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Abstract. The high volume of communication via micro-blogging type mes-
sages has created an increased demand for text processing tools customised the
unstructured text genre. The available text processing tools developed on struc-
tured texts has been shown to deteriorate significantly when used on unstructured,
micro-blogging type texts. In this paper, we present the results of testing a HMM
based POS (Part-Of-Speech) tagging model customized for unstructured texts.
We also evaluated the tagger against published CRF based state-of-the-art POS
tagging models customized for Tweet messages using three publicly available
Tweet corpora. Finally, we did cross-validation tests with both the taggers by
training them on one Tweet corpus and testing them on another one.
The results show that the CRF-based POS tagger from GATE performed approxi-
mately 8% better compared to the HMM (Hidden Markov Model) model at token
level, however at the sentence level the performances were approximately the
same. The cross-validation experiments showed that both tagger’s results deteri-
orated by approximately 25% at the token level and a massive 80% at the sentence
level. A detailed analysis of this deterioration is presented and the HMM trained
model including the data has also been made available for research purposes.
Since HMM training is orders of magnitude faster compared to CRF training, we
conclude that the HMM model, despite trailing by about 8% for token accuracy,
is still a viable alternative for real time applications which demand rapid as well
as progressive learning.

1 Introduction

In the last five years, there has been a significant shift in the way we communicate on
the internet. Instead of structured texts, there has been a shift towards loosely struc-
tured, short interactive messages. Although, this initially started with text messaging on
mobile phones, which had a limitation of 140 characters, it has since also proliferated
into online communication on popular sites such as Facebook, Twitter, Blogs, Flickr
and YouTube. With an increase in communication via these micro-blogging sites, there
is an increasing demand for information extraction from such semi-structured texts for
business intelligence, security, planning and other purposes. However, extracting infor-
mation from such blogs is one of the most challenging tasks in NLP (Natural Language
Processing) because of their unusual structure which may also involve switching be-
tween one-to-one and multi-party conversations including broadcast messages. NLP
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methods that work well for longer texts (e.g. named entity recognition, topic identi-
fication) have been found to work poorly on blogs and tweets. This has created an
urgent need to either adapt existing methods for use with microblog content or find new
methods that work well in the specialised domain of microblog texts. In response to this
need, there has been a flurry of research in recent times from the linguistic point of view
in trying to understand the structure of micro-blogging texts, (eg., [14,4,7]), as well as
computational viewpoint in trying to extract information from such texts [10,18,3,21].

Information extraction (IE) is the process of identifying some predefined set of con-
cepts from free text. Some of the common tasks in information extraction includes
identification of named entities, relations such as temporal and causal, events and iden-
tification of other types of information dictated by the application on hand. The process
of information extraction can be tackled using a host of approaches. While a lot of works
has been done on IE for formal domains such as bio-medical data, newspaper articles,
and research articles (eg., [16,2,6,17]), there is limited work on informal domains such
as micro-blogs. Some IE approaches can work without any degree of pre-processing,
however others require some degree or preprocessing. For example, Cooper [4] reports
an approach which does not use any form of pre-processing. This approach uses pattern
matching templates resembling the underlying structures of the text data, which can
be used to extract various pieces of information directly from Short Message Service
(SMS) texts. However, most other approaches rely on some degree of pre-processing
of the text before attempting an IE task. Pre-processing might involve full parsing, or
more commonly, coarse level tasks such as tokenization and part-of-speech (POS) tag-
ging. For example, Nebhi [15] reports a rule based system working from ontology 1 to
extract information such as classes, properties and instances. This system relies on both
tokenization and POS tagging (uses Stanford POS tagger) to identify entities from the
ontology. It then applies rules for creating the required semantic annotations for classes
and their associated properties.

