

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

ii | P a g e

Contents

List of Figures ... v

List of Tables ... vii

List of Abbreviations ... viii

Attestation of Authorship ... ix

Acknowledgments ... x

Abstract ... xi

Introduction .. 1

1.1 Background and Problem Statement .. 2

1.1.1 Conceptual Visualisation ... 4

1.1.2 Problem Statement ... 5

1.2 Motivation and Rationale ... 6

1.3 Research Objectives and Contributions ..10

1.3.1 Capturing and Presenting the Conceptual Design ...10

1.3.2 IDE Integration ...11

1.3.3 Feature Richness in Visualisation..12

1.4 Scope of Research ...13

1.5 Research Methodology ..14

1.6 Structure of the Thesis ...14

Literature Review ...15

2.1 Software Visualisation ...16

2.2 Related Work in Software Visualisation ...20

2.3 Software Processes and Software Artefacts ...28

2.3.1 Software Process and Artefact management ..29

2.3.2 The Software Development Process in Present SV Research30

2.3.3 The Role of Software Structure Decomposition in the Comprehension Process34

2.3.4 Connecting the Dots...35

2.4 Summary ...36

Research Methodology and Design ..38

3.1 Research Paradigm ..39

3.2 Design Science Research: Key Concepts ...41

3.3 Revisiting the Research Objectives ...43

3.4 Research Design ..45

3.4.1 Understanding and Defining the Problem Space...45

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

iii | P a g e

3.4.2 Building the Conceptual Framework...46

3.4.3 Architecture Designing and System Construction ...48

3.4.4 Evaluation and Communication ..51

3.5 Summary ...52

System Design and Development ...53

4.1 Introduction ..54

4.2 System Architecture ..55

4.2.1 Main System Modules (Process-Oriented Perspective) ...57

4.2.2 GUI Module ...59

4.2.3 Summary ...59

4.3 System Design ...61

4.3.1 Description of the Visualisation Technique ...61

4.3.2 Mapping Technique ...65

4.4 System Implementation ...70

4.4.1 Vera ...71

4.4.2 Building a Hierarchically-Structured Model ..73

4.4.3 City Metaphor Layout Algorithm ..74

4.4.4 Implementation of Remaining and Completed Work ..75

4.4.5 Implementation of the Burn-down Chart ...76

4.4.6 Implementation of a Custom Tool Tip ..77

4.4.7 Implementation of Automatic Transparency ..78

4.5 System Features ..79

4.5.1 The City Metaphor Layout ..79

4.5.2 Method Representations (On-demand Transparency and Detachment)80

4.5.3 Presentation of Software Processes (Scrum Artefacts and Activities)80

4.5.4 System Artefact Search ..84

4.5.5 Custom-Built Tool Tip ...85

4.5.6 Remaining and Completed Work View ...86

4.5.7 Contextual User Interaction ...87

4.5.8 Glyph Selection ..87

4.5.9 Enhanced Navigation ...87

4.5.10 Source Code Integration...89

4.5.11 Burn-down Chart ...89

4.5.12 Colour-Coding for LOC..89

4.5.13 Colour-Coding for Package Nesting Level ...91

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

iv | P a g e

4.5.14 Top-down and Side Views ..91

4.5.15 Keyboard functions Map ..91

4.6 Summary ...92

System Evaluation ..93

5.1 Introduction ..94

5.2 Issues in 3D Software Visualisation ..95

5.3 Laboratory Validation ..97

5.3.1 Environment Specification ...97

5.3.2 Case Studies ...98

5.3.3 Summary of Case Studies ...111

5.4 Discussion ...112

5.4.1 Potential Applications ..112

5.4.2 Enhancements ...118

5.5 Summary ...124

Summary and Conclusion ..125

6.1 Summary ...126

6.2 Conclusions and Contributions ..128

6.3 Implications for Practice ..130

6.4 Research Limitations and Difficulties Encountered ...132

6.4.1 Real-world Scrum Data...132

6.4.2 Empirical Evaluation ...133

6.4.3 Difficulties Faced ..133

6.5 Future Research ..135

References ..138

Appendices ...148

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

v | P a g e

List of Figures

2.1: A view from Information Pyramids visualisation ..21

2.2: Lego Bricks and Geons-based software structure visualisation21

2.3: Treemaps and Cone Trees visualisation …………………………………………………….……....21

2.4: Software World visualisation ..22

2.5: The Panas et al. proposed 3D Cities Metaphor (2003) and their unified single-view

implementation (2007) ……………………………………………………………………………………………..22

2.6: The Solar System Metaphor …..…………………………………………………………………………..24

2.7: Code Mapping Visualisation ……………………………………………………………………………….24

2.8: Software Landscape visualisation ……………………………………………………………………….25

2.9: A view from CodeCity …………………………………………………………………………………………25

2.10: A view from CocoViz visualisation ……..….………………………………………………………….26

2.11: A view from EvoSpaces visualisation ...……………………………………………………………..26

2.12: Evo-Streets visualisation ...………………………………………………………………………………..27

2.13: Manhattan Eclipse Plug-in tool (top) and City Model SONAR plug-in (bottom) ...27

