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Abstract 

This paper shows how an indoor mobile robot equipped with 
a laser sensor and an odometer computes its global map by 
associating landmarks found in the environment. The 
approach developed is based on the observation that humans 
and animals detects where they are in the surrounding by 
comparing their spatial relation to some known or recognized 
objects in the environments, i.e. landmarks. In this case, 
landmarks are defined as 2D surfaces detected in the robot’s 
surroundings. They are recognised if they are detected in two 
successive views. From a cognitive standpoint, this work is 
inspired by two assumptions about the world; (a) the world is 
relatively stable and (2) there is a significant overlap of spatial 
information between successive views. In the implementation, 
the global map is first initialised with the robot’s first view, 
and then updated each time landmarks are found at every two 
successive views. The difference here is, where most robot 
mapping work integrates everything they see in their update, 
this work takes advantage of updating only the landmarks 
before adding the nearby objects associated with them. By 
association, the map is built without error corrections and the 
final map produced is not metrically precise.  
 

Keywords: inexact map; landmark association; autonomous 
robot 

Introduction 
To date, many methods have been proposed in the 

framework of autonomous robot navigation to construct 
maps. From precise geometric maps based on raw data or 
lines to purely topological maps using symbolic 
descriptions; each has its own advantages and drawbacks. 
From reading, cognitive scientists and roboticists have 
different opinions on the mapping issues (Yeap & Jefferies, 
1999; Jefferies & Yeap, 2001).  

On the one hand, roboticists highlighted their effort 
working on the mapping problem by producing metrically 
precise maps of the environment, else their robots would get 
lost while navigating or exploring. Works such as Chatila 
(1982), Iyengar and Elfes (1991), Kuipers (2000), Durrant-
Whyte and Bailey (2006) and Thrun (2008) led the ways of 
using powerful sensory tools (e.g. laser and vision) for robot 
mapping. However, their approach must deal with the main-
product; errors accumulated over time by the sensors, which 
is usually corrected through the use of successful 
probabilistic methods such as the Monte Carlo Localization 

(Roefel & Juengel) and the various Kalman-based filters 
(Caballero et al., 2008; Roumeliotis & Bekey, 2000; 
Nguyen et al., 2012). The requirement for precise metrical 
maps calls for advanced error-correction techniques which 
are often costly to computational complexity.  

On the other hand, cognitive scientists or behavioural 
scientists (psychologists and geographers) took the mapping 
approach from totally the opposite direction; analysing 
humans’ and animals’ behaviour traversing in new 
environments, investigating what is being remembered most 
during such visits, and identifying how an individual 
organized conceptual knowledge gained about the 
environment. Included also in their discussions were 
landmarks which play significant role in reasoning about the 
environment. They also paid close observations on the use 
of higher-level cognitive capabilities such as the ability to 
identify short cuts and the ability to identify oneself in 
complex environment particularly when looping occurs. 
Such studies can be seen in these works; Gallistel and 
Cramer (1996), Wang and Spelke (2000), Biegler (2000), 
and Cheng (1986). These extensive experimental works 
show that robots do not need to build a metrically precise 
global map to navigate in the environment. Moreover, they 
show that inconsistent and unclear sensor data are still 
usable to perform path planning and achieve loop closing 
successfully.  

It has been argued that since human live in a geometrical 
world, humans should be locating objects in the 
environment by means of reference to the geometrical 
features. Plenty of works have adopted this notion of frames 
of reference as a means to represent the location of entities 
in space (Wang & Spelke, 2002; Mou & McNamara, 2002; 
Mou et al., 2004). These researchers believed that different 
frame of reference is used to for different navigational 
activities. For instance, navigating closely spaced trees 
requires accurate self-to-object (egocentric) judgement else 
one could bump into the obstacles (Anderson et al., 1997), 
but planning a distant goal and maintaining a sense of 
orientation in large environment requires one to judge how 
objects are allocentrically related to one another (Loomis & 
Beall, 1998). Figure 1 illustrates how the two reference 
frames configure. Figure 1(a) and 1(b) denote the egocentric 
frame of reference where locations of objects in two 
successive views are encoded in relation to own body (e.g. 
left-right, front-back, or up-down) respectively. Figure 1(c)  
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Figure 1: (a-b) The egocentric (self-to-object) spatial 

representation in two successive views and (c) the 
allocentric (object-to-object) spatial representation. 

 
shows the allocentric frame of reference where locations of 
objects are encoded relative to other objects surrounding the 
person. The work in this paper pays attention to such 
approach. In particular, we are interested to grow the robot’s 
global map by updating only the landmarks (i.e. common 
objects found between the robot’s successive views) and 
then use these landmarks to associate new surfaces into the 
global map. The final map produced will be imprecise as a 
result of landmarks’ association instead of views 
integration. The main advantage here is the mapping 
algorithm is relieved from complex probabilities calculation 
since the approach does not have to deal with the correction 
of accumulated sensor noise errors. The experimental setup, 
mapping algorithm and discussion on the final global map 
produced is presented.  

