
I 

Development and Evaluation of Dry-

Contact Electroencephalography (EEG) 

Sensors 

By 

Jardin Green 

A Thesis Submitted in fulfilment  

of the Requirements for the Degree of 

Master of Engineering 

School of Engineering, Computer and Mathematical Sciences 

Auckland University of Technology New Zealand 

2020 



II 

Abstract 

The driving force behind ongoing advancements in dry-contact electroencephalography (EEG) 

sensor development, is the user-comfort, reduced set-up time and sustained period of use that can 

potentially be exhibited in wearable devices. However, competing with the signal quality of 

traditional wet-contact biopotential sensors can be a challenging task. Investigation into problem 

areas when practically replacing wet-contact sensors with dry-contact sensors indicates the 

unknown electrode-tissue impedance (ETI) is arguably the most difficult to deal with. While there 

are many modern techniques that aim to reduce the effects of the unknown ETI, none are regarded 

as extremely successful methods. Thus, researchers at the Institute of Biomedical Technologies 

(IBTec), located within Auckland University of Technology (AUT), have conceptualised a novel 

method to accurately acquire these EEG potentials by mathematically accounting for and removing 

the unknown ETI as a variable from the system. 

This thesis describes the development process in designing sensor electronics compatible with the 

novel EEG dry-contact method. It then continues by elaborating on the full analysis and evaluation 

process of the developed method. This is first achieved through computer-aided simulation and 

then followed by practical testing in a controlled laboratory set-up. The system was simulated and 

tested with a fixed ETI and then a varied ETI. During the varied ETI simulations and testing, a non-

windowed and windowed signal processing algorithm was applied to the acquired output signals. 

Once processed, the systems signals were compared with the input signal both visually and 

numerically using the multitaper power spectral density (PSD) analysis. It was found that an 

exceptionally accurate representation of the known input EEG signal could be reproduced while 

using the novel system. Most importantly, this reproduced signal also remained highly accurate 

regardless of the electrode-tissue interface present in the system. With the results presented, it was 

concluded that continuation in the development and evaluation of the novel system may well offer 

a solution that provides an efficient and reliable dry-contact EEG acquisition system. 
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Essential Symbols 
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𝑍𝑓(1,2)    Feedback Impedance of System 

𝑉𝑖𝑛    Input Signal 

𝑉𝑜𝑢𝑡    Output Signal 

𝑉(1,2)    Output Signal of Channel  

𝑍𝑈    Unknown Electrode-Tissue Impedance 

𝑍𝐼(1,2)    Input Impedance of Circuit 

𝑅𝑖(1,2)    Input Resistance of Circuit 

𝐶𝑖(1,2)    Input Capacitance of Circuit 

𝑅𝑓    Feedback Resistance of Circuit 

𝐶𝑓    Feedback Capacitance of Circuit 

𝑍𝑐𝑖𝑟    Transfer Function of Systems Circuit Section (Complex Domain) 

𝑉𝑂    Transfer Function of Systems Output Section (Complex Domain) 
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Chapter 1 

Introduction 

1.1 Research Background 

Electroencephalography (EEG) is the method in which the brain’s electrical activity is measured. 

It is an essential component of the biomedical field. The electrical activity of the brain can be used 

to understand an individual’s cognitive state or observe abnormalities associated with various brain 

disorders [1]. This electrical activity is a result of synaptic activity. Neurons are connected via 

synapses and when they ‘fire’, synaptic activity occurs. This activity generates a minuscule electric 

pulse referred to as a postsynaptic potential. When thousands of neurons fire simultaneously, an 

electric field is generated, creating a potential that exists on the surface of the scalp and facial 

region. If there is enough synaptic activity at the same time, same location and in the same rhythm, 

this electrical signal can be measured using biopotential sensors and displayed in the form of an 

electroencephalogram [2]. 

Systems used for EEG, consist of numerous biopotential sensors that are attached to the patients 

head (via electrodes) in order to read the EEG potentials. Traditionally, the use of conductive 

electrodes and electrolytic gel, are the standard grade contact-method to acquire these signals, due 

to their efficiency and reliability. However, this method has many drawbacks and implications. 

Intensive skin preparation by a medical professional is required before applying the gel to ensure 

sufficiently low electrode-tissue impedance (ETI). This set-up time can take anywhere from 30-60 

minutes, while further problems arise with the electrolytic gel causing skin irritations to a 

percentage of patients [3]. The conductive gel also eventually dries out, which causes a degrading 

quality of measured signals and thus, limits the longevity of long-term testing. With the use of 

electrolytic gel being the greatest limitation in modern EEG systems, other acquisition methods 

have been widely looked at to advance EEG development far beyond current capabilities.  
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The most common methods looked at are dry-contact biopotential sensor systems. While this 

simple technique theoretically solves the problems associated with applying electrolytic gel, it 

introduces a list of implications requiring a range of solutions. The main problem associated with 

the dry-contact method however, is the dramatic increase and variation of the ETI without 

electrolytic gel present. In relation to specifically dry-contact electrodes, this significant increase 

in ETI is largely associated with the small air gaps that exist at the contact point where the 

electrodes meet the uneven surface of the skin and also the hair layer which varies dramatically 

from one individual to another [4]. Also, when environmental and physiological interference 

(noise) are present in the EEG potentials, further inconsistencies and fluctuations in the acquired 

signals arise due to the significant increase in ETI. Although methods exist to reduce the impact of 

the increased ETI present in dry-contact systems, adequate techniques to eliminate these impacts 

to the point where signal quality can compete with that of the traditional EEG system methods are 

yet to be seen. 

 

1.2 Objective and Research Questions 

The focus of this thesis is to develop a system to acquire EEG potentials from the surface of the 

scalp and facial region, without the use of electrolytic gel. This will be achieved by extensive 

simulation, followed by the practical implementation of a novel dry-contact method conceptualised 

at the Institute of Biomedical Technologies (IBTec), located within Auckland University of 

Technology (AUT). From there, comparisons will be made between the simulations conducted and 

the practical testing performed in order to analyse the effectiveness of said method. In developing 

biopotential sensor electronics to implement this method, it is anticipated that the ETI present in 

the system can be accounted for and subsequently have no effect on the acquired EEG potentials. 

With this objective, the main questions that arise are as follows: 

 

1. What characteristics are of most importance when analysing EEG potentials and how does 

the reproducibility of said potentials affect the accuracy of this analysis? 

 

2. With the novel dry-contact method, can a biopotential sensor be developed to accurately 

acquire EEG potentials?  

 

3. What are the practical limitations of the novel dry-contact method in relation to both the 

hardware and signal processing of the system?  
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1.3 Thesis Structure 

The chapters of the thesis are arranged and described as follows: 

 

Chapter 2 consists of a comprehensive review on literature regrading EEG. This involves research 

into the complex signals involved and what important features are key when analysing them. It also 

involves extensive research into existing biopotential sensor technology (specifically when using 

dry-contact electrodes) to categorise the main sources of interference and errors, while also 

identifying the modern techniques to counteract these problem areas. 

 

Chapter 3 consists of a brief explanation regarding the novel dry-contact method. The system is 

described in a general sense relating to the method in which the EEG potential is acquired. The 

chapter then goes on to further describe how this method could be practically implemented. 

 

Chapter 4 contains an in-depth description of the system’s electronic topology design. The 

algorithm accompanying this topology, which is used to implement the novel method of acquiring 

un-affected EEG potentials is also explained. Furthermore, methods to reduce errors in the 

hardware are described and a full review of component selection is performed. 

 

Chapter 5 describes the simulation process that was undertaken. This includes a full explanation of 

each simulation performed and the subsequent results. This chapter concludes with the optimal 

design for the novel system. 

 

Chapter 6 covers the rigorous and methodical testing of the chosen system in a controlled laboratory 

setting where the final results are presented.  

 

Chapter 7 concludes the thesis with the general conclusions of the research. This is followed by 

suggestions for improvements and future work required.   
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Chapter 2 
 

Literature Review 

 

2.1 Introduction 

A comprehensive review is required to fundamentally understand how biopotential sensor systems 

are designed, how they operate and how they are used to implement EEG. This will cover extensive 

research into the complex components within the acquired EEG potentials, how to analyse these 

signals and methods for improved reproducibility of said signals. From there, the review requires 

knowledge on widely-accepted positions where EEG potentials are acquired on the human head 

and how to display these signals with reference to one another. The next information gathered for 

the review is a concentrated look into the ETI present in dry-contact systems, the problems that 

arise from it and modern techniques used to reduce its effect. The last topic of research required 

for the review is a look at sources of outside interference that can affect biopotential sensor systems 

and modern techniques used to reduce them. Finally, the information is concluded in a summary 

of the key aspects taken from the literature reviewed. 

 

2.2 EEG Signals 

EEG signals are low amplitude, non-stationary, complex waveforms that can be measured and 

interpreted in many ways. They can be split into five different waveforms, identified by their unique 

frequencies; Delta, Theta, Alpha, Beta and Gamma waves. When observing electrical signals of an 

individual’s brain activity, certain frequencies within the signals become more prominent 

depending on the type of cognitive task performed.  

 

A wide range of information exists around both the bandwidth of EEG signals and also the different 

bandwidths of the five waveform components that make up an EEG signal. The approximate 

frequency range of EEG signals is within 0.5Hz – 100Hz [5]. According to [2] and [3], the 

waveform components that exist within the complex EEG signals are described as follows: Delta 
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waves exist in the approximate frequency range of 0.5Hz – 4Hz. They become more prominent 

under deep sleep or extreme relaxation conditions. An increase in delta waves can also be attributed 

to certain brain disorders. Theta waves exist in the approximate frequency range of 4Hz – 8Hz. 

These waves become more prominent while completing memory tasks and are often associated to 

an individual’s subconscious state. Alpha waves exist in the approximate frequency range of 8Hz 

– 13Hz. Alpha waves are present when an individual’s brain is in a woken, relaxed or calm state. 

Beta waves exist in the approximate frequency range of 13Hz – 30Hz. They become more 

prominent when an individual is in a woken, deep concentration state. An excess of beta waves can 

be related to overworked or stressed individuals. Gamma waves are of a frequency above 30Hz. 

However, due to the extremely small amplitude and high contamination of muscle artifacts present 

in this frequency range, Gamma waves are not as widely studied as other brain waves. Thus, the 

waves that lie inside the frequency range of 0.5Hz – 30Hz (delta, theta, alpha and beta waves) are 

of most concern [6]. 

 

In [7], the amplitude of EEG signals was described to have an inverse relationship with frequency. 

Thus, the smaller the frequency, the higher the amplitude. This amplitude however, ranges to only 

a maximum of approximately 100µV in normal, healthy adults. Because of this, a great deal of 

amplification is required to acquire signals that are interpretable by measurement devices. After 

amplification, the complex EEG signals can be recorded and displayed using a voltage vs time plot. 

However, when looking at these signals in the time domain, it can be difficult to ascertain which 

group of waves are present/prominent at any period of time. Thus, extraction of this information is 

required and can be achieved using well known frequency domain analysis methods. The most 

commonly used method to extract the waveforms present in an EEG signal is by observing the 

signal’s power spectral density (PSD). The PSD is a transformation of the signal’s amplitude as a 

function of time, to the strength of energy as a function of frequency [8], [9]. Thus, the detection 

of delta, theta, alpha and beta waves present in the signal may be quantified. Two commonly used 

PSD estimation techniques are multitaper analysis [10] and Welch’s method [11], both of which 

reduce the variance of the observed PSD estimation. Using these analysis techniques in simulation 

and testing can assist in accurate comparisons of important features within EEG signals acquired 

by systems/devices. 
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2.3 Reproducible Results 

As eluded to in the previous paragraphs, EEG signals are made up of a number of waveforms that 

can be extracted and analysed using various frequency transformation methods. However, 

analysing signals for reproducible results can be quite difficult due to the irregular nature of EEG 

signals in all facets. Highlighted earlier, there are a number of states an individual can be in, which 

correspond to an increase in amplitude of each waveform produced by their brain. With this 

information, testing methods can be established and trialled to reproducibly stimulate an expected 

result.  

Exposing individuals to binaural beats at a selected frequency, is a proven and validated method 

for evoking brain waves of the same frequency [12]. Binaural beats are formed by subjecting the 

ears of an individual to two different frequencies. The difference in said frequencies create the 

binaural beat frequency that the brain will then interpret [13]. It is suggested that the frequencies 

applied to each ear should be above 200Hz but below 900Hz for optimal results [14]. As alpha and 

beta waves become more prominent when the brain is in a woken and conscious state, they are the 

simplest and least time-consuming waveforms to evoke in this manner and therefore more 

commonly studied while using this technique. 

Certain activities performed by individuals, also correspond to evoking certain waveforms within 

the EEG signal. Discussed previously in section 2.2, while an individual is conscious, alpha waves 

tend to become more prominent in a calm and relaxed state, while beta waves tend to become more 

prominent in a deep concentration state. In [15], it was demonstrated that relaxing activities such 

as the beginning of a meditation routine have been proven in studies to increase the alpha power 

band of an acquired EEG signal. Also found in the literature, the type of deep concentration 

activities that are proven to induce an increase in the beta power band of an acquired EEG signal 

are reading, studying and active listening.  

While there are proven methods to increase the probability of expected EEG signals produced by 

tested individuals, there is no definitive method of knowing if the acquired signal by a device is at 

all accurate. Therefore, comparisons between devices cannot be quantified using human test 

subjects. To definitively test a device’s acquisition accuracy, the signal being measured must be a 

known and consistent quantity. To enable this type of testing, a simulated human head model that 

has the ability to generate signals (commonly referred to as a phantom), are sometimes used. In 
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[16], a phantom head was created using urethane resin and silicone. Urethane was used to replicate 

the skull, while silicone was used to replicate the brain and scalp. Both materials were carbon doped 

in order for the phantom to obtain electrical properties that match the tissue components of a human 

head. Another material that has been used to replicate a human head is ballistic gelatine, tuned with 

sodium chloride (NaCl) to allow ionic conductance similar to that of human tissue [13], [14]. Using 

these types of materials, anatomically accurate models of human heads were moulded and cast. 

Cables with a small dipole antenna end piece are connected to a signal generator and placed inside 

the phantom head to simulate EEG signals at desired anatomical points. With this controlled and 

reproducible physical simulation, a wide range of testing can be performed that would have been 

inaccurate with human test subjects. 

