

image of the sky, albeit with the highest possible precision.

Several synthetic observational datasets are presented in Section 3.4 of Chapter

3, which are used during this development of an optimized OpenGL convolutional
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gridding algorithm. At the time this research was conducted, an implementation of the

perfect imaging algorithm was not readily available nor in the scope of the research, but

was noted to be a critical step in confirming the usefulness of the implemented gridding

solution. It has been found post-submission that the creation of a perfect image for

each presented dataset would take approximately 19.25 days1 to complete, which would

reduce the amount of available research time by 2 months given only one GPU was

available.

This imaging process requires tremendous amounts of computation to complete,

even with the use of many-core accelerators. Convolutional gridding is also considered

to be computationally expensive, but less so than that of the perfect imaging. Thus,

gridding is used in radio interferometry as an approximation to perfect imaging.

Equation 2.5 describes how each pixel of the image is calculated as a summation

of N visibilities Vn at (l,m). For the sake of performance, (
√

1 − l2 −m2 − 1) can be

approximated by − (l
2+m2)
2 .

I(l,m) =
√
1 − l2 −m2

N

∑
n=1

Vn ⋅ e
i2π(ul+vm−

w(l2+m2
)

2 ) (2.5)

Operations are performed directly across the image domain, and not in the frequency

domain as observed in convolutional gridding. Note that the sign of the w term for each

visbility in the test datasets used in this thesis were required to be flipped.

1 The reported time has been measured using an optimized CUDA based GPU accelerated perfect
imaging algorithm (Inverse Direct Fourier Transform, 2019), which was implemented post-submission
of this thesis. Calculating said time was performed by imaging a fraction of the full image obtained
with the EL82-EL70 dataset. The dimension of the clipped image was 20482 (1.3% of the full 18,0002

image) using double precision, and took approximately 6 hours using the same GPU used to develop the
algorithm presented in this thesis (covered in Table 3.4). Assuming ≈ 6 hours is needed for 1.3% of the
full image, perfect imaging the total image yeilds an approximate execution time of 19.25 days.
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2.1.4 Square Kilometre Array

The Square Kilometre Array (SKA) will eventually become the largest radio telescope

ever constructed, featuring a total collection area of 1km2. The SKA will be distributed

over two continents as two separate instruments, and will be delivered over two separate

phases. The first phase (SKA1) is expected to be operational by 2022, and will represent

the foundations for both the low and mid frequency instruments, at only 10% of the total

capacity of the telescope. Figure 2.9 demonstrates a rendition of the two instruments in

their final form.

(a) SKA-1 Low Australia, (SKA, 2015) (b) SKA-1 Mid South Africa, (SKA, 2016)

Figure 2.9: A rendition of SKA1-low and SKA1-mid

South Africa will host the mid-frequency instrument of the SKA, referred to as

SKA1-mid when describing the first phase. SKA1-mid is expected to have a total

collection area of 33,000m2, supporting a frequency range of 350 MHz to 14 GHz using

approximately 200 dishes with baselines of up to 150 kilometres in distance (SKA1

MID, 2015).

The low-frequency instrument (SKA1-low) will be hosted in the Australian outback,

supporting a range of frequencies between 50 MHz to 350 MHz. SKA1-low will consist

of approximately 131,000 antennae distributed over 512 stations, with a maximum
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baseline of approximately 65 kilometres (SKA1 LOW, 2015).

It is expected that SKA1 will produce approximately 720GB/s of visibility data.

Thus, why it is clear to see why an optimized convolutional gridding algorithm is

needed.

Many of the finer details for SKA2 remain indeterminate while SKA1 is under

development. However, it is known that the collective capacity of the telescope will

be substantially increased. SKA2-mid will be increased to several thousand receivers,

and SKA2-low will increase to around one million antennae. The maximum baseline

distance of the telescope will also be increased, providing support for higher angular

resolution. This will drastically increase the volume of visibilities which must be

gridded, and subsequently the size of the grid to be processed. It is expected that

the imaging pipeline for the SKA will require operational computation speeds of

approximately 250 petaFLOPS.

2.2 General Gridding

Early approaches to the gridding of radio astronomy data resorted to the naïve accu-

mulation of visibilities V (u, v) to its nearest available grid point (Mathur, 1969). An

alternative approach saw visibilities being averaged to the nearest available grid points

with respect to the (u, v) coordinates of the visibility (Hogg et al., 1969). The technique

referred to as the gridding method was first demonstrated by Brouw (1975). The grid-

ding method demonstrated the use of a weighted sum based on the distance between

the coordinates of each visibility V (u, v), and their corresponding grid point; such as

a Gaussian average (Brouw, 1975). The use of sinc functions to achieve optimized

gridding were also demonstrated (O’sullivan, 1985). However, this technique is not

ideal as sinc functions are infinite in extent.

Practical gridding solutions require the use convolutional functions of finite extent
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(Jackson et al., 1991). This technique is referred to as convolutional gridding, and is the

standard gridding method for modern imaging pipelines. This approach to gridding will

be discussed in detail shortly; for now, context will be given to the various components

used in the convolutional gridding process.

2.2.1 The UV-Grid

The UV-grid is a two-dimensional regular Fourier domain representation of the image

plane. Non-uniformly sampled visibilities are uniformly resampled into the UV-grid

using some form of two-dimensional convolution kernel, contributing some distribution

of intensity (or brightness) of the source under observation.

The (u, v) coordinates for each visibility trace out an ellipse on the UV-grid over

time as the Earth rotates during an astronomical observation. Longer baselines (elements

further apart) result in ellipses with larger axes in the UV-grid.

The elements of an interferometer are typically positioned to provide optimal cover-

age of the UV-grid. However, it is possible that the area of the sky under observation

falls out of view during the Earths rotation. This results in incomplete ellipses in the

UV-grid, as visibilities are not measurable when the source is out of view. Having an

incomplete ellipse does not result in an unobtainable image, it just means the image

may be of lesser quality due to the absence of complete information. Figure 2.10

demonstrates how visibilities trace an ellipse over time during observation.

2.2.2 Convolution Kernels

When performing convolutional gridding with a small field of view, the use of a general

smoothing function is sufficient for resampling of visibilities onto the grid. The purpose

of utilizing a smoothing function is to ensure visibilities are gradually integrated into
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Figure 2.10: Visibility distribution in the UV-grid (Romein, 2012)

the UV-grid, which would otherwise result in the presence of artifacts in the final image.

As the resampling of visibilities is performed onto a two-dimensional plane, the

use of a two-dimensional smoothing function is required; referred to as a convolutional

kernel. Kernels are often calculated in one-dimension for cache efficiency, and a

two-dimensional kernel sample is produced as the product of two samples during the

gridding process. This is referred to as a separable convolution kernel, which does not

demonstrate kernel isotropy (radial symmetry). The one exception being the Gaussian

window function, which is both separable and isotropic (Awad & Baba, 2011).

The size (number of samples) of a convolution kernel is referred to as the kernel

support, a common term used in gridding literature. Humphreys & Cornwell (2011)

states that there is frequent misunderstanding within gridding literature when discussing

kernel support. The use of the term has been used to describe both full-width and
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half-width kernels (Humphreys & Cornwell, 2011). In the case of this thesis, the term

support refers to full-width kernels, unless specified otherwise.

Modern radio astronomy gridding algorithms utilize prolate spheroidal wave func-

tions (PSWF) for two-dimensional convolution kernels as they are band-limited2, and

are useful for recovering time-limited3 functions from the Fourier transform. Addition-

ally, the PSWF ensures the concentration of main lobe4 energy is maximized, and the

amount of noise in the spectrum is averaged out. Thus, reducing a loss of information

at the edges of the window (Slepian & Pollak, 1961), (Landau & Pollak, 1961).

Medical imaging gridding algorithms ((Rosenfeld, 1998), (Beatty et al., 2005))

favour the Kaiser-Bessel window function. The window (Kaiser, 1966) represents an

approximation of the PSFW. The Kaiser-Bessel window is favoured, as typical PSWF

optimizations are not relevant for computer tomography or magnetic resonance imaging

(Schomberg & Timmer, 1995).

Various convolution window functions have been examined and compared, including

cosine, Gaussian, PSWF, and an alternative implementation of the Kaiser-Bessel window

function. It was found the Kaiser-Bessel and PSWF are the most optimal of functions,

demonstrating comparable results with respect to image quality (Jackson et al., 1991).

Jackson et al. suggests that the difference in time to calculate either function is a factor to

consider when selecting a function for use (Jackson et al., 1991). One would speculate

this may be true for situations where kernel pre-sampling5 is not performed.

When performing wide-field imaging, the baselines may be represented in a non-

coplanar region. This requires an effective gridding method for resampling of visibilities

2 Band-limiting refers the limiting of the frequency domain representation of a signal to zero above
some finite frequency, such that a finite number of Fourier series terms can be calculated from said signal.

3 Time-limiting refers to a signal which is non-zero for a finite length interval of time.
4 The main lobe (or main beam) refers to lobe which exhibits the greatest power (field stength) in a

radio antennaes radiation pattern.
5 Suitable kernels are pre-calculated ahead of time and are cached for use at a later time. This is

opposed to calculating the same kernel many times during the execution of the algorithm, which is
evidently inefficient.
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which accounts for the difference in coplanarity of baseline elements. The W-Projection

gridding algorithm is commonly used to correct these effects (Cornwell et al., 2008). The

use of the W-Projection gridding algorithm means that standard smoothing functions

cannot be applied for all visibilities, and a set of specialized correction kernels of

varying support must be used.

Figure 2.11 demonstrates a side on visualisation of a set of W-Projection kernels,

where the w term is represented by the vertical axis, and the (u, v) terms are represented

as the other two axis. Larger W-Projection kernels require greater kernel support, which

is relative to the w term being corrected. The bottom of Figure 2.11 represents the

smallest W-Projection kernel, which typically defaults to a general smoothing function

for visibilities from co-planar baselines (w = 0). As the w term increases, so to does

the support of the kernel. Samples for negative W-Projection kernels are also utilized,

which are just the complex conjugate of a positive kernel, and are typically computed

during the gridding process.

Figure 2.11: W-Projection convolution kernels (Humphreys & Cornwell, 2011)

One of the implications of using W-Projection kernels is that they are not separable

by nature. Therefore, a W-Projection convolution sample cannot be produced from two

one-dimensional samples. Merry (2016a) has demonstrated that W-Projection based
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convolution kernels could be produced with separability, but only by means of a less

precise approximation (Merry, 2016a). Further elaboration on W-Projection gridding

will be presented in Subsection 2.2.3 of this chapter.

Kernel Pre-sampling

Pre-sampling involves the creation of convolution kernels which are cached and applied

at a later time (during gridding). This is a standard practice for modern gridding

algorithms, and is critical to the efficiency of the algorithm. Pre-sampling requires a set

of kernels to be produced which are a satisfactory approximation of the various kernels

needed during gridding; especially in the case of W-Projection gridding. In contrast,

by not pre-sampling, a unique kernel must be calculated during the gridding of each

visibility. This is of course too computationally expensive to be feasible, which is why

it isn’t a common practice.

Beatty et al. suggests that the creation of convolution kernels is relatively inexpens-

ive as a preparation phase to gridding. However, if not performed, the majority of

computation and processing time would be spent on the creation of kernels, and not on

actual gridding of visibilities (Beatty et al., 2005).

Kernel Oversampling

Kernel oversampling is a precision enhancement technique in which a kernel with a

discrete number of samples n is oversampled (multiplied) by some factor m; such

that the resulting kernel contains nm sampling points. Figure 2.12 demonstrates

how oversampling influences a prolate spheroidal with a support of 15 by a factor of

four, thereby reducing the overall rounding/approximation error when sampled during

convolutional gridding.
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Figure 2.12: Oversampling a one-dimensional convolution kernel

Methods of Kernel Sampling

The method of sampling refers to what technique is used when selecting a specific

sample from a kernel to convolve a visibility into the UV-grid. Two common sampling

techniques are observed: nearest-neighbour, and interpolation.

Nearest-neighbour sampling describes the selection of a kernel sample by means

of closest available approximation. This means a visibility will be convolved and

accumulated to the grid as approximately precise as possible. Oversampling is useful in

conjunction with nearest-neighbour sampling, as a finer sampled kernel will provide a

closer approximation to a perfectly calculated kernel for some visibility. However, this

does require more memory to cache higher oversampled kernels.

The use of interpolation based sampling means a kernel can be less oversampled

than a nearest-neighbour counterpart, whilst providing comparable precision. This does

require some additional computation to perform during gridding, but can provide a

good compromise between kernel cache efficiency and necessary compute. The nearest

suitable samples are interpolated to synthesize a new sample of approximate precision.

Beatty et al. suggests that interpolation of lesser oversampled kernels offers comparable

precision to that of highly oversampled kernels, whilst heavily reducing the amount of

memory needed to cache a set of kernels (Beatty et al., 2005).
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2.2.3 Convolutional Gridding

Convolutional gridding was described earlier as the modern approach to gridding,

which uses convolution functions of finite extent to resample visibilities into the UV-

grid. A naïve approach to convolutional gridding is presented below. In this example,

a convolution kernel is chosen and applied for each visibility in each of its channels

(frequencies). One basic efficiency which can be made is to use the same convolution

sample for the visibilities polarization pairs XX,XY,Y X,Y Y .

Initialise gridxx, gridxy, gridyx, gridyy accumulators to 0
foreach visibility V(u, v, w) do

foreach channel f do
x← round(u), y ← round(v)
C ← getConvolutionKernel(u, v,w)

foreach kernel column i do
foreach kernel row j do

∆i← x + i − u,∆j ← y + j − v
gridxx(x + i, y + j) + = Vxx(u, v,w) ⋅C(∆i,∆j)
gridxy(x + i, y + j) + = Vxy(u, v,w) ⋅C(∆i,∆j)
gridyx(x + i, y + j) + = Vyx(u, v,w) ⋅C(∆i,∆j)
gridyy(x + i, y + j) + = Vyy(u, v,w) ⋅C(∆i,∆j)

end
end

end
end

Algorithm 1: General Convolutional Gridding

Unlike usual image processing convolutions, the samples at (u, v) are not likely to

be directly mapped to the grid points at (x, y). Thus, the convolution must be utilized at

non-integer fractional positions (∆i,∆j). This situation complicates the representation

of a convolution in the form of a fixed matrix. To avoid calculating the convolution at

arbitrary fractional values during gridding, each ∆i and ∆j can be rounded to the nearest

multiple of 0.125 (assuming an arbitrary oversampling factor of 8). However, this would

require 64 versions of the convolution kernel (C) to be pre-sampled prior to gridding.
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The version of the kernel selected for each visibility would then depend on the number to

which each u−x and v−y is closest (−0.375,−0.25,−0.125,0.0,0.125,0.25,0.375,0.5).

In the case of the W-Projection gridding algorithm, the convolution kernel needed

varies with the w coordinate of each visibility. The W-Projection gridding algorithm is

presented below, and assumes an oversampling factor of 64.

Initialise gridxx, gridxy, gridyx, gridyy accumulators to 0
foreach visibility V(u, v, w) do

foreach channel f do
x← round(u), y ← round(v)
a← round(8(u − x)), b← round(8(v − y))
Ca,b ← getConvolutionKernel(a, b,w)

foreach kernel column i do
foreach kernel row j do

∆i← x + i − u,∆j ← y + j − v
gridxx(x + i, y + j) + = Vxx(u, v,w) ⋅Cab(∆i,∆j)
gridxy(x + i, y + j) + = Vxy(u, v,w) ⋅Cab(∆i,∆j)
gridyx(x + i, y + j) + = Vyx(u, v,w) ⋅Cab(∆i,∆j)
gridyy(x + i, y + j) + = Vyy(u, v,w) ⋅Cab(∆i,∆j)

end
end

end
end

Algorithm 2: W-Projection Gridding

When using the W-Projection gridding algorithm, the size of the kernel scales with

the value of the w term. The smallest kernels utilized are generally 72 or 92 (when

w = 0), ranging up to 712 (for the maximum w), but can be as large as 1292 (Cornwell

et al., 2008). W-Projection kernels are calculated using regularly spaced
√
w terms to

reduce aliasing effects in the resulting image. Depending on the oversampling factor

and supported number of W-Projection planes, memory requirements for storing a full

set of kernels can reach gigabyte requirements.
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2.3 Graphics Processing Units

Graphics processing units (GPUs) are a special-purpose many-core processor tradition-

ally used for the optimal rendering of computer graphics. The use of dedicated graphics

rendering hardware removes the computationally expensive rendering processes from

the central processing unit (CPU). The GPU facilitates substantially higher performance

rendering over traditional CPU rendering, as they feature higher memory bandwidth,

a considerably greater number of cores (see Figure 2.13), and peak single-precision

floating-point arithmetic performance.

Figure 2.13: Core comparison between CPU and GPU (CPU versus GPU, 2014)

Modern GPUs are recognized not only for their powerful rendering capabilities, but

also for supporting highly parallelized data processing for computationally expensive

algorithms (Owens et al., 2008). The many-core architecture of the GPU means that a

large number of data elements can be independently processed using high-performance

parallelization. The use of single instruction, multiple data (SIMD) processing allows

the GPU to achieve data level parallelization by executing the same operation on multiple

points of data simultaneously. SIMD processing is used heavily in graphics rendering,

as it reduces the number of memory reads and clock cycles needed to compute the same

operation against a similar number of data points; i.e. modifying the brightness of an

image via pixel manipulation.
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2.3.1 Open Graphics Library

Open Graphics Library (OpenGL) is application programming interface (API) used for

the rendering of two or three-dimensional vector graphics. OpenGL is a mature API,

which has since developed into the most widely supported interface for cross-platform

graphics rendering in industry. The OpenGL API is used to access the underlying

hardware accelerated graphics rendering functionality of GPUs, through the use of

asynchronous OpenGL commands (functions).

The process of rendering is one in which various transformations of geometric

data (vertices) are sequentially performed to create two or three-dimensional graphical

structures. These structures are eventually drawn to a display in the form of a two-

dimensional raster graphic, regardless of the dimensionality of the graphical geometry

by simulating depth. Figure 2.14 demonstrates the various transformations performed

in the rendering pipeline, transforming a set of vertices into a graphical representation

of a cow.

