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Abstract 

Contemporary computer assisted coaching software 
operates either on a particular sub-space of the wider 
problem or requires expert(s) to operate and provide 
explanations and recommendations. This paper 
introduces a novel motion data processing methodology 
oriented to the provision of future generation sports 
coaching software. The main focus of investigation is the 
development of techniques that facilitate processing 
automation, incremental learning from initially small 
data sets, and robustness of architecture with a degree of 
interpretation on individual sport performers’ motion 
techniques. Findings from a case study using tennis 
motion data verify the prospect of building similar models 
and architectures for other sports or entertainment areas 
in which the aims are to improve human motion efficacy 
and to prevent injury. A central feature is the decoupling 
of the high-level analytical architecture from the low-
level processing of motion data acquisition hardware, 
meaning that the system will continue to work with future 
motion acquisition devices. 
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1. INTRODUCTION: COMPUTER 

ASSISTED SPORT COACHING 

Contemporary computer assisted sport coaching software 
can be divided into two major categories:  

1. Relatively expensive software and hardware 
solutions designed to be operated across domains by 
experts in the areas of Biomechanics or 
Physiotherapy [1, 2].  

2. Specialised software for a particular sport’s sub-
domain that is affordable to the sport’s enthusiasts 
and that does not need to be operated by a 

professional domain expert (although some initial 
and follow-up expert assistance may be 
recommended). In general, such solutions are 
intended1

At present, commercial software development in this 
domain is restricted by the cost of 3D motion data 
acquisition relative to precision, accuracy, noise, 
sampling frequency and robustness to occasional data 
loss. Other restrictive and undesired factors that 
contribute to limited progress are: the degree of 
obtrusiveness, environmental and operational restrictions 
(e.g. autonomy of unsupervised operation, robustness to 
shock, vibration and ambient operating ranges), the often 
lengthy time required to set up the environment with 
initial settings, and the resulting extent of expert 
involvement. Examples of computational and operational 
limitations impeding the development, adoption and/or 
success of computer assisted coaching tools have also 
been discussed in [6]. 

 to provide feedback typically as an 
animated/video replay or as a report containing 
measured values compared with ‘optimal’ 
biomechanical key values [3, 4]. In the case of 
entertainment applications (i.e. videogames and sport 
simulations) a player can interact with a virtual 
environment [5] using a motion sensitive input 
device such as the Wii controller 
(http://www.nintendo. com/overviewwii). Intended 
coaching may occur through repetitive interaction 
with the environment. 

In general, these limitations can be considered in terms of 
two major groupings:   

1. The first category of drawbacks (of present sport 
coaching software) consists of excessive user 
operation/intervention, required sport domain 
knowledge, and the advanced nature of the computer 
equipment (e.g. motion data transfer, setting up 
recording environment, digitising and “slicing” 

                                                           
1 i.e. limited aspects of non-evolvable coaching compared to 
human coaching. It is also not intended to replace, but to 
complement human supervised coaching aspects. 
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video, annotations and measurements and 
measurements interpretation).   

2. The second category of drawbacks relates to 
limitations in motion data processing e.g. lack of 
adaptability, inability to learn from data, and 
insufficient or limited results interpretations and 
personalisation.  

A level of informed speculation (i.e. by extending 
Moore’s Law) enables us to predict that near-future ICT 
technology for obtaining real-time, high precision motion 
data will be more ubiquitous and more affordable. The 
same level of speculation applied to Human Computer 
Interaction (HCI) devices suggests that it will soon be 
possible to provide multimedia-rich feedback to learners 
from systems that are capable of assessing human motion. 
Such predictions provide the necessary infrastructural 
support to underpin the feasibility of generic evolving 
computational models for assessing human motion as a 
separate layer from low-level motion data processing and 
HCI management layers.  

 

2. PROPOSED ADAPTIVE COACHING 
SYSTEM 

The initial stages of this study have been focused on 
scoping an appropriate experimental system design and 
choosing an initial case study in tennis.  

