
Full citation: MacDonell, S.G., & Kirk, D. (2009) Tinker, tailor, software engineer, surgeon:
specialization in software systems creation and evolution. Presented at the OOPSLA Workshop on
Human Aspects of Software Engineering (HAoSE2009), Orlando FL, USA.

Tinker, tailor, software engineer, surgeon: specialization in software systems
creation and evolution

Stephen G. MacDonell and Diana Kirk
SERL, Computing and Mathematical Sciences

Auckland University of Technology
Private Bag 92006, Auckland 1142, New Zealand

stephen.macdonell@aut.ac.nz, diana.kirk@aut.ac.nz

Abstract

This position paper advocates a change of mindset
regarding how we perceive of and support those who
develop and maintain software systems. We contend that
a lack of explicit specialization is impeding our ability to
deal effectively with the challenges that arise in the
creation and evolution of software systems. Observations
from the health sector lead us to reconsider the roles of
the professionals involved.

Keywords: software engineering, software
evolution, role specialization

1. INTRODUCTION

The burgeoning complexity faced by those building and
maintaining software systems is widely acknowledged
[1]. A consequence of this complexity is that, at all stages
in a software life-cycle, an increasing range of expertise is
required of the humans designing and managing the
software product or service. The architect for a banking
system with expertise in databases may be faced with
designing an upgrade from a client-server to a web-based
architecture. The need for improved security to address
newly identified network vulnerabilities may require
novice developers to rapidly learn and use protocol
analysis techniques. An organization with an innovative
software product may need to implement a ‘light’
approach to development with personnel that lack the
understanding or ability to effectively support clients.

Why not simply implement training, initiate process
improvement, hire new personnel, and so on -‘standard’
responses to such demands? We contend that technologies
are just too complex and fast-changing for training to
keep up and the required expertise has become too broad
for individuals to cope. If we consider the product or
service alone, we must consider all of the application
area (business, telephony, health...), the product type
(web-based transaction, embedded real-time...) and the
operational environment (desktop application, client

server, distributed...). For a single organization, it is likely
that the first (application area) would remain constant but
equally likely that step changes in technology will force
ongoing revisions of both product type and operational
environment, with repercussions for both development
and support personnel. If product and management
processes are also considered in addition to the product or
service, we must add the need to familiarize with a range
of evolving techniques and tools, e.g. relating to
requirements elicitation, change control, development,
test and documentation. In addition to the techniques and
tools that are ‘standard’ for the organization, project
members must know how to deal with contextual issues.
For example, an ‘agile’ group may have a process that
assumes an on-site customer, and be left confused as to
what to do on a project where there is no such access to
customer.

There is a sense then that in software engineering (SE)
there is more and more that we need to know. In
broadening the body of knowledge, however, something
has to give -we need more time to learn, to develop
professionally, and/or we need to trade off breadth for
depth. As a community we have not addressed this issue
in an explicit and meaningful way. Basically, we have just
tried to fit more in into curricula, training courses,
expectations for professional development. Such an
approach is not sustainable, and we believe that the time
has come to encourage greater disciplinary specialization.
Elsewhere [3] we have suggested that the state of a
software system at any point in time may be considered in
terms of its health and well-being, just as we ourselves
move through life stages characterized by states of
wellness or illness. Taking this metaphor further can also
provide insights into how we view the roles of those
involved in the development and support of systems over
time.

2. SYSTEMS AND SPECIALIZATION

Leveraging a human health metaphor can enable us to
‘see’ a software system in multiple ways, to depict a

system depending on issues in focus. For instance, we
may consider a software system to be young, mature, or
aging [4]. Software systems in each grouping have
particular attributes to consider when assessing their state
of well-being. Similarly, we may view some systems as
being ill and others as being well. Complementary to
these approaches is a characterization of software systems
according to their type. Systems that are hardware-
embedded and operating in real-time are different to web-
based transaction systems, and these again are different to
personalized adaptive systems to be used on mobile
devices. We can also consider systems in terms of their
core domain or operating context -systems for business,
systems for manufacturing, systems for assisted living.

We see such perspectives having direct analogues in the
health sector, with what we believe to be useful
implications. A person is also a complex system of
systems that can be viewed in different ways -this may be
in general classifications of age or maturity, or states of
wellness/illness. We have infrastructural systems such as
the cardiovascular, the musculo-skeletal, the respiratory,
the nervous (somatic and autonomic) and the digestive.
These could be seen as mapping to our network and
database systems, to our computer and software
architectures, to our application, interface and domain
representations. As humans we also comprise
physiological and neurological systems that have physical
and conceptual or logical elements -which may map to
systems supporting workflow and enterprise activities.

All of these are valid perspectives for the consideration of
software systems, each encourages and enables us to think
about the system in a particular way, with a particular set
of attributes in focus. However, in acknowledging that the
various perspectives exist we are also acknowledging that
they each represent part of the whole, and as such provide
a potentially useful but inherently limited sense of the
system. Furthermore, such systems and subsystems are
not independent, they will interact in generally expected
but sometimes unpredictable ways. Traditionally,
software engineers have attempted to understand and cope
with this breadth of perspective -an alternative is to allow
for greater specialization with comparatively greater
depth.

