
1

Tailoring the Cyber Security Framework:

How to Overcome the Complexities of Secure Live Virtual

Machine Migration in Cloud Computing

Hanif Deylami

Auckland University of

Technology, New Zealand

hmohadde@aut.ac.nz

Jairo Gutierrez

Auckland University of

Technology, New Zealand

jairo.gutierrez@aut.ac.nz

Roopak Sinha

Auckland University of

Technology, New Zealand

roopak.sinha@aut.ac.nz

Abstract
This paper proposes a novel secure live virtual machine migration framework by using a

virtual trusted platform module instance to improve the integrity of the migration process

from one virtual machine to another on the same platform. The proposed framework, called

Kororā, is designed and developed on a public infrastructure-as-a-service cloud-computing

environment and runs concurrently on the same hardware components (Input/Output,

Central Processing Unit, Memory) and the same hypervisor (Xen); however, a combination

of parameters needs to be evaluated before implementing Kororā. The implementation of

Kororā is not practically feasible in traditional distributed computing environments. It

requires fixed resources with high-performance capabilities, connected through a high-

speed, reliable network. The following research objectives were determined to identify the

integrity features of live virtual machine migration in the cloud system:

• To understand the security issues associated with cloud computing, virtual trusted

platform modules, virtualization, live virtual machine migration, and hypervisors;

• To identify the requirements for the proposed framework, including those related to

live VM migration among different hypervisors;

• To design and validate the model, processes, and architectural features of the

proposed framework;

• To propose and implement an end-to-end security architectural blueprint for cloud

environments, providing an integrated view of protection mechanisms, and then to

validate the proposed framework to improve the integrity of live VM migration.

This is followed by a comprehensive review of the evaluation system architecture and the

proposed framework state machine. The overarching aim of this paper, therefore, is to

present a detailed analysis of the cloud computing security problem, from the perspective of

cloud architectures and the cloud service delivery models. Based on this analysis, this study

derives a detailed specification of the cloud live virtual machine migration integrity problem

and key features that should be covered by the proposed framework.

Keywords: Cloud Computing Infrastructure, Computational Modeling, Virtualization and

Security, Live Migration, Integrity, Organizations.

2

Tailoring the Cyber Security Framework:

How to Overcome the Complexities of Secure Live Virtual

Machine Migration in Cloud Computing

1. Introduction
The word “Cloud” is a metaphor describing the web as space where computing has been

preinstalled and exists as a service. Many companies, both large and small, are contemplating

a migration to cloud computing (CC) to leverage the significant potential of this new

paradigm [1-3]. Government agencies, small and medium-sized enterprises, and large

organizations already make significant use of CC and they are spending considerable

amounts of money, resources, and time on delivering secure services using information and

communication technologies [4]. Security is crucial and it is one of the main challenges for

CC adoption, as many surveys show [5]. Systems become significantly more susceptible to

several cyber attacks when they move to cloud platforms, especially when this move is based

on a lack of adoption of cloud-native models and the required adjustment in organizational

processes to align with the features and capabilities of the chosen cloud platforms [2].

Virtualization is a technology that provides the ability to automate and orchestrate

multiple, tightly isolated IT processes related to on-demand provisioning on a single piece of

server hardware to create a virtual computer system or “Virtual Machine” (VM). With respect

to virtualization technologies, a physical server can be divided into several isolated execution

environments by developing a layer (i.e., VM monitor or hypervisor) on top of the hardware

resources or operating systems (OSs); thus, a physical database can be divided into several

separate execution environments with the help of virtualization technologies. The server’s

execution environments (i.e., VMs) run in parallel without interruption. A VM, also called a

guest machine, is a virtual representation, or software emulation of a hardware platform that

provides a virtual operating environment for guest OSs. The task of moving a VM from one

physical hardware environment to another is called migration. If the migration is carried out

in such a way that the connected clients perceive no service interruption, it is considered a

“live” migration. For example, database consolidation is made easier if VMs do not have to

be shut down before they are transferred. The method is also used for administrative

purposes; for instance, if a server needs to be taken off-line for some reason, live transferring

of VMs to other hosts can be used to pass running VMs between cloud sites over wide-area

communication networks.