2.14: Conceptual representation of VRCS (left) and a view from Creole (right) ……….…33

2.15: Examples of tools supporting activity awareness; StarGate (left), Code_Swarm

(right), and Theron’s et al. (2008) in the bottom ……………………………………………………….33

4.1: The common main processing stages of SV systems …….......……………………………….56

4.2: Layered Architecture of ScrumCity …………………………………………………………………..…56

4.3: ScrumCity’s Overall Architecture Model …………………………………………………………..…60

4.4: Simple UML diagram showing Class and Method Relationships to a User Story ….63

4.5: UML diagram of the Scrum Data Model ……………………………………………………………..66

4.6: Scrum XML Schema Design (Release-Type Details) ……………………………………………..67

4.7: Scrum XML Schema Design (Sprint-Type Details) ………………………………………………..67

4.8: Scrum XML Schema Design (WorkEntry-Type Details) ……………………………………..…67

4.9: Scrum XML Schema Design (Feature-Type Details) …………….....…………………………..68
4.10: XML Schema Design of System Artefact Documentation …………………………….……68

4.11: ScrumCity visualising itself ………………………………………………………………………………..70

4.12: Vera's Eclipse Plugin showing ScrumCity's Toolbar command …………………………..72

4.13: Illustration of Vera's Contextual Menu ……………………………………………………………..72

4.14: A class diagram illustrating the hierarchical structure of the secondary logical

model ……..…74

4.15: Example view of the City Metaphor Layout as implemented in ScrumCity79

4.16: Method Representation in ScrumCity illustrating the dynamic transparency and

dynamic detachment ...80

4.17: Scrum Artefact List ...81

4.18: Animated transition to target system artefact ...82

4.19: An example scenario showing the locality of contribution of a selected Sprint ...83

4.20: In situ presentation of information ..84

4.21: Searching Functionality ..85

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

vi | P a g e

4.22: ToolTip demonstration ...86

4.23: Illustration of Remaining Work feature ..86

4.24: Colour-coding for completed work-hours percentage ...86

4.25: Contextual Menus demonstration ..87

4.26: Burn-down chart illustration ..90

4.27: Colour-mapping for LOC ...90

4.28: Colour-mapping of package nesting level ..91

4.29: Top-view and side-view illustration ...92

5.1: AntViz system as visualised by ScrumCity ..99

5.2: Two scenes of AntViz in different scenarios ...100

5.3: Burn-down chart scene from AntViz ...101

5.4: Main city view of ScrumCity ...102

5.5: Feature Locality and Remaining Work scene views from ScrumCity103

5.6: Burn-down chart scene from ScrumCity ...103

5.7: Main City Landscape of Apache IvyDE Eclipse Plugin ...104

5.8a: A view from Shrimp Suite showing a Release progress status...105

5.8b: Different scenes from Shrimp Suite as visualised by ScrumCity106

5.9: A tooltip showing details of a class ...107

5.10: A view of jMonkeyEngine3 city landscape as visualised by ScrumCity108

5.11: An isometric view and a side view of jMonkeyEngine3 in remaining/completed

work mode108

5.12: A burn-down chart scene from jME3 city..109

5.13: City landscape of jEdit as visualised in ScrumCity ...110

5.14: A view of jEdit city from a different perspective showing several buildings in

different modes ...110

5.15: Example scenario of contextual menu and in situ overlay GUIs..........................113

5.16: Example of the in-situ presentation of artefact documentation117

5.17: A visualisation of ArgoUML as visualised by Wettel’s CodeCity tool120

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

vii | P a g e

List of Tables

5.1: Biggest Issues facing 3D software visualisation as drawn from literature96

5.2: Specification details of machine used in the validation process98

5.3: Summary of subject system's sizes and execution time as experienced on the

validation machine ..111

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

viii | P a g e

List of Abbreviations

SV –Software Visualisation

SE –Software Engineering

LOC –Lines of Code

NOM –Number of Methods

NOA –Number of Attributes

WBS –Work Breakdown Structure

jME3 –jMonkeyEngine3 (a 3D graphics library)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

ix | P a g e

Attestation of Authorship

“I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person (except where explicitly defined in the acknowledgments), nor

material which to a substantial extent has been submitted for the award of any other

degree or diploma of a university of other institution of higher learning”

Mujtaba Alshakhouri

...