 
2.1  Motivation for Adaptive Sports Coaching 

System  

Bridging the interdisciplinary gap between Sport 
Biomechanics and the application area of Evolving 
Connectionist Systems (ECOS) [7], a novel coaching 
system based on a robust and adaptive software 
architecture should have the following capabilities:  

• Adaptation to new playing motion data (e.g. 
swing techniques) that can be incrementally 
presented,  

• Rule based knowledge interpretation from 
motion data, including knowledge insertion and 
extraction,  

• Personalised (swing) technique assessment 
modelling and personalised coaching where new 
modules and connections can be introduced at 
any stage of the system’s operation including 
adaptation to new (swing) rules and variables,  

• Knowledge separation into Personalised, Global 
and Environmental levels (e.g. Coaching 
Scenarios (CS) and individual coaching 
approaches),  

• Ability to work with initially small data sets, and 
with incomplete Global and Environmental 
knowledge,  

• Supervised, Unsupervised, Incremental and On-
line learning.  

 

2.2  Evolving Coaching: An Adaptive Tennis 
Coaching System  

In ‘traditional’ (i.e. human assisted) sport coaching, a 
coach can correct and potentially improve an observed 
learner’s motion technique by communicating a set of 
relevant coaching rules combined with intervention 
instruction(s) to the learner. In the system proposed here, 
adherence or otherwise to each relevant coaching rule is 
observed and assessed individually in a Coaching Rule 
Evaluation Module (CREM), as shown in Fig. 1.  

Section 2.4 further explains the Orchestration paradigm – 
as a set of individual CREMs collectively assessing 
human motion.  

 
Fig. 1. CREM block diagram and stages of data 
processing. CREMs are responsible for classification of 
both temporal and spatial qualitative observations by a 
coach, although represented/expressed numerically. A 
process of transforming a temporal/spatial Region of 
Interest (ROI) to quantitative observations needed for 
machine learning classification is referred to here as 
Feature Extraction Technique (FET).  

CREM motion data processing occurs in multiple stages:  

1. The first stage of CREM processing involves the 
automated extraction of the Region of Interest (ROI). 
ROI automation in a stand-alone CREM (Fig. 1) 
would include the recognition of tennis shots and 
their ROI extraction from time series of 3D tennis 
data (section 3.1). A two-staged algorithm structure 
[8] allows hyper threading implementation for quick 
detection and ROI extraction.  

2. In the Feature Extraction Technique (FET) stage, the 
system is responsible for mathematically 
transforming the ROI into a set of the most 
discriminative key values representing each shot. 
Compared to human qualitative assessment of a shot, 
a coach would typically focus on constituent time 
sub-segments of the shot. Within each time sub-
segment, the coach would analyse observed temporal 
(e.g. hip rotation leading shoulder turn) or spatial 
(e.g. swing width) key features to assess adherence to 
a particular coaching rule (or heuristic).  

3. In the final stage, an ECOS classifier module is 
responsible for numerically assessing/evaluating 
adherence to a particular observed coaching rule. As 
the output of the last stage of CREM internal 
processing, an ECOS module provides the overall 
CREM output as and if required, to supply feedback 
to the learner and to augment the system’s coaching 
knowledge (Fig. 5).  

 



2.3 Evolving Fuzzy Neural Network Architecture 
(EFuNN)  

ECOS has been developed to address several of the 
perceived disadvantages and limitations of traditional 
connectionist systems – by comparison, ECOS are 
resilient to over-training, they learn and adapt their 
structure quickly, and they are far more resistant to 
catastrophic forgetting [7]. Paradoxically, it is these very 
advantages that cause some of ECOS’ disadvantages. 
Since they deal with new examples by adding nodes to 
their structure, they rapidly increase in size and can 
become unwieldy if no aggregation or pruning operations 
are applied. They also have some sensitivity to their 
parameters, which require constant adjustment for 
optimum performance.   

An ECOS network always has at least one evolving layer, 
such as the middle layer shown in the Evolving Fuzzy 
Neural Network depicted in Fig. 2. This is the layer that 
will grow and adapt itself to the incoming data, and is the 
layer with which the learning algorithm is most 
concerned.  

 
Fig. 2. EFuNN structure as an ECOS classifier with two 

inputs and one output ([9], p.677)  

Although there are a growing number of ECOS 
implementations [7, 9, 10], that chosen here is a relatively 
simple solution. It would be an informative future 
exercise to assess which ECOS model works better for a 
particular CREM module. However, several have high-
volume data requirements (in order to perform parameter 
optimisation) which could limit their viability in low-
volume data applications.   