Figure 2.14: Rendering a cow with OpenGL (Rendering of a cow, 2009)

The steps in which graphical objects are rendered using OpenGL is referred to as the

graphics rendering pipeline. Figure 2.15 demonstrates the sequence of steps performed

during the rendering of computer graphics. Previously, the OpenGL rendering pipeline

was a fixed function pipeline; meaning that customization of the rendering process
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was limited to basic configurations. Lighting and texture operations were essentially

hard-coded, with limited customizability.

Figure 2.15: The OpenGL rendering pipeline (Kessenich et al., 2016)

Modern OpenGL supports the inclusion of custom rendering logic, in the form

of programmable shaders. A C-like language referred to as Graphics Library Shader

Language (GLSL) is used to create custom programmable shaders, which allows for

custom vertex and pixel (fragment) logic. SIMD calculations are performed in GLSL

with the use of swizzling, which vectorize various computations performed in each

custom programmable shader. The use of custom shaders can also be optimized to

achieve better performance than the fixed pipeline (Kessenich et al., 2016).
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The basic premise for rendering a graphical scene using OpenGL and the rendering

pipeline is as follows:

1. Custom programmable shaders (if any) are compiled at runtime on the CPU, and

are bound to an instance of an OpenGL program on the GPU. Basic geometry

data (vertices) are also bound prior to the execution of the rendering pipeline.

Optional data can also be bound, including uniforms or graphical textures.

2. Vertex shading executes the translation of bound vertices, performing any neces-

sary rotations, perspective projections, definition of colours, or lighting effects.

3. OpenGL primitives are then assembled from a number of vertices. This is

dependant on the primitive being rendered, and includes points, lines, triangles,

quads, and other polygons.

4. Primitive processing performs the clipping and culling of primitives which lay

outside of the active viewport.

5. Hardware accelerated rasterization is then used to convert primitives into a set of

pixels, or fragments, which cover the region defined by each OpenGL primitive.

6. Fragment shading is then used to define each fragments color. It is typical

for textures to be applied during this step, performing texture lookups to map

appropriate texels (texture pixels) to fragments. Additional lighting can also be

applied at this stage.

7. A series of basic tests are then performed against each fragment. This includes

fragment stencil/depth/scissor/blend/ownership testing to reduce redundancy

when applying fragments to the bound frame buffer.

8. Lastly, fragments which have not been culled during the previous step are written

to the frame buffer at their corresponding location. (Segal & Akeley, 2017)
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2.3.2 General-purpose Computing on GPUs

To improve the performance of computationally intense algorithms, it is common for

GPUs to be utilized for general-purpose computing (GPGPU). This involves shifting

the more computationally expensive portion of an algorithm to the GPU in order to

benefit from high data parallelization. Often this requires redesigning certain aspects of

the algorithm to operate in a parallelized environment.

The scientific community has benefited greatly from the use of GPGPU, in a great

variety of disciplines. Hall (2014) demonstrates how computer vision based feature

detection algorithms achieve greatly improved performance over CPU counterparts

(Hall, 2014). The Rivest–Shamir–Adleman cryptographic algorithm demonstrates

improved encryption and decryption times using many-core GPUs (Harrison & Waldron,

2009). In the bioinformatics discipline, GPUs greatly improve the performance of

molecular mechanics simulations, aiding in the study of biomolecule behaviour (Stone

et al., 2007).

Such examples only touch on a small fraction of general-purpose computing for the

scientific community. Many other disciplines demonstrate the use of GPUs for improved

scientific research, including but not limited to: artificial intelligence, weather forecast-

ing, signal processing, physics simulations, audio and image processing, computational

finance, and astrophysics.

2.3.3 Compute Unified Device Architecture

Compute Unified Device Architecture (CUDA) is a general-purpose computing platform

developed by NVIDIA. CUDA is designed to leverage the many-core architecture of

GPUs to enable high performance for computationally expensive algorithms. It provides

a layer of abstraction over the conventional rendering pipeline to present familiar coding

environments for engineers (Luebke, 2008). The overall computation is distributed
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over many GPU cores, leveraging the many thousands of threads which operate in

parallel as single instruction, multiple thread processing. Figure 2.16 demonstrates how

a three-dimensional computing problems is broken down using the CUDA model.

Figure 2.16: Parallelized distribution of computation (Compute Work Distribution,
n.d.)

User defined functions for performing computation on the GPU are referred to

as kernels, for which each individual work-item will execute. One, two, or three-

dimensional computing problems are sectioned into a user defined number of work-

groups, each of which has a user defined number of threads allocated. A number of

available work-items for each work-group is executed in parallel over a streaming

multiprocessor, with each work-item invoking the specified kernel. One main limitation

of CUDA is that it is only supported by NVIDIA hardware. Thus, the breadth of

GPUs which can be used for computation via CUDA is limited to NVIDIAs propriety

hardware.
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2.4 Hardware Accelerated Gridding

Modern convolutional gridding algorithms utilize hardware accelerators to achieve

improved gridding performance. One of the biggest challenges in achieving optimized

gridding performance is dependant on the effective utilization of available hardware

resources. Concurrency is also one of the biggest problems to manage, as it is to be

expected that numerous points on the UV-grid will require multiple visibilities to be

accumulated during convolutional gridding. The use of atomic accumulators resolves

the situation of race conditions, but does penalize the performance of the algorithm

whilst threads wait their turn.

Specialized gridding algorithm designs are observed in the literature which remove

the need for atomic accumulators. Romein (2012) presents one of the most influential

convolutional gridding algorithms. His work demonstrates a W-Projection gridding

solution which simplifies concurrency by partitioning a singular grid into a set of

sub-grids. Each sub-grid is sized according to a fixed kernel support, with one thread

allocated per grid point of the sub-grid. Concurrency is managed by using the same

thread for the same relative grid point per sub-grid, which performs the sequential

convolution and accumulation of visibilities which fall into its respective grid point

(Romein, 2012). Merry (2016b) extends this solution by utilizing thread coarsening.

This results in each thread supporting a 2x2 region of each sub-grid instead of one

thread per grid point per sub-grid (Merry, 2016b).

To maximize gridding performance on hardware accelerators, several algorithms

perform additional data processing such as sorting, searching, compression, or elimina-

tion (Humphreys & Cornwell, 2011), (Varbanescu, 2010). This additional processing

requires unnecessary computation to suitably organize visibilities for efficient gridding.

Muscat (2014) demonstrates an extension of Romeins work, which utilizes a pre-

gridding preparation step of compression or elimination of visibilities which overlap
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on the UV-grid (Muscat, 2014). Edgar et al. (2010) demonstrates a gridding solution

which relies on visibility searching, in which threads at each grid point search through

a collection of visibilities to find visibilities to grid at, or near, its current grid point

(Edgar et al., 2010). Du Toit (2017) also presents a gridding algorithm which utilizes

grid tiling and visibility bucketing. The grid is sectioned into efficiently sized tiles

suitable for storing in registers for quick access. Visibilities are bucket sorted according

to which tile(s) they belong. Execution of the gridder sees each tile processed as a

distributed workload and visibilities sequentially accumulated to the grid points of each

tile (Du Toit, 2017).

An additional challenge for hardware accelerated convolutional gridding is how

to improve gridding precision without impacting gridding throughput. Most gridding

algorithms demonstrate the use of highly oversampled convolution kernels, typically

with an oversampling factor of 8. Only one gridding solution has demonstrated ex-

ploration of texture based W-Projection kernels (Romein, 2012). It was suggested

that textures are a viable solution for applying convolution kernels, and that the use of

hardware accelerated interpolation may provide comparable precision without the need

for excessive oversampling factors (Romein, 2012).

2.5 Summary

This chapter has presented the necessary background information needed for context

of the research. An overview of radio interferometry has described the purpose of

interferometry, and how data samples are obtained and processed using the imaging

pipeline. Context for the Square Kilometre Array has been given, describing the

need for efficient gridding due to large volumes of observational data. Convolutional

gridding, and the various elements used in gridding have been described, which includes

common convolution functions of choice and kernel enhancement techniques. Graphics
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processing units have been introduced, and an overview of the Open Graphics Library

and CUDA interfaces have been given. The challenges of hardware accelerated gridding

have been discussed, demonstrating how modern gridding algorithms rely on additional

data processing to achieve high performance. It was suggested that oversampling could

be better performed with the use of texture based convolution kernels, and hardware

accelerated interpolation.



Chapter 3

Research Design

The aim of this research is to create an optimized hardware accelerated convolutional

gridding algorithm, suitable for the needs of the Square Kilometre Array (SKA). This

research theorizes that gridding can be simplified, and performance improved with the

use of the graphics rendering pipeline. To test this theory, an Open Graphics Library

(OpenGL) based gridding algorithm ("gridder") has been designed, developed, and

demonstrated for its effectiveness as an optimized gridding solution.

Both action research and design science were reviewed as the methodology of

choice for conducting this research. Design science was conclusively selected as it

closely relates to traditional software development methodologies (iterative design and

development; frequent evaluation), with supporting practices necessary for conducting

information systems research. Design science is intended to shape new realities via the

construct of original and innovative solutions, whereas action research is most suited

when researching existing complex realities (Iivari & Venable, 2009).

Design science emphasizes the development and delivery of an artifact to effectively

address an outstanding critical business problem (Hevner et al., 2004). In contrast, when

conducting action based research, actions (changes) are performed against an existing

reality in order to study the propagated results (Baskerville, 1999).

49
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The development of an OpenGL based gridding algorithm has been briefly examined

in the past (Edgar et al., 2010). However, no performance results have been reported

to demonstrate the efficacy of the solution, nor any existing reality (source code) for

which to improve upon. Therefore, design science presents an effective framework for

the design, development, and evaluation of a new solution; the hypothesized graphics

based convolutional gridder.

3.1 The Design Science Approach

Hevner et al. (2004) presents seven practical guidelines for performing effective in-

formation systems research using design science. Creation of an artifact is emphasized

as the most important outcome of the research, which must provide a solution to an

unsolved problem. Application of the body of knowledge and existing theories for the

problem domain must be applied during the design and development of the artifact.

Rigorous evaluation of the artifact is necessary to demonstrate the quality, utility, and

efficacy of the implemented solution. Finally, communication of the research must be

effectively performed to suitable audiences (researchers, managers, stakeholders, et

cetera) (Hevner et al., 2004).

Peffers et al. (2007) presents these seven guidelines as a six step framework for

conducting high impact design science research:

Problem identification and motivation Definition of the specific research problem

under investigation, with a justification of the value the solution will bring by

solving the problem.

Define the objectives for a solution The inference of objectives of the solution from

the problem definition. Use of rational thought to specify realistic objectives of

what is feasible from the problem definition, and knowledge of the problem being

investigated.
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Design and development Designing and developing the research artifact. This phase

includes determining the functionality of the artifact, its architecture, and the

implementation of the artifact.

Demonstration Demonstrating use of the artifact as a viable solution to one or more

of the identified problems.

Evaluation Evaluating the effectiveness and efficacy of the artifact as a solution by

means of observation and measurement.

Communication Effectively communicating the problem to be solved, why it is

important to solve, the artifact produced, and its effectiveness to solve the outlined

problem (Peffers et al., 2007).

3.2 Methods of Evaluation

Evaluating the efficacy of the hypothesized gridding solution ("the artifact gridder")

requires accurate performance measuring techniques. The definition of performance

in this thesis has been described earlier (Section 1.2 of Chapter 1), which has stated

the primary aspects of interest are gridding speed, gridding precision, and effective

utilization of memory.

3.2.1 Gridding Speed

Measurement of gridding speed was performed by utilizing graphics processing unit

(GPU) based timing functions. This was achieved by timing scoped sections of host-side

code containing desired OpenGL commands, and blocking the central processing unit

(CPU) until the issued command(s) were completed. This technique is necessary as

OpenGL operates mostly as an asynchronous process, exclusive from the host system.

Each demonstration of gridding speed presented in this thesis has been performed

across one hundred iterations to ensure timing integrity. The times presented in Chapter
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5 represent the mean result calculated over all one hundred iterations. Standard deviation

has been recorded for each demonstration, but has not been presented in the relevent

graphs in Chapter 5. The reasoning for this is because there was not a considerable

amount of variance observed across each experiment performed, and so was deemed

insignificant. However, for the sake of completeness, it was observed that mean

standard deviation across all experiments performed was in the range of approximately

2-8 milliseconds.

3.2.2 Gridding Precision

Precision of the artifact gridder was measured by calculating the difference between

two processed grids, using the relative error L2 norm described in Equation 3.1. The

two grids evaluated consist of one gridded result produced by the artifact gridder, and

one by the comparison gridder (described shortly). Comparable gridding configura-

tions are used to ensure equality and fairness. Referring to Equation 3.1, G represents

the grid produced by the artifact gridder, and G′ represents the grid produced by the

comparison gridder. The indices i and j simply refer to the current element for either

two-dimensional grid.

error =

√

∑ij ∣Gij −G′

ij ∣
2

√

∑ij ∣G
′

ij ∣
2

(3.1)

Measuring the precision of the artifact gridder this way is not the most ideal approach,

but was the most suitable at the time. True measurement of gridding algorithm precision

requires relative error to be measured against a high precision sky image obtained via

perfect imaging (described in Subsection 2.1.3 of Chapter 2).
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3.2.3 Memory Utilization

Memory utilization refers to the amount of memory needed to store a set of convolu-

tional kernels within the GPU. The artifact gridder utilizes uniformly sized texture based

convolution kernels, so calculating the memory requirements is relatively straightfor-

ward. Three variations of fragment shader are presented in this thesis ("full", "reflective",

"isotropic"), which demonstrate improved usage of textures during fragment shading.

Each of the shaders depends on a differing amount of kernel to perform convolution, so

memory requirements do vary. Equation 3.2 presents the formulae for calculating the

number of bytes needed for each set of textured kernels.

Full Textures = t2n8

Reflective Textures =
t

2

2

n8

Isotropic Textures =
t

2
n8

(3.2)

Referring to the terms of the formulae, t represents the uniform size of each texture in

one dimension, and n is the number of W-Projection convolution kernels to produce.

Each weighted sample (texel) in a convolution kernel texture is represented by a single

precision complex number; hence the 8 byte constant.

3.3 The Numerical Algorithms Group Gridder

Evaluation of the artifact gridder requires an existing gridding solution for which

performance characteristics can be measured and compared. Du Toit (2017) presents an

advanced W-Projection gridding algorithm implemented and optimized for the NVIDIA

Tesla P100 GPU. This algorithm was developed and optimized as a conjoint effort
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between NVIDIA, Oxfords e-Research Centre, and Oxfords Numerical Algorithms

Group (NAG), and will be referred to as the "NAG gridder" from the remainder of

this thesis. Source code for the algorithm was obtained via an online repository (GPU-

gridding, 2017).

The NAG gridder was implemented using the CUDA application programming

interface, and is a heavily optimized extension of the work demonstrated by Romein

(2012). The NAG gridder approach to convolutional gridding observes the standard

UV-grid partitioned into small sub-grids ("tiles"), where each tile is sized effectively

for optimal processing via registers. Visibilities are bucket sorted according to which

tile they belong (likely several), and tiles are then batch processed on the GPU as

a distributed workload. Use of the work-distribution threading technique (Romein,

2012) ensures visibilities are accumulated to each grid point sequentially, removing

the need for atomic accumulators. The NAG gridder does support the use of W-

Projection convolution kernels, but does not produce its own. Flexible Image Transport

System (FITS) files supplied with the algorithm source code include several synthetic

observation datasets, configuration parameters for W-Projection gridding, and sets of

pre-calculated W-Projection kernels for the relevant datasets.

The NAG gridder supports both single and double precision gridding. However,

only single precision gridding will be used during the evaluation of the artifact gridder.

This is to ensure testing is fair between the NAG and artifact gridder, which is limited

to single precision as a constraint of the graphics rendering pipeline.

3.4 Synthetic Observation Datasets

As previously mentioned, three synthetic datasets have been supplied with the NAG

gridder (Gridding Datasets, n.d.). Each dataset represents a downscaled astronomical

observation, similar to what is anticipated from use of the Square Kilometre Array. The
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W-Projection algorithm is needed for the gridding of these datasets, as the visibilities

are synthesized using software which simulates long baseline interferometry (OSKAR,

2013).

Through inspection of each dataset, it was found that approximately 32 million

visibilities are present in each file. Each individual visibility is paired with six single pre-

cision attributes: the (u, v,w) coordinates, the complex intensity/brightness (amplitude

and phase), and a unique density (scalar weight).

Table 3.1 provides an overview for each of the three datasets, describing their

characteristics, and configurations needed to facilitate high precision W-Projection

gridding.

Table 3.1: An overview of the synthesized observation datasets

EL30-EL56 EL56-EL82 EL82-EL70

Number of Visibilities 31,395,840 31,395,840 31,395,840

Grid Dimension 18,0002 18,0002 18,0002

Gridding Region 3,243 × 4,170 3,981 × 4,426 4,001 × 4,385

Number of W Planes 922 601 339

Min Kernel Support 9 9 9

Max Kernel Support 191 145 89

Max W ≈ 19,225 ≈ 12,534 ≈ 7,083

Kernel Memory 280MB 88MB 16MB
Cell Size (radians) ≈ 6.0e − 6 ≈ 6.0e − 6 ≈ 6.0e − 6

Observation Frequency 100MHz 100MHz 100MHz

Referring to Table 3.1, kernel memory describes the amount of memory needed

for the NAG gridder to cache each set of pre-calculated kernels. The kernels are

oversampled by a factor of four, and only one quarter of each kernel is retained as each

kernel is mirrored during gridding. The number of w planes refers to how many positive

w coordinate kernels are needed. Kernel samples for negative w coordinate kernels are

obtained during convolutional gridding. Gridding region describes the subregion of the

full grid which is sent to the GPU for processing. The NAG gridder does not transfer
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the entire grid to the GPU as it has predetermined the region for which the visibilities

will be gridded.

Figure 3.1 demonstrates the distribution of visibilities from the three datasets to

their respective full kernel support needs. It is noted that there is a large amount of

variation between the three datasets and their kernel support needs. Figure 3.1 suggests

that the three datasets could be classified as small (EL82-EL70), medium (EL56-EL82),

and large (EL30-EL56), with respect to kernel memory requirements and the overall

computation needed to grid each set.

