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ABSTRACT 

The explosive growth in the volume of data and the growing number of 

disparate data sources is bringing enormous opportunities and challenges to many 

research communities. In the biomedical domain, the challenge of knowledge 

discovery from diverse and heterogeneous biomedical data sources in order to make 

knowledge and concepts sharable over applications/experiments and reusable for 

several purposes is both complex and crucial.  

Opportunities arise by the simple act of connecting different facts and points of 

view that have been created for one purpose, but that in light of subsequent 

information can be reused in a quite different context, to form new concepts or 

hypotheses. However such interactions cannot be determined in advance - for one 

thing, there may be more or fewer problem dimensions involved in a process than 

were known when the process initially started. Modelling of such processes is a 

challenging task but is one with practical applications in many disciplines. Identifying 

these data interactions, learning about them, extracting knowledge, and building a 

reusable knowledge base that applies leading artificial intelligence and soft-computing 

methods will guide future research and practice and is at the core of this research. 

This thesis bridges two fields, ontology engineering and knowledge discovery in 

databases (KDD) for successful data mining in dynamic domains. The novel Ontology 

Driven Knowledge Discovery framework (ODKD) developed here provides a means 

of describing and representing evolving knowledge, managing shared knowledge, 

integrating data mining tools and algorithms, and enabling semantically rich 
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knowledge discovery. The ODKD framework encompasses a meta-knowledge model, 

a methodology and software engineering tools to semantically support knowledge 

discovery in databases. 

As a research endeavour that crosses the boundaries of information systems, 

software engineering, computer science and knowledge engineering, this thesis 

integrates in its research design a multi-methodological constructive approach widely 

used in the information systems discipline with the Design Science research 

methodology used in the engineering disciplines.   

The ODKD suite of tools implements a framework able to integrate the evolving 

ontology meta-knowledge model and methodology to provide a more holistic view of 

the KDD process than previously possible. The extensible system architecture enables 

the adoption of new knowledge, industry standards and tools and provides a solution 

architecture framework to deploy the ontology driven knowledge discovery process in 

different domains and software platforms.  In this thesis the functional capabilities of 

the tools and the appropriateness of the conceptual structures are demonstrated and 

evaluated in the context of a biomedical application case study. 

The ontology driven knowledge discovery proposal is novel in that it integrates 

both ontology engineering and KDD processes into one framework and a supporting 

methodology. It creates a new semantic structure, channel and process able to 

combine several sources of information and data mining tools within a shared 

knowledge repository. As such, it addresses the challenge of using computer models 

in concert with human knowledge to test hypotheses and to validate and integrate 

knowledge that may be created by different sources with diverse intentions but that 

when linked can promote the discovery of new knowledge.



1 

Introduction 

1.1. Introduction 

The explosive growth in the volume of data and the growing number of 

disparate data sources is bringing enormous opportunities and challenges to the 

research community (Blagosklonny & Pardee, 2002; Foster, 2006). Terabyte and 

petabyte databases, once unthinkable, are now a reality in a variety of domains, 

including marketing, sales, finance, healthcare, molecular biology, and various 

government sectors. 

In the biomedical domain, for example, the challenge of knowledge discovery 

from diverse and heterogeneous biomedical data in order to make knowledge and 

concepts sharable over applications/experiments and reusable for several purposes is 

both complex and crucial. It is central in the support of decision making in medical 

practice as well as enabling comprehensive knowledge acquisition by medical 
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research communities and molecular biologists involved in advancing biomedical 

understanding. 

Biomedical data can consist of information stored in the genetic code, identified 

in genomics and proteomics research by discovering sequencing patterns, gene 

functions, and protein-to-protein interactions.  It can also consist of experimental 

results from several sources such as therapeutic data, biomedical literature, and 

clinical data, for example, information collected from clinical patient data for clinical 

trial design (Burgun, Botti, Fieschi, & Le Beux, 1999; D'Hollosy et al., 1996; Ramoni, 

Stefanelli, Magnani, & Barosi, 1992). Large amounts of information and knowledge 

are produced at a rapid rate in the practice of medicine (Bodenreider, Mitchell, & 

McCray, 2002). Making medical knowledge sharable over applications is important as 

it enables the efficient management of resources and government investment in the 

health sector, as well as supporting physicians involved in health care.  

Similarly, we are faced with many complex and dynamic problems in the 

business world, particularly those related to decision making processes. The amounts 

of data produced daily from deals and transactions, including internal and external 

processes are growing at an exponential rate. Moreover, decision makers need to deal 

with information from different sources. In some business domains, such as 

agribusiness, they need to analyze climate, marketing, financial, and biological data 

among others to gain competitive advantage and improve the quality of their products.  

This huge amount of data, and its diversity, has been the main driving force for 

the development of theories, methodologies and technologies that aim to transform 
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these data into real assets in both the industry and research communities. On-line 

analysis, data warehousing, and visualization techniques, for example, when 

combined with simple tabular data, empower users, mainly decision makers, with 

their familiar world of spreadsheets and graphs resulting in the billion-dollar industry 

called business intelligence. 

There are several aspects and levels of abstraction that must be considered when 

working with data. The database industry is involved, among other things, with the 

management, storage, and security of data. Systems theorists tend to investigate the 

power of data transformation into information, knowledge and wisdom as an 

organization-changing factor. Ontologists look at the challenges associated with 

knowledge integration and representation. Even among more focused areas of 

activity, such as data mining and knowledge engineering, we can find different 

approaches working with data and extracting useful and non-trivial knowledge from 

previous facts.  

In spite of the different approaches to the transformation of data into real viable 

assets, all of these research areas are presented with a common challenge that is 

central to this thesis - how to acquire, share and maintain knowledge from large and 

distributed databases in the context of domains/problems in which processes are 

changing over time.  

Biomedical discovery, for example, is an intrinsically complex and risky 

process. One of the aspects of the biomedical discovery process is its iterative nature 

in terms of analyzing existing facts or data, to validate current hypotheses or to 
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generate new ones linked into testable chains and networks. Opportunities arise by the 

simple act of connecting different facts and points of view that have been created for 

one purpose, in light of subsequent information, which can be reused in a quite 

different context, to form new concepts or hypotheses. However this interaction 

cannot be determined in advance, for example there may be more, or fewer problem 

dimensions involved in the process than were known when the process initially 

started.  

These evolving characteristics are difficult to model, because some of their 

dimensions may not be known a priori. In addition unexpected discoveries or changes 

may happen at certain times during development, so they are not predictable in the 

longer term. Thus, modelling of such processes is a challenging task but with many 

practical applications in life sciences and business. 

Modelling data interactions, learning about them, extracting knowledge, and 

building a reusable knowledge base which combines leading artificial intelligence and 

soft-computing methods will guide future research and practice and is at the core of 

this research. 

This thesis bridges two fields, ontology engineering and knowledge discovery in 

databases (KDD) for successful data mining in large databases. In particular, it 

analyzes how data mining can assist in efficient and effective large-volume data 

analysis in order to build a sharable and evolving knowledge repository, and how 

ontologies can leverage this repository‘s semantic power to improve the results of 

data mining tasks and the analysis of knowledge discovered. 
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The thesis addresses three main tasks: knowledge acquisition, knowledge 

maintenance and knowledge sharing, in the context of an ontology-driven knowledge 

discovery process. The primary outcome is a process, which integrates the activities 

underlying ontology engineering and knowledge discovery in databases and that 

facilitates the creation of ontologies able to represent the dynamic and uncertain 

nature of domains in order to provide ongoing support for the decision making 

process over time. 

To that end, a novel ontology engineering framework has been developed which 

encompasses a methodology, a meta-knowledge model and software engineering tools 

to semantically support knowledge discovery in databases.  

1.2. Research questions 

‗Knowledge Discovery in Databases‘ focuses on the overall process of 

knowledge discovery from data, including how the data are stored and accessed, how 

features can best be selected and identified for data mining tasks, how results can be 

interpreted and visualized, and how the overall human-machine interaction can 

usefully be modelled and supported (Mihael, 2002). In a nutshell, it is the process of 

transforming data into non-trivial knowledge for decision making support. 

Transforming data into true assets is a challenging task which involves the 

discovery and sharing of knowledge from a potentially huge and diverse amount of 

facts/data and sources. This research addresses this challenge by investigating the 

broad question of how to acquire, share and maintain knowledge from large and 
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distributed databases in the context of domains/problems in which processes are 

changing over time.  

In order to answer this broad question, the thesis explores three main research 

topics: ontology engineering, knowledge discovery in databases, and the integration 

of the two. It addresses these topics in terms of four specific questions: 

 Can ontologies ‗evolve‘?  

 Can we integrate ontology engineering and data mining processes? 

 Can ontology support data mining tasks? 

 Can data mining tasks enhance ontology knowledge? 

Of course, each of these questions can be answered as a simple ‗Yes‘ or ‗No‘. 

However, it is the substance underlying each answer that forms the content and 

contributions of this thesis.  Thus the questions above reflect the design science 

challenges of the research – each with specific requirements and success criteria that 

are addressed in turn.  

Ontology evolution is addressed by the creation of a meta-knowledge able to 

capture information which supports ontology change, taking into consideration 

several inputs such as those informed by experts (expressed in rules or annotations) 

and those acquired from artificial models (data mining models and simulations). 
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Ontology engineering and data mining process integration is addressed by a 

novel methodology and process which takes into consideration both processes 

requirements and suggests a new ontology driven methodology and framework. 

Ontology support for data mining is addressed by a two-fold approach: by the 

selection of data samples using a multidimensional and semantically rich ontology 

model at the initial phase of a knowledge discovery process; as well as at the end of 

the process when enhancing the results acquired from a data mining model by linking 

the results into the generic ontology model. This approach then closes the loop of an 

ontology driven knowledge discovery process.  

Ontology enhancement from data mining is addressed as a mechanism which 

acquires knowledge from data mining and integrates it into the ontology. It  allows 

sharing, annotation, enhancement, and evaluation of the knowledge by human experts 

who can then validate hypotheses or create new ones in the light of the newly 

acquired knowledge.  

The rest of this chapter describes the research methodology adopted in this 

thesis. It covers a multi-methodological approach which has as a core component the 

development of tools that support the framework proposed. The research design 

defines the research process, conceptual framework, system architecture; its 

requirements and assumptions, delimitation of the study and its limitations.  
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1.3. Research Methodology  

As a multi-disciplinary topic involving engineering processes and software 

development, this research falls more readily into the category of applied research 

than that of basic research. Applied research has two main goals, one theoretical and 

one practical (Adams & Courtney, 2004):  

– ―To increase (theoretical) knowledge: to understand why things happen in a 

particular context, and  

– ―To improve practice by conducting research that will ultimately yield 

usefulness and improve processes in a particular field.‖ 

There is substantial support in the literature for the use of systems development 

and prototyping as a valid and valuable computer and information sciences research 

method (Hartmanis, 1994; Newell & Simon, 1976; Nunamaker, Chen, & Titus, 1990). 

Newell and Simon (1976) argue that computer programs are not black boxes. “We 

can open them up and look inside. We can relate their structure to their behaviour 

and draw many lessons from a single experiment”. Hartmanis (1995) argues that the 

changes in research paradigms in computer science are driven largely by technology 

and therefore demonstrations via the likes of simulation and functional prototyping 

can play the role of experiments in this domain. Empirical study of the development 

process and the use of prototype systems provide valuable feedback for more 

effectively designing a system and consolidating an iterative research process. 
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This research applies an adapted version of Nunamaker‘s methodology 

(Nunamaker, Chen, & Titus, 1991) that  considers Design Science (Hevner, March, 

Park, & Ram, 2004) as a theory-building methodology. It is an iterative research 

process (Figure 0-1), integrating ontology engineering and knowledge discovery in 

databases. 

 

Figure 0-1– Multi-methodological approach applied in this research (adapted from 

Nunamaker et al. (1991) and Adams et al (2004)) 

The adapted multi-methodological approach consists of four major phases: 

design science, system development, experimentation and observation. This research 

methodology then forms the base for the evaluation of the thesis as described below. 

―When the proposed solution of the research problem cannot be proven 

mathematically, or if it proposes a new way of doing things, researchers have to 

develop a system to demonstrate the validity of the solution, based on the suggested 

new methods, techniques, or design‖ (Nunamaker, Chen, & Titus, 1991).  
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Design Science  

As defined by the Buckminster Fuller Institute (2006), design science‘s function 

“is to solve problems by introducing into the environment new artefacts”. Design 

science as used in this work is directed at the building and evaluation of IT artefacts. 

It is especially valuable and appropriate in this work as it facilitates the iterative 

process of developing tools and evaluating them in order to validate the conceptual 

framework. 

Design science involves the development of constructs, models, methods and 

implementations which can be compared with the theory-building notion of concepts, 

construction of conceptual frameworks, new methods or models (Nunamaker, Chen, 

& Titus, 1990). These design science outcomes are manifested in the model, 

conceptual framework and life cycle developed in this research.  

Constructs as conceptualizations (conceptual frameworks) can be used to 

describe problems within a domain, define methods and processes and specify their 

solutions. In the context of this research, a conceptualization is embedded in the 

process and methodology. 

The third outcome is the hybrid life cycle integrating ontology engineering and 

an industry standard process for data mining delineated by the Ontology Driven 

Knowledge Discovery Process. 

Conceptualization or the establishment of the theoretical grounding of the 

system requirements is posited in Adams  (2004) as ―the focal point of the research 
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effort”. The conceptual basis is followed by the development of the system that acts 

as proof of the concept of the proposed life cycle and conceptual framework. 

System Development  

The System development phase of this research consists of five stages that 

result in the design of the system, system architecture, prototype, product 

development, and technology transfer respectively. This phase is concerned with 

theory testing and allows for a realistic technological evaluation of the product 

developed and its potential for acceptance. This phase also guides the design of 

associated experiments and forms the basis for conducting systematic observation and 

the development of the case studies. 

Experimentation  

The Experimentation phase concentrates on the validation of the underlying 

theories, systems, and technology transfer. It provides the main impetus for the 

refinement of the conceptual framework, models and tools. The results produced 

enable the refinement of theories and a comparison against the research requirements 

defined in the earlier stages of the work. 

Observation 

Once the prototype is built, the observation phase is enacted to test the 

prototype and validate it against the specified requirements as well as to consider its 

impact on the research problem. This contributes to the provision of holistic insights 

into the domain. 
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The results produced through the use of the prototype are interpreted and 

evaluated based on the conceptual framework requirements and the requirements of 

the system. The results guide the improvement of the tools to better support the 

conceptual framework. Further observations are then made in the context of the main 

biomedical case study and these observations form the basis for the contribution, 

conclusions and future research sections of this thesis. 

The multi-methodological approach is an evolutionary process. In every phase 

of the research process, experiences accumulated guide improvements in design 

decisions made in previous phases and/or leverage new discoveries which improve the 

conceptual contribution of this research. 

The next section describes the research process in detail, linking the 

methodology with the specific outcomes of each chapter. 

1.3.1. Detailed Research Process 

 

 Figure 0-2– A Research Process diagram integrating the methodology and the thesis’ 

structure.  
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The research process is divided into four main blocks: Research Proposal, 

Conceptual Contribution, Practical Contribution and Evaluation. The first two blocks 

are covered by a Design Science research methodology and are responsible for the 

theoretical contribution of this research. 

The Practical Contribution encompasses the set of ontology engineering tools 

developed to support the conceptual framework and its application in a biomedical 

knowledge discovery tool. Nunamaker‘s systems development research methodology, 

described briefly in the next section, is followed in this Practical Contribution stage. 

The Evaluation stage is concerned with the validation of the framework and 

associated tools. This phase covers the iterative process of design, implementation, 

validation and refinement. In each phase of the process, the outcomes produced are 

compared with the requirements and then both the conceptual framework and tools 

are adjusted when and where necessary.  

Although the chapters represent the final results of this iterative process, each 

iterative step can be followed through the reporting of the experiments that are 

explicitly described as sections within the chapters or through the list of published 

outcomes which shows the evolutionary design process of both the conceptual and 

practical contributions of this research. 

System Development Research Process 

Software Systems Development can be considered a research domain and a 

research methodology. As a methodology, systems development is not new and has 
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been widely used to study nature and to create new things (Ives, Hamilton, & Davis, 

1980; Joline & Joey, 1995; Pechenizkiy, Puuronen, & Tsymbal, 2006). The use of 

engineering tools such as integrated development environments (IDEs) and computer-

aided design and computer-aided manufacturing (CAD/CAM) to support systems 

development has also been found very useful in amplifying human intelligence and in 

transferring knowledge for wider use. 

 

 Figure 0-3 – A Research Process of Systems Development Research Methodology 

(Source: Nunamaker 1996). 

This research employs Nunamaker‘s systems development process (Figure 0-3), 

taking into consideration the requirements posited by Pechenizkiy (2006) and Dhar‘s 

Intelligence Density measurement (1997) (section 2.2.5) as criteria for the evaluation 

of the usefulness and ‗interestingness‘ of the ontology driven knowledge discovery 

process.  
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Nunamaker et al. (1991) describe systems development as belonging to 

engineering, developmental and formative types of research. Its basic principles are 

summarized as follows: 

– Design is the most important part of a system development process. Design 

involves the understanding of the studied domain, the application of relevant 

scientific and technical knowledge, the creation of various alternatives, and 

the synthesis and evaluation of proposed alternative solutions. 

– Building a prototype system always helps to study and understand a research 

domain. 

– A good system architecture provides a road map for the system building 

process. It puts the system components into the correct perspective, specifies 

the system functionalities, and defines the structural relationships and 

dynamic interactions among system components.  

– Researchers must identify the constraints imposed by the environment, state 

the objectives of the development efforts (i.e., the focus of the research), and 

define the functionalities of the resulting system to achieve the stated 

objectives.  

– The process of implementing a working system can provide researchers with 

insights into the advantages and disadvantages of the concepts, the 

frameworks, and the chosen design alternatives.  
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– Depending on the focus of the research, one might emphasize the new 

functionalities or innovative user interface features of the proposed new 

system rather than the throughput or the response time of the system. 

– Implementation is used to demonstrate the feasibility of the design and the 

usability of the functionalities of a system development research project.  

– Once the system is built, researchers can test its performance and usability as 

stated in the requirement definition phase, as well as observe its impact on 

individuals, groups, or organizations.  

– The test results should be interpreted and evaluated based on the conceptual 

framework and the requirements of the system defined during the earlier 

stages.  

The software engineering nature of this research determined the adoption of a 

systems development research methodology as its core component. However the 

integration of two ‗evolving‘ fields, namely ontology engineering and KDD, and the 

proposal of a novel conceptual framework brought further requirements to the 

development of the conceptual framework and its tools. In the next section we present 

the scope, design framework and requirements of this research. 

1.4. Scope of the research 

Although ontology building has been gaining increasing attention since 1990, 

the mid-90s can be considered the beginning point of the ontology engineering field. 
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The first workshop on ontology engineering, for example, was held in conjunction 

with the 12
th

 European Conference on Artificial Intelligence in 1996, where defined 

steps aiming to reduce the effort to build ontologies were identified (Gómez-Pérez, 

Fernández-López, & Corcho, 2004). The mid-90s is also considered a Knowledge 

Discovery in Databases milestone. In 1996, Fayyad et al proposed the idea of the 

second generation of KDD tools where the process characteristics were emphasized 

rather than the development of data mining (modelling) techniques. The idea for a 

continuum process for making sense of data was established. 

Since the mid-90s significant research effort has been expended in both 

ontology development and KDD processes. However, somewhat less common is the 

investigation of the role of ontologies in incremental and cyclic approaches to 

knowledge discovery – the focus of this work. 

There exist examples of the application of machine learning techniques for 

building ontologies. For instance, ontology learning from text in the semantic web is 

already being recognized as a worthwhile technique to reduce the work of building 

hierarchical ontologies from scratch or refining existing ones (Honavar et al., 2001; 

Reinberger, Spyns, Pretorius, & Daelemans, 2004). The role of ontologies in 

knowledge discovery, however, has received less attention (KDO-2004, 2004). 

The integration of ontologies and knowledge discovery is a novel and 

challenging field of research. “The use of prior knowledge may significantly enhance 

knowledge discovery from large datasets or text collections. Currently, in most KDD 

projects, prior knowledge is only present implicitly (in the head of the human analyst) 
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or in the form of textual documentation. Even in knowledge-intensive approaches, the 

background knowledge is often not organized around a well-formed conceptual 

model. This practice seems to ignore latest developments in knowledge engineering, 

where domain knowledge is typically defined by formal ontologies.”(Text extracted 

from the motivations of the first Workshop in Knowledge Discovery and Ontologies 

(KDO-2004)) 

This thesis is concerned with knowledge, represented as ontologies, and its 

integration in a knowledge discovery process. The use of prior knowledge may help 

(the user or a system) in selecting suitable data for a data mining task, to prune the 

space of hypotheses and to represent the output in the most comprehensible way in a 

knowledge discovery process. Instead of looking specifically at the application of 

ontology in KDD, such as the use of prior knowledge to improve the effectiveness of 

clustering algorithms, or the application of data mining techniques in ontologies, such 

as ontology learning from text, the focus of this research is on the closed-loop 

integration of ontologies in knowledge discovery in databases (Figure 0-4). 
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 Figure 0-4 - Ontology and KDD integration (adapted from (Fayyad, 1996)). 

1.4.1. Implementation Environment 

There are three main aspects of the implementation environment to be 

discussed: the knowledge discovery process being enacted, the domain in which the 

implementation is centred, and the ontology engineering tool extended in this thesis. 

Knowledge discovery tasks 

There are various knowledge discovery processes in the literature (Fayyad, 

Piatetsky-Shapiro, & Uthurusamy, 2003; Gregory, 2000; Shearer, 2000). There are 

also various methodologies and methods for building an ontology (Gandon, 2006; 

Gómez-Perez, 1999; A.  Gómez-Pérez, Fernández-López, & Corcho, 2004; 

Mizoguchi & Ikeda, 2006). Most of these ontology building methods are influenced 

by the problem domain on which they are based, such as TOVE (Toronto Virtual 

Enterprise) in the domain of enterprise modelling. Others are influenced by reference 

disciplines. The METHONTOLOGY methodology (Fernandez, Gomez-Perez, & 
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Juristo, 1997), for example, is based on the adoption of the IEEE standard for 

software development - 1996. 

Considering the positioning of this thesis in KDD, two of the most widely used 

KDD processes in both academia and industry have been  selected: Fayyad (1996) and 

CRISP- DM (Shearer, 2000). Although the research is also influenced by a reference 

discipline (KDD), the implementation phase considers proposed ontology engineering 

activities such as ontology integration, merging and learning in the context of the 

ontology driven knowledge discovery process.  

It is important to mention that, although the tools developed in this research are 

general, that is, they can be used in different knowledge discovery tasks and to 

support different techniques such as text mining, the main target of this thesis is 

mining knowledge from data and enhancing ontologies from instances within the 

context of biomedical knowledge discovery.  

The techniques and life cycle adopted in this research are discussed in detail in 

Chapters 4 and 5. 

Implementation Domain 

The biomedical domain has been selected as a representative application domain 

for this thesis for the following reasons: 

– Biological knowledge discovery is a challenging task. The tremendous 

amount of DNA sequence information that is now available provides the 
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foundation for the study of how the genome of an organism functions 

(Bodenreider, Mitchell, & McCray, 2003). At the same time, millions of 

easily retrievable facts on biological behaviours are being accumulated from 

a variety of sources in seemingly diverse fields, and from thousands of 

journals. Biological ―knowledge is evolving so rapidly that it is difficult for 

most scientists to assimilate and integrate the new information within their 

existing knowledge” (Barnes, 2002). 

– The use of ontology is key in structuring biomedical data (Bray, 2001) in 

a way that helps scientists to understand the relationships that exist between 

terms in a specialized area of interest, as well as to help them understand the 

nomenclature in areas with which they are unfamiliar. 

– In biological systems, everything is interconnected, and ostensibly 

unrelated fields are related - the separation of biology into different 

disciplines, while useful, is artificial (Blagosklonny & Pardee, 2002).  

– As an evolving field, biomedical informatics brings all the requirements 

needed to evaluate the proposed ―Evolving Ontology‖ model. 

– The complexity involved in biomedical discovery is significant (Barnes, 

2002) so there is a need to find tools to acquire, maintain and represent 

knowledge in a more understandable way. 
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Implementation Platform 

When this research began in 2003, the Ontoweb Deliverable 1.3 (Gómez-Pérez, 

2002) was the main work attempting to compile a survey of existing ontology tools. 

The ontology development tool section reported in that survey included tools, 

environments, and suites that could be used for building a new ontology from scratch 

or for reusing existing ontologies. The survey was also complemented with extra 

features such as tools for ontology documentation, ontology exportation and 

importation from different formats, graphical views of the ontologies built, ontology 

libraries, attached inference engines, and so on. 

Among the 11 listed tools, the public domain tool Protégé (Noy, Fergerson, & 

Musen, 2000), developed at Stanford, was reported as being one of the most used and 

powerful ontology tools, offering a range of important functionalities (described in 

Chapter 5) for the development of the meta-model which supports the concept of 

Evolving Ontologies. Therefore Protégé was the tool selected in which to implement 

our conceptual framework and develop the ontological model.  

In spite of Protégé being able to meet some of the ontology engineering 

requirements of this research, it has limited capability with respect to integration with 

knowledge discovery processes. This limitation has led to the development of new 

plug-ins able to test our conceptual framework and form the foundation for full 

implementation and refinement of this research proposal. Existing plug-ins have also 

been used or enhanced to support the ontology driven knowledge discovery 

framework. 



23 

Protégé, as an open source code application, also provides an opportunity to test 

and to expose the thesis‘ tools to a wider audience as well as to transfer the developed 

technology.  

Protégé was also favoured due to its industry partnership with Daimler Chrysler, 

the main partner for the industry life cycle adopted in this research – Cross Industry 

Standard Process for Data Mining (CRISP-DM). Additional technical reasons for 

selecting Protégé as the preferred ontology tool are discussed in Chapter 5  

1.4.2.  Requirements Identification 

This section defines the requirements established to evaluate the main outcomes 

of this research (Knowledge representation, Conceptual Framework, Ontology Driven 

Methodology and Ontology Engineering tool). These requirements were defined 

taking into consideration Nunamaker‘s systems development research methodology, 

and the needs of the biomedical ontology engineering community, and were also 

informed by requirements derived from literature and from users and experts 

conducting research on brain diseases. 

 

Knowledge Representation 

A meta-knowledge model able to cope with the evolving characteristics of a 

domain should be built to support several knowledge representation requirements. The 

user should be able to: 



24 

– Define different sources of information (Glass & Karopka, 2002; D'Hollosy, 

De Vries Robbe, Mars, Witjes, Debruyne & Wijkstra, 1996; Barnes, 2002; 

Ashburner & Ball, 2000) and maintain a traceable link to original sources 

(Marchiori, 2002; Kauppinen & Hyvönen, 2006). This requirement is 

essential for the acquisition of different information sources in the context of 

dynamic domains.  

– Represent uncertainty ((Heflin, Hendler & Luke, 1999; Flouris & 

Plexousakis, 2005; Avery & Yearwood, 2004). This requirement reflects the 

need to include metadata about the quality of the information acquired by 

both experts and modelling techniques in order to define uncertainty. 

– Acquire new knowledge while establishing degrees of knowledge 

acceptance based on external measures e.g. evidentiary strength, statistical 

significance (Stojanovic, Maedche, Stojanovic & Studer, 2003; Peter, Olga 

& Sven, 2007; Bairoch, Boeckmann, Ferro & Gasteiger, 2004). 

– Annotate any concept with domain specific and general meta-data (Burgun, 

Botti, Fieschi & Le Beux, 1999; Cheah, & Abidi, 2001; DCMI. 2007; 

Bodenreider, 2001). This capability is essential to ensure that the provenance 

of change can be noted and held persistent, and so that decisions can be 

made (and their rationale recorded) regarding inclusion or exclusion of 

concepts in any given analysis.  
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Conceptual Framework 

An extensible conceptual framework able to integrate both ontology engineering 

and knowledge discovery in databases should be developed. The user/framework 

should be able to: 

– Reuse knowledge across multiple applications and multiple forms of 

analysis (Spyns, Meersman & Jarrar, 2002; Noy, Fergerson & Musen, 2000; 

Gruber, 1993a). 

– Support different (and presently unknown) knowledge discovery tasks 

(Yoon, Henschen, Park & Makki, 1999; Garcia, Ferraz & Pinto, 2006). This 

requirement is essential for the development of a closed loop approach in the 

context of ontology engineering and KDD integration. 

– Acquire knowledge using data mining techniques (Jinze, Wei & Jiong, 2004; 

Honavar, Andorf, Caragea, Silvescu, Reinoso-Castillo & Dobbs, 2001; Glass 

& Karopka, 2002). This capability is needed for the creation of a hybrid 

solution that can integrate expert knowledge and knowledge acquired using 

machine learning techniques. 

– Define a hybrid life cycle integration of both otology engineering and KDD 

processes (Gregory, 2000; Fayyad & Uthurusamy, 2002; Giarratano & 

Riley, 2004).  



26 

– Use navigation, visualisation and a query language to support the hybrid life 

cycle (Gandon, 2006; Gómez-Perez, 1999; Gómez-Pérez, 2002; Wang & 

Gottgtroy, 2006) in a way that supports the user in their interactions with the 

knowledge. 

Ontology Driven Methodology 

It is important that this research establish reusable processes, methods and tools 

in the form of an ontology engineering methodology which should also respect the 

requirements identified in the previous sections.  All requirements defined in this and 

the  following subsection are related to the research goal to create a methodology and 

develop tools able to use computer models in concert with human knowledge to test 

hypotheses and to validate and integrate knowledge that may be created by different 

sources with diverse intentions but that when linked can promote the discovery of new 

knowledge. The user/methodology should then be able to: 

– Integrate different databases to suit specific and dynamic needs requiring 

different knowledge content. 

– Use manual, automatic and semi-automatic knowledge acquisition tools 

(Falconer, Noy & Storey, 2006; Gómez-Pérez, 2003). 

– Follow a hybrid ontology driven KDD Life Cycle so that the knowledge 

base continues to evolve and so that the closed loop is achieved. 
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– Suggest a conceptual modelling technique so that a guideline on how to 

acquire expert and ontological knowledge can be applied to the methodology 

in real-world problems (Gómez-Pérez, Fernández-López & Corcho, 2004; 

Gottgtroy, 2001).  

Ontology Engineering Tool 

In order for the framework to be used in practice a set of tools able to support 

the proposed conceptual framework must be integrated and developed in order to 

validate the research. These tools should: 

– Provide support for all stages of the entire ODKD hybrid life cycle. 

– Include navigation, visualization and query support to support the user in 

their interactions with the knowledge. 

– Integrate in a flexible manner with different data mining workbenches so 

that knowledge can be acquired from multiple sources. 

– Be extensible in order to support the addition of new methods and tools to 

the proposed ontology driven framework. 

– Be reusable across multiple application areas. 

– Be published in the public domain to maximise use. 
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– Integrate and reuse the best tools and practices in the ontology engineering 

field. 

The system‘s criteria defined for the ontology engineering tool are briefly 

described here in order to support the research design evaluation. For example, the 

methodology must be supported by novel developed, extended or adopted tools. 

Further and specific system requirements related to plug-ins developed in this 

research are defined in Chapter 5 through the requirement specification of the 

ontology driven knowledge discovery framework. They are then used to validate the 

contribution of this thesis in Chapter 8 – Contribution/ Future research. 

1.5. Summary 

This chapter began with a characterization of the thesis domain, problems and 

research questions. It then presents a multi-methodological and iterative research 

approach able to cope with the plurality of research fields and with the requirements 

for the development of a new methodology to integrate ontologies in the context of 

knowledge discovery in databases. It then argues from the literature that System 

Development is a valid and viable research methodology for the development of the 

proposed ontology driven knowledge discovery conceptual framework and its 

supportive tools. This is followed by descriptions of the research process, scope of the 

work, design framework and implementation requirements.   

The remaining chapters present the development of the thesis and are structured 

as follows: 
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Chapter 2 introduces the main elements of this research: ontology, ontology 

engineering, knowledge discovery in database, and ontology and knowledge 

discovery integration. These elements form the basis for the more specific research 

topics addressed in each of the following chapters.  

Chapter 3 concentrates on the development of an ontological representation able 

to cope with the evolving characteristics of dynamic domains. The core question 

investigated in this chapter is: can ontologies ‗evolve‘? The ―Evolving Ontology‖ 

definition is presented followed by the description of the conceptual model. A case 

study for a Leukaemia ontology is then explored. 

Chapter 4 presents the integration of ontology engineering and the knowledge-

discovery-in-databases process. It shows how this thesis addresses the second research 

question through the development of an ontology-driven knowledge discovery 

process. We describe each step of the process, its integration with the CRISP-DM life 

cycle and the methodology used. 

Chapter 5 describes the implementation of the framework. The selected 

ontology environment and its characteristics are presented. The set of tools developed 

and adapted to support the conceptual framework are presented and a comparison of 

the requirements for knowledge discovery in databases workbenches is conducted and 

reported.  

Chapter 6 demonstrates the utility of the proposed methods and tools in a 

biomedical case study.  
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The evaluation of the research process and outcomes are presented in chapter 7. 

The framework and tools are assessed against the criteria and requirements defined in 

the research design along with a comparison with the requirements for next generation 

KDD tools. Recommendations for practice are drawn for further development of 

ontologies and their integration with knowledge discovery workbenches using the 

ontology-driven knowledge discovery process and tools. 

Finally, Chapter 8 presents conclusions based on the findings of the thesis, 

analyzing the impact of the study in the ontology engineering field, stressing its 

strengths and its limitations. Implications and future directions for research are 

presented.  
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Chapter 2  

Research literature review 

2.1. Introduction 

Ontology is a multidisciplinary notion related to various fields including 

philosophy, artificial intelligence, cognitive science, and conceptual modelling. 

However, when considered as an engineering discipline, it is directly related to 

software engineering and applied information systems.  

Although knowledge discovery in databases has inherited relationships with the 

data mining domain comprising pattern recognition, statistics, database management 

and artificial intelligence, KDD is also directly related to information systems and 

software engineering when it is considered as a process whose main goal is to develop 

tools to make sense of data and support decision making. KDD as an information 

systems research topic is clearly referenced in the Association for Computing 
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Machinery (ACM) classification system for the computing field where data mining is 

a subject of database applications that, in turn, is related to database management and 

to the information systems field (ACM, 1998). 

In order to cope with this diversity/richness of research domains, while having 

information systems as a common discipline, this chapter describes the main research 

elements of the thesis which span through ontologies, knowledge discovery and the 

relationship between these two research fields. Although most elements are reviewed 

in this Chapter, some specific related topics are briefly described within subsequent 

chapters in order to improve the reading of the thesis. The next sections describe the 

most important and general elements of the research. 

2.2. Elements of the research 

2.2.1. Ontology 

Although ontology, as a computer science topic, has just a short history, 

philosophers have been studying these ideas for centuries. Human beings have always 

been regarded as having a natural desire to know. Questions such as; what is 

knowledge? What is the relationship between external perception of the world and 

personal models? These are only some of the basic questions that have been 

investigated by philosophers and psychologists.  

Technological advances brought new questions to this scenario: can we 

represent knowledge on a computer? Can we share knowledge? Attached to these 

questions is our wish to intelligently use knowledge to take competitive advantage in 
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businesses, to improve society for individuals and groups, to search for information 

on the web, to extract knowledge from data and so forth, and this results in  pressure 

to find new ways of building, maintaining and sharing knowledge among people, 

machines and processes.  

The notion of reusable pieces of knowledge had its starting point in 1991 when 

the Defence Advanced Research Projects Agency (DARPA) (Gómez-Pérez, 

Fernández-López, & Corcho, 2004) proposed a new way of building knowledge based 

systems. Their proposal encompassed the idea of assembling reusable components 

and the interoperability of different reasoning. That way “declarative knowledge, 

problem-solving techniques and reasoning services would all be shared among 

systems”. This movement was followed by other initiatives within the knowledge 

engineering community (Gómez-Perez, 1999) which built the conceptual bases on 

which was developed the idea of ontology within computer science. 

Ontology is often defined in artificial intelligence as a specification of a 

conceptualization (Gruber, 1993b). Ontology specifies at a high level what classes of 

concepts are introduced to a domain and what classes of relations exist between these 

concept classes. Ontology captures the intrinsic conceptual structure of a domain. 

“Given a domain, its ontology forms the heart of any system of knowledge 

representation for that domain” (Chandrasekaran, Josephson, & Benjamins, 1999). 

Ontology is said to be a unifying framework for different viewpoints (Uschold & 

Gruinger, 1996). It is an in-principle agreement which enables communication 

between people, people and systems, and between systems. 
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Ontologies (Gruber, 1993a; Sowa, 2002) have been used to provide a common 

conceptual framework for several systems, notably in bioinformatics (Glass & 

Karopka, 2002; Köhler & Schulze-Kremer, 2002; Schulze-Kremer, 2002), medical 

decision support systems (Burgun, Botti, Fieschi, & Le Beux, 1999; Cheah & Abidi, 

2001), and knowledge management (M. Peter & Hans, 2004; Sure, Staab, & Studer, 

2002).  

Ontologies have been widely investigated by the knowledge engineering, 

artificial intelligence, philosophy and computer science communities, emerging as an 

important research topic at the end of 1990‘s and beginning of this century. The 

incredible advance of the internet, the huge amount of data produced and stored in 

enterprise databases, the genome project among others are producing new 

requirements for the evolution of ontologies and the creation of an ontology 

engineering field.  

2.2.2. Ontology Engineering 

Ontology engineering relates to the systematisation of the activities involved in 

the process of building ontologies. It is concerned with the development process, the 

life cycle, methodologies and tools to support the development and use of ontologies. 

Mizoguchi and Ikeda (2006) argue that the most important challenge of the 

ontology engineering field is to make implicit knowledge explicit. ―Ontology in 

philosophy contributes to understanding of the existence. While it is acceptable as 

science, its contribution to engineering is not enough, it is not for ontology 

engineering which has to demonstrate the practical utility of ontology”. 
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Software and databases, for example, can be considered and/or perceived as 

having ontologies within their models. However, their models are implicit 

conceptualizations (Gottgtroy, Kasabov, & MacDonell, 2003a). The knowledge 

management field, for example, is calling for technologies which will enable 

organizations to build their corporate memory, that is, an explicit and consistent 

representation of knowledge and information within an organization, which facilitates 

access, sharing and reuse by members of the organization and preserves knowledge 

within an organization (Fensel et al., 2000). 