A VM migration can occur in two ways: live and offline. In a live VM migration, the VMs

are transferred from a source host to a destination host while they are running. After a

successful VM migration, the source host removes the memory pages of the migrated VM.

During a live VM job migration, there is considerable potential for compromise through

malicious activities while information such as memory pages is copied from the host and

transferred to the destination, presenting security risk(s) with regard to data integrity and

confidentiality. The owner of the VM must have a framework to ensure live VM migration

data integrity at both ends of the migration process. In other words, there is a need to ensure a

clear memory portion is assigned to an incoming VM on the destination host, separated from

previous VM data or malicious codes, and to secure the removal of the memory data of the

outgoing VM. This situation might make organizations and businesses reluctant to switch to

using the cloud because of the potential attacks on their assets.

This paper investigates the possibility of misuse of migrating VM’s data either in transit or

present at source and destination during the live VM migration process. It then proposes a

novel framework for a secure live VM migration by using a Virtual Trust Platform Model

3

(vTPM) agent and four other agents: input/output, data plane, integrity analyzer, and data

organization. While existing studies [6-9] have established a live VM migration framework

for cloud systems integrity, an examination of the different types of research has identified a

lack of empirical evidence and knowledge regarding which issues are the most important for

these areas. In this paper, the relative significance of the identified issues is determined first,

to address the two related research questions listed below, and then the importance of the

identified issues is discussed in the rest of the paper. Research Question 1: What are the

opportunities and challenges for live VM migration in CC, with respect to the essential

system attributes and essential system characteristics?, and Research Question 2: What are

the characteristics of the proposed framework that is on the public cloud instead of in a

traditional on-premises data center? According to Kitchenham et al. [10], a systematic

literature review method is one of the best ways to identify and prioritize issues for decision

making and to sort large volumes of references. This method assists in identifying the

research questions and issues associated with the research topic. The overarching aim of this

paper is to develop and design a secure live VM migration framework to help cloud service

providers (CSPs) improve integrity protection in live VM migration from one VM to another

in the same platform (with the same hardware features and the same hypervisor [Xen

hypervisor]).

The remainder of this paper is structured as follows. Section 2 discusses the related work

and motivation for this research. Section 3 explains the design of the framework system

architecture and its agents. Section 4 presents the evaluation system architecture: that is, the

state machine. Finally, Section 5 summarizes the paper and discusses future work.

2. Related Work and Motivation
Critical concerns for cloud users involve protecting workloads and data in the cloud and

from the cloud, and ensuring trust and integrity for VM images launched on a service

provider’s cloud [11]. For live VM and workload data protection, cloud-user organizations

need a framework to securely place and use their workloads and data in the cloud. Current

provisioning and deployment frameworks include either storing the VM and application

images and data in the clear (i.e., unencrypted) or having these images and data encrypted

using keys controlled by the service provider, which are likely applied uniformly to all the

tenants.

Live VM migration [12] in the inter-cloud is a new way of looking at VM migration. It

allows the migration of VMs not only between data centers of the same cloud but also

between servers on different clouds. The driving force behind live VM migration between

clouds is to decrease the workload on a particular cloud and reduce the congestion of its

network. The key point of a planned migration is to take snapshots that preserve the state and

data of a VM at any given time. With these snapshots of a VM, an image of the VM in each

state is copied and stored. The snapshot is then migrated to the destination cloud, where the

hypervisor creates a new VM with the same configuration as the snapshot. The source cloud

redirects the incoming traffic of its VM to the destination VM soon after the target VM is up

and running.

Data deduplication [6] is a live VM migration technique that prevents large chunks of data

from migrating, thereby reducing migration time. This operates on the concept of only

selected memory material that has been altered on the source server being transferred. Thus,

the phase of migration involves only those parts of the VM that were updated at the source

end. A Dirty Block Tracking (DBT) mechanism and a new diff format are the two major

components of data deduplication. The role of DBT is to record all the operations that cause

changes in the picture of the VM disk, while the diff format is used to store the reported data.