Experimental Setup 
The Robot  
The robot used is a Pioneer 3DX mobile robot from 
MobileRobots Inc with measurement width of about 0.4m. 
It senses the environment using a laser source; a set of SICK 
LMS 200 laser rangefinder which has been mounted on its 
base. The sensor emits laser pulses horizontally at about 
45cm from the ground with scanning range of approximate 
30-32m covering 180 degrees field of view. With each laser 
pulse separated at half a degree from the mechanical sender, 
the sensor provides dense and accurate range data when 
used indoor. However, with two wheels for driving forward 
and backward and a non-driving wheel for rotation, the 
robot is highly vulnerable to drift errors particularly in areas 
where the flooring changes (e.g. tiles to carpet, carpet to 
cement, etc.) or when they are bumpy.  

The Environment 
Figure 2 shows the path (about 30x30m, shaded in yellow) 
traversed by robot in the experiment. The robot begins its 
journey from a random selected point in the office-like 
environment. The robot is allowed to wander on its own 
until commanded to stop. Since the laser data gathered is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The environment used for testing. Arrows 
showing the robot’s clockwise path around the environment. 
 
about a human’s knee height, it is unavoidable for the robot 
to ‘see’ various objects scattered in the environment such as 
walls, table legs, chairs, boxes, cupboards, bins, space 
partitions, doors, pots, etc. These objects are left as it is; 
they are not cleared from robot’s potential pathway. The 
only change done to the environment is the covering of 
glass-based walls and sliding doors with cut-out cardboards 
to prevent laser pulses from passing through them. 

Autonomous Exploration 
For exploring autonomously, the robot must decide where to 
go next and how to get there. In this work, we argue the 
robot should pick a random gap in space closest to the robot. 
A gap is defined as an empty space large enough for the 
robot to cross (i.e. > 0.6m) between two adjacent surfaces in 
view. Our robot calculates such a gap by finding a minimal 
bounded space; a space that contains no gap that can be 
covered by another gap in view. Yeap and Jefferies (1999) 
introduced the notion of covering by a gap as a space in 
which an individual must cross in order to reach another 
part of the environment that is currently in view. While they 
used the idea for computing the ASRs, we used it here to 
compute the minimal bounded space for the robot. The 
minimal bounded space limits the robot to 30 degrees (left 
or right) turn or a maximum of 3m forward drive at each 
interval. The limited movement ensures some parts of the 
view always overlap over two successive views. Algorithm 
for autonomous exploration is presented below. Algorithm 
to compute the minimal bounded space will be discussed 
elsewhere.  

a) Get a scan of the environment 
b) Identify gaps in view 
c) Compute the minimal bounded space 
d) Select a gap as target 
e) Move towards the gap and stop 
f) Repeat 

Data Acquisition 
At each scan, the 2D range data obtained are processed 
using line segmentation algorithm to generate planar  
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Figure 3: Processes involved in extracting surfaces  

from the environment. 
 
surfaces so they would correspond to the geometrical 
properties scanned from the environment. There are many 
sophisticated algorithms such as the popular split-and-
merges, line regressions and Hough transforms to extract 
line from points; all interested in providing an accurate 
polygonal model of the environment. However, since we do 
not need to build an exact map, precision is not of utmost 
important. A straightforward method for computing lines 
from laser points is thus implemented. First, the laser points 
are grouped into different clusters. This is done by going 
through the laser readings one after another in a clockwise 
manner and calculating the Euclidean distance between 
them. If the distance between them exceeds a set of 
threshold (currently set at 1.2m), a new cluster is formed. 
Second, for each cluster, the exact shapes of the lines in it 
are recursively computed using the average gradient descent 
between neighbouring points. Points on the same slope are 
grouped as a line representing a surface (see Figure 3). Note 
that for simplicity, small surfaces (defined as < 500mm) in 
view are simply ignored.  