0 20 40 60 80 100 120 140 160 180 200
23

27

211

215

219

223

Kernel support (full)

N
um

be
ro

fv
is

ib
ili

tie
s

EL30-EL56 EL56-EL82 EL82-EL70

Figure 3.1: Mapping the distribution of visibilities to required kernel support sizes
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Table 3.2 presents a sample of arbitrarily selected visibilities from the EL82-EL70

dataset. At this time, the (u, v,w) coordinates are not yet scaled from wavelengths

to meters. However, this is performed prior to the commencement of convolutional

gridding.

Table 3.2: An arbitrary sample of visibilities from the EL82-EL70 dataset

Intensity Density u v w

0.107880 − 0.001004i 0.007634 −4736.927236 4204.883453 −802.135032

−45.289967 + 41.020031i 0.011364 7200.512015 −3599.337088 1064.881877

−0.262139 + 0.334296i 0.012048 10022.234603 −3100.472484 1381.926582

−0.274084 + 0.051271i 0.055556 32211.273841 17121.246817 2964.302592

−0.126185 − 0.104156i 0.021277 −13842.320969 −5417.835614 −1437.271630

3.5 Application of Design Science

The research presented in this thesis was conducted using the design science framework

presented by Peffers et al. (2007), based on the guidelines proposed by Hevner et al.

(2004). The structure of this thesis follows the presentation suggestions for high impact

design science research recommended by Gregor & Hevner (2013).

3.5.1 Problem Identification and Motivation

Chapter 1 introduces and discusses the problem under consideration in detail, includ-

ing the motivation and justification for why the problem must be solved. Chapter 2

demonstrates how the problem has been approached in the past, and provides supporting

discussion as to why it should approached from an alternative viewpoint.
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3.5.2 Defining Solution Objectives

The objective of the solution is to effectively and efficiently perform GPU accelerated

convolutional gridding by leveraging the graphics rendering pipeline. Effective and

efficient gridding requires that the artifact need not rely on additional data processing

mechanisms to achieve improved performance.

The artifact gridder must emphasize the maximization of the defined gridding per-

formance metrics. It is difficult to specify definitive minimum performance thresholds

for measuring success, as performance varies across different GPUs. Therefore, the

NAG gridder is used to set the baseline performance for which the artifact gridder must

be comparable using identical hardware. Additionally, wide-field imaging must also be

supported by the artifact gridder in the form of the W-Projection algorithm.

3.5.3 Design and Development

Subsection 4.1.1 of Chapter 4 describes the design search process used to find an

optimized solution. This includes a discussion of the artifact gridder and its operations

in detail. Table 3.3 lists the hardware used during the design, development, and

evaluation of the artifact gridder for reference.

Table 3.3: HEC gridder development hardware

Component Model

Operating System Ubuntu 17.10 64-bit
Motherboard Gigabyte X399 AORUS Gaming 7
Central Processing Unit AMD Ryzen Threadripper 1920X 12-core
Graphics Processing Unit NVIDIA TITAN X 12GB (Pascal)
Random Access Memory G.Skill 16GB DDR4 Trident Z (2x, total 32GB)
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3.5.4 Demonstration and Evaluation

Demonstration and evaluation of the artifact gridder must be performed to ensure

that one or more defined problems have been resolved by the artifact. Demonstration

of the artifact gridder was performed by evaluating and measuring the performance

of the artifact in comparison to the performance of the NAG gridder. The gridding

configurations used, and evaluation results are presented in Chapter 5, which are

discussed in depth later in Chapter 6.

It was mentioned earlier that the NAG gridder is optimized for use on the NVIDIA

Tesla P100 GPU, which was not accessible during the conducting of this research.

Therefore, the performance results presented in this thesis for the NAG gridder were

obtained using the same hardware described in Table 3.3. Table 3.4 provides the

specification for both the Titan X and Tesla P100 cards for reference.

Table 3.4: Specification of the NVIDIA Titan X and NVIDIA Tesla P100 GPUs (TITAN
X Graphics Card for VR Gaming from NVIDIA GeForce, n.d.), (NVIDIA Tesla P100,
2016)

Specification Titan X Tesla P100

Architecture Pascal Pascal
Number of CUDA Cores 3584 3584

Stream Multiprocessors (SM) 28 56

Cores per SM 128 64

Base Clock (MHz) 1417 1328

Boost Clock (MHz) 1531 1480

Single-precision (TFLOPS) 10.97 9.3

L2 Cache Size (KB) 3072 4096

Standard Memory Config (GB) 12 16

Memory Interface Width 384-bit GDDR5 4096-bit HBM2

Memory Bandwidth (GB/sec) 480 732

Graphics Card Power (W) 250 250
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3.5.5 Communication

Design science is useful for conducting information systems based research, typically

the problems considered are critical to business operations. Therefore, communication

of the research should assume the audience consists of both managers, and those whom

of which are technologically savvy. As such, the communication of this research must

be presented that both specialists and laymen can extract value from the findings. The

research performed in this thesis serves as the platform of communication, which

includes the produced software artifact (HECGridder, 2017).



Chapter 4

Algorithm Design and Implementation

This chapter provides an overview of the produced artifact, informally titled the Hall-

Ensor-Campbell (HEC) convolutional gridding algorithm ("HEC gridder"). A brief

overview will introduce the Open Graphics Library (OpenGL) based gridding solution,

outlining the benefits of the algorithm. Exploration into the design search process will

follow, informing on the design and development history of the algorithm. This will

be followed by the configuration of the algorithm, describing the parameters which are

customizable, and their application within the gridding solution. The arrangement of

OpenGL to facilitate gridding will follow. A description of data mapping between the

host and the graphics processing unit (GPU) will describe how the grid, visibilities, and

kernels are maintained during gridding. Creation of W-Projection convolution kernels

will be elaborated to inform how custom texture based kernels were implemented.

Custom vertex and fragment shader stages responsible for gridding will be described

in detail. Three generations of fragment shader will be explored, and will discuss the

optimization of each generation. Finally, several optimizations attainable by using

OpenGL and the rendering pipeline will conclude this chapter.

61
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4.1 The Hall-Ensor-Campbell Gridding Algorithm

Development of the HEC convolutional gridding algorithm was performed as a conjoint

effort between Dr. Seth Hall, Dr. Andrew Ensor, and myself. The naming of the

algorithm is an informal reference to the authors of the solution, and the ordering of the

surnames does not represent the level of contribution from each author.

Dr. Ensor is credited for conceptualizing the idea of gridding as a graphics ren-

dering problem, and has been continuously supportive with problem solving during

the development of the algorithm. Dr. Seth Hall is credited for supporting me with

his extensive knowledge of the OpenGL programming interface, and for conjointly

developing the custom vertex shader, and three generations of custom fragment shader.

I have worked alongside Dr. Hall on the custom vertex and fragment shaders, and have

developed the host-side code which includes the setup, configuration, operation, testing,

and experimentation of the gridder. W-Projection kernels have also been implemented

by myself as a C based implementation of the Cornwell et al. W-Projection algorithm

(Cornwell et al., 2008). This was ported from the Python implementation listed in

the Algorithm Reference Library software package (algorithm-reference-library, 2018).

The C based implementation of W-Projection also includes bicubic interpolation and

normalization techniques required for the use of texture based W-Projection kernels.

The HEC gridder is the result of twelve months worth of research invested in

developing an efficient gridding algorithm suitable for the Square Kilometre Array

(SKA). By exploiting the similarities between graphics rendering and gridding, the

HEC gridder mitigates traditional hardware accelerated gridding complexities. The list

below provides an overview of the advantages offered by the HEC gridder:

High Processing Speeds The asynchronous nature of OpenGL ensures visibilities are

constantly being processed through differing stages of the rendering pipeline at

any given time.
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No Additional Processing Visibilities require no form of sorting, bucketing, search-

ing, or compression for the algorithm to achieve optimized gridding performance.

Implicit Concurrency OpenGL manages threading and concurrency during the ren-

dering process, removing the need for complicated algorithm designs or manual

thread management.

High Resolution Kernels Utilization of textures, and hardware accelerated interpola-

tion provide high resolution kernels for high precision gridding.

Hardware Compatibility Wide industry support for OpenGL ensures the gridder can

operate on a breadth of GPUs, and is not limited to specific hardware vendors.

It is important to note that there are two caveats to the HEC gridder which result

from the utilization of the graphics rendering pipeline. The first is that the gridder

only supports single floating point precision, which stems from OpenGL having lim-

ited support for double precision. OpenGL is a mature programming interface, and

historically GPUs were not intended to handle double precision graphics rendering. The

overhead required to process double precision was not worth the trouble, as the human

eye would not distinguish between single or double precision renderings. Secondly,

OpenGL requires that a display be connected to the GPU in order for the program to run.

OpenGL is not intended to be run as a background process, and assumes that rendered

graphics will ultimately be displayed to an end user. This can be resolved by connecting

a display to the GPU, or by enabling the use of display virtualization when using remote

servers or headless GPUs (Remote Off-Screen Rendering with OpenGL, 2014).

4.1.1 Design Search Process

The design search process of the Hall-Ensor-Campbell gridding algorithm has been

largely experimental during its development. This is partly due to the non-conventional

approach towards convolutional gridding as a rendering problem, and the general
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complexity of producing graphics rendering software. Initial development of the

algorithm began as a simplified central processing unit (CPU) based serial gridding

algorithm written in C. This implementation laid the foundations for the HEC gridder,

providing simple gridding operations such as positioning and sequential accumulation

of visibilities to a small regular grid. Single fixed sized prolate spheroidal kernels were

implemented to perform convolution of visibilities.

The next phase in development was to produce a GPU accelerated implementation

to make effective use of data parallelization. Development of an OpenGL compute

shader gridder improved on the throughput attainable from the serial implementation.

Concurrency was managed using the work-distribution threading technique presented

by Romein (2012), which was shown to resolve the need for atomic accumulation to the

grid, but presented a limitation to the adaptability of the compute shader gridder. This

was due to the proposed tiling technique, which observes the grid being fragmented

into fixed kernel support sized tiles (Romein, 2012).

In theory, the tiling technique would be able to facilitate variable kernel support

sizes for W-Projection gridding. However, this would require visibilities to be sorted by

w coordinate to maximize performance, and would require tiles and threads to be recal-

culated and allocated after each set of w related visibilities is processed. Additionally,

it became apparent that compute shaders suffer from grid sizing limitations, and slow

memory allocation times. It was found that grids with a size of approximately 12002

would take up to 10-15 minutes for the GPU to set up before gridding could commence.

It was unclear as to why this occurred, as only approximately 11 megabytes of memory

is needed to store a grid of this dimension; assuming each grid point stores one single

precision complex number.

The slow allocation time, and limitation of grid dimensions resulted in the exper-

imentation of an alternative compute shader approach. This was intended to support
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greater grid dimensions at the cost of some additional visibility processing. The al-

gorithm operated as a form of stitch based gridding, which involved the full grid being

quartered into four quadrants. Visibilities would be bucketed on the host for the re-

spective quadrant, and each quadrant would be processed on the GPU as each bucket

became full. A processed quadrant would then be returned to the host. After some

time, all four quadrants would be stitched together at the seams to reform the complete

grid. Each of the quadrants was appropriately padded by the active kernel support to

ensure that visibilities need not be bucketed more than once in case of overlap. Figure

4.1 demonstrates the general concept of stitch gridding via compute shaders. Note that

Table 4.1 provides the definition of terms used in Figure 4.1.

Sectioning the grid into four quadrants was an arbitrary choice, as any number of

divisions could have proven useful. However, it is worth noting that dividing the grid

into a greater number of sections would result in more data transfer between the host

and device (GPU). Data transfer is one of the primary bottlenecks in high performance

computing, and mitigating as much data transfer as possible is critical to algorithmic

performance.

Figure 4.1: The OpenGL compute shader stitch gridding technique
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This approach demonstrated an improvement to grid size limitations, but introduced

the need for additional visibility processing, additional computation for stitching, and a

large number memory transfers between the host and GPU. Grid allocation time on the

GPU demonstrated a reduction of 75%, but the necessary processing and data transfers

outweighed this improvement; further development was not considered. Instead, what

followed was an investigation into a more traditional graphics rendering approach to

convolutional gridding.

Conceptually, convolutional gridding shares a number of similarities with typical

graphics rendering operations. This led to the investigation of gridding with the use of

customized vertex and fragment shaders. A primitive vertex/fragment shader program

was created, which demonstrated the application of fixed size two-dimensional prolate

spheroidal sprites to arbitrary points on a grid. It was found that this approach demon-

strated support for grid sizes much larger than that of the compute shader. Additionally,

the vertex/fragment shader approach only required several seconds for the GPU to set

up the necessary elements to commence gridding.

Experimentation with the rendering pipeline demonstrated that visibilities could be

processed as point primitives using custom vertex shader logic. Use of dynamically

sized points ensured that each point could define a custom size at runtime; determined

by the kernel support for the underlying visibility. The implicit rasterization phase of

the rendering pipeline results in fragmentation of each point, for which each fragment

would subsequently be processed using custom fragment shader logic. The use of

texture based W-Projection convolution kernels also ensured each fragment could be

convolved and accumulated using appropriately sampled kernel textures. This design

was deemed functional as the foundations of the OpenGL based convolutional gridding

algorithm, and was used going forward to create various fragment shading techniques

for optimized gridding.
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4.1.2 Algorithm Configuration

The HEC gridder does require an observation dependant configuration to be defined

before gridding commences. The majority of the parameters listed are typical for

gridding algorithms which facilitate W-Projection gridding. The others are unique to

the HEC gridder, which are needed for the configuration of texture based convolution

kernels. Table 4.1 defines the list of parameters which can be configured, and a brief

description of each parameters purpose within the HEC gridder.

Table 4.1: Configurable parameters of the Hall-Ensor-Campbell gridding algorithm

Parameter Purpose within the HEC gridder

Grid Dimension The size of the grid (one dimension)
Render Width The width of the rendering subregion
Render Height The height of the rendering subregion
Texture Size The size of each kernel texture (one dimension)
Resolution Size The size of each calculated kernel (one dimension)
Kernel Min Support The smallest kernel full support
Kernel Max Support The largest kernel full support
Visibility Count The number of visibilities to be processed
Visibility Parameters The number of attributes per visibility
Visibility Source File The file containing visibilities
Frequency Hz The frequency of the observation
Fragment Shader Type The version of HEC fragment shader to be used
Max W The maximum w term of the observation (absolute)
Cell Size Radians The angle the sky for each grid cell
Number of Kernels The number of W-Projection kernels required

Referring to Table 4.1, Grid Dimension specifies the width and height of the regular

two-dimensional UV-grid. Render Width and Render Height allow for non-square grid-

ding to be facilitated, much like the NAG gridder. This is optional, and allows for grid-

ding to be performed on a subregion of the full grid, whilst ensuring visibilities are scaled
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under the assumption of full gridding conditions. Kernel Min Support refers to the min-

imum convolution kernel support size for the observation, and Kernel Max Support

refers to the maximum support size, respectively. These min/max support sizes assist

in the production of accurate W-Projection kernels, and associated sizing calculations

during the gridding process.

Visibility Count defines the number of visibilities to be batch processed, and Visib-

ility Parameters defines the number of attributes for each bound visibility. The HEC

gridder is configured with a default of six attributes, where each visibility consists of

three coordinates (u, v,w), one single precision complex number (intensity/brightness),

and one scalar (density). At present, the algorithm processes visibilities from file,

which is specified using the Visibility Source File parameter. Frequency Hz defines

the frequency at which visibilities have been measured, and is used to scale visibility

(u, v,w) coordinates from wave lengths to meters prior to gridding.

Max W defines the maximum absolute w coordinate to be supported during the

production of W-Projection kernels. Cell Size Radians defines the size of each grid

point as an angle of the sky under observation, and is used to ensure W-Projection

kernels are accurate for the angular resolution of the observation. Number of Kernels

defines how many W-Projection kernels are to be created prior to gridding. The number

of kernels specified only represents the number of positive w coordinate kernels, as the

HEC gridder dynamically facilitates negative kernels during convolutional gridding.

Fragment Shader Type defines which generation of fragment shader will be used

to conduct the gridding of visibilities. Three variations are supported by the HEC

gridder, which are referred to as the "full", "reflective", or "isotropic" fragment shaders;

these will be presented in detail shortly. Resolution Size specifies the resolution of

convolution kernels during their creation. Texture Size defines the size of textured

kernels after interpolation is performed during kernel creation. Further details regarding

the creation of texture based W-Projection kernels, and the use of Resolution Size and
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Texture Size will follow in Subsection 4.1.5 of this chapter.

4.1.3 OpenGL Configuration

OpenGL must be configured to ensure the rendering operations utilized are optimal for

gridding. Unless specified otherwise, OpenGL will make default assumptions about

the processing of data through the rendering pipeline. The code sample featured in

Snippet 1 describes which defaults are overridden to support gridding. Note that the

use of GL_TEXTURE_2D or GL_TEXTURE_3D is dependant on which generation of

fragment shader is used to perform gridding.

1 // Disable clamping of RGBA colors
2 glClampColorARB(GL_CLAMP_VERTEX_COLOR_ARB, GL_FALSE);
3 glClampColorARB(GL_CLAMP_READ_COLOR_ARB, GL_FALSE);
4 glClampColorARB(GL_CLAMP_FRAGMENT_COLOR_ARB, GL_FALSE);
5

6 // Enable accumulative blending of fragments
7 glBlendEquationSeparate(GL_FUNC_ADD, GL_FUNC_ADD);
8 glBlendFuncSeparate(GL_ONE, GL_ONE, GL_ONE, GL_ONE);
9

10 // Enabling Vertex Point Size to be defined during gridding
11 glEnable(GL_POINT_SPRITE);
12 glEnable(GL_VERTEX_PROGRAM_POINT_SIZE);
13

14 // Configuring the texture cube/plane for the minification
15 // and magnification of texels, and clamping texture bounds
16 GLenum dim = GL_TEXTURE_2D; // or GL_TEXTURE_3D
17 GLfloat interp = GL_NEAREST; // or GL_LINEAR
18 glTexParameterf(dim, GL_TEXTURE_MIN_FILTER, interp);
19 glTexParameterf(dim, GL_TEXTURE_MAG_FILTER, interp);
20 glTexParameteri(dim, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
21 glTexParameteri(dim, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
22 // Only setting third dimension when using texture cube
23 glTexParameteri(dim, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);

Code Snippet 1: Overriding default OpenGL settings

The first configuration affects the numerical capacity of single precision data

between the host and GPU, and when passed between each stage of the rendering
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pipeline. Each grid point in the HEC gridder is represented by a four element color vec-

tor (RGBA). As such, OpenGL assumes that each grid point will store normalized color

data which is limited to the range of [0.0,1.0]. This is suitable for storing colors, but

does not facilitate suitable storage of convolved visibilities. This assumption prevents

the use of negative values, as well as the accumulation of positive values which exceed

1.0. Removal of this constraint is performed by disabling color clamping, effectively

increasing the capacity of each element to that of a 32-bit float.

