A debt behaviour model

Wenjun Zhang, John Holt

Figure 1: This diagram depicts the underlying causal structure of the model. See the text for the definitions of D, Y, B, T, S.

The model concerns the following random variables:

- A discrete Markov process B_{t} which records the behavioural state of the debtor during the time period t-measured in months. The state is measured in the middle of each month.
- A discrete-valued process T_{t} which records the strongest debt management intervention that was applied to the debtor during the time period t.
- R an entity-specific variable, R gives the final result of the debtor's most immediate previous debt case - NA, paid in full, liquidation/bankrupty, full write-off, partial write-off.
- X_{t} is the economic state at time period t. This measure is obtained through clustering a pertinent collection of economic variables: change in CPI, change in unemployment, change in the average weekly wage, etc. The underlying variables for X_{t} are varying quarterly, so X_{t} will be constant in blocks of three months.
- S_{t} is a latent discrete Markov process which categorizes debtors in a time period into the behavioural scheme that governs the generation of B_{t}. The model supposes that T_{t-1} influences S_{t}, and hence influences B_{t} indirectly.
- D_{t} is a positive real-valued variable, given by

$$
D_{t}=\frac{\text { Debt amount at time } t \text {, including penalties and interest }}{\text { Largest amount of debt owed up to time } t \text {, excluding penalties and interest }}
$$

- Y_{t} is a categorization of D_{t} into $\{0,1\}$ - this is governed by a parameter α that needs to be inferred. the notion is that as a debtor gets closer to being paid in full, its probability of making a large lump-sum payment to clear its debt may change.

We introduce a set of parameters as follows:

- α : defined by $Y_{t}:=0$ if and only if $D_{t} \leq \alpha$.
- Q_{S} : a list of transition matrices, one for each combination of values of R, X_{t}, T_{t-1}.
- π_{S} : a list of initial probabilities, one for each combination of values of R, X_{t}.
- Q_{B} : a list of transition matrices, one for each combination of values of Y_{t-1} and S_{t}.
- π_{B} : a list of initial probabilities, one for each value of S_{1}.

Figure 2: This diagram depicts the underlying causal structure of the model, including the parameters. Refer to the text for definitions of the parameters $\pi_{B}, Q_{B}, \pi_{S}, Q_{S}, \alpha$

Figure 2 depicts the causal structure of the variables and the parameters - we have now expressed each of the variables as a vector of length as long as the number of observation periods.

Every debt case begins at a time period u and ends at a time period l. If the debt case is indexed by i, the the beginning is u_{i} and the end is l_{i}. There will be observations of T_{t}, B_{t}, D_{t}, and X_{t} from u_{i} through to l_{i}.

The log-likelihood of observing a single debt case is maximized when we maximize:
$l_{0}=\sum_{t=u+1}^{t=l}\left(\ln \left(Q_{B}^{Y_{t-1}, S_{t}}\left(B_{t-1}, B_{t}\right)\right)+\ln \left(Q_{S}^{X_{t}, R, T_{t-1}}\left(S_{t-1}, S_{t}\right)\right)\right)+\ln \left(\pi_{B}^{S_{u}}\left(B_{u}\right)\right)+\ln \left(\pi_{S}^{X_{u}, R}\left(S_{u}\right)\right)$
We apply the EM algorithm to l_{0}, taking the expected value of l_{0} conditional on $\left\{B_{t}, X_{t}, D_{t}, T_{t}, R\right\}$ and the k-th iteration of the parameters $\left\{\alpha, Q_{B}, Q_{S}, \pi_{B}, \pi_{S}\right\}$,
Θ^{k}.
For this we define the responsibilities for each debt case, i, and time t, $t=u_{i}, \ldots, l_{i}$:

$$
\gamma_{i, t}(s):=p\left(S_{t}=s \mid T_{u_{i}}^{l_{i}-1}, X_{u_{i}}^{l_{i}}, B_{u_{i}}^{l_{i}}, R_{i}, D_{u_{i}}^{l_{i}-1}\right)
$$

for $t \geq u_{i}$; and for $t>u_{i}$,

$$
\Gamma_{i, t}(p, q):=p\left(S_{t}=q, S_{t-1}=p \mid T_{u_{i}}^{l_{i}-1}, B_{u_{i}}^{l_{i}}, R_{i}, D_{u_{i}}^{l_{i}-1}\right)
$$

It is clear that $\gamma_{i, t}(s)=\sum_{p} \Gamma_{i, t}(p, s)$, or if $t=u_{i}, \gamma_{i, u_{i}}(s)=\sum_{q} \Gamma_{i, u_{i}+1}(s, q)$ - hence we need only compute $\Gamma_{i, t}$.