 

2.4 Electrode Placement 

Current EEG systems vary drastically, whether it be in design or placement. Anywhere between 4 

and 256 electrodes can be expected in a common EEG system. However, a key focus when creating 

a wearable device is to reduce mechanical complexity, while increasing ease of use.  

 

When looking at placement of electrodes, an excellent starting point would be the 10-20 electrode 

system. It is recognized by the International Federation of EEG societies, as the recommended 

electrode layout in which a sufficient amount of electrical activity can be recorded from each sector 

of the brain [17]. Using anatomical landmarks, the electrode placement is evenly spaced, with a 

symmetrical layout based on 10% and 20% distance intervals, as shown in figure 1. Each placement 

point is defined by the following letters representing a sector of the brain: Fp = Pre-Frontal, F = 

Frontal, C = Central, T = Temporal, P = Parietal, O = Occipital and A = Reference Position. While 

a number/letter referring to position of each electrode also accompanies the above letters in the 

form of: Odd = Left side, Even = Right side and Z = Centre [18]. With this design there can be as 

many as 19 electrodes recording activity with an additional ground electrode (usually located at 

position Fpz) and an optional 1-2 reference electrodes.  
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Throughout [7], the various methods that are commonly used to take EEG measurements are 

described thoroughly. EEG signals are acquired as a voltage difference between two electrodes, 

known as an EEG channel. The number of EEG channels in a system and the method of measuring 

these said channels are referred to as a montage. Three montages are commonly used in an EEG 

system. They are bipolar, average reference and referential montages. The bipolar montage consists 

of EEG channels from a series of adjacent electrodes in the 10-20 system. With reference to figure 

1, the EEG channels of the 10-20 system while using the bipolar montage measurement technique 

are as follows: Fz-Cz, Cz-Pz; Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F4, F4-C4, C4-P4, P4-O2; Fp1- 

F7, F7-T3, T3-T5, T5-O1; Fp2-F8, F8-T4, T4-T6, T6-O2 [19]. A visual example can be further 

shown in figure 2(a). The bipolar montage does not require any reference electrodes as the common 

mode noise present in the system is assumed to be common among all electrodes. Thus, said noise 

will be rejected when measuring any EEG channel in the system. In the average reference montage, 

the signals from each electrode (with reference to ground) are summed and then averaged, to 

become the system’s reference signal. An EEG channel then becomes the difference between 

signals from an electrode in the system and the averaged reference, shown in figure 2(b). Similar 

to the bipolar montage method, the average reference method does not require any reference 

electrodes as common mode rejection is a feature of the measuring method. When using the 

referential montage method, an EEG channel is the difference between an electrode signal of the 

10-20 system and the ground electrode. However, this provides no common mode rejection for any 

EEG channel measured. To combat this, reference electrode/s are used. The reference electrode 

can either be attached to one ear or reference electrodes can be attached to both ears, where the 

Figure 1.  Illustration of the 10-20 electrode system 
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signals are summed and then averaged with respect to ground, providing the resultant reference 

signal (a method referred to as ‘linked ears’). The ear (ear lobe via a commonly used electrode ear 

clip) is chosen to be a reference point as there is practically no brain activity signals present, just 

the common mode noise of the system [20]. With this said, EEG channels using this method are 

the difference between each electrode signal in the 10-20 system and the reference electrode signal, 

shown in figure 2(c). Thus, the potential at each electrode is measured.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Electrode-Tissue Interface 

The electrode-tissue interface is arguably the biggest problem area when it comes to dry-contact 

electrodes in an EEG device. Due to the uneven surface and varying texture of the skin, along with 

hair present in most cases, not only an increase in ETI occurs, but also an increase in variation of 

said ETI occurs. This causes dry-contact readings to be often inconsistent and inaccurate compared 

to a standard gel connection. Current methods to compensate for increased inaccuracy in 

measurement of signals exist, but in many cases lack consideration for user-comfort. In addition to 

Figure 2.  (a) Illustration of bipolar montage, (b) Illustration of average reference montage, (c) Illustration of referential 

montage 
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the above complications that arise from a dry-contact design, half-cell potential of the electrode 

and electrode offset of the system still require consideration. 

 

2.5.1 Electrode Offset and Half-Cell Potential 

Electrode offset appears as a DC offset between input signals at the electrodes of the system. It can 

vary from system to system so medical grade systems define a tolerance of ±300mV found in the 

standard [21]. Electrode offset can be attributed to a mixture of variances, however, the main cause 

of this offset is the different half-cell potentials present at each electrode of the system [22].  

 

When current flows from the body to a biopotential sensor a half-cell potential occurs. This is due 

to the redox-reaction that takes place at the electrode to electrolyte interface, causing an 

imbalance/uneven distribution of cations and anions [23]. This half-cell potential appears as a DC 

offset in the biopotential signal for the electrode in question. As each electrode is not exactly the 

same, variances between each half-cell potential occur causing the electrode offset seen throughout 

the system. The most common way to reduce the effects of half-cell potential is by using an 

electrode material with non-polarizable properties (i.e. enables current to flow freely across the 

electrode to electrolyte interface). Silver/Silver Chloride (Ag/AgCl) electrodes are the most popular 

material used, due to having non-polarizable characteristics. The half-cell potential of a standard 

Ag/AgCl electrode with reference to the system ground (ground electrode) is within the range of 

220mV [24]. Thus, Ag/AgCl electrodes keep the system within the limited tolerance of ±300mV.  

 

2.5.2 Electrode-Tissue Impedance 

While a dry-contact method relies on sweat and moisture build-up to act as the electrolyte required 

at the interface, a wet-contact method adds an electrolytic gel to provide a much lower ETI [25]. 

As the EEG signals acquired are the potentials present at the surface of the skin, the ETI in a dry-

contact system can be simplified down and electrically represented as a resistor in parallel with a 

capacitor [22]. While the traditional wet-contact method has a semi-stable (stability increases with 

electrolytic gel) ETI of a few kΩ to a few tens of kΩ, the dry-contact method can have as much 

variation in ETI as a few hundred kΩ to a few tens of MΩ [26], shown in figure 3(a) and 3(b). 

Establishing a better connection in order to lower the ETI and variation in ETI can be achieved 

with the right electrode structure, material used and the amount of pressure applied at the interface.  
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The most commonly used electrode design for dry-contact EEG systems is a multi-pin electrode 

[27], made from polyurethane and coated in a conductive material, shown in figure 4. The electrode 

pins enable penetration of the user’s hair to provide resistive contact between the conductive 

coating and the tissue of the scalp. In [28] and [29], the most common combination of features in 

order to provide the lowest ETI and least ETI variation, while retaining an excellent user-comfort 

rating was observed. Ag/AgCl conductive coating was found to be the best material tested, due to 

its excellent electrical properties described in section 2.5.1. The shore hardness of the polyurethane 

used to make the electrode structure, determines the flexibility of the electrode. It was found that a 

shore hardness of A90 allows for enough rigidity to easily penetrate through the hair, enabling a 

good resistive contact with the scalps tissue. An applied force of 2N was found to be optimal in 

reducing electrode displacement and decreasing the ETI of the system while still retaining a high 

user comfort rating. Furthermore, an applied force of greater than 2N does not significantly reduce 

the ETI value of the system, however, it does start to significantly increase discomfort of the user. 

The number of pins on the electrode was found to have no significant effect on the reduction in 

ETI. However, a greater surface area of the electrode, equates to less pressure at the contact point 

(pressure = Force/Area). Therefore, an increase in the number of pins on an electrode can be found 

to correlate to a greater user-comfort. With this combination of coating material, shore hardness, 

applied force and number of pins, the ETI has been found to be reproducibly as low as 35kohm +/- 

14kohm in various locations associated with the 10-20 system.     

(a) (b) 

Figure 3.  (a) Electrical model for wet-contact ETI, (b) Electrical model for dry-contact ETI [24] 
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2.5.3 Reducing Effects of ETI 

The ETI is an unknown variable when measuring EEG signals. However, there are techniques used 

to try and reduce the effects that this unknown ETI has on modern dry-contact systems. 

 

The most common method used in modern dry contact systems is to use a high impedance 

operational amplifier (op amp) in the form of a unity gain buffer before the amplification stage of 

the system [24]. The unity gain buffer provides such a high impedance relative to the ETI that the 

decrease in the signals amplitude after the ETI is theoretically negligible [22], [26]. Thus, even 

when there is some fluctuation in the ETI due to head/body motion causing electrode displacement, 

the amplitude of the EEG signal after the ETI is still relatively accurate to the original EEG signal.    

 

In [22], another technique to reduce the effects of the unknown ETI is found by approximately 

measuring the capacitive and resistive components of the ETI while acquiring the EEG signals. 

With the ground electrode constantly in place, a small current source can be directly applied to an 

electrode in the system, as shown in figure 5. As the current applied is known and the voltage 

between the signal electrode and ground electrode can be measured, the ETI can be found. To find 

the resistive component of the ETI, a DC current source can be applied. Due to it being a DC current 

source, the impedance will be completely resistive. Thus, the resistive component will be given by: 

𝑅𝑈 =  
𝑉𝑈

𝐼𝐷𝐶
                                        (1) 

where 𝑅𝑈 is the resistive component of ETI (Ω), 𝑉𝑈 is the measured voltage (V) and 𝐼𝐷𝐶  is the 

known DC input current (A). 

Once the resistive component is calculated, an AC current source can be applied in the same fashion 

with a known frequency. The capacitive component of the ETI can then be given by:  

Figure 4.  Example of flexible multi-pin electrodes [29], [39] 
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𝐶𝑈 =
1

2.𝜋.𝑓(
𝑉𝑈
𝐼𝐴𝐶

 − 𝑅𝑈)
                                               (2) 

where 𝐶𝑈 is the capacitive component of ETI (F), f is the frequency of AC waveform (Hz) and 𝐼𝐴𝐶 

is the known AC input current (A). 

 

 

 

 

 

 

 

 

 

2.6 Sources of Interference 

In the world of EEG devices one of the challenges in measuring interpretable signals is noise 

induced into the system. The induced noise that act on the signals measured by biopotential sensors 

fall into two categories: Environmental noise and physiological noise. Environmental noise is 

primarily produced by mains interference and flicker noise (1/f noise), while physiological noise is 

produced by eye movement, cardiovascular activity and body movement [30]. While all noise 

sources have some effect on the acquired signals, some of these can be negated by simple design 

techniques or signal processing algorithms. Other noise sources however, require more advanced 

design techniques to negate their effects and can be described below. 

 

2.6.1 Active Electrodes 

EEG designs that use cables to connect the electrode to the sensor electronics can suffer from high 

levels of motion artifacts due to cable sway (via head/body movement), as well as high levels of 

mains interference that capacitively couple to the conductive wire [31]. As this noise is present 

before the sensor electronics, it is therefore amplified along with the acquired EEG signal. A design 

technique common in most modern dry-contact EEG systems, to eliminate this additional noise, is 

referred to as an active electrode. Active electrodes are implemented by mounting the biopotential 

sensor electronics, directly onto the dry-contact electrode itself [30]. Thus, the EEG signal acquired 

Figure 5.  Illustration of ETI measurement technique [22] 
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will be amplified with a significantly reduced amount of noise. This technique can even remove 

the need for shielded wires, as the output signal from the amplifier is far less sensitive than that of 

the input [32].  

 

2.6.2 Driven Right Leg (DRL) Circuit 

The 50Hz/60Hz noise found in a biopotential system usually presents itself via the individual being 

capacitively coupled to mains, shown in figure 6(a). Due to this, it can be defined as a common 

mode noise throughout all positions of the system. As described in section 2.4, an EEG channel 

can be acquired through the difference in potentials between two electrodes with reference to 

ground. If the exact same 50Hz/60Hz noise is present on each electrode, then the difference 

between potentials will completely cancel the common noise present on the system and result in a 

clean and desired EEG signal. However, due to differing ETI, differing internal impedances, 

component tolerance inaccuracies and electrode offset, there is a difference in common mode noise 

that exists [33]. This difference is then amplified along with the biopotential input signal, resulting 

in an output signal diluted with noise. A well-documented method and widely used technique to 

reduce mains interference in biopotential systems is by using a Driven-Right Leg (DRL) circuit 

[34]. Shown in figure 6(b), the purpose of a DRL circuit is to acquire the common mode noise 

(50Hz/60Hz noise) of the system, then invert and amplify it back into the subject [35]. In doing 

this, the common mode noise is not only reduced in the subject, but also at the input to the 

electronics, via the electrodes. This results in a reduced difference in common mode noise and 

ultimately reduced noise on the output signal.  
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2.6.3 Chopper Stabilization Circuit 

Flicker noise or 1/f noise is a common characteristic found at the inputs to any op amp. Flicker 

noise has an effect on low frequency bandwidth applications, thus, can potentially create elements 

of inaccuracy when trying to measure EEG signals. Shown in figure 7, the flicker noise of an op 

amp can be displayed on a noise spectral density graph [24]. Noticed in the graph, flicker noise 

only occurs at relatively low frequencies before becoming normal broadband/white noise at higher 

frequencies. One way to combat the effects of flicker noise is to use a chopper stabilization circuit. 

According to [22], a chopper circuit works by modulating the input signal at the input of the op 

amp and then again at the output of the op amp. Modulating the signal at the input with a waveform 

at a relatively high frequency, the 1/f noise present on the input terminal is now at a relatively low 

frequency, well outside the range of the input signal. The modulated input signal is amplified and 

then demodulated with a waveform of the same frequency as before. This reduces the input signal 

back down to its original frequency and increases the 1/f noise to the modulated frequency. To 

reject the modulated waveform, a low pass filter is then used resulting in an output signal unaffected 

by flicker noise. This method however, only eliminates the 1/f noise present in the amplifier using 

the chopper stabilization method. Therefore, if there is any other 1/f noise present before the 

amplifier, it will pass through unaffected [36]. 

 

(a) (b) 

Figure 6.  (a) Model to illustrate mains interference generating common mode noise [24], (b) Simple DRL circuit [40] 
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2.7 Summary 

From the extensive literature review completed in this chapter, it can be seen that there are many 

modern design methods to increase the accuracy of dry-contact electrodes. However, state of the 

art, dry-contact electrodes that incorporate some or all of the above mentioned techniques, are still 

considered inferior to traditional wet-contact method. Therefore, it can be seen that there is space 

for a novel dry-contact EEG acquisition method that is simple in design but can compete with the 

accuracy and signal quality of wet-contact EEG systems.  