The second configuration affects the behaviour of new fragments. By default,

new fragments will naturally substitute existing gridded data at the position of the

new fragment within the UV-grid. This results in a loss of data, and prevents any

possibility of accumulative gridding of visibilities. However, by specifying the use

of GL_FUNC_ADD for the glBlendEquationSeparate function, OpenGL is

forced to accumulate new fragments with existing grid points in the form of blending.

Specifying GL_ONE for the glBlendFuncSeparate function ensures that the full

value of each fragments color vector (RGBA) is accumulated.

The third configuration is the enabling of vertex point sprites, and dynamic point

sizing. The HEC gridder processes each visibility using custom vertex shader lo-

gic, which results in each visibility being treated as a point within the Fourier do-

main. To convolve a point with zero dimensions into a two-dimensional grid, each

point must define its size (diameter) to ensure renderability. This is achieved by

defining the gl_PointSize attribute for each vertex during vertex shading. A

sprite can then be rendered over the rasterized fragments at a later stage of the

pipeline. Enabling the use of GL_POINT_SPRITE ensures each point of zero di-

mensions results in some graphically rendered component. Additionally, by enabling

GL_VERTEX_PROGRAM_POINT_SIZE, each point can define its size from the un-

derlying visibilities kernel support.
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Finally, the last configuration specifies how kernel textures will be sampled dur-

ing gridding. Two texture parameters required are the GL_TEXTURE_MIN_FILTER

and GL_TEXTURE_MAG_FILTER, which define how textures will be scaled and

sampled during fragment shading. The HEC gridder supports the use of two filters,

GL_NEAREST and GL_LINEAR. Specifying which filter to use determines the at-

tainable precision by textured kernels during fragment shading, with GL_NEAREST

performing nearest neighbour sampling, and GL_LINEAR performing linear interpol-

ation sampling. The dimensionality of the interpolation performed is dependant on

the dimensionality of the kernel texture in use. Thus, three-dimensional textures will

perform trilinear interpolation.

Figure 4.2 demonstrates a simplified application of nearest and interpolation based

sampling with textures. Nearest sampling selects the nearest available texels (red)

relative to the sampling points (black arrows). Whereas bilinear interpolation produces

a calculated intermediate texel which is composed from the four (2x2) nearest pre-

sampled texels.

(a) Nearest (b) Bilinear Interpolation

Figure 4.2: Nearest and bilinear sampling



Chapter 4. Algorithm Design and Implementation 72

4.1.4 Data Mapping

Mapping of gridding related data to the GPU requires several OpenGL buffers. The

grid is allocated on the host with the necessary dimensions, and is mapped to the GPUs

frame buffer as a two-dimensional texture with four element color vectors (RGBA) as

each grid point. Binding to the frame buffer ensures the grid can be written to during

gridding, and eventually read back to the host once gridding is complete. Use of the

glReadPixels function transfers the grid back to the host from the frame buffer.

Additionally, the glFinish function is used to ensure all gridding of visibilities has

been completed prior to transfer of the grid.

Visibilities and visibility attributes are bound to the GPU in the form of vertices,

using a GL_ARRAY_BUFFER object. Two vertex attribute vectors are defined, with

each vector storing three visibility attributes. The location attribute vector stores

the (u, v,w) coordinates, and the complex attribute vector stores the complex in-

tensity/brightness and density of each visibility. Figure 4.3 demonstrates how this is

arranged in memory as a flat GL_ARRAY_BUFFER object.

Figure 4.3: Mapping of visibilities and visibility atributes

Lastly, convolution kernels are arranged in memory as a two-dimensional texture

plane, or three-dimensional texture cube. Ultimately, this is dependant on which

fragment shader is used for gridding. Kernels are of course pre-sampled on the host

using the specified gridding configuration prior to the binding of kernels to the device.
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4.1.5 Creating Convolution Kernels

The HEC gridder produces high resolution W-Projection kernels to support wide-field

imaging, by utilizing the configurable parameters described earlier in Table 4.1. Two-

dimensional kernels are produced on the host with the fixed size of each kernel defined

as some power of two (2n); which is defined by the Resolution Size parameter. Kernels

are then interpolated down to a smaller size (also a power of two) specified by Texture

Size. This ensures kernels are calculated with high resolution, and are scaled to a

suitable texture size whilst retaining resolution. This is discussed further in Subsection

4.3.1.

For the HEC gridder to operate efficiently, the following sizing guideline should

be respected: Resolution Size ≥ Texture Size ≥ Kernel Max Support. Following this

guideline ensure kernels are created with an appropriate level of precision, and is

capable of providing full support coverage for all kernel support sizes defined in the

range [Kernel Min Support, Kernel Max Support]. Violating this recommendation will

result in kernels being stretched (magnified) during gridding, which will ultimately

result in poor precision. The decision to use texture sizes which are some 2n was

made to ensure effective use of coalesced memory access for quicker loading of texture

samples. However, any arbitrary texture size could theoretically be used.

4.2 Gridding Shaders

Once the algorithm and OpenGL context is configured, kernels are pre-sampled, and

gridding data are bound to the GPU, the rendering pipeline executes the asynchronous

gridding of visibilities. This is performed with the use of two programmable shader

stages plugged into the partially fixed function rendering pipeline. The first stage of

gridding uses custom vertex shader logic to partially process each visibility in the form
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of an OpenGL point primitive. The vertex shader evaluates each visibility to extract

additional attributes, which simplifies the workload for the subsequent fragment shader.

Implicit rasterization of each point primitive occurs between this stage and the fragment

shader. The rasterizer deconstructs the point into a set of n2 unique fragments, where n

represents the kernel support for the underlying visibility. This is followed by the second

custom stage of the HEC gridder, which performs the convolution and accumulation of

visibility fragments into the UV-grid using custom fragment shader logic.

4.2.1 Shader Uniforms

To ensure convolutional gridding is performed accurately, both custom shaders depend

on knowledge of the gridding configuration in use. OpenGL uniforms provide a means

for primitive values to be pre-calculated on the host, and bound to both shaders during

the creation of the OpenGL program context. Use of pre-calculated uniforms reduces

the total amount of work performed by each shader; thus, improving performance. Table

4.2 describes the uniforms used in the HEC gridder, and how they are calculated on the

host.

Table 4.2: Common uniforms used within the HEC gridder

Uniform Formula

Grid Center Row Render Height / 2
Grid Center Col Render Width / 2
Grid Center Offset Row 1 / Render Height
Grid Center Offset Col 1 / Render Width
Minimum Support Offset Kernel Min Support
Number of W Planes Number of Kernels
W Step 1 / Number of Kernels
W Scale Number of Kernels2 / Max W
UV Scale Grid Dimension × Cell Size Radians
W To Max Support Ratio (Kernel Max Support - Kernel Min Support) / Max W
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The first two uniforms, Grid Center Row and Grid Center Col refer to the element

of the grid which is considered the center. In theory, the center of the grid should be

between the four central texels of the grid texture bound to the frame buffer; OpenGL

would support such an operation. However, to make use of the inverse fast Fourier

transform to recover the image from the Fourier domain, the grid center must be one

specific texel. There is a differentiation between the row and column center as the HEC

gridder supports gridding on a non-square regular grid, if desired. The Grid Center

Offset Row and Grid Center Offset Col further add to this, ensuring that the middle of

each grid texel is considered to be the center of a grid point.

The Minimum Support Offset uniform specifies what the minimum convolution

kernel support is for the current observation, and is used to offset the calculation when

determining each visibilities kernel support at runtime. The Number of W Planes

uniform simply defines how many convolution kernels are bound to the current kernel

texture cube or plane. W Step specifies the distance between each kernel with respect

to normalized kernel indices. Use of the W Scale uniform aids in the calculation of a

kernel index for each visibility. W To Max Support Ratio is used in conjunction with

the w coordinate of each visibility and the minimum support offset to determine the

necessary kernel support. Finally, the UV Scale uniform is utilized in the normalization

of each visibilities (u, v) coordinates into the normalized (s, t) coordinate system of

the grid.

4.2.2 Vertex Shading

The vertex shader is the entry point of the HEC gridder which begins the convolutional

gridding process. This shader is responsible for the partial processing of each visibility,

which involves normalizing its position into the grid domain and the extraction of

additional attributes to simplify fragment shading. Each visibility passes through this
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stage as an individual vertex, and is processed in the form of an OpenGL point primitive.

Snippet 2 describes the operations performed by this shader stage.

1 #version 430
2 precision highp float;
3 uniform float minFullSupport;
4 uniform float wToMaxSupportRatio;
5 uniform float gridCenterRow;
6 uniform float gridCenterCol;
7 uniform float gridCenterOffsetRow;
8 uniform float gridCenterOffsetCol
9 uniform float wScale;

10 uniform float wStep;
11 uniform float uvScale;
12 uniform float numPlanes;
13 in vec3 position;
14 in vec3 complex;
15 out vec2 fComplex;
16 out float wIndex;
17 out float conjugate;
18 void main() {
19

20 // normalize vis UV coords to ST grid coords
21 gl_Position.st = ((position.xy * uvScale)
22 / vec2(gridCenterCol, gridCenterRow))
23 + vec2(gridCenterOffsetCol,
24 gridCenterOffsetRow);
25

26 // calculate the required w-proj kernel index [0.0, 1.0]
27 wIndex = sqrt(abs(position.z * wScale))
28 * wStep + (0.5 * wStep);
29

30 // calculate the required kernel full support
31 float wSupport = abs(wToMaxSupportRatio * position.z)
32 + minFullSupport;
33

34 // determine if vis requires negative w-proj kernel
35 conjugate = -sign(position.z);
36

37 // set the kernel full support for visibility
38 gl_PointSize = wSupport + (1.0 - mod(wSupport, 2.0));
39

40 // scale the visibility intensity by its density
41 fComplex = complex.xy * complex.z;

Code Snippet 2: GLSL shader logic for the vertex shader
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The first step in processing the vertex is to normalize the position of the visibility

into the gridding domain. Coordinates for the visibility are bound into the position

attribute vector, such that position(x, y, z) represents the visibility V (u, v,w).

Snippet 3 this normalization process. The (u, v) coordinates are scaled using the

UV Scale uniform and grid render dimension uniforms, defining the position of the

vertex in world space coordinates (s, t). The center of each grid point is assumed to

be half-way across each grid texel, which is why the calculation utilizes an offset in

both directions. The resulting vertex position is normalized to the range of [−1.0,1.0]

on both axes, as required for world space mapping. The coordinates for each visibility

V (u, v,w) are pre-scaled from wavelengths to meters prior to vertex shading, which is

why it is not necessary to perform during vertex shading.

Unlike the layout of traditional Cartesian coordinate systems, the world coordinate

system in the HEC gridder has an inverse s (or v) axis. This means that the four quadrant

coordinate system has positive axes in the bottom-right quadrant. This is a result of the

default world coordinate system used in OpenGL, and is automatically corrected when

reading the grid back from the device using the glReadPixels function.

21 gl_Position.st = ((position.xy * uvScale)
22 / vec2(gridCenterCol, gridCenterRow))
23 + vec2(gridCenterOffsetCol,
24 gridCenterOffsetRow);

Code Snippet 3: Normalizing and scaling the visibility to a position within the grid

The next step is determining which W-Projection convolution kernel is required

during fragment shading for the current visibility. Snippet 4 demonstrates the evaluation

of the visibilities w coordinate to determine the necessary kernel index. Indices for

texture based kernels are normalized to the range of [0.0,1.0] (referred to as texture

coordinate space). Unlike conventional gridding algorithms, rounding is not performed,
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as OpenGL will identify appropriate kernel samples based on the texture filtering

technique in use.

Indices are stepped in slightly; hence the inclusion of the 0.5 constant in Snippet

4. This is needed to ensure textures are evenly sampled across the point primitive, as

OpenGL is slightly biased towards the edges of the texture. This stepping in of kernel

samples on each plane is performed during kernel creation, which is why only the third

dimension is affected during this computation.

27 wIndex = sqrt(abs(position.z * wScale))
28 * wStep + (0.5 * wStep);

Code Snippet 4: Calculating the index for a W-Projection convolution kernel

The visibility is then evaluated for the necessary kernel support. Snippet 5 demon-

strates the identification of the support as a relationship between the visibilities w

coordinate, the minimum and maximum kernel supports, and the maximum w coordin-

ate supported by the current observation. The resulting kernel support could be either

odd or even in size, and is refined at a later stage.

31 float wSupport = abs(wToMaxSupportRatio * position.z)
32 + minFullSupport;

Code Snippet 5: Calculating the full support for the convolution kernel

The w coordinate is evaluated once again to determine whether a negative W-

Projection convolution kernel is needed. Snippet 6 demonstrates this evaluation, using

the Graphics Library Shader Language (GLSL) sign function to determine the signage

of the w coordinate.
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35 conjugate = -sign(position.z);

Code Snippet 6: Evaluating the visibility for negative W-Projection kernels

Equation 4.1 demonstrates the logic behind this calculation in the form of a piecewise

function. In the case that conjugate is 0.0, the imaginary component of the texel

will be set to zero. This does not introduce error during convolution, as visibilities

with a conjugate of 0.0 evidently have a w coordinate of 0.0. This indicates that the

visibility was obtained with a small field of view, and does not require non-coplanar

baseline correction. Therefore, a basic smoothing function is applied as the convolution

function.

conjugate =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1.0, if position.z < 0.0

0.0, if position.z = 0.0

−1.0, if position.z > 0.0

(4.1)

By reusing the support size calculated earlier, the vertex point size can be defined.

Snippet 7 demonstrates how the support size is refined further prior to the setting of

the point size. Use of the GLSL mod function ensures that even support sizes are

incremented to the next odd support. This is performed to ensure consistency with

texture based convolution kernels, all of which are calculated using odd kernel supports.

Setting the size of the point as the required kernel support ensures that OpenGL will

produce enough fragments during rasterization to facilitate proper convolution of the

visibility.

38 gl_PointSize = wSupport + (1.0 - mod(wSupport, 2.0));

Code Snippet 7: Setting the vertex point size
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Figure 4.4 demonstrates the conceptual idea of gridding via vertex shading. An

arbitrary visibility is positioned into the grid by its (u, v) coordinates as a point primitive,

and has a defined point size of 52.

Figure 4.4: Positioning a vertex with a defined point sprite size

Finally, the last step is to scale the intensity (brightness) of the visibility by its bound

density. The intensity and density of the visibility is bound into the complex attribute

vector, such that complex(x, y, z) represents the complex intensity and density.

Snippet 8 performs the simple scaling operation.

41 fComplex = complex.xy * complex.z;

Code Snippet 8: Scaling the visibility intensity by its density

At this stage of the gridding process, the visibility is now partially processed.

An implicit rasterization stage of the rendering pipeline will follow, performing the

segmentation of the point into a number of individual fragments. Each fragment
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will be individually processed by the next HEC gridder shader stage. The computed

values stored in wIndex, conjugate, and fComplex from the vertex shader will

be forwarded on to each invocation of the fragment shading stage to assist in the

convolution process. Figure 4.5 demonstrates the conceptual idea of rasterization,

where the vertex point from Figure 4.4 has been fragmented into 52 unique fragments.

Figure 4.5: Rasterization of a vertex point sprite

4.2.3 Full Texture Fragment Shading

The use of custom fragment shading logic completes the remaining work needed to

convolve the visibility into the UV-grid. This stage is invoked for each new fragment

created, and utilizes the wIndex, conjugate, and fComplex values calculated

earlier for its corresponding point primitive. The fragment shader presented in this

section is the first of three fragment shaders implemented for the HEC gridder. It

performs convolutional gridding using full sized kernel textures; hence, the informal

name of the shader. Snippet 9 describes an overview of the operations performed.
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1 #version 430
2 precision highp float;
3 uniform sampler3D kernelTex;
4 in vec2 fComplex;
5 in float wIndex;
6 in float conjugate;
7 void main() {
8

9 // read convolution kernel texel from texture cube
10 vec2 kernelLookup = texture(kernelTex,
11 vec3(gl_PointCoord.st, wIndex)).rg;
12

13 // set conjugate of texel imaginary component
14 kernelLookup.g = kernelLookup.g * conjugate;
15

16 // bind convolution texel weight to fragment
17 gl_FragColor.ra = kernelLookup.rg;
18

19 // complex multiplication of convolution texel
20 // and visibility intensity, bind to fragment
21 gl_FragColor.gb = vec2(kernelLookup.r * fComplex.x
22 - kernelLookup.g * fComplex.y,
23 kernelLookup.g * fComplex.x
24 + kernelLookup.r * fComplex.y);
25 }

Code Snippet 9: GLSL shader logic for the full texture fragment shader

The first step in processing a visibility fragment is to perform a texture lookup to read

a W-Projection kernel sample (texel) from memory. Using the GLSL texture func-

tion, an appropriate sample can be read from the texture cube bound to the kernelTex

sampler3D uniform.

The localized coordinates of each fragment (gl_PointCoord) are relative to the

position of the origin of the point sprite. In the case of the HEC gridder, the origin is the

bottom-left corner of the point sprite. As such, this means that the bottom-left fragment

of the sprite has an (s, t) coordinate of (0.0,0.0), and the top-right fragment has the

coordinates of (1.0,1.0). This system simplifies the mapping of texels to fragments,

regardless of the actual dimensions of the texture or point.

The pre-calculated kernel index (wIndex) is used to locate the required texture,

serving as the normalized third dimension index of the cube. OpenGL will use these

coordinates to obtain a suitable texel from the cube. Dependant on the texture filter in
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use, OpenGL will either select the nearest suitable sample (GL_NEAREST), or perform

trilinear interpolation on the nearest eight samples (GL_LINEAR).

10 vec2 kernelLookup = texture(kernelTex,
11 vec3(gl_PointCoord.st, wIndex)).rg;

Code Snippet 10: Locating a complex texel from the kernel texture cube

After the texel is stored in kernelLookup, it is manipulated using the pre-

calculated conjugate flag. Snippet 11 demonstrates this simple operation. The

logic behind this flag has been described earlier in Equation 4.1.