4

DBT monitors and labels each changed disk page as a dirty file. Only the pages identified by

the DBT are migrated to the storage; the rest is left behind. Data deduplication is beneficial

for VMs undergoing multiple migrations, resulting in multiple destination servers. As it

reduces the migration time by a factor of 10, it is one of the most effective techniques for live

VM migration.

Yang et al. [7] suggest an Input/Output (I/O) Outsourcing scheme for Workload-Aware,

(WAIO) to improve the efficiency of live processing for VM migration. During the

migration, WAIO effectively outsources the working set of the VM to a surrogate device and

creates a separate I/O path to serve VM I/O requests. The VM live storage migration process

can be performed on the original storage by outsourcing VM I/O requests from the original

storage to the surrogate device, without interfering with them, while the outsourced VM I/O

requests are serviced separately and thus, much faster. This lightweight WAIO prototype

implementation and extensive trace-driven experiments show that WAIO significantly

improves the I/O performance of the VM during the migration process compared with the

existing DBT migration approach. In addition, WAIO allows the hypervisor to migrate a VM

at a higher speed of migration without sacrificing the I/O performance of the VM.

Riteau et al. [8] propose a live VM migration system, called Shrinker, which allows VM

clusters to migrate between data centers linked via a network. Through integrating data

duplication and cryptography hash functions, Shrinker reduces the data to be migrated. This

operates on the principles of handling distributed information, and of allowing chunks of

VMs to be migrated in multiple data centers across different servers. Shrinker is different

from traditional live VM migration methods as it allows source and destination server

hypervisors to interact with each other during migration.

Work on opportunistic replay [13] aims to reduce the amount of data in low bandwidth

environments that are migrated. This approach keeps a record of all types of user events that

occur during the execution of the VM. This information is then transferred to an identical

manufactured VM and put into effect to produce almost the same state as the VM source.

Zheng et al. [9] present a novel scheduling algorithm for storage migration that can

significantly improve the performance of I/O storage during wide-area migration. This

algorithm is unique in that it considers the storage I/O workload of individual VMs, such as

temporal location, spatial location, and popularity characteristics, to calculate efficient

schedule data transfers.

Berger et al. [17] discuss a vTPM that provides trusted computing for multiple VMs

running on a single platform. The key to this process is finding a way to store vTPM data

encrypted in the source platform and restoring them safely in the in-destination platform, as

well as a way to protect the integrity of the transferred data in the process of live vTPM-VM

migration, where it is vulnerable to all the threats of data exchange over a public network.

These include leakage, falsification, and loss of sensitive information contained in the VM

and vTPM instances.

This paper proposes a better alternative live VM migration framework, which assigns

valid but conspicuous values in the new system as “flags” for problem data. This means that

when users find a flag in a certain record, they know that the migrated record contains

information that could not be loaded immediately. The original data from the legacy system

persist in a standard format and are connected to the new record for each such example. The

user can quickly check the original source to interpret the data in a meaningful manner.

In addition, the proposed framework collects the target VM working set data over the

migration period to the Kororā platform. This helps the framework process to access the data

5

set during migration, while the I/O migration process is accessing the original disk most of

the time. Consequently, it is possible to significantly reduce the traffic between I/O processes

and the Kororā platform, and the overall integrity of the live VM migration can be improved.

3. System Architecture
The use of the IT security framework is supported by tools that enable service providers to

bridge the gap between control requirements, technical issues, and business risks. Kororā is

capable of measuring and preserving the integrity of live VMs migration in the cloud system.

The expected benefits of using this framework include increasing the level of integrity among

different physical hosts. Kororā allows users to check malicious files against three different

malware providers’ engines and it can check indicators of comparison details of hashes,

URLs, IP addresses, and domains from different resources.