 

Chapter 3 will discuss the novel idea for a dry-contact EEG acquisition device that can theoretically 

eliminate the effects of the unknown ETI in the system. Chapter 4 will then explore the practical 

design methods of the hardware and signal processing required to develop the system into an 

electronic prototype.  

 

Figure 7.  Voltage noise spectral density of a typical op amp [36] 
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Chapter 3 
 

Novel Biopotential Sensor Theory 

 

3.1 Introduction 

As shown in figure 8, most EEG acquisition devices consist of the following four stages: Electrode-

tissue interface, signal amplification, analog-to-digital conversion (ADC) and signal processing. 

While designing hardware for the biopotential sensor electronics, the first two stages are where 

some problems may arise. The electrode-tissue interface consists of an unknown EEG input signal 

(voltage source) and an unknown ETI (source impedance). Due to this ETI being an unknown 

quantity, it cannot be easily accounted for and is therefore a key problem in inaccurate measured 

EEG signals. As described in section 2.5.3, common design methods incorporate unity gain buffers, 

to reduce effects of the large ETI present on dry-contact systems. While this method is sufficient 

in situations where the ETI is relatively constant, errors can present themselves when the ETI 

largely varies. Also having two op amps in the system creates additional 1/f noise in the system. 

Thus, a method to account for and subsequently eliminate the unknown ETI present in an EEG 

acquisition system without the need for complex electronics would be of extreme value.   

 

 

 

 

 

 

 

3.2 Theory 

While focusing on the first two stages of a typical EEG system, a mathematical representation in 

the frequency domain of the system can be derived from figure 9, given by: 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛. 𝐻(𝑍𝑈)                   (3) 

where 𝐻(𝑍𝑈) is the gain of the system that is a function of the unknown ETI. 

Signal 

Amplification 

Electrode-

tissue 

impedance 

Analog-to-

digital 

conversion 

Signal 

Processing 

EEG 

Signal 

Figure 8.  Block diagram illustrating the four stages of EEG acquisition 
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While the systems amplification circuit can be designed to be a known quantity, from a 

mathematical view point, this leaves one equation with two unknowns. If the system had two 

equations however, under the right circumstances, the unknown ETI could be accounted for and a 

solution for the input signal could be calculated. The mathematical representation for this new 

system can be derived from figure 10, given by the following equations: 

𝑉𝑜𝑢𝑡1 = 𝑉𝑖𝑛𝐻(𝑍𝑈)1                   (4) 

𝑉𝑜𝑢𝑡2 = 𝑉𝑖𝑛𝐻(𝑍𝑈)2                    (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With this new two equation system proposed, there are fundamental requirements to allow this 

method to mathematically function. The input signal and ETI are required to be the same value for 

each channel of the system, the amplifier circuit requires a design topology that consists of 

components with known values and the output signals on each channel are required to be different. 

𝑯(𝒁𝑼)𝟐 

 

 

 

 

𝑯(𝒁𝑼)𝟏 

 

 

 

 

Figure 9.  Block diagram illustrating the first two stages of a typical EEG system 
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Figure 10.  Block diagram illustrating the first two stages of the novel EEG System 
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If these requirements are fulfilled, the output from each channel can be acquired and reconstructed 

to produce the original EEG potential, without the effects of the unknown ETI of the system. 

 

3.3 Practical Implementation 

The main practical design feature in order to implement the unique system’s equation of the 

biopotential sensor, is to have both channels of the system completely separated from one another. 

However, both channels are required to be subject to the same ETI and have the same EEG signal 

present. Thus, the contact point where the biopotential signal is acquired must be the same for each 

channel. 

 

The first conceptual method to separate the two channels in the system is to design a two-part 

electrode, where each part is completely isolated from the other. Basing the design off the comb 

shaped multi-pin electrode described in section 2.5.2, a two-part adaptation can be implemented 

with an alternating channel design for each pin of the electrode, shown in figure 11. With each 

alternating pin internally connected to the opposite channel, the overall surface area at the contact 

point will be evenly distributed across each part of the electrode. Furthermore, due to the 

symmetrical nature of the design, the same can still be said if an uneven pressure was applied to 

the electrode, resulting in a tilted contact. With such an even distribution at a localised contact 

point, it is assumed the same ETI and input signal will be present on each channel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Illustration of alternating pin array for theoretical two-part electrode design 
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The second conceptual method to separate the two channels in the system, is to introduce a switch, 

shown in figure 12. With the placement of the switch in the system, a normal electrode can be used 

resulting in the same ETI and input signal present on each channel, while keeping them completely 

separate from one another. The major drawback to this method, however, lies in the switching 

frequency and therefore the sampling frequency of the ADC used to acquire the output signal. The 

absolute minimum switching frequency of more than twice the largest EEG frequency component, 

is required to acquire signals present on each output (greater than 60 Hz). This is then followed by 

the absolute minimum ADC sampling frequency of more than twice the switching frequency to 

acquire these output potentials. However, increasing both the switching frequency and sampling 

frequency will increase signal acquisition accuracy. Therefore, the ADC used in this method could 

be required to sample at a significantly greater frequency than that of method one. 

 

 

 

 

 

 

 

 

 

 

 

3.4 Summary 

With the theory of this novel method defined, the next step is to design a system which can 

practically implement it. With careful design of both electronics and the signal processing 

algorithm used, the unknown ETI present in the system should be accounted for and have no effect 

on the acquired EEG potential. Furthermore, simulation and testing of both the switching design 

and two-part electrode design will determine which method is practically superior. 
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Unknown 
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Figure 12.  Illustration of simplified switching method 
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Chapter 4 
 

Biopotential Sensor System Design 

 

4.1 Introduction 

After an extensive review on biopotential sensor systems for EEG in Chapter 2 and an explanation 

on the theory of the novel acquisition system in Chapter 3, both the electronics design and signal 

processing algorithm to practically implement this require development. The ideal electronics 

design should encompass the ability to apply both the switching method and two-part electrode 

method, with only slight alterations. With these constraints, the signal processing should consist of 

an algorithm that is also compatible with both methods. After the general system’s topology is 

conceptualised, errors that may occur due to the limitations of the design were considered and with 

additional electronics, effectively reduced. Finally, a review of the component selection for the 

design was undertaken. This review proves critical in the process of designing an appropriate 

biopotential sensor for the system.  

 

4.2 Electronics Design and Reconstruction Algorithm 

When designing a system to implement the novel EEG acquisition method, the critical component 

to consider is an appropriate amplifier topology. As this topology dictates the signal processing 

mathematics used, considering the reconstruction algorithm in tandem is essential when designing 

the overall system. 

 

4.2.1 Amplifier Topology 

When investigating appropriate biopotential sensor topologies, designing around the nature of EEG 

potentials is crucial. As the critical waveforms in EEG signals lie within the range of 0.5Hz – 30Hz, 

an active low pass filter with amplification could be a potential topology used. However, when 
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considering the 1/f noise characteristic of an op amp, reducing noise present in the system from DC 

to 0.5Hz is essential. Thus, an active band pass filter would be the ideal topology.  

 

When looking at the design of an active band pass filter, there are two topologies to consider. A 

non-inverting topology and an inverting topology shown in figures 13(a) and 13(b) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in figure 14, the shape of the frequency response for both topologies, depends on the 

values of 𝑅1, 𝑅2, 𝐶1 and 𝐶2. With respect to figures 13(a) and 13(b), the corner frequencies and 

0dB points of the frequency response for both topologies can be given by the following equations: 

𝑓𝑐1 =  
1

2𝜋𝐶1𝑅2
                    (6) 

𝑓𝑐2 =  
1

2𝜋𝐶1𝑅1
                    (7) 

𝑓𝑐3 =  
1

2𝜋𝐶2𝑅2
                    (8) 

𝑓𝑐4 =  
1

2𝜋𝐶2𝑅1
                    (9) 

(a) 

(b) 

Figure 13.  (a) Non-inverting active bandpass filter topology, (b) Inverting active bandpass filter topology 
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The gain of the two topologies differ however. The inverting topology gain is dependent on R1 and 

R2 values, given by: 

𝐺𝑎𝑖𝑛𝐼 =  −
𝑅2

𝑅1
                  (10) 

While the non-inverting topology is dependent on R3 and R4 values given by: 

𝐺𝑎𝑖𝑛𝑁𝐼 =  1 +
𝑅4

𝑅3
                 (11)  

With a possible two topologies that can have the ability to acquire and amplify EEG signals, the 

next step in design is to eliminate the effects of the unknown ETI on these signals. A reconstruction 

algorithm developed within IBTec, can be used to account for the unknown ETI in the system and 

thus eliminate its effects. This however, involves two differing output signals from the biopotential 

sensor electronics. Thus, an extra amplifier circuit of the same topology, interfaced to the same ETI 

is required. The other necessity for the reconstruction algorithm is a transfer function of the entire 

system. Due to these two requirements, the non-inverting topology would consist of four additional 

components to that of the inverting topology, while also requiring a greater complexity in 

mathematics when deriving the transfer function for the overall circuit. Therefore, it becomes clear 

which topology is ideal for the biopotential sensor design. Even though the inverting topology has 

a more rigid set of frequency response and gain equations to adhere to, it is the preferred choice for 

the system. With careful consideration of component values used in the two circuits, a reduced 

component system, accompanied by less complex mathematical representation can be achieved.  

Figure 14.  Shape and critical points on the frequency response of an active bandpass filter 



Chapter 4                                                                                    Biopotential Sensor System Design 

 

 

37 

4.2.2 Reconstruction Mathematics  

A simplified biopotential sensor system shown in figure 15, can be derived into two mathematical 

equations using the transfer function for the inverting active bandpass filter, given by: 

𝑉1 =  −𝑉𝑖𝑛
𝑍𝑓1

𝑍𝑆1
                 (12) 

𝑉2 =  −𝑉𝑖𝑛
𝑍𝑓2

𝑍𝑆2
                 (13) 

 

 

 

 

 

 

 

 

 

 

 

where 𝑍𝑆 consists of the unknown ETI (𝑍𝑈) and the known input impedance (𝑍𝑖), the previous 

equations can be expanded with reference to figure 16, given by: 

𝑉1 =  −
𝑉𝑖𝑛𝑍𝑓1

𝑍𝑖1+ 𝑍𝑈
                 (14) 

𝑉2 =  −
𝑉𝑖𝑛𝑍𝑓2

𝑍𝑖2+ 𝑍𝑈
                 (15) 

 

 

Figure 15.  Simplified circuit model of novel system 
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As the two values for 𝑍𝑈 are assumed to be the same in the above system, equation 14 can be re-

arranged for 𝑍𝑈 and subsequently substituted into equation 15. By doing this, 𝑍𝑈 is accounted for 

and effectively eliminated when solving for 𝑉𝑖𝑛 . This new equation can then be re-arranged, 

resulting in 𝑉𝑖𝑛 as a function of known values, given by: 

𝑉𝑖𝑛 =  
𝑉1𝑉2(𝑍𝑖1− 𝑍𝑖2)

𝑉1𝑍𝑓2− 𝑉2𝑍𝑓1
                 (16) 

To simplify the equation further, 𝑍𝑓1 and 𝑍𝑓2 are made to be equivalent values by using the same 

components in each channel. The resulting equation is split into a voltage part and an impedance 

part for a more simplistic reconstruction algorithm, given by: 

𝑉𝑖𝑛 =  
𝑉1𝑉2

𝑉1− 𝑉2
 
𝑍𝑖1− 𝑍𝑖2

𝑍𝑓
                 (17) 

With a complete mathematical representation of the system in equation 17, the reconstruction 

algorithm can be used. It works by using the output voltage signals and known component values 

of the biopotential sensor circuit to calculate the unknown 𝑉𝑖𝑛 signal. However, this method cannot 

be achieved in the time domain and therefore a reconstruction in the frequency domain is required. 

 

By splitting the circuit’s equation into a voltage part and an impedance part, reconstruction in the 

frequency domain becomes less complex. The two output signals 𝑉1  and 𝑉2 , are the Fourier 

transforms of the time domain output waveforms where the voltage part is represented as 𝑉𝑂, given 

by: 

𝑉𝑂 =  
𝑉1𝑉2

𝑉1− 𝑉2
                  (18) 

 

Figure 16.  Expanded circuit model of novel system 
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The impedance part of the circuit equation, is made up of 𝑍𝑖1, 𝑍𝑖2 and 𝑍𝑓. As shown in figure 17, 

each of these impedances is a combination of resistors and capacitors, which can be represented in 

the complex frequency domain, where s = jω. This is given by the equations: 

𝑍𝑖1 =  𝑅𝑖1 +
1

𝑠𝐶𝑖1
                 (19) 

𝑍𝑖2 =  𝑅𝑖2 +
1

𝑠𝐶𝑖2
                 (20) 

𝑍𝑓 =  
𝑅𝑓(

1

𝑠𝐶𝑓
)

𝑅𝑓+(
1

𝑠𝐶𝑓
)
                  (21) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The equations are substituted into the second half of equation 17. The resulting transfer function in 

the frequency domain for the impedance part of the circuit, can be represented as 𝑍𝐶𝑖𝑟, given by: 

𝑍𝐶𝑖𝑟 =  
𝑍𝑖1− 𝑍𝑖2

𝑍𝑓
                 (22) 

The response of 𝑍𝐶𝑖𝑟  is calculated with the normalised frequency that the output signals were 

sampled at and then reshaped to the same length as 𝑉𝑂. The multiplication of these two arrays (𝑍𝐶𝑖𝑟 

and 𝑉𝑂), results in the reconstructed 𝑉𝑖𝑛 in the frequency domain. Once 𝑉𝑖𝑛 is calculated, an Inverse 

Fast Fourier Transform (IFFT) can be performed to reconstruct the input signal back into the time 

domain. With this unique algorithm, the input EEG signal is measured by accounting for and 

subsequently eliminating the unknown ETI, present in the system. 

 

Figure 17.  Internal circuits within impedance models of novel system 
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4.3 Problem Areas for Design 

With the current electronic design described in section 4.2, potential problems are likely to occur 

that may affect the acquired EEG signal. Two of the main problems that cannot be solved with 

careful component selection are a DC input offset voltage present on the input signal to the op amp, 

and a DC output offset voltage present on the signal at the output of the amplifier. 

