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Abstract 

Estimation of project development effort is most often 
performed by expert judgment rather than by using an 
empirically derived model (although such may be used by 
the expert to assist their decision). One question that can 
be asked about these estimates is how stable are they with 
respect to characteristics of the development process and 
product? This stability can be assessed in relation to the 
degree to which the project has advanced over time, the 
type of module for which the estimate is being made, and 
the characteristics of that module. In this paper we 
examine a set of expert-derived estimates for the effort 
required to develop a collection of modules from a large 
health-care system. Statistical tests are used to identify 
relationships between the type (screen or report) and 
characteristics of modules and the likelihood of the 
associated development effort being under-estimated, 
approximately correct, or over-estimated. Distinct 
relationships are found that suggest that the estimation 
process being examined was not unbiased to such 
characteristics. This is a potentially useful finding in that 
it provides an opportunity for estimators to improve their 
prediction performance.  
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1. INTRODUCTION 

The ability to accurately predict the development effort 
required for software systems and their constituent 
modules, as early as possible in the development process, 
is of considerable importance to any organization carrying 
out software development. Accuracy for software metric 
models may of course be defined in many different ways 
depending on the cost function for errors. Commonly 
used measurements of software metric model goodness 
include absolute and relative errors as well as threshold 
measures such as pred(). The optimal measurement of 
model goodness depends on both project and 
organizational characteristics which can vary widely.  

In this analysis a simplification of the widely used pred() 
measure is used, where a successful estimation is within 
35% of the actual, and under-and over-estimates are 
defined accordingly. This allows the use of classification 
models to predict types of estimate errors. Development 
effort predictions play an important role in both project 
management and higher-level management decisions. 
These decisions include acceptance of projects, resource 
allocation, and planning, monitoring, and controlling 
development.  

Predictions of development effort can be made in terms of 
person-hours (or days, months, or years depending on the 
scope of the project) using system/module characteristics 
commonly referred to as software metrics. These may 
include assessments of module size and complexity, each 
of which can be measured using many different software 
metrics, including those available from the design phase. 
The lower the level of detail of the required information 
for a predictive model (i.e. the earlier the model can be 
used with an acceptable degree of accuracy), the more 
valuable the model will be since it is in the early stages of 
development that such estimates are most crucial.  

When estimates of effort are made, using whatever 
technique (such as expert opinion, regression models, 
case-based reasoning, neural network models, fuzzy logic 
models, and so on), some subjectivity is usually 
involved— either in making the estimates themselves 
(since many estimates are in fact simply guestimates 
based on subjective opinion) or in calibrating some inputs 
into the model.  

FPA [1] can be subjective in two ways [8, 11]. First, a 
count must be made of the various functions of each type, 
and each must be classified as simple, average, or 
complex. Second, the total weighted count for a system is 
multiplied by a subjective processing complexity score.  

Given the scarcity of data for calibrating such models 
some subjectivity is inevitable, and probably desirable. If 
the estimation process was limited to only empirical 
models then the small data sets, coupled with a high 
proportion of outliers, would be unlikely to result in 
generalisable models. The inclusion of subjective 
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elements in such models allows for a great reduction in 
the number of variables, as well as the accounting for 
factors that are difficult to measure. Expert opinion is 
often difficult to quantify but can be an effective 
estimating tool, in its own right or as an adjusting factor 
for algorithmic models [15].  

This realization has prompted researchers to revisit their 
approach to the issue of estimation. Since the 1970s work 
has largely been concentrated on developing algorithmic 
estimation models, under the assumption that this would 
(by its very nature) result in improvements in estimation 
accuracy. Whilst some models have indeed proved to be 
useful in specific cases, their general applicability 
remains uncertain. In a study of the causes of estimation 
error [10] it was found that, whilst subjective guesses 
indeed tended to result in inaccurate estimates, accuracy 
was not improved with the use of algorithmic models. 
There are other reasons why some practitioners choose 
not to use algorithmic models, as illustrated by the 
following quotation taken from the estimation 
methodology of a major software house:  

The current [estimation] methodology is far too 
complex and difficult to use. This is demonstrated 
by the fact that it is not used. In fact, each person 
undertaking estimation tends to utilize their own 
heuristic approach.  