The other commonly used IE implementations such as Lingpipe2 and AnnieLing-
pipe3 depend on POS tagging in order to perform the downstream tasks, hence this is
a crucial step for accuracy in information extraction. Initial attempts at POS tagging
were done using deterministic, rule-based techniques and some attempts such as [11]
achieved accuracies as high as 77%. However the inherent difficulties with determin-
istic techniques such as rule base maintenance and limited on transportability. This
resulted in a shift towards probabilistic or stochastic techniques, hence most of the re-
cent works are primarily based on probabilistic techniques with some incorporation of
rules. A necessary component of stochastic techniques is supervised learning, which re-
quires training data. Training data for POS tagging requires existing POS tagged data.
This data has to be fully or partially tagged by a human, which is expensive and time
consuming.

Although there are now several sources of accurate POS annotated corpora available
for the structured text genre (eg., Penn Tree Bank, Brown Corpus, and MedPost), there
is still a dearth of tagged corpora for unstructured texts such as micro-blogs and tweets.

1 http://wiki.dbpedia.org/Ontology
2 http://alias-i.com/lingpipe.
3 http://gate.ac.uk/ie/annie.html
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Our search for publicly available POS tagged dataset for micro-blogging type texts
yielded the following three sources.

– The T-POS dataset [19] consists of 12K tokens from Twitter messages. The corpus
uses a set of 38 tags from Penn Treebank (PTB) with additional 4 tags specific to
Twitter messages.

– The DCU dataset [9] consists of 14K tokens from Twitter messages. This dataset
also uses PTB tags, however the additional Twitter specific tags are slightly differ-
ent to the T-POS dataset.

– The ARK dataset [10] consists of 39K tokens from Twitter messages. The corpus
uses a conflated set of 20 tags from PTB with additional of 5 Twitter specific tags.

Each of the datasets described above has been used in POS tagging experiments and
report accuracies of up to 92% using various forms of discriminative models. Gimpel et
al. [10] report an accuracy of 92.8% with the ARK dataset using a Conditional Random
Field (CRF) estimator. Derczynski et al. [13] again use a CRF estimator on both the
T-POS and the DCU datasets and report accuracies as high as 88.7%. Although it is
generally accepted that discriminative models (eg. CRF) perform better than generative
models (eg., HMM) [22], the generative models have some key advantages compared
to discriminative models due to their design.

Firstly, the generative models are able to better handle datasets which are only par-
tially labelled or completely unlabelled. Generative models require the computation of
joint probability distribution of labels and words. The computation for the words does
not require labelled data, hence, the probability distribution of words can take advan-
tage of large amounts of unlabelled data for initial training as well as “live” data for
real time systems. Secondly, in some cases, as demonstrated by Ng and Jordan [1],
generative models perform better when the input model has a smoothing effect on the
features. Their results show that the advantage of generative models is even more pro-
nounced when the dataset is small as is currently the case for labelled micro-blogging
data. The third advantage of generative models is that it’s training time is insignificant
compared to discriminative models, hence has an advantage in real time applications
where progressive learning is required.

On the other had discriminative models have better generalization performance
when training data is abundant providing the ability to account for more global fea-
tures compared to a generative model. This gives discriminative models the ability to
model features from any arbitrary part of a sentence, not necessarily in a linear fashion.
This freedom enables it to model a much larger set of features, however it also exposes
the model to the risk of overfitting the training data which leads to poor generaliza-
tion on unseen data. For a detailed discussion and comparison of various probabilistic
models see Kalinger [20].

This paper investigates the generalization ability of two discriminative, pre-trained
Twitter tagging systems and evaluates them against a generative model using three Twit-
ter datasets, T-POS, DCU and ARK. We used the Hidden Markov Model (HMM) as im-
plemented in LingPipe4 to train on a subset of the tweet data in each of the datasets and
compare the results obtained against two discriminative models, a Maximum Entropy

4 http://alias-i.com/lingpipe.
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model implemented the Stanford POS Tagger5 and a highly customized CRF model
implemented as an extension in GATE6. We also did cross-dataset validation and ob-
served that the performance deteriorates by approximately 20% in all the models tested.
In this paper we dfsdf an evaluation of the comparative performance of the two classes
of taggers as well as an analysis of the deterioration of the results of our cross-validation
experiment.