An explicit representation of an ontology is critical to its purpose of making 

machine readable sharable knowledge. In fact, by making at least some aspects of the 

conceptualizations explicit to the system, it can improve them through inferences, 

exploiting these explicit partial conceptualizations of our reality. Guarino and Welty 

state: “The philosophical discipline of Ontology is evolving towards an engineering 

discipline and in this evolution the need for a principled methodology has clearly 

arisen” (Guarino & Welty, 2000). 

Ontology, as an engineering discipline, searches for methods and tools to enable 

users to build ontological representations of a domain and its problems. As a young 

field, instead of searching for the best possible theory for all problems, ontology 

engineering is currently investigating theory that can be applied to specific problems. 

Although none of the available research has ever developed a general theory that can 

solve all problems, ontology engineering has been successful in finding adequate 

methods that can deal with specific but complex problems (Sowa, 2005). Ontology 
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engineering bridges the gap between the real world and models and theories. Figure 

2-1 shows this engineering process. 

 

Figure 2-1 -World, Model and Theory (Sowa, 2005) 

A large number of ontologies have been developed by different groups, with 

different approaches, and with different methods and techniques (Gandon, 2006; 

Gómez-Perez, 1999). Sowa argues that ―if the world had a unique decomposition into 

discrete objects and relations, the world itself would be a universal model, of which 

all accurate models would be subsets”. This plurality of ontology engineering 

approaches is in part a consequence of different problem domains, intentions and 

different limitations within ontology engineering tasks. Sowa‘s argument is based on 

the fact of that even the best models are approximations of a limited aspect of the 

world for a specific purpose (Sowa, 2005).  

In a nutshell, ontology engineering is responsible for the investigation of 

frameworks able to translate the real world into useful ontological representations, 

that is, building a body of knowledge taking into consideration the engineering 

saying: “All models are wrong, but some are useful” (Sowa, 2002). Such an 
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understanding is adopted here in that a generic framework is developed but is assessed 

using models from specific cases. 

2.2.3. Knowledge discovery in databases 

Knowledge Discovery in Databases (KDD) is an iterative process based on the 

analysis of current facts or data, pre-processing to clean and transform that data, 

application of mining algorithms, and deployment using the mining results on new 

data.  

The KDD field is concerned with the development of methods and techniques 

for making sense of data (Fayyad, 1996). KDD addresses the problem of mapping 

low-level data, mainly from large databases, which can be too voluminous or have a 

high dimensionality, into other forms that might be more understandable and/or 

manageable, for example, more abstract, or more useful in terms of a data mining 

task. KDD‘s main goal is to apply methods and tools to transform data into 

knowledge. 

KDD is an interdisciplinary field which finds intersection with diverse research 

fields such as databases, machine learning, artificial intelligence, pattern recognition, 

statistics, knowledge acquisition, data visualization, and so forth.  

The name knowledge discovery in databases was introduced at the first 

Knowledge Discovery in Databases workshop in 1989 by Gregory Piatetsky-Shapiro. 

His intention was to emphasize that knowledge is the end product of a data-driven 

discovery process. Although KDD has been widely used in the artificial intelligence 
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and machine-learning fields, data mining is still used as its synonym by industry and 

commercial applications.  

 

Figure 2-2- Knowledge Discovery in Databases (Fayyad, 1996). 

This thesis follows the broader notion of KDD as a process as presented by 

Fayyad et al: “KDD refers to the process of discovering useful knowledge from data, 

and data mining refers to a particular step in this process. Data mining is concerned 

with the application of specific algorithms for extracting patterns from data. The 

additional steps in the KDD process [Figure 2-2], such as data preparation, data 

selection, data cleaning, incorporation of appropriate prior knowledge, and proper 

interpretation of the results of mining, are essential to ensure that useful knowledge is 

derived from the data” (Fayyad, 1996).  

KDD generations 

The beginning of the century has been marked by constant KDD evaluations 

(Fayyad, Piatetsky-Shapiro, & Uthurusamy, 2003; Gregory, 2000; Mihael, 2002). In 
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2003, for example, at the KDD Workshop 2003, a panel composed of representatives 

from academia and industry discussed where the field stood, what its current 

challenges were? What was coming next? And so forth. This analysis was motivated 

by almost fifteen years of both commercial and academic development.  

 

Figure 2-3- KDD evolution. 

One product of this analysis is a historical timeline of KDD generations. It is 

argued that KDD can be classified as having four main stages/generations (Fayyad, 

Piatetsky-Shapiro, & Uthurusamy, 2003) as depicted in Figure 2-3.  

The first generation (1989) was focused on single task data mining tools and 

techniques such as the C4.5 decision tree algorithm (Quinlan, 1993). They needed a 

high level of expertise to be used effectively and considered KDD as a one shot 

process based on the requirements of the algorithm used (Mannila, 1996). 
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The second-generation (1995) can be associated with the idea of process and its 

supporting tools. KDD was defined as “the nontrivial process of identifying valid, 

novel, potentially useful, and ultimately understandable patterns in data” (Fayyad, 

Piatetsky-Shapiro, Smyth, & Uthurusamy, 1996). KDD as a systematic approach was 

pursued by both academia and industry in the development of products such as IBM 

Intelligent Miner and SPSS Clementine. 

The third generation is associated with specialized applications to solve domain 

specific problems. Around 200 tools or workbenches (http://www.kdnuggets.com/) 

that could perform several tasks were available at the beginning of the century. These 

represent solutions to business problems which increasingly embed data mining 

technology, often in a hidden fashion, into the application.  

The increasing number of ―vertical solutions‖ for different problem domains and 

the possibility of integrating and reusing their findings in different knowledge 

discovery tasks led to the call for a more holistic view of the KDD process. This new 

generation of KDD tools should be able to discover knowledge by selecting and 

combining several sources of information, such as information generated by machine 

learning algorithms and their integration with human-knowledge, and applying the 

most suitable techniques for domain-specific problems in order to generate new 

hypotheses and build links across domains (Fayyad, Piatetsky-Shapiro, & 

Uthurusamy, 2003) motivating the research presented here. 



41 

2.2.4. Knowledge Discovery Life Cycle 

There are several life cycles for knowledge discovery proposed in the literature. 

Most of them reflect the background of their proponents, originating as they did in the 

database community (Fayyad, 1996), in the artificial intelligence community 

(Schreiber et al., 1999), in the decision support community (Sprague & Carlson, 

1982), and in the information systems community.  

This research takes into consideration different aspects of these life cycles in 

order to develop a hybrid life cycle that incorporates the best practices developed in 

the ontology engineering field as well as the best industry practice in the knowledge 

discovery process. To this end this research adopts the Cross Industry Standard 

Process for Data Mining (CRISP-DM) as the basic KDD life cycle and considers 

some of the requirements for the next generation of KDD processes and tools in order 

to create the skeleton of the Ontology Driven Knowledge Discovery process. CRISP-

DM is briefly described next. 

CRISP-DM 

The Cross Industry Standard Process for Data Mining - CRISP-DM (Chapman 

et al., 2000) is a comprehensive methodology and process model that defines at 

different levels a complete mapping for a knowledge discovery in database task. 

Although called a process for data mining, CRISP-DM has been adopted by different 

vendors as industry standard for knowledge discovery tasks. It breaks down the life 

cycle of a KDD process into six phases: business understanding, data understanding, 

data preparation, modelling, evaluation, and deployment. 
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The process was born from the demand for a standard process by the industry in 

the 1990s and became both an industry standard adopted by most of the main vendors 

(SAS, SPSS, Oracle and Microsoft) as well as being adopted in different academic 

research, especially by innovative research that was investigating the adoption of 

previous knowledge in a knowledge discovery process (Cespivova, 2004).  

The current process model provides an overview of the life cycle of a KDD 

project. It contains the phases of a project, their respective tasks, and relationships 

between these tasks. The life cycle of a knowledge engineering task, or data mining 

task as referenced by the CRISP-DM methodology, consists of six phases as shown in 

Figure 2-4. The sequence of the phases is not rigid. Moving back and forth between 

different phases is always necessary. The phase or particular task of a phase which has 

to be performed next is dependent on the outcome of the preceding phase. The smaller 

arrows indicate the most important and frequent dependencies between phases. 

 

Figure 2-4 - Phases of the CRISP-DM reference model (Chapman et al., 2000). 
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The outer circle in Figure 2-4 symbolizes the cyclical nature of the data mining 

process itself. Data mining is not finished once a solution is deployed. The lessons 

learned during the process and from the solution deployed can trigger new, often more 

focused questions. Subsequent data mining processes will benefit from the experience 

of previous ones. Given its central role in the work presented here, each phase of the 

CRISP-DM methodology is briefly outlined: 

Business understanding 

This initial business centred phase focuses on understanding the project 

objectives and requirements from a business perspective. The business understanding 

phase involves several key steps, including determining business objectives, gaining 

domain knowledge, assessing the situation, determining the data mining goals, and 

producing the project plan. 

Data understanding 

The data understanding phase starts with an initial data collection and proceeds 

with activities that will enable familiarization with the data, identification of data 

quality problems, first insights into the data or detection of interesting subsets to form 

hypotheses for hidden information. 

Data preparation 

The data preparation phase covers all necessary activities for constructing the 

final dataset (data that will be fed into the modelling tool(s)) from the initial raw data. 

Data preparation tasks are likely to be performed multiple times and not in any 
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prescribed order. Tasks include table, record and attribute selection as well as 

transformation and cleaning of data for modelling tool input. 

Modelling 

In this phase, various modelling techniques are selected and applied and their 

parameters are calibrated to optimum values. Typically, there are several techniques 

for the same data mining problem type. Some techniques have specific requirements 

of the form of the data. Therefore, stepping back to the data preparation phase is often 

necessary at this point. 

Evaluation 

At this stage of the project users have built a model (or models) that shows high 

quality extracted knowledge from a data analysis perspective. Therefore, before 

proceeding to the final deployment of the model, it is important to more thoroughly 

evaluate the model and review the steps executed to construct it to be certain it 

properly achieves the KDD exercise objectives. A key objective in this phase is to 

determine if there is some important issue that has not been sufficiently addressed. At 

the end of this phase, an evaluation of the quality of the data mining results should be 

undertaken in order to decide on the use of the model or its reconstruction. 

Deployment 

The creation of a model is generally not the end of the project. Even if the 

purpose of the model is to increase knowledge of the data, the knowledge gained 

needs to be organized and presented in a way that the user can effectively utilise and 
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act on. It often involves applying ‗live‘ models within an organization‘s decision-

making processes, as, for example, repeated scoring of the evidence found in a 

knowledge discovery process. Depending on the requirements, the deployment phase 

can be as simple as generating a report or as complex as implementing a repeatable 

data mining process across the enterprise.  

2.2.5. Ontology and Knowledge Discovery 

From a philosophical point of view, discovery can be defined as ―the act of 

becoming aware of something previously existing but unknown‖ (Noe, 2002). This 

broad definition includes both kinds of scientific discovery: factual and conceptual. 

The former typically occurs during the investigation of current ‗known‘ facts or data. 

The latter emerges from different points of view of ‗unknown‘ facts or data. 

Ontologies might be used to facilitate both forms of scientific discovery in 

providing a common framework of understanding for several systems and problem 

solving methods, and, at the same time, connecting different facts and points of view 

within a peer-review approach.  

The integration of ontologies and knowledge discovery in databases in this 

research is aimed at the extraction of knowledge from data and knowledge sharing in 

a hybrid system which integrates machine and human knowledge. Thus it is important 

to define and note the differences between data, information and knowledge. The 

thesis follows Devlin‘s definition (Devlin, 2001):  

– Data = Recorded facts 
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– Information = Data + meaning 

– Knowledge = Internalized information + ability to utilize the information 

Considering Devlin, we extend the previous discovery definition to one that is 

more strongly related to the discovery of knowledge – “the act of adding meaning to 

data in order to share knowledge and become aware of the “unknown””. 

Although this definition helps to give meaning to a process that is able to 

leverage the advantages of ontology engineering and knowledge discovery, it cannot 

help in the evaluation of the usefulness, ―interestingness‖ (Fayyad & Uthurusamy, 

2002) and intelligent support that the integration of ontologies and knowledge 

discovery in databases (KDD) brings to the decision making process. Deciding what 

should be considered knowledge is a fairly difficult (and perhaps domain-sensitive) 

task which may involve a combination of technical measurements and human-

intelligence under some philosophical constraints. The outcome of this exploration 

guides the iterative characteristics of the KDD process. It might result in changes to 

any of the preceding steps and a restarting of the entire process. 

This thesis considers both technological and philosophical aspects of this 

evaluation. From a usefulness perspective we use Dhar‘s intelligence density 

framework (Vasant & Roger, 1997) as a guideline to allow us to measure the level of 

intelligent support provided by the integration of ontology and knowledge discovery 

processes. The methodology and framework developed in this research then support a 

closed loop life cycle which in turn supports the decision making process. Different 
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technical measurements such as statistical measures, visualization, evidence and so 

forth, and which are covered further in Chapters 3 and 5, are also combined in the 

framework. 

Adding value to data enables organizations, decision makers, decision systems, 

or even a software agent to ‗know more‘ about a domain – its environment, 

circumstances under which decisions are made, and so on. Increased intelligence in a 

KDD process means improved KDD results in terms of transforming data into 

knowledge. 

Intelligence density is defined by Dhar as a measure of productivity. It is the 

“amount of useful decision support information that a decision maker gets from using 

the output of an analytic system”. Intelligence density supports a decision through the 

transformation of data into knowledge through the following steps: 

– Access; 

– Scrub; 

– Integrate; 

– Transform; 

– Discover; 

– Learn. (Vasant & Roger, 1997) 
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By adding value to data from the Access step up to the Learning step we can 

transform data into knowledge. Thus to evaluate a system we might measure the level 

of support that it can give to such a decision making process. 

 

Figure 2-5 – An intelligence density diagram and a KDD process, masked with 

shadow boxes, representing all data warehouse and OLAP steps  

A data warehouse application, for instance, is able to provide Access, Scrub, 

Integrate, and Transform functionalities, but it cannot in itself discover. To increase 

intelligence and discover useful information we must use additional tools and 

techniques in conjunction with data warehouses. For example, when using on-line 

analytical processing (OLAP) tools to analyse multi-dimensional models represented 

by a data warehouse (Figure 2-5), the system can identify unknown information; 

however it cannot learn or acquire knowledge because it is not mining or storing the 

meaning of the discovered facts in any repository, such as an ontology or knowledge 

base to be further used or reused in a new knowledge discovery scenario. 
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This thesis‘ definition of knowledge discovery – ―the act of adding meaning to 

data in order to share knowledge and become aware of the “unknown”” – aims to 

encompass both the intelligence density framework and Devlin‘s definition in order to 

evaluate the degree of intelligent support delivered by the ontology-driven knowledge 

discovery process. 

2.2.6. Domain Knowledge and KDD 

Domain knowledge has been a topic of strong and enduring research interest 

since the advent of expert systems in the early 1980s. In spite of some very successful 

applications, the initial excitement and high expectations raised within the artificial 

intelligence community by expert systems was gradually undermined by the so called 

knowledge acquisition bottleneck (Giarratano & Riley, 2004). 

In response to this bottleneck, the machine-learning field gained attention as a 

means of overcoming the high and costly dependence on experts‘ knowledge. Langley 

and Simon cited in (Pat & Herbert, 1995), for example, instead of taking a more 

integrative approach as suggested by Brachman and Anand (Brachman & Anand, 

1996), proposed the replacement of the “time-consuming human activity by automatic 

techniques that could improve accuracy or efficiency by discovering and exploiting 

regularities in stored data”. Machine learning techniques such as pattern recognition 

and especially those which allow rule extraction represent then a vast improvement 

over traditional methods of knowledge acquisition. However those techniques alone 

also failed to provide a one-shot solution, because they tended to substitute 

effectiveness for efficiency, and lost much of the ability to explain outcomes or 
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combine expert knowledge with knowledge extracted from models such as those 

delivered by hybrid methods (Giarratano & Riley, 2004). 

The idea of discovering ‗knowledge‘ in large amounts of data is very appealing 

when the huge amount of data produced and stored nowadays is considered. However, 

finding non-trivial, useful knowledge has proved to be very challenging. Selecting the 

right data features that enable the extraction of high-value relationships and patterns 

is, for example, very dependent on an understanding of the domain and the problem. 

The amount of operational data stored in different databases, the need for secure 

and highly scalable mechanisms along with the huge amount of unstructured data 

available have brought different fields of expertise to the knowledge engineering 

scenario. In contrast to the old knowledge-based systems approaches (Giarratano & 

Riley, 2004) where the key roles were those of the domain expert and the knowledge 

engineer, today more disciplines are playing key roles (e.g. data base experts, data 

warehouse developers). In consequence a broader integration is necessary in order to 

maximize the value obtainable from knowledge engineering. 

Research has suggested different roles for and use of domain knowledge in the 

process of knowledge engineering relevant to this work, for instance: 

– Domingos (Domingos, 1999) suggests the use of domain knowledge as the 

most promising approach to ensure that knowledge discovery is 

appropriately bounded and to avoid the common problem of data over fitting 

by discovered models. 
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– Yoon et al. (Yoon., Henschen, Park, & Makki, 1999) suggest the use of 

domain knowledge in various contexts and propose the following domain 

knowledge usage classification: inter-field knowledge, which describes 

relationships among attributes, category domain knowledge, which presents 

useful categories for the domains of the attributes, and correlation domain 

knowledge that suggests correlations among attributes. 

– Sarabjot et al (Sarabjot, David, & John, 1995) also identify the use of 

domain knowledge in KDD tasks: for a description of attribute relationship 

rules, for hierarchical generalization trees and constraints. An example of the 

latter is a specification of degrees of confidence in the different sources of 

evidence. 

– Jinze et al (Jinze, Wei, & Jiong, 2004) present domain knowledge as a 

hierarchical ontology used to guide a clustering task. They argue that while 

domain knowledge is always the best way to justify clustering, few 

clustering algorithms take domain knowledge into consideration. They 

present a framework that directly incorporates domain knowledge into the 

clustering process, yielding a set of clusters with a strong ontological 

implication. On the other hand, domain knowledge can also undermine the 

power of unsupervised learning which can help in the acquisition of new and 

perhaps unexpected knowledge. 
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– Phillips and Buchanan (Phillips & Buchanan, 2001) propose an ontology-

guided methodology to gradually accumulate knowledge from databases in 

order to gain domain knowledge in the iterative process of a KDD task. 

In spite of the increase in investigation of the integration of ontologies and 

KDD, most approaches concentrate only on the data mining phase of the knowledge 

discovery process while the role of ontologies in other phases of the knowledge 

discovery process (as addressed here) is not considered.  

2.2.7. Ontologies, Data Models and Data Warehouses  

Ontologies, as employed currently in computer science, are computer-based 

resources that represent agreed domain semantics. Unlike data models, the 

fundamental asset of ontologies is their relative independence of particular 

applications, i.e. an ontology consists of relatively generic knowledge that can be 

reused by different kinds of applications/tasks (Spyns, Meersman, & Jarrar, 2002).  

A data model represents the structure and integrity of the data elements of what 

is in principle a ‗single‘ (limited set of), specific enterprise application(s) in which the 

data model will be used. Therefore, the conceptualisation and the vocabulary of a data 

model are not intended, a priori, to be shared by other applications (Gottgtroy, 

Kasabov, & MacDonell, 2003b). Moreover, the massive amount of new data and facts 

produced daily can increase the structural complexity of data models, which, in 

consequence, demands constant data model updating which is an expensive and time 

consuming process. 
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Data warehousing technology has been one of the database community 

responses to this problem. A data warehouse model aims to organize the data to suit 

prospective investigation and add ‗strategic meaning‘ to the relational data models. 

The resulting multi-dimensional model is intended to enable data modellers to 

represent multiple perspectives of the same operational data. However, despite the 

improvements achieved by the data warehousing technology in adding meaning to 

data models, the problem of dependence of a specific application is still present in the 

multi-dimensional model.  

On the other hand, both ontology models and data models have similarities in 

terms of scope and task. They are context-dependent knowledge representations, that 

is, there isn‘t a strict line between generic and specific knowledge when building the 

models (Gottgtroy, Kasabov, & MacDonell, 2003b). Furthermore, modelling 

techniques for both data and ontology building are knowledge acquisition intensive 

tasks and the resultant models represent a partial account of conceptualisations. 

Opportunities arise from the similarities in and advantages of both data 

modelling and ontology engineering. Data warehouse technology, for example, can 

contribute the well-developed on-line analytical processing and visualization 

techniques that enable strategic analysis of ontologies. Ontologies can add an 

application-free perspective to a model, adding different dimensions to an otherwise 

narrowly-modelled problem. 
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2.2.8. Ontology and KDD integration 

There are currently three approaches being investigated in the ontology and 

KDD integration emergent research: Onto4KDD, KDD4Onto, and one approach that 

integrates both of the previous approaches, named here Onto4KDD4Onto. 

Onto4KDD is defined as the application of ontologies in order to improve the 

KDD process. For example, domain ontologies can be used to improve the 

understanding of a problem and support hypothesis-driven analysis and discovery 

approaches. Onto4KDD has been employed extensively in biomedical informatics 

research (Cespivova, 2004) where a huge amount of DNA sequence information is 

made available daily and thousands of projects need to be annotated. At the same 

time, millions of potentially relevant facts are being accumulated from a variety of 

sources in seemingly unrelated fields and are being made available either immediately 

on the internet or published in hundreds of journals. Biological knowledge is evolving 

so rapidly that it is difficult for most scientists to assimilate all information. Gene 

Ontology (GO) (Ashburner & Ball, 2000; GO, 2006), for example, has been used to 

―produce a controlled vocabulary that can be applied to all organisms even if 

knowledge of genes and proteins is changing‖. GO is the basis for classification 

systems that address the problem of linking biology knowledge and evolving 

literature, such as GO-KDS (TWO, 2006) and DiscoveryInsight (Biowisdom, 2003). 

In contrast, KDD4Onto approaches are focused on the application of mining 

techniques in order to automatically or semi-automatically acquire knowledge from 

data. Ontologies tend to be built from text (Gómez-Pérez, 2003) by an integration of 

lexicons, taxonomies, and other ontologies, in the natural language processing and 
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computational linguistics areas. Another motivation for the development of text based 

learning techniques comes from the Semantic Web research where ontology 

acquisition from text is a significant issue and has been well documented in recent 

years.  

Another research focus for knowledge discovery is Evolving Connectionist 

Systems (ECoS) (Watts, 2009). ECoS is a class of Artificial Neural Network (ANN) 

architectures with a learning algorithm that modifies the structure of the network as 

training examples are presented.  The knowledge discovery feature of ECoS extracts a 

set of symbolic rules that mimic the behaviour of the ANN.  This feature is important 

for systems where explanation of rules is important in safety-critical domains such as 

the identification of cancer tissues from gene expression in microarrays (Futschik, 

Reeve, & Kasabov, 2003). ECoS along with the Computational Neural Genetic Model 

presented in the case study (Chapter 6) were investigated as candidates for the 

biomedical case study developed in this thesis.  

Although some researchers are addressing Onto4KDD or KDD4Onto, rare is the 

research that encompasses both perspectives.  

The work presented here is an attempt to integrate both approaches. It bridges 

the gap between ontological engineering and knowledge discovery in databases in 

order to improve both processes. In particular, it analyses how data mining can assist 

in efficient and effective large-volume data analysis in order to build a sharable and 

evolving knowledge repository, while at the same time, leveraging the semantic 
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content of ontologies to give intelligent support and improve knowledge discovery in 

complex and dynamic domains. 

2.2.9. Understanding Change 

Evolving Ontology research relates mainly to the need for methods, models and 

tools to support change/evolution in an ontological representation – Ontology Change. 

Ontology Change is a broad research area that involves several aspects, including the 

reasons for change and the representation of uncertain knowledge (Avery & 

Yearwood, 2004; Flouris & Plexousakis, 2005; Peter, Olga, & Sven, 2007; Sanchez, 

2006).  

This section splits the ontology change related research into three main 

approaches in order to better identify research linkages. The first subsection 

concentrates on understanding change and the reasons for it. The second presents the 

ontology engineering topics related to the ontology change problem covered in this 

research. The final part explores the representation formalism-oriented research and 

describes the approach followed in this work.  

An ontological model may need to change for several reasons, such as the 

modification of user requirements or a change in the underlying domain. The list 

below compiles several reasons for change found in the ontology engineering field 

that have influenced this research: 

– The domain of interest has changed (Stojanovic, Maedche, Stojanovic, & 

Studer, 2003);  
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– The perspective under which the domain is viewed needed to change (Noy & 

Klein, 2004); 

– A problem is found in the original conceptualization of the domain (Haase & 

Stojanovic, 2005); 

– Additional functionality is required according to a change in users‘ needs 

(Haase & Stojanovic, 2005); 

– New information, which was previously unknown, classified or otherwise 

unavailable, may become available or different features of the domain may 

become important (Heflin, Hendler, & Luke, 1999); 

–  A collaborative and parallelized process of building ontologies, whose sub 

products (parts of the ontology) need to be combined to produce the final 

ontology, requires that all changes in individual ‗sub-ontologies‘ be 

replicated to reach a consistent ‗final‘ ontology (Klein & Noy, 2003); 

– The ‗final‘ state is rarely final since building an ontology is usually an 

ongoing process (Klein & Noy, 2003);  

– Dependency that arise among distributed ontologies over which the 

knowledge engineer may have no control (Heflin, Hendler, & Luke, 1999) as 

in the case of the Semantic Web where ontologies are dependent on other 

ontologies;  
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– It may be necessary to make changes to the knowledge representation of an 

ontology whose terminology or representation is different from the one 

being used (Euzenat et al., 2004); 

– It may be necessary to merge or integrate information from two or more 

ontologies in order to produce a more appropriate one (Sofia Pinto, Gómez-

Perez, & Martins, 1999); 

– The ontology may have acquired knowledge using semi-automatic or 

automatic learning algorithms that need to be included in the ontological 

model (Gómez-Pérez, 2003). 

The implication is that ‗Ontology Change‘ is not trivial. It can arise for a variety 

of reasons. It involves both technological and philosophical challenges. Even 

answering the research question – Can an ontology ‗evolve‘? - is controversial, as the 

answer is highly dependent on the researcher‘s background and problem domain. 

Adopting a purely philosophical stance, some belief systems (Gärdenfors, 1990) treat 

ontology as fundamental and unchanging – it is only the representation and 

interpretation that changes. From a process perspective, in the context of ontology 

engineering, the approach tends to be more pragmatic, the steps of change defined as 

presented in Figure 2-6.  
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Figure 2-6- Ontology change process (Source: presentation (Sure, 2004)) 

Although a general answer that addresses all of the philosophical and 

technological requirements of the challenge of evolution might be not possible, the 

ontology engineering field has been developing methods and tools to solve 

technological elements of the problem while considering philosophical issues. This 

consideration comes through the development of, for example, ontology merging and 

alignment tools and methods which support the process of integrating different 

sources of information (Natalya & Mark, 2003).  

The next section explores ontology change from an ontology engineering 

perspective covering topics such as ontology alignment, learning, and merging. 

2.2.10. Ontology Engineering and Ontology Change 

There are nine closely related ontology engineering research topics dealing with 

the ontology change problem in the literature: ontology alignment, mapping, 

morphism, articulation, translation, evolution, merging, integration and versioning. 
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―Each of them covers a small part of the complex problem of ontology change from a 

different view or perspective‖ (Flouris & Plexousakis, 2005).  

According to Kauppinen (2006) ontologies will continually evolve through the 

help of or negotiating with other ontologies (merging and alignment), by learning 

from mining and/or by re-organization (evolution) with or without human support 

(e.g., change by ontology engineers in light of new expert knowledge). 

Although this research, as later described in Chapter 5, supports ontology 

alignment (establishment of different kinds of mapping or links between two 

ontologies, thereby preserving the original ontologies) and ontology merging 

(generating a unique ontology from more than one original ontology) by the 

development or adoption of already developed ontology engineering tools, Evolving 

Ontology deals with changing requirements from both the perspectives of ontology 

learning from instances (the ability to acquire knowledge using KDD techniques) and 

evolution (integrating different sources of information with or without human 

support).  

From a KDD perspective, in terms of Sure‘s ontology evolution classification 

(Sure, 2004), this research may be classified as a ―data-driven‖ change discovery 

mechanism, since it detects changes based on the analysis of the ontology instances. It 

addresses the knowledge acquisition problem through specific learning techniques 

inherited from the data mining discipline and its integration with ontology 

engineering. 
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2.2.11. Flexibility vs. formalism 

 Gruber, cited in (Lytras, 2004), identifies three types of ontologies: informal, 

semiformal and formal. Formal ontologies represent knowledge based on various 

forms of formal logic, such as Description logic for semantic Web (Nardi & 

Brachman, 2002), Conceptual Graphs (Sowa, 1984) and Simple Common Logic 

(Hayes & Menzel, 2004). Semi-informal and informal ontologies are based on flexible 

representation formalisms such as Frames (Minsky, 1974). 

Rather than seeing one as superior or preferred, Gruber argues the value and 

roles of both formal and informal ontologies: 

“I would say that all practical ontologies are semiformal, and the “sweet spot” 

is an ontology that specifies clearly how you can commit to it. Both the formal and 

informal parts should be designed to make it easy to play by the rules: the formal by 

automated testing and the informal by well-written documentation” 

As a semantic technology (i.e. an application of techniques that support and 

exploit semantics of information) (Sheth & Ramakrishnan, 2000), ontologies may 

integrate different degrees of formality (see Figure 2-7). Depending on the scope of 

the problem such as in a domain industry specification, where the specification is 

shared and agreed between a group of applications and users, a semi-informal 

ontology is more suitable (as suggested in the figure below). On the other hand, 

formal ontologies may be more suitable for open representation where a formal 

specification becomes more important to define a wider shared agreement. 
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Figure 2-7- Dimensions along which ontologies vary (source:(Sheth & 

Ramakrishnan, 2000)) 

In spite of recent interest in formal ontology research, especially due to the 

advances in the semantic web field, semi-formal ontologies have demonstrated very 

high practical value (Lytras, 2004). This is partially due to the amount of development 

required which can be significantly smaller for semi-formal ontologies when 

compared to that required for developing formal ontologies.  

It is important to note that this research does not make any explicit distinction 

between formal and informal ontologies in the sense that the two are exclusive; rather 

they are complementary (Gottgtroy, Kasabov, & MacDonell, 2006). The following 

comments should help to clarify the research position adopted with respect to this 

issue: The informal parts of a specification serve to explain the knowledge in a 

human-accessible fashion, which makes ontologies easier to understand and powerful 

in terms of expressivity. The formal parts make ontologies unambiguous, enabling 

some degree of automated analysis and reasoning. This research has used both formal 

and informal languages, such as Frames and Description Logics, in its experiments 
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depending on the particular goal of each one. As a result, it is contended here that the 

most effective representation is dependent on the methods used to build the ontology 

and on the knowledge being represented.  

The research therefore adopts the notion of semantic technologies followed by 

industry, such as Oracle
1
, IBM

2
, and academia (Gruber, 1993a; Sheth & 

Ramakrishnan, 2000) in the sense of development of semantic-aware methods, 

models and tools. 

In the context of knowledge discovery in databases, neither formal nor informal 

languages have proved dominant in supporting the ontology building process through 

soft computing techniques. This investigation, then, adopts Frames (Minsky, 1974) 

for semi-informal knowledge representation and uses the Evolving Ontology meta-

knowledge to create an independent representational formalism layer to acquire 

knowledge resultant from the learning process.  

This approach naturally follows the development of knowledge representation 

languages where definitional languages, such as Frames, were separated from process 

knowledge, mainly represented as rules and/or first order logics, such as those brought 

by formal languages, for example description logics.  

                                                 

 

1 http://www.oracle.com/technology/tech/semantic_technologies/index.html 

2 http://www.alphaworks.ibm.com/topics/semantics 
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Considering that the intention of this research was to represent knowledge by 

means of ontology and use external inferences such as machine learning algorithms to 

reason, Frames was then considered as very suitable to describe concepts, especially 

when using defaults values to represent state or objects in a typical situation 

Giarratano & Riley, 2004) .Default values are useful for simulating commonsense 

which allow the definition of an initial knowledge when knowledge has not been 

acquired from machine learning techniques or experts.  

Frames were also selected because of the application domain investigated and 

the ontology engineering tool selected. Frames have been widely used in the area of 

biomedical informatics knowledge discovery (Rosse & Mejino, 2003) as well as in the 

original formalism adopted by Protégé (Noy, Fergerson, & Musen, 2000). This fact, 

again, is part of the natural evolution of ontology languages and researchers‘ 

backgrounds where frame based languages were used to represent concepts loosely 

coupled with logics to infer knowledge while semantic net based languages such as 

resource description framework (RDF) and ontology web language (OWL) were 

developed towards more formal and closed integration with several logic flavours, 

such as description logics. 

The main disadvantage of using this semi-informal approach is the loss of the 

powerful automatic classification reasoning mechanism available in logic-based 

representations. However as stated in (Rosse & Mejino, 2003) this loss is 

compensated for by the ability to build flexible knowledge structures and with the 

flexibility of using different methods of inference. 
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2.2.12. The Ontology Environment - Protégé Editor 

There are several ontology engineering tools now available (Denny, 2004; 

Gandon, 2006). Denny (2004), for example, lists and compares more than 50 ontology 

editor tools available to both industry and academia. The Ontoweb Group (Gómez-

Pérez, 2002) has also developed a survey on ontology tools and their capability to 

support different ontology engineering tasks. Other studies have focused their surveys 

in one area of application, such as in Lambrix (2003), where four of the most-used 

tools for bioinformatics projects were evaluated. 

In spite of the large number of tools listed in the literature, few tools are able to 

fully support an ontology engineering exercise cycle as well as cover the functional 

requirements of a specific area of application. Therefore just a few ontology tools, 

including Protégé, have become industry and academic standard. 

Protégé is a free, open source ontology editor and knowledge-base framework 

developed at Stanford Medical Informatics - Stanford University, which helps users 

construct domain-specific knowledge acquisition systems that knowledge experts can 

use to access and browse the content of knowledge bases (Knublauch, 2003; Protege, 

2006a). 

Protégé is built as an extensible architecture based on the development of plug-

ins for the accomplishment of specific tasks. These plug-ins are modular pieces of 

program code that add new functionalities to the environment in well circumscribed 

ways (Noy, Fergerson, & Musen, 2000). Developers can contribute with new Protégé 

plug-ins to a library maintained on the Internet, and can freely download new plug-ins 

http://protege.stanford.edu/download/download.html
http://www.mozilla.org/MPL/MPL-1.1.html
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to augment the behaviour of their own knowledge-acquisition systems constructed 

using Protégé. 

Protégé also has a number of visualization plug-ins that support knowledge 

sharing. This research has extended some of the available visualization plug-ins in 

order to integrate them in the ontology driven knowledge discovery framework. 

Visualization itself is an active area of research in the context of ontological 

knowledge navigation (Falconer, Noy, & Storey, 2006; Ontoviz, 2006),being used 

mainly for knowledge navigation, knowledge search, and sharing of complex 

knowledge networks. 

Protégé is supported by a strong community of developers and academic, 

government and corporate users, who use it to produce knowledge base solutions in 

areas as diverse as biomedicine, intelligence gathering, and corporate modelling. It 

has currently more than 60000 registered users.  

The Protégé-2000 architecture currently supports a wide range of plug-ins. 

There are several classes of components that developers can add to the system to 

expand its capabilities. User-interface widgets handle the display and input of data of 

particular types in domain- or task-specific ways. Alternate back ends for archival 

storage enable users to store knowledge bases in the formats that fit best with their 

environment. Utility programs for knowledge-acquisition tasks provide support for 

more elaborate knowledge-acquisition approaches such as accessing and importing 

knowledge from on-line resources and building new knowledge bases by integrating 

existing ones. Entire end-user applications that operate on Protégé knowledge bases 

http://protege.stanford.edu/community/projects.html
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can be plugged into the system as special ‗tabs‘, such as those developed in this thesis 

to support the Ontology Driven Knowledge Discovery process. 

Alongside its extensible architecture, Protégé also has a powerful knowledge 

model that supports different knowledge representation formalisms. As stated above, 

this thesis adopted the frame-based formalism. Frames (Minsky, 1974) are the 

principal building blocks of a frame-based knowledge base. A Protégé frame-based 

ontology consists of classes, slots, facets, and axioms. Classes are concepts in the 

domain of discourse. Slots describe properties or attributes of classes. Facets describe 

properties of slots. Axioms specify additional constraints. A Protégé knowledge base 

includes the ontology and individual instances of classes with specific values for the 

slots. 

Protégé also has a meta-class architecture that enables extension of the 

knowledge-model itself. It uses the meta-class mechanism to implement its own 

internal class structure, which can then extend a knowledge-model in accordance with 

a specific problem domain, for example the novel meta-knowledge model developed 

in this research to support the Evolving Ontology.  

Meta-classes define the representation of all frames in the system—classes, 

slots, facets, and individuals. A meta-class is a class whose instances are themselves 

classes. Every frame in Protégé is an instance of a class. Since classes are also frames, 

every Protégé class is an instance of another class. Therefore, every class has a dual 

identity: It is a subclass of a class in the class hierarchy—its super class—and it is an 

instance of another class—its meta-class.  
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This extensible architecture based on the development of plug-ins, along with 

the flexible and configurable knowledge model, enable the development of a set of 

specific tools and meta-models able to support specific tasks such as those required by 

the Ontology Driven Knowledge Discovery process.   As such, the Protégé 

environment is a suitable candidate for use in this research. (It is noted, however, that 

other tools might also be suitable – this issue is discussed further in the final chapter 

of this thesis.) 