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

x | P a g e

Acknowledgments

This research endeavour would not have been realised without the academic and

personal support of several people. I hereby would like to express my sincere thanks to

everyone who has supported me either academically or personally during this

important period of my academic career. I especially would like to extend my utmost

gratitude and thanks to my supervisor, Professor Stephen MacDonell, whose

continued guidance, support, trust, and encouragement were truly invaluable to my

completion of this research. Thank you, Steve!

My sincere thanks and appreciation go also to all of the staff and colleagues at the

SERL laboratory for their personal support and encouragement and for making this

research experience both pleasant and inspirational. A special thank you goes to

Professor Neville Churcher from the University of Canterbury who was specifically

behind my first introduction to the exciting research field of Software Visualisation

during my earlier studies back there. A genuine thank you goes out to Jacopo Malnati,

whom I have never personally met but who has heartedly provided advice and support

over a distance.

Lastly, I would like to wholeheartedly express my warm recognition and appreciation

for my wife Zainab Alqallaf, and two daughters Mariam and Reima, for their endless

patience, for keeping a high spirit, and for standing beside me during those difficult

and challenging times.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

xi | P a g e

Abstract

Software comprehension is a complex and ongoing challenge facing the software

development industry. The often immense number of interrelated components in

contemporary software systems places a high cognitive load on software stakeholders,

whose job requires deep understanding and awareness of those constituting

components. Among many approaches, 3D visualisation of the software static

structure has recently emerged as a promising approach that is increasingly being

demonstrated to significantly help in alleviating that cognitive burden by exploiting

and leveraging humans’ natural perceptual abilities.

Furthermore, in addition to easing comprehension and increasing awareness of

constituting software artefacts, this technology has the potential to bring visible

various important aspects of the software process that could potentially make this

technology a valuable tool for a wider spectrum of software practitioners. Recent

literature, however, shows that the majority of prior research has limited itself to

visualising the software product and in the best cases, only highlighted some effects of

the software process.

This thesis identifies and attends to this gap in software visualisation research by

introducing a novel visualisation approach named Conceptual Visualisation. It asserts

that visualising the software process not only has several potentially beneficial

implications for the software industry, but that from a cognitive perspective,

visualising that process in the context of the software structure is particularly suitable

and significant to increase human awareness and understanding of both the processes

and their implemented product artefacts. The proposed approach is designed and

constructed following a systems development research methodology and adhering to

the principles of sound design science research. It is then assessed via functional

demonstration, being applied to six open source systems of varying size and

complexity. Conceptual Visualisation is shown to make a novel contribution to the

software visualisation research literature, addressing many prior stated requirements

in doing so. Once developed beyond a proof of concept, its use in practice should

bring multiple benefits to a range of software stakeholders.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

1 | P a g e

1
Introduction

This chapter provides a brief background and introduction to the software visualisation

field of research and highlights the contexts and motivations from which this research

arises. This leads to a statement of the problem that is addressed through the research

reported here. Research objectives and anticipated contributions are also introduced

and discussed.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

2 | P a g e

1.1 Background and Problem Statement

Software intangibility is a well-known problem that is frequently attributed in the

Software Engineering (SE) literature as being the major cause behind the inherently

high complexity of software systems (Caserta & Zendra, 2010; Gračanin, Matković, &

Eltoweissy, 2005; Claire Knight & Munro, 2000a). The often large number of

constituting components is one factor that contributes significantly to the complexity

of a system, but the virtual and non-physical nature of those components further

exacerbates the difficulty faced and adds further cognitive strain on stakeholders who

are trying to understand a software system at hand.