In summary this paper makes the following contributions:

– Makes publicly available the source code and jar file for further research or to
use the HMM tagger for tagging Tweet messages. This can be downloaded from
http://staff.elena.aut.ac.nz/Parma-Nand/TaggerDownload.html.

– Presents the results of direct comparison between three types of POS taggers trained
and tested on Tweet messages.

– Presents an evaluation of cross-dataset generalizability of the two classes of tagging
models.

– Presents a detailed analysis of the error contribution for each class of tagging
model.

2 Noise Sources in Tweet Data

There is much linguistic noise in micro-blogging texts as a result of the ways in which
micro-blogs are written. The noise arise from different language usage characteristics,
hence different strategies are required to account for them. The following are a list of
the characteristics with a discussion of the challenges resulting due to the linguistic
noise.

Word Capitalization Use of capitalization in micro-blogs is inconsistent. In formal
texts, capitalization is used as a key feature for recognizing proper nouns (tags
NNP and NNPS), however in micro-blogs capital letters are used for several other
purposes such as emphasis(eg., “.tomorow YOU will need to do that”) and high-
lighting (eg. “lease do me a favor and POST CHAPTER 15”). Micro-blog texts also
contain a plethora of capitalization due to typos. Apart from these, noise is also in-
troduced by a lack of capitalization of nouns which should be capitalized. Various
techniques such as use of name lexicon lists [13] and the use of a trained classifier
to recognize a valid capitalization [19] have been used to account for the noise due
to capitalization.

Word Variations Spelling variations could be unintentional, since Microblog texts
rarely get proofread, or intentional, for the purpose of compressing long words,
eg. use of tmro and 2moro for tomorrow. Word compressions can take either a
graphemic or a phonemic form [14]. Graphemic forms involve deletion vowels
(eg. “msg”), deletion of repeated characters (eg., “tomorow” for “tomorrow”) and
truncation (eg. “tom” for “tomorrow”). Phonemic forms involve substitution of a
shorter set of characters to represent the same phoneme, eg. “2” in “2moro”. Choud-
hury et. al. report decoding such spelling variations with an 80% success using a
HMM model.

5 http://nlp.stanford.edu/software/tagger.shtml
6 http//gate.ac.uk/wiki/twitter-postagger.html
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Multi Word Abbreviation Frequently, multiple words are abbreviated as single word
abbreviations, eg. “lol” for “laugh out loud” and “tgif” for “thank god its Friday”.
These abbreviations can only be identified by use of lexicons.

Slangs Slangs such as “gonna” used for “going to” is common since it reduces the size
of the sentence. Lexicons with word-to-phrase maps have been used with varying
levels of success to account for such use of slangs [10,5].

Word Omission Frequently used function words such as articles and subject nouns are
omitted. For example, “I went to town in a car” may be written as “went town in
car”. This category of noise is easily handled by training sequence based proba-
bilistic models and both CRF and HMM models perform well with this type of
noise.

3 Micro-blogging Data Sets

In general Tweets, SMS, and micro-blogging texts present a challenge for text process-
ing models because of excessive amounts of linguistic noise. The origin of this linguistic
noise is partly historical. Tweeting and some forms of miro-blogging originated from
exchange of text messages between phones, which had a 140 character limit with a small
keypad causing excessive typing errors. This has remained as part of Tweets and at least
some of the micro-blogs even though the activity has largely shifted from small keypad
phones to computers and other forms of mobile devices with full keypads. In spite of the
informal nature of micro-blog texts and length limitation, there is an enormous amount
of information embedded in micro-blogs, in particular in Tweets. The corpus of only
one form of micro-blog, Tweets, is already larger than the size of Library of Congress
[12] and is growing by gigabytes on a daily basis. Typically Micro-blogging sites have
millions of users from around the world with constant activity. This makes the embed-
ded information in them up-to- the-minute current and a good sample representation of
the population. Hence information extraction from such a source would invaluable for
just about any application.