2.3. Summary 

This chapter presented a literature review of the core topics of this research. It 

focuses on the integration of ontology engineering and knowledge discovery. The 

next chapter describes the conceptual model aimed to build an extensible meta-

knowledge able to cope with the notion of ontology change in the context of 

knowledge discovery. 
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Chapter 3  

A novel meta-knowledge model for 

evolving ontology 

This chapter presents a novel evolving ontology conceptual model. It discusses 

the need for flexible ontological representations for real world problems and presents 

the challenges of ontology change. The primary outcome of this discussion is a meta-

knowledge model able to represent the dynamic and uncertain nature of domains and 

thereby provide constant and ongoing support for the decision making process in 

those domains over time. The chapter begins by defining Evolving Ontology in the 

context of this thesis. This is followed by the presentation of the evolving ontology 

conceptual model, which is composed of a meta-class, a concept meta-data, and 

ontology building features that support ontology change requirements. This chapter 
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then presents a case study, summarizing research adopting the Evolving Ontology, 

and presents a list of associated research outcomes. 

3.1. Introduction 

Since their introduction into computer science, ontologies have been playing 

various roles in solving problems in domains such as information retrieval, e-

commerce, and the semantic web. Ontologies may bring, for instance, high level data 

abstraction to the process of knowledge discovery in databases, enabling researchers 

to look less at raw data and more at the semantics of data. Although the insertion of 

this high level abstraction brings advantages such as the possibility for integration of 

different databases (Ashburner & Ball, 2000), unambiguity of term usage and so forth, 

it also brings some challenges. 

There is a risk that building and using ontologies that are not able to represent 

‗unknowns‘, are not able to ‗evolve‘, may lead to the ―paradigm trap‖ (Catton & 

Shotton, 2004) where the ontology‘s representation is so strongly related to a specific 

paradigm in a particular field of knowledge, or its semantic representational power is 

so constrained by its representation formalism, that only information that fits the 

paradigm and/or the technology can be represented in the ontological model. This 

trap, from a Kuhn point of view (Kuhn, 1996), would not allow scientific progress, or 

from a philosophical point of view (Noe, 2002) (section 2.2.5), would constrain 

conceptual scientific discovery. 

In order to avoid such a trap and to build a conceptual model able to integrate 

the advantages and best practices of ontology engineering and knowledge discovery in 
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databases, this chapter describes an ontology meta-knowledge model able to cope 

with ―evolving‖ requirements in the context of ontology learning from instances in 

KDD. A case study developed in the course of the research which has informed the 

iterative development of the meta-knowledge model is also presented at the end.  

3.2. Definition of Evolving Ontology 

Humans have been concerned with the description of things since the time of the 

ancient Greeks. Essence, existence, universals among other concepts, underlies the 

work on ontology in the context of philosophy. As Kant states in Vienna Logic 

(Sowa, 2000) ―Socrates said he was the midwife to his listeners, i.e., he made them 

reflect better concerning that which they already knew and become better conscious 

of it‖. Ontology is about making things explicit; it is concerned with the description of 

concepts and relationships among concepts in a domain. 

Although we have inherited the principles of ontological knowledge from 

philosophy, the artificial intelligence community has been working for many years on 

bringing knowledge forth and making it accessible in a machine-readable and possibly 

machine-understandable format. There are therefore several different definitions of 

ontology available in the literature. Most of these definitions reflect either the research 

background of their creators or are influenced by the domain in which the ontology 

was first used. 

Gruber, among the most cited authors in the ontology field, states that, in the 

context of knowledge sharing, ontology is a description (like a formal specification of 

a program) of concepts and relationships that can exist for an agent or a community of 
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agents (Gruber, 1993a). The formal ontology community defines ontology as an 

explicit formal specification of how to represent the objects, concepts and other 

entities that are assumed to exist in some area of interest and the relationships held 

between them. 

In 1998 Studer and colleagues attempted to merge the two previous definitions 

as follows: 

“An ontology is a formal, explicit specification of a shared conceptualization.” 

Conceptualization refers to an abstract model of some phenomenon in the world by 

having identified the relevant concepts of that phenomenon. Explicit means that the 

type of concepts used, and the constraints on their use are explicitly defined. Formal 

refers to the fact that the ontology should be machine-readable. Shared reflects the 

notion that an ontology captures consensual knowledge, that is, it is not private to 

some individual, but accepted by a group. 

There exists in the literature another group of definitions influenced by different 

factors such as the methods and techniques utilized to build ontology (Gottgtroy, 

Kasabov, & MacDonell, 2006) and the ontology‘s intended use. The evolving 

ontology definition developed in this research is also influenced by factors such as the 

knowledge discovery in databases field and the goals of knowledge acquisition, 

maintenance and sharing.  

The definition of Evolving Ontology is mainly concerned with two 

characteristics: completeness and purpose. It takes into account the views of Guarino 
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and colleagues (Guarino, 1998) in relation to the notion of the ―partial account of a 

conceptualisation‖ and Gruber‘s notion of ―treat among people‖ (Gruber, 1993a), 

agents, and users with some ―common motive in sharing‖. Ontology in this research is 

an agreement that represents a partial shared conceptualization of the world. Partial 

means incomplete knowledge, being constructed, dynamic, changing, and evolving. 

Shared means consensual knowledge, maintained through knowledge management. 

In the context of ontology driven knowledge discovery evolving ontology is 

defined as follows: 

Evolving ontology is a partial shared conceptualization that supports 

knowledge discovery. 

Evolving ontologies describe a process rather than a static model. As a 

consensual and partial conceptualization, ontology is an object of social pressure, 

different perspectives, negotiation, and mental model interpretation and so on. These 

requirements make imperative the ability of an ontology to change its structure and 

content over time as new knowledge is extracted from data mining and other learning 

tasks.  

The Evolving Ontology model approaches integration, modification, adaptation 

and polymorphism by means of a meta-knowledge representation able to cope with 

different perspectives, uncertainty and changes in a domain. Uncertain knowledge, for 

example, is represented through ontology meta-knowledge and can be 

programmatically acquired by different modelling techniques.  
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The ability to express meta-knowledge of concepts is required for (Catton & 

Shotton, 2004): 

– Data syndication - Systems need to keep track of provenance information, 

source, author, date and provenance chains A said that B said C. 

– Creating annotations – Well documented concepts are better understood by 

users and systems. 

– Restricting information usage - Information providers might want to attach 

information about intellectual property rights or their privacy preferences to 

ontologies in order to restrict the usage of published information (Marchiori, 

2002). 

– Expressing propositional attitudes - such as modalities and beliefs. 

– Scoping assertions and logic - where logical relationships have to be 

captured. 

The use of an evolving ontology, and in consequence its meta-knowledge and 

model, then enables the creation of a shared knowledge repository which are 

constantly enhanced by a peer-reviewed process that integrates knowledge acquired 

by, for example, machine learning techniques, knowledge inserted by experts, 

knowledge acquired by the integration and/or merging of other ontologies and so 

forth.  
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Even though this thesis focuses particularly on the requirements of the 

biomedical domain, the model and principles developed in this research are valid for 

application in others fields where the body of knowledge is jointly built and 

disseminated to support informed decisions. In Intelligence for example, intelligence 

officers grade the information acquired in the field, from databases, from environment 

scanning, and other sources in order to review the knowledge and create intelligence 

products for dissemination among their peers and for subsequent enhancement of the 

body of knowledge. 

In the biomedical domain and especially in bioinformatics, the challenge of 

reusing the huge amount of data produced has been the main motivation for the 

development and sharing of ontologies. This sharing then brings further requirements 

for grading the information, merging, enhancement and so on. This thesis explores 

and addresses these challenges using a conceptual model which supports the evolution 

and enhancement requirements. 

The next section presents the novel proposed Evolving Ontology Meta-

Knowledge Model discussing the four main design requirements: traceability, model 

dependence, reified relations and meta-data, and their implementation. 
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3.3. Evolving Ontology Meta-Knowledge 

Meta-knowledge can be defined as knowledge about knowledge. It is the 

equivalent of meta-data in databases. Evolving Ontology meta-knowledge is the 

conceptual model developed to cope with ontology change requirements related to 

knowledge discovery. 
3
 

The Evolving Ontology Meta-knowledge model is composed of meta-data 

responsible for describing concepts and relationships, a set of meta-classes developed 

to describe, for example, knowledge acquired from modelling techniques, an ontology 

environment feature responsible for integrating external ontology sources and 

knowledge maps responsible for storing knowledge discovered through data mining 

techniques. Figure 3-1 shows how the parts are related. 

The meta-class is composed of several foundation schemes such as EO-Type 

Scheme which are used to annotate concepts within the ontology. The foundation 

schemes are small, simple and very stable therefore are included as metadata to better 

express semantics. 

                                                 

 

3 In Chapters 5 and 6 and some figures of this chapter meta-knowledge is referred to as meta-data or meta-class as 

these are the terminologies employed in the ontology environment adopted 
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The EO-meta-class defines a set of minimal properties which is applied to every 

other concept or scheme in the ontology meta-model. This acts as a minimal pattern to 

support provenance and traceability. 

The knowledge map is a set of reified relationships and concepts created to store 

instances acquired by machine learning techniques as well as specific relationships 

maps such as gene regulatory networks. This meta-class is not stable and is very 

customizable in order to evolve with the integration of new sources and data mining 

techniques. 

The model integration feature enables the addition of external knowledge to the 

ontologies.  

 

Figure 3-1 – Evolving Ontology Meta-knowledge diagram. 

The next section describes the parts shown in the figure above. 
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3.3.1. EO-Concept_Meta-data 

The Evolving Ontology concept meta-data is a set of documentation or 

structured information capable of describing, unambiguously, concepts and 

relationships within an ontological model. It maintains provenance of different aspects 

such as source and creation, while being invisible to the ontology user.  

The extensible meta-data is represented as schemas that should aid in the 

interpretation of any concept and relationship built or defined within an ontology.  

The goals of the EO-Concept_Metadata are: 

 Simplicity of creation and maintenance 

 Commonly understood semantics 

 Conformance to existing and emerging standards 

 Extensibility 

 Interoperability among collections and indexing systems 

The EO-Metadata is composed of a set of schemes responsible for representing 

different concepts and relationship dimensions as well as their annotation. As 

foundation metadata these first level schemes are not expected to change often. 

However the schemes‘ subclasses are very easy to extend, change and conform.  
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Some of the schemes are also more stable than others, for example an ISO 

standard is more stable than evidences adopted to measure a relationship such as gene 

expressions, literature support or any other calculated measure adopted to support 

evidence. 

The next paragraphs describe the first level schemes adopted in the current 

metadata version. Figure 3-2 presents a more detailed version of the metadata. 

Appendix B also includes some screenshots of the metadata as reference. 

The following schemes are used to represent knowledge:  

Table 3-1 – Evolving Ontologies Schemes. 

Schemes 

Concept Name:  EO-Annotation_Scheme 

Label: Annotation 

Documentation:  Defines external references to an instance of a concept. 

Comments:  It might include publications, images, datasets related to the 

instance.  

Direct 
Subclasses: 

EO-External_Database, EO-GO_Future_Annotation, PubMed 

Concept Name:  EO-Creator_Scheme 

Label: Creator 

Documentation:  Defines the creator of any concept in the ontology. 

Comments:  It might include persons, agents, algorithms, and systems 

responsible for the creation of a concept or relationship in the 

ontology. Typically, the name of a creator should be used to 

indicate the entity.  
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Direct 
Subclasses: 

Person (ontology engineer, user), System, and Service 

Concept Name:  EO-Evidence 

Label: Evidence 

Documentation:  Defines measures which show the evidence of a relationship. 

Comments:  It may consider different measures such as number of 

publications, reliability of the source, statistical measures, gene 

expression ,etc. 

Direct 
Subclasses: 

 

Concept Name:  EO-Identification_Scheme 

Label: Identification 

Documentation:  An unambiguous reference to the resource within a given 

context. 

Comments:  Recommended best practice is to identify the resource by 

means of a string or number conforming to a formal 

identification system.  

Direct 
Subclasses: 

Unique_Identifier, Name 

Concept Name:  EO-Language_Scheme 

Label: Language 

Documentation:  Language of the content of the concept. 

Comments:  Recommended best practice is to use RFC 3066 [RFC3066], 

which, in conjunction with ISO 639 [ISO639], defines two- 

and three-letter primary language tags with optional sub tags. 

Examples include ‗en‘ or ‗eng‘ for English. 

Direct 
Subclasses: 
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Concept Name:  EO-Management_Scheme 

Label: Management Rights 

Documentation:  Entity responsible for store management rights upon 

concepts. 

Comments:  May be used to control access to specific knowledge. It is 

well used by reporting systems, intelligence based knowledge 

bases, etc. 

Direct 
Subclasses: 

Access_rights, Change_rights 

Concept Name:  EO-Relationship_Scheme 

Label: Relationships 

Documentation:  Defines any type of relationship found by a user, system, 

algorithm, etc. 

Comments:  It represents known relationships, such as part_of and 

responsible_for, and also permits the creation of new 

relationships acquired from experts or through data mining 

activities. 

Direct 
Subclasses: 

Association_Rules, Reified Relationships 

Concept Name:  EO-Source_Scheme 

Label: Sources 

Documentation:  Defines the source of information. 

Comments:  It can be used to annotate a concept or to integrate different 

sources of information. It might be an information source, a 

domain expert, a publication etc. 

It allows for the acquisition of information from different 

sources, such as UMLS, internet sites, or clinical data, and 

maintains its independence of the original source. 
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Direct Subclasses: UMLS_Semantic_Network, UMLS_Methasaurus, EO-

Domain_Expert, EO-External_Database and EO-

Experiments 

Concept Name:  EO-Spatial_Scheme 

Label: Spatial 

Documentation:  Spatial characteristics of the concept (a place name or 

geographic coordinates). 

Comments:  It might be country code, city code, airport codes, mesh 

block, etc. 

Direct Subclasses: ISO3166 

Concept Name:  EO-Subject_Scheme 

Label: Subject 

Documentation:  The topic or keywords which describe a subject. 

Comments:  Typically, a Subject will be expressed as keywords, key 

phrases or classification codes that describe a topic of the 

resource. Recommended best practice is to select a value 

from a controlled vocabulary or formal classification 

scheme. 

Direct Subclasses: DDC - Dewey Decimal Classification 

Concept Name:  EO-Temporal_Scheme 

Label: Temporal 

Documentation:  Temporal characteristics of the concept (a period label, date, 

or date range). 

Comments:   

Direct Subclasses: ISO 8601 [W3CDTF], EO-Date_Scheme, etc 

Concept Name:  EO-Type-Scheme 

Label: Type 
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Documentation:  The nature or genre of the content of the resource, such as 

image or text. 

Comments:  The user can define a new type of information and constraints 

related to the insertion of instances. 

Direct 
Subclasses: 

Data_set, Images, Software,Sound, Stillimage 

 

Although the schemes utilized cover most requirements to correctly annotate 

concepts and relationships, the meta-data can easily be extended to accommodate any 

further annotation required.  

The EO-Concept_Metadata developed in this research extends the widely 

adopted Dublin Core meta-data developed by the Dublin Core Metadata Initiative 

(DCMI, 2007) and the Resource Description Framework (RDF) recommendations for 

the description and annotation of concepts (Hayes, 2004). It does so by following a 

similar approach to that adopted in prior research (Carroll, Bizer, Hayes, & Stickler, 

2005; Catton & Shotton, 2004; Kauppinen & Hyvönen, 2006) in the sense of defining 

concepts through the use of other concepts and relations (meta-knowledge). In 

keeping with the expectations of this work, this novel approach provides for flexible 

knowledge representation and formalism independence which, in consequence, allows 

for the adoption of different representation formalisms and easy migration between 

them.  

Unlike previous research (Carroll, Bizer, Hayes, & Stickler, 2005; Catton & 

Shotton, 2004), the approach adopted here does not use named graphs to give 
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semantics to RDF or any other representation language. Instead, it has language 

independent meta-knowledge which enables the expression of, for example, 

propositional attitudes such as belief or evidence, at the same time that it expresses 

uncertainty-simulating named graphs. 

Figure 3-2 shows a graphical representation of the current concept_metadata. A 

number of classes, subclasses and relationships modelled in the evolving meta-

knowledge are represented. The hierarchical knowledge as well as multiple 

inheritance is also shown through relationships such as IS-A and Has-A. 
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EO-Concept_Metadata 

 

Figure 3-2– Evolving Ontology Metadata model  
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3.3.2. Evolving_Ontology_Meta-Class  

The Evolving Ontology meta-knowledge defines a meta-class that specifies a 

minimal set of attributes to enable concept/relationship traceability. Traceability is related 

to the need to acquire and incorporate information from different sources while keeping 

track of the source of the information, creation or any other change in an ontological 

representation. Every concept, and in consequence any scheme, in the evolving ontology 

meta-knowledge is annotated with the meta-class which is itself annotated with the EO-

metadata.  

This recursive mechanism allows the integration of different sources of information 

as well as creating an annotation tool that maintains a record of the creation and date of 

any concept in an ontological representation. It allows among other things the tracking of 

source information when reusing ontologies instances in different scenarios. For example, 

in the context of intelligence, it allows the use of external sources as evidence to build 

intelligence products while keep track of creation and source so as to be compliant in 

regard to privacy and security level requirements. In the biomedical domain, it may 

highlight the quality of a prior analysis of data by considering the level of trust of a 

source, for example, Swiss-Prot data is manually annotated by experts, and therefore is 

very well accepted in the bioinformatics domain, while at the same time some 

automatically generated annotations are not considered as strong from a biological 

evidence point of view. 

Each EO-term is specified with the following minimal set of attributes:  
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Table 3-2. – Evolving Ontology Meta-Class 

Name:  The unique token (ID) assigned to the concept.  

Internal Name Unique identifier of a concept. 

Source:  Reference to an information source from which the present 

concept is acquired, originated or automatically learnt. 

Creator:  An entity primarily responsible for creating the concept.  

Date Created: A date associated with the creation of the concept. 

Documentation:  A statement that represents the concept and essential nature of the 

term.  

Constraints:  A system property able to represent the conceptual constraints of 

a concept.  

 

Although the Internal Name attribute is not explicitly represented in the Evolving 

Ontology Meta-class, as shown in Figure 3-3, it uses Protégé Frame‘s internal name 

(Noy, Fergerson, & Musen, 2000) to uniquely identify any term within the ontological 

representation.  



88 

 

Figure 3-3 – Evolving Ontology Meta-class graphical representation. 

Further attributes (properties) may also be necessary to uniquely define concepts in 

representation language formalisms other than Frames. The following additional 

properties may, for example, be used: 
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Table 3-3 – Additional Evolving Ontology Meta-class attributes 

Unique 
Identifier:  

The Uniform Resource Identifier used to uniquely identify a term. 

Label:  The human-readable label assigned to the term. 

 

 

Figure 3-4 – Tracking provenance of source by a query language. 

The provenance of source, of date and of creation can be programmatically 

accessed through an application program interface as well as by a query language which 

allows the construction of complex queries of the knowledge base – Figure 3-4. In the 
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figure above (left top panel – query panel) a query is selected to search for all knowledge 

extracted from UMLS (Unified Medical Language System) and returns (right side panel – 

search results) 58 concepts current available in the ontology which were extracted from 

different parts of the UMLS.  

These features enable the management of the meta-data in different scenarios such 

as in the evaluation of the quality of knowledge based on its source, and they can be used 

to trigger further actions when used in conjunction with rules for ontology maintenance, 

alerts, risk analysis and so forth. 

3.3.3. Model Integration 

Model integration is related to the acquisition and maintenance of external 

ontological models in the process of developing an ontology. There are two different 

mechanisms to acquire, incorporate and reuse ontologies in the EO model: importation 

and inclusion. The former refers to the act of permanently acquiring external knowledge. 

The latter embeds the source ontology in the target ontology but retains independence in 

both. The selection of the most suitable method is based on the updating requirement of a 

problem and/or domain.  

In the form of  meta-knowledge, ontologies are often quite stable. In well defined 

domains, such as the anatomy domain, stable ontological representation is acceptable, for 

example, the Foundational Model of Anatomy (FMA) (Rosse & Mejino, 2003). In these 

cases, the use of both Source attribute and the permanent incorporation of knowledge by 
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the importation method are sufficient to allow a flexible representation, which might be 

updated long term, without impacting on the quality of the knowledge currently 

represented. 

On the other hand, there exist specific situations where regular knowledge source 

updating is mandatory. This is particularly true in domains where knowledge is highly 

complex or consensus is not yet achieved, such as the bioinformatics domain. The 

inclusion method is then appropriated to embed external ontologies into a target ontology 

model. 

The inclusion method enables the use of the knowledge acquired from an external 

source but doesn‘t allow any change in its structure. The included ontology is maintained 

as a separate ontology and any change in its structure is reflected in the final ontology 

when it is reloaded. The implementation of the inclusion method brings a huge degree of 

flexibility to the model, since the frequency of updating can vary according to the 

ontology engineer‘s discrimination. 

This research uses the importation method along with the evolving ontology source 

schema to acquire concepts from stable knowledge sources such as the Unified Medical 

Language System (UMLS) terminological source. The inclusion method enables the 

acquisition of ‗unstable‘ knowledge such as gene knowledge from unknown or new 

areas, such as brain-gene disease and nutrigenomics, where constant checking for new 
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genes, molecular function, and so on plays a major role in the knowledge discovery 

process. 

3.3.4. Knowledge Map  

Although both Evolving Ontology Metadata and Meta-classes are able to record 

provenance of source, creation and date, and the Model Integration mechanisms enable 

the acquisition and maintenance of knowledge by means of external ontologies, there still 

exist other central questions in relation to ontology change in the context of knowledge 

discovery in databases: when should a discovery be considered “strong enough” to 

change an ontological representation? What evidence supports the change? Is the new 

knowledge valid? To mention a few examples. 

Differing from the manual acquisition of knowledge during the ontology building 

process, the semi-automatic and automatic acquisition of knowledge by learning 

algorithms requires a temporary ontological structure to store the knowledge gained by 

the data mining algorithm before its validation. This data-driven change (Sure, 2004) 

adds the challenge of knowledge validation, beliefs and the treatment of uncertainty. 

There are some approaches that focus on knowledge representation formalism to 

deal with concept and relationship validation, such as those that deal with the dynamic 

and uncertain nature of domains through the use of non-classical logic (Zadeh, 2006), the 

integration of fuzzy concepts in description logic (Straccia, 2006), and fuzzy formal 

concept analysis (Quan, Hui, & Cao, 2004). Contrasting with these approaches, the 

evolving ontology approach focuses on a generic solution based on the meta-knowledge 
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representation composed of knowledge maps and reified relations to cope with 

knowledge validation along with expert review of the data and rule based approaches.  

The knowledge map stores the knowledge discovered by an ontology acquisition 

tool that is then used by the knowledge engineer or experts, or by inference engines, to 

validate, annotate, and generate new hypotheses according to the criteria defined in the 

domain problem. Each map stores the concepts related to a problem and the relationships 

discovered by the learning technique as reified relations (as depicted in Figure 3-5).  

 

Figure 3-5 – A Protégé representation of a biomedical reified relation. 
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The left panel shows an activation relationship selected from a set of biomedical-

informatics relationship classes. The right panel shows (in blue) the concepts captured in 

that relationship, such as evidence and source. For example, the slots could have as 

values either a number value for the evidence and the algorithm which was used to 

generate that value as source, or an expression value and the paper reference for the 

source which was used as a basis for the annotation of the expression value. 

The reified relations are represented as Evolving_Ontology_Relationships that have 

a minimum of six fixed set properties and other properties dependent on the problem 

domain, data mining algorithm, and the ontology engineer specification. Figure 3-6 

exemplifies a set of relationships used in the biomedical ontology case study. The table 

below represents the fixed attributes and extra attributes in yellow boxes:  

Table 3-4  – Evolving Ontology Relationship Attributes 

From:  Concept source of the relationship.  

To Concept target of the relationship. 

EO-Source:  A reference to an information source from which the present 

relationship is acquired, originated or automatically learnt. 

EO-Creator:   The relationship creator, such as a simulation, a machine 

learning algorithm, an expert, etc.  

EO –Date_Created  A date associated with the creation of the relationship. 

Relationship_type:   The relationship type based on the evolving ontology 

relationship schema.  

Evidence:2  Evidence that supports the concept of that relationship such as 
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number of publications found in the literature. 

Gene_Expression:4  The number representing the expression of a gene in a Gene 

Regulatory Network. 

 

Extra attributes may also include properties that validate or qualify knowledge, such 

as experimental evidence, triangulation evidence, and uncertainty. Attributes can also fire 

rules built in accordance with some criteria established by the ontology engineer or based 

on the quality of annotations, quantity of annotations and so on. 

The four components of the Evolving Ontology Meta-knowledge model presented 

in this section (Figure 3-1)  – meta-data, meta-class, model integration and knowledge 

maps – enable the in-principle construction of flexible and dynamic knowledge 

repositories able to evolve and keep track of change while giving a 360 degree view of a 

problem domain for decision makers in a knowledge discovery process. 

 

                                                 

 

4 The yellow attributes represented in the table are often utilized in bioinformatics case studies, as is the case in this 

thesis as described later in this chapter and in several examples in the following chapters. 
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Reified Relations 

 

Figure 3-6 – An example of the evolving biomedical ontology reified relations model. 
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The next section briefly describes a case study developed in the course of this 

research that applied the main concepts of evolving ontology meta-knowledge and 

defined the requirements for the extension of the model in order to cope with future 

experiments developed in this research.  

3.4. Biomedical Ontology case study on Leukaemia Cancer 

Data 

The case study focused on the development of a novel multi-dimensional 

biomedical ontology linking genes to related diseases. The ontology utilises two of the 

most used biomedical knowledge sources, the Gene Ontology (GO) (Ashburner & 

Ball, 2000) and the Unified Medical Language System (UMLS) (NCI, 2003), as well 

as knowledge acquired manually from experiments undertaken across aligned 

research and published in the literature.  

This case study, which addressed Leukaemia specifically, exhibited many of the 

requirements for an ontology driven knowledge discovery methodology when 

considering manual annotation at early stages of the thesis development.  Therefore it 

was used in parallel with the iterative process of development, testing and evaluation 

of tools to support evolving ontology meta-knowledge models as defined in the 

research methodology (Chapter 1). Figure 3-7 shows the relationship between the 

conceptual models and ontologies used in the development and testing of  the 

Leukaemia case study. 
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Figure 3-7 – Diagram of the Leukaemia biomedical ontology case study. 

The approach has helped the thesis to:  

 Establish the requirements for provenance of source, creation and date;  

 Build a knowledge acquisition tool for manual construction of gene 

regulatory networks; 

 Ensure support for evolving ontology model enhancement. 
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 Figure 3-8 - GO and UMLS ontological representations in Protégé. 

The ontological model was constructed iteratively based on the Evolving 

Ontology Meta-knowledge model to represent genes related to cancer and more 

specifically to leukaemia. Genetic knowledge was mainly acquired from GO and 

medical knowledge from UMLS with complementary knowledge acquired from 

literature – Figure 3-8.  The left panel shows a number of concepts form the ontology 

and focus on the concepts acquired from UMLS methasaurus. The middle panel show 

a list with some concepts while the right panel shows information about the slots 

captured with UMLS data. 
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The ontology was developed in the Protégé ontology environment (Protege, 

2006a) using Frames for knowledge representation. A manual knowledge acquisition 

tool was developed using extended Protégé plug-ins. Although initially developed as a 

manual acquisition tool, all reified relations requirements for automatic and semi-

automatic acquisition were considered when developing the meta-knowledge model 

supported by the tool. (This approach has facilitated the extension of the model and 

tool to cope with data mining techniques developed later in the thesis – Chapters 6 

and 7.) 

The importation technique was used in the case study as it was compatible with 

the technologies and Protégé plug-ins available at the time of the project. This did not 

impact on the study as its goal was the evaluation of the evolving knowledge model 

rather than the software support for the framework (described in Chapters 6 and 7). 

The domain ontology is composed of five ontologies, each representing a 

specific sub-domain in the biomedical informatics area as well as the initial version of 

the evolving ontology meta-knowledge.  
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Biomedical Domain5 

This entity represents general biomedical knowledge. It includes abstract 

concepts, such as organism, and more concrete concepts, such as disease and its 

instances. Most of the knowledge acquired in this entity is referenced to UMLS.  

Biomedical Informatics Domain  

The biomedical informatics domain represents common knowledge shared by 

both the biomedical and bioinformatics domains. Each subclass of this entity, such as 

oncogene, inherits characteristics from the domain and properties related with the 

biomedical domain. 

Clinical Domain  

Clinical domain classes represent clinical knowledge contained in laboratories‘ 

results regarding treatment, drugs and so on. 

The subclasses are mainly multi-inherited from the biomedical domain and its 

instances are directly updated from databases. 

                                                 

 

5 All biomedical concepts are either based on the UMLS semantic network or based on knowledge acquired from 

domain experts and literature. 
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Gene Ontology  

Gene ontology (GO) is adopted as the main source of bioinformatics knowledge. 

This entity is directly imported to the main ontology and its instances are included 

through software tools responsible for translating the GO annotations into the Protégé 

knowledge base. 

All genes annotated in the leukaemia case study are referenced to the respective 

GO annotation and the published literature extracted from sources such as PubMed 

(NBCI, 2006). 

Disease Gene Map 

This ontology is the core of the leukaemia-specific case study. It enables the 

acquisition of gene/disease knowledge and links it to additional disease and gene 

knowledge such as molecular weights, and chromosome positions, through a 

graphical knowledge acquisition tool – Figure 3-9. Each instance of this ontology 

represents a disease gene map, which is traceable through a query language that 

makes it possible, for example, to answer questions such as; ‗which genes are related 

to the occurrence of leukaemia?‘ 

Figure 3-9 shows a series of forms created to acquire knowledge linking the 

gene relationship data. The expert starts with the creation of the disease map and then 

manually inserts new knowledge while building the ontology. 
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Figure 3-9 – Gene disease knowledge acquisition tool. 

Each map graphically represents relationships in a way that enables visualisation 

of existing knowledge and the creation of new relationships. Additional properties, 

such as uncertainty and evidence, can be inferred and added by experts or 

programmatically. 

The maps act as knowledge acquisition tools allowing the expert to annotate 

new knowledge acquired from external databases and creating new instances linked to 

external information. More than one expert can work on the same project or share 

different projects, having a 360 degree view of the domain. In this sense, the system 

works as a knowledge management tool, storing knowledge from diverse projects and 
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sharing the knowledge discovered in each experiment. The maps can also be shown 

through different visual representations. 

The next section explores the leukaemia map from a biological perspective. The 

knowledge represented in the map was reviewed by experts in biology and leukaemia. 

There were two experts on biology which were responsible for validating the disease 

data with experts and the related literature. 

3.4.1. The Leukaemia Gene Regulatory Network Map 

In medical research it has been shown that human macrophage-like cell lines 

spontaneously produce a suppressor factor that inhibits production of interleukin
 
2 (IL 

2) by human blood T lymphocytes. Identifying regulatory genes and proteins from 

such cell lines an Infogene Map is obtained and is integrated with the apoptotic 

pathway.  

The gene disease map, in this case, represents oncogenes, suppressor genes and 

genes that are related to leukaemia in a network that helps to explain the genetic 

pathway of the disease (see Figure 3-10). These maps are interconnected with other 

maps that express graphically the complex proteins and their roles in different 

diseases. Myc, for example, which is a powerful inducer of apoptosis, is a strategic 

controller of cell proliferation that acts pleiotropically to coordinate both cell growth 

and concomitant progression through the cell cycle. Myc is connected through the 

Leukaemia Infogene Map and the Subway Map of cancer pathways (Hahn & 
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Weinberg, 2002). It enables investigators, for instance, to answer the question ‗In 

which cancers is Myc involved?‘ 

Each relationship between genes/proteins represents inhibitor or activator 

behaviour which is qualified by a degree of uncertainty (Figure 3-10) based on 

strength of evidence. In the case study reported here this uncertainty attribute was 

implemented as a set of rules defined using the number of publications and expert 

annotations acquired in the experiment.  This evidence based approach followed other 

similar bioinformatics ontologies and databases such as Gene Ontology where domain 

expert input is used to score biomedical knowledge acquired form different sources.  

 

Figure 3-10 – Leukaemia gene disease map. 
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The evidence-based approach is supported by the meta-knowledge created in the 

knowledge map definition (as depicted in Figure 3-5) as a combination of metadata 

such as the uncertainty value, eo-creator which provides sufficient information for the 

development of business rules around the quality of the information acquired. For 

instance, the leukaemia case study considered the quality of the sources of 

information and followed similar rules to the SwissProt project where manual 

annotation is used to improve the quality of knowledge acquired along with the 

number of publications supporting the knowledge inserted in the ontology.    

The leukaemia case study was not only useful in gathering and confirming the 

requirements for the evolving ontology model and modelling gene regulatory 

networks as well as the ontology framework but also produced functional insights 

towards the understanding of hematopoietic cell differentiation, apoptosis and 

proliferation for the domain experts.  

The requirements acquired in the development process of the gene disease maps, 

models and supportive tools were used to refine the evolving ontology model and 

define the software requirements for the Ontology Driven Knowledge Discovery 

framework described in the next chapter. 

The case study was part of the iterative process of building this research. From a 

biological point of view the experts were able to link dispersed knowledge about 

Leukaemia within the ontology as well as creating a shared repository about the 

disease. This work was then published which formed the first set of biomedical 



107 

 

knowledge to be included later in the brain gene-ontology. From an ontology 

engineering point of view, it helped us to define further requirements to enhance the 

conceptual model, methodologies and tools which are part of the thesis. 

The most important outcome of the case study was the refinement of the 

conceptual model. It helped us to acquire critical knowledge to build a generic 

framework for ontology driven knowledge discovery.   

The following section briefly introduces an further experiment utilizing the 

evolving ontology as part of a PhD research in the area of nutrigenomics. This 

research applies the evolving ontology model to the design of a biomedical ontology 

linking nutritional, genetic and disease knowledge. 

3.5. Nutrigenomics evolving ontology case study 

Nutrigenomics is a new and emerging field that studies nutrition and genomics 

i.e. how food affects gene expression. Diabetes is a very common disease of the 

modern (developed) world and Type-2 diabetes is the most common type of diabetes. 

There are several dimensions involved in the nutrigenomic analysis of Type-2 

diabetes, such as the disease, its relationship to genes, the clinical symptoms, the 

nutritional data related to the disease to name a few. For example, it is believed that 

there are about 150 genes involved in the disease and just a few of these genes are 

involved at the expression level. Modelling this evolving and complex knowledge 

presents a substantial challenge. 
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This research focuses on organizing knowledge related to nutrition and Type-2 

diabetes within an evolving ontology representation. It uses all the functionalities and 

tools of the Evolving Ontology model and ontology engineering tools. 

The nutrigenomic knowledge is acquired from different sources, such as the 

Gene Ontology and the Unified Medical Language System (UMLS). Gene Ontology 

knowledge is included and updated monthly, keeping knowledge up to date. GO can 

also be acquired at shorter intervals depending on the project, through a plug-in that 

transforms GO into the Protégé format (described in Chapter 5). The ontology also 

includes microarray data and gene expression data for these genes. Further knowledge 

has been also acquired from clinical and nutritional data to create a personalized 

model. 

The knowledge stored in the ontology should support further discovery through 

the integration of the knowledge base and artificial intelligence methods which will 

make it possible to pinpoint genes of interest and diet components of relevance in 

order to produce advice on healthy life-style and disease-preventing nutrition. It will 

integrate the Type-2 Diabetes Ontology with the Evolving Connectionist System 

(ECOS) developed at the Knowledge Engineering and Discover Research Institute 

(KEDRI) in order to develop a diagnostic system (Verma, Gottgtroy, Havukkala, & 

Kasabov, 2006). 
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3.6. Summary 

Evolving processes are difficult to model because some of their parameters may 

not be known a priori or may not be available at the time a modelling exercise begins. 

In biological systems, for example, everything is interconnected, and ostensibly 

unrelated fields are related — the separation of biology into different disciplines is in 

some respects artificial and dangerous, or at least limiting, to the knowledge discovery 

process. 

Conceptual research can encompass fields without limitation. So what is needed 

is a way to create and manage the context of the search, so that concepts having 

different meanings in different contexts can be represented appropriately. Scientists 

also need mechanisms to cross disciplines and search in areas outside their expertise, 

so that they can extract information critical to new discoveries.  

Decision makers need tools that can intelligently assist them in the acquisition 

and representation of knowledge in a decision making process. Thus, the modelling of 

such evolving processes is a challenging but potentially fruitful task with many 

practical applications in complex domains. Modelling these data interactions, learning 

about them, extracting knowledge, and building a reusable knowledge base applying 

state-of-the-art AI and soft-computing will guide future research and practice that is at 

the core of this research. 

In spite of the semantic power of ontologies, relationships, concepts, and 

understanding evolve over time. Ontology specifications must be able to represent the 
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dynamics and changes of the real world otherwise there is a danger that building and 

using an ‗inflexible‘ ontology, that is, an ontology that has a fixed structure, may 

fossilize current knowledge representation in a particular paradigm or point of view, 

so that only information that fits the paradigm is accepted by and accessible to the 

users. 

The development and use of evolving ontologies is an attempt to solve these 

‗static‘ and ‗domain silo‘ ontology challenges. This work defines evolving ontology 

as a partial, shared conceptualisation that supports knowledge discovery from 

databases as defined in this chapter. Partial means incomplete knowledge, as it is 

constructed, dynamic, changing, and evolving. Shared means consensual knowledge, 

maintained through possibly distributed knowledge management.  

The evolving ontology meta-knowledge specifies a set of components able to 

cope with changing requirements. The meta-data is responsible for creating a set of 

schemes to annotate each concept in an ontology. The meta-class defines a minimum 

set of attributes responsible for keeping provenance of source, creation and date, 

allowing constant change management. The model integration feature establishes 

different methods for incorporating knowledge and keeping track of source changes. 

The knowledge map defines a meta-knowledge and a knowledge acquisition tool able 

to acquire knowledge in manual, automatic and semi-automatic ways as well as 

temporary storage for knowledge validation by humans and inference engines. 



111 

 

Although the Evolving Ontology model is a general model that can be applied to 

different domains, this thesis has mainly focused its application in the biomedical 

informatics domain. The selection of this domain was due to the complexity involved 

in biomedical knowledge discovery and the amount of research developed at the 

Knowledge Engineering and Discovery Research Institute (KEDRI) where this 

research was carried out. 