14 kernelLookup.g = kernelLookup.g * conjugate;

Code Snippet 11: Manipulating the imaginary component of the complex texel

The sample stored in kernelLookup is then assigned to the red and alpha color

components of the fragment color vector. This information will eventually be accumu-

lated into the grid during subsequent blending operations, along with the convolved

visibility. The purpose of accumulating kernel samples into the grid is to provide sup-

porting information for normalization of the grid, if desired. Snippet 12 demonstrates

the simple assignment of the kernel sample.

17 gl_FragColor.ra = kernelLookup.rg;

Code Snippet 12: Accumulating the convolution kernel texel weight to the grid

The final step of the fragment shading process is to perform the complex multi-

plication of the visibility (fComplex) and the sample (kernelLookup). This is
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performed in Snippet 13, with the result being stored in the remaining green and blue

color components of the fragment color vector.

21 gl_FragColor.gb = vec2(kernelLookup.r * fComplex.x
22 - kernelLookup.g * fComplex.y,
23 kernelLookup.g * fComplex.x
24 + kernelLookup.r * fComplex.y);

Code Snippet 13: Accumulating the convoluted visibility to the grid point

At this stage of the HEC gridder, fragment processing is complete. The fragment

which contains the fraction of convolved visibility will be accumulated into the UV-grid

using additive blending functions. After this has performed for all fragments of a

vertex point, the convolution of the full visibility is effectively complete. Figure 4.6

demonstrates the assignment of fragment vector elements, with the green and blue

colors implying complex multiplication.

Figure 4.6: Fragment assignment and blending

Figure 4.7 demonstrates the layout of W-Projection kernels in the texture cube (left).

The fraction of the convolution kernel obtained from the texture cube is represented
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by the red border (right). In this case, the full convolution kernel is obtained entirely

from texture lookups and is therefore an unoptimized texturing technique. Further

improvements to textured gridding can be implemented, with this shader serving as a

template.

Figure 4.7: The three-dimensional full sized texture cube and its application

4.2.4 Reflective Texture Fragment Shading

The reflective approach to textured fragment shading improves on the previous technique

by reducing the texture cube by 75% of its original size. Reflective texture shading

achieves the same result, whilst taking advantage of partially symmetric properties

observed in W-Projection kernels. Snippet 14 presents a complete overview of the

operations performed in the reflective texturing shader. This shader does perform

several computations which have been previously discussed in the previous shading

technique, and will not be elaborated again for brevity.
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1 #version 430
2 precision highp float;
3 uniform sampler3D kernelTex;
4 in vec2 fComplex;
5 in float wIndex;
6 in float conjugate;
7 void main() {
8

9 // calculate position of current fragment relative
10 // to center of vertex point
11 vec2 coord = abs(2.0 * gl_PointCoord.st - 1.0);
12

13 // read convolution kernel texel from texture cube
14 vec2 kernelLookup = texture(kernelTex,
15 vec3(coord.st, wIndex)).rg;
16

17 // set conjugate of texel imaginary component
18 kernelLookup.g = kernelLookup.g * conjugate;
19

20 // bind convolution texel weight to fragment
21 gl_FragColor.ra = kernelLookup.rg;
22

23 // complex multiplication of convolution texel
24 // and visibility intensity, bind to fragment
25 gl_FragColor.gb = vec2(kernelLookup.r * fComplex.x
26 - kernelLookup.g * fComplex.y,
27 kernelLookup.g * fComplex.x
28 + kernelLookup.r * fComplex.y);
29 }

Code Snippet 14: Shader code for the HEC gridder reflective texturing fragment shader

As the reflective texture cube only contains one quarter of each kernel, the localized

coordinate of the fragment must be reflected, so that it can be mapped to a corresponding

texel coordinate. Snippet 15 demonstrates how this transformation is performed.

11 vec2 coord = abs(2.0 * gl_PointCoord.st - 1.0);

Code Snippet 15: Calculating the reflected coordinate of a fragment

After the reflected coordinate is obtained, a texture lookup is performed to read a

suitable texel from the quartered texture cube. Snippet 16 demonstrates the lookup of a

convolution texel using the reflected coordinate and the pre-calculated wIndex.
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14 vec2 kernelLookup = texture(kernelTex,
15 vec3(coord.st, wIndex)).rg;

Code Snippet 16: Performing the texture lookup to locate a suitable convolution texel

The remaining steps performed are very much the same as observed in the first

generation fragment shader; i.e. conjugate manipulation, weight assignment, and the

complex multiplication. Figure 4.8 demonstrates the layout of W-Projection kernels

in the quartered texture cube (left). The fraction of the kernel obtained from the

texture cube is represented by the red border (right). The reflective method presents a

more optimized texturing approach, synthesizing a complete kernel with only 25% of

the original convolution using a simple coordinate transformation. However, further

improvements can still be made.

Figure 4.8: The three-dimensional quarter texture cube and its application
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4.2.5 Isotropic Texture Fragment Shading

The third and final fragment shading technique presented in this thesis demonstrates

convolutional gridding with the use of isotropic (radially symmetric) W-Projection

kernels. This approach drastically reduces the amount of texture needed to complete

full convolution of a visibility.

It was noted during the literature review that W-Projection kernels are not naturally

isotropic. This is because a separable prolate spheroidal is used during the creation

of W-Projection kernels, which does not demonstrate isotropic properties. Once the

spheroidal is applied during the creation of each W-Projection kernel, the resulting

plane loses its separability. This is why one quarter of each kernel is typically used to

perform mirrored convolutional of visibilities in modern gridding algorithms. However,

a simple modification to the calculation of the prolate spheroidal can be performed to

support isotropy. For now, the fragment shading technique will be presented, and the

implementation details of isotropic W-Projection kernels will be discussed in Subsection

4.3.2 of this chapter.

By utilizing isotropic kernels, only one half row from the middle of each texture

is needed to synthesize a full convolution kernel. The drastic reduction in texture

means that a set of kernels can be effectively cached as two-dimensional texture plane.

Once again, some of the operations performed during full texture fragment shading

are needed, and will be excluded from the discussion. Snippet 17 presents the custom

shader logic for the isotropic fragment shading technique.
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1 #version 430
2 precision highp float;
3 uniform sampler2D kernelTex;
4 in vec2 fComplex;
5 in float wIndex;
6 in float conjugate;
7 void main() {
8

9 // calculate position of current fragment relative
10 // to origin of vertex point
11 vec2 coord = vec2(2.0 * gl_PointCoord.s - 1.0,
12 2.0 * gl_PointCoord.t - 1.0);
13 vec2 coordSqr = vec2(coord.s * coord.s,
14 coord.t * coord.t);
15

16 // calculate the radius of current position
17 float radialLookup = clamp(sqrt(coordSqr.s + coordSqr.t),
18 0.0, 1.0);
19

20 // read convolution kernel texel from texture plane
21 vec2 kernelLookup = texture(kernelTex,
22 vec2(radialLookup, wIndex)).rg;
23

24 // set conjugate of texel imaginary component
25 kernelLookup.g = kernelLookup.g * conjugate;
26

27 // bind convolution texel weight to fragment
28 gl_FragColor.ra = kernelLookup.rg;
29

30 // complex multiplication of convolution texel
31 // and visibility intensity, bind to fragment
32 gl_FragColor.gb = vec2(kernelLookup.r * fComplex.x
33 - kernelLookup.g * fComplex.y,
34 kernelLookup.g * fComplex.x
35 + kernelLookup.r * fComplex.y);
36 }

Code Snippet 17: GLSL shader logic for the isotropic texture fragment shader

To effectively perform isotropic fragment shading, each fragment must have its local

coordinate transformed to ensure accurate texel mapping is performed (see Snippet 18).

This transformation of fragment coordinate simplifies the next step, in which the radius

of the fragment is determined.
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11 vec2 coord = vec2(2.0 * gl_PointCoord.s - 1.0,
12 2.0 * gl_PointCoord.t - 1.0);
13 vec2 coordSqr = vec2(coord.s * coord.s,
14 coord.t * coord.t);

Code Snippet 18: Calculating the position of the fragment

From here, the radius of the fragment is calculated (see Snippet 19). Use of the

GLSL clamp function ensures that the radius cannot exceed 1.0. The last texel of

each kernel has its sample (weight) zeroed out during kernel creation. This ensures

that fragments with a radius of 1.0 do not contribute any value into the UV-grid. Thus,

ensuring true isotropic convolution is achieved.

17 float radialLookup = clamp(sqrt(coordSqr.s + coordSqr.t),
18 0.0, 1.0);

Code Snippet 19: Calculating the clamped radius of the fragment

The radius and pre-calculated wIndex is used to perform a texture lookup with

the GLSL texture function. In this case, only performing a two-dimensional texture

lookup in the kernelTex sampler2D uniform (see Snippet 20). Use of GL_LINEAR

texture filtering for this shader results in bilinear interpolation instead of trilinear

interpolation, as determined by the dimensionality of the texture.

21 vec2 kernelLookup = texture(kernelTex,
22 vec2(radialLookup, wIndex)).rg;

Code Snippet 20: Performing a two-dimensional texture lookup

The remaining steps for isotropic fragment shading are much the same as the full and

reflective shader techniques. It is speculated that this fragment shading technique will

execute the fastest, as textures are small enough to be efficiently cached. The precision
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offered by isotropic textures remains questionable, as this approach to convolutional

gridding has not been observed in gridding literature. However, the implications of this

technique will become evident during the evaluation of the gridder in the following

chapter. Figure 4.9 demonstrates how kernels are stored in the two-dimensional texture

plane, with each row corresponding to each unique W-Projection kernel. One can

observe just how significantly small the isotropic kernel textures are (red border),

relative to the size of a full convolution kernel.

Figure 4.9: Two-dimensional isotropic texture plane and application

4.3 Optimizations

Several optimizations have been identified and implemented which improve the effi-

ciency and effectiveness of convolutional gridding via the graphics rendering pipeline.

The use of OpenGL in itself could be argued as an optimization over conventional grid-

ding algorithms, due to the simplicity in which gridding can be performed as a graphics

rendering problem. However, the focus of this section is to describe optimizations

which boost the effectiveness of graphics based gridding.
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4.3.1 Texture Based Convolution Kernels

The HEC gridder supports wide-field imaging through the implementation of textured

W-Projection convolution kernels. In typical implementations of the W-Projection

algorithm, a set of kernels is produced using a fixed two-dimensional resolution plane,

fixed oversampling factor, and an increased w term for each subsequent plane. The

intensity of phase correction in each plane is determined by the w term being corrected.

This also determines the support size for the underlying W-Projection kernel obtained

after the Fourier transform is applied.

The transform typically results in excessive padding of the kernel, which must

be trimmed away to expose the desired W-Projection convolution. The edges of the

oversampled kernel are identified by measuring the two-dimensional resolution from

the outside-in. Evaluation of the sample at each point against some minimum threshold

determines where the padding ends, and the kernel begins. This is followed by the

extraction of the oversampled kernel, which is then normalized and stored in a buffer

for use at a later stage. This general process is demonstrated in Figure 4.10, where

the oversampled kernel is identified by the red square after the Fourier transform is

performed.
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Figure 4.10: Typical creation of W-Projection convolution kernels

The dimensions of each W-Projection kernel are not uniform using this process, and

are dependant on the oversampling factor and w term being corrected. As such, the full

set of kernels cannot be stored as a uniformly sized cube. This is typically resolved by

compressing the set of kernels into a flat block of memory, and using a secondary array

to map indices for the first element of each subsequent kernel.

Creating uniformly sized texture based W-Projection kernels for the HEC gridder

has required the development of an alternative approach to kernel production. Figure

4.11 demonstrates this difference in creation process.
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Figure 4.11: Custom process for texture based W-Projection convolution kernels

Each kernel is calculated using a fixed two-dimensional resolution plane, with a

defined phase screen sized to match the kernel support of eachw term. The time/frequency

scaling property of the Fourier transform is used to produce a high resolution W-

Projection kernel, which is then scaled down to an appropriate texture size defined

during configuration. Bicubic interpolation is used to maintain the integrity of each

W-Projection kernel during scaling, as bilinear interpolation would result in jagged

approximations of the original W-Projection kernel. This is followed by normalization,
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which scales the values of the kernel, such that when the kernel is applied, the W-

Projection samples represent a close approximation of a normal unscaled W-Projection

kernel. Use of full or reflective texture fragment shading requires the normalization of

kernels to be performed using the formula presented in Equation 4.2.

t2 / s2

∑ijR(Kij)
(4.2)

Referring to Equation 4.2, t specifies the dimension of the texture for which the kernel

will be stored. The s term defines the full support of the current two-dimensional

kernel, which varies by the w term being processed. K refers to the current kernel being

normalized, and Re refers to the real component of the complex value located at each

Kij

Isotropic textures must be normalized using a different formulation, due to the

nature in which the texture is applied as determined by fragment radius. Still requiring

the use of the t, s and K terms, this normalization factor accounts for the fact that the

kernel will be applied radially. Equation 4.3 expresses the normalization factor for

isotropic textures, and is only calculated against the half row extracted from the middle

of each two-dimensional texture.

t2 / s2

∑i 2πiR(Ki)
2

(4.3)

Lastly, each kernel is stored into a flat memory buffer prior to being bound as a two-

dimensional texture plane or three-dimensional texture cube in the GPU. The amount

of each kernel buffered ultimately depends on the fragment shader in use.



Chapter 4. Algorithm Design and Implementation 96

4.3.2 Isotropic W-Projection Kernels

The development of isotropic W-Projection convolution kernels has been performed

out of curiosity for its impact towards gridding performance. W-Projection kernels

have been previously described as non-separable and are at best partially symmetric.

Additionally, W-Projection kernels are not naturally isotropic (radially symmetric).

For isotropic W-Projection kernels, and isotropic fragment shading to be feasible, an

alternative approach to calculating W-Projection kernels was needed. There is a reliance

on a general smoothing function during the creation of W-Projection convolution kernels,

with the prolate spheroidal being the function of choice in radio astronomy.

When calculating a one-dimensional prolate spheroidal with s number of samples,

or weights, an equal distribution of input terms must be defined. An example of this

distribution is performed in Equation 4.4, where each input x for a desired prolate spher-

oidal is calculated over s number of samples. This equation assumes that i represents

the current index of each sample s in the range [0, s − 1], and that s represents the full

support of the spheroidal.

x = ∣ −1 + i (
2

s − 1
) ∣ (4.4)

Each x can then be used to calculate one sample of the prolate spheroidal. Equation 4.5

utilizes each input x to generate one prolate spheroidal weight y. Equation 4.5 assumes

that f is a function capable of producing prolate spheroidal samples, such as the prolate

spheroidal approximation function implemented by Fred Schwab in the Casacore radio

astronomy software package (casacore, 2015).

y = f(x) ∗ (1 − (x)2) (4.5)
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Figure 4.12 demonstrates the mapping of inputs (x) to outputs (y) for a one-dimensional

prolate spheroidal with a full support of 17. Using this approach, a typical separable, but

not symmetric two-dimensional prolate spheroidal can be calculated from the product

of two one-dimensional spheroidal weights.
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Figure 4.12: Calculating a one-dimensional prolate spheroidal

To implement isotropic W-Projection kernels, prolate spheroidal samples must

be calculated using the radius of x across each row (i) and column (j) of the two-

dimensional kernel. This is demonstrated in Equation 4.6, where rij represents the

radius of x at row (i) and column (j). The prolate spheroidal sample can be obtained

using the same generating function f .

rij =
√
xi + xj

yij = f(rij) ∗ (1 − (rij)
2)

(4.6)
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Performing this calculation for each point in a two-dimensional W-Projection kernel

results in a W-Projection kernel with radially symmetric properties. This allows for one

half row to be extracted from the middle of each two-dimensional kernel; thus, heavily

reducing the memory requirements to store a set of W-Projection kernels. During

isotropic based convolutional gridding, the positional radius of each fragment can be

determined to map to an isotropic convolution kernel texel.

4.4 Summary

This chapter has introduced, and described the Hall-Ensor-Campbell convolutional

gridding algorithm. A overview of the design search process has discussed the idea of

using OpenGL compute shaders to produce a stitch based gridder. It was discussed as

to why this approach was not effective enough for further development, and instead

a traditional graphics rendering approach was implemented. A custom vertex shader

was demonstrated to be ideal, processing each visibility as a vertex point primitive.

Three custom fragment shaders were also shown to complete effective convolution

of visibilities. Each fragment shader demonstrated an improved utilization of the

graphics rendering pipeline, reducing the amount of memory needed to store sets

of kernels, whilst maintaining full kernel integrity. The use of textures and various

texture filtering techniques has been presented as a suitable solution for gridding in

the graphics rendering pipeline, and will be evaluated in the following chapter. Use

of Fourier transform scaling and suitable normalization techniques has shown that

variably oversampled kernels can be created and stored into uniformly sized texture

cubes or planes. The development of an isotropic fragment shading solution has shown

that convolution gridding can be facilitated with only a fraction of each W-Projection

kernel. Figures 4.13, 4.14, and 4.15 represent the three gridded datasets using the
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Hall-Ensor-Campbell convolutional gridding algorithm. The intensity of red within

the images is a result of accumulated kernel samples, and does not indicate intensity

of accumulated visibilities. Additionally, the images are not to scale, and are only to

demonstrate the gridded result of the three tested datasets.

Figure 4.13: Graphically rendered results of the EL82-EL70 dataset
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Figure 4.14: Graphically rendered results of the EL56-EL82 dataset
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Figure 4.15: Graphically rendered results of the EL30-EL56 dataset



Chapter 5

Algorithm Analysis and Evaluation

This chapter demonstrates and evaluates the Hall-Ensor-Campbell (HEC) convolutional

gridding algorithm. The results are used for comparative performance evaluation of the

HEC gridder against the Numerical Algorithms Group (NAG) gridding algorithm. This

chapter will begin by defining the baseline performance of the NAG gridder. This will be

followed by a description of various data transfer rates, and the algorithm configurations

used for the demonstration and evaluation of the HEC gridder.

Evaluation of texture based convolution kernels will follow, demonstrating how

variable oversampling is achieved using several differing texture sizes. The purpose

of processing visibilities as vertices will be briefly covered, and will be followed by a

detailed evaluation of the reflective and isotropic fragment shaders. The full textured

fragment shader is excluded from evaluation as it is evidently less optimal, and has

served its purpose as a functional template for subsequent optimized fragment shaders.