A simple implementation of ECOS was achieved using 
EFuNN, Fig. 2, with its ability to work with initially small 
data sets and to extract knowledge as a set of fuzzy rules. 
Selecting the Membership Functions (MF) and their 
number in a given EFuNN would depend on the particular 
CREM task (e.g. if an expert would say “a player’s wrist 
can be too far away from the body but never too close, 
when hitting …” then two MFs would be adequate for a 
CREM assessing swing width).  

 
2.4 CREM Orchestration  

To accommodate diversity in Coaching Scenarios (CS) 
and in human coaches’ qualitative analyses, a method for 
their orchestration has been proposed, as depicted in Fig. 
3, Proposed in [12], a weighted sum ECOS Architecture 
would support the implementation of Global, Local (i.e. 
Environmental – as CS and different coaching 
approaches) and Personalised modelling introduced in [9]. 
Each CREM uses its own features sub-set. Skill and 
Weights parameters (from Fig. 3) can also be stored in 
any of the Personalised, Environmental/CS or Global 
databases.  

Automated shot extraction for each CREM is performed 
before the Rule Module Selector to avoid computational 
overlapping. Each selected CREM participating in the 
shot evaluation automatically extracts only the temporal 
sub set (sub event) needed for its own feature extraction. 
 

 

 
Fig. 3. CREM Orchestration and modular stages of data processing 

 
3. EXPERIMENTATION AND 

SIMULATION 

Aspects of experimental design are now addressed, 
followed by a description of the outcomes of different 
activities that led from ideas to specific results. Tennis 
data were recorded whereby an expert coach mimicked 
styles representative of beginner players. To ensure that 
data samples were sufficiently represented in typical 
swing style clusters, the expert’s mimicking was verified 
by two independent coaching experts in two stages i.e. 

during the recording stage and later on, in a subsequent 
“blind review” manner examining only captured motion 
data in the from of an animated “stick model” (Fig. 4).  

 
3.1 Motion Data Set Acquisition  

The human motion dataset was recorded using 3D marker 
positions in a time series at a sampling frequency of 
50HZ (or fps) and one millimetre resolution. To capture 
3D motion using multi-camera infra-red (IR) recording 



technology in IR spectrum, a set of retro-reflective 
markers was attached to selected anatomical landmarks of 
the player’s body. By defining the markers’ topology a 
“stick model” was created to represent a human body. 
Animated visualization of the stick figure (Fig. 4) – 
approximating a human swinging a racquet – was 
sufficient for the expert coach to verify the mimicking 
process, to provide output labels for machine 
classification and to give qualitative analysis that 
influenced high level architecture design.  The expert’s 
involvement was also required in defining players’ 
expected skill level relative to the operation of a set of 
CREM for a given Coaching Scenario (CS). 

 
Fig. 4. A “stick figure” representing a tennis player 

holding a racquet 

 

3.2 Processing and Validation  

After qualitative analysis of critical key features on which 
a tennis coach would focus their attention, the first 
testable hypothesis was framed.  This aimed to quantify 
the ‘most critical’ critical key features that could coarsely 
discriminate between tennis swings e.g. “good” or “bad” 
style for a forehand swing. A hypothesis asserting the 
correlation between motion  of the racquet hitting surface 
(around the point of impact) and the player’s body motion 
was chosen to be tested as the first and the strongest 
hypothesis for that purpose. The first prototype, 
constructed to enable the testing of the hypothesis 
(published in [11]), did not require adaptive learning. It 
was designed using a Radial basis function (RBF) neural 
network from the open source Netlab toolbox 
(http://www.ncrg.aston.ac.uk/netlab/down.php) and 
accompanying book [12].   

The need for the experimental work to minimise 
generalisation error using a relatively small dataset (40 
samples) in spite of potentially high dimensionality of the 
problem space demanded rigorous consideration in the 
following areas (see also Table 3):  

1. Choosing the validation method  
2. Exploring the benefits of expert cognitive pre-

clustering  
3. Evolving architecture design.  