Computing the Global Map 
Map Initialisation and Surface Tagging 
A robot’s global map is traditionally a structure built from 
integrating robot’s successive views based on correcting the 
cumulative errors collected as the robot explores its 
environment. Here, we will show how we use landmark 
association to compute the map. Same as in traditional 
approach, it begins with initializing the map with the robot’s 
first view. The processes from here on are a little different. 
First, we remove tiny surfaces (defined as surfaces smaller 
than 50cm) when we generate each view so anything larger 
than that are used. We made the assumption that only the 
larger ones are regarded with importance since they have the 
highest change to be the walls or part of the walls or some  

 
Figure 4: The global map initialized with surfaces from    

the first view. ID distinct one surface to the other. 
 
major obstacles to avoid during exploration. Tiny surfaces 
computed may not be as useful to the robot and are 
dismissed as junks in the implementation. Then, the surfaces 
from the robot view are registered to (1) a frame of 
reference which acts like a buffer or a short term memory to 
track common surfaces or landmarks between every two 
successive views and (2) the global map. Each time a 
surface enters the global map, it will be tagged with an ID 
or a numbering marker. The increment of the ID numbers is 
proportionate to the increment of the number of surfaces 
entering the global map. Similarly these IDs are duplicated 
onto its counterpart in the frame of reference. Note that for 
initialisation the surfaces from the robot’s first view are 
registered into the global map without any coordinate 
change. Figure 4 shows the global map initialised with 
surfaces from the robot’s first view.  

Landmark Identification 
At each step (after robot move), the frame of reference will 
contain two views; the existing one from the previous step 
(with the surfaces tagged), and, a copy of the current view 
(with the surfaces untagged). At this point, both views are in 
their own coordinate systems. In order to compare two 
successive views for the robot, the mapping algorithm must 
describe surfaces in both views under the same coordinate 
system in the frame of reference. To do this, we transformed 
the previous view onto the current’s coordinate by rotating it 
using the turn angle parameter then translating it using the 
move distance recorded. The following is the standard 
coordinate transformation formula used in the 
implementation: 
 

 
 

Where 
  is the transformed -coordinates 
  is the transformed -coordinates 
  is the robot’s turn angle 
 is the translation in -direction, and  
 is the translation in -direction 
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Figure 5: Comparison of overlapping surfaces over two 
successive views. (a) Matching surfaces inherit similar         

ID, and (b) all matching surfaces are normalised. 
 
As mentioned, the main-product of using views 

integration is the measurement errors denoted by  and  
which causes major distortions in the map computed if they 
are accumulated over time. However in this work, the errors 
are over only two successive views which make them trivial 
to the computation. Figure 5 depicts the comparison 
between surfaces in two successive views after the robot 
drives 2m forward. Vn denotes the robot’s current view (in 
green) and Vn-1 the robot’s previous view (in red). Note 
that only matching surfaces from the transformed Vn-1 are 
kept for comparison with Vn therefore surfaces 1-6 and 14-
16 are deleted from the frame of reference. The principles 
applied to determine a match is to calculate the orientation 
between two surfaces that are close together. Two close 
surfaces are considered to be of the same orientation if their 
orientation does not differ by more than 10 degrees. This is 
a liable threshold due to the turning or forward driving at 
each interval is limited by the robot’s minimal bounded 
space, consequently deriving some odometry drift, however 
not too bad drift that the overlapping bits are too disoriented 
or too far apart over two successive views. In the case the 
matching algorithm produces more than one candidate as 
matching surfaces, the surface that has the most similar 
orientation would be chosen as the matched surface or the 
landmarks. Surfaces from the current view which do not 
match any of the surfaces from the previous view are 
labelled as unknown (see U1-U7 in Figure 5(a)) and will be 
mapped as new surfaces in the map. To normalise the 
landmarks, the shorter end-points between both surfaces are 
lengthened to match the longer end-points so both surfaces 
are identical in length. Figure 5(b) shows the two views 
after all landmarks (7-9, 11-13) are normalised. Similarly, 
existing surfaces with similar IDs in the global map are 
normalised as well.  

 
Figure 6: New surfaces (17-21) transferred into the map    
via their nearest landmarks. Green line depicts the robot 
current position in the map after the 2m forward drive. 

Landmark Association for Update 
Once the landmarks are identified and normalised inside the 
frame of reference, and the same landmarks are also 
normalised inside the global map, update is done by 
transferring new (unknown) surfaces from the frame of 
reference into the global map via the landmarks. When 
transferring a new (unknown) surface into the map, one uses 
its position with respect to its nearest landmark in the frame 
of reference. This is significant because if errors were 
introduced in the matching calculation, choosing the nearest 
landmark would suppress the errors to a minimum. For this 
reason, U1-U3 in Figure 5(b) is transferred into the global 
map by landmark 7, U4 by landmark 9 and finally U5-U7 
by landmark 11. Note that not all surfaces transferred into 
the map are new to the map thus it is necessary to check if 
an incoming surface is already known in the map. To 
perform the check, the incoming surface is compared with 
existing surfaces in the map to see if they intersect one 
another. An intersection indicates a cluttered area in the map 
thus there is no need to transfer the incoming surface. If the 
incoming surface is positioned close to another surface in 
the map, the two could possibly be the same surface. In this 
case, the incoming surface inherits the ID already assigned 
to the surface inside the map. However these corresponding 
surfaces may not be of the same length so they are 
normalised since surfaces having the same ID must be of the 
same length. Any successful insertion of surfaces into the 
global map will be registered with an ID and this is done by 
increasing the last ID in the map by 1. The final step is to 
also update Vn in the frame of reference with the ID tags 
from the global map, before forgetting Vn-1 (deleting it 
from memory) so only Vn is brought forward for the 
successive comparison. Figure 6 shows the transfer result. 