Such sentiments are also partly behind the demand for 
simplified versions of techniques such as function point 
analysis, as these are seen by some to be unnecessarily 
complex and/or detailed (e.g. see [12]). For instance, 
another major software house states:  

Because we can write programs and develop 
systems very quickly... it is important that any 
estimating techniques we use are quick and easy to 
apply, otherwise we could end up taking as long to 
estimate as we take to write the programs.  

Sometimes the choice of method is imposed—Host and 
Wohlin [5] describe the situation where an organization 
makes a significant change to its software process, 
rendering algorithmic models developed and calibrated 
from historical data virtually worthless. Under these 
circumstances expert estimation may be the only 
alternative.  

As a result we have begun to see a resurgence in the use 
of informed subjective estimation as a realistic 
alternative. In a comparative study of case-based 
reasoning, function point analysis, COCOMO [2], and 
expert estimation [13], it was found that the expert out-
performed all the other techniques in terms of accuracy 
and consistency. Moreover, the case-based reasoning 
method, which attempts to mimic the expert estimation 
process, was the next best performed. The study also 
reported prior evidence of the extensive use of expert 
estimation in industry. The results of a recent survey of 
software houses has provided further verification of the 
widespread use of expert judgment as either the only 
estimation method used or as a back-up to other models 
[3]. Host and Wohlin [5] provide further evidence of the 
effectiveness of expert judgment as an estimation method 
in a small experiment based on the personal software 

process [7]. Hughes [6] also reports the results of a case 
study of estimation practices, ultimately suggesting that 
research should be directed towards supporting expert 
judgment rather than abandoning it as a viable technique.  

This rather pragmatic approach may be even more 
feasible if more formally combined with the “estimation 
by analogy” method. Experts provide their estimates 
based on what they recall of previous similar (or 
analogous) modules or projects, perhaps with adjustments 
to cope with any differences between the previously built 
objects and the object to be developed. Heemstra and 
Kusters [4] found that these two approaches were far 
more widely employed in industry than algorithmic 
models, a finding also supported by [9]. As a result, the 
analogy approach has also seen a greater degree of 
exposure recently (e.g. see [14]).  

The main concern with expert judgment is the lack of 
visibility or repeatability. The work described in this 
paper addresses previously hidden biases and invalid 
assumptions. Without empirical analysis of expert 
estimates we cannot go beyond commenting on overall 
accuracy.  
 
2. MISESTIMATION OF EFFORT 

Despite the importance of accurate effort estimates, 
acceptable levels of accuracy for effort estimation are 
surprisingly low with a common measure for a good 
model being the attainment of estimates that are within 
25% of the actual figure at least 75% of the time (this can 
be written as pred(25) ≥ 0.75). Whilst this level of 
accuracy may not appear ambitious it is seldom met in 
practice, or even in post-hoc academic studies. Thus it can 
be seen that misestimation is more the norm for software 
metric models than an occasional and unfortunate 
occurrence. This motivates our use of the more realistic 
pred(0.35) measure in this paper.  

It might be supposed that the misestimation of 
development effort required for modules within a system 
(and also for systems themselves within an organization) 
is not entirely random when these estimates include 
subjective human input. Some associations, such as 
between the probability of significant misestimation and 
the sizes or types of the modules/systems, may be found 
to exist.  

Further evidence of the plausibility of such effects may be 
taken from the following comment from one of the 
software houses referred to above: “We still get it wrong. 
We under estimate constantly. Not so much on the small 
projects, but quite significantly on the larger ones.”  

These associations between characteristics of projects and 
the likelihood of misestimation may exist due to a large 
number of causes including:  

1. changes in technology that are not fully understood 
in terms of their effect on effort (such as newer tools 
that makes some types of module easier to develop),  

2. levels of personnel experience and skills (such 
factors are often difficult to assess, not to mention 
personal biases that project managers may have),  



3. a lack of understanding of the module/system 
characteristics (for example, some features may be 
seen as simple by a particular project manager when in 
fact they require substantial development effort),  

4. other influences due to the estimator’s background, 
or  

5. any number of other related reasons (including 
political and motivational goals—the “price-to-win” 
approach, whereby a low estimate is provided simply 
in order to win a contract in a competitive tendering 
situation, is an example of how these goals may 
circumvent the estimation process).  