Other projects have also adopted the Evolving Ontology model to various 

degrees, such as in the biblio-mining field (Parikshit, Pears, & Gottgtroy, 2006), 

ontology visualisation research (Wang & Gottgtroy, 2006), the application of learning 

objects as evolving models (Kasabov, Jain, Gottgtroy, Benuskova, & Joseph, 2007), 

Advancing Clinico Gnome Trials on Cancer: Open Grid Services for improving 

Medical Knowledge Discovery (Rüping, 2007), and in the design a common data 

model for autonomous vehicle (Davis, 2006).  
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Chapter 4  

A methodology for knowledge discovery 

from Evolving Ontology 

This chapter describes the Ontology Driven Knowledge Discovery process 

(ODKD). The primary outcome is a novel methodology and life cycle that considers 

the best practices of ontology engineering and knowledge discovery in databases 

(KDD) processes in order to answer the research question - ‗Can we integrate 

Ontology Engineering and KDD processes?‘ As a process guideline this chapter does 

not concentrate on concrete examples of the application of the methodology. Such 

examples are illustrated in the next two following chapters and in Appendix B. 
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4.1. Introduction 

This chapter is concerned with the interaction between prior knowledge (by 

means of ontologies) and the process of knowledge discovery. It describes a novel 

methodology and process model which integrates ontology engineering and KDD.  

Instead of looking specifically at the application of ontology for KDD, such as 

the use of prior knowledge to improve results of clustering algorithms (Jinze, Wei, & 

Jiong, 2004), or to the application of data mining techniques for ontologies, such as 

ontology learning from text, the focus of this chapter is on the closed loop integration 

of ontologies in KDD processes. 

This chapter complements the previous one (Evolving Ontology) in order to 

construct the conceptual contribution of this thesis. It is part of the design science 

methodology of the multi-methodological approach followed in this work (Figure 0-2) 

and discussed in Chapter 1. 

Examples of the process followed in the development of the case study utilizing 

the methodology proposed in this research are presented in this Chapter to briefly 

illustrate the application of the methodology. Further detailed information about the 

application of the methodology is also presented in Chapter 6 and in Appendix B.  

4.2. Ontology Driven Knowledge Discovery - ODKD 

The Ontology Driven Knowledge Discovery (ODKD) is a methodology and 

process model that defines, at different levels, a life cycle integrating ontology 
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engineering and knowledge discovery in database (KDD) tasks. It defines a novel 

hybrid life cycle which is lacking in the research field of integration of ontologies and 

knowledge discovery as described before.  

The life cycle is built based on best industry practices from a data mining point 

of view and implements best design practices from multidimensional modelling and 

data warehouse design perspectives. The hybrid life cycle proposed is novel in both 

adopting standards and industry practices in ontology engineering as well as in 

proposing a methodology and process model for ontology building. It also advances 

the research on ontology engineering and its integration with KDD by proposing a full 

life cycle to close the loop in an ontology driven knowledge discovery process. 

The hybrid life cycle proposed here is composed of five phases. Each phase is 

divided into tasks related, directly or indirectly, to ontology-specific building tasks 

and to CRISP-DM. The methodology and processes support the implementation of the 

life cycle tasks. 
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Table 4-1 The proposed Ontology Driven Knowledge Discovery phases and tasks.
6
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Although related to CRISP-DM from a ―data mining‖ perspective, ODKD 

differs from it by being concerned with data at an abstract level – the concepts. It 

considers data as a representation of knowledge within a domain. In this way, it is 

looking at the data from a data-modelling perspective where the database is a formal 

representation of the domain knowledge, containing useful data and metadata within 

                                                 

 

6 The tasks highlighted in red correspond to tasks not specifically covered in the thesis such as the exploratory 

work done investigating the integration of ontologies and Online Analytical Process (Appendix A) or tasks 

considered outside of the scope such as modelling which are exclusively related to data mining. The tasks 

appear in the life cycle as a reference since it is not the intention of this work to discuss which modelling 

technique, for example, is most appropriate to a given data mining exercise. Additional research is present in the 

literature in order to use ontologies as a way of informing best data mining techniques, this approach is more 

focused on ontology for KDD which is not part of the scope of this thesis as explained previously. 
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the model. This perspective aligns with the artificial intelligence view in which 

concepts are the most basic units of thought. Concepts are thus the building blocks 

and they and their relationships can represent knowledge about a domain.  

As with CRISP-DM, ODKD is a cyclical process. Moving back and forth 

between different phases is always necessary. When analyzing real and complex 

problems, the knowledge discovered in one KDD task can be reused in another task, 

and this chain might define a decision-making workflow. ODKD also considers 

knowledge (represented as concepts and their relationships) as the starting-point of 

any knowledge discovery exercise; for example, the knowledge extracted from a 

microarray chip based on gene expression analysis of a diseased tissue can be used as 

input for a drug discovery investigation for a completely different disease.  

ODKD then, does not presume that a ‗complete‘ and sufficient dataset is 

available at the time a new data mining application is started. On the contrary, at a 

conceptual level, it considers that every discovery task generates new insights and 

therefore new domain knowledge might be required. The required knowledge will 

bring new types of variables, which will improve the understanding of both the 

problem and the domain.  

Furthermore, this research also reflects the view that data mining is not simply 

the one-time application of a program to a new dataset. In this work, data mining is an 

ongoing hypothesis-checking exercise. It frequently starts with small pilot studies and 

manual space search, including feature construction. With a preliminary confirmation 
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that the process can find some interesting relationships, more data and greater 

expectations are introduced, leading to another round of investigation utilizing a 

larger amount of data, or at least a better understanding of the problem. 

In order to consider this dynamic behaviour, this research applies the guidelines 

of the Cross-Industry Standard Process for Data Mining (CRISP-DM) to the ODKD 

life cycle definition. 

As in CRISP-DM, the ontology driven knowledge discovery process 

hierarchically breaks down into tasks (as shown in Table 4-1). These tasks are 

responsible for the execution of specific ontology engineering and data modelling 

processes as well as for enabling a parallel integration of both knowledge and 

ontology engineering processes. 

Some of the phases such as ontology preparation and evaluation might be 

compared with individual tasks proposed in the literature such as ontology creation or 

ontology integration and probably considered not novel. However, some of these 

previously identified tasks have been proposed just under the umbrella of a general 

ontology engineering approach and sometimes even as just possible independent steps 

of a life cycle. Therefore the ontology driven process proposed in this research must 

be viewed in the context of the integration of Ontology engineering and KDD. The 

ODKD then advances the research by adopting and integrating best practices in a 

closed loop process model as well as by proposing new phases and tasks related to the 

requirements of a KDD process, such as instance preparation and ontology analysis. 
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There are, then, five phases in the Ontology Driven Knowledge Discovery 

process: Ontology Preparation, Ontology Analysis, Instance Preparation, Modelling, 

and Evaluation. 

The first two phases, Ontology Preparation and Ontology Analysis, are closely 

related to the ontology engineering process of assessment, selection and creation of an 

ontological model able to represent a domain and a problem. These phases are 

subdivided into three pipelines as seen in Table 4-1: domain understanding, data 

understanding, and ontology building. Both domain and data understanding are 

related to the understanding of the problem through, for example, the selection of the 

knowledge/data source for the target problem and visualisation of the ontologies,  

while ontology building is related to the creation and population of ontological 

models. 

The Instance Preparation and Modelling phases are related to the data mining 

exercise, with Instance Preparation particularly concerned with preparing data for a 

modelling task while selecting the most appropriate data mining technique for the 

problem. The last phase of the ODKD process, Evaluation, is the most integrative 

phase, where the results of a modelling exercise must be evaluated based on previous 

knowledge and new instances are inserted into the ontological model. 

ODKD‘s phases are not one-to-one mapped to CRISP-DM‘s phases. Due to 

specific ontology engineering requirements, some ODKD phases are designed to 

cover more than one CRISP-DM phase. For example, the Ontology Preparation phase, 
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which includes the ontology and data focuses, is related to CRISP-DM‘s business and 

data understanding.  

On the other hand, when broken down into tasks both ODKD and CRISP-DM 

phases have their tasks aligned in order to facilitate use by the industry and to avoid 

misinterpretation.  

As a conceptual contribution, this and subsequent sections describe an optimistic 

in-principle portrayal of the ODKD process. The methodology, as described, proposes 

an abstract and ‗ideal‘ way (as do all methodologies) and assumes that all will 

proceed without major obstacles or delays. The next sections then should be read as a 

process guideline.  

Figure 4-1 presents the ODKD process model. The diagram distinguishes the 

ontology engineer and domain expert role as main users; however other roles are also 

involved and will be described in the text in the following sections. The document 

outputs derived from the ontology preparation phase are also represented.  Some 

phases are more sequential such as the ontology preparation others don‘t restrict the 

order of the tasks such as the ontology analysis phase.
7
. 

                                                 

 

7 The process model is using a BPMN 1.2 notation. Refer to http://www.bpmn.org for notation information. 
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Figure 4-1 – ODKD process model diagram 
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The next sections describe in detail the ODKD phases and discuss the 

constituent tasks involved in an ontology driven knowledge discovery exercise. It 

considers an ideal process in order to facilitate the understanding of the methodology. 

As noted before. in practice, the methodology may be more challenging in terms of 

numbers of iterations and tasks effort, such as in the case of a lack of consensus when 

understanding a domain which may require an extra number of iterations as well as in 

the instance selection phase where a number of iterations and cleansing is normally 

necessary depending on the project requirements and quality of the instances 

previously acquired in the ontology building pipeline. 

4.2.1. Ontology Preparation 

The prerequisites of a knowledge discovery exercise are data and contextual 

understanding. Without data and contextual understanding, no algorithm, regardless 

of its sophistication, is going to provide meaningful or useful results. Without this 

understanding a user/system will not be able to identify the problems he/she/it is 

trying to solve, prepare the data for mining, or correctly interpret the results.  

This initial phase focuses on understanding the knowledge discovery objectives 

and the domain onto which it is going to be applied. It defines requirements from a 

context perspective and acquires initial domain knowledge through the investigation 

and selection of related domain and application ontologies. 

The ODKD methodology is initiated by a requirement-gathering exercise which 

involves several stakeholders such as subject matter experts, business users and the 
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business problem owners, followed by the selection of problem related data and 

ontology sources. The ODKD methodology suggests a dual-pronged approach to the 

requirement gathering sessions: meeting sessions with the business user 

representatives and subject matter experts (SME) to gain knowledge about the 

problem/domain, and data sessions with source system experts and SMEs when 

available.  

The first round of interviews with business users forms the basis for building an 

understanding of the problem. It is followed by data sessions where the goal is to 

assess the existent data in order to define the data requirement. At the end of these 

initial interviews, a facilitation meeting is scheduled to reach a group consensus 

around problem definition and data requirements. 

After reaching a consensus around the problem and the source requirements, the 

ontology preparation starts the process of source selection which will form the basis 

for the construction of the ontological model and subsequent instance population. 

The source selection is composed of three tasks: ‗domain ontology selection‘, 

‗application ontology selection‘ and ‗data source selection‘. Domain ontology 

selection aims to select knowledge that covers a broader problem perspective, for 

example, general biomedical ontologies when dealing with a medical problem. On the 

other hand, Application Ontology Selection aims at selecting specific ontological 

models for a problem, for example, ontologies related to a specific disease when 
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classifying/diagnosing patients, such as the Leukaemia case study described in 

Chapter 3. 

The selection process is similar for both domain and application ontologies. It 

involves several key steps, including assessing and selecting candidate ontologies 

(ontology investigation), knowledge quadrant analysis, and a knowledge 

representation mapping plan. 

The Data Source Selection then focuses on the candidate ontologies to identify 

data source candidates from a technical and availability point of view as described 

later in this chapter.  

In this research, biologists, bioinformaticians and neuro-scientists were engaged 

in the process of ontology preparation. The definition of the domain area and 

application domain guided the selection of initial candidate ontologies and databases 

and also guided the selection of initial case studies, including the Leukaemia case 

study described previously.  

Ontology Selection 

In this task, various available ontology sources are searched and investigated. 

The goal is to find ontological models that cover the knowledge required to represent 

the problem from both broad and narrow perspectives. The outcome is a document 

containing a list of all available ontologies related to the problem/domain and some 

specific properties of each.  
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The ontologies are annotated with the following minimum set of properties: 

source identification, type (domain or application), representation formalism, and 

availability and knowledge coverage (from the ontology engineer initial perspective). 

Depending on the KDD task and on characteristics of the problem some extra 

information might also be required, such as cost for acquisition, licensing, and 

privacy. This extra information might help in making a decision about the adoption of 

specific ontologies as well as in the planning phase of the KDD exercise. 

Along with the compilation itself, another very important outcome of this 

exploratory process is the gain in domain understanding and consequent refinement of 

the problem statement. This gain is due to the fact that a domain can frequently be 

modelled in several ways and from different perspectives in ontologies; for example, 

there are various biomedical ontologies available now, some encompassing chemical 

and/or genetic knowledge while others are focused on nutritional and environmental 

factors. These multiple perspectives enrich the background knowledge of a problem, 

adding to the already established expert knowledge. 

There is no limitation to the number of ontologies gathered in this task, nor 

should any technical or representational constraint should be considered at this stage. 

The gene ontology and UMLS were the first candidates selected in this research due 

to their extensive coverage of biomedical knowledge. All considerations, constraints 

and factors are analysed in the knowledge quadrant analysis, as follows. 
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Knowledge Quadrant Analysis 

The ontology investigation document produced in the previous task serves as the 

basis for the knowledge quadrant analysis. The analysis begins with a brief 

presentation of the compilation of ontologies available by the ontology engineer. The 

KDD team then discusses all the candidate ontologies from a contextual and technical 

perspective, adding pertinent comments to the list. This first interaction aims to reach 

a common understanding of the problem, knowledge source availability and relevant 

source characteristics. 

Once the ontology list is reviewed, prioritization begins. ODKD‘s methodology 

employs a simple and flexible quadrant analysis technique (see Figure 4-2). The 

technique adopted is similar to techniques widely used in data warehousing and IS 

development to prioritize business processes to be implemented. The vertical axis 

refers to the knowledge coverage of an ontological model. The horizontal axis might 

vary in accordance to the problem, but normally refers to the availability of the 

ontology. 

The ODKD methodology also suggests the adoption of a second quadrant 

analysis which encompasses knowledge coverage and the possibility of its use, 

expressed as ‗feasibility‘. Feasibility takes into consideration the problem 

requirements, the resources available and the constraints for the implementation of a 

successful KDD task.  



126 

 

 

Figure 4-2 - Knowledge coverage vs. feasibility 

This additional quadrant analysis is especially important in problems where a 

broad commitment is necessary due to financial considerations, time restrictions, 

technical resources and/or contractual constraints. The Unified Medical Language 

System (UMLS) selected in this research, for example, required the establishment of a 

contractual agreement for its use and extension. This also helps in the risk analysis 

process, where major risks can be identified and/or overcome. (Although not adopted 

in our experiments, there is some evidence that complex scenarios may justify the use 

of a three dimensional graph for the prioritization process. It would include the three 

axes: knowledge coverage, availability and feasibility.) 

Ontologies positioned in the upper right quadrant are selected and discussed 

further since they hold crucial knowledge representation of the domain. Ontologies in 
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the upper left quadrant are annotated with the requirements that would improve their 

availability and feasibility. Ontologies in the lower right quadrant are annotated for 

possible/secondary use as their coverage might not be adequate. Ontologies in the 

lower left quadrant are discarded as they do not represent the domain/problem 

sufficiently and are difficult to use.  

Assuming not all candidate ontologies are discarded, a final list is compiled into 

a document representing the consensus reached and the additional tasks required to 

improve the possible use of one or more ontologies. These required tasks might also 

be part of the risk assessment document used for project management. The final 

document is then distributed to all participants.  

It is important to note that this document will probably change as further 

requirements will be introduced later in the life cycle. However the analysis 

conducted at this stage represents a common understanding between all project 

participants and guides further ontology adoption later in the ODKD process. 

This iterative process of identifying ontologies and data sources was strongly 

evident in the development of this research. The initial set of ontologies was collected 

and then further application ontologies were included as needed, such as those related 

to specific brain disease knowledge as described in Chapter 6. 

Knowledge Representation Mapping Plan 

One aspect garnered from the ontology investigation task is the representation 

formalism. Although not explicitly considered in the quadrant analysis, as knowledge 
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coverage is the main factor of interest, it is very likely that ontologies selected in the 

quadrant analysis are modelled on different formalisms. Thus a technical analysis of 

the ontology formalism is needed. The knowledge representation mapping plan is 

responsible for this analysis. 

For each ontology selected as a candidate the ontology engineer annotates along 

with the knowledge representation formalism the actions required to translate all the 

various representation formalisms into a common formalism. For example, in some 

cases it might be necessary to develop specific import/translation mechanisms, in 

other cases the KDD and/or the ontology environment might already have these 

features. The next chapter describes the environment developed to implement the 

ODKD which is able to import most of the currently available ontology formats. 

At the end of this task, a plan for the incorporation of the selected ontologies is 

finalized and serves as basis, alongside the data source selection described in the next 

section, for the ontology building pipeline which will create the ontology model for 

the KDD task.  

Data Source Selection 

In terms of ontology preparation, the data understanding pipeline consists of a 

Data Source Selection task. This task starts with an initial data collection based on the 

results of data sessions previously executed in the requirement gathering exercise and 

ontology selection. As in the ontology–related tasks, the data source selection 
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proceeds with activities to achieve familiarity with the data, to identify data quality 

problems and to map the data to the ontologies selected. 

The main outcome of this pipeline is a data mapping document which assesses 

the data available, and establishes possible links among the data collected and 

different branches of the ontologies selected. This document is used as a guideline in 

the ontology population and data integration tasks of the ontology analysis and 

instance preparation phases respectively (both phases are described later in this 

chapter). A number of candidate data sources were selected in the biomedical case 

study described, such as gene cards, NCBI and  PubMed for annotations (a complete 

list is provided in Chapter 6). 

This task also helps in the discovery of the first insights into the data and 

contributes to the detection of interesting subsets for forming hypotheses for hidden 

information. These insights normally trigger new knowledge acquisition exercises 

which can suggest the creation of new concepts in the subsequent ontology building 

tasks. 

Ontology building is the last step in the ontology preparation phase. This 

pipeline consists of three main tasks: Ontology Integration, Ontology 

Merging/Alignment and Ontology Creation. Ontology building is concerned with the 

integration, inclusion and importation of the ontologies selected in the quadrant 

analysis and/or described in the knowledge representation mapping, and the creation 

of the concepts identified in the data mapping plan.  
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As described in Chapter 3, the process of building ontologies is underpinned by 

the concept of Evolving Ontologies, therefore the extension or inclusion of new 

knowledge (concepts and relationships) is facilitated.  

Ontology Integration 

Ontology integration is the incorporation of the ontologies identified by the 

domain understanding pipeline. The main objective of this task is to reuse ontologies 

already developed and identified as available in the previous selection process, in 

order to add a broader perspective to the problem domain. This approach can be 

observed in the integration of the Gene Ontology as described in the Leukaemia case 

study and further extended in the biomedical case study presented in Chapter 6 and 

Appendix B.  

There are two main ways to incorporate and reuse ontologies in the ODKD 

methodology: ontology import/inclusion and ontology annotation. To reiterate, the 

former is concerned with the incorporation of a complete ontology and the latter is 

related to the incorporation of specific concepts of a selected ontology source. 

Ontology Merging/Alignment 

In short, ontology merging/alignment is “a mapping of concepts and relations 

between two ontologies” (Sowa, 2005). This task is a research topic in itself with 

various approaches described in the literature (Euzenat et al., 2004). In the context of 

the ontology driven knowledge discovery methodology, the main goal is to define a 

task responsible for the incorporation of existent ontologies to form a body of 
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concepts and relationships able to represent the domain and the specific problem as 

defined by the ontology selection task. 

The next chapter describes the framework and the merging technique available 

in the ODKD implementation framework. Some extra merging techniques are also 

briefly presented in Chapter 6 where a biomedical application is described. 

Ontology Creation 

In spite of the current availability of large ontologies covering a very wide range 

of knowledge in several domains, it is very likely that the ontologies acquired in the 

ontology merging/alignment phase will not fully cover the knowledge necessary for a 

given KDD task. In the biomedical discovery field, for example, even though the 

amount of knowledge provided by the Gene Ontology and the National Center for 

Biotechnology Information (NCBI) Ontology is immense, there will probably be a set 

of concepts and relationships that are not covered or well defined for an investigation 

of a specific disease (Bodenreider, 2002). As illustrated in subsequent chapters, 

several concepts needed to be defined in this research in the context of the Brain Gene 

Onotlogy. 

Ontology creation is then concerned with the incorporation of problem-specific 

knowledge and the creation of concepts not covered by the ontological model built in 

the previous task (merging/alignment). It is also responsible for the translation of 

different formalisms into the formalism defined for the ontological model being 

created. 
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The creation task might be considered as a specific manual process of building 

concepts and relationships not incorporated through the inclusion of the selected 

ontologies. As in the ontology merging/alignment task, there are different ways for 

creating an ontological model. The literature suggests various ontology building 

methodologies (Gómez-Pérez, Fernández-López, & Corcho, 2004). 

The literature and early experiments developed in this research suggest that the 

best building methodology for a KDD task is highly dependent on the problem, 

ontology application tool and the representation formalism, among other things. 

However it has also been suggested that the adoption of a methodology to build a first 

ontology ‗skeleton‘ alongside the integration of the various ontologies in the merging 

phase is very productive.  

This research has adopted the Significant Conceptual Modelling Process 

(Gottgtroy & Gottgtroy, 2001). Instead of concentrating on the engineering problem, 

this methodology focuses on the identification of relevant initial concepts of a 

problem domain able to link the knowledge acquired with the mental model of the 

ontology engineer and business problem owners. The technique is based on the 

Physiology Education Theory of David Ausubel. A primary process in modelling is 

subsumption in which new material is related to relevant ideas in the existing 

cognitive structure on a substantive, non-verbatim basis. (Detailed discussion of this 

modelling technique is out of scope of this research, further material can be found in 

the paper or on Ausubel‘s theory site.) 
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In summary, this first phase (ontology preparation) begins with the assessment 

and selection of both available ontologies and data sources relevant to the target 

problem/domain. It is followed by the construction of an ontological model able to 

evolve and support a KDD task.  

After this initial conceptual modelling task, a detailed analysis of the knowledge 

representation (ontological model) is undertaken in order to gain domain knowledge 

and to populate the model with data/ontology instances to form the knowledge base.  

As noted before, the ontology driven methodology and process model proposed 

in this research is a guideline which focuses on the necessary ontology engineering 

tasks to build a hybrid ontology driven knowledge discovery process. As a guideline it 

recognizes that the outcomes, such as a data mapping plan, will be integrated within 

normal project management practices to highlight dependencies and risks in a project 

development. Therefore the ODKD does not specify a set of templates. It is focused 

on the tasks and minimal set of information necessary to capture the requirements to 

build an ontology in the context of KDD. The practice of this research has shown that 

the documentation used has become live documents which are enhanced through the 

life cycle of the projects (which is consistent with CRISP-DM and other 

methodologies). 

4.2.2. Ontology Analysis 

The Ontology Analysis phase is related to the discovery of the first insights into 

the ontological model as well as to the investigation and/or checking of the initial 
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hypotheses created through the disclosure of hidden information in the developed 

model. 

As depicted in the table 4-1, the ODKD process defines four tasks in this phase: 

Ontology Visualization, Ontology Query, Conceptual Matching and Ontology 

Population. The first two tasks are related to the exploration of the ontological model 

by means of visualisation, searching and analytical process. The latter two tasks are 

related to the construction of the knowledge base through the insertion of data from 

the available databases and the population of instances from the selected ontologies.  

Ontology Visualisation 

Ontology visualisation is the analysis of the knowledge representation by means 

of visualisation techniques. The goal of this task is to facilitate the exploration of the 

ontology from different perspectives and the navigation of the emerging complex 

knowledge network. 

There are different ontology visualization techniques available in the literature, 

and some built into ontology environments (Wang & Gottgtroy, 2006). The selection 

of the most appropriate technique is highly dependent on the problem‘s characteristics 

and on the ontological model (Wang, 2006), different problems and/or knowledge 

representations may require extra or specially designed visualisations. Therefore, the 

ODKD methodology suggests the adoption of at least two techniques in a KDD 

process: tree navigation and network visualisation.  
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Figure 4-3 - Several visualizations available in the BGO System: A sample of a 

GRN editing process: (a)the CLCN& and GABRA1 genes are created (b) a 

relationship is created between these genes (c)an inhibitory behaviour is selected (d) 

the new inhibitory relationship is opened (e) an annotation is added (f) the source of 

the annotation is selected (g) a PubMed annotation is created. 

Ontology Query 

In spite of the advantages of exploring a complex knowledge structure by means 

of visualization, a query mechanism is still required. This is evident when navigating 

in domains where concepts are unfamiliar or the taxonomy varies in accordance with 

knowledge background. The bioinformatics field, for example, is a multidisciplinary 

subject, which inherits concepts from biology, chemistry, medicine among others; 
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therefore querying a concept by synonyms and their relationships helps to rapidly 

increase understanding of the domain. 

Ontology query is therefore a task used in the ODKD methodology that enables 

navigation in an ontological model by using ‗questions‘ to verify hypotheses and/or 

select instances from a knowledge base. It is implemented in the framework and is 

used to facilitate understanding, for example, it helps to answer questions such as; 

‗what are the genes located in part X of the brain? ‗which genes are highly expressed 

in the brains of patients with disease Y?‘. 

The next chapter describes and presents the visualization techniques and query 

mechanism adopted in the ODKD.  Appendix B shows some associated visualization 

and querying screenshots related to the biomedical case study (Chapter 6). 

Conceptual Matching 

Conceptual Matching is the task that maps a database to an ontological model. 

After the construction of an ontological model a database model is mapped to the 

ontological model and the database records are then imported as instances of the 

ontology to build the knowledge base. This conceptual matching gives semantic 

meaning to the data. This has been referred to as the major contribution of the so 

called semantic technologies (Foster, 2006). 

There are various approaches to matching ontologies and databases (Gottgtroy, 

Kasabov, & MacDonell, 2003b). Instead of trying to link a record at the level of data, 
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as developed by syntactical matching techniques such as XML mapping, conceptual 

matching integrates a record at its conceptual level, leveraging both the integration as 

well as the understanding of a data model. 

This task plays a major role in the Ontology Driven Knowledge Discovery 

methodology by mapping the databases identified in the data mapping plan, created in 

the data understanding pipeline (data understanding section), to the ontological model 

selected during quadrant analysis. It also adds another conceptual layer to the data by 

integrating different sources of data to the same ontological representation. 

In this research publications were inserted into the ontological model using gene 

synonyms and GO-terms to match the data sources and publications to the ontology. 

RNA expression data acquired from the GNF expression database, for example, were 

also inserted in the brain gene ontology (as described in Table 6-1).  

Ontology Population 

This task populates a knowledge base with instances of the ontologies 

previously merged and/or aligned. It is the next natural step after the conceptual 

model matching described in the previous section. 

 In brief, after the exploration of the ontological model and/or after the 

gaining/acquisition of new knowledge, the knowledge base can be populated with 

instances from the ontologies studied. As an example, after the Gene Ontology 

analysis a researcher might decide to incorporate into a knowledge base instances of 
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genes found in the genomic database of a plant, as well as those found in an animal 

that are related to the disease being investigated in a KDD exercise. These instances 

will then build linked knowledge, integrating knowledge from different experimental 

contexts. 

The experiments undertaken in this research have shown that instance scoping 

might also be needed in order to prune the amount of data currently available in the 

domain ontologies. There will always be an amount of information, represented by 

instances, which is not, in principle, relevant to a specific problem; therefore instead 

of incorporating a full set of instances from a domain ontology, the best practice is to 

incorporate instances after the initial knowledge discovery task. The results will then 

indicate the need for new instances of even newer knowledge. 

In this research, for example, a Gene Ontology Slim version relevant to brain 

gene disease knowledge was selected and populated in the brain gene ontology built 

as part of the biomedical case study. 

Chapter 6 describes the integration of knowledge and KDD results into one 

biomedical ontology (Gottgtroy, 2003; Verma, Gottgtroy, Havukkala, & Kasabov, 

2006). The ontological model and its knowledge base aim to link knowledge about 

genes, nutritional characteristics and the brain in order to link fields, which are, in 

principle, unrelated, but in the light of further investigation may show a strong 

relationship in their environmental, nutritional and genetic aspects. 
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Figure 4-1 summarizes the Ontology Analysis phase and its respective tasks 

where the exploratory work is done and data and instances are acquired from the 

ontologies and databases identified during Ontology Preparation. 

4.2.3. Instance Preparation 

The instance preparation phase covers all activities that construct the final 

dataset that will be fed into the selected modelling tool(s). Instance preparation tasks, 

as data preparation in conventional data mining life cycle, are likely to be executed 

multiple times depending on the model being targeted. Tasks include concept, 

instance and slot (or attribute in a database taxonomy) selection, transformation and 

the cleaning of instances as well as exportation to modelling tools. 

This phase leverages the power of ontologies in the ODKD methodology by 

adding a semantic layer to the data. It supports selection of the best candidates for a 

data mining exercise from multidimensional perspectives, reducing the features 

needed for a successful KDD task. The ontology driven methodology is composed of 

three main tasks in this phase: Instance Cleaning, Instance Selection and Instance 

Export.  

Instance Cleaning 

Instance cleaning can be thought of as a special sort of data cleaning, also called 

data cleansing or scrubbing. It deals with the detecting and removing of errors and 

inconsistencies from instances in order to improve the quality of features being 

selected for a modelling task (Rahm & DO, 2000).  
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Instance quality problems are mainly inherited from errors present in data 

collections, such as files and databases, e.g., due to misspellings during data entry, 

missing information or other invalid data. Other sources of instance error are 

incomplete information and invalid information. 

When multiple knowledge/data sources are integrated in an ontological model 

the need for data cleaning increases significantly due to the diversity of sources. This 

is because the sources often contain redundant information and/or the uncertainty 

around the information is high, due to a lack of evidence to support it. Instance 

cleaning is concerned then with providing access to accurate and consistent data. 

 

Figure 4-4 - A set of data selected in the instance selection tool showing a 

number of missing values (described as "Empt") as candidates for cleaning. 
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The ODKD methodology also supports the instance cleaning task through the 

use of quadrant analysis to classify the candidate ontologies for the domain and 

problem representation as well as through ontology analysis when selecting instances 

to populate the knowledge base. This selection should reduce problems related to the 

quality of the information acquired as well as allowing the identification of candidate 

instances for the cleaning task.  

Instance Selection 

The instance selection task brings one of the most important contributions to the 

ontology driven knowledge discovery process. Instead of concentrating effort on 

analysing data characteristics, this task concentrates its effort on giving meaning to 

data and reducing the number of features for a data mining task.  

Opportunities arise from the simple act of connecting different facts, instances 

and points of view that have been created for one purpose, but in light of ontological 

analysis, can be reused in a quite different context, to form new data set for modelling 

and creation of new hypothesis. In gene expression analysis, for example, the number 

of samples may be small while the number of genes can be huge, thus any support in 

identifying those genes significant to the problem analysis is very important. Looking 

at gene expressions in different tissues and parts of the body, as well as at the 

molecular function level, might cluster genes into small classes which may reduce the 

amount of computing time needed for a modelling task, and can provide optimum 
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meaning for the results. Instance preparation in this example plays an important role 

in acquiring previous knowledge that can help the bioinformatician in the selection of 

such features. 

Instance and feature selection have become the focus of much research in areas 

of application where datasets and knowledge bases with tens or hundreds of thousands 

of variables are available. The objective of the ontology driven instance selection task 

is to improve the prediction performance of predictors, providing faster and more 

cost-effective predictions, by providing a better understanding of the underlying 

process that generated the data and its conceptual interpretation. 

The instance selection tool can also initially select instance candidates which are 

then exported (described in the next section) for further analysis in data mining 

workbenches. For example a set of instances can be selected in the ontology and then 

exported to NeuCom for further analysis by the evolving clustering algorithm 

(Kasabov, 2008) as follows. 

 

 

 

 

The ECM: algorithm: 

- Create the first cluster C1 by simply taking the position of the first instance 

from the exported data as the first cluster centre Cc1, and setting a value 0 

for its cluster radius Ru1; 

- If all instances from the exported data have been processed, the clustering 

process finishes. Else, the current input instance, xi, is taken and the 

normalised Euclidean distance Dij, between this instance and all n already 

created cluster centres Ccj, Dij = || xi – Ccj ||, j = 1, 2, ..., n, is calculated. 
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In this way, the maximum distance from any cluster centre to the farthest 

instance that belongs to this cluster is kept less than the threshold value, Dthr, though 

the algorithm does not keep any information on passed examples. The objective (goal) 

function here is a very simple one and it is set to ensure that for every data example 

(instance) xi there is cluster centre Cj such that the distance between xi and the cluster 

centre Ccj is less than a predefined threshold Dthr (Note that while Euclidean distance 

is used in this example, a range of measures exists e.g. Hamming, cosine.  Other 

measures may be preferred where, for instance, the data at hand is not linearly 

separable.). 

The resultant clusters can then be imported, analysed and validated by the expert 

using the ontological knowledge. This approach therefore utilises the best techniques 

of both semantic-based instance selection and quantitative selection available in the 

data mining workbench. 

Where the process of instance selection is impeded by missing values in the 

data, imputation can be used to enhance the viability of as many vectors as possible, 

as follows. 

Algorithm for missing values imputation: 

– Assume that the value xim is missing in a vector (sample) Sm= 

(x1m,x2m,…,xim,…xnm) 

– Find the closest K samples to sample Sm based on the distance measured 

with the use only of the available variables (xi is not included) – set Smk 

– Substitute  , where dj is the distance between 

sample Sm and sample Sj from the set Smk 

– For every new input vector x, find the closest K samples to build a 

model (the new vector x is a center of a cluster and find K closest 

members of this cluster) 
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Instance Export 

The instance export task is concerned with the translation of the ontological 

model into a format used by one or more data mining workbenches. The ontology 

driven knowledge discovery methodology then supports the reverse transformation of 

an ontological model into a dataset by exporting the knowledge base into a database 

format (see Figure 4.4). 

Figure 4-1 summarizes all tasks involved in the Instance Preparation phase. The 

next chapter describes the tools developed to support this task alongside the instance 

cleaning and instance selection tasks. Appendix B shows relevant screenshots for this 

phase when applied to the biomedical case study. 

4.2.4. Modelling 

In this phase, modelling techniques are selected, different test sets are formed 

and the models are applied. Typically, several techniques are applied to the same 

problem in order to validate the patterns found through different perspectives.  

The modelling phase in the ODKD methodology is composed of three tasks: 

model selection, data set design and model building. These three tasks are closely 

related to the instance preparation phase.  

Model Selection 

Model Selection is driven by an understanding of the problem, its domain and 

the knowledge bases available for instance selection. In this task, various modelling 
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techniques may be evaluated and selected as candidates for the data mining task. 

Normally, more than one technique is suitable for the same problem type. Some 

mining techniques have specific requirements for the form of the data. Therefore, 

stepping back to the ―instance preparation phase‖ is often necessary. 

Data Set Design 

Data set design is related to the creation of training and test sets for the model 

building phase. This task interacts intensively with the instance export task with the 

latter generating different sets of data from the ontological model to be used in the 

modelling exercise. Usually more than one set of data is generated before the 

definition of a data pipeline is established for deployment of a solution. 

Model Building 

Model building or Onto-mining is generally recognised as ontology learning 

from instances in ODKD. It is the application of data mining techniques to extract 

knowledge from datasets represented as instances within the knowledge base.  

Most research in onto-mining concentrates on learning from textual and semi-

structured resources in the process of building an ontology. However, there is huge 

potential in the investigation of the relationships between concepts in an ontological 

model. Link analysis, social networks and graphs may play an important role as 

inference mechanisms. This reasoning may help mining techniques produce better 

results.  
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Ontologies can help mining techniques in the same way the application of 

mining techniques in a good data warehouse can lead to better results than compared 

with those applied to raw data. This gives another level of abstraction by connecting 

domain and problem knowledge in a shared model. 

This research has come to the conclusion that both the ontology engineering and 

data mining fields have much to contribute to each other and a broad vision is needed 

to integrate them. The biomedical application described in chapter 6 presents the 

results of an integration of ontologies and a novel data mining technique which 

leverages both ontology engineering and KDD.  

4.2.5. Evaluation 

This phase is concerned with the evaluation and acquisition of knowledge 

extracted by the data mining model generated in the modelling phase. The knowledge 

acquired must be mapped and/or translated into the ontology and then evaluated 

before its final incorporation into the ontological model. This phase is divided into 

three tasks in the ODKD process: knowledge extraction, knowledge assessment and 

ontology enhancement. 

Knowledge Extraction 

This task is responsible for the incorporation of the knowledge extracted by data 

mining into the ontological model. It might also be considered an ‗automatic 

knowledge acquisition‘ task. After the acquisition of the knowledge, a new cycle of 

analysis begins to assess the knowledge incorporated.  
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There are different techniques reported in the literature which may be used for 

the process of mapping knowledge from a data mining technique into an ontological 

model. Some of the research in this area includes merging and mapping techniques 

inherited from the investigation of ontology integration techniques, such as Formal 

Concept Analysis (FCA) (Ganter, Wille, & Stumme, 2005). This can also be 

undertaken according to similarities among graphs through the use of graph theories.  

Although this research does not emphasise the difference between formal and 

informal ontology languages, it should be noted that the formal approaches can 

exploit the advantage of logic to enable automatic reasoning when new knowledge is 

acquired in the knowledge extraction task. Description logic (Nardi & Brachman, 

2002), for example, is able to automatically classify new knowledge extracted through 

its reasoning mechanisms. However that knowledge must be first converted to the 

logic formalism in order to enable the reasoning to occur.  

The semantic web research community is dealing with most aspects related to 

formal ontologies and reasoning. Active groups are establishing patterns that aim to 

address some of the critical points in this area. Expressing and reasoning with 

imprecise knowledge, for example, is an active area where non-classical logic plays a 

key role. 