 The Map Produced 
This work is aimed to demonstrate that the mapping 
algorithm is robust, at least for mapping in a reasonably 
large office environment. It is also crucial to show that the 
final map produced is imprecise yet of sensible shape in 
comparison to the physical environment (see Figure 1). In 
the experiment, the robot is let to wander on its own where 
it computes its global map in real-time. Over 130m were  
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Figure 7: (a) Final map produced via our approach            

and (b) map produced via traditional approach           
without error correction 

 
traversed and 103 robot views were collected and used 
throughout the exploration. Figure 7(a) depicts the final map 
produced using our approach after the robot loop the 
environment in a clockwise fashion. Since we argue that our 
landmark association approach does not require error 
corrections, we reproduced a map using views integration 
without one for simple comparison (see Figure 7(b)). 
Without error corrections, the same environment traversed 
by the robot would produce a heavily distorted map if the 
errors accumulated by views integration are not corrected.  

Discussion and Future Directions 
From a robotics perspective, the map shown in Figure 

7(a) is considered imprecise in the sense it is not metrically 
accurate and has missing surfaces. However, when 
compared to the physical world (Figure 1), it can be seen 
that the overall shape of the environment experienced is 
captured and well maintained by said map. The approach 
therefore can be considered successful, at least on a laser 
mobile robot. The present implementation shows that one 
can utilize recognized objects i.e. landmarks between 
successive egocentric views to represent allocentrically 

other objects within one’s surroundings. The key hypothesis 
in this approach is the premise that the world is generally 
stable enough; that the objects in the environment is there 
however one reorients and views them. Consequently, there 
is also significance overlap of information in our successive 
views, more if we consider taking smaller steps or limits our 
orientation while moving, letting us know what lies 
immediately behind us and what may appear in front as we 
continue our journey.  

It can be argued that compared to views integration, our 
approach offers a simpler and less computationally 
expensive method for computing a laser robot’s global map. 
This is mainly due the robot not having to deal with 
accumulated errors while integrating views. While there are 
other works, notably Steinhage and Schoner (1997) that 
constantly recalibrates from one error prone local reference 
frame to the next, and memorising different vantage point of 
views of the home base for homing, they are by principles 
still limited to errors due to the need to integrate multiple 
sources of information. In our case, recalibration is based on 
recognising some landmarks between two successive views 
and homing is performed by simply recognising some 
landmarks registered in the allocentric global map.  

The implementation using landmark association also 
shows how a robot is able to produce an imprecise global 
map. This means the algorithm developed here may shed 
some light on how human cognitive mapping process work. 
Rough overall shape of the environment (imprecise and 
incomplete map) accords to two key features of the human 
and animal cognitive mapping process, namely; (a) human 
and animal do not remember everything they experienced in 
their journey, and (b) what they actually remember is an 
abstract representation of objects in relation to other objects 
in the environment. 

As exciting as the current result may be, the approach 
developed here is not restricted to a mobile robot equipped 
with laser and odometry sensors. We believe it should also 
work well or even better with visual robots. This is due to 
the fact that vision allows a richer description of the 
environment, which in consequence improves landmark 
recognitions. For this reason, heading towards the utility of 
vision would be an important future research. It would also 
be interesting to extent the current work into incorporating 
local spaces concept and the notion of exits (Yeap & 
Jefferies, 1999) to reason about the global and the 
immediate spaces computed by the robot. Continue 
refinement of the algorithm and testing in larger 
environment would also ensure the approach is ready for 
practical robot applications. Finally, it would also be 
interesting to consider conducting some human studies by 
showing the results from the implementation and ask the 
human subjects to sketch their own map or answer some 
basic questions about the landmark locations captured by 
the robot.  
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Conclusion 
A new approach to build a mobile robot’s map of the 

environment is presented which shows how a global map is 
computed using landmark association and not views 
integration. The interesting finding from this work is how a 
frame of reference is utilised to compare and track landmark 
across two successive views of the robot. The approach is 
supported by numerous observations on how human and 
animal perceive the stable world particularly in how they 
use recognized objects (landmarks) to estimate and relate 
approximately the positions of other objects in their 
immediate surroundings. The implementation of the 
approach shows the map computed does not have to be 
metrically precise or complete for the robot to successfully 
close loops and maintains a good overall shape of the 
environment traversed. 
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