This section aims to explain the system requirements (representing the problem from a

design point of view) through an intermediate model of logical architecture, to allocate the

elements of the logical architecture model to the system elements of the Kororā physical

architecture models. The proposed framework system requirements and the exact approach

taken in the synthesis of solutions often depends on whether the system is an evolution of an

already-understood product. The Kororā system architecture aims to meet the following

system elements and system architecture requirements:

• System Element 1 – Integrity of configuration files: In this case, the VM image structure

is such that it can represent a complete file system for a given platform integrity: for

example, ‘vbox’ files in virtual box or ‘.vmx’ files in VMware. Both these files can be

edited by a third party to make changes in the configuration of VMs.

• System Element 2 – Virtual hard disk integrity: The life cycle of the VM image consists

of different states. For instance, a VM image can be created, started, suspended,

stopped, migrated, or destroyed. Essentially, VM images are loaded from a storage

location such as a hard disk drive and run directly from a VM manager with a low level

of integrity: for example, ‘.vmdk’, ‘.vdi’, ‘.ova’ files. A third party can make changes to

these files after running them in their own environment since it is the actual OS holding

file; it would be easy to place a Trojan or malicious codes inside the files.

• System Element 3 – The integrity of the data files on the VM, including all confidential

files, and the integrity of the system files: The VM is loaded from the storage location

and the VM image may not comply with the intended settings and configurations

needed for proper implementation in each environment. The VM image itself could be

distorted (perhaps by an insider) or even maliciously modified. This work proposes two

ways to analyze these files – “supply the data files” and “system files hashsum” – on the

framework before migration and checking of the files after migration.

3.1. System Architecture Requirements

To apply the system design agents in the Kororā framework, the following requirements

must be considered in the Xen hypervisor environment:

• 64-bit x86 computer with at least 1 GB of RAM (this can be a server, desktop, or

laptop) and trusted platform module chipset on the motherboard. The TPM hardware

must be activated through the BIOS.

• Intel virtualization technology or AMD-V support (optional for paravirtualization [PV],

required for hardware VM and some PV optimisation).

• Sufficient storage space for the Kororā framework dom0 installation.

6

• Extensible firmware interface – this helps the hardware layer to select the OS and get

clear of the boot loader. In addition, it helps the CSP to protect the created drivers from

a reverse-engineering (back-engineering) attack.

• Software requirement cmake – this is the main additional product necessary for

compiling a vTPM. To manage domains with vTPM, libxl should be used rather than

‘xm’ which does not support vTPM.

• Linux host (Ubuntu 12.4) must be installed on the machine.

The Kororā system architecture focuses on a hypervisor that preserves metadata using

cryptography and hashing algorithms. The protected live VM migration framework based on

this hypervisor was designed to identify the different attacks possible and perform an

independent secure migration process. The approaches of live VM migration are generally

divided into three different classes: 1) Migration of the process; 2) Migration of memory; 3)

Suspend/resume migration. In this research, the process of live VM migration means the

process of migrating a VM from a source host to a destination host without suffering any

attacks. These requirements must be incorporated into the process of the secure live VM

migration platform.

Before the migration starts, it is important to ensure that source hosts and destination hosts

and VMs meet the requirements for migration that Kororā is trying to match and to verify

whether the target is correct, and to create a cryptography rule. Effective access control

policies must be provided to protect the process of live VM migration. If an unauthorized

user/role begins the live VM process and initiates the migration, the use of access control lists

in the hypervisor will avoid the occurrence of unauthorized activities (authorization). Using

route hijacking or Address Resolution Protocol (ARP) poisoning techniques in the migration

process, an attacker may initiate Man-in-the-Middle (MiTM) attacks. During live VM

migration, the source and destination platforms need to perform mutual authentication in

order to avoid MiTM attacks (authentication). An encrypted network must be set up so that

no data can be accessed from the VM content by an intruder and any software alteration can

be detected properly. This will help to prevent active attacks on live migration, such as

memory manipulation, and passive attacks, such as sensitive information leakage

(confidentiality and integrity). An intruder may intercept traffic and later replay it for

authentication in the process of the VM migration. Therefore, the method of live VM

migration should be immune to replay. For example, nonces in java applications help with the

password for the migration authorization, as well as the public key of the machine where the

user is sitting at, to provide the correct command that is transmitted to the server in migration

to prevent playback attack (reply resistance). The source host cannot deny the VM migration

activity. Using public key certificates can achieve this feature (source non-repudiation).