Evaluation of the reflective and isotropic fragment shaders focuses on the perform-

ance aspects of gridding described earlier in Section 1.2 of Chapter 1: gridding speed,

gridding precision, and memory utilization.

102
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5.1 NAG Gridding Performance

Effective comparison of the HEC gridder against the NAG gridder requires that baseline

performance be defined. This was performed by executing the NAG gridder on the same

hardware used to develop the HEC gridder (presented earlier in Table 3.3 of Chapter 3).

Table 5.1 presents a number of timings reported by the NAG gridder, which were

recorded using standard CUDA timing functions. Each execution of the NAG gridder

reports several resulting times (in milliseconds): data transfer to the device, tile prepara-

tion, one gridding cycle, and transfer of the grid back to the host.

Table 5.1: CUDA timings for various NAG gridder operations

EL30-EL56 EL56-EL82 EL82-EL70

Inputs to GPU (ms) 89 78 66

Tile Preparation (ms) 192 89 58

Gridding (ms) 1178 719 533

Outputs to CPU (ms) 109 110 106

Total Processing Time (ms) 1370 805 591

The total processing time represents the sum of the tile preparation phase, and one

gridding cycle for each dataset. This time will be used as the baseline for comparison

of one gridding cycle using the HEC gridder.

It is important to note that the tile preparation phase is required for the NAG gridder

to achieve optimized performance, which includes an unoptimized bucket sorting of

visibilities. The NAG gridder does not include or report bucket sorting in their timing

operations. Ideally, it should be included as it does contribute additional computational

overhead needed to maximize algorithm performance.
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Taking into consideration the visibility data rates for the Square Kilometre Array,

one can speculate that this would add considerable overhead to the gridding process.

However, to keep algorithm comparison relatively fair, the time for bucket sorting will

be excluded, and the evaluation will focus primarily on the total processing time.

5.1.1 HEC Data Transfer Rates

Although not the primary focus of gridding performance evaluation, it is useful to know

the data transfer rates for various elements of the HEC gridding algorithm, presented in

Table 5.2. By having defined data transfer rates, one can calculate how the algorithm

will approximately scale for gridding of larger observations or alternative gridding

configurations.

The reported times were obtained using an OpenGL Query object to begin and end

the timing of scoped blocks of code, with continuous OpenGL polling to determine

the completion of issued OpenGL commands. Each reported time was obtained by

requesting the measured GL_TIME_ELAPSED value from the GPU for each scoped

block of commands, and are once again reported in milliseconds.



Chapter 5. Algorithm Analysis and Evaluation 105

Table 5.2: Data transfer timings for the HEC gridder

Data to GPU EL30-EL56 EL56-EL82 EL82-EL70

Visibilities (ms) 79 78 77

Reflect Kernels - 322 (ms) 3 2 2

Reflect Kernels - 642 (ms) 7 4 2

Reflect Kernels - 1282 (ms) 14 5 4

Reflect Kernels - 2562 (ms) 53 35 20

Isotropic Kernels - 322 (ms) 3 2 2

Isotropic Kernels - 642 (ms) 3 2 2

Isotropic Kernels - 1282 (ms) 3 2 2

Isotropic Kernels - 2562 (ms) 3 2 2

Subregion Grid (ms) 21 38 33

Full Grid (ms) 473 462 475

Data to Host

Subregion Grid (ms) 110 100 130

Full Grid (ms) 3536 3552 3530

It can be seen that transfer rates for the three visibility datasets to the graphics

processing unit (GPU) are comparable; this is not unexpected. Reflective kernels have

some variation in transfer time, due to the difference in memory required to store larger

textures and the number of kernels. Isotropic kernels are relatively consistent regardless

of dataset, no doubt due to the miniscule amount of memory needed to store kernels

using this technique.

It is important to note that the dimensions of the kernel textures (322, 642, 1282,

2562) do not represent the true dimensions of the bound textures. The specified size

describes the upper dimension of each texture plane; that is, the full size if reflected or

applied radially with no minification or magnification. This refers to the dimensionality

of a singular texture plane in each block of textures, so the true dimensionality of

the texture block is actually some defined dimension, squared, and multiplied by the

number of W-Projection kernels specific to each dataset. This texture plane notation
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is used throughout this chapter when describing various texture sizes used during

experimentation.

The subregion grids represent a portion of the total grid which is used during

convolutional gridding. The point of using subregion grids over the full sized grid is to

ensure the evaluation of the HEC gridder is consistent with the NAG gridder. This also

means that the subregion grid in the HEC gridder will only store two color components

(RG) per grid point instead of the usual four (RGBA). Thus, only convolved complex

visibilities will be stored in the grid, and raw convolution kernel samples will be ignored.

Transfer of the subregion grid takes approximately 5% of the time needed to transfer

the full grid, which makes sense as it only represents approximately 5% of the full

grid (18,0002). Unfortunately, transferring the grid back to the host takes several times

longer. In the case of the full grid, this takes approximately 3.5 seconds. This is quite

a substantial difference, especially if the Square Kilometre Array grid dimensions are

approximately (65,5362). However, this may be considered negligible as the grid is only

read back to the host once after the full imaging process is complete (≈ 10 major cycles).

It is speculated that the reduction in transfer speed is a result of the glReadPixels

function being unoptimized, as it would likely be an irregular function to call during

traditional graphics rendering; i.e. video games.

It can be seen that the transfer back to the host of the HEC gridder takes considerably

longer than that of the NAG gridder, which takes approximately 20 − 40% longer than

transfer to the GPU. Data transfer functions in CUDA are of course optimized, as

transfers between the host and device are critical to the effectiveness of the CUDA

parallel computing model.
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5.1.2 Gridding Configurations

To ensure a fair evaluation and comparison against the NAG gridder, the HEC gridder

has been configured to be as identical as possible. Table 5.3 describes the configurations

used for the three datasets. Note that the HEC gridder will be operating under the

assumption of full grid dimensions (18,0002) for the sake of precision, but will only be

accumulating visibilities onto a subregion of the full grid. The subregion grid is defined

by the render width and render height of each dataset. Several texture sizes will be

tested, specifically 322, 642, 1282, and 2562.

Unless otherwise specified, all experiments performed will utilize a full set of

positive w convolution kernels specific to each datasets needs. Finally, the use of two

OpenGL texture filters will be employed during the evaluation process: GL_NEAREST

(nearest-neighbour), and GL_LINEAR (trilinear/bilinear interpolation). Any deviation

from the prescribed configuration will be specifically stated.

Table 5.3: Gridding configurations used for the evaluation of the HEC gridder

Parameter EL30-EL56 EL56-EL82 EL82-EL70

Number of Visibilities 31,395,840 31,395,840 31,395,840

Grid Dimension 18,0002 18,0002 18,0002

Render Width 3,243 3,981 4,001

Render Height 4,170 4,426 4,385

Elements per grid point 2 2 2

Number of Kernels 922 601 339

Min Kernel Support (full) 9 9 9

Max Kernel Support (full) 191 145 89

Resolution Size 512 512 512

Max W ≈ 19,225 ≈ 12,534 ≈ 7,083

Cell Size (radians) ≈ 6.0e − 6 ≈ 6.0e − 6 ≈ 6.0e − 6
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5.2 Texture based W-Projection Kernels

By utilizing texture based convolution kernels, it is possible to achieve a balance

between precision and memory utilization. Referring to Figure 5.1, it can be seen that

the use of a fixed texture size for a set of W-Projection kernels results in a variable

distribution of oversampling across all kernels. Evidently, the smallest of kernel support

sizes benefit the most from this technique.

The majority of visibilities for each dataset tested require a small kernel support

(Figure 3.1 of Chapter 3), so their precision is amplified by this technique. However,

this does put the small fraction of visibilities with large kernel support needs at a

disadvantage. Experimentation with larger texture sizes ultimately improves the number

of kernels which benefit from amplified oversampling, and subsequently the number of

visibilities which receive higher precision convolution. However, this comes at the cost

of additional memory. One might consider the use of interpolation based sampling to

supplement the precision for lesser oversampled kernels.
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Figure 5.1: Distribution of oversampling for various kernel supports

Table 5.4 describes the percentage of visibilities which receive minimum kernel sup-

port when using various texture sizes. Astronomical observations which utilize longer

baselines will ultimately require greater breadth of kernel support for W-Projection

kernels. This is evident when observing the EL30-EL56 dataset, which requires W-

Projection kernel support sizes in the range of [92, 1912]. A texture size of 1282 is

necessary to achieve accurate convolution of at least 99.87% of this dataset. It may not

be worth the additional overhead to double the texture size to 2562 to support the re-

maining 0.13% of visibilities. However, by utilizing textured based convolution kernels,

compromises can be made when balancing the precision and memory utilization during

observation.
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Table 5.4: Percentage of visibilities achieving full kernel support

Texture Size (per plane) EL30-EL56 EL56-EL82 EL82-EL70

322 77.67% 89.19% 97.49%
642 93.98% 98.88% 99.96%
1282 99.87% 99.99% 100.00%
2562 100.00% 100.00% 100.00%

5.3 Vertex Shader Processing

Introduced in Chapter 4, a custom vertex shader was described as the first half of

the convolutional gridding process of the HEC gridder. Evaluation of each visibility

is performed in this stage, resulting in the extraction of additional attributes used to

simplify the subsequent fragment shading procedure.

For the uninitiated, it may not be obvious as to why these attributes aren’t extracted

during fragment shading to simplify the workload of the vertex shader. However,

referring to Table 5.5, it is observed that each visibility will invoke the vertex shader

once, but will ultimately invoke the fragment shader many times. For the datasets tested,

the number of fragment shader invocations is upwards of tens of billions.

Table 5.5: Approximate number of vertex and fragment shader invocations per dataset

EL30-EL56 EL56-EL82 EL82-EL70

Vertex Invocations 31,395,840 31,395,840 31,395,840

Fragment Invocations ≈ 30,862,043,928 ≈ 13,897,957,232 ≈ 6,459,013,560

The exact number of fragment shader invocations is dependant on the kernel support

of each visibility. Evidently, shifting the evaluation of the visibility into the fragment

shader would result in the degradation of performance for the HEC gridder. The

increased computational overhead results in more time being spent processing each

visibility. Thus, increasing the time in which a complete set of visibilities can be



Chapter 5. Algorithm Analysis and Evaluation 111

processed, and increasing the amount of energy needed to achieve the same result.

Ultimately, the end goal of the HEC gridder is to process each visibility with as little

overhead as possible in order to maximize gridding capabilities for the SKA.

5.4 Reflective Texture Fragment Shading

The reflective texture fragment shader was also introduced in Chapter 4, as a second

generation fragment shading technique. This shader has been described as the final

stage of the HEC gridder, responsible for the convolution of visibility fragments. This

fragment shader is capable of performing full convolution of visibilities with the use of

only one quarter of a full convolution kernel. Thus, improving on memory utilization

by reducing the total amount of kernel texture by 75%. This was made possible due to

the partial symmetric properties of W-Projection kernels. In this section, the reflective

texture fragment shader will be demonstrated and evaluated for its efficacy.

5.4.1 Gridding Speed

Gridding speed focuses on the GPU processing time spent during the convolutional grid-

ding of visibilities. Figure 5.2 demonstrates how rapidly each dataset can be processed

using reflective texture fragment shading in comparison to the NAG gridder. Note that

as mentioned in Subsection 3.2.1 of Chapter 3, standard deviation is not presented

due to the insignificant measurement of variance, which approximated between 2-8

milliseconds across the reported results.

It is observed that the two smallest datasets (EL56-EL82, EL82-EL70) are processed

in comparable time to that of the NAG gridder, when utilizing the three smallest texture

sizes (322, 642, and 1282). The largest dataset (EL30-EL56) takes approximately 30%

longer to grid than NAG when considering the same texture sizes. This is likely due to
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the processing of a greater number of overlapping fragments (observed in Figure 4.15

of Chapter 4) and inefficient texture caching.

Evidently, the use of 2562 textures results in less adequate performance; taking

an additional 30-50% longer to complete the gridding process. Again, this observed

penalty will likely be a result of inefficient texture caching due to its larger dimensions.
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Figure 5.2: Reflective texture gridding time (full set of kernels, nearest-neighbour)

Table 5.6 demonstrates how the reflective fragment shader performs when comparing

nearest-neighbour and trilinear interpolation texture filters. Use of trilinear interpolation

for 322 and 642 sized textures demonstrates a negligible penalty of several milliseconds.

This is likely a result of effective texture caching due to the memory footprint for

small textures. Some reduction in gridding speed is observed for 1282 textures, taking

approximately 20-35% longer to complete. The use of 2562 textures results in heavily

penalization by an average of 56%, which again stems from inefficient caching of larger

textures.

The three smaller texture sizes present comparable gridding times to one another,
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when utilizing the nearest-neighbour filter. Much like before, the use of 2562 textures

penalizes the throughput of the algorithm. However, not to the extent that interpolation

does, as data transfer is needed to obtain a kernel sample from GPU memory.

Utilization of interpolation texture filtering does demonstrate suitability for smaller

textures, but heavily penalizes the gridding speed when larger textures are needed.

Furthermore, the achieved precision of large interpolated kernel samples may not justify

the reduction in gridding speed; this will be evaluated shortly.

Table 5.6: Gridding time using reflective texturing (full set of kernels)

EL30-EL56 EL56-EL82 EL82-EL70

Texture Size (per plane) Nearest Trilinear Nearest Trilinear Nearest Trilinear

322 1936ms 1938ms 924ms 927ms 467ms 471ms
642 1950ms 1974ms 929ms 932ms 469ms 474ms
1282 2008ms 2529ms 957ms 1481ms 477ms 709ms
2562 2983ms 6637ms 1916ms 4380ms 1133ms 2629ms

It is evident that the memory footprint for storing textured kernels has a direct

impact on the gridding speed of the algorithm. Therefore, efficient caching of textures

is desirable, and can be improved by reducing the number of kernels by some arbitrary

amount. The following demonstration reduces the number of produced kernels by

50%, whilst ensuring an equal distribution of w coordinate support over the range of

[0.0,MaxW ].

Figure 5.3 demonstrates the time in which it takes to perform gridding with 50%

less kernels for each dataset. Comparing these results to those of Figure 5.2 (all kernels

used), there is a negligible improvement for the three smallest textures sizes. The benefit

of using less kernels is only obvious when utilizing the largest texture size. Gridding

speed improvements of between 11-16% are achieved by having fewer textures for

which to sample.
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Figure 5.3: Reflective texture gridding time (half set of kernels, nearest-neighbour)

Table 5.7 provides precise measurements of achieved processing times when using

50% less kernels. Gridding speeds are mostly unaffected for smaller texture sizes for

either filtering technique. Some penalty is noted for 1282 textures, which observes a

reduction in gridding time by approximately 10-20% when using interpolation sampling.

2562 textures demonstrate significantly slower gridding time using interpolation com-

pared to nearest-neighbour, which is to be expected with additional computation.

Comparing the results for the 1282 and 2562 textures to the figures in Table 5.6

(all kernels), significant improvements to gridding speed are observed. A reduction

in gridding time of approximately 300-400 milliseconds for nearest-neighbour, and

between 400-900 milliseconds for trilinear interpolation.
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Table 5.7: Gridding time using reflective texturing (half set of kernels)

EL30-EL56 EL56-EL82 EL82-EL70

Texture Size (per plane) Nearest Trilinear Nearest Trilinear Nearest Trilinear

322 1953ms 1955ms 940ms 941ms 470ms 471ms
642 1959ms 1972ms 942ms 946ms 471ms 477ms
1282 2000ms 2216ms 953ms 1151ms 474ms 588ms
2562 2594ms 5852ms 1625ms 3902ms 880ms 2215ms

5.4.2 Memory Utilization

The next performance consideration is the effective utilization of memory. This focuses

on the amount of memory needed to efficiently store a set of texture based convolution

kernels within the GPU. Evidently, this is dependant on the size of the textures in use,

and the number of kernels required per dataset.

Table 5.8 describes the kernel memory footprint for each of the three datasets when

supporting various texture sizes. Considerable reductions of this footprint are achieved

using textures in most cases, when compared to the footprint for the oversampled kernels

used by the NAG gridder. The measurements presented in Table 5.8 are calculated

under the assumption that a full set of kernels is used. However, one can easily scale

these measurements accordingly to the desired fraction of kernels.

Table 5.8: Memory requirements for a full set of reflective convolution kernels

Texture Size (per plane) EL30-EL56 EL56-EL82 EL82-EL70

322 1.80MB 1.17MB 0.66MB
642 7.20MB 4.70MB 2.65MB
1282 28.81MB 18.78MB 10.59MB
2562 115.25MB 75.13MB 42.38MB

NAG Kernels 280.00MB 88.00MB 16.00MB
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5.4.3 Gridding Precision

The last performance consideration to demonstrate and evaluate is the precision offered

by reflective texture fragment shading. The level of precision achieved by a gridding

solution is critical to the synthesis of high quality images, and could be considered the

most important performance aspect. Evaluation of HEC gridder precision is limited

to comparison of gridding results between HEC and NAG algorithms under similar

conditions. Ideally, perfect imaging is needed to obtain an accurate measurement of

gridding precision. However, this was not feasible given the allocation of time to

conduct this research, and is planned for future work.

Precision is obtained by measuring the relative error between the HEC and NAG

gridding algorithms using the relative error L2 norm described in Chapter 3. One

gridding cycle is performed by both algorithms before the measurement of error is

obtained. Table 5.9 demonstrates the relative error measured for the three datasets.

Table 5.9: Relative error using reflective texturing (full set of kernels)

EL30-EL56 EL56-EL82 EL82-EL70

Texture Size (per plane) Nearest Trilinear Nearest Trilinear Nearest Trilinear

322 5.0712 3.1709 0.1727 0.1830 0.0982 0.1030

642 0.1468 0.1576 0.1021 0.1058 0.0728 0.0728

1282 0.1134 0.1149 0.0861 0.0924 0.0660 0.0654

2562 0.1044 0.1047 0.0819 0.0821 0.0640 0.0636

As one might expect, the use of larger textures provides the lowest relative error.