Training and classification evaluation of the first 
experimental prototype was undertaken using the “leave-
one-out” cross-validation method (Table 1). 

 

Table 1. Leave-one-out cross-validation. To ensure that 
over-fitting was avoided, a sub-optimal model utilising 2 
hidden neurons was tested and is included in the results. 
Due to incomplete time series markers position data, the 
original set of 19 extracted forehand shots was further 
reduced to 14. 

 
During the design stages for subsequent CREMs, 
different validation methods were also considered and 
evaluated, taking into account the expert’s familiarity 
with the data and probability for error. The stochastic 
relation between data and validation method error as 
incident prediction P(C) has been investigated in [13]. 
The data set was pre-clustered into eight groups by the 
expert applying Gestalt observation model in 
biomechanics [1]. An erroneous validation incident 
example would occur where an entire cluster is allocated 
to the test portion of the dataset. The probabilistic formula 
(1) for single iteration data split incident calculation in 
hold-out validation method has been confirmed by 
comparing large number (n x 106) of simulation results. 
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Where:  

P(C) … Probability of event C; defined as P(k cluster 
samples in test dataset)  

j … size of observed cluster 

k … number of samples in test data from observed 
cluster 

n … size of the data sample 

m … size of the test dataset portion 
To avoid P(C) incidents further expert cognitive pre-
clustering cross-validation algorithms (e.g. iB-fold [14], 
as modified leave-v-out) have been used.  

 
3.3 Model Integration  

The next stage of the research was focused on the 
automated extraction of the Region of Interest (ROI), 
including recognition of each tennis shot and its 
extraction from time series 3D data [8]. Compared to 
human expert shot extraction, the average prediction for 
the first frame number in the automated shot extraction 
was 0.789 frames slower; and for end swing the 
difference was -0.16 frames – i.e. predicting the end of 
swing was 3.2 ms earlier. The duration of a frame = 0.02 
sec. Detailed results are given in Table 2.  

By merging the outcome of both experimental studies into 
a single CREM prototype Fig. 1, the further CREMs were 
designed to operate as components of the integrated 
coaching system. 



Table 2. Experimental results on automated Forehand 
ROI extraction compared to expert’s manual ROI 
extraction. Number of extracted Forehand shots = 19. 

 
 

3.4 Rule Extraction  

The other CREMs were designed using ECOS, as per the 
overall architecture shown in Fig 1. By using EFuNN 
from Fig. 2, it was possible to extract knowledge as a set 
of fuzzy rules and apply further translation of that 
knowledge into a form closer to that provided by a human 
coach (rather than as a large number of rules that were 
potentially difficult to comprehend). To make effective 
use of these rules the coaching principle “less is more” 
was taken into account. The system was designed with the 
aim of reducing the rule set to key or high-priority issues 
– ideally in most CS a learner would address one 
improvement at a time. 

 

Fig. 5. CREM block diagram and stages of data 
processing. From human perspective a player can focus 
on individual improvement of particular coaching rule 
over a period of time. 

 

4. CONCLUSION AND FUTURE WORK 

The methodology utilised in this work is shown in 
summary form in Table 3.  Apart from contributing to the 
application area of ECOS and bridging the discipline with 
research in biomechanics, the methodology has parallels 
in diverse areas such as medicine and bioinformatics e.g. 
Inductive vs Transductive approach, Global, Local and 
Personal modelling in Bioinformatics [9] with CREM 
Orchestration. Similar to the approach shown in Table 3, 
another activity-driven approach was independently 
developed in the UK as the Standard Integrative Systems 
Biology Approach [15]. 

 

Table 3. Summary of main activities that have led from ideas to specific results 

 



The modelling -follow up case study - of revisited models 
(step 9, Table 3) from tennis in the golf domain will soon 
be completed based on an already collected large data set 
of golf swings. Further advancement in presenting fuzzy 
rules to humans will promote applicative advancement in 
the area of neuro-fuzzy systems. In conclusion, for human 
motion applications, in spite of the constraints associated 
with state of the art technology of motion data acquisition 
(time consuming, labour intensive, expensive) the 
favourable experimental results to date give promise of an 
interesting and innovative future research area.  
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