This framework is orthogonal to existing live migration approaches – including the

Zehang et al. [9] and Mashtizadeh et al. [15] live migration patents, and the Fan Peiru [16]

vTPM-VM live migration protocol – and it is a secure boost layer for most, if not all, VM

live migration schemes. In addition, this framework can be used to improve the security of

other VM tasks, such as those associated with the virtualization and the virtual networking

layers, which may experience the same problem of data integrity as VM live storage

migration. This research framework, as well as the three frameworks named above, exploit

the secure live migration characteristics, but they improve the VM migration security in

different ways. For example, the scheme of Zheng et al. [9] aims to significantly reduce the

total amount of data transferred by exploiting the workload of the VM’s locality. Rarely

updated data blocks are differentiated from frequently updated data blocks in virtual disk

images by analyzing the workload position. The rarely updated data blocks are transferred in

7

the migration before the frequently updated data blocks, so that the re-transmissions of data

blocks are minimized, thus reducing the total amount of data transmissions. While this

current research framework secures the live VM migration, its methodology is completely

different from that of Zehang [9].

Five agents of the design framework system architecture must be clarified. The

responsibilities of these agents are as follows:

• Virtual Trust Platform Model Agent: The vTPM agent provides trusted computing for

multiple VMs migration on a single platform [17]. With multiple VMs operating on a

single platform, vTPM offers trusted computing. It is important to move the vTPM

instance data along with its corresponding VM data to keep the VM security status

synched before and after the live vTPM-VM migration process. Current live VM

migration schemes only check the hosts’ reliability and integrity. This poses a huge

security risk for vTPM-VM migration. To solve this problem, the proposed framework

uses vTPM to secure boot VM(s) over the Xen hypervisor (see Figure 1, Label 1).

• I/O Agent: The I/O agent redirects the necessary I/O requests to the replacement device

from the operating VM itself. To minimize I/O traffic to the original replacement

device, it redirects all write requests on the replacement device [18]. Meanwhile, the

I/O redirects all the popular read requests identified by the Data Plane module to the

replacement device. If the replacement device has only partial data for a request, the

I/O issues read requests to the original replacement device and merge the data from the

original device into the replacement device. Either the original storage device [18] or

the replacement device can be redirected to the read requests from the migration

module. While the original storage device generates most of the virtual disk images, the

replacement device provides the modified chunks (units of information that contain

either control information or user data) of data. Because of the VM workload locality,

most of the requests will be routed to the original storage device (see Figure 1, Label

2).

• Data Plane Agent: Different memory contents are moved from one host to another host

in this module (e.g., kernel states and application data). The transmission channel must,

therefore, be secured and protected from any attack. All migrated data are transferred as

clear data without encryption in the live VM migration protocol. An attacker may,

therefore, use one of the following techniques to position himself in the transmission

channel to execute a MiTM attack: ARP spoofing, DNS poisoning, or route hijacking

[19, 20]. These attacks are not theoretical. Tools such as Xensploit work against Xen

and VMware migration [21] (see Figure 1, Label 3).

• Integrity Analyzer Agent: Protection of information systems is concerned with three key

information properties: availability, integrity, and confidentiality. These three critical

characteristics of information are major concerns throughout the commercial and

military sectors. Traditionally, confidentiality has received the most attention, probably

because of its importance in the military. Unlike the military security systems, the main

concern of commercial security is to ensure the integrity of data is protected from

unauthorized users. Availability and confidentiality are equally significant within the

commercial environment, where a secure working environment is required; however,

Clark and Wilson (CW) [22] propose a security model that focuses on integrity in

recognized mathematical terms by a set of constraints, or a valid state when it satisfies

these. Since much of the attention in the security arena has been devoted to developing

sophisticated models (e.g., Bell-LaPadula model [23, 24]) and mechanisms for

8

confidentiality, capabilities to provide confidentiality in information systems are

considerably more advanced than those providing integrity.