The following two chapters describe the techniques used in the prototype of the 

ODKD framework and in the biomedical application to deal with knowledge 

extraction, uncertainty and assessment. 
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Knowledge Assessment 

At this stage of the ODKD process the user has built a model (or models) that 

appears to be of high quality from a data analysis perspective. Before proceeding to 

the final deployment of the model through the enhancement task, it is important that 

the team more thoroughly evaluate the created model from a conceptual point of view, 

to be certain it is also meaningful from a domain perspective. In the biomedical 

discovery field, for example, it is important to verify whether the knowledge extracted 

is biologically plausible or if there are evident facts that might suggest a review of the 

steps executed to construct the model, select the instances and so on.  

A key objective is to determine whether there is some major problem that has 

not been sufficiently considered. At the end of this phase, a decision on the use of the 

data mining results should be reached. 

Uncertainty must also be considered during this assessment. Knowledge 

acquired at this stage might not be easily assessed due to lack of understanding of the 

problem/domain, lack of sufficient data and the like. The ODKD process then defines 

a ―quarantine structure‖ where knowledge acquired from a modelling exercise can be 

stored for extra analysis in the ontology enhancement task without impacting on the 

main ontological model.  

Depending on requirements, this task can be as simple as generating a report on 

the knowledge extracted by the modelling technique or as complex as moving the 

mining model into full production use. It might involve the analysis of the current 
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ontological model to validate the knowledge acquired or even acquire more domain 

knowledge to support the findings and/or identify the need to go back to ontology 

analysis to perform extra analysis and select new test sets.  

The biomedical application chapter demonstrates this cyclic process by 

integrating different sources of knowledge, applying a data mining algorithm, 

extracting knowledge, validating this knowledge using previous knowledge or 

triggering new mining exercises leading to the integration of different experiments. 

Ontology enhancement 

As stated previously, creation of the model and its assessment is generally not 

the end of the project. Even if the purpose of the model is to increase knowledge of 

the data, the knowledge gained will need to be organized and presented in a way that 

the user can employ effectively. The ontology enhancement task is responsible for the 

final acceptance of the knowledge generated and where any ―quarantine structure‖ is 

considered stable enough to be used in other live KDD tasks.  

In one sense, this ontology enhancement task might be compared to the 

deployment phase of the CRISP-DM process. At this stage, the KDD team decides 

whether they agree with the knowledge assessed and the quality of the model, and 

therefore whether they should use the knowledge represented in the quarantine 

structure to update the ontological model. This decision might be made using 

difference inferences such as rules based on expert knowledge, heuristics, specific 

classification algorithms (for example a classification model which takes into 
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consideration the quality of the annotations, provenance of creation, number and 

strength of evidence), or even graph based algorithms which may find high dense 

connected sub-graphs which may indicate a cluster or an important information 

element enabling an expert user to make an informed decision. For example, the 

pattern found in a modelling technique might indicate that some molecular functions 

are responsible for triggering a disease. After the learning task, this new molecular 

knowledge can then be used to support the decision of a medical team in the treatment 

of the disease. 

In summary, this Evaluation phase (Figure 4-1) closes the ODKD cycle where 

knowledge is generated and made available for other experiments or KDD tasks. 

This ODKD section has described the novel hybrid life cycle developed to 

integrate both ontology engineering and the knowledge discovery in databases 

processes.  

4.3. Summary 

The fact that today large amounts of data exist in many domains and that 

knowledge can be induced from these data using appropriate algorithms has been the 

driving force of the evolution of KDD systems. Ontology aims to facilitate the 

understanding, sharing, reuse and integration of knowledge, thereby helping to 

address many of the difficulties currently experienced in managing large distributed 

on-line information resources. People already look less and less at raw data, and, as 

the volumes accumulate, few, if any of us, will have the time or the mental capacity to 
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assimilate the new data, structure them in a meaningful way, and extract information 

without first processing the data through an ontology or some other similar machine-

based organisational aid. 

Computer scientists have typically been focusing their attention on learning 

algorithms, which provide the core capability to generalise large numbers of specific 

facts into useful patterns and extract high-level rules. Although learning techniques 

play a central role in a knowledge engineering process and seem to hold the most 

excitement, in a real-world discovery task with several problem dimensions, such as 

in the biomedical discovery domain, it is clear that KDD can be extremely complex, 

and that low-level data mining is only one step in the knowledge engineering process. 

In order to deal with real-world data mining tasks with high dimensionality there 

is a need to reduce the problem space search while increasing the domain knowledge. 

This chapter has presented a novel hybrid approach which combines the best practices 

of both ontology engineering and the KDD field. 

The Ontology Driven Knowledge Discovery Process is a conceptual model 

which, alongside the Evolving Ontology meta-knowledge model, is the basis for the 

development of a framework able to enhance the process of knowledge discovery 

from data by adding a high level of abstraction to the process, which allows better 

reuse of previous knowledge as well as the creation and evaluation of new knowledge. 



152 

 

The main outcome of this chapter is a hybrid knowledge discovery process 

which defines a life cycle based on the principles of the most widely adopted KDD 

process in industry as well as supporting the principles of evolving ontology which 

enable continual enhancement and acquisition of knowledge in a discovery exercise. 

The process is divided into five phases which are composed of different tasks. 

The tasks have some methodological guidelines that indicate some of the best 

practices identified through experimentation within this research. These practices can 

be extended in accordance with the problem domain and KDD task. The process also 

presents guidelines based on both industry-specific published experiences and the 

research developed in this thesis. As a cyclic process it does not have a pre-defined or 

rigid order. On the contrary, the main objective is to create a reference life cycle that 

can be extended while keeping the most important tasks for the integration of 

ontology engineering and KDD. The outcomes of each phase can be used as 

milestones to ensure a consistent use of the process while enabling extension and 

flexibility of the life cycle use and application. 

The guidelines must be used jointly with normal project management standards 

and practices, therefore the outcomes of each sub-task are considered live documents 

and therefore can and should be enhanced through the life-cycle of a project. 

Table 4-2 – A colour coded Ontology Driven Knowledge Discovery phases and tasks. 
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Ontology Preparation Ontology Analysis Instance Preparation Modelling Evaluation
O

n
to

lo
g

y
 B

u
ild

in
g

O
n

to
lo

g
y
 B

u
ild

in
g

D
a

ta
 

U
n

d
e

rs
ta

n
d

in
g

D
a

ta
 

U
n

d
e

rs
ta

n
d

in
g

D
o

m
a

in
 

U
n

d
e

rs
ta

n
d

in
g

D
o

m
a

in
 

U
n

d
e

rs
ta

n
d

in
g

Domain 

Ontology 

Selection

Data

Source 

Selection

Knowledge

Extraction

Ontology 
Enhancement

Ontology 

Merging/ 

Alignment

Model 

Building 

Model 

Selection

OOLAP

Conceptual 

Matching

Instance 

Selection

Application 

Ontology 

Selection

Data set 

Design

Ontology 

Query

Ontology 

Visualization

Knowledge

Assessment

Ontology 

Integration

Instance

Cleaning

Instance

Export

Ontology 

Creation

Ontology 

Population

 

As described early in this Chapter (section 4.2), the ODKD methodology is a 

novel hybrid model which integrates all steps necessary in the integration of ontology 

engineering and KDD. The table above (Table 4-2) is colour coded to more clearly 

identify the contributions of this research from an ontology engineering point of view. 

Some of the tasks are novel and have been included considering the KDD process, 

some have been adapted from the ontology engineering field and are used in the novel 

context of the ODKD, others have been adapted but maintain their original ontology 

engineering feature, and some are not part of the core research but must be included 

as part of the closed loop proposal. The green colour represents a novel element, the 

yellow colour represents a modification, the blue colour represents the adoption of 

well established tasks in a different context and tasks with red borders are not part of 

the core research. 
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This methodology and process model defines a minimal set of tasks and 

outcomes necessary to integrate ontology engineering and knowledge discovery in 

databases. The application of this life cycle in terms of concrete examples is 

demonstrated in Chapter 6, while the ontological framework and its tools are 

presented in the next chapter. Further illustration can be found in Appendix B where 

relevant screenshots are presented to demonstrate the supportive tools developed and 

utilized in this research for each phase of the ODKD methodology. The study‘s 

conclusions and the discussion of future research present other methodological 

approaches also considered in the research. 
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Chapter 5   

Ontology Driven Knowledge Discovery 

Implementation Framework 

This chapter describes the Ontology Driven Knowledge Discovery 

Implementation Framework. The chapter begins by defining the specification criteria 

of the software framework followed by a description of the ontology environment and 

the set of plug-ins developed or adopted in this research to support the Ontology 

Driven Knowledge Discovery process (ODKD) and used in the development of the 

biomedical case study.  The chapter finishes with a validation of the software 

specification criteria.  
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5.1. Introduction 

The process of building a full domain ontology tends to be very complex. Even 

a very ad-hoc process may involve solutions using numerous ontologies, both existing 

and newly developed. These ontologies will then progress through a series of 

upgrades and extensions which must be carefully managed in order to keep track of 

the modifications as well as their sources (Denny, 2004).  

A good tool to support domain ontology building should enable mapping, 

merging, comparison, and linkage between different ontologies as well as their 

conversion into several formats to form an ontological model (Gandon, 2006; Gómez-

Perez, 1999; Gómez-Pérez, 2002). This model may then be utilized in different 

applications, such as knowledge discovery tasks where the acquisition, organization, 

and visualization of domain knowledge are necessary before a data mining exercise is 

undertaken. Further features are also needed to incorporate and evaluate the 

knowledge discovered in a data mining task. 

This chapter presents the implementation framework adopted to support the 

Ontology Driven Knowledge Discovery process as well as a set of specific tools and 

meta-models developed in this thesis to support the Evolving Ontology meta-

knowledge model and the biomedical case study described in the next chapter.  

Although generic and applicable to different domains, the prototype framework 

was built primarily to support biomedical knowledge discovery processes and case 

studies developed in this research, therefore the plug-ins developed and/or extended in 



157 

 

this research are mainly focused on the biomedical domain. On the other hand, the 

adopted plug-ins described in this chapter are just an example of plug-ins available 

and developed by the Protégé open source community. For example, the visualization 

plug-ins covered in this chapter are mainly those which were modified to fulfil the 

requirements elicited during the development of the case studies. Some extra 

visualization tools such as Jambalaya were reviewed and tested and while they are not 

part of the framework described here they can be viewed in and adopted from the 

Protégé community website (Protege, 2006a).  

In a similar vein, rather than cover several different techniques and algorithms 

that may or may not be relevant to a given problem, the focus of this exercise is the 

implementation and selection of a set of candidate techniques suitable for the 

biomedical domain. The framework explores the extensible conceptual model and 

architecture of the selected ontology environment in order to cope with both generic 

and specific requirements.  

The chapter begins by linking the framework with the multi-methodological 

research methodology adopted in this thesis. This is followed by the definition of both 

requirements and system development evaluation criteria. The chapter continues with 

the description of the Ontology Driven Knowledge Discovery Implementation 

Framework which is presented alongside some screenshot samples of the system used 

in the biomedical case study. Finally, the chapter is summarized and research 

outcomes are presented. 
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5.1.1. Research methodology 

This chapter, along with the biomedical application in Chapter 6, comprise the 

practical contribution of this thesis (see Figure 0-2). It is part of the system 

development phase of the constructive approach followed in this work, which enables 

the building of a research framework by undertaking technical development and 

refining domain concepts, as discussed in Chapter 1.  

This chapter covers the main stages of the systems development phase. It is 

concerned with theory testing, and brings about a realistic technological evaluation of 

the system developed and its potential for acceptance as described in Chapter 1. 

Nunamaker et al (1991) emphasize that every researcher of IS engineering 

firstly needs to determine and limit the scope of his/her research. Such a step is 

important when integrating ontologies and data mining in a knowledge engineering 

process. On one side, the system must be generic and suitable for any domain. On the 

other hand, due to the characteristics of certain domains, such as the biomedical 

domain, and due to the applicability of various algorithms for specific modelling 

problems, the system must clearly define its scope while being extensible and flexible 

enough to incorporate several techniques and various modelling methods.  

The design criteria described in the next sections are used to guide the 

development of the system architecture, the prototype, and the final product, they are: 

Scope, System Design, Product and Technology Transfer. These criteria both inform 

and are informed by the research scope definition and design specification stated 
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previously in Section 1.4.2. They are based on ontology engineering requirements 

explained in Section 5.1, open source and Protege development best practices 

(Protege, 2006a; Knublauch, 2003; Noy, Fergerson & Musen,2000), and the ODKD 

requirements  discussed in Chapter 4.  

As stated before, these criteria reflect the aim to increase theoretical knowledge 

and improve practice through the development of a prototype which can relate both 

theoretical and practical contribution of the thesis (Adams & Courtney, 2004). For 

example, the prototype must cover all phases defined by the methodology and should 

follow open source development best practices relating to reuse, extensibility, loosely 

coupled modules, and so on. 

As discussed previously, the criteria also collaborate to the reuse and 

extensibility features of the prototype while contributing to the wider Protégé open 

source community (Protégé 2006a).  

Scope Criteria  

These criteria are mainly based on the objectives of the research and research 

methodology. To meet these objectives, the framework should:  

 Cover all phases of the Ontology Driven Knowledge Discovery process in 

order to test the proposed framework and methodology as covered in the 

research methodology in section 1.3 - Experimentation; 
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 Focus on the ontology engineering problems rather than on the specifics of 

data mining techniques since the ontological framework is the focus of this 

thesis; 

 Be generic as an ontology engineering tool but specific enough to cover the 

biomedical knowledge discovery requirements in order to be reused in 

different contexts such as those explored in the context of teaching. 

System Design Criteria 

These criteria are derived from the ODKD methodology requirements (Chapter 

4), the research objectives (Chapter 1) and software development best practices 

developed within the open source and ontology engineering community (Gandon, 

2006; Gómez-Perez, 1999; A.  Gómez-Pérez, Fernández-López, & Corcho, 2004). To 

meet these requirements, objectives and practices, the system should: 

 Have an extensible and flexible architecture; 

 Be able to integrate different workbenches (analysis tools);  

 Have a search language based on queries; 

 Have an integrated ontological navigation mechanism; 

 Support different visualization techniques. 
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Product Criteria 

The prototype and final product should: 

 Be based on a widely accepted ontology environment; 

 Be representation formalism independent; 

 Reuse software components and meta-data definitions; 

 Be fully testable and usable. 

Technology Transfer Criteria 

These criteria were developed to meet research and ontology engineering 

requirements as well  expectations that the work should clearly reside in the public 

domain. The system should then: 

  Be published as an open source project; 

 Emphasize new ODKD functionalities; 

 Be a suitable ontology engineering platform for data mining research and 

projects; 

 Leverage specific ontology engineering research; 
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 Be able to be published in modules in order to be applied to different 

domains. 

5.2. ODKD Implementation Framework 

The Ontology Driven Knowledge Discovery Implementation Framework is a set 

of ontology engineering tools developed, extended and/or adopted to support the 

evolving ontology hybrid life cycle for knowledge discovery tasks. The ontology 

driven environment is composed of an Ontology Editor tool, a set of plug-ins, and 

meta-models, as per the sample depicted in Figure 5-1. 

 

Figure 5-1 – ODKD Framework set of sample tools 
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The tabs bar highlighted in the figure above shows some of the plug-ins 

developed for and utilized in the biomedical case study. The central panel shows a 

visualization of the novel metadata model developed using a modified TGViz plug-in, 

while the screenshot overall represents an example of the framework environment 

user experience. 

This chapter concentrates mainly on the ontology engineering tools constructed 

during this research. The underlying meta-models, the meta-classes and the evolving 

ontology meta-data have been described in Chapter 3. 

Although tailored for the biomedical case studies developed in this thesis, the 

framework is extensible and generic enough to be applied to other domains and 

applications, such as an educational application based on the concept of learning 

objects (Kasabov, Jain, Gottgtroy, Benuskova, & Joseph, 2007) and the development 

of an application in the context of biblio-mining (Parikshit, Pears, & Gottgtroy, 2006). 

5.2.1. System Architecture 

The system architecture is based on the modular approach embedded in the 

Protégé environment and is composed of four layers: Evolving Ontology Layer, 

Access Layer, ODKD Layer and Application Layer (see Figure 5-2). 

The Evolving Ontology layer is composed of the meta-knowledge model and the 

knowledge base accessible through Protégé‘s application program interface (API).  
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Figure 5-2 – ODKD Framework System Architecture. 

Protégé‘s API is responsible for exposing core functionalities related to the 

manipulation of the knowledge base and meta-models. It also enables the extension of 

the environment by exposing a common interface for rapid prototyping and 

application development. The API is directly accessed by external applications as well 

as being indirectly accessed through the ODKD layer. 

The ODKD layer is composed of a set of tools, developed as plug-ins, which are 

responsible for several functionalities such as external connection to applications, 

knowledge acquisition, and visualisation and so on.  

The ODKD layer is the ontology driven bus which accesses both the application 

layer and the API in order to provide the functionalities required by the Ontology 

Driven Knowledge Discovery process.  
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The Application Layer is the external connection to the ODKD layer. It is 

composed of external ontology sources, such as ontology repositories and domain 

ontologies, as well as specific data mining algorithms and KDD tools and 

workbenches, such as Weka (Witten & Frank, 2005) and Neucom (KEDRI, 2006b).  

The Evolving Ontology layer was fully developed in this research and uses 

Protege‘s API and system architecture to interact with the other layers. The ODKD 

layer represented in the figure also shows plug-ins fully developed in this research 

such as the Gene Regulatory Network Tab and Knowledge Acquisition forms, plug-

ins modified in different levels to fulfil the requirements defined for the framework 

such as those supporting visualization and search, and plug-ins directly adopted such 

as those for data import which were mainly selected from Protege‘s toolset
8
. The 

Application Interface layer also incorporates examples of bespoke developed features 

such as the Weka export feature developed as part of the Instance Selection tool and 

adopted tools such as the UMLS tab used to import medical data. 

The framework supports all five steps of the Ontology Driven Knowledge 

Discovery process: Ontology Preparation, Ontology Analysis, Instance Preparation, 

Modelling, and Evaluation (Table 5-1). As stated previously, the main focuses of this 

                                                 

 

8 As described before, the Protégé community is in constant growth therefore new plug-ins may become available 

to fulfil any other identified domain requirements such as the need for a new task, a new visualization tool, or 

even a new data source importing tool. 
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research are the ontology related steps; therefore specific modelling techniques are not 

covered in this chapter. The next chapter does, however, describe the use of a data 

mining technique in the brain-gene biomedical application.  

Table 5-1 – ODKD implementation framework. 

 

The framework is composed of newly developed plug-ins, extended plug-ins, 

and adopted plug-ins. Some plug-ins support specific tasks such as ontology query but 

others support more than one task, or even a whole ODKD phase such as the Instance 

Preparation phase. The table above uses colour coding to clearly identify the 

contributions of this research. Coloured icons have been used to represent the novelty 

and level of functionality - the green colour represents a novel plug-in, the light green 

represents an extended plug-in while the blue colour represents the adoption of 
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existing features. The icons represent the level of modification being those applied to 

the core Protégé feature set or developed as plug-ins which must be installed.  

While a variety of plug-ins were built, tested and evaluated throughout this 

research, this chapter largely describes those finally adopted to cope with 

functionalities required by a biomedical knowledge discovery process as well as those 

able to fully support the cyclical Ontology Driven Knowledge Discovery process. To 

this end, the next sections are organized into the phases of the ODKD process.  

For ease of understanding, the ODKD process from Chapter 4 has been re-

shown as Table 5-1 and brief descriptions of the phases are represented again in each 

of the following subsections. A full description of the process can be found in Chapter 

4. A few of the illustrative screenshots presented in this chapter are based on the 

newspaper organization sample provided with Protégé. However, most of the 

screenshots are based on the biomedical domain in order to gradually introduce 

aspects of the biomedical application described in Chapter 6. 

5.2.2. Ontology Preparation 

The Ontology preparation phase is composed of three main pipelines: domain 

understanding, data understanding, and ontology building. The first two, domain and 

data understanding, are related to problem understanding which is achieved by the 

investigation and selection of candidate ontologies for a problem domain. This 

candidate ontology selection process is guided by ODKD methodology, as described 

in the previous chapter. 
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The ontology building task is the creation, inclusion and/or import of ontological 

models as well as the creation of specific concepts not covered by the previously 

selected ontologies. The building process involves three main sub-tasks: Ontology 

Integration, Ontology Merging/Alignment and Ontology Creation.  

Ontology Integration 

Ontology integration is the incorporation of ontologies identified in the domain 

understanding tasks. There are two mechanisms available in the Protege environment 

that incorporate and reuse ontologies in the framework: ontology import/inclusion and 

ontology annotation. The former is the incorporation of a complete ontology and the 

latter is the incorporation of some specific concepts of a selected ontology source. 

Import/Inclusion 

Import/Inclusion tools are usually specific plug-ins developed to import data 

from ontology storage, such as Jena persistent storage. There are several import plug-

ins available in Protégé (Protege, 2006b).  

http://jena.sourceforge.net/
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Figure 5-3 – XML Tab.  

Several import plug-ins, such as the XML Tab (Figure 5-3) (Sintek, 2006), were 

tested and/or used in the development of the thesis‘ experiments. 

In the biomedical domain, different standardization efforts, such as the Open 

Biomedical Ontologies (OBO), have also facilitated the process of import/inclusion of 

ontologies. This feature represents well the strategy followed in this research when 

developing new tools or adopting external ones. The general adoption of the OBO 

standard at the late stage of the thesis and its adoption by biomedical ontologies such 

as the Gene Ontology (GO) (GO, 2006), for example, led to replacement of the GO-

specific import program code developed in the early stage of this study (Gottgtroy, 

Kasabov, & MacDonell, 2003a) with the OBO tab (Silberfein & Gennari, 2006).  
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The strategy of adoption, reuse or development of new tools and features was 

therefore based on availability, requirement fulfilment and standardization. In the 

import scenario as described above our early developments were substituted by 

several generic plug-ins based on the creation and maturity of open standards such as 

XML and OBO. 

Ontology Annotation 

Ontology annotation is the process of annotating concepts from large domain 

ontologies, such as WordNet, into an application ontology. Annotation is required 

when only a part of an ontology is necessary or when a domain ontology has a 

specific representation formalism and its importance justifies the development of a 

specific tool to translate the source formalism into the target formalism. 

Annotation is generally achieved in Protégé by the development of specific tools 

able to connect to well-established ontologies and copy certain sets of concepts into 

the model being developed. Instead of merging or importing a complete ontology, 

these tools allow the navigation, selection and import of specific concepts from a 

domain ontology. The UMLS tab (UMLS, 2006), for example, is used in this research 

to connect to the Unified Medical Language System and import biomedical data into 

Protégé (see Figure 5-4). 

Along with the use of this externally developed tool, templates and forms were 

developed in this research to manually annotate the knowledge base, such as for 
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specific data about gene expression in areas of the brain as utilized in the biomedical 

case study. 

 

Figure 5-4  – Unified Medical Language System - UMLS Tab 

The figure above shows the UMLS tab plug-in widely used by the Protégé 

community and adopted in this research to annotate medical knowledge. 

Ontology Merging/Alignment 

The merge feature adopted in this research is made available by the Prompt 

plug-in (Natalya & Mark, 2003). This plug-in, developed at Stanford University, has 

been referenced as one of the main merge techniques currently available in the 

ontology engineering field. The suite provides users with a uniform framework for 

comparing, aligning, and merging ontologies.  
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The plug-in, depicted in Figure 5-5, enables the management of multiple 

ontologies by the ontology engineer. It can enable the user to compare versions of the 

same ontology, map one ontology to another, move frames between included and 

including projects, merge two ontologies into one, and extract part of an ontology.  

 

Figure 5-5  – Prompt Plug-in.  

Following the Protégé environment software architecture, the last Prompt 

version is based on a plug-in architecture which enables the development of specific 

mapping algorithms for initial comparison of ontologies as well as for the 

development of user interface components.  

Prompt is also aligned with the ODKD proposal as it combines suggestions 

made by similarity algorithms with human knowledge to reach a decision about the 

inclusion of some ontological knowledge delivering then a hybrid and partial 
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automated system. Prompt‘s general algorithm can be represented as in the following 

figure. 
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Figure 5-6  – Prompt Plug-in generic algorithm.  

Although there was no need to extend Prompt in the biomedical case study, this 

new extensible architecture indicates that Prompt may be adopted as core 

functionality for the ontology driven knowledge discovery process in any domain. It 

can also act as an alternative user interface for the integration of learning algorithms 

based on graph algorithms in the ontology preparation phase.  

Ontology Creation 

Protégé was primarily conceived as an ontology editor. Its flexible knowledge 

model enables the creation of an ontology in different formalisms, such as the 

ontology web language (OWL), as well as allowing the exportation of the ontology in 

different formats, such as XML and RDF. The ODKD Framework utilizes this robust 

knowledge model and the ontology editor features as a leverage factor for the 

integration of ontologies and KDD.  
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The novel Instance Selection Tab was developed in this research to provide 

support for the main editing functionalities related to the creation and modification of 

classes and instances (see Figure 5-7). The tab also extends the core Protégé editing 

features to cope with extra ODKD requirements as described later in this chapter. 

The Instance Selection Tab integrates two core Protégé tabs: Classes and 

Instance tabs. It also allows some slot editing that is utilised in later phases of ODKD, 

such as in ontology export. However, due to specific ontology creation requirements, 

the methodology also adopts Protégé‘s Slot and Form Tabs in the ontology 

preparation phase. These tabs are intended to be used mainly by ontology engineers at 

the beginning of the building process to design forms and create special slots and are 

standalone basic tabs utilized in Protege to interact with the knowledge base and to 

configure the knowledge acquisition forms.  

There is a second group of users, those who use the system to search, visualise 

and annotate the ontology among other tasks and who generally do not configure the 

environment. These users then do not use the basic Slot and Form tabs - they interact 

only with the instance selection tab, which will be explained later in this chapter. 
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Figure 5-7  – Instance Selection Tab.  

The Slot tab, referenced in the paragraph above, is used by the ontology 

engineer to edit specific properties of the knowledge base such as configuration of 

sub-slots that bring a greater flexibility when modelling complex relationships and 

properties such as relationship-type, as shown in the example in Figure 5-8. 

The Form, depicted in Figure 5-8, for example, was developed to capture gene 

regulatory network information. Forms are user interfaces which enable, among other 

things, the definition of the information design as well as the configuration of the slot 

widgets such as the central panel widget developed in this research to represent and 

automatically extract knowledge from the simulations described in the biomedical 

application in the Chapter 6. The form design feature is used in the development of 

knowledge acquisition tools as well as for the embedding of extra features in ontology 

driven applications, such as the ODKD framework link analysis widget.  
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Figure 5-8 – A sample biomedical user interface to represent  gene regulatory 

information captured from simulations developed in this research.  

5.2.3. Ontology Analysis 

Ontology Analysis is the next phase in the ODKD process. It is related to the 

discovery of first insights into the ontological model as well as to the investigation 

and/or checking of initial hypotheses based on the disclosure of information hidden in 

the developed model. 

The ODKD process defines four tasks in this phase: Ontology Visualization, 

Ontology Query, Conceptual Matching and Ontology Population. The first two tasks 

are the exploration of the ontological model by means of visualisation and searching. 
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The latter two tasks are the construction of the knowledge base through the insertion 

of data from the available databases and the population of instances from the selected 

ontologies.  

Ontology Visualization 

Ontology visualisation is the analysis of knowledge representation by means of 

visualisation techniques. The goal of this task is to facilitate exploration of different 

perspectives and navigation in a complex knowledge network. 

The selection of the most appropriate visualisation techniques is highly 

dependent on the problem‘s characteristics and on the ontological model. Therefore, 

the ODKD methodology suggests the adoption of at least two techniques in a KDD 

process: tree navigation and network visualisation. 

Tree Navigation 

The multiplicity of tabs responsible for the navigation of classes, instances and 

slots present in Protégé were substituted with a novel tree navigation interface in the 

ODKD framework.  

Tree navigation is mainly used in taxonomies to display hierarchical 

relationships and also generally used for classification representation. The Protégé 

user experience is mainly based on trees since most of the data is presented as a 
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taxonomy of classes and the relationships are represented in slots which are also 

displayed in tree form.  

Even though there are other ways of representing ontologies, such as graphs, and 

others also covered in this chapter, the tree has become pervasive in basic user 

interfaces, such as to represent folder hierarchy, or web content. It has also been used 

by many open sources ontologies such as Gene Ontology, UMLS and others. This 

research leverages this metaphor by simplifying and integrating the basic instance 

manipulation using trees and tables.  

The developed Instance Selection tab (Figure 5-9) provides an interface that 

facilitates the navigation of a complex tree representation of classes, instances and 

relationships. It also supports the selection of any instance through tree navigation, 

which is used in the selection task of the instance preparation phase. These features 

then leverage the user experience already established while facilitating interaction by 

adopting an integrated view of instances, classes and slots. 
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Figure 5-9 – A sample of both class, instance, and slot tree navigation in the Instance 

Selection Tab.  

Network Visualization 

The ODKD framework also extended the TGViz tab (Alani, 2006) (shown in 

Figure 5-10) as its main network visualization tool. The TGViz tab enables ontology 

visualisation through use of the TouchGraph java library (TouchGraph, 2006) which 

renders networks into interactive graphs. 

This tab has different features such as search, zoom, and radius adjustment 

among others. It also has a set of properties that define which information should be 

displayed and how it should be displayed. These characteristics are very important to 

enabling the analysis of different aspects of a knowledge base; for example, it may set 

the visualisation to only instances and their relationships. 
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The radius function determines the number of levels to be displayed, for 

example in one type of analysis it might be important to drill down up to five levels of 

detail in order to have a more detailed view of a problem while in other circumstances 

a two level view may give a less granular and more aggregated view.  

 

Figure 5-10 – A network visualization sample using the TGVIZ tab showing some of 

the visualization options available in this tool.  

There are other visualization techniques available in Protégé which may be 

suitable for specific tasks and application domains (Protege, 2006b). This research has 

explored several of these techniques available in both the Protégé environment and in 

the literature. As stated in Chapter 4, this investigation is reported in (Wang & 

Gottgtroy, 2006) as a review of the most suitable techniques for biomedical 

informatics analysis. 
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The ODKD framework makes extensive use of the features already developed in 

the tool; however this research has developed core functionality which allows the 

selection of the instances displayed in the graph for further investigation in the 

instance selection tab. 

It is important to note that this research has as a fundamental principle the 

development of tools and features which leverage the well established user experience 

in both Protege‘s community and the biomedical ontology community in general. All 

plug-ins developed or extended and also evaluated for adoption considered the user 

experience as a main decision factor. In the case of graph visualization, one of the 

main weaknesses identified in existing components was the lack of link analysis 

features which were then developed and included in the gene regulatory network 

visualisation plug in. 

Ontology Query 

In spite of the advantages of exploring a complex knowledge structure by means 

of visualization, a query mechanism is still required when navigating domains where 

concepts are unfamiliar or the taxonomy varies in accordance with the fields being 

investigated. 

The ODKD framework has adopted the search feature available in Protégé-

Frames and has extended the basic functionalities by introducing new features and 

concepts in order to enable complex searches of an ontological representation as well 

as instance selection and export (see Figure 5-11).  
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Figure 5-11 – A semantic query to find genes related to epilepsy and the visualisation 

of information of the gene selected.  

Figure 5-11 shows a generic query in which the user is researching all genes 

related to a particular disease. The left top panel describe the class of interest (Gene) 

while the slot, which defines the relationship, is empty which means that the user 

wants any instance that has any type of relationship with the string ‗epilepsy‘. The 

result, in the left panel, is then a set of genes which has any relationship with the 

string ‗epilepsy‘. The form on top of the search window then shows all information 

about the gene GABRA5 selected by the user which contains information about the 

gene expression and several parts of the brain as well as several annotations. The 

biological content was developed and acquired in the context of the biomedical case 
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study. This mechanism enables the identification and validation of different 

biomedical hypotheses through the use and creation of semantic queries in a 

knowledge base. 

The framework uses an extended version of the query tab available in Protege 

which was developed in the context of this research. The main modifications were 

introduced to allow the selection of the instance to be further investigated in the 

context of ontology analysis, for example, in the case described in the previous 

section a user could select all genes based on two variables: genes highly expressed in 

a particular area of the brain and genes related with diseases. 

Conceptual Matching 

Conceptual Matching is the act of mapping a database onto an ontological 

model, resulting in the importing of database records into the model. Conceptual 

matching is also used to integrate databases where records extracted from different 

sources are integrated by their semantic meaning as instances of a concept.  

ODKD adopts the DataGenie plug-in for importing data from external databases 

(Figure 5-12). DataGenie enables the pulling of data from a database. It uses a JDBC 

and/or a JDBC-ODBC bridge to connect to a database and move portions (or all) of a 

database into an ontological model.  
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Figure 5-12 – DataGenie tab importing gene ontology data into the application 

ontology.  

Generally, each table of a database becomes a class, each row becomes an 

instance, and each attribute becomes a slot. In addition, if a relational database table 

has foreign key references to other tables, these can be replaced by Protégé instance 

pointers when the database is converted into a knowledge base. 

In Figure 5-12 data acquired from gene ontology is being imported into the 

biomedical ontology. The GO-ID is used to match the data while the GO-term which 

may be representing a molecular function is going to be imported in the internal GO-

term slot. This process allows the mapping of a relational model into frames and the 

consequent acquisition of the instances from records available in the relational data. 
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There are other Protégé plug-ins available which may be suitable for domains 

other than the biomedical domain explored in this thesis. The OntoBase, for example, 

allows rapid construction of alternative representations of information contained 

inside relational databases (Ontospace, 2006).  

As XML has become an industry standard for the structuring of information, the 

XML Tab (Figure 5-3) can also be used to import an XML document into Protégé, 

creating a set of classes and instances in a knowledge base which correspond to the 

entries in the XML document.  

Ontology Population 

Ontology population is similar to conceptual matching. It is the process of 

inserting instances from previously merged and/or aligned ontologies into the 

knowledge base. Ontology population normally occurs after conceptual model 

matching is executed. The main objective of this task is to include instances which are 

relevant for the problem domain or hypothesis being verified. For example, in a 

biomedical case study a user may want to include all genes which have a particular 

molecular function that may have been described in the literature or found in gene 

regulatory simulations as relevant to the study of a specific disease, instead of 

inserting all gene knowledge available in a biomedical ontology.  

As described previously, this research had developed bespoke programs to 

import instances from biomedical ontologies at the beginning of the investigation. 

However, the creation and adoption of standards, such as OBO and subsequent 
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development of the OBO Plug-inn along with Prompt plug-inn made this thesis 

decommission all previous code and adopted the plug-ins developed by the Protégé 

community which are suitable for this task with no current need for bespoke 

development. 

5.2.4. Instance Preparation 

The instance preparation phase covers all activities that construct the final 

dataset that will be fed into the modelling tool(s) from the ontological model. Tasks 

include concept, instance and slot (or attribute in a database taxonomy) selection, 

transformation and cleaning of instances as well as exportation to the modelling tools. 

This phase helps the user to select the best candidates for a data mining exercise 

from a multidimensional perspective thereby reducing the features needed for a 

successful KDD task.  

The Instance Preparation phase is supported by the Instance Selection Tab 

(Figure 5-7), which is able to execute all three ODKD tasks: instance cleaning, 

instance selection and instance export. 

Instance Cleaning 

Instance cleaning is the detection and removal of errors and inconsistencies from 

instances in a knowledge base (Rahm & DO, 2000).  
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The Instance Selection tab (Figure 5-13) enables direct editing of instances and 

slots (properties) of any instance in a knowledge base. The integrated class browser, 

instance editor, and instance tree allow complete navigation in an ontological model 

as well as the cleaning of the entire target knowledge base for a data mining task. 

Instance Cleaning Algorithm 

Select a class  (Class Browser)  

FOR each instance of the class 

 FOR each slot of the instance (Instance tree browser) 

  IF slot needs cleaning THEN 

   Edit instance (Instance Editor) 

  END IF 

 END FOR 

END FOR 
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Figure 5-13 – A snapshot of an employee context in the Instance Selection Tab.  

In Figure 5-13, for example, a complete view of an editor instance is depicted. It 

shows that Chief Cocho is a newspaper editor that inherits properties from both the 

‗Author‘ and ‗Employee‘ classes. It also shows that Chief Cocho has two main 

relationships with other employees in the properties ‗responsible_for‘ and ‗section‘. 

This complete view allows for editing attributes not completed, such as date hired. 

Instance cleaning, such as identification of missing values, becomes necessary 

when a set of instances are selected for a data mining task. In Figure 5-14, for 

example, the ‗date hired‘ property would need to be filled in on all three instances in 

order to be able to be used in a data mining task. This shared, tabular visualisation 

enables the identification and editing of missing values and even highlights the need 

for cleaning the knowledge base.  
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Figure 5-14 – A snapshot of a multiple selection in the Instance Selection tab.  

Instance Selection 

The instance selection task enables semantic-driven analysis of the knowledge 

base. It creates a semantic integration layer to all sources of data incorporated in the 

ontological model. This is done by representing data in terms of the ontological 

knowledge. Instead of concentrating effort on analysing data characteristics, this task 

concentrates its effort on giving meaning to data through domain understanding.  

The objective of instance selection is threefold: to improve the prediction 

performance of predictors by analysing related perspectives, to provide faster and 

more cost-effective predictors by looking at a high-level abstract structure, and to 

provide a better understanding of the underlying process that generated the data. 
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There are three different approaches to selecting instances in the ODKD 

framework: tree navigation, network visualisation, and query selection. 

Tree navigation is supported by the Instance Selection Tree, which is integrated 

with the Class Browser and the Instance Tree Browser (see Figure 5-15).  

 

Figure 5-15 – Instance Tree.  

The instance tree browser allows the selection of instances that are inserted into 

both the Instance Selection Tree component and the Selected Instances Grid for 

further manipulation and later export to data mining workbenches. 

Network visualization selection is enabled by the TGVIZ tab extension (Figure 

5-16). The addition of an instance selection feature to this tab enables visual analysis 

of the domain in order to select instance candidates for a data mining task. 
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Figure 5-16 – The selection of a manager through the visualization of a complex 

network. 