In short, the existence of such consistent biases in 
subjective (or partially subjective) estimates seems 
plausible and could be argued as inevitable with any 
estimation procedure involving such subjectivity. The 
question would seem to be less whether such biases exist, 
but rather how significance such biases are. The issue of 
significance is harder to answer since it depends on 
organizational characteristics (such as project cost 
margins, project portfolio construction, and so on), so 
here only the issue of identifying statistically significant 
associations between module characteristics and 
estimation performance will be pursued.   
 
3. USES OF MODELS OF SYSTEMATIC 

BIASES IN EFFORT ESTIMATION 

Knowing the direction and magnitude of any systematic 
biasing effect could be seen as significant to project 
management for at least three reasons. First, since much 
effort estimation is performed using expert opinion or 
subjectively calibrated models, any information that 
enables bias correction in these estimates would be 
invaluable for project management purposes. Errors that 
are systematically made may be preventable by informing 
project managers that they are making such errors or by 
automatically correcting estimates in such circumstances. 
A manager who consistently underestimates the effort 
required for database modules, and underestimates the 
effort for larger modules is just as valuable in project 
management as an equally consistent correct estimator 
providing that the necessary adjustments are known. In 
some sense such adjustments may also be technology 
independent, or at least more so than algorithmic 
estimating models themselves. This would possibly 
enable their use for corrections on new forms of 
development where less empirical data is available.  

Second, any such associations would indicate that models 
that treat the difference between estimates and actual 
effort as independent and identically distributed random 
variables would be flawed.  

The third reason for such models being useful is that 
knowing which types of modules or systems are more 
likely to be misestimated allows project managers to 
assess the risk of estimates. For example, for modules that 
are high risk for underestimating it may be necessary to 
allow for more slack in the process.  
 

4. HEALTH PROJECT DATA 

In order to examine the possibility for and identify the 
nature of such misestimation patterns a data set of 77 
observations was formed from a large health system 
database development project. The system involved the 
recording of patients, tests, and inventories, as well as 
generating summary reports. The original data set 
contained 85 modules (groups of screens or reports that 
all belonged to a single low level task, such as entry of 
patient blood test results) for which all module data was 
available, less three without effort estimates and another 
five which included both reports and screens (without 
providing separate effort measures or estimates).  

The variables and their associated codings as shown in 
Table 1 were used. These variables are those that were 
thought likely to show some effect on the estimation 
process and that would be useful for managers in practice 
when identifying potential errors. They are also variables 
that should be available early in a project’s life-cycle, an 
important aspect of any effort prediction model. Even 
where numerical values are unavailable managers may be 
able to classify the module into one class for each 
variable (such as small, medium, and large effort). 
Another potential predictor of errors is the module’s 
position in the project time-line as will be briefly 
discussed in Section 8 as part of a separate analysis (this 
effect seems likely to be even more project specific).  

As can be seen the Modifies, Type, Entry, and Links 
variables are all binary, and there are three levels for 
Estimate and Size. If Estimate is treated as the response 
variable then there are 48 levels in the independent 
variables. 

This data can be analyzed in terms of counts for each 
level of each variable. Since there are six variables it is 
difficult to meaningfully illustrate the frequencies so that 
relationships can be noted for further investigation, and 
also to check that the cells have a reasonable count.  

The data was analyzed using contingency table analysis, 
logistic regression, and log-linear modeling. Contingency 
analysis is used to initially determine the associations 
between the Estimate type and the other five variables. 
Logistic regression is used to determine the ability of the 
independent variables to predict underestimates, errors in 
estimation, and overestimates (using the 35% threshold in 
each case). Log-linear modeling is then used to examine 
the main predictor variables in terms of associations with 
the three levels of Estimate. 

 

5. CONTINGENCY TABLE ANALYSIS  
5.1. Introduction  

Contingency table analysis is suited to analyzing the 
independence or otherwise of the relationships between 
the variables in terms of the counts in each cell. If the 
counts follow the marginal expectations then 
independence can be concluded. Otherwise, an 
association exists and will need to be further investigated.  
 



 

Table 1. The variables in the model 

 

Table 2. Associations between the predictor variables 

The X2 test is the most commonly used method of analysis 
in this situation and is valid for tables with size greater 
than 2 by 2 where the mean cell frequency is greater than 
five and the lowest cell frequency is one. This is met in all 
but one case in the following analysis, for estimate by 
links. In this case statistical analysis is quite redundant 
due to the striking nature of the relationship. The use of 
several tests for independence provides some degree of 
robustness.  
 