 

4.3.1 Input Offset Voltage 

The DC input offset voltage that may be present on the input signal is due to the half-cell potential 

of the electrode, described in section 2.5.1. Depending on the conductive material used for the 

electrode, the maximum offset voltage present on the input signal, is usually limited to hundreds 

of millivolts. Most amplifier circuits are restricted by this electrode characteristic and so have to 

limit the gain used on the circuit. The inverting topology of the active bandpass filter however, 

does not. Due to the series capacitor present in the input impedance of the circuit, any DC offset 

present on the signal will be blocked. This in turn, only allows the AC parts of the signal to pass, 

resulting in an input signal centred at the reference voltage of the circuit. With no offset voltage 

present on the input signal, the gain of the circuit can be increased significantly. With this increase 

in gain, the need for second stage amplification required by many EEG systems is not required, 

thus reducing the size of the system further. 

 

4.3.2 Output Offset Voltage  

A DC output offset voltage exists in any op amp circuit. However, this is often not accounted for 

due to the primarily used ideal ‘rules’ of an op amp. Depending on the application of the circuit, 

this may be acceptable, but for high precision and high impedance applications such as EEG 

acquisition, real-world characteristics of an op amp require consideration. The two practical 

characteristics that contribute to the output offset voltage of an op amp are, the input bias current 

and input offset voltage. Considering these characteristics becomes vital when analysing the 

biopotential electronics of the system. 

 

If the same voltage is applied to both inputs of an ideal op amp, the expected output signal will be 

at a potential of zero as there is no potential difference between terminals. However, due to a 

mismatch between the input transistors within the op amp, an offset voltage potential occurs 



Chapter 4                                                                                    Biopotential Sensor System Design 

 

 

41 

between the two biasing voltages at the input terminals in a real-world situation. This input offset 

voltage is a known characteristic unique to each op amp, which can be found in the datasheet of 

the device. It can vary between devices and be a positive or negative value. Therefore, the 

maximum input offset voltage of an op amp is displayed in the datasheet as an absolute magnitude 

value, given by: 

𝑉𝐼𝑂 = |𝑉𝐵+ − 𝑉𝐵−|                 (23) 

where 𝑉𝐼𝑂 is the input offset voltage (V), 𝑉𝐵+ is the non-inverting bias voltage (V) and 𝑉𝐵− is the 

inverting bias voltage (V). 

Using the inverting amplifier topology of the biopotential sensor circuitry, the input voltage offset 

can be modelled in figure 18. To accurately analyse the effects on the output of the circuit, the 

voltage source applied on the negative terminal can be set to zero while the offset voltage can be 

modelled as a positive voltage source on the non-inverting terminal shown in figure 1b. This in 

turn forms a non-inverting topology, where the first component of the DC output offset voltage can 

be calculated using the voltage gain formula of the circuit, given by: 

𝑉𝑜𝑓𝑓1 = 𝑉𝐼𝑂(1 +
𝑍𝑓

𝑍𝑖
)                 (24) 

where 𝑉𝑜𝑓𝑓1 is the output offset voltage component one (V). 

Due to the micro-volt amplitude level of signals being amplified, the gain required by the circuit is 

extremely large. Thus, the offset output voltage can be significant, relative to the amplitude of the 

output signal.   

 

 

 

 

  

 

 

 

Another ideal rule adhered to when analysing op amp circuits is that no current flows into the 

terminal inputs. In practice however, a small current must flow into the input terminals to bias a 

transistor pair within the op amp. This is known as the input bias current of the op amp. Due to the 

mismatch in transistors a small difference occurs between the input bias current required at each 

Figure 18.  Calculating output offset voltage caused by input offset voltage of op amp 
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terminal. This characteristic is given as a maximum value in the devices datasheet, where the input 

bias current is the average of both bias currents at each terminal, given by: 

𝐼𝐵 =  
𝐼𝐵++ 𝐼𝐵−

2
                (25) 

where 𝐼𝐵  is the input bias current (A), 𝐼𝐵+  is the non-inverting bias current (A) and 𝐼𝐵−  is the 

inverting bias current (A). 

The same inverting topology as the biopotential sensor circuitry can also be used to analyse the 

input bias current effects. By setting the source voltage to zero again, the resulting modelled circuit 

can be shown as in figure 19. When analysing the effect the input bias current has on the output, 

we negate any input offset voltage present in the op amp. Thus, the following statements can be 

made: 

1. There is no input bias current present at the non-inverting terminal as it is connected directly 

to ground. 

2. Due to no input offset voltage existing between terminals, the two terminals are at zero 

potential (with respect to ground) and thus the input bias current can only flow through the 

feedback resistor. 

The effect of this input bias current, is given by: 

𝑉𝑜𝑓𝑓2 = −(𝐼𝐵−)𝑅𝑓                 (26) 

where 𝑉𝑜𝑓𝑓2 is the output offset voltage component two (V). 

Due to an extremely large gain required by the circuit, 𝑅𝑓 can potentially be as large as tens of 

Giga-ohm’s. Thus, the offset output voltage can again be significant, relative to the amplitude of 

the output signal.   

 

 

 

 

 

 

 

 

 

 

Figure 19.  Calculating output offset voltage caused by input bias current of op amp 
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The addition of the input bias current effects and the input voltage offset effects, produce the overall 

maximum DC offset voltage present at the output of the op amp, given by: 

𝑉𝑇𝑜𝑓𝑓 =  𝑉𝑜𝑓𝑓1 + 𝑉𝑜𝑓𝑓2                 

(27) 

where 𝑉𝑇𝑜𝑓𝑓 is the total output offset voltage (V). 

Where the equations above give the maximum possible offset characteristics of the op amp, more 

accurate values of input bias current and input offset voltage can be found in the graphs of the 

datasheet. This graphed data shows the relationship between the common mode voltage present on 

the terminals and these two characteristics. By applying the correct common mode voltage to the 

op amp terminals, both the input bias current and input offset voltage can be reduced. Thus, a 

resulting reduction in the DC output offset voltage can be achieved. With the ideal common mode 

voltage value extracted from the datasheet to reduce offset, regulation of a battery powered supply 

to produce this constant common mode voltage at both terminals is required. However, even with 

reduced offset characteristics, the output offset voltage is inescapable. This becomes a problem 

when performing a power spectral density analysis on the acquired EEG signal. With the potential 

of a large DC offset (relative to the amplitudes of EEG signals), it is likely the power density of the 

low frequency components of the EEG signal will be significantly inaccurate. Thus, a method to 

practically eliminate this DC offset is required.  

 

To practically reduce the DC output offset voltage to zero potential (with respect to ground), a 

series capacitor can be added to the output of the circuit. The series capacitor will block any DC 

voltage present on the signal, thus eliminating any offset voltage produced at the output of the op 

amp. This method also eliminates the need for regulation of a battery powered supply, as the 

common mode voltage applied at both terminals is no longer a critical requirement. However, with 

unknown circuitry in any data acquisition device used to read the output signals, it would be 

advantageous to add a pull down resistor. This in turn creates an additional high pass filter at the 

output stage of the circuit, thus, selection of the resistor and capacitor need to adhere to the desired 

cut-off frequency, given by:  

𝑓𝑐𝑜 =
1

2𝜋𝑅𝑜𝐶𝑜
                  (28) 

where 𝑓𝑐𝑜  is the cut-off frequency (Hz), 𝑅𝑜  is the output resistance (Ω) and 𝐶𝑜  is the output 

capacitance (F). 

Shown in figure 20, this extra stage of circuitry also changes the overall circuit’s transfer function. 

Thus, the math involved in reconstructing the input EEG signal requires re-calculating to include 
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the additional effects of the high pass filter on the acquired output signals. The new equation 

representing the circuit that is used in the reconstruction algorithm is given by: 

𝑉𝑖𝑛 = (
𝑉1𝑉2

𝑉2− 𝑉1
) (

(𝑍𝑅+ 𝑍𝐶)(𝑍𝐼1− 𝑍𝐼2)

𝑍𝑓𝑍𝑅
)               (29) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By replacing the old equation with the new equation above, the same algorithm can be used to 

reconstruct the acquired output signals of the system as described in 4.2.2. With this new circuit 

and equation, the reconstructed signal will not be subject to any DC offset. This in turn will result 

in improved accuracy of the reconstructed signal. 

 

4.4 Component Selection for Fundamental Biopotential Sensor 

As described in section 4.2.1, component selection is an essential part of the biopotential sensor 

design. The passive components contribute to the frequency response and signal gain of the circuit, 

while also affecting the accuracy of the reconstruction algorithm used. The op amp selection 

determines the amount of flicker noise induced on the input signals, while also limiting the 

operating power supply of the circuit. The combination of both passive components and op amp 

Figure 20.  Full circuit design of novel biopotential sensor 
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selected also affect the maximum gain allowed by the system due to the DC output offset voltage 

present on the circuit. 

 

4.4.1 Passive Component Selection 

When looking at the equations relating to the frequency response of the circuit and the math behind 

the reconstruction algorithm, it can be seen that careful consideration is required when selecting 

components of appropriate value for the system.  

 

The first place to start when selecting components is looking at the overall nature of the circuit. 

The standard dry-contact ETI value found in the literature had a resistive value of 1MΩ [24]. Thus, 

with such a large source impedance, the input impedance to the amplifier has to be significantly 

higher, in order to reduce as much voltage drop at the source as possible. With this said, the 

minimum value of the resistive component of the input impedance should exceed 10MΩ. Another 

factor taken into account is the error in value of each resistor. Increased error between the 

components of the circuit results in a higher chance of inaccuracy when implementing the 

reconstruction algorithm. Thus, only 1% tolerance resistors were surveyed. 

 

The selection of the capacitor to be used in the input impedance is then based off the surveyed 

resistors. As 0.5Hz is the lowest frequency component of the EEG signal, the 𝑓𝑐2 point (described 

in equation 7) of the frequency response should be approximately 0.1Hz, to keep 0.5Hz within the 

gain region of the response. Thus, 0.1Hz is used when calculating the input capacitor required for 

each corresponding input resistor. For each input capacitor value calculated, the closest 1% 

tolerance rated value is displayed. The review of resistor values and corresponding capacitor values 

can be seen in table 1. 
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Table 1 

First Stage Component Selection for Input Impedance 

1% Tolerance 

Resistor Value 

Calculated Capacitor 

Value 

1% Tolerance 

Capacitor Value 

10 MΩ 159.15 nF 150 nF 

11 MΩ 144.68 nF 150 nF 

12 MΩ 132.63 nF 150 nF 

13 MΩ 122.42 nF 100 nF 

15 MΩ 106.10 nF 100 nF 

16 MΩ 99.47 nF 100 nF 

18 MΩ 88.42 nF 100 nF 

22 MΩ 72.34 nF 68 nF 

25 MΩ 63.66 nF 68 nF 

27 MΩ 68.95 nF 68 nF 

33 MΩ 48.23 nF 47 nF 

50 MΩ 31.83 nF 33 nF 

75 MΩ 21.22 nF 22 nF 

80 MΩ 19.89 nF 18 nF 

100 MΩ 15.92 nF 15 nF 

 

The smallest amplitude of an EEG signal can be as low as 10µV, however, noise coupled on the 

signal can have a significantly higher amplitude. Therefore, (in absolute magnitude) a minimum 

gain of 150 is required for signals to be amplified to produce sufficient resolution and a maximum 

gain of 300 is required, to not exceed power rails of the op amp. To produce output signals in this 

gain range, the feedback impedance is required to be significantly greater than the input impedance, 

which can be seen in equation 10. Through multiple search engines, only one resistor with a resistor 

value tolerance of 1%, could be found to meet the gain requirements mentioned above. This is a 

5GΩ resistor. With the highest frequency component of the EEG signal being 30 Hz, the 𝑓𝑐3 point 

should be at approximately 50Hz to keep 30Hz within the gain region of the response. Using 

equation 8, the value of the correlating feedback capacitor was calculated to be 0.6636 pF. The 

closest, low tolerance capacitor was found to be of value 0.6pF, with a tolerance of ±0.02pF. Using 

this new calculated feedback impedance value and a combination of input impedance values the 

following calculations can be made:  

1. The maximum percentage of voltage drop at the source impedance comprised of a resistive 

value of 1MΩ in parallel with a capacitive value of 10nF. 

2. The four corner points of the frequency response.  

3. The gain of the amplifier acquired from the frequency response of the system. 
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The combination of components surveyed that lie within all the previously mentioned limitations, 

are shown in table 2. 

 

Table 2 

Final Stage Component Review for Input Impedance 

Resistor 

Value 

Capacitor 

Value 

Voltage 

Drop 
𝒇𝒄𝟏 𝒇𝒄𝟐 𝒇𝒄𝟑 𝒇𝒄𝟒 

Magnitude 

(abs) 

18 MΩ 100 nF 2.62 % 0.000318 Hz 0.0884 Hz 53.0516 Hz 14737 Hz 276 

22 MΩ 68 nF 2.16 % 0.000468 Hz 0.1063 Hz 53.0516 Hz 12057 Hz 226 

25 MΩ 68 nF 1.90 % 0.000468 Hz 0.0936 Hz 53.0516 Hz 10610 Hz 199 

27 MΩ 68 nF 1.76 % 0.000468 Hz 0.0867 Hz 53.0516 Hz 9824 Hz 184 

33 MΩ 47 nF 1.45 % 0.000677 Hz 0.1026 Hz 53.0516 Hz 8038 Hz 151 

 

 

Through comparison of input impedance components, two combinations were selected for the 

feedback impedance components. The selected input impedance components for channel 1 was  

𝑅𝑖1 = 18MΩ and 𝐶𝑖1 = 100nF, while the selected input impedance components for channel 2 was 

𝑅𝑖2 = 22MΩ and 𝐶𝑖2 = 68nF. This combination gives a frequency response in the required range, 

while optimising the amplification of the acquired signals. 

 

As the additional high-pass filter of the system will block the same low frequency as that of the 

input impedance of the inverting active band pass filter, the same value components can be used. 

As the channel one combination has a lower cut-off frequency than that of channel two, the high 

pass filter shall consist of an 18MΩ resistor and a 100nF capacitor.   