Nearest-neighbour and trilinear interpolation texture filtering provides a comparable

level of error for larger kernel sizes; likely due to the greater number of kernel samples

available for nearest-neighbour sampling. The smallest dataset (EL82-EL70) benefits

the most from a variety of texture sizes; largely due to the majority of visibilities in
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the set needing small kernel support sizes. It is observed that in most cases, trilinear

interpolation produces a higher relative error than nearest-neighbour filtering. It is

speculated that this is a result of an increased support range for visibility w terms by

interpolating between pre-calculated W-Projection convolution kernels, which is not

performed by the NAG gridder.

The NAG gridder is limited to using a fixed configuration, which includes a fixed

kernel oversampling factor of four. This constraint makes precision evaluation of the

HEC gridder somewhat challenging, as the relative error reported may demonstrate

that the HEC gridder is worse; when in truth it is only different. Therefore, one should

interpret the precision results cum grano salis; that is, with a grain of salt, until perfect

imaging confirms these speculations.

Referring back to Table 5.9, it can be seen that smaller textures hinder the gridding

precision of visibilities measured using long baselines. The use of long baselines results

in the need for broader kernel support, and it is clear to see that small textures are not

ideal for such cases. A prime example is observed when attempting to use a 322 sized

texture for the EL30-EL56 dataset.

Reducing the number of kernels by 50% has been demonstrated as an effective

technique for reducing gridding time. Table 5.10 demonstrates that all datasets, using

all texture sizes, and texture filtering techniques incur some minor penality in gridding

precision when using half the number of kernels; approximately 5% across the board.

This is an implication of reducing the number of accurately pre-calculated kernels

by some degree. Less kernels means a smaller number of precise samples to use during

nearest-neighbour sampling. Therefore, trilinear interpolation would be desirable under

these conditions to supplement the reduction of available samples.
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Table 5.10: Relative error using reflective texturing (half set of kernels)

EL30-EL56 EL56-EL82 EL82-EL70

Texture Size (per plane) Nearest Trilinear Nearest Trilinear Nearest Trilinear

322 7.7527 5.3440 0.1745 0.1846 0.1013 0.1056

642 0.1507 0.1611 0.1047 0.1084 0.0768 0.0763

1282 0.1185 0.1197 0.0892 0.0897 0.0703 0.0691

2562 0.1100 0.1100 0.0851 0.0853 0.0685 0.0674

It could be argued that a greater reduction in the number of pre-calculated kernels

could improve gridding throughput, given the small loss in observed gridding preci-

sion. However, it is important to note that the underlying correction provided by each

unique W-Projection kernel in a set does differ over the range of supported w terms

([0.0,MaxW ]). Substantially reducing the number of planes means that the difference

in correction between consecutive kernels would be greater; thus less likely to provide

accurate convolution per given visibility.

5.5 Isotropic Texture Fragment Shading

The isotropic texture fragment shader was the third generation fragment shader in-

troduced in Chapter 4. This fragment shading technique is based on convolutional

gridding via radial based texturing, which utilizes isotropic (radially symmetric) W-

Projection kernels to achieve convolution. This section will demonstrate and evaluate

the effectiveness of the isotropic fragment shading approach towards convolutional

gridding.

5.5.1 Gridding Speed

Previously, the reflective fragment shader technique demonstrated a relationship between

optimized gridding speed and the memory footprint for a set of W-Projection kernels.
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The use of larger textures resulted in improved gridding precision, at the cost of de-

creased gridding speed.

The isotropic approach to convolutional gridding provides a drastically reduced

memory footprint for storing sets of W-Projection kernels (see Table 5.13). Figure

5.4 demonstrates how gridding speed is improved using this technique. Significant

improvements are observed, with the smallest dataset (EL82-EL70) being completely

gridded in approximately 50% of the time taken by the NAG gridder.

The two larger datasets offer comparable gridding speeds to that of the NAG

gridder, with the largest set (EL30-EL56) demonstrating significant improvements when

compared to reflective fragment shading results.
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Figure 5.4: Isotropic texture gridding time (full set of kernels, nearest-neighbour)

Table 5.11 demonstrates that that all three datasets are completely gridded in com-

parable times regardless of the supported texture size, or texture filtering method.

Comparing these results to those obtained with the reflective fragment shader, this

technique does not suffer from penalized processing speeds when employing 2562 sized
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textures. This approach to fragment shading evidently makes use of efficient caching of

textured convolutional kernels.

Table 5.11: Gridding time using isotropic texturing (full set of kernels)

EL30-EL56 EL56-EL82 EL82-EL70

Texture Size (per plane) Nearest Bilinear Nearest Bilinear Nearest Bilinear

322 1403ms 1490ms 684ms 724ms 343ms 371ms
642 1487ms 1533ms 725ms 742ms 368ms 380ms
1282 1532ms 1557ms 743ms 754ms 377ms 386ms
2562 1555ms 1572ms 757ms 764ms 384ms 388ms

However, a reduction in the number of pre-calculated kernels does demonstrate a

small penalty towards gridding speeds. Arbitrarily reducing the number of kernels by

50% observes an approximate 1% reduction in speed for large textures, and between

5-7% for smaller textures. Based on the isotropic fragment shading evidence so far, one

could speculate that that reducing the number of kernels is an unnecessary operation for

this shader. No obvious benefits are obtained, whilst precision is slightly impacted.

Table 5.12: Gridding time using isotropic texturing (half set of kernels)

EL30-EL56 EL56-EL82 EL82-EL70

Texture Size (per plane) Nearest Bilinear Nearest Bilinear Nearest Bilinear

322 1420ms 1502ms 695ms 734ms 344ms 369ms
642 1503ms 1546ms 733ms 754ms 368ms 382ms
1282 1548ms 1570ms 755ms 765ms 379ms 386ms
2562 1571ms 1588ms 767ms 772ms 384ms 389ms

5.5.2 Memory Utilization

Isotropic kernels provide an optimized utilization of memory, as only one half row

of each kernel is needed to synthesize a full texture during fragment shading. This
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heavy reduction in memory means that a set of kernels can effectively be cached as a

two-dimensional texture plane, instead of a three-dimensional texture cube.

Table 5.13 demonstrates how much memory is needed to store a full set of isotropic

kernels for each dataset. The hardware used during the development and evaluation of

the HEC gridder features a 3 megabyte L2 cache. Thus, any set of isotropic kernels

which can be efficiently cached will provide better overall gridding performance.

Table 5.13: Memory requirements for a full set of isotropic convolution kernels

Texture Size (per plane) EL30-EL56 EL56-EL82 EL82-EL70

322 0.11MB 0.07MB 0.04MB
642 0.23MB 0.15MB 0.08MB
1282 0.45MB 0.29MB 0.17MB
2562 0.90MB 0.59MB 0.33MB

NAG Kernels 280.00MB 88.00MB 16.00MB

It was found that reducing the number of kernels by an arbitrary amount does not

supplement isotropic fragment gridding speeds. However, assuming the 3 megabyte

limit is respected, a reduction in the number of kernels does free up some memory.

This available memory could then be used to support larger texture sizes than those

demonstrated, which ultimately improves the oversampling factor per kernel and general

gridding precision.

Table 5.14 presents some examples of this, demonstrating a handful of potentially

supported texture sizes for the 3 megabyte cache limit. These examples assume a half

set of kernels are pre-calculated. Italicized memory sizes represent texture sizes which

are feasible without overstepping the upper limits of the cache.
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Table 5.14: Upper limits for a half set of efficiently cached isotropic kernels

Texture Size (per plane) EL30-EL56 EL56-EL82 EL82-EL70

5122 0 .90MB 0 .58MB 0 .33MB
10242 1 .80MB 1 .17MB 0 .66MB
20482 3.60MB 2 .35MB 1 .32MB

5.5.3 Gridding Precision

Evaluation of isotropic gridding precision was performed using the same technique

as the reflection evaluation; relative error is measured between one gridding cycle for

both the HEC and NAG gridders under similar conditions. Table 5.15 demonstrates the

measured relative error for the three datasets.

Table 5.15: Relative error using isotropic texturing (full set of kernels)

EL30-EL56 EL56-EL82 EL82-EL70

Texture Size (per plane) Nearest Bilinear Nearest Bilinear Nearest Bilinear

322 4.1951 3.3359 7.8591 6.0533 0.1039 0.1083

642 0.6345 0.5405 0.1080 0.1121 0.0787 0.0788

1282 0.1199 0.1214 0.0925 0.0932 0.0719 0.0717

2562 0.1111 0.1113 0.0884 0.0887 0.0700 0.0700

Consistent patterns are noted, such as lower relative error when utilizing larger

texture sizes, and interpolation texture sampling demonstrating higher relative error

than nearest-neighbour sampling. Comparing this approach to reflective fragment

shading (see Table 5.9), it can be seen that isotropic fragment shading demonstrates

comparable relative error; averaging approximately 7% worse for the larger two texture

sizes.
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This increase in relative error is likely a result of applied isotropic kernels when

compared to the conventional W-Projection kernels used by the NAG gridder. Being

radially symmetric, isotropic kernels provide a smooth convolution across all angles.

This is not the case for traditional W-Projection kernels, which are only partially

symmetric across the x and y axes. It is to be expected that some accumulative difference

will be observed when 32 million visibilities have been isotropically convolved.

There is one obvious discrepancy when using 322 isotropic convolution kernels

for the two largest datasets (EL30-EL56, EL56-EL82). The relative error reported

suggests that the grids produced using these texture sizes are drastically different. This

abnormality was noted using reflective textures of a similar size, but only for the largest

dataset (EL30-EL56). It is speculated that this tremendous amount of error is due to the

poor choice of texture size for a dataset with large kernel support requirements. Such a

small texture will negatively impact gridding precision, as the texture will be stretched

(magnified) during fragment shading. Thus, resulting in low resolution gridding of

visibilities. However, it is unclear as to why this specific dataset, and specific texture

size is so heavily penalized.

Ultimately this demonstrates an interesting point. Texture based kernels are useful,

but careful analysis of gridding requirements is crucial to ensure an appropriate texture

size is chosen. Further analysis is needed to understand exactly what is occurring in

this specific situation, and is considered for future work.

Table 5.16 demonstrates the measured relative error when reducing the number of

pre-calculated kernels by 50%. Once again, precision is ever so slightly impacted by

the reduction in available samples suited for nearest-neighbour texture filtering, and

interpolation of samples at runtime. Oddly enough, the precision issue experience by

the EL56-EL82 is corrected by the reduction of kernels, adding to the need for further

investigation of this specific circumstance.
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Table 5.16: Relative error using isotropic texturing (half set of kernels)

EL30-EL56 EL56-EL82 EL82-EL70

Texture Size (per plane) Nearest Bilinear Nearest Bilinear Nearest Bilinear

322 6.0707 4.5046 0.2473 0.2322 0.1067 0.1106

642 0.8555 0.6619 0.1104 0.1144 0.0824 0.0819

1282 0.1246 0.1260 0.0954 0.0960 0.0758 0.0751

2562 0.1162 0.1162 0.0914 0.0916 0.0741 0.0735

5.6 Full Gridding Potential

Evaluation and demonstration of HEC gridder performance has used gridding config-

urations comparable with those of the NAG gridder; this was performed to ensure a

fair evaluation of the HEC gridder takes place. The experiments performed so far have

only taken place on a subregion of the full grid, and have only accumulated convolved

visibilities at each grid point. During a real astronomical observation, use of a clipped

subregion grid would be indicative of a poor gridding configuration. This section

will demonstrate the implications towards gridding speed when utilizing a full grid

(18,0002).

Additionally, the HEC gridder supports the accumulation of raw convolution kernel

samples during the processing of visibilities. This is achieved by utilizing a four element

color vector at each grid point (RGBA); previous evaluations have used two element

color vectors to be consistent with the NAG gridder. Storage of convolution kernel

samples is useful for normalization of the grid at a later stage. For the sake of brevity,

only one dataset (EL82-EL70) will be demonstrated under these conditions, with table

5.17 presenting the results of this demonstration.
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Table 5.17: Utilizing the full potential of the HEC gridder - EL82-EL70 dataset

Reflective Isotropic

Texture Size (per plane) Nearest Linear Nearest Linear

322 884ms 888ms 643ms 688ms
642 887ms 889ms 684ms 707ms
1282 892ms 937ms 707ms 718ms
2562 1215ms 2679ms 719ms 723ms

It can be seen that the processing time for gridding of the full dataset roughly

doubles when accumulating four values instead of two. This is to be expected, as the

amount of memory being transfer per fragment has effectively doubled. The size of

the grid does not appear to influence the speed at which gridding can be performed.

However, experimentation with much larger grid sizes, such as those needed by the

SKA (65,5362) would confirm these speculations.

5.7 Summary

This chapter has presented the evaluation and demonstration of Hall-Ensor-Campbell

convolutional gridding performance. Results were presented for gridding speed, preci-

sion, and memory utilization of the HEC gridder, which were used to compare against

the Numerical Algorithms Group gridder. Use of texture based convolution kernels has

demonstrated how variable oversampling can be achieved using various texture sizes.

It was found that partial processing of visibilities via vertex shading drastically re-

duces the amount of computation which would otherwise be necessary. Use of reflective

texture fragment shading has demonstrated comparable gridding performance to that of

the NAG gridder in most cases. Isotropic fragment shading has been demonstrated as

a feasible solution for maximizing overall gridding performance, by utilizing heavily

optimized sets of convolution kernels. Interpolation based sampling of textures has
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been shown to improve gridding precision for smaller textures, but is redundant for

larger, oversampled textures. Nearest-neighbour sampling is effective, so long as the

texture is sufficiently sized to ensure precision is not impacted. Reducing the num-

ber of pre-calculated kernels was also found to benefit gridding speeds under some

circumstances.

The full potential of the HEC gridder was demonstrated, and was shown to require

approximately double the amount of processing time to complete. Various data transfer

times have also been presented. It was noted that transferring the grid back to the host

using glReadPixels was heavily penalized for full grid dimensions; presumably

due to the function being unoptimized. However, it was noted that this procedure is

only executed once at the end of the imaging process, and may be negligible overhead

whilst benefiting from optimized convolutional gridding.

Additionally, it was noted that gridding precision requires further analysis by means

of perfect imaging, and is planned for future work.
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Discussion

Demonstration and evaluation of the Hall-Ensor-Campbell (HEC) convolutional grid-

ding algorithm was performed in Chapter 5; the results of the evaluation present

evidence to the effectiveness and efficacy of the gridding solution. In this chapter, an in-

terpretation of the findings will discuss the implications of using Open Graphics Library

(OpenGL) and the graphics rendering pipeline to facilitate gridding. The two research

questions proposed in Chapter 1 will be answered, and the practical significance of the

HEC gridder will be presented. This chapter will conclude with an overview of the

limitations of the research.

6.1 Graphics based Convolutional Gridding

This thesis has demonstrated how OpenGL and the graphics rendering pipeline can

effectively facilitate W-Projection convolutional gridding. Edgar et al. (2010) has

suggested that OpenGL based convolutional gridding is effective, but was not able to

provide any substantial evidence to its efficacy. Therefore, a custom vertex shader, and

several custom fragment shaders have been implemented to demonstrate and support

127
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these claims. The presented solution was shown to be entirely devoid from data pre-

processing mechanisms which plague other gridding solutions.

6.1.1 Vertex Processing

The application of custom vertex shading has been demonstrated as a critical step

in achieving optimized convolutional gridding via the rendering pipeline. This was

made possible by conforming each measured visibility into the form of an OpenGL

point primitive. The extraction of attributes during this stage is critical to the precise

convolution of the visibility at a later stage of the pipeline, and ultimately reduces the

amount of computation needed to fulfil gridding. Additionally, use of a custom vertex

shader has demonstrated that visibilities do not require any form of data processing

(searching, sorting, compression, or elimination) to achieve high gridding performance.

Evidently, gridding via the rendering pipeline would not be possible without the use of

vertex shading as a preliminary rendering stage. Its presence contributes to the overall

performance of the HEC gridding algorithm.

6.1.2 Reflective Texture Fragment Shading

The reflective texture fragment shader demonstrates a conventional approach to the

convolution of each visibility by utilizing partially symmetric W-Projection kernels.

This approach to fragment shading presents a reduction in convolution kernel memory

by 75%, and synthesizes full kernels by means of reflected fragment coordinates. The

findings suggest comparable gridding performance is achieved with this technique, but

degrades when utilizing larger texture sizes. This appears to be a result of inefficiently

cached kernel textures due to the large amount of memory needed to store each set.
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It was found that gridding speed could be improved by reducing the number of

pre-calculated kernels by some desired amount, at the cost of some precision. Gridding

is by definition an approximation algorithm, so reducing the number of kernels to

improve throughput may not be too detrimental to the quality of the final image. Further

analysis would determine the implications of this suggestion.

The findings suggest that larger textures benefit most from nearest-neighbour

sampling. Gridding precision was reported as comparable, with a considerably shorter

gridding time in comparison to interpolation based sampling. It is suggested that smaller

textures are utilized with interpolation based sampling, and larger textures are utilized

with nearest-neighbour sampling. This ensures precision is maximized, without inhibit-

ing the overall gridding speed of the algorithm when performing reflective fragment

shading.

Overall, this shading technique presents a reasonable solution for which gridding

can be performed in considerable time. The additional cost of gridding via reflective

fragment shading may be worthwhile to save on data processing costs. However, further

improvements to this shading technique appear to be somewhat limited. Ultimately,

this is because texture lookups are expensive, and this technique relies on such a large

amount of texture per convolution kernel which cannot be efficiently cached.

6.1.3 Isotropic Texture Fragment Shading

The implementation of isotropic texture fragment shading has demonstrated a non-

conventional approach to convolutional gridding, one which has not yet been observed

in gridding literature. The findings suggest that isotropic shading achieves comparable

precision to conventional reflective convolution of W-Projection kernels. Memory

utilization is heavily optimized by this technique; only requiring one half row of

each kernel to synthesize a full convolution. Gridding speeds have demonstrated
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drastic improvement over conventional gridding methods, with overall speeds remaining

relatively comparable regardless of texture size.

An overall increase in the relative error of this technique was reported. It is spec-

ulated that this increase is an indication of difference when using a non-standard

technique, and does not necessarily indicate error. The findings suggest that an effi-

ciently cached set of textures provides the best gridding performance, by respecting the

capacity of the GPU cache. The findings do suggest that a reduction in the number of

pre-calculated kernels would support the use of broader texture sizes. Thus, increasing

oversampling of each kernel, and subsequent gridding precision.