This is done using the Forward-Backward algorithm:

1 Calculating $\Gamma_{i, t}$

This calculation is standard, but we present it for completeness.
Define the following four sets of probabilities:

- $\pi_{t}(s)=p\left(S_{t}=s \mid T_{u}^{l-1}, X_{u}^{l}, R, D_{u}^{l-1}, B_{u}^{l}\right)$
- $\pi_{t}^{\prime}(s)=p\left(S_{t}=s \mid T_{u}^{t-1}, X_{u}^{t}, R, D_{u}^{t-1}, B_{u}^{t}\right), t \geq u$.
- $F_{t}(p, q)=p\left(S_{t-1}=p, S_{t}=q \mid T_{u}^{t-1}, X_{u}^{t}, R, D_{u}^{t-1}, B_{u}^{t}\right), t>u$
- $\Gamma_{t}(p, q)=p\left(S_{t-1}=p, S_{t}=q \mid T_{u}^{l-1}, X_{u}^{l}, R, D_{u}^{l-1}, B_{u}^{l}\right), t>u$.

Then

$$
\begin{aligned}
F_{t}(p, q) & \propto Q_{B}^{q, Y_{t-1}}\left(B_{t-1}, B_{t}\right) Q_{S}^{T_{t-1}, X_{t}, R}(p, q) \pi_{t-1}^{\prime} \\
& =\left(Q_{B}^{q, 0}\left(B_{t-1}, B_{t}\right) I_{[0, \alpha]}\left(D_{t-1}\right)+Q_{B}^{q, 1}\left(B_{t-1}, B_{t}\right) I_{(\alpha, \infty)}\left(D_{t-1}\right)\right) Q_{S}^{T_{t-1}, X_{t}, R}(p, q)
\end{aligned}
$$

and

$$
\pi_{t}^{\prime}(q)=\sum_{p} F_{t}(p, q)
$$

with $\pi_{u}^{\prime}(s) \propto \pi_{B}^{s}\left(B_{u}\right) \pi_{S}^{X_{u}, R}(s)$. The normalizing constants can be found by noting that $\sum_{p, q} F_{t}(p, q)=1$ and $\sum_{s} \pi_{u}^{\prime}(s)=1$.

Having obtained $F_{t}(p, q)$ (the forward matrices) we can calculate the backward matrices Γ_{t} as follows:

Set $\Gamma_{l}=F_{l}$.
For $t<l$,

$$
\begin{aligned}
\Gamma_{t}(p, q) & =p\left(S_{t-1}=p \mid S_{t}=q, T_{u}^{l-1}, X_{u}^{l}, R, D_{u}^{l-1}, B_{u}^{l}\right) p\left(S_{t}=q \mid T_{u}^{l-1}, X_{u}^{l}, R, D_{u}^{l-1}, B_{u}^{l}\right) \\
& =p\left(S_{t-1}=p \mid S_{t}=q, T_{u}^{t-1}, X_{u}^{t}, R, D_{u}^{t-1}, B_{u}^{t}\right) \pi_{t}(q) \\
& =F_{t}(p, q) \frac{\pi_{t}(q)}{\pi_{t}^{\prime}(q)}
\end{aligned}
$$

2 Update equations for the M-step

The formulas that follow are the result of straightforward calculations.

$$
\begin{aligned}
Q_{B}^{s, y}(b, c) & =\frac{\sum_{i} \sum_{t=u_{i}+1}^{l_{i}} \delta\left(B_{i, t}-c\right) \delta\left(B_{i, t-1}-b\right) \delta\left(Y_{i, t-1}-y\right) \gamma_{i, t}(s)}{\sum_{i} \sum_{t=u_{i}+1}^{l_{i}} \delta\left(B_{i, t-1}-b\right) \delta\left(Y_{i, t-1}-y\right) \gamma_{i, t}(s)} \\
\pi_{B}^{s}(b) & =\frac{\sum_{i} \delta\left(B_{i, u_{i}}-b\right) \gamma_{i, u_{i}}(s)}{\sum_{i} \gamma_{i, u_{i}}(s)} \\
Q_{S}^{T, R, X}(p, q) & =\frac{\sum_{i} \sum_{t=u_{i}}^{l_{i}-1} \delta\left(T_{i, t}-T\right) \delta\left(R_{i}-R\right) \delta\left(X_{t}-X\right) \gamma_{i, t}(p) \gamma_{i, t+1}(q)}{\sum_{i} \sum_{t=u_{i}}^{l_{i}-1} \delta\left(T_{i, t}-T\right) \delta\left(X_{t}-X\right) \delta\left(R_{i}-R\right) \gamma_{i, t}(p)} \\
\pi_{S}^{R, X}(s) & =\frac{\sum_{i} \delta\left(R_{i}-R\right) \delta\left(X_{u_{i}}-X\right) \gamma_{i, u_{i}}(s)}{\sum_{i} \delta\left(R_{i}-R\right) \delta\left(X_{u_{i}}-X\right)}
\end{aligned}
$$

Note that Q_{B} depends on an unknown value of α. The approach will be to fit Q_{B} for a range of values of α, and to choose the α that gives the maximum value to:
$l_{1}=\sum_{i} \sum_{t=u_{i}+1}^{l_{i}} \sum_{s} \ln \left(Q_{B}^{s, 0}\left(B_{i, t-1}, B_{i, t}\right) I_{[0, \alpha]}\left(D_{i, t-1}\right)+Q_{B}^{s, 1}\left(B_{i, t-1}, B_{i, t}\right) I_{(\alpha, \infty)}\left(D_{i, t-1}\right)\right) \gamma_{i, t}(s)$