The integrity analyzer agent uses CW as a basic theory for specifying and analyzing an

integrity policy for Kororā. Moreover, it adopts the CW model to live VM migration

focusing on the subjects, objects (see Section 4), and their data exchange of users’

applications to enhance the security of the live VM migration mechanism, as well as

providing user convenience (see Figure 1, Label 4).

• Data Organization Agent: In the virtual disk images, the data organization agent

monitors the popularity of reading requests from the live VM itself. Only the popular

data blocks that will be read are outsourced to the replacement device. Since the

replacement device serves all write requests, monitoring the popularity of write

requests is not required. Each virtual disk image of the running VM is divided into

chunks of fixed size and the data organization agent records each chunk’s access

frequency. If the access frequency exceeds a predefined threshold for a particular

chunk, the entire chunk will be outsourced to the replacement device. All the

subsequent accesses to this chunk will be served by the replacement device, which

removes their I/O involvement with the migration process. By submitting read-only

requests, the migration module usually scans the entire virtual disk files. Most of these

requests will only be issued once, except for requests that read dirty blocks of data (see

Figure 1, Label 5).

This paper focuses on adopting evaluation theory to define the research system machine

and consequently identify a way to apply the integrity model in the design research

framework, as discussed in the next section.

Figure 1. System Design Architecture of the Kororā

9

4. Evaluation of the System Architecture: State Machine
One of the primary aims of the proposed integrity framework is to consider the full cloud

integrity environment and to capture all potential integrity attributes and elements as

evidence, including functional and non-functional elements. Evaluation is a key analytical

process for all intellectual disciplines and it is possible to apply different types of evaluation

methods to provide knowledge regarding the complexity and ubiquity of the CSPs [25]. This

paper aims to obtain a set of essential evaluation components. In particular, the evaluation of

the system architecture method has been applied to review the secure establishment

framework using the identification of these evaluation components and an analysis of their

weaknesses and strengths. Evaluation theory [26] is considered a theoretical foundation for

developing a secure live VM migration framework. Its processes are shown in Figure 2,

which represents an overview of the components of evaluation and their interrelations,

helping to establish a clear pathway for this study. Reaching a comprehensive and reliable

integrity level in live VM migration processes is the main reason for using the evaluation

theory. Further, this theory offers a clear, formal description of the evaluation concepts, as

listed below:

• Target: Integrity between CSPs and cloud service users (CSUs).

• Criteria: Integrity elements of the CSPs and CSUs that are to be evaluated.

• Yardstick/standard: The ideal secure live VM migration framework measured against

the current secure live VM migration framework.

• Data-gathering techniques: Critical or systematic literature review needed to obtain data

to analyze each criterion.

• Synthesis techniques: Techniques used to access each criterion and therefore, to access

the target, obtaining the result of the evaluation.

• Evaluation process: A series of tasks and activities that are used to perform the

evaluation.

Target

Evaluation
process

Criteria

Yardstick

Data-gathering
techniques

Synthesis techniques

Target
delamination

Evaluation
criteria

definition

Evaluation
process

development

Yardstick
development

Synthesis
techniques

development
Data-gathering

techniques
development

Figure 2. Components of an Evaluation and the Interrelationships between them [26].

4.1 System Architecture State Machine

The proposed framework in this research is a state machine framework. It consists of

subjects, objects, access attributes, access matrix, subject functions, and object functions.

Access attributes are defined as follows: Read, Write, Read and Write, and Execute (depicted

in Figure 3).

10

Figure 3. The Relationship Between Objects and Subjects

The proposed model state machine is as follows:

1) t∈T, where T is sorted Quaternion, each member of T is t

2) T = (a, B, c, D), where,

3) a ⊆ (S ×O× A),

4) B is an access matrix, where ⊆ A signifies the access authority of to ,

5) c ∈ C is the access class function, denoted as c= (, ,

6) D signifies the existing hierarchy on the proposed framework,

7) S is a set of Subjects,

8) O is a set of Objects,

9) A = [r, w, a, e] is the set of access attributes,

10) ee: R×T → I×T shows all the roles in the proposed framework, in which e is the

system response and the next state, R is the requests set, and I is the arbitrary set of

requests, which is [yes, no, error, question]. In this study, the question is important

because if the response is equal to the question, it means that the current rule cannot

deal with this request.