We take our model for role specialization from the health
professions, an analogy also considered by Laplante [2]
and others. Like software professionals, health
professionals deal with a very complex entity in the
human person. They are aware of interacting subsystems
within that entity, as described above. In order to
effectively understand, diagnose and treat that entity
health professionals have adopted a specialized model.
So, there are personnel with specific competencies in
medicine or in surgery. Individuals may be experts in
mental health, or provide specialist diagnostic support.
Others take particular responsibility for assessment and
rehabilitation. In the provision of services there is a clear
distinction between primary and community care. In
acknowledging that people of different ages may require
different forms of support the health disciplines have
gerontologists for those who are aging, and paediatricians
for the young. In acknowledging the many subsystems
that make up a person they have the nephrologist, the

cardiologist, the gastroenterologist, the neurologist and
the neurosurgeon. And there is finer granularity still when
these perspectives intersect e.g. the paediatric
nephrologist. This is not to say that generalists are not
permitted. Quite the contrary, in fact, there are of course
general practitioners in health. However, general practice
is itself seen as a specialty - a specialty in breadth,
requiring particular diagnostic skills, capabilities and
ongoing professional development.

It may be suggested that we already have specialization in
SE. This may be true to an extent, and certainly there are
recognized specialist areas within the discipline, specialist
degrees and courses that can be taken. In general,
however, we continue to educate ‘software engineers’ -
the equivalent to health’s general practitioner. Our
archival publication venues address the whole of the
discipline, and job advertisements still seek software
engineers albeit with particular skills and capabilities.
However, these skills tend to reflect competence with the
tools and technologies rather than with the application of
tools to a particular class of (sub)system -like advertising
for a surgeon with the requirement “Must have recent
experience with Scalpel 3.0”.

It may also be suggested that specialization is in fact a
bad thing. For instance, specialization in SE has been
criticized as causing an inability to “think holistically
about the particulars of the problem that have been
abstracted away, and that now may be the responsibility
of no one in particular” [5]. We see this kind of
specialization as a kind of ‘functional specialization’ that
applies to the scoping of activities. For example, a
developer may understand that (s)he must not modify
design decisions, as this is the responsibility of the
designer. We submit that the kind of specialization
proposed in this paper is essentially different in that the
scoping relates to the nature of the system, for example,
to characteristics of the product or operating environment.
Furthermore, the health model for team-based treatment
helps to avoid inadequacies arising from specialized (and
so limited) understanding. Multi-disciplinary teams
(MDTs) work on a single entity in sequence and
sometimes in parallel, often co-ordinated by a senior
clinician. Members are called upon depending on the
conditions encountered and the treatment plans chosen.
Inter-disciplinary teams (IDTs) have an even greater
degree of interaction -rather than a chain of individual
specialists the group forms a network.

3. IMPLICATION

Carried through to software, the health model has
particular implications for education and training.
Prospective professionals would spend longer in formal
education, but this would be increasingly practice-based,
with internships the norm rather than the exception. A
general foundation education would be followed by
specialist learning and training, ongoing under
compulsory development programs monitored by peer
professionals. Some of this is done already, but it is not
common practice. Professional development carries with
it an expectation of self-reflection and learning in concert

with a community-based approach to developing
knowledge. For instance, the legal profession has case
law, the medics have their grand rounds and evidence-
based learning enabled by the Cochrane Collaboration. Of
course, software is not a social service that governments
support for the greater good, as they might for the health
professions. But nor is law, yet we would not tolerate a
law profession that did not learn as a community. Along
with other changes in thinking and conduct [1, 2],
disciplinary specialization may add to SE’s growing
professional standing.

4. REFERENCES

[1] T. DeMarco. Software engineering: an idea
whose time has come and gone? IEEE Software,
Jul/Aug, 2009.

[2] P. A. Laplante. Professional licensing and the social
transformation of software engineers. IEEE Tech.
Soc., Summer, 2005.

[3] S. G. MacDonell, D. Kirk, and L. McLeod. Raising
healthy software systems. In 4th Intl Workshop
Softw. Evoln Evolvability, L’Aquila, 2008. IEEE CS
Press.

[4] D. L. Parnas. Software aging. In 16th Intl Conf.
Softw. Eng. (ICSE), Sorrento, 1994. IEEE CS Press.

[5] R. Schaefer. A rational theory of system-making
systems. Software Engineering Notes, 31(2), 2006.

	1. Introduction
	There is a sense then that in software engineering (SE) there is more and more that we need to know. In broadening the body of knowledge, however, something has to give -we need more time to learn, to develop professionally, and/or we need to trade of...
	2. SYSTEMS AND SPECIALIZATION
	3. IMPLication
	4. References