POS tagging is one of the key pre-processing tasks for any information extraction
system. Hence there is a need for accurate and efficient POS tagger for subsequent tasks
in the information extraction pipeline. The state-of-the-art taggers available today have
been trained and adapted for the newswire genre of texts. Hence they don’t perform
as well on out-of-domain texts. Models trained on newswire data have been shown to
have error rates up to 10 times higher on texts from the micro-blog genre [5]. This
makes it critical that probabilistic taggers are trained and customized on in-domain data
before they get used in an NLP pipeline. Currently, there are 3 sets of tagged datasets
on tweet texts. Twoof them (TPOS and DCU), use similar PTB tag set, while the third
one (ARK) uses a much smaller subset of 25 tags. Figures 1 and 2 show the tags used
in TPOS/DCU and ARK datasets.

The PTB data sets contains 3 Twitter specific tags (URL, HT and USR) while the
ARC set contains these 3 but in addition includes 2 more. The Tweeter specific tags for
both datasets are:

1. U - url, eg., http://www.illocuti oninc.com/ (URL in PTB dataset)
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$, ”, (, ), ,, ., :, ADVP, CC, CD, DT, EX, FW, HT, IN, JJ, JJR, JJS, MD, NN, NNP,
NNPS, NNS, PDT, POS, PRP, PRP$, RB, RBR, RBS, RP, RT, TO, UH, URL, USR,
VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WRB.

Fig. 1. Alphabetical list of tags from Penn Treebank used in the TPOS and DCU dataset

!, #, $, &, ,, @, A, D, E, G, L, M, N, O, P, R, S, T, U, V, X, Y, Z, ,̂ .

Fig. 2. Alphabetical list of tags used in the ARK dataset

2. # - topic, eg., #newyear (HT in PTB dataset)
3. @ - a tweet username, eg. @catlovesit (USR in PTB dataset)
4. E - emoticon, eg., :-)
5. - continuation of a tweet, always preceded by

The ARK dataset, introduced in [10], used 17 annotators to tag a total of 1827
English Tweets containing approximately 26,000 tokens. The paper reports an inter
annotator-agreement rate of 92.2%. The data was then used to train a CRF tagger model
with additional 5 features to handle various types of linguistic noise such as orthogra-
phy, phonetics and capitalization. The results show an accuracy of 89.37% compared to
85.85% for a retrained Stanford tagger.

The TPOS dataset based on PTB was first introduced in [19], contains 12K tokens
from Tweet messages. The authors report a tagging accuracy of 88.3% with a CRF
tagger model trained on a mixture of TPOS (12K), IRC7 (40K) and PTB (50K). The
accuracy reported from this study was 88.3% compared to 80.01% for the Stanford
tagger.

The DCU dataset, again based on PTB, introduced in Foster [9] contains 269 anno-
tated sentences which had a reported inter-annotator agreement rate of 95.8%. In this
study the dataset is used to train and test a Support Vector Machine tagger and report
an accuracy of 84.4% compared to an accuracy of 96.3% for Wall Street Journal data.
This paper focusses on parsing, hence no tagging specific up-training is done to account
for the linguistic noise, however the public availability of the tagged data is extremely
useful for Twitter tagging research.

4 Experimental Setup

The testing was conducted using the 3 sets of Tweet data described in section 3 so that
cross validation performance could also be determined. We used the Stanford tagger
(Stanford) and the enhanced Stanford tagger (Gate), both shipped with the GATE pack-
age8. The Stanford tagger has been shown to exceed accuracies of over 90% [13] , hence
is considered to be state-of-the-art. We used the Stanford tagger as a benchmark, and
did cross validation tests on its enhanced version (Gate tagger) across the three datasets
and also did comparison tests against a newly introduced HMM model.

7 Chat data from [8]
8 http://gate.ac.uk/wiki/twitter-postagger.html
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For the Stanford and Gate taggers, we used the pre-trained standard models (as
opposed to faster models with lower accuracy) named english-twitter.model and gate-
EN-twitter.model respectively. These two models were tested against a twitter trained
HMM model, modified from the basic implementation in LingPipe9. A final evalua-
tion was done to compare the training times between a CRF and a HMM model as
implemented in LingPipe. This evaluation was done without the implementation of any
additional features for both the CRF and the HMM models for the purpose of comparing
the computational cost of the two models.