5.2. Analysis  

There are associations among the predictor variables as 
shown in Table 2 where the X2 statistics and their 
significance levels are reported. The significant 
associations are between Size and Links, Type and Links, 
Type and Modifies, and Type and Size.  

When analyzing the data using X2, Phi, Cramer’s V, and 
the Contingency Coefficient to test for associations 
between each variable (except Estimate) and Estimate the 
results in Table 3 were found. The crosstabs are shown in 
Tables 4 to 8.  

From Table 3 it can be seen that the value of Estimate is 
associated with Size, Type, and Links. There is also a 
potential relationship with Modifies. Entry does not seem 
to be associated with the development effort estimate. 
However, it should be remembered that these variables 
are intercorrelated, with, for example, smaller modules 

being more likely to contain no table links. The fact that 
such correlations exist suggests that not all variables may 
be needed in a model for Estimate. 

 
5.3. Conclusions from contingency table analysis  

For Size larger modules are more likely to be 
underestimated in terms of effort, while smaller modules 
are more likely to be overestimated. The latter aspect is 
predictable since small modules will generally not take 
less than a minimal amount of time that reflects the 
general overhead associated with developing a module 
irrespective of its size or other characteristics. However 
the tendency for large modules to be underestimated is 
more pronounced than might have been expected.  

The Type of the module seems to affect effort estimates in 
the manner that screens are much more likely to be 
overestimated, whereas reports are much more likely to 
be underestimated. This indicates a definite bias on the 
part of the estimator which would be interesting to 
investigate further on subsequent projects to see if it is a 
general bias or one specific to this project.  

Modules without any Links are more likely to be 
overestimated, while those with Links are more likely to 
be underestimated. This is consistent with the Size effect 
mentioned above since larger modules are more likely to 
have several tables involved. While this variable may be 



interesting, the correlation between Size and itself may 
mitigate against its usefulness in modeling. 

 

Table 3. Associations with Estimate 

 

Table 4. Size and Estimate 

 

Table 5. Type and Estimate 

 

Table 6. Entry and Estimate 

 

Table 7. Links and Estimate 

 

Table 8. Modifies and Estimate 

 

Table 9. The three models 

 

6. LOGISTIC REGRESSION 
6.1. Introduction  

Logistic regression is a suitable technique for the problem 
of classifying the modules into two classes. The output of 
the resulting equation expresses the probability of 
membership to the second group (with one minus this 
probability being that of the observation belonging to the 
first group).  

The predictions of probabilities can be turned into 
classification by using a threshold, usually 0.5 
(corresponding to 50%, i.e. the most likely class) although 
the actual value used depends on the cost of incorrect 
decisions. For example, if incorrect classifications to the 
first group were more expensive than to the second group 
the cut-off point may be lowered to move some of the 
more marginal decisions into the second class. In the 
absence of any guidelines here the default value of 0.5 is 
used.  

When developing the logistic regression models the 
method used was to enter all five predictor variables 
(Links, Size, Type, Modifies, and Entry) and then pick out 
the one or two most significant for further investigation. 
Assuming that two variables were reasonably related to 
Estimate, these variables were then used individually, in 
combination, and then in combination with an interaction.  

Finally the model with the one or two variables (but 
without the interaction) was tested against the full model 
to see if any of the other variables were at all influential. 
If this test was not significant, best indicated by the fact 
that the difference in deviance would be insignificant 
even with one degree of freedom, then the analysis ended 
there and the best model was selected. If the effect of the 



remaining variables was significant or almost significant 
then each of the remaining variables were tested to see if 
any one could reduce the deviance significantly. The 
process was repeated as necessary to see which variables 
were useful.  

Thus the process may be summarized as:  

1. run the analysis using all five predictor variables 
with Estimate as the dependent variable  

2. select all variables that have significance levels of 
less than 5%  

3. add variables that are close to being significant 

4. develop models using  

(a) each of the significant or nearly significant 
variables separately  

(b) all of these variables included  

(c) all of these variables plus their interaction(s)  

5. test the significance of adding the remaining 
variables  

6. if these variables provide a significant or close to 
significant result then  

(a) test adding each separately  

(b) add the significant variable(s) and repeat the 
process  

7. repeat until no further variables can be added.  