In the example shown in Figure 5-16 a set of managers can be selected through 

the identification of a class in network visualization. This feature is valuable when 

analysing the concentration of instances of a class. In this research it helped to 

identify classes which are predominant in a biomedical context promoting the 

selection of best candidates for data mining tasks such as clustering.  

The network visualization, as described previously, helps to visualise a complex 

web of concepts and relationships, allowing both a high level view of the distribution 

of instances in a knowledge base as well as zoom in functionality in areas of interest 

for selection of concepts and or instances for further analysis. As explained in the 

methodology, the visualization and selection of instances is followed by the 
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preparation of instances in a knowledge discovery process and proposed by ODKD 

and supported by the plug-ins developed in this research. 

The query selection feature as described previously in this chapter is available 

in the framework through an extended plug-in based on the query tab (see Figure 

5-11).  The query feature searches the frame based knowledge representation using 

the class and slot frames based on the values of slots and/or classes. The results of the 

query are then selected using the query selection feature developed in this research. 

After the initial selection of a set of candidates for a data mining task, the set can 

be further cleaned and/or analysed before it is exported. The following paragraphs and 

figures demonstrate some additional selection and manipulation scenarios using the 

―Selected Instances Grid‖ that is part of the Instance Selection Tab (Figure 5-17). 

 

Figure 5-17 – The Selected Instances Grid. 

The tabular metaphor was adopted in the instance selection right bottom panel 

taking into consideration the user experience design and usability issues. In the 

context of knowledge discovery in database most data preparation tools use tables to 

select variables, to join records and so forth. The database community, for example, 

makes extensive use of tables in both design (relational modelling) and query and 
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manipulation - most database vendors have their IDEs for data manipulation and 

query based on tables, as do most of the data mining workbenches such as Weka.  

From a user interface perspective the instance selection is developed to represent 

the main tab in the ODKD framework. The user is able to navigate, annotate, 

manipulate, prepare and export instances from an unique window, therefore the table 

representation was considered the most appropriate to allow  straightforward 

manipulation of instances selected by other features such as query and network 

visualization.  

The grid enables several manipulations of the candidate instances, such as 

selection of specific properties, selection of sub-slots, selection of instances of a 

relationship based on some criteria and so forth. Figure 5-17 shows an example 

depicting employees who are not responsible for a section of a newspaper. In this 

case, the last three instances are grouped in a cluster representing the employees who 

are not editors - Figure 5-18 shows a reporter named Joe Schmo. This very basic 

clustering mechanism enables the grouping of instances based on their properties and 

classes as defined in the ontological model which enhances the semantic knowledge 

gained when preparing instances to be exported to a data mining workbench.  
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Figure 5-18 –The class of an instance clustered by the grid functionality based on 

attribute sharing. 

Instance Selection Ontological Clustering Algorithm 

FOR each visualization tool 

 Select Instances 

 FOR each instance 

  Select class of the instance 

  IF class is a cluster THEN 

   Insert instance as last of the cluster 

  ELSE  

   IF  direct-superclass is a cluster THEN  

     Insert instance as last of the cluster 

   ELSE 

    Create a new class cluster 

    FOR each slot of the instance 

     IF slot is required THEN 

      Select Slot 

     ELSE 

      Unselect slot 

     END IF 

    Insert Instance after the last cluster 

    END FOR 

   END IF 

  END IF 

 END FOR 

END FOR 
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The Selected Instances Grid enables the selection of specific instances of a slot which 

has multiple values such as the slot responsible_for as shown in Figure 5-19. In this 

case, an employee, Chief Honcho, is responsible for two other employees, Sports Nut 

and Ms Gardiner. It also permits the selection of specific slots from these employees, 

such as the salary of all employees for whom Chief Honcho is responsible. 

 

 

Figure 5-19 – A multi-dimensional selection of slots by the selected instances grid. 

The Selected Instance Grid also enables the visualisation of specific slot values, 

the inclusion and exclusion of multiple value instances, the exclusion and inclusion of 

slots, reordering of slots and other functionalities (see Figure 5-20).  
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Figure 5-20 – A sample of different grid functionalities. 

There are several features present in the instance selection tab which were 

developed to facilitate the manipulation, annotation and selection of variables 

(instances, slots and classes) as data preparation features for data mining from a 

semantic point of view using a single user interface.  

The next chapter shows an example in which a disease is investigated from a 

genetic perspective by selecting specific gene attributes that were not available 

previously in source databases. In this biomedical application, the molecular function 

of all genes related to a brain disease was exposed to a data mining technique for 

further analysis. The multi dimensional selection functionality is particularly useful 

for data mining tasks where the number of samples is small and the number of 

features large, such as in micro-array analysis. 

In summary, these selection functionalities alongside the cleaning functionalities 

were developed to enable the preparation and selection of a set of samples and 

features for a data mining task in an ontology driven fashion as proposed by the 

ODKD methodology. This selected set can then be exported to enable further 

quantitative analyses and/or modelling as described in the next section. 
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Instance Export 

Instance export is the next sub-task of Instance Selection of the ODKD process. 

It is concerned with the translation of the selected set of instances into a format used 

by a target data mining tool or workbench. The ODKD Framework enables the 

transformation of an ontological model into three main formats (see Figure 5-21): 

Weka (Witten & Frank, 2005), Neucom (KEDRI, 2006b) and flat file. 

Although this thesis has developed features to support formats currently widely 

used by the data mining workbenches most adopted by both academia and industry, if 

a new format or standard is required its inclusion as an instance export functionality is 

very easy to be implemented since the design respected all Protégé architecture and 

design principles and remains based on a pluggable architecture. This design strategy 

has been part of the design practices throughout the development of new plug-ins as 

well as in the extension of basic Protégé functionalities. 

 

Figure 5-21 – Export formats currently supported. 
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The Weka format utilized as a pattern to develop the export feature is based on 

the Attribute-Relation File Format (ARFF) specification defined in Witten (2005). 

The sample below (in Table 5-2) illustrates the information generated by the Weka 

export feature. Missing and null values are automatically included, as well as the 

attribute types as defined in the ontological model. 

Table 5-2 – Sample of Weka output. 

@relation WekaSample.arff 

@attribute responsible_for  

@attribute responsible_for.name {'Sports Nut','Ms Gardiner',&null} 

@attribute responsible_for.salary {100000.0,45000.0,&null} 

@attribute name string 

@attribute salary numeric 

@attribute date_hired string 

@attribute :DIRECT-TYPE {Editor,&null} 

@data 

 

The Neucom format is based on a special text-based format, which is 

compatible with the Matlab format (MathWorks, 2006). The Neucom filter also 

automatically adds missing and null values in order to allow further data pre-

processing by the workbench (see appendix C for more information about Neucom). 

The browser text check box defines whether the internal name or a friendly 

name will be exported – samples below. This functionality is available for all formats 

(see Figure 5-22). 
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@attribute responsible_for {instance_00067,instance_00068,&null} 

@attribute responsible_for {'Sports Nut','Ms Gardiner',&null} 

 

 

Figure 5-22 – Export options for text outputs. 

Text format can be further manipulated in order to comply with different 

workbench formats. It enables the definition of special characters for missing values, 

the definition of delimiters, and export headers selection which defines the inclusion 

of a first line with the names of the attributes. 

The instance export feature can be used to extract various samples of the same 

data set that can then be utilised by different workbenches. This feature is particularly 

valuable in data mining tasks where it is very likely that different modelling 
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techniques and workbenches will be utilised in the deployment of a solution as 

defined in the CRISP-DM and in the Ontology Driven Knowledge Discovery process. 

5.2.5. Modelling 

The modelling task is driven by the selection of various modelling techniques as 

well as by the design and creation of test sets based on the problem before 

constructing data mining models. The modelling phase of the ODKD methodology is 

composed of three tasks: Model Selection, Test Set Design and Model Building. 

These three tasks are closely related to the Instance Preparation Phase, as different 

data mining models may require different data set formats.  

The Test Set Design is the creation of training and test sets for the model 

building phase. This task works closely with the Instance Export sub-task by enabling 

the generation of different sets of data from the ontological model. Sets of data are 

usually generated before the definition of a data pipeline that will be deployed on a 

problem. 

Model building or Onto-mining is learning from instances in the ODKD 

Framework. It is the application of data mining techniques to extract knowledge from 

the datasets acquired from the knowledge base. 

The ODKD Framework acts as a link between an ontology model and a 

workbench. It is not concerned with mining techniques themselves. It enables the 
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integration of a multi dimensional ontological model and mining techniques by 

exporting data and acquiring knowledge as described in the next section. 

5.2.6. Evaluation 

This phase comprises the evaluation and acquisition of knowledge extracted by 

a data mining model. It is divided into three tasks: Knowledge Extraction, Knowledge 

Assessment and Ontology Learning. 

Knowledge Extraction is responsible for the incorporation of knowledge 

extracted by the data mining technique into the ontological model. There are several 

different techniques reported in the literature which may be used for the process of 

mapping knowledge from a data mining technique to an ontological model. The next 

chapter describes the set of novel plug-ins developed to extract knowledge from a data 

mining technique in the specific context of a biomedical application. 

Knowledge Assessment is the analysis of results obtained from a modelling 

technique. The framework supports a conceptual analysis of the results by creating a 

―quarantine structure‖, as described in Chapter 3, where knowledge acquired from a 

modelling exercise can be stored for extra analysis in the ontology learning task 

without impacting on the main ontological model.  
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Figure 5-23 – A quarantine area represented as an Infogene Map. 

The quarantine structure (illustrated in use in Figure 5-23), based on the 

evolving ontology meta-class, and the plug-ins developed to enable link analysis, are 

described in detail in the next chapter. Although demonstrated in the biomedical 

application developed in this research, the plug-ins and meta-class can support any 

task related to link analysis and relationship discovery.  

Creation of the model and its assessment are generally not the end of the project. 

Even if the purpose of the model is to increase knowledge of the data, the knowledge 

gained will need to be organized and presented in a valuable form to the user. The 

ontology learning task enables final acceptance of the knowledge once the 
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knowledge in the quarantine structure is considered stable enough to be used in other 

live KDD tasks.  

The biomedical application chapter (Chapter 6) demonstrates this cyclic process 

by integrating different sources of knowledge, applying a data mining algorithm, 

extracting knowledge, validating this knowledge using previous knowledge or 

triggering new mining exercises to integrate more experiments. There are a number of 

specific tools and widgets developed in this research to support the biomedical 

knowledge discovery tool and these are described in the next chapter. 

5.3. Summary 

The Ontology Driven Knowledge Discovery Implementation Framework 

provides a set of tools to support the hybrid ontology driven KDD process designed in 

this research. Each phase is supported by one or more Protégé plug-ins developed for 

and/or adopted from the Protégé plug-in open source library. 

The table below (Table 5-3) describes the plug-ins developed in this research in 

terms of their indicative coverage, relative complexity and relative time to build. The 

description attribute states the key functionality provided by the plug-in. Coverage is 

related to the range of ODKD tasks supported by the plug-in and also considers its 

applicability on generic ontology engineering tasks. Complexity and time-to-build 

reflect the relative extent of new features developed and amount of code developed. 

Further information about the plug-ins can be found on the accompanying CD, where 
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the source code is available along with some screenshots of the application, and also 

in Appendix B. 

Table 5-3 – Plug-ins Summary. 

 

The main goal of the framework is to create an extensible ontology environment 

able to support the cyclical knowledge-discovery-from-data process as well as 

integrate the environment with existing data mining workbenches. 

The framework was implemented based on the design criteria established early 

in this research in Chapter 1. Each criterion is respected in the development of the 

tools, achieving the following results: 

 The system supports all phases of the Ontology Driven Knowledge 

Discovery process and is based on the widely accepted and used Protégé 

ontology editor;  
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 The system reuses the evolving ontology meta-data and enables the adoption 

of new meta-data. It is also fully testable and representation formalism 

independent; 

 The system is based on an extensible and flexible architecture which copes 

with the Biomedical Knowledge discovery domain and enables its extension 

by developing, extending, and/or adopting new plug-ins suitable for other 

domains; 

 The system has an interface that supports the navigation of any ontological 

model; 

 The system includes a set of query and visualization tools enabling the user 

to search and select instances using different plug-ins. It has also created a 

set of system objects that allow for the inclusion of these functionalities in 

any Protégé plug-in that is capable of displaying instances in their 

architecture; 

 The system is able to export data to data mining workbenches. It also has a 

set of system objects which facilitates the development of new export 

formats if required;  

 All the tools developed are published as independent and reusable modules 

in the Protégé open source library; 
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 The system has been used in different research projects as an ontology 

driven data mining platform as well leveraging other studies in the ontology 

engineering field. 

The framework contributes to the development of the ontology field by making 

available a set of tools able to accomplish several ontology engineering tasks, such as 

import of data, visualization, selection and export of ontological knowledge. It 

contributes to the data mining research field by developing a tool able to integrate 

different sources of data for a data mining exercise. It also contributes to studies on 

the development of hybrid systems by integrating ontology engineering tools and data 

mining workbenches. 

The best design practices for development and enhancement of Protege were 

adopted in this research. General best practices were also followed, such as those 

supporting reuse and loosely coupled components, as well as object oriented analysis 

and design principles. 

An iterative approach was used, as described in the research methodology. The 

tools were built based on the requirements acquired from both the domain area and 

experts and also followed an iterative life cycle since the tools were developed jointly 

with the use of experiments and case studies. 

The integration of different components was facilitated by two main factors. 

First, the Protégé open source community is mature and support and help are available 
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through the community site and direct contact with the Protege team. Second, this 

research adopted whenever possible all core objects and functionalities available in 

the Protégé architecture and object model. 

One of the main design principles was consistent user experience. Even though 

the prototype was mainly focused on the biomedical domain, the user interface design 

was developed to be generic and consistent with all Protégé guidelines. Some of the 

features especially developed to support the data mining tools and exercises used in 

the case study were also made generic to support some longstanding community 

requirements such as link analysis and instance export, for example the gene 

regulatory network analysis feature is also available for manual network acquisition 

and link analysis. 

The application of the framework is demonstrated in the next chapter where a 

biomedical application is described. It has also been fully applied in other research 

projects such as in personalized modelling techniques used in the context of medical 

research (Verma, Song, & Kasabov, 2006). 
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Chapter 6  

Biomedical Application 

This chapter presents and discusses the biomedical knowledge discovery case 

study developed in this research that integrates a molecular biology knowledge base 

related to brain disease, the ODKD processes and tools, and a specific computational 

intelligence technique adopted as data mining technique to prototype the ontology 

driven knowledge discovery framework. It summarizes the practical contribution of 

this thesis and provides verification of the functionality of the system developed as 

part of the multi-methodological research methodology. The chapter starts by 

describing the case study life cycle then presents the Brain Gene Ontology (BGO), the 

Computational Neuro-Genetic Modelling simulator (CNGM) and continues with a 

description of the integration of both by the biomedical knowledge discovery tool.  
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6.1. Introduction 

The steep explosion in volumes of biomedical data and the growing number of 

disparate data sources are exposing researchers in the field(s) to significant challenges 

in terms of the acquisition, maintenance and sharing of knowledge from large and 

distributed databases in the context of rapidly evolving research. Blagoskolonny and 

Perdee (2002), for example, presented the ―Conceptual Biology‖ challenge: to build a 

knowledge repository capable of transforming the current data collection era into one 

of hypothesis–driven, experimental research. However their challenge was extended 

by the fact that in addition to research-informed literature, biomedical data is 

tremendously diverse and can consist of information stored in genetic code, identified 

in genomics and proteomics research by sequencing patterns, gene functions, and 

protein-protein interactions, and experimental results from various simulations. The 

latter, for instance, is conveyed by Bray in Theoretical Biology (2001): 

“Computer models of action potentials, synaptic integration, heart contraction 

and even the movements of ions and molecules in cells are now so accurate that they 

can often be used as experimental objects in lieu of the thing they represent. 

Biologists can now design and test small genetic circuits in theory and then make 

them in actual living cells.” 

This chapter presents a novel biomedical knowledge discovery tool which takes 

into consideration both the Conceptual Biology challenge and the Theoretical Biology 

principles in order to build a hybrid intelligent system which acquires gene regulatory 

data from a simulation tool, validates the data using prior knowledge represented by 
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the biomedical ontology, and supports human validation and annotation of both 

biomedical knowledge and the gene regulatory data acquired.  

The knowledge discovery tool is applied in the context of the Brain Gene 

Ontology project (BGO) developed at the Knowledge Engineering and Discovery 

Research Institute (KEDRI) (KEDRI, 2006a) and leverages the power of the concepts, 

by means of ontology, and the power of theoretical simulations, using the 

Computational Neuro-Genetic Modelling simulator (CNGM) developed in the context 

of this research by neuroscientists and another researcher within a joint research 

project (Kasabov & Benuskova, 2004a).  

The BGO is designed to be used for research, simulation and teaching at 

different levels of tertiary education. It is an evolving system that changes and 

develops with the addition of new facts and knowledge by both computer simulations 

and domain experts. It links selected structured bodies of physiological, genetic and 

computational information providing an analytical pathway for different types of 

users.  

This biomedical application exemplifies the utilization of all the concepts and 

tools developed in this research and acts as an evaluation vehicle for the system 

development research methodology. It enables the validation of the complete life 

cycle of the Ontology Driven Knowledge Discovery process, described in Chapter 4, 

as well as focusing on gene regulatory network simulations that are incorporated as 

new knowledge in the ontological framework.  
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The chapter begins with the description of the process followed in the case study 

then the Brain-Gene ontology developed in this research, its design criteria, and some 

sample data. This is followed by a brief description of the ontology model and the 

CNGM simulator developed in the context of KEDRI‘s research. The biomedical 

knowledge discovery tool, integrating the Brain-Gene Ontology, CNGM simulations 

and the ODKD framework, is then described and the incorporation of knowledge from 

the simulation is presented.  

6.2. Case study life cycle 

This section briefly explains the instantiation of ODKD methodology when 

applied to this biomedical case study. It aims to facilitate the reading of the text by 

creating a mapping between the generic ODKD methodology and its application 

during the development of the prototype. 

 

Figure 6-1 – BGO case study life cycle sample.  
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Figure 6-1 represents a high level description of the process followed when 

developing the case study. As described previously, the case study followed an 

iterative research methodology, and therefore the body of knowledge evolved and 

developed throughout the thesis. For instance, the medical knowledge acquired in the 

Leukaemia case study which was enhanced to also cover the brain disease knowledge.  

The identification of the domain, brain gene related knowledge, formed the basis 

for the application ontology selection while the medical knowledge was acquired 

mainly from the UMLS, as shown in Figure 6-1. Several other data sources were also 

identified (described in the next section) and then used to populate the biomedical 

ontology.  

The set of visualization, knowledge acquisition interfaces and query tools were 

used by the experts to acquire and annotate new relevant knowledge related to the 

brain gene data. Some early experiments were also developed in the context of 

aligning the multidimensional ontology knowledge and online analytical processes 

available in the business intelligence domain, called here OOLAP. A description of 

the experiment is presented in the Appendix A as a reference for future work and 

thesis contribution since this is not part of the core investigation of this research. 

The knowledge acquired and iteratively and jointly created in the biomedical 

3ontology was then used to support the selection and tuning of parameters used in the 

simulation.  
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The Computational Neuro-Genetic Modelling simulator was used to simulate 

possible gene regulatory networks which mimic real epilepsy data. The best gene 

regulatory network candidates were imported into the biomedical ontology using the 

set of especially developed plug-ins to acquire gene regulatory data. Experts and 

students could then access the data for further investigative work as well as to 

understand the genetic triggers of the brain disease.  

This process then closed the loop of the biomedical knowledge discovery, as 

suggested by Blagoskolonny and Perdee (2002), and Bray (2001). 

Appendix B contains a series of screenshots related to these tools with real 

examples developed in the case study. It also includes a table which maps the ODKD 

process and supportive tools presenting all adopted, extended and newly developed 

plug-ins and features. 

6.3. The Brain Gene Ontology - BGO 

The goals of the Brain Gene Ontology project are the development and 

representation of knowledge regarding genes and proteins that are related to specific 

brain disorders such as epilepsy and schizophrenia. The current stage of development 

focuses on important neuronal parameters such as AMPA, CLC, GABA, and KCN 

through their direct or indirect interactions with other genes and proteins as reported 

in (Benuskova & Kasabov, 2007). The ontological model provides the conceptual 

framework and the knowledge itself to enable understanding of relationships between 

those genes and their links to brain disorders. It also provides a semantic repository of 
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systematically ordered relevant concepts in molecular biology. In particular, BGO 

provides conceptual links between data from seemingly disparate fields, which 

include, for example, information collected from the literature and gene sequence 

analysis.  

According to Bodenreider and his colleagues (Bodenreider, 2001), biomedical 

ontologies organize the concepts “involved in biological entities and processes in a 

system of hierarchical and associative relations that allows reasoning about 

biomedical knowledge.” The knowledge in the BGO thus integrates gene information 

from a number of distributed biomedical databases. The data collection and data entry 

of BGO are based on a series of pre-established criteria which were defined taking 

into consideration domain knowledge and knowledge validated by domain experts. 

The domain expert team was composed of two biologists (Dr. Vishal Jain and Dr. 

Ilkka Havukkala) and one neuroscientist (Dr. Lubica Benuskova). These criteria 

ensure the accuracy and authority of the stored gene knowledge as described in the 

following sub-sections.  
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Figure 6-2 – The Brain-Gene Ontology diagram 

Figure 6-2 represents a diagrammatic overview of the brain gene ontology 

knowledge base. The diagram shows different data sources and models, for example, 

those data sources used to annotate the brain gene related knowledge. 

6.3.1. Biomedical Informatics Sources 

The Brain Gene Ontology is based on widely used biomedical knowledge 

sources. It reuses and integrates many different specific ontologies such as the Unified 

Medical Language System (UMLS) (NCI, 2003) and the Gene Ontology (GO, 2006) 

as well as standard form databases.  

The Gene Ontology provides the main knowledge repository of genes‘ and 

proteins‘ roles in cells. The BGO incorporates three relevant sub-ontologies of GO: 

molecular function, biological process and cellular location. The UMLS (Unified 
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Medical Language System) acts as the main source for the integration of biomedical 

terms and diseases. The UMLS provides information from over 100 controlled 

vocabularies and classification systems to the BGO. Its knowledge covers a wide 

range of domains from information used in patient records and in the research 

literature to disease specific knowledge. 

Although GO and UMLS provide an appropriate umbrella under which 

controlled vocabularies can be organised for sharing and reuse, and the databases 

(described over) complement the knowledge and/or are a source of instances for the 

ontological model, the Brain-Gene Ontology (BGO) development is both more 

specific and more broad at the same time. It is more specific in that it is focused on 

the brain, it is broader in that it is intended to consider other knowledge sources, 

sources external to GO and UMLS (see Figure 6-3). It should facilitate the integration 

of information from different disciplinary domains such as neuroscience, 

bioinformatics, genetics and computer and information sciences (Kasabov, Jain, 

Gottgtroy, Benevuska, & Joseph, 2007). It is based on new and growing data on the 

influence of genes upon brain function ("The Nervous System. In: Genes and 

Disease", 2005).  
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Figure 6-3 – The Brain-Gene Ontology is concerned with complex relationships 

between genes, their influence upon neurons and the brain 

A large amount of information therefore was also extracted from distributed 

databases, including: 

- NCBI (National Center of Biotechnology Information) – NCBI is one of the 

most well-known molecular biology information centres. It provides entries for 

databases of both genome sequencing data and biomedical research literature. NCBI 

focuses on the understanding of molecular processes affecting human health and 

disease, and develops sequence search engine and software tools for analysing 

genome data and biomedical information.  

- Gene Cards (Rebhan, Chalifa-Caspi, Prilusky, & Lancet, 1997) – This is one 

of the main knowledge sources for BGO development. It integrates knowledge of 

human genes and the related annotations in a comprehensive topic range. It also 

provides links about specific genes to more than 50 instances in other databases. 

Basically, most information known about a human gene such as automatically-mined 

genomic, proteomic and disease relationships can be found with Gene Cards. The 

search engine of Gene Cards supports both simple and advanced searches. 

- Swiss-Prot (Bairoch, Boeckmann, Ferro, & Gasteiger, 2004) – This provides 

gene information from other organisms. The accuracy of this database was one of the 

main reasons for its adoption. The annotations that Swiss-Prot provides for sequences 

are the result of a labour-intensive process that includes assessment of information 
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from published articles along with use of a variety of programs and algorithms. Swiss-

Prot is not only an annotated protein sequence database, but also presents other 

valuable biochemical information. 

- PubMed (NBCI, 2006) - This is the source of most of the literature annotation 

in BGO. PubMed is a biomedical journal database of the U.S. National Library of 

Medicine. It was built in the 1950s and up to now, has included over 16 million 

biomedical citations and other life science journals. Through PubMed query, 

researchers can find full text articles and other related resources.  

The selection of these knowledge sources followed the prioritisation method as 

defined by the Ontology Driven Knowledge Discovery methodology (Chapter 4). The 

domain experts were responsible for the selection of the most representative 

biological databases/ontologies from a compilation of several biomedical informatics 

knowledge repositories while the ontology engineer added a feasibility dimension to 

the quadrant analysis. As a result, the above databases and ontologies were selected as 

main sources following the ODKD methodology. 

A list of  resources used in the BGO, are introduced briefly in the source table 

below: 

Table 6-1 - Candidate biological knowledge bases for data collection 

Name URL Address Type of the Knowledgebase 

Gene Card http://www.genecards.org/ An integrated database of human genes 

Genbank http://www.ncbi.nlm.nih.gov/Genban

k/index.html 

A genetic sequence database 
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Genes and 

Disease 

http://www.ncbi.nlm.nih.gov/books/b

v.fcgi?rid=gnd.chapter.75 

A collection of articles that discuss 

genes and the diseases to which they 

are connected. 

KEGG http://www.genome.jp/kegg/ An encyclopaedia of genes and 

genomes 

Allen Brain 

Atlas 

http://www.brain-map.org/ An interactive, genome-wide image 

database of gene expression in the 

mouse brain 

Swiss-Prot http://us.expasy.org/sprot/ A collated protein sequence database 

Ensembl http://www.ensembl.org/ A project which produces and 

maintains automatic annotation on 

eukaryotic genomes 

Gene 

Ontology 

http://www.geneontology.org/ A controlled vocabulary to describe 

gene and gene product attributes in any 

organism 

GNF http://expression.gnf.org/cgi-

bin/index.cgi 

An RNA expression database 

GeneLoc http://bioinfo2.weizmann.ac.il/genelo

c/index.shtml 

An integrated map for each human 

chromosome 

GeneNote http://bioinfo2.weizmann.ac.il/cgi-

bin/genenote/home_page.pl 

A database of human genes and their 

expression profiles in healthy tissue 

 

Data regarding 93 significant brain genes, 70 proteins and 14 protein complexes 

with a number of attributes were collected from these online knowledge bases to form 

the current BGO ontological model. This knowledge is the basis for the interpretation 

of the simulation results detailed later in this chapter.  

Table 6-2 and Figure 6-4 show a sample of gene information gathered and 

integrated in the BGO. It shows information related to subunits of the AMPAR 

(amino-methylisoxazole-propionic acid) receptor.  
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Table 6-2 - Gene and protein sample data for AMPAR receptor (Wang, 2007) . 

Protein 

Name 

Gene 

Name 

Function Comments Molecular 

Weight/Length 

References at NCBI 

Glutamate 

receptor 1  

GRIA1  L-glutamate acts as an excitatory 

neurotransmitter at many synapses 

in the central nervous system. The 

postsynaptic actions of Glu are 

mediated by a variety of receptors 

that are named according to their 

selective agonists.  

101536Da;  

906 AA  

PubMed=1311100 

[NCBI] 

PubMed=1320959 

[NCBI] 

PubMed=1652753 

[NCBI] 

Glutamate 

receptor 2  

GRIA2  Receptor for glutamate. L-

glutamate acts as an excitatory 

neurotransmitter at many synapses 

in the central nervous system. The 

postsynaptic actions of Glu are 

mediated by a variety of receptors 

that are named according to their 

selective agonists. This receptor 

binds AMPA(quisqualate) > 

glutamate > kainate. Interacts with 

PRKCABP, GRIP1 and GRIP2 (By 

similarity). 

98821Da; 

 883 AA  

PubMed=8003671 

[NCBI] 

PubMed=12477932 

[NCBI] 

PubMed=7523595 

[NCBI] 

  

 

http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1311100&dopt=Abstract
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1320959&dopt=Abstract
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1652753&dopt=Abstract
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8003671&dopt=Abstract
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12477932&dopt=Abstract
http://www.ncbi.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7523595&dopt=Abstract
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Figure 6-4 - Gene data sample within the Brain Gene Ontology. 

6.3.2. Brain Gene Ontology Design Criteria  

The Brain-Gene ontology has been developed as part of the BGO project at the 

Knowledge Engineering and Discovery Research Institute (KEDRI) at the Auckland 

University of Technology. The project is divided into three main phases: proof-of-

concept, disease centric release, and integrated release. The first two versions are 

presented in this chapter while the integrated version, which widely extends the 
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current brain gene knowledge as well as including other domains such as nutritional 

knowledge, is discussed in Chapter 8 – Contribution / Future research. 

The design process followed the guidelines of the ODKD methodology and the 

design criteria described in this section. The proof-of-concept scope was defined by 

the domain experts (as described in the ODKD methodology). The following set of 

questions was selected:  

 What is the knowledge that BGO will cover? 

–  BGO represents information about brain genes, proteins, diseases and the 

relationships between them. 

 What is the BGO going to be used for?  

– BGO is to be used in the study of brain genes and diseases, emphasizing 

which genes are highly expressed in a brain disease. 

 What types of questions should the BGO provide answers for?  

– Concepts related with brain diseases such as molecular functions and 

molecular length, identified by current ontologies and databases and collated 

by the Institute‘s domain experts. 

 Who will use and maintain the BGO?  

– Bioinformatics students and researchers are the potential users and 

maintainers of the BGO. 
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The BGO was developed to provide sufficient breadth of information and 

certain specific levels of detailed information about brain genes, proteins and diseases 

as accorded by the domain experts and the ontology engineer. 

The proof-of-concept version is the basis for the disease centric version which 

extends the initial BGO version by including some specific disease concepts as well 

as incorporating instances into the ontological model.  

The Brain Gene Ontology Criteria for Scope 

A set of Competency Questions (Gruninger & Fox, 1995) was defined in 

addition to the quadrant analysis previously executed in order to refine the scope. The 

following questions were initially identified by the domain experts as necessary to be 

answered by the BGO:  

 What is the name of the gene/protein related to brain disease? 

 Is that a protein complex? 

 What is the chromosomal location of the gene? 

 What is the molecular length of the gene/protein? 

 What is the molecular weight of the gene/protein? 

 Which protein does this gene produce? 
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 What are the reference articles for this gene/protein in PubMed? 

 What is the function of the gene/protein? 

 Are there any other comments? 

 How is the gene expressed in its expression map? 

 What is the orientation of the protein/gene? 

 What is the source of the gene/protein? (Human/animal) 

Although these questions are not exhaustive, and have been constantly extended 

through the development of BGO, the initial set helped to identify extra knowledge 

sources and instances related to the brain gene disease domain. Table 6-1 shows a list 

of information sources utilized to address the questions covered in the case study.   

The Criteria for Ontology design 

The design of the ontology obeyed the basic principles that have been proven 

valuable in previous system development as well as those reported as best practice in 

the ontology engineering research field(Aspirez, Gomez-Perez, Lozano, & Pinto, 

1998). These design principles can also be seen as objective criteria for guiding good 

ontology design and are explained as follows: 
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The standardization of names (Aspirez, Gomez-Perez, Lozano, & Pinto, 

1998): Besides the naming rules in Protégé, the naming conventions of BGO are the 

same for all the name related terms in order to make the BGO easily understood. For 

example: EO_Creator_Scheme and EO_Annotation_Scheme follow the same naming 

conventions while; EO_Creator_Scheme and Annotation_SchemeInEO do not.  

Minimization of the syntactic distance between sibling concepts (Aspirez, 

Gomez-Perez, Lozano, & Pinto, 1998): The creation of sibling concepts in BGO is 

based on the same pattern; the representation of these sibling concepts uses the same 

primitives if possible. This should improve the comprehensibility and reusability of 

the BGO.  

The representation of disjointed and exhaustive knowledge (Aspirez, 

Gomez-Perez, Lozano, & Pinto, 1998): Generally, subclasses are disjointed if they do 

not have any common instances. Two subclasses in BGO are defined as disjointed 

decomposition when using the Protégé system if they do not have common instances.  

Clarity (Gruber, 1993a): All the definitions (classes) in BGO are objective. 

They are stated and documented with natural language in BGO. 

Extendibility (Gruber, 1993a): Future users of the BGO are able to define new 

terms for extended usage, for example, the four classes in the red box in Figure 6-5 

can be created for the extension of the BGO. This extended content is based on 

existing vocabulary and did not require revision of existing definitions.  
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Figure 6-5 - Brain-Gene Ontology extended with learning object concepts used later 

in the project. 

Coherence (Gruber, 1993a): The slots and facets of the definitions in BGO are 

limited to a reasonable range based on axioms. Anything that causes a definition or 

instance given to contradict the axioms is fixed.  

Minimal ontological commitments (Gruber, 1993b): To support knowledge 

sharing, BGO specifies the weakest theory and defines only the terms that are crucial 

to the communication of knowledge consistent with the theory. This minimizes 

ontological commitments and increases the reusability of the definitions in BGO in 

other systems.  

The Criteria for Reusing Existing Sources 

There are two main ways to build an ontology: by reusing a developed ontology 

or from scratch. The ODKD methodology defines a process for the identification and 

prioritisation of knowledge sources from both domain expert and ontology engineer 

perspectives (Chapter 4 - section 4.3.1) 
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The prioritisation process identified two main ontology sources in the 

biomedical informatics domain related to brain gene diseases: the Gene Ontology and 

the Unified Medical Language System. Information about specific genes and proteins 

was also extracted from well-known bioinformatics databases.  

The prioritisation process helped to define the granularity and depth of the 

knowledge. Although the Gene Ontology was used in its full length at the beginning 

of this research, its evolution and several extensions made it extremely comprehensive 

which extrapolated the necessary brain gene knowledge for the BGO project. A GO 

Slim version was then selected as the basis for the first version of the Brain Gene 

Ontology extended in subsequent research. 

GO Slims are cut-down versions of the GO ontologies containing a subset of the 

terms in the whole GO. They give a broad overview of the ontology content without 

detail of the specific fine grain terms. GO Slims are particularly useful for giving a 

summary of the results of genome GO annotation, microarray, or cDNA collection 

when broad classification of gene product function is required or when the needs may 

be specific to species or to particular areas of the ontology such as in the initial 

version of the BGO project.  

Some criteria were also defined to guide the importing process: 

Comparative selection: The knowledge model of BGO used the experiences of 

both GO and UMLS along with other small ontologies and domain expert knowledge. 
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Almost all of the data is annotated by multiple sources from different genetic 

databases. These were marked and linked to the annotation part of the BGO. The 

different sources of the same unit were also recorded in the BGO through the evolving 

ontologies metadata (Chapter 3). 

The adoption of Plug-ins: Importing and comparison were conducted using 

Protégé plug-ins. Three plug-ins were mainly used in the importing process: 

PROMPT Tab, UMLSTab, and OBO Tab. UMLSTab was adopted to access the 

UMLS knowledge base. The PROMPT Tab was used to compare and merge the 

imported parts with BGO and track any changes that happened during the whole 

process. The OBO plug-in was used to import the GO-Slim. 

Database evaluation: A list of biological sources covering the whole domain 

was evaluated by domain experts. The brain gene data and information were collected 

from large-scale, stable, credible databases. There is also a knowledge acquisition 

feature in the biomedical knowledge discovery tool, developed in this research, where 

domain experts can share and annotate information in the field. Each piece of data 

included was from more than one source forming the BGO. Different results were 

stored as different categories by source.  

Criteria for BGO Structure Evaluation and Biological Data 

Verification 

Domain experts were available to supervise the BGO structure evaluation and 

biological data verification in the BGO project throughout the development life cycle. 
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This joint and iterative development process avoided the inclusion of a number 

of biological and medical resources which, in spite of their availability on the World 

Wide Web, are not credible, comprehensive or fully related to the specific brain gene 

disease domain. The domain expert engagement followed the guidelines of the ODKD 

methodology. 

The next section describes the computational model utilised in the case study to 

simulate gene regulatory networks and inform the results with ontological knowledge.  

6.4. A generic computational neurogenetic (CNG) model 

Neuroscience, along with the information and mathematical sciences, has 

developed a variety of theoretical and computational models to enable complex brain 

functions to be represented and analysed (Kasabov & Benuskova, 2004b). 

Computational Neuro-Genetic Modelling (Kasabov, Benuskova, & Wysoski, 2004) is 

a novel computational approach which uses this information to create models that 

integrate dynamic gene networks with a neural network model. 

The CNGM is biologically-based on the fact that a specific gene from the 

genome relates to the activity of a neuronal cell by means of a specific protein as well 

as the complex interaction between genes and proteins within the gene/protein 

regulatory network (GPRN), and this defines the functioning of each neuron and a 

whole neural network in its turn. It also acknowledges that even in the presence of a 

mutated gene in the genome, that is known to cause a brain disease, the neurons can 

still function normally provided a certain pattern of interaction between genes is 
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maintained (Marcus, 2004). On the other hand, if there is no mutated gene in the 

genome, certain abnormalities in brain function can be observed as defined by a 

certain state of interaction between genes (Marcus, 2004).  

In the Computational Neuro-Genetic Model, interaction of genes regulates the 

activity of neurons that consequently affects the dynamics of the whole neural 

network. It has been shown that by tuning the interaction between genes and the initial 

gene/protein expression levels, different states of neural network operation can be 

achieved. The main goal of Neuro-Genetic models is thus to simulate the activity of 

certain parts of the brain using biologically plausible neural networks and to link these 

activities and their outcomes to the genetic level, in an attempt to enable discoveries 

of yet unknown dynamic relationships between genes and states of brain activity. 

The CNGM approach is adopted in this research as a data mining technique. The 

model was developed in the context of a joint research project between several 

researchers including the author of this thesis. The work developed in this thesis 

contributed to the simulation by identifying a series of biologically plausible 

parameters, mainly related to genes highly expressed in the brain, which were used to 

set up the simulations.  