 

4.4.2 Operational Amplifier Selection 

With the passive components known, selection of the optimal op amp to best fit the system is 

required. With the source and input impedance being so high, the first limitations considered in 

selection are, the input bias current and input offset voltage of the op amp. These characteristics 

cause a DC offset voltage on the output signal as described in section 4.3.2. A large DC output 

offset voltage, corresponds to a required decrease in gain of the circuit, as to not clip the power 

rails of the op amp. Thus, selecting an op amp with both a low input bias current and input offset 

voltage is beneficial, to keep the gain of the circuit at an optimal level. A list of op amps that have 

a maximum DC output offset voltage (with reference to equations of section 4.3.2) of 100mV or 

less are shown in table 3.    
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Table 3 

First Stage Component Review for Op Amp 

Part Number Max. Input Bias  
Max. Input Offset 

Voltage  

Max. Output 

Offset Voltage  

ADA4350 1 pA 80 µV 27.2 mV 

LTC6240 1 pA 175 µV 53.6 mV 

LTC6240HV 1 pA 175 µV 53.6 mV 

AD8615 1 pA 100 µV 32.8 mV 

AD8603 1 pA 300 µV 88.3 mV 

AD8605 1 pA 300 µV 88.3 mV 

LMP7721 20 fA 150 µV 42.7 mV 

OPA320-Q1 900 fA 150 µV 46.2 mV 

OPA320 900 fA 150 µV 46.2 mV 

SM73302 1 pA 150 µV 46.7 mV 

LMP7707 1 pA 200 µV 60.6 mV 

LMP2231 1 pA 150 µV 46.7 mV 

LMP7715 1 pA 150 µV 46.7 mV 

LMP7701 1 pA 200 µV 60.6 mV 

LMP7711 1 pA 150 µV 46.7 mV 

LMP2011 4 pA 25 µV 26.9 mV 

LMV2011 4 pA 25 µV 26.9 mV 

OPA325 10 pA 150 µV 91.7 mV 

OPA376-Q1 10 pA 25 µV 56.9 mV 

OPA376 10 pA 25 µV 56.9 mV 

OPA336  10 pA 125 µV 84.7 mV 

 

After a survey of op amps that have an input bias current of below the minimum input current of 

the system, a further reduction of the component list can be implemented. Another consideration is 

the power required by the op amp. To achieve a small and compact physical system design, the 

ideal power supply would be a relatively small 1 cell Li Ion battery. Thus, the op amp must be able 

to tolerate a supply voltage range from 3V to 4.2V. Also, to increase run time of the system, the 

supply current to each op amp must be minimal. The equation used for this calculation is given by: 

𝑠𝑢𝑝𝑝𝑙𝑦 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴) =  
𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝐴ℎ)×𝑓𝑢𝑙𝑙 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(%)

𝑟𝑢𝑛 𝑡𝑖𝑚𝑒(ℎ𝑜𝑢𝑟𝑠)×𝑛𝑜.𝑑𝑒𝑣𝑖𝑐𝑒𝑠
           (30) 

For an eight electrode system to have a run time of more than two days, while using a 2000mAh 

Lithium battery, the supply current of each op amp must be less than 2.083mA. The reduced op 

amp list is shown in table 4. 
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Table 4 

Second Stage Component Review for Op Amp 

Part Number Supply Current 
Min. Supply 

Voltage 

Max. Supply 

Voltage 

LTC6240 2 mA 2.8 V 6.0 V 

AD8615 1.7 mA 2.7 V 5.5 V 

AD8603 50 µA 1.8 V 5.0 V 

AD8605 1.2 mA 2.7 V 5.0 V 

LMP7721 1.3 mA 1.8 V 5.5 V 

OPA320-Q1 1.5 mA 1.8 V 5.5 V 

OPA320 1.5 mA 1.8 V 5.5 V 

SM73302 1.15 mA 1.8 V 5.5 V 

LMP2231 10 µA 1.6 V 5.5 V 

LMP7711 1.15 mA 1.8 V 5.5 V 

LMP2011 930 µA 2.7 V 5.0 V 

LMV2011 930 µA 2.7 V 5.0 V 

OPA325 650 µA 2.2 V 5.5 V 

OPA376-Q1 760 µA 2.2 V 5.5 V 

OPA376 760 µA 2.2 V 5.5 V 

OPA336  20 µA 2.3 V 5.5 V 

 

 

With the reduced list, the next consideration is noise characteristics of each op amp. Using the 

voltage noise density spectrum plot on each datasheet of the above listed op amps, the root mean 

square (RMS) voltage of the 1/f noise that may affect the input signal is given by: 

𝑉𝑛𝑜𝑖𝑠𝑒(𝑅𝑀𝑆) = 𝑉𝑎√𝑓𝑎ln(
𝑓2

𝑓1
)                (31) 

where 𝑉𝑎 = an arbitrary (y-axis) point on the graph within the 1/f region, 𝑓𝑎 = the corresponding (x-

axis) point, 𝑓1 = lowest frequency component of the signal and 𝑓2 = highest frequency component 

of the signal.  

Described in [37], it is possible to convert the 1/f RMS noise into an approximate 1/f pk-pk noise. 

In multiplying the 1/f RMS noise by 6.6, the percentage of time noise will exceed the resulting pk-

pk nominal noise value will be 0.1%. The 1/f RMS noise and respective pk-pk noise results for 

each op amp is calculated and shown in table 5. 
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Table 5 

Final Stage Component Review for Op Amp 

Part Number 
Noise Voltage RMS 

(0.5 Hz – 30 Hz) 

Noise Voltage pk-pk 

(0.5 Hz – 30 Hz) 

LTC6240 103 nV 681 nV 

AD8615 443 nV 2.93 µV 

AD8603 981 nV 6.48 µV 

AD8605 280 nV 1.85 µV 

LMP7721 256 nV 1.69 µV 

OPA320-Q1 496 nV 3.27 µV 

OPA320 496 nV 3.27 µV 

SM73302 192 nV 1.27 µV 

LMP2231 572 nV 3.78 µV 

LMP7711 192 nV 1.27 µV 

OPA325 405 nV 2.67 µV 

OPA376-Q1 114 nV 755 nV 

OPA376 114 nV 755 nV 

OPA336  336 nV 3.38 µV 

 

With the table reduced to consist of suitable op amps to fit the system, the LTC6240 is the optimal 

choice, due to its low 1/f noise characteristic (below 1 µ𝑉𝑝−𝑝) over the 0.5Hz – 30Hz frequency 

range. The low voltage noise present on the op amp input will be insignificant to the EEG signal 

present. Thus, a chopping stabilisation circuit would not be essential to increase accuracy in the 

measured signals.  

 

4.5 Component Selection for Switching Method 

The fundamental biopotential sensor design and the components selected for it, can be used for 

both methods being designed. While the components chosen for the fundamental design, fully 

satisfy the two-part electrode method, an additional component is required for the switching 

method. For ease of design and simulation a multiplexer will be selected as the switching 

mechanism to isolate the two channels. 

 

While selecting the optimal multiplexer for the switching method, there are three main 

characteristics to inspect. These are the capacitance, the charge injection and the leakage current. 

The capacitance and leakage current of the multiplexer relates to when the switch turns on and off, 

while the charge injection of the multiplexer relates to the glitch impulse that is transferred from 

the input to the output. The lower each characteristic value is, the superior the multiplexer is. The 

characteristics of each multiplexer reviewed can be seen in table 6. 
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Table 6 

Component Review for Multiplexer 

Part Number 
Typ. Channel On 

Capacitance 
Charge Injection 

Max. Leakage 

Current 

ADG819 300 pF 20 pC 10 pA 

TMUX1119 21 pF -6 pC 4 nA 

TS5A3159 84 pF 36 pC 40 nA 

TS5A3159-EP 55 pF 36 pC 40 nA 

TS5A9411 8.5 pF 12.5 pC 3 nA 

TS5A63157 14.5 pF -21 pC 50 nA 

 

 

After the above multiplexers were reviewed, the TS5A9411 was selected. The TS5A9411 had 

extremely low values for each of the three characteristics described and, thus, was the optimal 

multiplexer to use in the switching method. 

 

4.6 Summary 

The inverting active band pass filter was chosen as the optimal biopotential sensor design to acquire 

EEG signals for all design methods. This was also chosen for its compatibility with the designed 

reconstruction algorithm to compensate for the unknown ETI of the system. The components 

selected for the inverting active band pass filter were chosen to accurately amplify and acquire 

signals within the frequency range of 0.5Hz – 30Hz, while introducing as little 1/f noise into the 

system as possible. These components were Rs1 = Ro = 18MΩ, Cs1 = Co = 100nF, Rs2 = 22MΩ, 

Cs2 = 68nF and the LTC6240 op amp. The multiplexer chosen for isolating the two channels while 

implementing the switching method was the TS5A9411. 

 

The chopper stabilization method to reduce 1/f noise described in section 2.6.3, was not included 

in the biopotential sensor design. This was due to the selected op amp having extremely low 1/f 

noise characteristics in comparison to the expected amplitude of EEG signals. The DRL method to 

reduce mains interference described in section 2.6.2, was also not included in the biopotential 

sensor design. This was due to the design of the biopotential sensor and accompanying 

reconstruction algorithm not being compatible with a common DRL design. Where DRL circuits 

are commonly used with single channel sensors in an instrumentation amplifier or buffer 

configuration, the novel two channel sensor consisting of inverting configurations provide 

additional complications. However, as the desired frequency range of the EEG signal is between 
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0.5Hz – 30Hz, a digital low pass filter can be applied to the acquired signals to eliminate excessive 

mains interference. 

 

With the biopotential sensor topology and components selected, chapter 5 will consist of a full 

simulation of each design method. This will then be followed by a full evaluation of each design 

method and comparisons between design methods. 
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Chapter 5 
 

Biopotential Sensor Simulations 

 

5.1 Introduction 

After designing the EEG electronic amplification circuitry, the next step is to complete a full 

simulation of the system. The hardware was generated and full simulations were achieved using 

LTspice version 17 (Analog Devices, Norwood MA, USA). EEG data (in the form of .txt files) 

were attained online from the Department of Epileptology, University of Bonn and used in these 

simulations [38]. Furthermore, the relevant data was extracted from LTspice, where processing and 

analysis could then take place in MATLAB R2019a (MathWorks, Natick MA, USA). 

 

5.2 LTspice Simulation 

LTspice was chosen as the simulation software as it has a feature where text files can be used as 

voltage or current sources. Thus, real EEG data can be used as an input voltage source to the 

hardware design during simulation. The unknown ETI used in the simulations consists of a resistor 

in parallel with a capacitor, as described in the literature. Once the simulations were completed, the 

input signal and the output signals were exported from LTspice and stored as text files or excel 

spreadsheets for processing and analysis at a later time.  

 

5.2.1 Two-Part Electrode Method 

As described in section 3.3, one method to separate the two channels is by using a two-part 

electrode. Simulating the two-part electrode in LTspice consists of a single voltage source 

connected to two separate ETI’s of the same value, which then branch off to amplification circuits, 

channel one and channel two. This is shown in figure 21. 
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5.2.2 Switching Method 

As described in section 3.3, the other method to separate the two channels is by using a switch. The 

switch is placed between the ETI (resistor in parallel with a capacitor) and the sensor electronics. 

Simulations of the switching method requires considerations for short simulation time, while 

maintaining accurate results. Thus, a custom pulse voltage source was used to switch the two 

channel multiplexer (ADG1633) chosen in the previous section. The voltage source switched at a 

frequency of 1kHz and had a turn on/turn off time of 10ns. This is shown in figure 22.  

Figure 21.  Full circuit simulation of two-part electrode method 

Figure 22.  Full circuit simulation of switching method 
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5.2.3 Simulation Method 

When devising the EEG systems in LTspice, consideration is required to correctly evaluate the 

theory of each method. Through the following simulation conditions, an accurate analysis of both 

methods will be completed, which will result in an excellent comparison between systems: 

1. To initially validate theoretical operation, the simulated system is to be set up with a fixed 

ETI consisting of a 100kΩ resistor in parallel with a 100nF capacitor. A 12 second EEG 

sample is used as an input signal for this simulation. 

2. The previous simulation will be repeated two times, with an increase in the fixed ETI. The 

two additional ETI’s that will be simulated, consist of a 1MΩ resistor in parallel with a 

10nF capacitor and a 10MΩ resistor in parallel with a 1nF capacitor. 

3. The final simulation conducted, used a varying ETI to replicate motion artifacts present in 

practical situations. The ETI was varied up and down in a uniform fashion at time intervals 

of approximately three seconds. The variation ranges from an ETI consisting of a 100kΩ 

resistor in parallel with a 100nF capacitor to an ETI consisting of a 100MΩ resistor in 

parallel with a 100pF capacitor. The input signal used for this simulation is increased to a 

20 second EEG sample. 

 

 

5.3 MATLAB Processing and Analysis 

After all simulations are completed, signal processing and full analysis of the results can be 

conducted using MATLAB. The simulations listed in section 5.2, will give enough data to 

investigate which method/s can accurately reconstruct the outputs from the different systems and 

produce an accurate representation of the input signal. A flowchart of the process in evaluating the 

system can be seen in figure 23. 

 

 

 

 

 

 

 

 

 

Perform 

reconstruction 

algorithm on 

output signals 

Display voltage vs 

time and PSD 

plots  

Import data from 

LTspice 

Quantify and 

tabulate PSD 

results 

Figure 23.  Flowchart of MATLAB evaluation process 
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For simulation methods one and two, the MATLAB reconstruction algorithm (explained in section 

4.2.2), will be the same for both design methods. For simulation method three, the original 

reconstruction algorithm is compared with a windowed reconstruction algorithm. This windowed 

reconstruction algorithm breaks the output data into EEG epochs and reconstructs each epoch 

instead of the entire dataset as a whole.  

 

After the output signals have been processed using the reconstruction algorithms, full analysis of 

the signals are conducted and then compared to the EEG source used in the simulation. The first 

method used is to plot a voltage vs time graph consisting of the input signal and reconstructed 

signal. A visual examination of the data gives initial information of the similarity between the two 

signals, however this is not comprehensive. Thus, to produce a thorough comparison between the 

frequency bands within the input signal and acquired EEG signal, a PSD analysis is performed. 

The multitaper power spectral density estimate is used for this, resulting in a power/frequency vs 

frequency graph, consisting of the input signal and reconstructed signal. The PSD plot is displayed 

with the y-axis set to a semi-log scale, to view the data in more detail. To quantify the results plotted 

from the PSD analysis, the average power across the EEG frequency range of the input signal and 

reconstructed signal are calculated. Furthermore, the average power across each frequency band 

relevant to the waveforms within the EEG signal, are calculated and taken as a percentage of the 

average power across the entire frequency range.  

 

5.4 Fixed ETI Results 

The results from the fixed ETI simulations are used to confirm whether or not the circuit design 

methods can accurately reconstruct the output signals acquired, to match the input signals of the 

system. All voltage vs time plots and PSD plots, for all fixed ETI simulations can be found in 

sections 5.4.1 and 5.4.2.  