As well as considering the significance of changes in the 
deviance statistics, Akaike’s Information Criterion (AIC) 
was also used to encourage parsimonious models. 
However, where small differences in AIC existed the 
deviance statistic was used to select between the simpler 
and more complex model.  

Since the problem as it stands deals with three classes, 
and ordinary logistic regression is only suitable for binary 
classification a modification of the goal is required 
(nominal and ordinal logistic regression are other options 
here). Logistic regression models were used to separately 
predict three variables, defined as shown in Table 9. 

 

 

 

Table 10. The logistic regression models for identifying underestimates 

 

Table 11. The analysis of deviance for the logistic regression models for identifying underestimates 

 

Table 12. The classification table for the underestimates model 



6.2. Model 1—underestimates  

The first model for predicting underestimates produced 
the results shown in Table 10. From this table it is 
possible to construct Table 11 which shows the change in 
deviance for each term.  

From Tables 10 and 11 it can be seen that the best model 
is Size and Type. Adding Size to Type is certainly 
significant and adding the variables in the reverse order 
still results in a p-value of 0.0530 for Type. This is close 
enough to use, especially since AIC is also minimized for 
this model (77.641). Adding an interaction to this model, 
or the remaining three variables does not improve the 
model sufficiently. The performance of the model is 
shown in Table 12 with a cut-off point of 0.5.  

logit(Under)= -0.4989 + 1.3093Type - 4.2847Size1 - 
1.4696Size2           (1) 

The model is therefore as shown in Equation 1. This can 
be interpreted as meaning that for a large (Size3) screen-
based module the probability of the estimate being an 
underestimate is about 69% (note that screens are Type=1, 
and reports are Type=2). For a report the probability 
increases (to 89%), while for smaller modules the 
probability decreases (to 3% and 34% respectively for 
Size1 and Size2 screens, and 10% and 66% for Size1 and 
Size2 reports).  

Thus it can be seen that the size and type of the module do 
appear to share an association with the quality of the 
estimate in terms of project management making 
underestimates. More specifically, reports are more likely 
to be underestimated as are larger modules. 

 
6.3. Model 2—errors  

The second logistic regression model for predicting errors 
in estimates produced the results shown in Table 13. 
Using these results Table 14 can be obtained showing the 
change in deviance for each term. The lack of data 
prevented the development of a model including the 
interaction between Links and Size even if Size was 
considered sufficiently significant to warrant further 
investigation. There are zero links to other tables only for 
small modules.  

From Tables 13 and 14 it can be seen that the best model 
is Links. This does not quite minimize AIC (88.634 
versus88.475 for both Size and Links) but is very close. 
Adding other variables to Links does not improve the 
model sufficiently. The performance of the model is 
shown in Table 15 with a cut-off point of 0.5. Since the 
model only produced two values (0.6897 and 0.8947) 
taking any value between these two results in the 
performance shown in Table 16. This shows one danger of 

automatically applying a model without examining its 
actual behaviour. 

logit(Error) = 2.1401 – 1.3416Links   (2) 

The model is therefore as shown in Equation 2. For a 
module with no links to other tables the probability of an 
error in estimation of greater than 35% is 89%, and with 
links this drops to 69%. Thus it can be seen that the 
incidence of links to other tables from the main table is 
associated with more accurate estimation. Thus more 
complex and larger modules seem to have been estimated 
more accurately, which could suggest that more care was 
taken of their estimates or that more care was taken with 
their management to keep them to schedule.  
 
6.4. Model 3—overestimates  

The third logistic regression model for predicting 
overestimates in effort produced the results shown in 
Table 17. From here Table 18 can be obtained showing 
the change in deviance for each term.  

From Tables 17 and 18 it can be seen that the best model 
is Size, Type, and Entry. The addition of Links and 
Modifies does not seem to improve estimation. This model 
also minimizes AIC (63.687). The performance of the 
model is shown in Table 19 with a cut-off point of 0.5. 

logit(Over) =  -1.7646 + 3.9111Size1 + 1.1522Size2 
- 2.9399Type + 2.6532Entry     (3) 

The actual model is the one shown in Equation 3. In this 
case the smaller modules are more likely to be 
overestimated, as are modules for data entry. Reports are 
less likely to be overestimated than screens. This model is 
consistent with that obtained for predicting underestimates 
where this was associated with larger modules that were 
screen based. Here however a new variable, Entry, has 
emerged as useful for classification. This variable was 
only the third in the entry procedure, and only seems to be 
influential after accounting for Size and Type. 