Efficient caching of isotropic textures has shown that both nearest-neighbour and

interpolation based sampling can be performed in comparable time, and obtain compar-

able precision. This suggests that either sampling technique could be a valid option, but

if one is to reduce the number of kernels by some fraction, interpolation would be ideal

to supplement the loss of pre-calculated samples. This is true for smaller texture sizes,

but does require further investigation to validate the impact this has on larger texture

sizes. Overall, this fragment shading technique appears to be promising. However,

further precision analysis is needed to determine if image quality is acceptable when

gridded with isotropic form.

6.2 Textured Convolution Kernels

Texture based convolution kernels have been demonstrated as an effective method for

the storage and application of kernel samples during convolutional gridding. Romein

(2012) had suggested that textures would be a viable alternative to traditional W-

Projection kernels, which at present appears to hold true. For the HEC gridder, a custom

solution was implemented to create W-Projection kernels suitable for storage as a set

of uniformly sized textures. These custom W-Projection textures expose the HEC
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gridder to various precision enhancements for smaller kernel sizes; such as variable

oversampling and hardware accelerated interpolation. However, further investigation is

needed to determine the implications this has towards larger kernels. Romein (2012)

also believed that hardware accelerated interpolation could contribute to an improved

image quality, especially with the use of oversampled textures (Romein, 2012). This

research suggests that whilst the use of texture based convolutional kernels does appear

to be promising, further analysis is needed to determine the effects of texture based

kernels with respect to gridding precision, and subsequently image quality.

6.2.1 Oversampling

The use of a single fixed size texture for each kernel ensures uniformity when storing

kernels in a texture plane or cube. It has been demonstrated that this technique results

in a variable oversampling factor for each kernel, which is dependant on the support

of each kernel. Evidently, the smaller the kernel support, the higher the oversampling

achieved. Figure 5.1 in Chapter 5 demonstrates that kernel textures with larger support

sizes do not benefit as much from this approach.

Table 5.4 in Chapter 5 demonstrated that each of the three datasets can sufficiently

support the convolution of most visibilities (99%) using different texture sizes per

dataset. It was suggested that increasing the texture size to account for the remaining

visibilities may not be worth the additional computational overhead. Therefore, careful

analysis should be performed when choosing a suitable texture size. The sacrifice of

precision for some visibilities may be worth the overall improved gridding speeds.

It is recommended that when selecting a texture size, one should utilize a size

which is at least some power of two greater than the largest kernel full support for the

observation. This ensures coalesced memory access is achieved, and that all visibilities

will receive accurate convolution via minified texture filtering. Failing to adhere to
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this recommendation will evidently result in stretched (magnified) convolution kernels,

which are likely to reduce gridding precision and introduce artifacts into the synthesized

image.

6.2.2 Nearest-neighbour Sampling

Nearest-neighbour sampling has been demonstrated as an effective sampling method

when utilizing large textures during convolutional gridding. This is evidently due to

the factor of oversampling present in large textures. The findings suggest that nearest-

neighbour sampling offers a comparable level of precision to that of interpolation

sampling, without the additional computational overhead. It is suggested that nearest-

neighbour sampling is less suitable for smaller texture sizes, and should be substituted

for interpolation based sampling under these conditions. Additionally, nearest-neighbour

sampling may be less suitable when the number of kernels in use is reduced by some

degree.

6.2.3 Interpolation Sampling

The ability to supplement pre-calculated convolution kernels using interpolation is

one of the major benefits of texture based kernels. By utilizing interpolation based

sampling, a finer level of precision is achieved at runtime, at the expense of additional

computation.

The findings suggest this sampling method is most effective under two gridding

conditions. The first is when small texture sizes are in use, which are effectively under-

sampled. This of course depends on the kernel requirements on a per observation basis.

The second condition is when the number of kernels in a set has been reduced by some

user defined amount (e.g. 50%). When this is performed, the distance of the supportedw

coordinate for each W-Projection kernel is effectively increased. Under these conditions,



Chapter 6. Discussion 133

interpolation supports the precise convolution of visibilities by interpolating samples

from between the two nearest W-Projection planes. It is recommended that interpolation

not be used when utilizing larger textures, as comparable precision is achieved using

nearest-neighbour sampling without the additional computational overhead.

6.3 Research Questions

Two research questions were proposed the beginning of this thesis (Section 1.2 of

Chapter 1). The first question relates to the feasibility of OpenGL and the graphics

rendering pipeline to facilitate convolutional gridding; questioning if and how it can be

achieved. The second question considers what aspects of graphics based gridding can

be optimized to improve algorithm performance.

6.3.1 Convolutional Gridding via Rendering Pipeline

Formally, the first research question proposed was "how can OpenGL and the graph-

ics rendering pipeline be used to perform convolutional gridding?". Evidently, a

convolutional gridding algorithm - the HEC gridder - has been designed, developed,

and successfully demonstrated using OpenGL and the graphics rendering pipeline to

facilitate W-Projection convolutional gridding.

The HEC gridder effectively performs convolutional gridding with the use of custom

vertex shader logic to partially process visibilities as individual vertices. Each visibility

is processed through the vertex shader, which performs the extraction of additional

attributes relative to the visibility. The vertex defines its point size based on the kernel

support needs of each visibility, which subsequently determines how many fragments

are produced. The additional attributes are transferred to each invocation of a custom

fragment shader, which performs the convolution of each fragment using a suitable
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W-Projection kernel texel. The resulting fragments are then accumulatively blended

into the UV-grid, completing the gridding process.

6.3.2 Optimized Convolutional Gridding

The second research question proposed was "what optimizations can be implemented to

improve the performance of graphics based convolutional gridding?". This research has

since demonstrated several optimizations which improve graphics based convolutional

gridding performance.

Texture based convolution kernels were implemented, which present an effective

approach for storage and application of high precision W-Projection kernels. Inclusion

of hardware accelerated interpolation supplements pre-sampled kernels by interpolating

finer samples at runtime.

Implementation of isotropic W-Projection kernels, and subsequent isotropic frag-

ment shading has shown to improve general gridding performance. Isotropic kernels

are efficiently small enough to be cached, which greatly improves gridding speed.

6.4 Practical Significance

Use of the Hall-Ensor-Campbell convolutional gridding algorithm in a practical real-

world setting appears feasible. The claims of effective OpenGL based gridding by Edgar

et al. (2010) can now be supported. The algorithm has been demonstrated to operate

as advertised, and appears suitable for use as a convolution gridding solution. The

use of OpenGL and the graphics rendering pipeline ensures the algorithm is supported

on a broad range of graphics processing hardware, and is not constraint to a specific

hardware vendor. Additional processing of visibilities (sorting, searching, compression,

et cetera) is non-existent, ideal for achieving efficient and effective gridding with

minimal overhead. Use of texture based kernels allows for high resolution kernels to be



Chapter 6. Discussion 135

applied during convolutional gridding, which scale effectively as needed. The algorithm

is highly customizable, and can be configured as desired to achieve a balance between

high performance, high precision, or a ratio of the two.

Researchers can benefit from the development of the HEC gridder. It serves as an ex-

ample of how to solve a complex high performance computing problem using traditional

graphics rendering technology. The custom approach to creating W-Projection texture

based convolution kernels is also useful should any existing or future gridding imple-

mentation wish to implement textured kernels. The texture sampling recommendations

also provide guidance for suitable use of various texture filtering techniques. Addi-

tionally, the concepts and ideas of the HEC gridder are transferable to other imaging

domains. W-Projection was implemented in this thesis, as it is required by the Square

Kilometre Array (SKA). However, the general approach of gridding via the rendering

pipeline could be extended to others disciplines to simplify, improve, or inspire the

development of new gridding solutions.

6.5 Limitations

Although the presented research has fulfilled the aims set out to be achieved and has

answered the defined research questions, several limitations of the study have been

identified which may impact the presented findings. Some of the limitations identified

are simply relative to the complexity of the research topic, and others are due to a lack

of available resources, as gridding is a niche research area.

6.5.1 Availability of Gridding Algorithms

Interest in developing highly efficient W-Projection convolutional gridding algorithms

has increased in recent years as the requirements for the SKA become apparent. This

has lead to the development of various gridding techniques which attempt to maximize
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various aspects of gridding performance. Unfortunately the number of optimized W-

Projection based gridding algorithms with available source code is extremely scarce.

There was not enough time allocated for this research to manually implement several

gridding algorithms from the ground up. Thus, only one optimized W-Projection grid-

ding algorithm has been available for comparative analysis of HEC gridder performance.

6.5.2 Availability of Data

There is also a sparse availability of observational datasets suitable for the evaluation of

W-Projection based convolutional gridding algorithms. Several published algorithms

provide results using datasets which are limited to a fixed kernel size. These datasets

are not suitable for the evaluation of W-Projection gridding, which relies on a set of

variable sized kernels. Interferometry software packages are available to synthesize

data, but this requires specialized radio astronomy background knowledge to operate

effectively. Therefore, the three datasets provided by the Oxford e-Research Centre

have been the only datasets tested with the HEC gridding algorithm.

6.5.3 Ordering of Visibilities

Adding to the sparsity of available datasets, the three sets used during the testing of the

HEC gridder have only been processed using a constant fixed ordering of visibilities.

One of the main benefits of the HEC gridder is that visibilities need not be sorted

to achieve high gridding throughput. However, this fixed ordering means the HEC

gridder has not been evaluated by processing visibilities in different, or randomized

ordering. The order of the observational data could have some implications on gridding

performance.
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6.5.4 Availability of Hardware

A limitation of available graphics processing units means the HEC gridder has not

been evaluated on a breadth of hardware. The algorithm has only been evaluated using

the NVIDIA Titan X (Pascal) GPU. Advanced Research Computing (ARC) of Oxford

University was in the process of providing access to two NVIDIA Tesla P100 (Pascal)

cards, but unfortunately time ran out for the duration of the research before access

was granted. Additionally, the HEC gridder has only been evaluated using NVIDIA

hardware of a specific architecture. Advanced Micro Devices (AMD) also supports

OpenGL, and Intel are planning to release dedicated GPUs over the next few years. It

would be desirable to evaluate the performance of the HEC gridder using AMD graphics

cards, as well as other variations of NVIDIA GPU architecture.

6.5.5 Measuring Precision

Reporting on the precision of the HEC gridder has been limited by the measurement

of relative error between the HEC gridder and the NAG gridder. True measurement

of gridding precision requires the HEC gridder to be evaluated against a perfect sky

image, which was not possible in the time allotted for this research. Gridding precision

is critical for determining the usefulness of a convolutional gridding algorithm, and this

critical step will be conducted as future work.

6.5.6 SKA Comparative Testing

At the time in which this research was performed, there exists no such hardware capable

of running a convolutional gridding algorithm at the requirements needed for the SKA.

The SKA is expected to require a supercomputer capable of operating at over several

hundred petaFLOPS, with supported grid dimensions of approximately 65,5362. As

such, the HEC gridder has only been evaluated as a downscaled problem of the SKA.
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As new hardware becomes available over time, further testing will reveal the scalability

of the HEC gridding solution.

6.5.7 Consistent Oversampling Ratio

Use of a single sized texture for a set of W-Projection convolution kernels results

in each kernel having a variable factor of oversampling. This demonstrates a larger

factor of oversampling for smaller kernels, and subsequently less oversampling for the

largest of kernels. This approach hinders the available oversampling factor for larger

kernel supports. It is speculated that the use of several variably sized texture planes or

cubes could improve the distribution of oversampling and potentially gridding speed.

However, this would require considerable modifications to the existing HEC gridding

solution. Implementation of multiple textures is considered for future work to provide a

fair distribution of oversampling across all W-Projection kernels.
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Conclusion

This research investigated how optimized convolutional gridding could be achieved

with the use of Open Graphics Library (OpenGL) and the graphics rendering pipeline.

It was hypothesized that convolutional gridding could be simplified, and performance

improved by treating gridding as a graphics rendering problem. Furthermore, it was

thought that efficient and effective gridding could be achieved by removing any depend-

ency on unnecessary data processing mechanisms, which are typically required by other

gridding algorithms to achieve high performance. The aim of this research was to de-

velop a suitable W-Projection convolutional gridding solution for the Square Kilometre

Array, in order to help reduce the overall financial costs needed to operate and maintain

the upcoming radio telescope. Therefore, the design science research methodology was

used to design, develop, and demonstrate an efficient gridding solution in the form of

an artifact.

Two research questions were proposed in Section 1.2 of Chapter 1:

1. How can OpenGL and the graphics rendering pipeline be used to facilitate

convolutional gridding?

2. What optimizations can be implemented to improve the performance of graphics

139
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based convolutional gridding?

It was speculated that OpenGL compute shaders may be suitable for parallelized

work-distribution for the convolution of visibilities. It was also speculated that textures

could be useful for optimized kernel sampling via hardware accelerated interpolation.

The design search process quickly revealed that compute shaders are inadequate for

high performance convolutional gridding. This was partly due to a lack of support for

large grid sizes, and excessive loading times. Therefore, no further investigation into a

compute shader gridding algorithm was performed, and a traditional graphics rendering

approach was implemented.

It was found that convolutional gridding could be achieved using a custom vertex

shader for processing of visibilities, and custom fragment shader for convolution and

accumulation. It was also found that implementation of isotropic W-Projection kernels

meant that gridding could be achieved using radius based fragment shading. This

vertex and fragment shader approach to gridding was informally titled the Hall-Ensor-

Campbell (HEC) convolutional gridding algorithm.

The performance of the HEC gridder was comparatively measured against a leading

convolutional gridding algorithm developed by NVIDIA, Oxfords e-Research Centre,

and Numerical Algorithms Group. Select performance criteria were used to evaluate the

effectiveness of the HEC gridder, targeting the gridding speed, precision, and utilization

of memory for textured kernels.

Two optimized fragment shading techniques were presented in Chapter 4: one

utilizing reflective textured fragment shading, and one performing isotropic textured

fragment shading. In Chapter 5, it was shown that reflective fragment shading can

achieve comparable gridding speeds for two of the datasets tested. The isotropic

fragment shader demonstrated an improved gridding speed for all datasets, and appears

to be a result of efficiently cached textures.
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Implementation of two-dimensional texture planes, and three-dimensional texture

cubes demonstrated an effective approach for the application of convolution kernels

during gridding. Precision of the HEC gridder was measured using the relative error

L2 norm against the comparison algorithm, and demonstrated reduced error with the

use of larger texture sizes. Comparable levels of precision were observed using both

reflective and isotropic shading. Isotropic fragment shading appears promising but

requires further analysis.

Several optimizations were achieved by using OpenGL and the graphics rendering

pipeline for convolutional gridding. It was found that smaller texture based kernels

benefit from hardware accelerated interpolation, as the dynamic range of the kernels

is increased for more precise gridding. It was also found that the number of kernels

required for gridding could be reduced by 50% without heavily impacting precision

when using interpolation sampling. The implementation of isotropic fragment shading

has demonstrated to be an effective gridding technique which heavily reduces the kernel

memory footprint, which in turn benefits the processing speed of the gridding algorithm.

The Hall-Ensor-Campbell convolutional gridding algorithm has been demonstrated

as an advantageous approach to hardware accelerated W-Projection gridding. It has

been shown that gridding is feasible using the graphics rendering pipeline, but does

require further analysis to ensure gridding performance meets the standards of the

Square Kilometre Array.
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7.1 Future Research

The results presented in this thesis demonstrate promise for effective graphics based

convolutional gridding. However, additional research is needed to ensure this approach

to gridding meets the needs of the Square Kilometre Array. This includes additional

performance testing, and enhancements which may further improve on the presented

gridding performance results.

7.1.1 Analysis of Scaled W-Projection Kernels

To use W-Projection kernels in the form of uniformly sized textures within the HEC

gridder, a non-standard approach to the creation of W-Projection kernels was implemen-

ted. These non-standard W-Projection kernel textures appear to be suitable for graphics

based convolutional gridding. However, further analysis is needed to understand the

impact this technique has towards accurate W-Projection gridding.

7.1.2 Perfect Imaging

To obtain a definitive measurement of convolutional gridding precision, comparison

must be performed against a high precision image of the sky. Generating such an image

was described as being extremely computationally expensive by means of the perfect

imaging algorithm. Perfect imaging has been noted as a critical tool for evaluating

gridding precision, but an implementation was not readily available or within scope

during the undertaking of this research. A GPU accelerated implementation of the

perfect imaging algorithm is to be created1 for more precise analysis of the HEC gridder

as additional research is conducted, and hopefully published in a future research paper.

1 An implementation of the perfect imaging algorithm was produced post-submission, and revealed
approximately 19.25 days worth of continuous computation for each dataset used in this thesis. Finer
details have described in Subsection 2.1.3 in Chapter 2
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7.1.3 Analysis of Energy

A reduction of maintenance and running costs for the Square Kilometre Array is highly

desirable. An effective convolutional gridding algorithm should leverage as much of

the hardware as possible to ensure minimal energy wastage. This is an additional factor

for consideration when measuring algorithmic performance. Power consumption for

the HEC gridder was not included in the performance characteristics reported in this

thesis, but is necessary to determine the overall optimality of the solution.

7.1.4 Small Texture Sampling

It was noted that the use of small textures result in poor gridding precision when wide

field of view imaging is needed. The reported relative error indicated that the resulting

grids were drastically different between the NAG and HEC gridding implementations.

Some relative error is to be expected due to poor choice of texture size with respect

to kernel support requirements, but not to the excessive levels observed. Further

investigation into the use of small textures is needed to understand the limitations and

implications of magnified textures.

7.1.5 Multiple Kernel Textures

Use of single sized textures for convolutional kernels has been demonstrated as feasible.

Variable oversampling is achieved with this approach, providing a higher factor of

oversampling for kernels which require small support. It is speculated that the use

of multiple texture planes and cubes of various sizes would support a more equalized

distribution of oversampling. Therefore, future enhancements to the HEC gridder will

see multiple textures being implemented for a better distribution of oversampling.
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7.1.6 Vulkan Implementation

Khronos Group have released a new graphics rendering and 3D compute application

programming interface (API) as of 2016, referred to as the Vulkan API. Vulkan has been

advertised as the "next generation OpenGL for modern GPUs", providing much lower

level control for all aspects of GPU accelerated applications over the current OpenGL

API. Several benefits of Vulkan are already of interest, including low energy usage

and the ability to perform background computation; thus, removing the dependency on

connected displays for the HEC gridder. It is also of great interest to know whether

HEC gridding performance can be improved with the use of Vulkan, and is worth

investigating further.
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