Table 1. Dataset Details

Dataset Sentences Tokens

T-POS-train 551 10.6K
T-POS-test 118 2.2K
DCU-train 269 2.9K
DCU-test 250 2.8K
ARK-train 1827 26.6K
ARK-test 547 7.7K

Table 1 gives the details of the data splits between training and testing sets used in
the evaluation experiment. The training and testing splits for T-POS and DCU dataset is
the same as that used for training the pre-trained GATE models reported in Derczynski
et al. [13].

Fig. 3. Testing Accuracies for ARK-test dataset for increasing amounts of training data from
ARK-train dataset

The initial test on the HMM model was done using the ARK data set by splitting it
into training and testing set as in Gimpel et. al [10]. (shown on the last 2 rows of Table
1). The HMM model was initially tested for n-gram (number of previous tokens used
for emissions) for values ranging from 1 to 10. An n-gram value of 5 gave us the best

9 http://alias-i.com/lingpipe
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performance which was the assigned value used for the HMM model for all subsequent
tests.

The HMM model was first trained by varying the amounts of training data and tested
on the ARK-test data which consists of 547 individual Tweets. The results are shown
in Figure 3. The accuracy very quickly reached 80% at about 300 Tweets after which
the increase was slow up to a maximum value of 87% for the total amount of training
data of 1827 Tweets. This compares very well with the result reported in [10] for a
substantially feature engineered CRF model which obtained a value of 89.37%. As a
comparison, the Stanford tagger had an accuracy of 85.85% on the same training and
test data.

Table 2. Percentage Accuracies for the cross validation tests

Model TPOS-test DCU-test ARK-test
Tok Sent Tok Sent Tok Sent

Stanford(MaxENT)(pre-trained) 88.7 20.3 89.4 36.8 69.6 6.4
Gate(CRF)(pre-trained) 93.5 33.8 89.4 37.6 69.5 6.3
LingPipe(HMM)(TPOS-train) 82.8 25.2 82.7 24.8 61.9 4.8
LingPipe(HMM)(ARK-train) - - - - 86.9 26.4
LingPipe(CRF)(TPOS-train) 69.7 4.4 64.0 4.1 63.2 4.1

Table 3. Percentage accuracy drops for cross validation tests for the three types of taggers.

Model TPOS/DCU-test avg. ARK-test %age drop
Tok Sent Tok Sent Tok Sent

Stanford(MaxENT)(pre-trained) 89.05 21.8 69.6 6.4 21.8 77.6
Gate(CRF)(pre-trained) 91.45 24.0 69.5 6.3 24.0 82.6
LingPipe(HMM)(TPOS-train) 82.75 25.2 61.9 4.8 25.2 80.8

The TPOS and the DCU data sets use the PTB tagset and hence the results for these
two dataset are directly comparable. The ARK data set contains a smaller subset of 25
tags by conflating some of the PTB tages. A model trained on the subset dataset cannot
be cross validated on a superset dataset. However the opposite is possible by mapping
the superset onto the subset tagset. Hence, the tagging results from the superset trained
systems was cross validated on the ARK dataset by mapping the superset tags to the
subset tags, for example all forms of verbs (VB, VBD, VBG, VBN VBP VBZ) were
mapped to a single tag, V, in the ARK dataset.