11) ω = [, , ...,], ω is the list exchange data between objects.

W (ω) ⊆ R× I×T ×T

(, , T*, T) ∈ W (w)

if ≠ Question and exit a unique J, 1≤ j≤s, it means that the current rule is valid,

subject and object also are valid because the object verifies the vTPM of the other

object (attestee) by request (challenge) for integrity checking. Consequently, the

result is,

(= , which shows for all the requests in the t there is a unique

response, which is valid.

Where, a ⊆ (S×O×A) where S is a set of Subjects, O is a set of Objects, and

A = [r, w, a, e] is the set of access attributes,

12) is the security level of the subject (includes the integrity level and category

level). Figure 3 shows the security level in the proposed framework and the

relationships between the subjects and objects. signifies the security function of

objects. Figures 3 show the relationship between the entire subjects, objects,

TOP SECRET SUBJECT A

SUBJECT B

SUBJECT C

SUBJECT D

SECRET

INTEGRATED

UNCLASSIFIED

OBJECT
SECRET

READ / WRITE

WRITE ONLY

WRITE ONLY

READ ONLY

11

security functions, and security level of the proposed framework.

13) The integrity of the vTPM is highest in the state machine and lowest in the user agent.

Therefore, the integrity level is , , , and level

; this study should prove that each state of the proposed framework is secure.

It has been assumed that each state is secure except for state three (Data Plane), as

shown in Figure 1. Therefore, if state three is secure, all the states are secure.

14) Σ (R, I, W,) ⊂ X×Y×Z

15) (x, y, z) ∈Σ (R, I, W,), if (∈ W for each t ∈T, where is the initial

state. Based on the above definition, Σ (R, I, W,) is secure in all states of the

system; for example, () is a secure state.

16) CW model has several axioms (properties) that can be used to limit and restrict the

state transformation. If the arbitrary state of the system is secure, then the system is

secure. In this study, the simple-security property (SSP) [27] is adopted. This

property states that an object at one level of integrity is not permitted to read an

object of lower integrity.

17) t = (a, B, c, D)

18) Satisfies SSP if,

For all s∈S, s∈S ⇒ [(o∈ a (s: r, w)) ⇒ (, >],

i.e., ≥ , ⊇

 ≥ , ≥ .

Based on Figures 1, 3, and the SSP axiom, all the objects of the proposed framework use

two primary concepts to ensure the security policy is enforced: well-informed transactions

and separation of duties. The integrity axiom is “no read down” and “no write up”, which

means a subject at a specific classification level cannot read and write to data at a lower or

higher classification respectively. Star property, Discretionary security, and Compatibility

property are other models that can be used to limit and restrict the state transformation, and

they will be used in future work.

5. Conclusions and Future Work
The proposed framework, called Kororā, is designed based on five agents running on the

Xen privileged dom0 and communicating solely with the hypervisor. The cloud scenario for

this paper is a public cloud environment, which means the tenants have the most

responsibility and control over their systems; therefore, the risks are higher. Consequently, as

a response to the research problem, this paper has represented a design system architecture of

a secure live VM migration. For further study, two more agents, called Go Agent and Libvirt

Agent will be added to the Kororā in order to support the proposed framework being run in

VMs and Xen hypervisor, respectively. A prototype will be developed to prove the

effectiveness of the Kororā.

References
1. Deylami, H., J. Gutierrez, and R. Sinha. More Than Old Wine in New Bottles: A Secure

Live Virtual Machine Job Migration Framework for Cloud Systems Integrity. in IEEE

2018 Eleventh International Conference on Mobile Computing and Ubiquitous

Network (ICMU). 2018.

2. Alliance, C.S., Top Threats to Cloud Computing The Egregious Eleven. 2019.

3. Alliance, C.S., Security Guidance for Critical Areas of Focus in Cloud Computing.

2017: p. 152.