 

5.4.1 Two-Part Electrode Results 

While inspecting the voltage vs time plots of the two-part electrode method the results appear 

promising. Visually comparing the plots for each of the three simulations, it can be seen that the 

systems reconstructed signals match the input signals very accurately regardless of the ETI value 

used. These voltage vs time plots can be seen in figures 24(a) – 24(c).   

 



Chapter 5                                                                                     Biopotential Sensor Simulations 

 

57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

(a) 



Chapter 5                                                                                     Biopotential Sensor Simulations 

 

58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This trend is again validated through the PSD plots of the three simulations. Shown in figures 25(a) 

– 25(c), the reconstructed signals appear identical regardless of the ETI value used during 

simulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

Figure 24.  (a) Voltage vs time plot of two-part electrode method using ETI of 100kΩ || 100nF, (b) Voltage vs time plot of two-

part electrode method using ETI of 1MΩ || 10nF, (c) Voltage vs time plot of two-part electrode method using ETI of 10MΩ || 1nF 

(a) 
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Finally the PSD plots comparing input signal and reconstructed signal for all three simulations are 

quantified and displayed in table 7. The average power of the reconstructed signal is very close to 

that of the input signal and also closely matched for each of the EEG frequency ranges. Again, no 

clear or definitive change can be noticed in the reconstructed signal when changing the ETI value 

(b) 

(c) 

Figure 25.  (a) PSD plot of two-part electrode method using ETI of 100kΩ || 100nF, (b) PSD plot of two-part electrode method 

using ETI of 1MΩ || 10nF, (c) PSD  plot of two-part electrode method using ETI of 10MΩ || 1nF 
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used in simulation. Thus, the two-part electrode reconstruction method can be said to theoretically 

work in an ideal condition with a fixed ETI.  

 

Table 7 

Average Power Results – Fixed ETI Simulations, Two-Part Electrode Method 

EEG Frequency Bands 
100 kΩ || 10 nF 

ETI 

1 MΩ || 10 nF 

ETI 

10 MΩ || 1 nF 

ETI 

Input Average Power 1.77E-09 W 1.77E-09 W 1.77E-09 W 

Reconstructed Average Power 1.76E-09 W 1.76E-09 W 1.76E-09 W 

    

Input Delta Average Power 6.62E-10 W 6.63E-10 W 6.63E-10 W 

Reconstructed Delta Average Power 6.57E-10 W 6.57E-10 W 6.57E-10 W 

Input Delta Percentage 37.4369 % 37.4555 % 37.4493 %  

Reconstructed Delta Percentage  37.3798 % 

 

37.3823 % 37.389 % 

    

Input Theta Average Power 4.24E-10 W 4.24E-10 W  4.24E-10 W 

Reconstructed Theta Average Power 4.23E-10 W 4.23E-10 W 4.23E-10 W 

Input Theta Percentage 23.9572 % 23.9455 % 23.9433 % 

Reconstructed Theta Percentage  24.0715 % 24.0744 % 24.0695 % 

    

Input Alpha Average Power 5.57E-10 W 5.57E-10 W 5.57E-10 W 

Reconstructed Alpha Average Power 5.54E-10 W 5.55E-10 W 5.54E-10 W 

Input Alpha Percentage 31.4848 % 31.5012 % 31.4985 % 

Reconstructed Alpha Percentage  31.5472 % 31.552 % 31.547 % 

    

Input Beta Average Power 1.83E-10 W 1.83E-10 W 1.83E-10 W 

Reconstructed Beta Average Power 1.80E-10 W 1.80E-10 W 1.80E-10 W 

Input Beta Percentage 10.3561 % 10.3386 % 10.3476 % 

Reconstructed Beta Percentage  10.241 % 10.2345 % 10.235 % 

 

 

5.4.2 Switching Results 

Through inspection of the voltage vs time plots from the three simulations, it is immediately clear 

that the reconstructed signal has a significantly smaller amplitude in all cases. While it appears as 

though the reconstructed signal follows the same shape as the input signal it is also visually obvious 

the amplitude of the reconstructed signal is inversely proportional to the ETI value in the system. 

The voltage vs time plots can be seen in figures 26(a) – 26(c). 



Chapter 5                                                                                     Biopotential Sensor Simulations 

 

61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 



Chapter 5                                                                                     Biopotential Sensor Simulations 

 

62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The significantly smaller amplitude of the reconstructed signal can be again seen through the PSD 

plots in figures 27(a) – 27(c). The inverse relationship between the amplitude of the reconstructed 

signal and ETI value in the system is also visually more distinct in these plots. While there are 

complications with the amplitude of the reconstructed signal, it appears to keep the same shape of 

the input signal despite the ETI value of the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

Figure 26.  (a) Voltage vs time plot of switching method using ETI of 100kΩ || 100nF, (b) Voltage vs time plot of switching 

method using ETI of 1MΩ || 10nF, (c) Voltage vs time plot of switching method using ETI of 10MΩ || 1nF 

(a) 
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The quantified results from the PSD plots are displayed in table 8. Again the data alludes to the 

two previous observations. However, where the two signals visually appeared to match the shape 

of one another, the calculations show that as the ETI value increases the accuracy of the 

reconstructed signal decreases. This can be seen when comparing the percentages of average power 

for each frequency band between input and reconstructed signals. 

(b) 

(c) 

Figure 27.  (a) PSD plot of switching method using ETI of 100kΩ || 100nF, (b) PSD plot of switching method using ETI of 

1MΩ || 10nF, (c) PSD  plot of switching method using ETI of 10MΩ || 1nF 
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Table 8 

Average Power Results – Fixed ETI Simulations, Switching Method 

EEG Frequency Bands 
100 kΩ || 100 nF 

ETI 

1 MΩ || 10 nF 

ETI 

10 MΩ || 1 nF 

ETI 

Input Average Power 1.77E-09 W 1.77E-09 W 1.77E-09 W 

Reconstructed Average Power 7.45E-10 W 6.85E-10 W 3.47E-10 W 

    

Input Delta Average Power 6.76E-10 W 6.76E-10 W 6.76E-10 W 

Reconstructed Delta Average Power 2.87E-10 W 2.60E-10 W  1.19E-10 W 

Input Delta Percentage 38.148 % 38.1544 % 38.1544 % 

Reconstructed Delta Percentage  38.5524 % 37.9454 % 34.1696 % 

    

Input Theta Average Power 4.11E-10 W 4.11E-10 W 4.11E-10 W 

Reconstructed Theta Average Power 1.73E-10 W 1.58E-10 W 7.56E-11 W  

Input Theta Percentage 23.2126 % 23.2096 % 23.2096 % 

Reconstructed Theta Percentage  23.2379 % 23.0677 % 21.7871 % 

    

Input Alpha Average Power 5.54E-10 W 5.54E-10 W 5.54E-10 W 

Reconstructed Alpha Average Power 2.32E-10 W 2.16E-10 W 1.17E-10 W 

Input Alpha Percentage 31.2572 % 31.2544 % 31.2544 % 

Reconstructed Alpha Percentage  31.2141 % 31.605 % 33.726 % 

    

Input Beta Average Power 1.84E-10 W 1.84E-10 W 1.84E-10 W 

Reconstructed Beta Average Power 7.44E-11 W 7.10E-11 W 4.58E-11 W 

Input Beta Percentage 10.3625 % 10.3616 % 10.3616 % 

Reconstructed Beta Percentage  9.9942 % 10.3668 % 13.1874 % 

 

 

Further investigation into exactly why the reconstruction algorithm did not work correctly was 

undertaken. During simulation of the switching method, the problem can be found with the series 

impedance of the sensor circuit. When the switch disconnects from one of the channels, the fully 

charged capacitor of that channel acts as the voltage source and starts to discharge through that 

branch of the circuit. Then when the switch re-connects, the capacitor charges back up to the 

voltage level of the input and the same process begins for the other channel of the circuit. However, 

because the series resistance on each channel is not equivalent the capacitors on channel one and 

channel two discharge to different voltage levels. Because of this, the switching noise induced into 

both channels differ, causing the reconstruction of output signals acquired from the system to be 

inaccurate. Due to the mathematics of the reconstruction algorithm used, the series impedance for 

each channel has to be significantly different for an accurate outcome. Thus, after interpretation of 

the results taken from the three simulations, the switching method does not theoretically work with 

the reconstruction algorithm.     
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5.5 Varied ETI Results 

Only the two-part electrode method was simulated using a varying ETI. The varied ETI simulation 

is undertaken to confirm whether or not the circuit design methods can accurately reconstruct the 

output signals acquired to match the input signal, in a more real-world condition. The results taken 

from these simulations can also be used to experiment with the reconstruction algorithm, to 

improve the accuracy of the reconstructed signal.  

 

The effects of the varying ETI can be seen in the voltage vs time plots, shown in figure 28(a) and 

28(b). Once the reconstruction algorithm is applied, on observation of the voltage vs time plot 

shown in figure 28(c), it is plain to see that at certain sections the reconstructed signal is not an 

accurate match to the input signal. This is again reinforced when inspecting the PSD plot, shown 

in figure 28(d). It is clear that the reconstruction of the output signals are inaccurate over the entire 

frequency range displayed.  
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The reason for this inaccuracy is due to the nature of the reconstruction algorithm. While the two-

part electrode method was highly accurate when dealing with a fixed ETI, a constantly changing 

ETI becomes problematic. The algorithm accounts for the unknown ETI of the system and 

eliminates it from the system of equations, resulting in a reconstructed signal that theoretically 

matches the input signal perfectly. However, if the ETI of the system where to change constantly 

for the whole duration of time that the output signals were acquired, the reconstruction algorithm 

would be eliminating a static ETI from the system that is not representative of the fluctuating ETI 

which is actually present in the system. This static ETI would be an approximate average of the 

fluctuating ETI for the duration that the output signals are acquired, therefore, resulting in a 

decrease in accuracy of the reconstructed signal.  

 

A possible solution to this problem, is a windowed reconstruction algorithm. The windowed 

reconstruction algorithm breaks down the acquired signals into smaller sections and reconstructs 

each section individually. Using a windowed reconstruction algorithm while a varying ETI is 

affecting the system, produces a more accurate reconstructed signal. The varying ETI will not 

fluctuate as dramatically when broken down into smaller sections and the average ETI eliminated 

from the system should be a closer representation to the real ETI acting on the system. 

(d) 

Figure 28.  (a) Voltage vs time plot displaying effects of the varied ETI on signals present after ETI, (b) Voltage vs time plot 

displaying effects of the varied ETI on raw output signals, (c) Voltage vs time plot of two-part electrode non-windowed method 

varied ETI, (d) PSD plot of two-part electrode non-windowed method varied ETI 
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While using the new windowed reconstruction algorithm in combination with four second epochs, 

the voltage vs time plots can be observed in figure 29(a). It can be seen that the reconstructed signal 

matches the input signal with greater accuracy than the original reconstruction algorithm. However, 

it is still not an ideal reconstruction signal and is still relatively inaccurate when compared to the 

input signal. This can be seen in greater depth when viewing the PSD plot shown in figure 29(b). 

While observing the quantified results of both algorithm methods displayed in table 9, the improved 

windowed reconstruction algorithm is noticeable in greater detail. While the reconstructed signal 

is by no means an accurate representation of the input signal, it is still advisable to continue 

investigating this method in a practical setting.  
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Table 9 

Average Power Results – Varied ETI Simulation, Two-Part Electrode Method 

EEG Frequency Bands No Window Window 

Input Average Power 1.62E-09 W 1.62E-09 W 

Reconstructed Average Power 1.10E-09 W 1.37E-09 W 

   

Input Delta Average Power 6.09E-10 W 5.98E-10 W 

Reconstructed Delta Average Power 3.86E-10 W 5.46E-10 W 

Input Delta Percentage 37.6415 % 36.9964 % 

Reconstructed Delta Percentage  35.1254 % 39.9427 % 

   

Input Theta Average Power 3.81E-10 W 3.77E-10 W 

Reconstructed Theta Average Power 2.24E-10 W 2.98E-10 W 

Input Theta Percentage 23.5614 % 23.3209 % 

Reconstructed Theta Percentage  20.3962 % 21.8124 % 

   

Input Alpha Average Power 4.85E-10 W 4.84E-10 W 

Reconstructed Alpha Average Power 3.75E-10 W 3.83E-10 W 

Input Alpha Percentage 30.017 % 29.9227 % 

Reconstructed Alpha Percentage  34.1077 % 28.0056 % 

   

Input Beta Average Power 1.76E-10 W 1.75E-10 W 

Reconstructed Beta Average Power 1.36E-10 W 1.55E-10 W 

Input Beta Percentage 10.8611 % 10.8511 % 

Reconstructed Beta Percentage  12.3523 % 11.3266 % 

(b) 

Figure 29.  (a) Voltage vs time plot of two-part electrode windowed method varied ETI, (b) PSD plot of two-part electrode 

windowed method varied ETI 
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5.6 Summary 

Initially, two design methods were simulated with various fixed ETI’s. The two-part electrode 

method was proven to function correctly in ideal conditions, while the switching method showed 

an inaccurate representation of the input signal. This was due to practical limitations with the sensor 

electronic design in order to be compatible with the reconstruction algorithm. Thus, further 

investigation into this method did not progress. 

 

The two-part electrode method was then simulated again but instead using a varying ETI. Due to 

the inaccuracy in results acquired through the first iteration of testing, the reconstruction algorithm 

was modified to work in a windowing fashion. The simulations were then repeated with an increase 

in accuracy of reconstructed signals when compared to the input signal. While the two-part 

electrode method did not present a high level of accuracy, the nature of the simulated varying ETI 

is not a true representation of the ETI in a real-life system. Thus, developed hardware for the two-

part electrode method proves necessary to further investigate the functionality, in a controlled 

laboratory set-up.  
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Chapter 6 
 

Biopotential Sensor Testing 

 

6.1 Introduction 

The construction of a modular EEG system and multiple testing rigs can commence upon 

completion of the rigorous simulation process described in chapter 5. This will then be followed 

by extensive testing and evaluation in order to analyse the accuracy of the design and 

accompanying reconstruction algorithm. 

 

6.2 Construction 

Various electronic circuits were built for validation and testing. These consisted of a novel modular 

two channel sensor printed circuit board (PCB), a centralised power supply PCB and an ETI replica 

PCB. All PCB designs were completed in Altium Designer 18 (Altium Limited, San Diego CA, 

USA) and all PCB’s were assembled at AUT. 