Table 2 shows the results for the cross validation tests of the four models tested on
three datasets. The pre-trained Stanford and Gate taggers tested on the TPOS-test and
DCU-test data sets achieved relatively high accuracies, close to the reported values in
[13]. For example, the Gate tagger achieved a token accuracy value of 93.5% on the
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TPOS-test data and 89.4% on the DCU-test data. The corresponding token accuracy
values for the LingPipe tagger was 82.8% for TPOS-test and 82.7% for the DCU-test
data. As another comparison, the datasets were also used to train and test a CRF model
from LingPipe. This model which was devoid of any domain specific feature engineer-
ing gave much lower accuracy on all data sets, shown in the last row of Table 2. The
LingPipe(CRF) model was tested mainly for the purpose of comparing the training
time rather than for accuracy. As an indication the training time for the CRF model
on the TPOS-train data set was approximately 8 hours for 200 epochs and had to be
left overnight for 1000 epochs. This compares with less than 30 seconds for the HMM
model for the same training data. For text processing tasks, each word is a feature.
Hence for a discriminative model such as the CRF, there needs to be multiple iterations
through the whole feature set in order to be able to find discriminative features for each
of the tags. This adds a huge computational cost making it unsuitable for real time sys-
tems. On the other hand, a generative model such as HMM, needs to traverse through all
the features (words and tags) once and determine the probability distribution of token
and word emissions. This can then be easily updated as new features are encountered
which makes it adaptable as new data is encountered, making it suitable as a progressive
learner.

The three models were then cross validated by training them with TPOS-train data
and tested against the ARK-test data. Since the ARK-test data uses a smaller set of
tags, the output of the models trained on TPOS-train data were first mapped to the ARK
tagset before running the evaluation tests. Intuitively, this was expected to give us an
even higher accuracy since the mapping is “downward”. For example, all confusions
between VB, VBD, VBG, VBN and VBP from PTB tagset were mapped to V from the
ARK tagset, which would be expected to drive up the accuracy since we are evaluating
against a more coarse set of tags. The accuracies obtained for this cross validation are
shown in Table 3. All the three models being evaluated (Stanford, Gate and Lingpipe)
trained on TPOS-train data give very close results for TPOS-test and DCU-test datasets,
hence for cross validation, the results of these two accuracies were averaged and then
compared with the ARK-test accuracy shown in Table 3. The cross validation results
show a drop of token accuracy between 21 and 25 percent, while the sentence level drop
is even more substantial with values of approximately 80%. The accuracy difference be-
tween the models cannot be attributed to the feature engineering in CRF models since
a similar drop was also observed in the HMM model. The details of the confusions is
investigated in Section 5. The individual tag accuracies in Figure in 4 shows very sim-
ilar tag-based performance characteristics for both Gate and HMM models. The tags
between ADVP and RBR were low in number (below 10) hence the 0% accuracy for the
HMM model. Apart from the NNPS (singular proper noun) tag, Gate consistently per-
forms better or equivalent for the rest of the tags. In the case of NNPS, Gate implements
several feature engineering techniques in order to identify un-capitalized proper nouns,
however in the case of the TPOS-test data, this was counter-intuitive compared to the
HMM model which essentially uses capitalization to identify proper nouns. The results
in Figure in 5 and 6 show the individual tag performance for the Gate and HMM models
trained on TPOS-train data. Both the models show that there is an average of 20% drop
in accuracy for ARK-test data is and this is due to a consistent lower performance across
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all the tags rather than an aberration pertaining to a subset of tags, which could have
been possible in the ARK-test data. A candid analysis of the tagging between TPOS and
the ARK data sets did not show any gross tagging differences, hence the performance
degradation has to be attributed to differences in higher level data characteristics. This
is currently being investigated.

Fig. 4. A comparison of the Gate and HMM models’ performance for individual tags, sorted in
ascending order for ARK data values. The sample used is for a TPOS trained model tested on
TPOS-test data.

Fig. 5. Gate Model’s performance on individual tags for TPOS-test and ARK-test Data, sorted in
ascending order for ARK data values.

5 Error Analysis of the HMM Model on the TPOS data

The TPOS-test data contains a total of 2291 tokens tagged with 44 tags which consists
of 41 PTB tags and additional 3 twitter specific tags. Table 4 shows the confusion dis-
tribution for the tags which contributed more than 20% error for the HMM model tested
on the TPOS data. The numbers in brackets in the 3 confusion columns show the num-
ber of confused instances for each of the tags. The lowest accuracy was achieved for
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Fig. 6. HMM Model’s performance on individual tags for TPOS-test and ARK-test Data, sorted
in ascending order for ARK data values.