12

4. Ali, M., S.U. Khan, and A.V. Vasilakos, Security in cloud computing: Opportunities

and challenges. Information sciences, 2015. 305: p. 357-383.

5. Herrera, A. and L. Janczewski, Issues in the study of organisational resilience in cloud

computing environments. Procedia Technology, 2014. 16: p. 32-41.

6. Han, Y., Cloud computing: case studies and total cost of ownership. Information

technology and libraries, 2011. 30(4): p. 198-206.

7. Takahashi, K., K. Sasada, and T. Hirofuchi, A fast virtual machine storage migration

technique using data deduplication. Proceedings of Cloud Computing, 2012: p. 57-64.

8. Yang, Y., et al. WAIO: Improving Virtual Machine Live Storage Migration for the

Cloud by Workload-Aware IO Outsourcing. in 2015 IEEE 7th International

Conference on Cloud Computing Technology and Science (CloudCom). 2015.

9. Riteau, P., C. Morin, and T. Priol. Shrinker: Improving live migration of virtual

clusters over wans with distributed data deduplication and content-based addressing.

in European Conference on Parallel Processing. 2011. Springer.

10. Zheng, J., T.S.E. Ng, and K. Sripanidkulchai, Workload-aware live storage migration

for clouds. Vol. 46. 2011: ACM.

11. Choudhary, A., et al., A critical survey of live virtual machine migration techniques.

Journal of Cloud Computing, 2017. 6(1): p. 23.

12. Buyya, R., R. Ranjan, and R.N. Calheiros. Intercloud: Utility-oriented federation of

cloud computing environments for scaling of application services. in International

Conference on Algorithms and Architectures for Parallel Processing. 2010. Springer.

13. Surie, A., et al. Low-bandwidth VM migration via opportunistic replay. in Proceedings

of the 9th workshop on Mobile computing systems and applications. 2008. ACM.

14. Forrester, R.J., W.W. Starnes, and F.A. Tycksen Jr, Method and apparatus for lifecycle

integrity verification of virtual machines. 2016, Google Patents.

15. Mashtizadeh, A. and S. Koundinya, Live migration of virtual machine persistent data

using mirrored input-output operations. 2012, Google Patents.

16. Peiru, F., et al., An improved vTPM-VM live migration protocol. Wuhan University

Journal of Natural Sciences, 2015. 20(6): p. 512-520.

17. Berger, S., et al., vTPM: virtualizing the trusted platform module, in Proceedings of

the 15th conference on USENIX Security Symposium - Volume 15. 2006, USENIX

Association: Vancouver, B.C., Canada.

18. Zhou, R., et al. Optimizing virtual machine live storage migration in heterogeneous

storage environment. in ACM SIGPLAN Notices. 2013. ACM.

19. Oberheide, J., E. Cooke, and F. Jahanian, Exploiting live virtual machine migration.

BlackHat DC Briefings, 2008.

20. Ver, M., Dynamic load balancing based on live migration of virtual machines:

Security threats and effects. 2011.

21. Perez-Botero, D., A brief tutorial on live virtual machine migration from a security

perspective. University of Princeton, USA, 2011: p. 8.

22. Clark, D.D. and D.R. Wilson. A comparison of commercial and military computer

security policies. in 1987 IEEE Symposium on Security and Privacy. 1987. IEEE.

23. Bell, D. and L. LaPadula, Secure computer systems: Mathematical foundations. 1973.

24. Sandhu, R.S., Lattice-based access control models. Computer, 1993. 26(11): p. 9-19.

25. Alabool, H.M. and A.K.B. Mahmood, A novel evaluation framework for improving

trust level of Infrastructure as a Service. Cluster Computing, 2016. 19(1): p. 389-410.

26. Lopez, M., An evaluation theory perspective of the architecture tradeoff analysis

method (ATAM). 2000, Carnegie-Mellon Univ Pittsburgh pa Software Engineering.

27. McLean, J., A comment on the ‘basic security theorem’of Bell and LaPadula.

Information Processing Letters, 1985. 20(2): p. 67-70.