In general, the model considers two sets of essential genes – a set Ggen that 

defines generic neuronal functions (e.g. general cell life functions) and a set Gspec that 

defines specific neuronal functions (e.g. receptors, ion channels).  The two sets form 

together a set G ={ G1, G2,…, Gn}. The model does not know the absolute values of 

gene expression levels therefore it works with the relative changes in their expression. 
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A change in expression level of each gene gj(t+ t) ( , ) is a function of the 

changes in gene expression levels of the rest of the genes in G(t). As the first simple 

model, it is assumed that this function is a linear function, i.e.: 

                            

n

k

kjkj tgwttg
1

)()(                         (1) 

The square matrix of gene connection weights W represents the GN, wij  

(see Figure 6-6). The model assumes that when a gene is upregulated (i.e., gj(t)>0) 

more protein defined by this gene will be produced in the neuron, and vice versa, i.e. 

when the gene is down regulated (i.e., gj(t)<0) less protein coded by this gene will be 

produced.  

Neuronal functions (neuron‘s parameters) P = {P1, P2,…,Pm} from a neural 

network model are related to particular proteins, so that each parameter Pj is a 

function of the expression of several (or in partial case – one) genes.  For simplicity in 

the model it is assumed that one parameter Pj depends only on one gene such that: 

        )()0()( ttgPttP jjj                  (2) 

where g’j(t+ t) [0, ) is a relative change in the protein concentration against its 

initial concentration at time 0, based on the change in its gene expression level. It is 

calculated as 
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)()( tgstg j                                  (3) 

where s is a squashing function (see e.g. Figure 6-6) and g(t) is determined by 

equation (1). 

 

 

Figure 6-6 - An example of a nonlinear function to obtain relative changes in 

parameters values (equation (3)) according to the current changes in gene expression 

levels g(t). 

  

This generic CNG model can be run step by step over time in the following way: 

1.Define the initial changes in expression values of the genes in the neuron,      

g(t = 0), and the matrix W of the GN if that is possible. Set the initial values 

of SNN parameters, P(t = 0). 

2.Update the GN and define the next state of the gene vector g(t+ t) using 

equation (1). 
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3.Derive the values of the parameters P from the gene state g(t+ t)  using 

equation (2). 

4.Evaluate the spiking activity of neuron(s) (taking into account all external 

inputs to the neural network). 

5.Go to step 2. 

The model makes several simplifying assumptions: 

1. Each neuron has the same GN – in terms of same genes and same 

network matrix W. 

2. Each GN starts from the same initial value of the gene expressions. 

3. Each individual GN is synchronized with others, i.e. t is equal for all 

genes and for all GNs. 

4. There is no feedback from neuronal activity to gene expression level. 

6.4.1. Determination of the GN transition matrix W 

The biggest challenge of the approach followed and the key to the predictions of 

the model is the construction of the GN transition matrix W, which determines the 

dynamics of GN and consequently the dynamics of the NN. There are several ways to 

obtain W: 

(1) Ideally, the values of gene interaction coefficients wij  are obtained from real 
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measurements through reverse engineering performed on the microarray data. At 

present, there are very limited experimental data available for the brain.  

(2) The values of W elements are iteratively optimised from initial random 

values, for instance with the use of genetic algorithms, to obtain the desired behaviour 

of the NN. The desired behaviour of the NN can simulate certain brain states like 

epilepsy, schizophrenic hypofrontality, learning and memory disorders (after 

incorporation of synaptic learning). This behaviour would be used as a ―fitness 

criterion‖ in the genetic algorithm to stop the search process for an optimal interaction 

matrix W. 

(3) The matrix W is constructed heuristically based on some assumptions and 

insights into what result is intended to obtain and why. For instance, the model can 

use the theory of discrete dynamic systems to obtain a dynamic system with the fixed 

point attractor(s), limit cycle attractors or strange attractors.  

(4) The matrix W is constructed from known facts and literature on gene-protein 

interaction such as those acquired from the brain-gene ontology. 

(5) The matrix W is constructed with the use of a mix of the above methods.   
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6.4.2. Model defined GN corresponding to the desired 

NN behaviour 

The above generic model allows the investigation and discovery of relationships 

between different GNs and NN states. A procedure to obtain this relationship can 

read: 

1. For an initial GN state, generate a GN matrix W; 

2. For the matrix W run the NN model over a period of time T and record the 

activation of the neurons in the NN;  

3. Evaluate characteristics of the NN behaviour (e.g. total activation, spectral 

characteristics); 

4. Compare the NN characteristics to the characteristics of the desired NN state (e.g. 

epilepsy); 

5. Repeat steps (1) to (4) until a desired GN and NN model behaviour is obtained; 

6. Analyse the GN and the NN parameters for significant gene patterns that cause the 

NN model behaviour. 

The generic model above is illustrated in the next sections on a simple CNG 

model of a spiking neural network (SNN) with an optimised GN.  
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6.5. A CNG model of a spiking neural network (SNN)  model 

description 

The model is designed as a small network of spiking neurons, N = 120. Inside of 

each neuron a small gene network (GN) affects the values of neuron parameters in a 

dynamic fashion (Figure 6-7). Each neuron parameter is in reality linked to a 

particular protein (receptor, ion channel, enzyme, etc.) the concentration of which is 

determined by the expression level of the corresponding gene(s). 

 

 

 

Figure 6-7 - Neurons of the model neural network have a gene network operating 

within them that affects the values of their parameters in a dynamic fashion. 

The neuron spiking model is derived from the spike response model (SRM).  

The total somatic postsynaptic potential (PSP) of a neuron i is ui(t). When ui(t) 

reaches the firing threshold i(t), neuron i fires, i.e. emits a spike (see Figure 6-8). 

The moment of i(t) crossing defines the firing time ti of an output spike. The value of 

ui(t) is the weighted sum of all synaptic PSPs, )( ax

ijjij tt , such that: 

i jjj Ft

ax

ijjijiji ttJtu )()(
                  (4) 
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The weight of synaptic connection from neuron j to neuron i is denoted by Jij. It 

takes positive (negative) values for excitatory (inhibitory) connections, respectively.  

ax

ij  is an axonal delay between neurons i and j, which linearly increases with 

Euclidean distance between neurons.  The positive kernel expressing an individual 

postsynaptic potential (PSP) evoked on neuron i when a presynaptic neuron j from the 

pool i fires at time tj has a double exponential form, i.e. 

synapse

rise

synapse

decay

synapsesynapse

ij

ss
As expexp)(         (5) 

where 
synapse

risedecay /  are time constants of the fall and rise of an individual PSP, 

respectively,  A is the PSP's amplitude, and synapse denotes one of the following: 

fast_excitation, fast_inhibition, slow_excitation, and slow_inhibition. These types of 

PSPs are based on neurobiological data. Immediately after firing the output spike at ti, 

neuron's firing threshold i(t) increases k-times and then returns to its resting value 0 

in an exponential fashion:  

decay

i

ii

tt
ktt exp)( 0                     (6) 

where decay  is the time constant of the threshold decay. In such a way, 

absolute and relative refractory periods are modelled. External inputs from the input 

layer are added to the right hand side of  (4) at each time step. Each external input has 

its own weight 
inputext

iJ _
 and )(_ texcitationfast

i , i.e. 
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It was employed a random input with the average firing frequency of 15 Hz. 

 

ui(t) 

Time (ms) 

0 
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1 ti

2 
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Figure 6-8 - Spiking neuron model. When the state variable ui(t)  of a spiking neuron 

reaches the firing threshold i(t) at time ti, the neuron fires an output spike. Current 

firing threshold rises after each output spike and decays back to the initial value.  
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ij Gaussian lateral connections 

 

 

Figure 6-9 - SNN architecture. Filled circles denote inhibitory neurons.  

Figure 6-9 illustrates the architecture of our spiking neural network (SNN). 

Spiking neurons within the network can be either excitatory or inhibitory. There can 
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be as many as about 10 20% of inhibitory neurons positioned randomly on the 

rectangular grid of N neurons. Lateral connections between neurons have weights that 

decrease in value with distance from neuron i according to a Gaussian formula while 

the connections between neurons themselves can be established at random. There are 

one-to-many feed-forward connections from the input layer decreasing in strength 

according to the Gaussian distribution Table 6-3 and Table 6-4 contain the values of 

neuron‘s and SNN parameters, respectively that were used in our preliminary 

simulations. 

Table 6-3 – Neuron’s Parameters 

GENE Neuron’s parameter Value 

G1 Amplitude of fast excitation  4 

G2 Fast excitation rise / decay time constants (ms) 2 / 5  

G3 Amplitude of slow excitation  1 

G4 Slow excitation rise / decay time constants (ms) 20 / 50  

G5 Amplitude of fast inhibition  1 

G6 Fast inhibition rise / decay time constants (ms) 5 / 10 

G7 Amplitude of slow inhibition 3 

G8 Slow inhibition rise / decay time constants (ms) 50 / 100 

G9 Resting firing threshold 19.5 

G10 Decay time constant of the firing threshold (ms) 30  

 Number of times the threshold is increased k 2 
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Table 6-4 – SNN Parameters 

SNN parameter Value 

Number of neurons 120 

Proportion of inhibitory neurons 0.2 

Probability of external input fiber firing 0.015  

Peak/sigma of external input weight 5 / 1 

Peak/sigma of lateral excitatory weights 10 / 4 

Peak/sigma of lateral inhibitory weights 40 / 6 

Probability of connection  0.5 

 

Table 6-3 also contains relations between neural parameters and hypothetical 

genes in our GN. For instance, amplitudes of PSPs would be related to the 

concentration of receptor-gated ion channels in the postsynaptic membrane. The time 

constants of PSPs would be related to the properties of individual receptor-gated ion 

channels. Concentrations and properties of proteins are determined by coding genes.  

6.5.1. Some preliminary experimental results 

Figure 6-10 illustrates the field potential of the SNN model and its spectral 

characteristics for an optimised GN matrix.  W has been optimised to yield the 

spectral characteristics of  as similar as possible to the spectral characteristics of 

normal state EEG. The coefficients of W, wij  ( 1, 1) was generated, such that the 
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modulus of the maximal (complex) eigenvalue was equal to 1. That means the stable 

oscillatory behavior in the Lyapunov sense of the corresponding linear gene dynamic 

system (see Figure 6-11 c).  The initial values of parameters are listed in Table 6-3 

and Table 6-4 Parameter changes were applied after each 1000 ms of SNN simulation 

according to the equation (2).   

 

 

 

Figure 6-10 - Time evolution of the field potential of the SNN with dynamic parameter 

values. (a) Field potential. (b) Spectral characterisation. Sampling rate = 1000 Hz, 

Min/Max frequency = 0.1 / 50 Hz, respectively. The dominant frequency band is delta 
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Figure 6-11 - (a, b) Different initial values of parameters can lead to totally different 

behaviour of SNN. (c) Corresponding relative changes in gene expression levels for a 

single optimised interaction matrix W, the same as in Figure 6-10. Zero means no 

change in the expression level. 

Then it is kept the same W optimised for the normal state EEG and 

experimented with different initial values of parameters Pj(0) in equation (2).  Figure 

6-11 illustrates the field potential  of the SNN with initial conditions simulating the 

temporal lobe epilepsy (TLE) with tonic-clonic (TC) seizures. Namely, the slow 

inhibition was disabled by putting 0_ inhibitionslowA  and the fast inhibition was 

enhanced by putting 10_ inhibitionfastA . In Figure 6-11 a, b shows that the behavior of 

the network has completely changed. Now, the neural dynamics leads to transient 

global synchronizations with frequency characteristics very similar to the EEG of TC 

seizures for which the dominant frequency is beta 2 (18 30 Hz) and the EEG 

amplitude rises to hundreds of V. It is worth to mention that with the fixed values of 

parameters, it is not possible to obtain transitions from the normal state to the 

prolonged periods of global synchronizations and back as seen in Figure 6-11. It 

seems that the internal dynamics of genes linked to neural parameters is needed to 

account for observed transitions in neural network states.  Analysis of which genes 

and which parameters are crucial for these state transitions can bring new insights into 

the etiopathogenesis and treatment of the disease. 

While the capability to simulate certain brain states based on the interaction of 

genes and biologically plausible neural networks is valuable, the parameters of a 
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simulation and its results must be biologically validated in order to contribute to the 

advance of studies in both neuroscience and bioinformatics.  

The integration of the previous knowledge, by means of the Brain Gene 

Ontology, and newly discovered knowledge, by means of simulation, is then a much-

desired feature, which is covered in the next section. It is also important to note that 

several validation exercises were done previously within the research group (Kasabov, 

Jain, Gottgtroy, Benuskova, & Joseph, 2007) to both validate the ontological model 

and the initial results of the simulations. These studies guided the selection of the 

CNGM as a modelling technique to develop a full ontology driven tool based on the 

ODKD framework developed in this thesis. 

6.6.  A Biomedical Knowledge Discovery Tool – BGO System 

The biomedical knowledge discovery tool is an extension of the ODKD 

Framework designed to cope with the requirements of Computational Neuro Genetic 

Modelling.  
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Figure 6-12 – The biomedical knowledge interaction schema. 

As shown in Figure 6-12, the ontological model acquires knowledge from 

experts, biomedical ontologies, bioinformatics databases, and from the CNGM 

simulator. To this end, it includes a set of plug-ins specially designed and developed 

in this research to deal with biomedical knowledge sources, gene regulatory networks 

(GRN), and with the results of a CNGM simulation. 

A gene regulatory network or genetic regulatory network (GRN) is a collection 

of DNA segments in a cell which interact with each other (indirectly through their 

RNA and protein expression products) and with other substances in the cell, thereby 

governing the rates at which genes in the network are transcribed into mRNA. 

http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/MRNA
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The biomedical tool is composed of three main components: the Brain Gene 

Ontology, the Gene Regulatory Network Visualization (GRN Graph Widget) and the 

gene regulatory network knowledge acquisition tool (Gene Regulatory Network Tab).  

The ontology is the central repository of all knowledge related to genes and 

brain diseases. It was developed following the ODKD process and methodology. The 

GRN Graph widget is the novel visualization tool developed in this thesis that stores 

gene regulatory network data on the ontological model. The Gene Regulatory 

Network tab is responsible for the acquisition/editing/integration of CNGM 

simulations which was newly developed to incorporate regulatory network data. 

Appendix B presents a series of screenshots and more detailed information on 

each of these components, describing their functionalities and so forth.  

6.6.1. CNGM simulation results 

The CNGM simulation results are the product of an optimisation of an 

interaction matrix W between genes, initial values of neural parameters, architectural 

parameters of a spiking neural network model (SNN) (except the total number of 

neurons, spike delays and probability of establishing a synaptic connection), and input 

frequency to the SNN. 

The main goal of the simulation is to compare the output of the spiking neural 

network model with targeted real human brain EEG signals and to consequently be 

able to generate optimal artificial gene regulatory networks for hypothesis checking 
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and validation by experts and for comparison with previous knowledge by means of 

the Brain Gene Ontology.  

The simulation keeps a record of spiking activities of all neurons as well as a 

record of the local field potential (LFP). This comparison is based on evidence that 

brain LFPs in principle have the same spectral characteristics as EEG . 

A number of gene interaction matrices Ws that show almost a uniform 

distribution of interaction strengths between genes are presented as an example in 

Figure 6-13. The small histograms show the percentage distribution of positive and 

negative interaction weights between genes, which are in this case equally probable. 

With a uniform generator of numbers from the interval (–5, 5), the probability of 

generating zero is very small.  
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Figure 6-13 – Blue and grey histograms show the percentage of positive and negative 

gene interactions, respectively, in 400 randomly generated interaction matrices W. 

Among the 400 random solutions shown in Figure 6-13, 15 Ws matrices lead to 

an SNN LFP with spectral characteristics very close to the target EEG signal in terms 

of Euclidean distance between the characteristic vectors being smaller than 0.1. To 

discover the knowledge, e.g. to find out what these selected solutions have in 

common, how many times the interactions between genes become positive and how 

many times they become negative is calculated (Figure 6-14).  A basic frequency 

statistical analysis test can then be used, for instance the X2-statistic, to make 

predictions about interactions between real genes in neurons. Figure 6-14 outlines 

gene groups that are directly related to information-processing parameters of neurons.  
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Figure 6-14 – Black and grey histograms show the percentage of positive and 

negative gene interactions, respectively, in 15 winning interaction matrices after 

experimental running of CNGM. 

This frequency analysis, along with the biological knowledge of the gene 

groups, which are directly related to information-processing parameters of neurons, 

are the driving force of the hypothesis about the interactions between real genes 

within neurons. This information and the associated hypotheses can then be 

considered and linked to the knowledge represented in the BGO as shown in Figure 

6-15. 
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Figure 6-15 – BGO System: A screenshot of a GRN graphical representation of the 

gene regulatory network presented in Figure 6-14 and Table 6-5. 

The GRN graph is linked to the ontology by the Gene Regulatory Network 

concept, which is a sub-class of Bioinformatics Maps within the Brain Gene 

Ontology. All concepts and relationships allowed are specified in the ontology in 

accordance with the knowledge needed to represent gene regulatory networks. This 

ontological representation makes possible the visualization and navigation of all 

concepts related to the network.  

Although designed to cope with the specific requirements of visualizing gene 

regulatory networks, the GRN Graph was designed to support  the Protégé user 
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community by maintaining compatibility with the graph widget plug-in (Protege, 

2006b). It extends the graph widget by adding link analysis features to it as well as 

exploring advanced network features such as nodes, shapes, connectors and text 

configuration (depicted in Appendix B Figure B-8). 

6.6.2. Importing Gene Regulatory Network data 

The GRN tab is used for the creation and editing of gene regulatory networks. It 

includes a set of features that are primarily designed to import the results of a 

computational neuro-genetic simulation such as the example presented in Table 6-5.  

Table 6-5 – Gene Expression Matrix acquired from simulation referenced in Figure 

6-15 

 

The next items describe briefly the importing procedure (see Figure 6-16): 

1. CNGM generates the GRN matrices W with gene expression values; 

2. The matrices are imported using the Gene Regulatory Network Tab. Each 

simulation is imported and respective metadata is annotated using EO-metadata;  
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3. Each simulation creates a gene regulatory network map instance;  

4. Each gene presented in the GRN is linked to its GO-term (Gene Ontology 

instance) using the unified name or any of the synonyms current available in the 

ontology. Biomedical data is then automatically attached to the GRN data. 

5. A biomedical relationship is created between each pair of genes and its evidence 

and gene expression is annotated. 

6.  A link analysis feature is added to the relationship to demonstrate the strength or 

importance of the relationship. The link analysis then adds biomedical relationship 

metadata to the newly created relationship. 

7. After the biological annotation of each gene and regulatory network data a 

visualization of the network is created using the GRN visualization widget 

developed in this research. 

8. The visualization and related biological data is then added to a knowledge 

acquisition tool which is then made available for further analysis and annotation 

by users such as domain experts and researchers.  
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Figure 6-16 –A process flow to import GRNs. 
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The GRN tab also enables the editing of a regulatory network by adding new 

genes, proteins, and protein complexes, or including information about the network 

such as annotations and uncertainty properties of a relationship. This knowledge 

acquisition feature is provided through the GRN Graph Widget interacting with the 

knowledge base and all Protégé‘s editing functionalities. A series of screenshots 

illustrate the importing procedure is shown in Appendix B. 

The table bellow shows a generic algorithm of the process. 

FOR each Matrix W 

 Annotate provenance metadata using EO-Metadata (Creation, EO-Source, etc) 

 Create GRN biomedical map instance 

 FOR each Gene in the matrix W selected 

  IF GO-Term or Synonym exist THEN 

   Link Gene to GO-Term 

  ELSE 

   Add new Gene 

  ENDIF 

  Add Ontological Knowledge 

 ENDFOR 

 FOR each gene relationship 

  IF gene expression is positive THEN 

   Create an activation relationship 

  ELSE 
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   Create an inhibition relationship 

  ENDIF 

  Update expression value attribute (link analysis) 

 ENDFOR 

 Create GRN Visualisation 

ENDFOR 

 

The matching of a GO-term and/or its synonym is performed using the Protégé 

API capability by matching strings and the unique internal name attributed to each 

instance created in the knowledge model. This mechanism then supports the 

identification of an existent gene or the necessity for the creation of a new one. 

6.7. Summary 

The challenge of making diverse biomedical knowledge and concepts sharable 

over applications and reusable for several purposes is both complex and crucial. It is 

central to enabling comprehensive knowledge-acquisition by medical research 

communities and molecular biologists involved in biomedical discovery. 

This chapter describes the integration of the Brain-Gene Ontology (BGO) with 

the Computational Neuro-Genetic Modelling simulator (CNGM) in the development 

of a biomedical knowledge discovery tool. It complements the practical contribution 
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of this thesis and provides verification of the functionality of the system developed as 

part of the multi methodological research methodology.  

The biomedical knowledge discovery tool is based on the Ontology Driven 

Knowledge Discovery Framework and includes an additional set of plug-ins built to 

integrate with the Computational Neuro-Genetic Model and simulations as well as 

with regulatory networks. 

The BGO acts as a biological knowledge repository which guides the 

construction of simulations to test biomedical hypothesis. The simulations generate a 

series of plausible gene regulatory networks that need to be biologically verified by 

experts using the knowledge base. The experts can also use other sources of 

information present in the BGO to complement the knowledge inserted in the 

ontological model. This hypothesis-driven process enables the creation of an accurate 

knowledge base of genetic information about brain diseases. All of this information 

can be re-utilized to create further models of brain function and disease that include 

models of gene interactions.  

The biomedical knowledge discovery tool allows users to navigate through the 

rich information space of brain functions and brain diseases, brain related genes and 

their activities in certain parts of the brain and their relation to brain diseases; to run 

simulations; to download data that can be used in a software machine learning 

environment; to visualize relationship information; and to add new information to the 

knowledge base.  



256 

 

The tool has the capability to facilitate active learning and research in the areas 

of bioinformatics, neuroinformatics, information engineering, and knowledge 

management. 

The biomedical knowledge discovery tool also respects all criteria established 

early in the research. Each ODKD Framework criterion was respected in the 

development of the tool achieving the following results: 

 The system supports all phases of the Ontology Driven Knowledge 

Discovery process and is based on the widely-accepted and used Protégé 

ontology editor;  

 The system reuses the evolving ontology meta-data and meta-classes to build 

the concepts related to the gene regulatory network; 

 The system extends the ODKD Framework and maintains a flexible 

architecture which copes specifically with the biomedical knowledge 

discovery domain, enabling, for example, the use of the plug-ins in other 

contexts such as the educational environment (Kasabov, Jain, Gottgtroy, 

Benuskova, & F.  Joseph, 2007); 

 The GRN tab has an interface that enables the engineer/user to navigate in 

and edit the ontological model; 
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 All the tools developed were published as independent and reusable modules 

in the Protégé open source library. 

The creation of the BGO was facilitated by both the ODKD methodology and 

process, and the set of tools especially developed to incorporate gene regulatory data 

into the Ontology. The phased approach followed in the research methodology was 

also facilitated by the three-fold strategy adopted in the development of the case 

study: development of tools, enhancement of the body of knowledge and simulations, 

which in consequence reduced the complexity of developing the case study. 

Investigation of the results in light of domain knowledge triggered the necessity 

of sourcing new data, which in consequence tested the framework‘s capacity to 

acquire the data from both a modelling perspective (increasing the maturity level of 

the conceptual model) and supporting tools (adding more requirements for the 

development of new tools). The knowledge acquired then defined new parameters to 

be simulated by the CGNM tool. In consequence a clear requirement set was defined 

to support the incorporation of the simulations results, finally closing the loop of the 

analysis.  
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Chapter 7  

Evaluation of Research  

This chapter evaluates the contribution of the research taking into consideration 

the research methodology and the system requirements established previously in 

Chapter 1 (Research Design). It verifies the satisfaction of all requirements by 

reviewing the Design Science and the System Development methodologies adopted in 

this research. 

7.1. Introduction 

This research aimed to advance core knowledge in the ontology engineering and 

knowledge discovery in databases fields by designing, implementing and evaluating 

an ontology-driven knowledge discovery framework which encompasses a 
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methodology, a meta-knowledge model and software engineering tools to 

semantically support knowledge discovery in databases. 

As applied research, rather than basic research, this thesis has two main goals, 

one theoretical and one practical (section 1.3): ―to understand why things happen in a 

particular context‖, and ―to improve practice by conducting research that will 

ultimately yield usefulness and improve processes in a particular field‖ (Adams & 

Courtney, 2004). The achievement of these goals is evaluated in the following two 

sections: Design Science and System Development. 

The Design Science section evaluates the methodology objectives (Figure 7-1) 

by reviewing the conceptual framework and life cycle developed in this research. The 

System Development section links Nunamaker‘s software development methodology 

and the specified system requirements with the research conducted in order to 

demonstrate process improvement and usefulness by the systems built from a 

requirement analysis perspective.  

Experiments are summarized at the end of each chapter and published outcomes 

are listed in Appendix D in order to demonstrate the iterative development process as 

well as the maturity of the research.  
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Figure 7-1 – The multi-methodological approach used in this thesis(adapted from 

Nunamaker et al. and Adams et al.) 

 

7.2. Design Science 

As stated in Chapter 1, Design Science is highly suited to applied research as it 

aims ―to solve problems by introducing into the environment new artefacts”. Design 

science is used in this work as part of the multi-methodological research methodology 

(see Figure 7-1). Design Science is directed at the creation of models (Chapter 3) and 

processes (Chapter 4) as shown in Figure 0-2. It encompasses the research proposal 

and the conceptual contribution of this research. This section mainly covers the 

conceptual contribution of the novel Evolving Ontology meta-knowledge model (EO) 

and the definition of the Ontology Driven Knowledge Discovery process (ODKD).  
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The development of the Evolving Ontology meta-knowledge model, in the 

context of Knowledge Discovery in Databases (KDD), contributes theoretically to 

both ontology and KDD research by taking into consideration the need for 

―knowledge evolution‖ and the notion of partial shared conceptualization.  

Partial here means incomplete knowledge, being constructed, dynamic, 

changing, and evolving. Shared means consensual knowledge, maintained through 

knowledge management. The Evolving Ontology is then able to capture the intrinsic 

consensual conceptual structure of a domain while considering the notions of 

incompleteness, uncertainty, high dimensionality and other specific perspectives 

presented in the cyclic knowledge discovery in databases process. 

The Evolving Ontology (EO) increases knowledge (theory) by creating a model 

able to represent evolution in terms of change management. It contributes to the 

understanding of change in the context of the dynamics of the hybrid knowledge 

discovery process embedded in the ODKD. 

The EO quarantine structure also adds a time dimension to the ontology 

knowledge acquisition problem. It extends the theoretical discussion by creating a 

meta-class able to annotate knowledge acquired manually, semi-automatically, and/or 

automatically and allows its evaluation by experts and/or inference mechanism. It 

then contributes directly to knowledge validation. 
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The change management and temporal requirements discussed and supported by 

the Evolving Ontology meta-knowledge model also reflect the philosophical aspects 

of knowledge evolution (section 3.3). This philosophical discussion, in the context of 

the Ontology Driven Knowledge Discovery process (ODKD), contributes to the 

ontology engineering field by bringing a novel dimension and proposal to ontology 

evolution and evaluation research. 

The Ontology Driven Knowledge Discovery process contributes to the 

knowledge engineering field by creating a hybrid methodology and process model 

which maps KDD processes to an ontology building process. The proposed ontology-

driven life cycle considers and leverages the best practices of industry and academia.  

The conceptual contribution, enveloping the Evolving Ontology Meta-

knowledge model and the Ontology Driven Knowledge Discovery Process, is the 

basis for the development and implementation of the ODKD Framework set of tools. 

The Conceptual Model (EO and ODKD) is functionally able to enhance the process of 

knowledge discovery from data by adding a high level of abstraction to the process 

which may enable better reuse of previous knowledge as well as the creation and 

evaluation of new knowledge. 

Conceptualization or the establishment of the theoretical grounding of system 

requirements is suggested in (Adams & Courtney, 2004) as ―the focal point of the 

research effort”. This research‘s conceptual contribution has led to increased 
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knowledge around the integration of ontology engineering and knowledge discovery 

in databases as well as the notion of ontology evolution. 

The introduction of the novel Evolving Ontology model and ODKD then helped 

to generate an increased understanding of the ontology change problem in the context 

of KDD as well as improved practice through the creation of a methodology and 

process model that improved processes in the knowledge discovery field. It also, as 

suggested in the previous paragraph, established the focal point of the research by 

defining the requirements for the development of the Ontology Driven Knowledge 

Discovery Framework discussed in the following System Development section. 

7.3. System Development  

System Development concerns theory testing, and allows a realistic 

technological evaluation of the product developed and its potential for acceptance. 

This research followed Nunamaker‘s systems development process, Figure 7-1, as a 

foundation for the evaluation of the ―usefulness” and ―interestingness” of the 

Ontology Driven Knowledge Discovery Framework as indicated by the applied 

research objective defined previously (section 1.3.1).  

The following evaluates the research methodology reviewing Nunamaker‘s 

principles (section 1.3.1 ) in relation to the chapters of the thesis:  

– ―Design is the most important part of a system development process.‖- The 

system design involved the understanding of the studied domain (Chapters 
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1) and the application of relevant scientific and technical knowledge for 

creation of a solution (Chapters 3, 4, and 5). 

– ―A good system architecture provides a road map for the systems building 

process. It puts the system components into the correct perspective, specifies 

the system functionalities, and defines the structural relationships and 

dynamic interactions among system components.‖ – The system architecture 

is defined in Chapter 5, section 5.2.1. It constitutes the basis for the 

development of the ODKD implementation framework. 

– ―Researchers must identify the constraints imposed by the environment, state 

the objectives of the development efforts (i.e. the focus of the research), and 

define the functionalities of the resulting system to achieve the stated 

objectives.‖ - Defined in Chapter 1, section 1.4. This is expanded upon and 

evaluated in the next sub-section under System Requirements. 

– ―Building a prototype system always helps to study and to understand a 

research domain‖- Chapters 6 describes a prototype of a biomedical 

knowledge discovery tool developed in this thesis, along with the insights 

that were generated using that tool. 

– ―The process of implementing a working system can provide researchers 

with insights into the advantages and disadvantages of the concepts, the 

frameworks, and the chosen design alternatives.‖ - An iterative development 
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process was followed in this thesis. Early development such as the Brain 

Gene Ontology, for example, revealed new requirements and suggested 

modifications in both the EO meta-knowledge model and ontology plug-ins. 

This iterative process helped to refine the design of the ODKD Framework 

as well as the meta-knowledge model. 

– ―Depending on the focus of the research, one might emphasize the new 

functionalities or innovative user interface features of the proposed new 

system rather than the throughput or the response time of the system.‖- 

Chapter 6 addresses all new functionalities and interfaces developed based 

on the requirements of the biomedical knowledge discovery domain. 

– ―Implementation of a system is used to demonstrate the feasibility of the 

design and the usability of the functionalities of a system development 

research project.―– Chapters 5 and 6 describe the set of tools developed so 

as to demonstrate the feasibility of the design. The iterative development 

process has helped in the refinement of the tools and design of the prototype. 

– ―Once the system is built, researchers can test its performance and usability 

as stated in the requirement definition phase, as well as observe its impacts 

on individuals, groups, or organizations.‖- Chapters 6, 7 and 8 (the Future 

research section) illustrate the prototype in use in a case study and in further 

research using and extending the methodologies and tools developed in this 

thesis. 
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– ―The test results should be interpreted and evaluated based on the 

conceptual framework and the requirements of the system defined at the 

earlier stages.‖ – The definition of system requirements (Chapter 1) and 

their extension by the iterative development process is the basis for the 

evaluation described in the next sub-section.  

The next sub-sections list all requirements defined in Chapter 1 and outline the 

characteristics of the models, processes and systems developed that meet the 

requirements. 

7.3.1. Knowledge Representation 

As indicated in section 1.4.2, the Evolving Ontology Meta-knowledge model 

should be able to: 

– Define different sources of information – the ontological model is composed 

of an evolving meta-knowledge able to integrate multiple knowledge 

sources, as shown in the case study undertaken (Chapter 6). 

– Maintain a traceable link to original sources – Each concept in the ontology 

model keeps provenance of at least source, date and creation (Chapter 3).  

– Represent uncertainty - meta-class relations can implement different 

uncertainty measures, such as evidence by literature or quality of source 

(Chapter 3). 
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– Acquire new knowledge while establishing degrees of knowledge acceptance 

based on external measures – every concept/instance is annotated in the 

ontology. The gene expression acquired from the gene regulatory network is 

used as external measures when acquiring data from the CNGM simulations. 

Further measures, such as the number and quality of annotations can also be 

used to define levels of acceptance if necessary (Chapters 3 and 6). 

– Annotate any concept with domain specific and general meta-models – every 

concept can be annotated by various sources, such as experts, external 

databases, and so on (Chapters 3 and 6). 

7.3.2. Conceptual Framework 

As indicated previously in section 1.4.2, the conceptual framework should be 

able to integrate both ontology engineering and knowledge discovery in databases 

processes. The framework should be able to: 

– Reuse knowledge - the current brain gene ontology exemplifies this 

requirement by reusing widely used knowledge such as the Gene Ontology 

(Chapter 6).  

– Support different data mining tasks - the framework is based on the CRISP-

DM process which covers all tasks within a data mining task (Chapter 5). 

Chapter 6 describes the case study which followed the ODKD methodology. 
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– Learn ontology using data mining techniques – the prototype was tested in 

closed-loop fashion using Computational Neuro-Genetic Modelling. The 

system is also able to export ontology instances to WEKA and Neucom 

systems, and to virtually any system which accepts flat files as input 

(Chapters 5 and 6). 

– Define a hybrid life cycle – the ODKD process integrates the best practices 

of the ontology engineering and KDD fields (Chapter 5).  

– Use a navigation, visualisation and query language to support the hybrid life 

cycle – The framework supports all three navigation and search methods 

(Chapters 5 and 6). 

7.3.3. Ontology Driven Methodology 

As indicated previously, the methodology should establish a reusable process as 

well as be able to reuse and integrate different tools. The methodology should be able 

to: 

– Integrate different databases – there are several import features available, 

such as the OBO tab (Chapter 5 and 6). 

– Use manual, automatic and semi-automatic knowledge acquisition tools – 

the environment allows for manual knowledge acquisition. The biomedical 
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tool has both automatic and manual knowledge acquisition features (Chapter 

6). 

– Follow a hybrid ontology-driven KDD life cycle – ODKD is based on the 

CRISP-DM and best academic practices (Chapter 5). 

– Suggest a conceptual modelling technique - the ODKD is both a process and 

methodology that can adopt different conceptual modelling techniques. The 

brain gene ontology design, for example, was initially based on Significant 

Conceptual Modelling (Gottgtroy, 2000) and later extended as a Masters 

thesis (Wang, 2007) using a hybrid ontology building modelling technique. 

7.3.4. Ontology Engineering Tool 

As specified in the related section in Chapter 5, the ontology engineering tool 

developed as part of the ODKD Framework should be able to: 

– Support the whole hybrid life cycle – a set of newly developed, extended and 

existing Protégé plug-ins is included in the framework to support the entire 

ODKD life cycle (Chapter 5). 

– Include navigation, visualization and query support – all three features are 

supported (Chapter 5 and 6). 
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– Integrate different data mining workbenches - the novel Instance Selection 

Tab is able to export instances of interest to several data mining 

workbenches (Chapters 5 and 6). 

– Be extensible – the system is based on the extensible Protégé architecture. 

– Be reusable - the system is based on an object oriented approach and  on the 

open Protégé architecture which enables reusability. 

– Be published in the public domain – the plug-ins are open source and will be 

widely published after the examination of the thesis. 

– Integrate and reuse the best tools and practices in the ontology engineering 

field – the system is based on the current, most-used, freely-available, 

ontology environment – Protégé. 

7.4. Additional Assessment 

The aim of the research has always centred on the development of a system and 

processes to yield ―usefulness‖ and ―process improvement‖ in the ontology 

engineering field (section 1.3). Such an aim is aligned with the research philosophy of 

Adams & Courtney (2004) and was adopted in both the research design and in its 

evaluation following  Nunamaker‘s systems development process. That said, the 

solution can also be assessed against other criteria commonly utilised in system 
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evaluations - performance and usability - and against other candidate solutions via 

comparative analysis. These assessments now follow. 

7.4.1. Performance Assessment 

There is no performance restrictions in regard to the meta-knowledge model, 

methodology and processes developed in this research. The methodology and model 

are independent of performance issues related to knowledge base size. The meta-

knowledge model may be impacted by the knowledge representation formalism, for 

example, source annotations are perhaps easier to implement using RDF or OWL 

(ontology web language) as representation formalisms, but this in itself is not a 

constraint on performance. 

However it should be noted that the performance of the ontology environment 

may be impacted by the memory restriction imposed by the java virtual machine when 

considering the time to load and query a knowledge base. These restrictions were 

avoided in this research by tuning the prototyping environment to reach the best 

performance in terms of memory and reading access. In general, there is a 2 GB 

limitation to run the java virtual machine and load data into memory (1.6 GB on 

Windows and 2GB on UNIX machines). This limitation is perceived when reading 

knowledge bases from text-based storage. This is also applied to the user interface 

when loading and changing a knowledge base. However, this can be easily fixed by 

tuning the memory configuration, selecting a relational database as ontology backend 

storage and accessing the knowledge base directly through the API. 
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This performance issue has not impacted on the biomedical discovery tool 

developed since the amount of data used and the data mining technique employed did 

not stress the system. The Protégé community has worked with knowledge bases 

comprising more than 100k frames with acceptable performance. Although this 

reported threshold is far from the current knowledge base tested and deployed in this 

research (approximately 1K frames and instances), the next version of the system, 

described in the future research section, may be deployed using a relational database 

backend or a RDF store based on the Oracle 10g RDF data store which has proved to 

achieve excellent performance and is under constant development by Oracle and 

semantic technology partners.  

7.4.2. Usability Assessment 

There are two main points when considering usability assessment in regards to 

the prototype: ODKD coverage and user interface.  