 

6.2.1 Novel Modular Two Channel Design 

The two channel biopotential sensor schematic, along with PCB can be seen in figures 30(a) and 

30(b) respectively. The hardware is designed to be physically mounted to a two-part dry-contact 

electrode, to reduce environmental noise. While the two-part electrode is still in development, the 

detailed interface between sensor and electrode has been produced in computer-aided design 

(CAD) drawings and can be seen in figure 30(c). The biopotential sensor includes power and 

ground planes on a four layer PCB to further reduce the presence of environmental noise on the 

system. The supply for the biopotential sensor circuit comes from an external power PCB. This 

enables a modular design with each sensor circuit’s power supply at equal potentials to one another. 

This also enables the use of fewer components compared to a system where each sensor circuit has 

its own on-board power supply.  
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(a) 

(b) 

(c) 

Figure 30.  (a) Schematic of biopotential sensor electronics, (b) PCB of the modular biopotential sensor, (c) CAD render of the 

interface between sensor and two-part electrode 
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6.2.2 Power Supply Design 

The power supply for the modular biopotential sensor circuits are on an external centralised power 

PCB. This PCB receives the supply from a small 2000 mAh lithium ion battery and splits it into a 

VCC line, GND line and VEE line. This is achieved by using the TLE2426 rail splitter and 

accompanying de-coupling capacitors. For each biopotential sensor PCB, the three power lines are 

connected via wires in order to create a modular system. This light-weight, adjustable system, is 

designed to supply power to nine modular sensors. The schematic of the power board along with 

the PCB, can be seen in figures 31(a) and 31(b) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 31.  (a) Schematic of power supply electronics, (b) PCB of the systems power supply 
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6.2.3 ETI Replica 

A critical component for the testing and validation of any EEG design is to create a system that 

implements repeatability. With control over the ability to generate reproducible EEG potentials, 

accuracy of results and signal quality become exponentially easier to quantify.   

 

To validate the practical theory of the two-part electrode design, a real-life laboratory test set-up is 

required. Similar to the simulations, a resistor is placed in parallel with a capacitor and is used to 

replicate the unknown ETI in the system. The replica ETI is placed between the EEG potentials 

produced by the signal generator and the biopotential sensor electronics. However the minimum 

amplitude limit of signals that are generated exceed the maximum input amplitude the sensor 

electronics are designed for. Thus, a simple resistor divider is used to reduce the amplitude of the 

input signals. The components used for the replicated ETI and input attenuation are placed on a 

small PCB to increase accuracy of results. The schematic of the ETI board along with the PCB, is 

shown in figures 32(a) and 32(b) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 32.  (a) Schematic of ETI replica electronics, (b) PCB of the ETI replica 
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6.3 Testing and Analysis Methods 

The same EEG data used in simulations (attained from the Department of Epileptology, University 

of Bonn) were converted to voltage sources with a Tektronix AFG3252C arbitrary/function 

generator and applied to the ETI PCB. The 20 second long EEG data was put on a continuous loop 

where one minute of data can be stored. This results in a known and reproducible EEG potential 

being applied to the biopotential sensor electronics. A 24-bit NI-9239 data acquisition module was 

used to acquire the input signal from the function generator, while a 16-bit NI-9220 data acquisition 

module was used to acquire the two output signals from the biopotential sensor PCB. These 

National Instruments data acquisition modules, were used to store the required signals from the 

system for processing at a later point. 

 

While testing with this ETI replica, the set-up can be organised in different ways to observe trends 

and correlations between controlled variables and results. Also signal processing algorithms may 

also be observed with greater detail and alterations can be made to improve the system. The first 

two simulation procedures in section 5.2.3, were reproduced in physical form and tested with the 

newly developed hardware. Next the varying ETI simulation procedure in section 5.2.3, was 

reproduced using controlled motion applied to the ETI PCB which replicates body movement, 

causing motion artifacts.  

 

The code written in MATLAB includes a custom made function to store and display the acquired 

signals from the system in semi-real time at a sampling frequency of 2048 Hz. From there the 

reconstruction algorithms used and compared are that of both non-windowed and windowed 

methods. The analysis method used to evaluate the above testing procedure is the exact same 

analysis conducted in section 5.3, consisting of voltage vs time plots, PSD plots and tables of 

quantified data from the PSD results.  

 

6.4 Fixed ETI Results 

With the theoretical validation of the novel system completed in the fixed ETI simulations 

described in section 5.4.1, practical validation of said novel system was now required. Using the 

various ETI replica boards, bench-top testing was undertaken to confirm the practical operation of 

the novel biopotential sensors. The voltage vs time plots displayed in this section are 20 second 

extracts of the processed data. 
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The initial results of the full bench-top testing appear to be somewhat promising. On first inspection 

the reconstructed signals look similar to the input signal with the amplitude and shape matching 

well. However, upon further observation it is clear that as the ETI value increases, the amplitude 

of the reconstructed signal appears to decrease. These voltage vs time plots can be seen in figures 

33(a) – 33(c). 
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Next the results from the fixed ETI bench-top testing can be inspected in the PSD plots shown in 

figures 34(a) – 34(c). The decreasing amplitude trend of the reconstructed signal as the ETI 

increases can again be visually observed. However, it can be seen in more detail that the 

reconstructed signals amplitude at low frequencies match the input signals amplitude relatively 

well. The significant decrease in amplitude of the reconstructed signal is only present at higher 

frequencies within the EEG frequency range. While the reconstructed signals amplitude is not 

consistent throughout the testing process, it appears the shape does remain a relatively consistent 

match to that of the input signal.  

(c) 

Figure 33.  (a) Voltage vs time plot with original capacitance value using ETI of 100kΩ || 100nF, (b) Voltage vs time plot with 

original capacitance value using ETI of 1MΩ || 10nF, (c) Voltage vs time plot with original capacitance value using ETI of 10MΩ 

|| 1nF 
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Finally the PSD plots of the fixed ETI bench-top testing are quantified and displayed in table 10. 

Through analysis of the tabulated data, the observations made through visual inspection of the 

above plots were corroborated. As the ETI increases the power levels of the higher frequency bands 

decrease and the distribution of average power as a percentage for each EEG frequency band 

becomes skewed towards the lower ranges. 

 

 

 

 

 

 

 

 

 

 

(c) 

Figure 34.  (a) PSD plot with original capacitance value using ETI of 100kΩ || 100nF, (b) PSD plot with original capacitance 

value using ETI of 1MΩ || 10nF, (c) PSD plot with original capacitance value using ETI of 10MΩ || 1nF 
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Table 10 

Average Power Results – Fixed ETI Testing, Un-Adjusted Reconstruction Algorithm 

EEG Frequency Bands 
100 kΩ || 100 nF 

ETI 

1 MΩ || 10 nF 

ETI 

10 MΩ || 1 nF 

ETI 

Input Average Power 5.09E-07 W 5.18E-07 W 5.07E-07 W 

Reconstructed Average Power 4.39E-07 W 4.35E-07 W 3.51E-07 W 

    

Input Delta Average Power 1.74E-07 W 1.78E-07 W 1.74E-07 W 

Reconstructed Delta Average Power 1.60E-07 W 1.64E-07 W 1.63E-07 W 

Input Delta Percentage 34.2836 % 34.3794 % 34.2845 % 

Reconstructed Delta Percentage  36.3292 % 37.6143 % 46.5064 % 

    

Input Theta Average Power 1.21E-07 W 1.23E-07 W 1.21E-07 W 

Reconstructed Theta Average Power 1.05E-07 W 1.06E-07 W 8.46E-08 W 

Input Theta Percentage 23.7797 % 23.7696 % 23.8268 % 

Reconstructed Theta Percentage  23.8233 % 24.3671 % 24.0705 % 

    

Input Alpha Average Power 1.52E-07 W 1.56E-07 W 1.52E-07 W 

Reconstructed Alpha Average Power 1.27E-07 W 1.23E-07 W 7.56E-08 W 

Input Alpha Percentage 29.7879 % 30.1628 % 29.8979 % 

Reconstructed Alpha Percentage  28.9931 % 28.3177 % 21.5347 % 

    

Input Beta Average Power 6.41E-08 W 6.29E-08 W 6.31E-08 W 

Reconstructed Beta Average Power 4.97E-08 W 4.42E-08 W 2.93E-08 W 

Input Beta Percentage 12.5913 % 12.1318 % 12.4424 % 

Reconstructed Beta Percentage  11.3115 % 10.1537 % 8.3349 % 

 

 

A thorough inspection into the cause of the decrease in the reconstructed signals amplitude was 

conducted. The problem causing this drift in signal amplitude was put down to errors in the 

feedback capacitor of the circuitry. If the feedback capacitor value of the circuit is not accurate, 

inaccuracies in signal amplitude at low frequencies will be relatively unnoticeable. Whereas, the 

inaccuracies in signal amplitude as the frequency increases will become significantly noticeable. 

As the feedback capacitor is extremely tiny (0402 package) and excessively small in value (0.6pF 

± 0.02pF), the accuracy of this component is extremely temperamental. To overcome this problem, 

if the capacitor value was slightly adjusted in the reconstruction algorithm to account for any 

physical inaccuracies, the resulting reconstructed signal becomes significantly more accurate 

across all ETI values tested. 

 

With the above adjustment method increasing accuracy of the reconstructed signal to match the 

input signal, the feedback capacitor value in the reconstruction algorithm was changed from 0.6pF 

to 1.2pF. The noticeable increase in accuracy of the reconstructed signal across all ETI values can 
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be seen in the PSD plots, shown throughout figures 35(a) – 35(c). The voltage vs time plots using 

the new capacitor value for each differing fixed ETI value can be viewed in appendix A. 
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The PSD plots using the new feedback capacitor value are then quantified and displayed in table 

11. Comparing the two sets of tabulated data above, it is corroborated that the reconstructed signal 

formed when using the new feedback capacitor value is a more accurate representation of the input 

signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

Figure 35.  (a) PSD plot with new capacitance value using ETI of 100kΩ || 100nF, (b) PSD plot with new capacitance value 

using ETI of 1MΩ || 10nF, (c) PSD plot with original new value using ETI of 10MΩ || 1nF 
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Table 11 

Average Power Results – Fixed ETI Testing, Adjusted Reconstruction Algorithm 

EEG Frequency Bands 
100 kΩ || 100 nF 

ETI 

1 MΩ || 10 nF 

ETI 

10 MΩ || 1 nF 

ETI 

Input Average Power 5.09E-07 W 5.18E-07 W 5.07E-07 W 

Reconstructed Average Power 4.59E-07 W 4.67E-07 W 4.30E-07 W 

    

Input Delta Average Power 1.74E-07 W 1.78E-07 W 1.74E-07 W 

Reconstructed Delta Average Power 1.61E-07 W 1.65E-07 W 1.71E-07 W 

Input Delta Percentage 34.2836 % 34.3794 % 34.2845 % 

Reconstructed Delta Percentage  34.9857 % 35.3591 % 39.8977 % 

    

Input Theta Average Power 1.21E-07 W 1.23E-07 W 1.21E-07 W 

Reconstructed Theta Average Power 1.07E-07 W 1.10E-07 W 1.00E-07 W 

Input Theta Percentage 23.7797 % 23.7696 % 23.8268 % 

Reconstructed Theta Percentage  23.2359 % 23.5413 % 23.3466 % 

    

Input Alpha Average Power 1.52E-07 W 1.56E-07 W 1.52E-07 W 

Reconstructed Alpha Average Power 1.36E-07 W 1.37E-07 W 1.08E-07 W 

Input Alpha Percentage 29.7879 % 30.1628 % 29.8979 % 

Reconstructed Alpha Percentage  29.5336 % 29.26 % 25.2186 % 

    

Input Beta Average Power 6.41E-08 W 6.29E-08 W 6.31E-08 W 

Reconstructed Beta Average Power 5.83E-08 W 5.74E-08 W 5.14E-08 W 

Input Beta Percentage 12.5913 % 12.1318 % 12.4424 % 

Reconstructed Beta Percentage  12.6955 % 12.2812 % 11.9697 % 

 

 

6.5 Varied ETI Results 

With the operation of the novel system now practically validated, further testing is required to 

examine practical results with a varying ETI. By applying force to the ETI board/cables with 

controlled motion, more life-like data can be stored and the subsequent reconstructed signal can be 

analysed. Furthermore, the data stored can then be used to experiment with the reconstruction 

algorithm, where adjustments may be required to produce a greater accuracy in results. 

 

During the first iteration of bench-top testing, a low-medium amount of motion was applied to the 

ETI board/cables. The motion was a uniform vertical movement of approximately 10mm distance 

and at a frequency of 2Hz. While varying the ETI of the system, it can be seen in the voltage vs 

time plot shown in figure 36(a), that the low-medium amount of applied motion has no distinct or 

noticeable effect on the output signals. Once the reconstruction algorithm is applied to said output 

signals, the voltage vs time plot shown in figure 36(b), confirms the relatively insignificant effect 
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the motion has on the accuracy of the reconstructed signal. This is further corroborated when 

observing the PSD plots produced from the reconstruction algorithm, shown in figure 36(c). This 

largely accurate representation of the input signal is then finally supported by the tabulated data 

acquired from the PSD plots and displayed in table 12.  
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(c) 

Figure 36.  (a) Voltage vs time plot displaying the effect of low-medium applied motion on the raw output signals, (b) Voltage 

vs time plot with low-medium applied motion, (c) PSD plot with low-medium applied motion  
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Table 12 

Average Power Results – Varied ETI Testing, Low-Medium Applied Motion 

EEG Frequency Bands Results 

Input Average Power 5.08E-07 W 

Reconstructed Average Power 4.72E-07 W 

  

Input Delta Average Power 1.75E-07 W 

Reconstructed Delta Average Power 1.59E-07 W 

Input Delta Percentage 34.4393 % 

Reconstructed Delta Percentage  33.7709 % 

  

Input Theta Average Power 1.19E-07 W 

Reconstructed Theta Average Power 1.20E-07 W 

Input Theta Percentage 23.4646 % 

Reconstructed Theta Percentage  25.475 % 

  

Input Alpha Average Power 1.52E-07 W 

Reconstructed Alpha Average Power 1.34E-07 W 

Input Alpha Percentage 29.8899 % 

Reconstructed Alpha Percentage  28.4716 % 

  

Input Beta Average Power 6.43E-08 W 

Reconstructed Beta Average Power 6.00E-08 W 

Input Beta Percentage 12.6458 % 

Reconstructed Beta Percentage  12.7138 % 

 

 

Due to the successful iteration of bench-top testing while applying a low-medium amount of motion 

on the ETI board/cables, a second iteration of bench-top testing was undertaken. This iteration 

consisted of a significant increase in motion applied to the ETI board/cables in the same fashion as 

the previous iteration. However, the distance increased to approximately 20mm and the frequency 

of motion increased to approximately 4Hz. On comparison to figure 36(a), the effect of such motion 

can be clearly observed in the raw output signals shown in figure 37. On inspection of said voltage 

vs time plot, it is seen that the amplitude of the signal varies significantly with the increase in 

motion applied to the system. 
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Once the reconstruction algorithm is applied, the voltage vs time plot of the input signal and 

reconstructed signal is plotted and shown in figure 38(a). It can be seen that the reconstructed signal 

matches the input signal relatively well. However, with a significant increase in applied movement, 

certain points of inaccuracy in the reconstructed signals amplitude is noticeable. Not only is there 

a noticeable decrease in amplitude in certain sections but also a noticeable increase in amplitude in 

certain sections. This initial observation is supported when inspecting the PSD plot shown in figure 

38(b). The marked points of the plot are the large inaccuracies found in the reconstructed signal’s 

amplitude when comparing to that of the input signal. These inaccuracies can also be seen in more 

detail by displaying the PSD plot with a linear scale along the y-axis, shown in figure 38(c).  