Table 4. TPOS-train data trained HMM results for tags with accuracy below 80%. Conf(1) is the
tag with highest confusion and Conf(3) is the third lowest.

Tag Total Correct Accuracy Conf-1 Conf-2 Conf-3

JJ 93 53 0.57 NN(19) NNP(11) RB(4)
RB 92 74 0.80 NN(7) IN(4) JJ(3)
NN 297 239 0.80 JJ(11) VB(5) NNS(5)
VBN 18 10 0.56 VBD(4) NN(2) JJ(1)
VB 118 85 0.72 VBP(5) VBD(4) NNP(4)
VBP 68 49 0.72 VB(11) RB(2) NN(2)
VBZ 50 35 0.70 NNS(9) NNP(4) VB(1)
VBD 52 40 0.77 NN(3) VBN(3) JJ(2)
NNS 49 35 0.71 NN(9) NNP(3) RB(1)
NNP 181 130 0.72 NN(24) JJ(6) JJ(6)
UH 86 68 0.79 :(4) RB(3) NN(3)

the JJ (adjective) tag with an accuracy of 0.57. The JJ tag was confused with NN (com-
mon noun) 17 times, NNP (singular proper noun) 11 times and RB (adverb) 4 times.
From the rest of the rows in Table 4 it can be seen that the JJ tag features as the highest
number of false positives for the other confused tags as well. Adjectives are most dif-
ficult tags to identify as many of the nouns also function as adjectives, as for example,
“valuable player” and “Costa Rican group”. In these examples the tokens “valuable”,
“Costa” and “Rican” function as adjectives, however were identified as nouns. Out of
the 30 confusions for nouns and pronouns, 60% were in the category of compound noun
modifier adjectives, which were identified as either nouns or proper nouns. The rest of
the adjectives were of the form where an adjective was used in a position other than a
pre-modifier. For example in “...I just felt special...”, the token “special” is functioning
as an adjective in a syntactical position which is usually a noun in most clauses. Hence,
in sequence oriented, probability based models such as HMM, the tagging for adjective
will be biased towards nouns. The bias can only be corrected if the exact token was
present in the training data, which is why probability based models are only as good
as the range and extent of the training data. Another category which accounted for a
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high proportion of confused adjectives was the token “long” in “...all year long...”. In
this case the tokens “all” and “year” are a determiner and noun respectively, hence the
adjective is a post modifier of the compound noun. This is another rare syntactical posi-
tion for an adjective. The majority of adjectives in this category were classified as nouns
as the last token of a compound noun is frequently a noun. The VBN (past participle)
tag is the other tag with accuracy in the 50% range. There were only 18 VBN tags in the
test data and 4 of these were confused with VBD (past tense), which is a tag that can be
represented by the same set of words distinguished only by a complex combination of
the rest of the tokens in the sentence. The other significant confusion worth mentioning
is the confusion of the NNP (proper noun) tag confused with NN (common noun). This
is due to a lax capitalisation in tweet messages. The HMM model used for the testing
used capitalisation in addition to the city, corporation and name lexicons from the Stan-
ford implementation to tag proper nouns, hence the 24 confusions out of the 181 were
outside these lexicons. Tagging of the NNP tags can be easily improved by extending
the existing Stanford lexicon lists for specific applications.

6 Concluding Remarks

This paper presented HMM POS tagger customized for micro-blogging type texts. We
also presented the results of comparison with a state-of-the-art CRF tagger. The to-
ken accuracy for the HMM model was found to be 8% below the CRF model, but the
sentence accuracy for both the models was very close, approximately 25%. The cross
validation results for both the models showed a degradation of approximately 25% for
tokens and a very drastic drop of approximately 80% at the sentence level. The degra-
dation in accuracy across the two corpora implies that the two datasets had slightly
different characteristics hence a model trained on one set had impaired performance on
the other set. The comparative performance of the HMM and the CRF models show that
the CRF model is marginally better, however the HMM model learns orders of magni-
tude faster and is easily adaptable to progressive learning applications. Hence, is better
suited to real time applications such as processing live tweets and streaming texts.
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