ODKD coverage is related to the system‘s ability to support all phases of the 

ODKD process model. The coverage is explained in detail in Chapters 5 and 6 as well 

as in the Appendices through extra screenshots of the tools. Therefore it is not covered 

further in this section.  However coverage can also be considered from the point of 

view of extensibility and applicability; in other words the ability to be used in 

different domains, tasks and scenarios.  

Even though the design and implementation of the functionalities were directed 

to the biomedical domain and more specifically targeted to the brain gene case study, 
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from a system point of view, the tools developed or extended in this research are all 

generic implementations which can be assembled or used in different problem 

domains. Even the features specifically designed for biomedical informatics, such as 

the GRN widget, were also made available as generic link analysis tools able to be 

used in different scenarios (such as the educational scenario described in the next 

chapter). 

With respect to the user interface and its usability, this was not formally 

evaluated in light of the fact that, in keeping with the stated requirements of the 

research (Chapter 1 and 5),  the Protege environment was selected as the context for 

implementation.  The research therefore adopted the open source development best 

practices enabled by Protégé‘s core functionalities, and deployed them in a manner 

consistent with Protégé‘s user experience.  The newly developed and adapted 

components all employed standard metaphors/mechanisms e.g. trees, graphs, 

grids/tables and tabs, so the cognitive burden on the user of the tools should not be 

any greater than that experienced in ‗regular‘ use of Protégé. 

Improvements in usefulness were made by identifying the need for extension of 

some core functionalities and plug-ins, as described previously. Enhancements and 

improved user experience were provided through the development of novel 

functionalities and plug-ins. For example, the Instance selection tab covers more than 

one phase of the ODKD and at the same time simplifies the user experience by 

adopting an interface that aggregates several functionalities while still following 

Protege‘s user experience premises.  The introduction of new features required by the 
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Protege community for some time, such as the introduction of link analysis features to 

the graph widget, might be considered as an example of novelty that does not 

compromise usability.  

7.4.3. Comparative Analysis 

The integration of knowledge discovery and ontology has been investigated by 

different fields from several perspectives, such as in the use of ontology to guide 

clustering algorithms in data mining tasks, and in the use of ontology to model social 

entities in social network analysis. 

The knowledge discovery in databases community in particular has investigated 

the use of ontology with three different emphases: Ontology for KDD, KDD for 

ontology and Closed loop integration. There are numerous research efforts that fall in 

the first two categories as reported in the literature and presented in Chapter 4. 

However few research endeavours can be classified as investigating the closed loop 

integration of ontology and knowledge discovery in databases. 

This section therefore uses a framework analysis, which considers several 

characteristics relevant to the closed loop integration of knowledge discovery in 

databases and ontology engineering, to compare some of these different research 

efforts. This comparative analysis is not exhaustive and cannot be claimed to be 

complete.. It is, however, indicative of the state of capability in regard to the 

functionalities required in closed loop integration. This section then should be 
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considered as providing a brief map between some of the approaches followed in the 

literature and the research undertaken in this thesis. 

The analysis is based primarily on research published in the first and second 

International Workshop on Knowledge Discovery and Ontologies (KDO 2004 and 

2005), the International Workshop on Domain Driven Data Mining (DDDM '07) and 

papers referenced as related to ontology driven knowledge discovery. These 

workshops are part of the major conferences in the field such as the ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining and the 

European Conference on Machine Learning and the European Conference on 

Principles and Practice of Knowledge Discovery in Databases.  

The first five approaches (Brisson & Collard, 2006; Kang, Silvescu, Zhang, & 

Honavar, 2004; Legrand & J., 2004; Tadepalli, Sinha, & Ramakrishnan, 2004; Yen-

Ting, Andrew, Liz, & Kathy, 2007) (1-5 in Table 7-1) are referenced in the literature 

as related to the integration of ontologies and KDD. The next two (Garcia, Ferraz, & 

Pinto, 2006; Svatek, Rauch, & Flek, 2005) (6 and 7), are not intended to cover the full 

ontology engineering and KDD processes, but they recognise the need for integration 

in their publications. The last three (Chen, Alahakoon, & Indrawan, 2005; Jinze, Wei, 

& Jiong, 2004; McGarry & Wermter, 2007) (8, 9 and 10), are good examples of the 

specific application of ontology in KDD tasks. 
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Table 7-1 – Comparative Analysis 

 

n/a – not applicable. 
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The comparison above can be interpreted from different perspectives. The 

paragraphs that follow present two such perspectives covering two sets of features: 

Domain Application/Metadata Support and Implementation Framework/Ontology 

Learning Assessment. 

The first comparison of Domain Application/Metadata Support addresses the 

following questions: Does the approach focus on a specific domain? As a 

consequence, does it determine, or constrain, the coverage of the application? Paper 

number 4 (A Hybrid Approach to Word Sense Disambiguation: Neural Clustering 

with Class Labelling) focuses on word disambiguation. Therefore its research is 

concentrated on taxonomy building. The approach taken in paper number 7 (The Role 

of Domain Ontology in the Text Mining Applications: The ADDminer Project) 

focuses on the role of domain knowledge. It then considers the taxonomy aspect of the 

support, as in paper 4, plus all other aspects related to domain ontologies application.  

However, due to limitations on their scope, neither study explores the role of other 

metadata support for KDD. 

Further approaches have also been investigated more recently, for example, 

"Ontology management and evolution for business intelligence" published in the 

International Journal of Information Management (2010) by Mikroyannidis and 

colleagues from Manchester Business School. In this case they consider a series of 

ontologies and layer them to address some of the wider application of ontologies for 

information management. Since their main interest is on data sharing, however, they 
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do not explicitly consider the application of wider meta-knowledge. Therefore 

metadata support for decision-making and closed loop integration is not explored.  

Their work is therefore useful for a particular aspect of the problem space but does not 

deal with the ‗bigger picture‘ issues that this research has worked towards. 

Another example of a particular comparison may be drawn when considering 

Implementation Framework and Ontology Learning Assessment together.  

The research reported in paper number 9 (Integration of Hybrid Bio-ontologies 

Using Bayesian Networks for Knowledge Discovery) presents a very effective task-

oriented approach. The authors have developed a workbench tightly coupled to a 

particular data mining technique but also use domain and application ontologies to 

extract networks from text and linking these to the Gene Ontology.  While the 

approach lacks support for a hybrid and closed loop methodology it could be easily 

integrated with the ODKD. 

These few examples illustrate again that the domain area and research focus can 

and do play a major role in the development of specific solution steps for the 

integration of ontology engineering and KDD.  

The outcomes of this brief analysis are not unexpected as closed loop integration 

of ontology engineering and KDD is still a young and evolving field of research. The 

work described in this thesis was focused on the methodology, meta-knowledge and 
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foundation implementation of such integration. Other approaches, such as that 

followed in the KEOPS implementation, focus on knowledge extraction. Any deep 

comparison between these approaches may not even be appropriate and would lack 

consistency as the number of open problems is still great. However, it seems 

reasonable to say that the ODKD approach makes a novel contribution. Furthermore, 

these efforts may converge through research collaboration and through the use of 

these methods and tools by a wide community. This should bring together some of 

these techniques in novel ways in the future, such as those described in the next 

chapter.  

7.4.4. Related Work 

This section presents some examples of current work using the methodologies 

and tools developed in this research. A list of works referencing this research is also 

briefly presented. 

Several researchers have utilized the work developed in this thesis at different 

levels. For example, the paper "Considering Application Domain Ontologies for Data 

Mining" by Pinto et al (2009) published in Transactions on Information Science and 

Applications, reports how thay have taken the framework and meta knowledge and 

extended it using OWL and SWRL. This research focuses on the use of business rules 

and descriptive logics to support ontology integration in KDD.  It is part of a wider 

approach for database marketing. This approach could even be further extended by 

using some of the techniques developed subsequently in our research.  
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Another related research effort has focused on the use of the toolset to acquire 

and analyse biomedical knowledge. Vishal Jain developed his PhD thesis (Integrative 

approaches to modelling and knowledge discovery of molecular interactions in 

bioinformatics) utilizing the toolset developed in this research to enable the 

acquisition and analysis of molecular interactions.  The Kedri Brain Gene Ontology 

which is derived from this research is also utilized in both teaching and research at 

AUT University.  

Several other related research endeavours that have cited the work reported here 

are listed in Appendix D. 

 

7.5. Conclusion 

This chapter evaluated the work reported in this thesis from a research design 

perspective. The requirements defined in Chapter 1 were compared to the 

achievement of research outcomes. Development of the thesis followed fully the 

research design and covered all requirements specified previously. 

Although outside the core scope of this research, the ontology environment was 

briefly analysed from a performance, usability and comparative analysis perspective. 

Further comments on this aspect of the system are made in the future research section 

of the next Chapter. 
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The next chapter addresses the general contribution of the thesis and more 

specific topics such as technology transfer and future research. 
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Chapter 8  

Contributions / Future Research 

This chapter concludes the thesis by giving a brief summary of the research, 

stating the key features of the Ontology Driven Knowledge Discovery framework and 

emphasising the research contributions. It then considers the limitations of the 

research imposed by scope, the need for generality and technology. The final section 

presents ongoing and future research based on the outcomes of this thesis that has 

been conducted in the Knowledge Engineering and Discovery Research Institute and 

through technology transfer to industry.  
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8.1. Introduction 

This thesis was  motivated by the Conceptual Biology and Theoretical Biology 

challenges presented in Nature by Blagoskolonny and Perdee (2002), and Bray (2001) 

respectively. The authors argue in these publications that the explosion of biomedical 

data and the growing number of disparate data sources present opportunities to build a 

shared knowledge repository capable of transforming the current data collection era 

into one of hypothesis–driven and experimental research by using models and tools to 

design and test small genetic circuits in theory in order to understand living cell 

interactions. 

This research, based on these challenges, and on the ongoing capabilities in all 

aspects of computer science, aimed to advance core knowledge in the integration of 

the ontology engineering and knowledge discovery in databases fields by designing, 

implementing and evaluating an ontology driven knowledge discovery framework 

(ODKD) able to support the above requirements. 

This novel ontology driven knowledge discovery framework encompasses a 

methodology, a meta-knowledge model and software engineering tools based on the 

best practices in industry and academia in both ontology engineering and KDD fields.  

In the next sections key features and contributions of this ontology driven 

framework are presented. Limitations to the work are then acknowledged. A 

comparative analysis of this work and that of others is then provided, in order to 
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highlight the positioning of this research in the body of knowledge. This is followed 

by a description of future research and technology transfer. 

8.1.1. Key features and Contributions 

Brachman & Anand  (1996) define knowledge discovery in databases (KDD) as 

a ―knowledge intensive iterative task consisting complex interactions, protracted over 

time, between human and a large database, possibly supported by a set of 

heterogeneous suite of tools”. Being consistent with this concept of KDD, the 

ontology driven knowledge discovery framework is a conceptual model, a 

methodology and process and a ‗suite of tools‘ that incorporate both iterative and 

interactive characteristics of KDD by means of an ontology driven KDD process. 

The Evolving Ontology meta-knowledge model enables the representation of 

evolving knowledge and the tracking of changes in a shared repository. It enables the 

construction and integration of different sources of data and is capable of 

incorporating knowledge acquired by humans and by machine learning algorithms. It 

also creates a new semantic layer for data by adding a powerful metadata server to 

associated ―data mining‖ exercises. 

The methodology and process integrate both KDD and ontology engineering 

processes into a novel ontology driven knowledge discovery process. This new 

process goes towards the new generation of KDD tools proposed by Fayyad, 

Piatetsky-Shapiro, and Uthurusamy (2003) which combines the current vertical data 



285 

 

mining solutions for different problem domains by reusing their findings in different 

knowledge discovery tasks. 

The ODKD suite of tools implements a framework able to integrate the evolving 

ontology meta-knowledge and methodology to provide a more holistic view of the 

KDD process. It enables the engineer/user to select and combine several sources of 

information and apply the most suitable techniques for domain-specific problems in 

order to generate new hypotheses and build links across domains 

The extensible system architecture enables the adoption of new knowledge, 

industry standards and tools and provides a solution architecture framework to deploy 

the ontology driven knowledge discovery process in different domains and software 

platforms, such as those described in the future research and technology transfer 

section later in this chapter. 

The ontology driven knowledge discovery is novel in that it integrates both 

ontology engineering and KDD processes into one framework and a supporting 

methodology. It creates a new semantic structure, channel and process able to 

combine several sources of information and data mining tools within a shared 

knowledge repository. As such, it addresses the challenge of using computer models 

in concert with human knowledge to test hypotheses and to validate and integrate 

knowledge that may be created by different sources with diverse intentions but that 

when linked can promote the discovery of new knowledge. 
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The research concludes that the Ontology Driven Knowledge Discovery 

Framework is a flexible and versatile host for the implementation of a new generation 

of ―data mining‖ workbench. The evaluation of the prototype and current use of 

extended versions of the ODKD framework developed in this thesis indicate that key 

novel and valuable functionalities have been produced. 

The use of case studies in different stages of the research has helped to solidify 

the research and to engage knowledge experts throughout the process. This 

engagement was especially important since this thesis investigated different research 

fields and dealt with specific issues related to biology, philosophy, information 

systems, KDD and software engineering. 

The ODKD framework thus provides a means of describing and representing 

evolving knowledge, managing shared knowledge, integrating data mining tools and 

algorithms, and enabling semantically rich knowledge discovery. It can be used in the 

design and implementation of ontology driven decision support systems, based on 

sound conceptual foundations in knowledge representation and knowledge discovery. 

The outcomes of this research are of potential value and importance and to a variety 

of different users and systems. The following sections summarise some important 

opportunities for use: 
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Ontology Engineers 

The ODKD framework has been implemented to allow the ontology builder to: 

 Create ontologies for a variety of modeling paradigms and for different 

domains; 

 Modify ontologies while keeping track of change; 

 Use existing ontologies and instances in the creation of more complex 

ontologies; 

 Select instances by visualization, query and navigation to export in different 

formats and to several data mining tools.  

 Acquire knowledge manually, semi-automatically and automatically from 

multiple sources and data mining tools.  

Knowledge Experts 

The framework provides a set of knowledge acquisition tools designed to enable 

a knowledge expert to enter and validate knowledge acquired by data mining tools 

and other knowledge experts. The knowledge expert can also explore the shared 

knowledge base by different means to link knowledge which was not known before. 

The meta-knowledge model allows the creation of knowledge maps which highlight 
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similarities and differences in understanding. Future work may be used for case based 

reasoning and inference engine triggering.  

Decision Makers 

Decision makers can use the framework to make informed decisions based on 

the semantic repository and systems built on top of the knowledge base. The 

framework has been implemented to provide decisions makers with an environment 

that: 

 Has strong knowledge management capability, dealing with provenance of 

source, creation, and so on; 

 Can accommodate different modelling techniques; 

 Implements industry standard methods and processes to support knowledge 

discovery tasks; 

 Acts as a semantic integration organizational facility. 

Developers 

The framework provides an open source architecture that allows developers to: 
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 Extend the functionalities of the framework, such as adding a new export 

format or import different regulatory network formats; 

 Reuse code; 

 Maintain consistency with the original Protégé program interface; 

 Recompile the code for future versions of the ontology environment; 

 Integrate new data mining algorithms. 

General Users 

The framework allows general users to navigate complex knowledge structures 

by different means. Users can select different visualization techniques developed in 

this research or available from the Protégé community to suit their purposes. 

The framework has been implemented as a general Protégé tab which limits the 

need for any further learning by Protégé users. It also uses the well established 

documentation provided by Protégé to engage new users and users outside the 

ontology research/community.  

8.2. Research Limitations 

This research concentrated on the development of a hybrid life-cycle and a suite 

of tools to support this cycle. It was focused on the development of a strategic and 
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integrative view to enable the effective use of semantic technologies in the context of 

KDD.  

Many specific topics considered in the Framework have been investigated by 

other researchers and are reported in the literature. All of those related specific topics 

were clearly referenced in the text, such as the several ontology merging techniques 

available in the literature. Others were further investigated as part of other studies 

aligned to this research, as referenced by the literature review in each chapter.  

The biomedical application is a single (albeit comprehensive) case study. While 

it is believed that the framework is sufficiently generic to be applicable to other 

problems in other domains, this will need to be verified in independent research.  

(That said, it has since been used in other aligned research as described in the next 

section.) 

Finally, the implementation framework presented in this thesis is fully usable 

and has been used by different researchers; however it is not intended to be a final 

system; a more complete version may be built in order to accommodate specific 

problem and domain requirements. Limitations in terms of quantity of techniques 

available, size of knowledge bases, and performance measures, out of the scope of the 

current research, would then need to be given greater consideration. 



291 

 

Even though Protégé is widely used in academia and in some research 

applications it cannot be considered as an industry-ready tool. The Protégé building 

tool has the capability to support the  creation of infrastructural applications such as 

the ODKD. However, Protégé‘s complex user interfaces, especially when considering 

the potential variety and number of end-users, may limit its ability to be used widely 

as an application platform. 

These limitations did not impact on the development and evaluation of ODKD 

as reported here. However, industry tools such as TopBraid composer (an ―extended‖ 

version of Protégé) could be used by others to overcome some of these limitations.  

8.3. Future Research 

The biomedical knowledge discovery tool developed as the case study of this 

thesis is the basis of ongoing research in the Knowledge Engineering and Discovery 

Research Institute. This demonstrates the importance, validity and viability of the 

ODKD framework and tool itself. Details of this ongoing work are as follows. 

The Global Ontology Knowledge Bases for Biomedical and Bioinformatics 

Decision Support, for example, aims to extend the brain gene ontology case study 

developed in this thesis by adding different dimensions and diseases to the biomedical 

ontology and to utilise its complexity and richness to provide efficient profiling, 

prognosis, diagnosis and decision support for every individual person who needs it. 

This task will require both adaptive, evolving knowledge repository systems and 
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methods for local and personalised modelling through tool/method integration and 

dynamic interaction.  

The ontology will therefore need to represent brain knowledge in its multiple 

aspects of functioning and disease, at different levels.  The processes that occur at 

each of these levels are very complex and difficult to understand, but much more 

difficult to understand is the interaction between the different levels, e.g. gene-brain 

function-disease. It may be that understanding the interaction through its modeling 

would be a key to understanding each level of processing and perhaps the brain as a 

whole (Benuskova & Kasabov, 2007). 

In order to reason appropriately with these data, local and personalised models 

need to be developed and applied to the prediction of a person‘s risk or the likely 

outcome of a disease. The integration of these models will be based on the ontology 

driven knowledge discovery framework. The Machine inference module, that includes 

local and personalised techniques, will be integrated with NeuCom and other data 

mining workbenches as specified and developed in the implementation framework. 

Further data mining techniques will be integrated in the current system extending its 

capability. 

The availability of new methods such as the integrative connectionist learning 

systems (ICOS) (Kasabov, 2008) that integrate in their structure and learning 

algorithms principles from different hierarchical levels of information processing in 



293 

 

the brain including neuronal, genetic and quantum will open new opportunities to the 

integration of those methods in the ontology driven framework as well as bring new 

requirements for the representation of such complex knowledge. 

A further major challenge currently being investigated is how to use newly 

discovered knowledge to further enhance existing ontologies. The current quarantine 

structure repository developed as part of the evolving ontology meta-knowledge 

model during the course of the research for this thesis comprises all metadata about 

newly acquired knowledge and current ontological knowledge. This knowledge 

supports inference and rank aggregation and will also be utilized to reason with data 

and will trigger relevant systems and/or tools. 

Even though the current state of the quarantine structure suits the proposal of 

this research, it is evident that a rules engine could add great value to the framework 

by introducing a capability to infer new knowledge and also implement domain-

specific heuristics. 

Another application of a rules engine would be to manage the conflicts between 

knowledge discovered by the machine learner and facts stored in an ontology. 

Therefore the development of a new scoring engine to compare and assess knowledge 

generated by different algorithms and experts presents a great opportunity for research 

in this area which may also include the application of multi-agent systems. 
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The biomedical knowledge discovery tool will then be extended and different 

knowledge representation formalisms will be tested along with specific backend 

storage facilities such as RDF and Oracle 10g Spatial RDF store. 

This research envisages that new requirements will create a strong foundation 

for the extension of the current tool in a fully integrated ontology driven decision 

support tool. 

8.4. Knowledge Transfer 

The technology transfer criteria established in chapter 5 and specified in the 

research design stated that the outcomes should: 

  Be published as an open source project – the code is open source and will  

be fully published after the thesis publication; 

 Emphasize new ODKD functionalities – the new functionalities are the basis 

for new projects, and of a new tool design described later in this section;  

 Be an ontology engineering platform for data mining research and projects 

– the previous and next section, and several research publications, 

demonstrate its use in different research projects; 
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 Leverage specific ontology engineering research – several parts of the 

framework have been further developed as ontology engineering topics such 

as the inclusion of rule based engines to evaluate knowledge acquisition and 

integration of statistical algorithms with rule based systems; 

 Be able to be published in modules in order to be applied to different 

domains – the next section describes a new design for ontology driven 

Intelligence systems. 

8.4.1. Ontology Driven Intelligence Systems 

Although the technology and knowledge acquired in this research have been 

actively used in research projects, technology transfer to industry was also established 

as one of the desired outcomes of this work. It seems fitting to close this thesis with a 

description of an ongoing project that is intended to deliver such an outcome. This 

section therefore briefly describes a general architecture which has been recently 

designed based on the ODKD framework. The design is under current development 

for an Intelligence knowledge base system (The system and industry will be omitted 

in order to respect the confidential nature of the project).  

Risk and Intelligence Framework 

This framework has been conceived to enable the creation of an ontology driven 

knowledge discovery system that will integrate different sources of data in a service 

oriented architecture to identify risk, monitor fraudulent activities and acquire 
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intelligence in order to maintain compliance with the legal requirements of this 

industry. 

The framework integrates several technologies and vendors (such as Oracle and 

Microsoft) and specialized identity resolution systems in an architecture able to 

collect, analyse and publish intelligence based on data and specialised knowledge 

from users.  

Facilities to manage access control and provenance of change – crucial given the 

domain at hand - are founded on an ontology prototype based on the evolving 

ontology meta-knowledge model. This meta-knowledge will also be migrated to a 

RDF representation and extended with specific industry standards. 

Solution Architecture 

 

Figure 8-1– risk and intelligence solution architecture. 
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The solution (as shown in Figure 8-1) integrates different sources of information 

such as customer data acquired from call centres, internal data warehouses, web and 

internal systems. This data is exposed to the integration layer as services and 

annotated in the meta-data server based on the evolving ontology meta-knowledge 

model. Individual information based on the EO-Identification_Scheme (section 3.4.1) 

is used by a data matching system which scores the identity of individuals considering 

different identification attributes. 

The analytical data store, based on an ontology, is then exposed to the decision 

layer through an API for further data analysis and intelligence analysis. A semantic 

relational query mechanism enables the user to query and select data from the 

ontology. 

Rules are built to monitor the Intelligence knowledge base and alert when any 

suspicious activity is detected. Mining models are built to classify individuals and 

predict risks. The rules are integrated with the inference engine for processing, 

monitoring and model updating. 

The system interfaces with the production systems to alert and expose controlled 

information to specific stakeholders/systems and the Intelligence community. 

It should be clearly evident that this design is based on the ontology driven 

knowledge discovery process described in this thesis. It has undergone prototyping for 

further requirement gathering. The backend is Oracle 10g Spatial with both database 



298 

 

and RDF store. The prototype front-end is Protégé frames. Protégé‘s Oracle plug-in 

has been tested to interface and build the RDF knowledge base. 

The design has been approved and is under the evaluation of an IT strategic 

architecture special group which is assessing the impact and integration of the 

solution with the current IT infrastructure.  

This research has therefore contributed not only to the development of the 

emerging field of research integrating ontologies and knowledge discovery processes 

and tools, but has also transferred technology to industry by providing a foundation 

for the development of a new semantic driven solution. Future work is expected to 

further enrich both the ODKD Framework and its application in a growing range of 

domains. 
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Appendix  A  

1. Ontology On-line Analytical Pre-processing (OOLAP)  

On-line analysis has been widely used in data warehousing in order to explore 

huge amounts of multidimensional data. The use of visualization techniques in 

conjunction with simple tabular data enable users, mainly decision makers, to work 

with business intelligence tools that are familiar to them in the form of spreadsheets 

and graphs. The success of these business intelligence tools is constrained, however, 

by the limited effectiveness of the data warehouse model, driven, as it is, by the static 

characteristics of its underlying data model. Any query, investigation or even insight 

desired that is out of the range of the multi-dimensional model is difficult and 

expensive to obtain. The ontology driven knowledge discovery approach avoids this 

restriction by adding a flexible semantic layer (evolving ontologies) to the data 

warehouse schema. 

Ontology On-line Analytical Pre-processing (OOLAP) enables detailed, human-

driven (ad-hoc) analysis of the domain. It converts any highly dimensional ontology 

space into a simple tabular representation that can be translated via semantic mapping 

into a multi-dimensional format to be used by current business intelligence tools as 

well as to be further explored by data mining workbenches. Additionally, it interacts 

with available Online Analytical Processing (OLAP) and visualization tools to 

facilitate ontology exploration and analysis in order to refine the ontology model and 
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improve data and domain understanding. In particular, OOLAP encompasses the 

ontology visualization, population and instance selection activities of the ontology 

driven knowledge discovery process.  

The OOLAP process is currently implemented using a variety of tools for 

ontology engineering, data warehousing, OLAP, and data mining, namely: Protégé, 

MS-Analysis Service, Excel spreadsheets. These tools were selected so as to avoid 

any extra learning requirement by both experts and users in the experiments executed 

in this research. However the principles behind of this alternative ‗pipeline‘ are not 

specific to any platform or vendor and might be implemented using any online 

analytical tool or server. 

1.1. OOLAP alternative pipeline 

OOLAP encompasses three tasks of the ontology driven knowledge discovery 

process: Ontology Visualization, Ontology Population and Instance Selection. It can 

be considered an alternative process that is akin to the CRISP-DM process. OOLAP 

adds an ontology analysis capability as well as an ontology integration tool able to 

integrate data warehouse models.  

As described previously in the Ontology Visualization task, this pipeline utilizes 

different visualization techniques developed in the Protégé environment, such as 

Jambalaya (Falconer, Noy, & Storey, 2006) and Ontoviz (Ontoviz, 2006), in order to 

gain an understanding of the domain and to select the best concepts for analysis. The 
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different ontology visualizations support user investigation and enable exploration of 

the knowledge base from different perspectives. Furthermore, as described earlier, the 

environment incorporates a query language that can speed up any data search or 

concept understanding effort.  

Additionally, through the instance selection tool, described in chapter 5, it 

explores Protégé‘s knowledge acquisition feature to enable the user to update the 

knowledge base ‗on the fly‘ where necessary. Visualization can facilitate the 

identification of important missing concepts or relationships that should be further 

explored in the data understanding phase. 

 

 Figure A-1– A newspaper sample Ontology/cube mapping. 
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The next stage is concerned with the translation of the ontology format into a 

simple tabular format used in the OLAP cube and thus able to be processed by the 

OLAP tool (see Figure A-1). Once they have a level of domain understanding, the 

user can navigate the ontology and select the scope of his/her analysis. The selected 

data is then mapped and translated to a local cube format. 

The current development translates the knowledge base into a text specific 

format compatible with Microsoft‘s local cube specification. However the translation 

can be done for any cube format depending on the platform and OLAP tool(s) 

selected. One of the main characteristics of this local cube approach is its total 

independence of the possibly complex database environments, such as SQL Server, 

MYSQL or Oracle.  

After exploring the multi-dimensional, application-independent and 

semantically powerful ontology environment and translating it to the cube format, the 

next step exploits all the advantages of well-developed OLAP techniques to analyse 

the target problem. 

This step introduces human-driven analysis into the data preparation step of the 

CRISP-DM and ODKD processes. The data selected is made available to the decision 

maker/analyst through the local cube that enables him/her to use OLAP tools for 

his/her analysis. MS-Excel and MS- Data Analyser were chiefly used in the 

experiments. 
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1.2. OLAP biomedical informatics application 

The OOLAP approach was used in the early development of a brain disease 

ontology, which represents knowledge of genes and proteins that are linked to specific 

brain-related disorders such as epilepsy and schizophrenia. The analysis was focused 

on the crucial neuronal parameters that are in some way thought to control the 

phenomenon of epileptic seizures and/or through their direct or indirect interactions 

with other genes/proteins, influencing the gene regulatory behaviour in brain diseases.  

The OOLAP methodology helped to identify missing concepts, new 

relationships and select the best candidates for our modelling tasks. This OOLAP 

biomedical informatics case study was developed as part of a wider ontological 

research effort in neurogenetic modelling that integrates dynamic gene networks 

within neurons (Kasabov, Benuskova, & Wysoski, 2004) described in the biomedical 

application chapter (Chapter 6). 
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Appendix  B  

1. Introduction 

This appendix shows a series of screenshots taken from the biomedical case 

study. This set doesn‘t intend to cover all features and functionalities developed in 

this research but may help the reader to visualise the content of the application. 

The Table B-1 - Ontology Driven Knowledge Discovery phases and tasks and 

tools.illustrated the relationship between the ODKD process and main plug-ins 

utilized in this biomedical case study. Some specific plug-ins were developed to 

support the case study and are described in the table below. 
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Table B-1 - Ontology Driven Knowledge Discovery phases and tasks and tools. 

 

2. Exploring brain gene knowledge with the BGO system 

All ontology instances and concepts are traceable through a query language 

plug-in that enables the searching for answers to questions such as; ‗which genes are 

related to the occurrence of epilepsy?‘, by, for example, simply typing the key word 

epilepsy into the query window and selecting the class gene (see Figure B-1). As a 

result, the system returns a list of 80 genes potentially related to epilepsy. By selecting 

any of them we can obtain additional, detailed information about that particular gene, 

for example, its GO function, chromosomal location, synonyms, brain expression 

profile, and so on.  
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Figure B-1 – BGO System: Query search system looking for epilepsy and the 

GABRA5 gene as an example. 

The query can be refined by filtering the search and/or creating different 

conditionals with relevant information as shown in Figure B-2. The query can also be 

stored in the system for future use. 
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Figure B-2 - BGO System: Query result for human genes related to epilepsy highly 

expressed in the cerebellum with the GABRA6 gene as an example. 

Additional to the query language, the biomedical tool has a plug-in which 

enables the selection of gene(s) of interest as well as a visualization of their 

relationships with other concepts/instances in the BGO. The visualisation plug-in 

extends the Protégé TGVizTab that, besides normal visualization and search 

capabilities, also provides an instance selection feature (shown in Figure B-3).  
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Figure B-3 - BGO System: Snapshot of BGO detail showing relationships between 

genes, proteins, molecular and neuronal functions for the GABRA5 gene. Each node 

can be expanded further so that one can identify relationships between molecular 

weight, chromosomal location, gene product, function in neurons, mutations and 

related diseases. 
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Figure B-4 – BGO System: A set of data prepared for export using the Instance 

Selection Tab. 

The Instance Selection plug-in developed for the ODKD Framework is used to 

navigate in the ontology as well as to prepare and extract biomedical data (illustrated 

in Figure B-4). It enables users to select and export specific data of interest such as 

chromosomal location or molecular sequence length, or expression patterns, which 

can then be analysed in a machine learning environment, such as WEKA (see export 

example in Figure B-5) or NeuCom to train prediction or classification models or to 

visualize relationship information. Such exported data on gene/protein identification 

numbers can also be analysed in a different manner, by standard bioinformatics 
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software like BLAST and FASTA for revealing homology patterns for those 

genes/proteins of interest, as described in Benuskova (2006). 

 

Figure B-5 – The selected set of data exported as arff format to be used in WEKA. 

2.1. Gene Regulatory Network Visualization – GRN 
Graph Widget 

The GRN graph is a network visualization tool designed to represent gene 

regulatory networks and link the network to instances and relationships between the 

instances from the ontological model. It is also used in the biomedical tool as an 

alternative knowledge acquisition tool to forms and other editing Protégé plug-ins as 

it enables direct editing from its interface.  
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Figure B-6 – BGO System: A screenshot of a GRN graphical representation of the 

gene regulatory network presented in Figure 6-14. 

The GRN graph is linked to the ontology by the Gene Regulatory Network 

concept, which is a sub-class of Bioinformatics Maps within the Brain Gene 

Ontology. All concepts and relationships allowed are specified in the ontology in 

accordance with the knowledge needed to represent gene regulatory networks. This 

ontological representation makes possible the visualization and navigation of all 

concepts related to the network. Figure B-7 and Figure B-8, for example, show the 

relationships of the protein complex GABRB (a) which is composed of other proteins 
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(b) such as the ‗Gamma-aminobutyric-acid receptor beta-2 subunit‘ (c) which is 

produced by the gene GRABRB2 (d). 

 

Figure B-7 – BGO System: A screenshot of a GRN linked to other knowledge 

available in the Brain Gene Ontology. 
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Figure B-8 – A gene regulatory network exported from the GRN Graph widget 

showing different relationship colours, style and text based on results acquired from a 

CNGM simulation.  

2.2. Gene Regulatory Network Tab – GRN Tab 

The GRN tab is responsible for the creation and editing of gene regulatory 

networks. It includes a set of features that are primarily designed to import the results 

of a computational neuro-genetic simulation. The tab is built as a novel Protégé plug-

in and uses its application program interface to interact with the Brain-Gene Ontology 

and the GRN Graph widget to display the regulatory networks (as shown in Figure 
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B-8). The knowledge acquisition feature allows for the creation and editing of new or 

existent gene regulatory networks (Figure B-9). The figure below also shows some 

metadata which is used to annotate the ontology such as the slot Author (top middle) 

and EO-Source (left bottom) which indicates that these GRN was originally acquired 

from CNGM. 

 

Figure B-9 – BGO System: A screenshot of the Gene Regulatory Network tab with 

data from the CNGM simulation presented in the section 6.6.1.  

A CNGM simulation is imported in a sequence of steps as described in the 

Chapter 6 in the section 6.6.2. The following figure illustrates some of these steps. 



343 

 

 

Figure B-10 – BGO System: The Gene Regulatory Network import process.  

The GRN tab also enables the editing of a regulatory network by adding new 

genes, proteins, and protein complexes, or including information about the network 

such as annotations and uncertainty properties of a relationship. The Figure B-11 

illustrates some of these capabilities. 
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Figure B-11 – BGO System: A sample of a GRN editing process: (a)the CLCN 

and GABRA1 genes are created (b) a relationship is created between these genes 

(c)an inhibitory behaviour is selected (d) the new inhibitory relationship is opened (e) 

an annotation is added (f) the source of the annotation is selected (g) a PubMed 

annotation is created. 
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Appendix  C  

1. NeuCom - A Neuro-computing Decision Support 
Environment 

NeuCom is self-programmable, learning and reasoning computer environment 

based on connectionist (Neurocomputing) modules. NeuCom learns from data, thus 

evolving new connectionist modules. The modules can adapt to new incoming data in 

an on-line incremental, life-long learning mode, and can extract meaningful rules that 

would help people discover new knowledge in their respective fields. NeuCom is 

based on the theory of Evolving Connectionist Systems (ECOS) (Kasabov, 2002). 

NeuCom can be used to solve complex problems. Such problems are clustering, 

classification, prediction, adaptive control, data mining and pattern discovery from 

databases in a multidimensional, dynamic and possibly changing data environment. 

Applications span in all areas of Science, Engineering, Medicine, Bio-informatics, 

Business, Arts and Design, Education. 

There are several algorithms available in NeuCom. Evolving Classification 

Algorithm is one of the algorithms based on the theory of Evolving Connectionist 

Systems. The following table exemplifies the generic ECF algorithm. 
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Evolving Classification Algorithm ( ECF): 

 

1. Enter the current input vector from the data set (stream) and calculate 

the distances between this vector and all rule nodes already created using 

Euclidean distance (by default). If there is no node created, create the first one 

that has the coordinates of the first input vector attached as input connection 

weights.    

2. If all calculated distances between the new input vector and the existing 

rule nodes are greater than a max-radius parameter Rmax, a new rule node is 

created. The position of the new rule node is the same as the current vector in the 

input data space and the radius of its receptive field is set to the min-radius 

parameter Rmin; the algorithm goes to step 1; otherwise it goes to the next step. 

3. If there is a rule node with a distance to the current input vector less then 

or equal to its radius and its class is the same as the class of the new vector, 

nothing will be changed; go to step 1; otherwise:  

4. If there is a rule node with a distance to the input vector less then or 

equal to its radius and its class is different from those of the input vector, its 

influence field should be reduced. The radius of the new field is set to the larger 

value from the two numbers: distance minus the min-radius; min-radius.  New 

node is created as in 2 to represent the new data vector. 

5. If there is a rule node with a distance to the input vector less than or 

equal to the max-radius, and its class is the same as of the input vector’s, enlarge 

the influence field by taking the distance as a new radius if only such enlarged 

field does not cover any other rule nodes which belong to a different class; 

otherwise, create a new rule node in the same way as in step 2, and go to step 1. 

 

Recall procedure (classification of a new input vector) in a trained ECF : 

1. Enter the new vector in the ECF trained system; If the new input vector 

lies within the field of one or more rule nodes associated with one class, the 

vector is classified in this class;  

2. If the input vector lies within the fields of two or more rule nodes 

associated with different classes, the vector will belong to the class corresponding 

to the closest rule node. 

Example: 2-class ECF model   
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3. If the input vector does not lie within any field, then take m highest 

activated by the new vector rule nodes, and calculate the average distances from 

the vector to the nodes with the same class; the vector will belong to the class 

corresponding to the smallest average distance. 

NeuCom can be used either as a decisions support system (DSS), where users 

specify their task and define data to be used, in order to obtain a solution, or - as a 

DSS development environment for building sophisticated problem oriented intelligent 

DSS. The end users in the former case are people who have never programmed 

computers, but have databases available and need a decision to be made based on 

existing data and/or human knowledge. In the latter case users are professional system 

developers who can develop DSS for various applications in collaboration with 

experts in the field. 
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These studies serve to reiterate that there are a number of research 

opportunities in this work that can be further explored. Those studies listed above all 

utilize parts of the work developed in this thesis and extend or build on it in different 

ways. Further and more detailed analysis can be undertaken to evaluate these research 

efforts; however, we believe that this thesis represents a complete iteration and 

achieved the originally proposed aims of the research. 
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