 
6.5. Conclusions from logistic regression  

From the above three analyses it appears that the two main 
factors that are associated with errors in estimation are the 
size and type of the module. The existence of links and 
data entry capability also influences the estimate accuracy. 
The analysis for errors is less significant than for under-
and overestimates since the point of the analysis is to be 
able to make such directional predictions. However, it is 
interesting that only Links was required for modeling 
errors in prediction. This, along with the emergence of the 



Entry variable for overestimates, suggests the models for 
under-and over-estimation are not entirely symmetrical.  

There is definite evidence that the type of the module 
affects the probability, which is an interesting finding. The 
other conclusion that size affects estimate accuracy is 
more predictable since small modules will generally be 

correct or overestimated, while large modules will more 
often be underestimated. 

 

 

 

 

Table 13. The logistic regression models for identifying errors in estimates 

 

Table 14. The analysis of deviance for the logistic regression models for identifying errors in estimates 

 

Table 15. The classification table for the errors in estimate model 

 

Table 16. The classification table for the errors in estimate model (cutoff 0.74) 

 

Table 17. The logistic regression models for identifying overestimates 

 



 

Table 18. The analysis of deviance for the logistic regression models for identifying overestimates 

 

Table 19. The classification table for the overestimates model 

 
7. LOG-LINEAR ANALYSIS 
7.1. Introduction  

After the contingency table analysis and logistic regression 
models, three variables were selected for further analysis. 
These are Size, Type, and Estimate. The purpose of this 
analysis using log-linear modeling is to investigate 
associations between Estimate and levels of the other 
variables. The advantage of log-linear modeling over 
logistic regression is that here any number of output 
categories can be used. 

While Entry and Links were also found to be significant in 
the logistic regression section, they have been discarded 
here for three reasons each. First, common to both 
variables, there is a desire for simplicity in this analysis that 
is greatly aided by restricting the analysis to just size and 
type. Parsimony is a useful goal to keep in mind when 
developing models that must be interpreted and relied upon 
by managers who are not qualified statisticians.  

Second, again common to both variables, the associations 
using Size and Type are more useful from both research and 
practice perspectives in that they are more generically 
applicable and acceptable when compared to the more 
obscure Entry and Links measures.  

Third, Links was only significant for predicting errors— not 
errors of any direction, and Entry was only added to the 
model for overestimates as the third variable, suggesting 
that the majority of the association is contained in Size and 
Type.  

The overall frequency for the reduced set of Size, Type, and 
Estimate is shown in Tables 20 and 21. The full table 

showing all combinations of all variables is less useful since 
there are 144 levels of the six variables, with only 77 
observations. In addition many of the observations fall in 
the same cells, leading to large numbers of empty cells.  

However, even from this simple presentation it again 
appears that there is some relationship between Size and 
Estimate and between Type and Estimate even when the 
two variables are included (as compared to the pairwise 
comparisons in Section 5 on contingency table analysis). 
Overestimates are more common for small modules and 
reports. 

 
7.2. Analysis  

Table 22 shows the results of the various models developed. 
From Table 23 the significance of the interactions between 
Type and Estimate as well as between Size and Estimate can 
be seen. However the full model with the three way 
interactions shows that the interaction between Size, Type, 
and Estimate is not significant. 

All parameters are significant except for interactions 
between Type=1 and Size=1, Estimate=-1 and Size=2, and 
Estimate=0 and Size=2. The other 11 parameters are all 
significant. Residuals are normally distributed and appear to 
be independent.  

The expected counts are shown in Table 24. From here the 
odds of a correct estimate for a small screen are 0.22:1, for 
a small report they are 1.47:1 giving a log-odds ratio of 6.7 
in favor of the reports. For medium modules the 
corresponding odds are 0.62:1 and 0.49:1 respectively and 
the ratio is 1.27 in favor of screens. For large modules the 
odds are 0.27:1 and 0.13:1 respectively with a ratio of 2.08 



in favor of screens. For all Type and Size combinations the 
misestimates outnumber the correct estimates except for 
small reports. As the modules get larger the ratio becomes 
more favorable to screens, suggesting that effort for large 
screens is easier to estimate than for large reports. 