 

 

Figure 37.  Voltage vs time plot displaying the effect of significant applied motion on the raw output signals 
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To increase the accuracy of the entire reconstructed signal, the windowed reconstruction algorithm 

used in section 5.5 can be applied to the acquired output signals of the sensor PCB. With the 

windowed reconstruction algorithm now used, the resulting voltage vs time plot comparing the new 

reconstructed signal to the input signal can be seen in figure 39(a). On first inspection of the new 

voltage vs time plot, it does not appear to differ significantly from the results taken while using the 

non-windowed reconstruction algorithm. Only a small reduction in spikes exceeding the input 

signals amplitude can be noticed with a more detailed inspection. However, while examining the 

PSD plot shown in figure 39(b), the spikes produced as a result of the variation in ETI that were 

seen previously, are reduced dramatically. This increase in accuracy of the reconstructed signal, 

can be seen in more detail by displaying the PSD plot with a linear scale along the y-axis, shown 

in figure 39(c). The positions of the main spikes, representing inaccuracies in the reconstructed 

signal that were seen previously, were also marked in figures 39(b) and 39(c) to highlight the 

comparison between both reconstruction algorithms. Finally, the PSD results taken from both the 

non-windowed and windowed reconstruction algorithms are quantified and displayed in table 13. 

While the tabulated data may only reveal little to no increase in accuracy of the reconstructed 

signal, through observation of all forms of results, it is clear that the windowed reconstruction 

algorithm provides a significant increase in accuracy. 

(c) 

Figure 38.  (a) Voltage vs time plot with significant applied motion and non-windowed algorithm, (b) PSD plot with significant 

applied motion and non-windowed algorithm (semi-log scale y-axis), (c) PSD plot with significant applied motion and non-

windowed algorithm (linear scale y-axis) 
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(c) 

Figure 39.  (a) Voltage vs time plot with significant applied motion and windowed algorithm, (b) PSD plot with significant 

applied motion and windowed algorithm (semi-log scale y-axis), (c) PSD plot with significant applied motion and windowed 

algorithm (linear scale y-axis) 
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Table 13 

Average Power Results – Varied ETI Testing, Significant Applied Motion 

EEG Frequency Bands No Window Window 

Input Average Power 5.20E-07 W 5.20E-07 W 

Reconstructed Average Power 5.44E-07 W 5.77E-07 W 

   

Input Delta Average Power 1.77E-07 W 1.77E-07 W 

Reconstructed Delta Average Power 2.06E-07 W 2.04E-07 W 

Input Delta Percentage 34.1191 % 34.1191 % 

Reconstructed Delta Percentage  37.9495 % 35.2948 % 

   

Input Theta Average Power 1.23E-07 W 1.23E-07 W 

Reconstructed Theta Average Power 1.22E-07 W 1.47E-07 W 

Input Theta Percentage 23.7447 % 23.7447 % 

Reconstructed Theta Percentage  22.4922 % 25.4111 % 

   

Input Alpha Average Power 1.57E-07 W 1.57E-07 W 

Reconstructed Alpha Average Power 1.48E-07 W 1.55E-07 W 

Input Alpha Percentage 30.1516 % 30.1516 % 

Reconstructed Alpha Percentage  27.1308 % 26.8059 % 

   

Input Beta Average Power 6.45E-08 W 6.45E-08 W 

Reconstructed Beta Average Power 6.95E-08 W 7.39E-08 W 

Input Beta Percentage 12.4151 % 12.4151 % 

Reconstructed Beta Percentage  12.7827 % 12.817 % 

 

6.6 Summary 

The two-part electrode method simulated in chapter 5, was developed into a modular sensor PCB. 

The PCB was designed to interface to a two-part, dry-contact electrode, while being supplied by a 

centralized power PCB. The centralized power PCB was designed to have the capability of 

supplying the required power lines to a nine sensor system. Finally, ETI replica PCB’s were 

developed in order to test the two-part electrode methods operation, with a known input and a 

controlled environment. 

 

The first testing method was conducted using the ETI boards, with fixed capacitor/resistor value 

combinations. The testing consisted of 3 iterations, with each succeeding iteration having an 

increased ETI value. The results from the fixed ETI testing showed that the reconstruction 

algorithm produced signals that matched the known input signal relatively well. The results further 

concluded, that an amount of inaccuracy exists with the feedback capacitor selected for the circuit. 

With some tuning of the reconstruction algorithm, a more accurate representation of the sensor 
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electronics was found, resulting in a more accurately matched reconstructed signal to that of the 

input signal. 

 

The final testing method was again conducted using the ETI board with a fixed value. However, 

controlled motion was applied to the ETI board and cables, to create a varying ETI value, similar 

to that of a real-world system. During the first iteration of testing, a low-medium amount of motion 

was applied to the ETI board/cables. This amount of motion had a relatively low effect on the 

system, resulting in a high level of accuracy when comparing the reconstructed signal to the input 

signal. During the second iteration of testing, a relatively significant increase of motion was applied 

to the ETI board/cables. This increase in motion, resulted in far greater inaccuracy of the 

reconstructed signal. Thus, the windowed reconstruction algorithm developed in simulation, was 

applied to the acquired signals of the testing. The new results after applying said windowed 

reconstruction algorithm significantly improved the accuracy of the EEG acquisition method. 

 

With the above testing methods undertaken, a full evaluation of the novel EEG systems practical 

operation, was completed. Through controlled testing with a known input signal, the sensor 

electronics and accompanying reconstruction algorithm, produced an accurate representation of the 

original input signal.
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Chapter 7 
  

Conclusions and Suggestions for Future Work 
 

7.1 Introduction 

With the full testing and analysis of the developed novel system completed, general conclusions of 

the novel system can be made. Finally, this chapter concludes with future work required and 

suggestions for improvements to the novel system.  

 

7.2 General Conclusions 

The general conclusions made from the thesis are with respect to the initial research questions 

asked in chapter 1. The re-iteration of said questions are as follows:  

 

1. What characteristics are of most importance when analysing EEG potentials and how does 

the reproducibility of said potentials affect the accuracy of this analysis? 

 

2. With the novel dry-contact method, can a biopotential sensor be developed to accurately 

acquire EEG potentials?  

 

3. What are the practical limitations of the novel dry-contact method in relation to both the 

hardware and signal processing of the system?  

While conducting an extensive literature review, the characteristics of EEG signals and 

reproducibility of said signals for accuracy of analysis were among the various topics investigated. 

As described in the literature review (chapter 2), the most important characteristics of an EEG 

signal are the different frequency waveforms (delta, theta, alpha, beta and gamma) existing within 

the complex signal. With the knowledge of which frequency waveforms are prominent/present 

during the acquisition of EEG signals, an individual’s cognitive state or abnormality’s existing 

within said signals can directly correlate to brain functionality of the individual. However, analysis 
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of the accuracy of output signals acquired from any EEG device is impossible without knowing the 

exact input signal feeding the device. Thus, a controlled testing set-up is required, where the input 

EEG potential is a known variable. With this type of set-up, a full comparison of the frequency 

waveforms within the acquired EEG signal and the known input signal can be completed.  

 

Once the literature review had been completed, the design of the novel system commenced. The 

design topology, signal processing algorithm and component selection were completed in chapter 

4. This was then followed by a successful simulation and analysis of the system in chapter 5. The 

physical development of the novel system was then completed and in chapter 6, the above 

mentioned analysis method of a controlled testing environment was used. A full evaluation on the 

accuracy of the signal produced by the novel system when compared to that of a known input signal 

commenced. Various electrode-tissue interfaces within the range described in section 2.5.2 were 

used to effect the signal applied to the developed sensor. With some adjustments to the signal 

processing algorithm, the reconstructed signal produced by the novel system was a very accurate 

representation of the known input signal when both were fully analyzed. Furthermore, the said 

reconstructed signal remained highly accurate regardless of the ETI value used in the electrode-

tissue interface of the system. As testing continued, motion was applied to the systems electrode-

tissue interface to introduce errors. These errors were to replicate an individual’s movement while 

wearing such a device. It was found that low-medium applied motion had little effect on the 

accuracy of the reconstructed signal, so a significant amount of motion was then applied. This in 

turn, produced results that were noticeably inaccurate in certain sections of the reconstructed signal. 

Therefore, the reconstruction algorithm was again modified in a windowing fashion, which reduced 

these inaccurate occurrences dramatically. Thus, the conclusion drawn after thorough testing was 

that the novel system produces a highly accurate representation of the input EEG signal, regardless 

of the electrode-tissue interface of the system. 

 

As discussed in detail throughout chapter 4, the biggest hardware limitation of the system is the 

component selection. This is due to the inverting active bandpass filter topology, frequency range 

of the EEG signal, amplitude of the EEG signal and reconstruction algorithm. The active bandpass 

filter topology has a strict set of equations described in section 4.2.1 that directly relate to the cut-

off frequencies and amplification of the circuit. With this said, due to the narrow nature of the 

frequency range of an EEG signal and extremely large gain required to amplify said signal into 

interpretable data, the components available for use are limited. On top of this, the code for the 

reconstruction algorithm includes the values of these components. Thus, for ideal results, tight 
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tolerance components are required, which limits component selection further. The feedback 

capacitor value required for the topology was extremely small (0.6pF) and only available in an 

extremely small package (0402). When testing commenced it was recognized that the feedback 

capacitor appeared as a value larger than expected when placed on the sensor PCB, due to its small 

value, physical size and delicate testing environment. The reconstruction algorithm was then 

adjusted to correct for this and a more accurate representation of the input signal was produced. 

While this adjustment corrected the inaccuracy found in the capacitors value, this was not an ideal 

solution. 

 

While using the reconstruction algorithm on the acquired signals of the novel system the only 

limitation is that producing a real time signal is not possible. The reconstruction algorithm 

transforms the acquired data into the frequency domain, then proceeds to conduct some 

mathematics to account for and eliminate the effects of the systems ETI before finally transforming 

the reconstructed data back into the time domain. Therefore, there is a delay in a real time signal. 

As the reconstruction algorithm uses MATLAB, the processing time taken for this is so rapid, it 

appears as real time. However, due to the original signal being transformed into the frequency 

domain, a length of data must be stored to accurately transform the acquired signal. The length of 

this data must be twice the length of the lowest frequency component of the signal being 

transformed. Thus, a four second window is the maximum speed that data can be processed with 

the novel system. For many applications this is perfectly acceptable, however for time critical EEG 

applications, this system would not be desired. 

   

7.3 Suggested Improvements and Future Work 

While the research conducted throughout this thesis was extremely promising in regards to the 

development of a novel dry-contact EEG acquisition device, there are suggestions for 

improvements to be made and future work required in the continuation of this research. 

 

Although promising results were concluded with the bench-top testing described in chapter 6, a 

suggestion for improvement is to be made. With component selection extremely limited due to the 

design topology chosen for the sensor electronics, inaccuracies in the feedback capacitor have 

caused adjustments to be made with the reconstruction algorithm. As this is not ideal, it is suggested 

to re-visit section 4.2 and thoroughly investigate the potential to use the non-inverting active 

bandpass filter topology for the novel system. Although the non-inverting topology requires two 
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additional components per channel, the components dictating the amplification of the circuit are 

completely separate to the components dictating the frequency cut-off points. Thus, there will be 

fewer stringent limitations for the component selection of the system and therefore, a wider range 

of more practically realistic component values can be used.  

 

With the bench-top testing of the novel system completed, further work is required. The next step 

into completing a thorough analysis of the novel system is to finish developing the two-part 

electrode and phantom head. The development of both are currently underway, each led by two 

individuals also at AUT. Once both are fully developed, as described in section 2.3, known EEG 

potentials produced by the AFG3252C function generator can be applied to dipole antennas under 

a layer of conductive material, replicating human tissue. With the sensors strapped to the phantom 

head, the acquired signals can be processed and then compared to the known input signal with the 

same analysis methods used during the bench-top testing. 

 

Once phantom testing is completed to a satisfactory level, the next step is to conduct human testing. 

While a comparison of the reconstructed signals from the novel system and that of the EEG signals 

present at the surface of an individual’s head is not possible, methods to increase reproducibility in 

expected EEG signals present is possible. While conducting human testing, methods to induce 

alpha waves or beta waves within the acquired EEG signal, can be performed. As described in 

section 2.3, conscious relaxing activities can induce an increase in alpha waves of an acquired EEG 

signal, while conscious deep concentration activities can induce an increase in beta waves of an 

acquired EEG signal. Also the use of binaural beats while conducting human testing may also be a 

means to induce an increase in a desired frequency wave within the acquired EEG signal. 

 

7.4 Summary 

Research into the development and evaluation of wearable, dry-contact EEG sensors has been 

completed with promising results. All conclusions were stated at the end of each of the above 

chapters and further conclusions were stated in this chapter with regards to the initial research 

questions of this thesis. All suggestions for improvements and future work were also stated in this 

chapter for the continuation in the development of the novel EEG system. 
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Appendix A: 
 

Additional voltage vs time plots displayed after adjustments to the reconstruction algorithms 

feedback capacitance value. These plots relate to section 6.4. 
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