 
7.3. Conclusions from log-linear analysis  

From this basic analysis it can be seen that both Type and 
Size offer considerable potential in being able to predict the 
probability of misestimation. Modules are more likely to be 
underestimated if they are screens rather than reports, and 
are larger rather than smaller. The opposite relationships 
apply for overestimates. 

 

8. ESTIMATE ACCURACY AS A 
FUNCTION OF TIME  

One final, and very brief, analysis procedure was 
undertaken in order to determine whether estimation 
accuracy might change over the period of the project. It 
could be hypothesized that estimates should become more 
accurate as a project progresses due to organizational 
learning, or the opposite may occur in unstable systems (for 
example where requirements change frequently or new 

technologies fail). In fact this could even be seen as a test 
for problems in system development—if errors grow over a 
project’s life-time then this could indicate serious problems 
with the project itself.  

In terms of this particular system, reasonable accuracy was 
achieved at the beginning and end of the project, whilst the 
most important errors (large underestimates) occurred in the 
middle of the project. This is based on observing the 
scatterplot of errors against starting data for each module 
formed an easily visible n-shape.  

This suggests that either effort for the beginning and end 
tasks was simply easier to predict correctly, or perhaps the 
estimates were revisited towards the end of the project, 
meaning that tasks occurring at or after that point were no 
longer subject to significant effort error. The project 
manager was aware of some problems in the system 
development process and this is consistent with our 
suggestion of checking the stability of estimates over time 
mentioned above. We feel that while this is an interesting 
observation, and could possibly be useful in practice, it is 
much more project dependent than the earlier analysis and 
will require replication on other projects. 

 

 

 

 

Table 20. Overall frequency of Size, Type, Estimate variables 

 

Table 21. Proportions of Size and Type for Estimate 

 



 

Table 22. The results of the log-linear analysis using Size and Type as predictors of Estimate 

 

Table 23. The analysis of deviance of the log-linear analysis using Size and Type as predictors of Estimate 

 

Table 24. Expected frequency of Size, Type, Estimate variables 

 



9. CONCLUSIONS 

Through the analysis of the dataset using contingency 
table analysis, logistic regression and log-linear modeling 
it appears that for this particular dataset there are indeed 
systematic biases in the estimates of effort. These biases 
exist, at least, for the size and type of the modules and 
also for the existence of links to multiple tables and data 
entry capability. These latter two characteristics are 
however also related to the size and type of module.  

It is of course possible to produce models that adjust their 
estimates for these types of modules while using the full 
set of available numerical data for effort estimates. 
Simply by including binary variables in such models the 
intercept would be changed to reflect differences. 
Alternatively, for variables such as size, modification to 
the slope parameter may be made.  

Also, the results could be used in educating project 
estimators as to where their estimates are going wrong. 
This would provide a useful feedback mechanism, 
possibly accelerating the learning process for project 
managers. Lack of feedback has been a frequent 
complaint [6] and the work presented here could be used 
to address this problem.  

Similarly, models of risk could be constructed for those 
modules that are more likely to be misestimated, 
including some accounting for the likely magnitude (more 
than the three levels used here could allow for this) and 
direction (which has been shown here to be associated 
with some module characteristics).  

A number of limitations of this analysis need to be 
considered when examining the results. First, the obvious 
limitation of having only the one dataset is that there is no 
way of knowing if the biases were due to some special 
characteristics of the project or if the manager makes 
similar misjudgements on their other projects. Second, 
there are several other variables that could also have been 
related to estimate accuracy that were not able to be 
considered. These would include team size, developer 
experience, estimator experience, type of development, 
and development tool use.  

Despite these objections, the analysis does at least show 
that for this particular project manager and system 
combination there were systematic biases on the effort 
prediction involving size and type of the constituent 
modules. These two factors are perhaps the most intuitive 
and reasonable, providing a foundation for further 
analysis into other associations for the purposes of 
developing corrective models, educating and assessing 
project managers, and making risk estimates. 
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