Unsurprisingly, the SE discipline is hence abundant with a wide range of research that

is specifically directed to tackling this intangibility and the comprehension challenge

associated with contemporary software systems. Several approaches and techniques

have been studied and proposed to mitigate this issue, and software visualisation (SV)

has over the past two decades gained prominent popularity and attention as one of

the most promising solutions. Indeed, software visualisation is now a well-recognised

field of research and practice in the SE community (Wettel & Lanza, 2011; Wettel,

2010) and has been empirically demonstrated to significantly support comprehension

and reduce the cognitive load faced by software stakeholders while undertaking

various categories of comprehension tasks (Carneiro, Orrico, & Mendonça, 2007;

Cornelissen, Zaidman, & van Deursen, 2011; Sensalire, Ogao, & Telea, 2009; Wettel,

Lanza, & Robbes, 2010; Wettel & Lanza, 2011). More specifically, and more relevant to

the research path adopted here, recent 3D visualisation techniques and prototype

tools are now at the forefront and state-of-the-art in SV research that aims to aid

human comprehension (Caserta & Zendra, 2010; Teyseyre & Campo, 2009). The

fundamental concept behind most software visualisation work revolves around the

application of visual metaphorical imagery to bring alive the intangible software

artefacts (products) to the human perceptual skills, hence scaffolding humans’

cognitive abilities to comprehend software systems. The drive behind this is to harness

and leverage the natural visual – and typically subconscious – capabilities of the human

brain for obtaining knowledge from the outside world. More detailed discussion on

this topic is provided in Chapter 2 as an exploration of the relevant literature.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

3 | P a g e

Software comprehension, nonetheless, is a very broad topic that encompasses a wide

range and categories of software tasks and processes. Yet, the literature shows that

the vast majority of both established and recent research on SV is mainly concerned

with one of (or a combination of) three classic contexts of use; comprehension of the

static structure of software (e.g., packages, classes, methods), comprehension of

software evolution (evolution of those static structures and their attributes), and

comprehension of program behaviour (during runtime) (Diehl, 2007a). Most recently, a

few studies and approaches have explored software visualisation from the perspective

of human activities rather than the software structure (Ogawa & Ma, 2008, 2009),

while even fewer have attempted to combine both perspectives in the same visual

scene (such as the work of Rigotti (2011)), by providing metaphorical representations

of the software structure and then highlighting some aspects of (typically) team

activities on top of those visual metaphors.

Software visualisation, as a field of research in the SE discipline, is however “still in its

infancy”, as remarked by Michele Lanza (an authority1 on contemporary SV research)

in the 2009 Java and Object Orientation (JAOO) conference (now known as GOTO).

Indeed, there are numerous potential contexts of applications that are still waiting to

be explored and investigated in the area of software visualisation. Software

visualisation has successfully materialised what has long existed only as textual and

intangible product artefacts and this opens the door for various other software

processes to benefit and take advantage of such technologies. One pertinent issue to

highlight here is that most current research dealing with visualising the static structure

of software only re-presents data (albeit, visually) that is already found there in the

source code (Petre & de Quincey, 2006). They do not provide users with new

knowledge or information that could potentially help them in their various tasks and

activities. While some approaches exist that extract potentially beneficial data from

version control systems or configuration management systems, the visualisation

techniques employed in these approaches are based on perspectives other than the

software structure (most are in fact information visualisation more so than they are

software visualisation), and are found for that reason to have not utilised the

fundamental capabilities of software visualisation for promoting comprehension of

1 http://jaoo.dk/aarhus-2009/speaker/Michele+Lanza

http://jaoo.dk/aarhus-2009/speaker/Michele+Lanza

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

4 | P a g e

software (Storey, Čubranić, & German, 2005). Furthermore, of those that visualise the

software structure, very few were found to have augmented their visualisations with

new knowledge, examples being Wettel's (2010) approach that highlights design

problems and the work of Steinbruckner et al. (Steinbrückner & Lewerentz, 2010;

Steinbrückner, 2010) that contextually highlights some aspects of software evolution

and modification history.

1.1.1 Conceptual Visualisation

Petre and de Quincey (2006) have emphasized the need for software visualisations to

present information that is typically not found in the code, stressing specifically on

capturing the originators’ real intentions and their rationale behind the implemented

code components. In an earlier paper (2002), Petre introduced the term “Conceptual

Visualization” suggesting that it is more significant to visually present the conceptual

design in the visualisation rather than merely re-presenting the implementation by

itself. She further added (2006, p.6) “… because the information most crucial to the

programmer – what the program represents, rather than the computer representation

of it – is not in the code. At best, the programmer’s intentions might be captured in the

comment”.

The expectation underlying Petre’s viewpoint is that software will quickly evolve,

developers and team members will change, and it is very common for documentation

to quickly fall behind. Maintenance can then become overwhelming as developers will

have only the source code from which they have to deduce the intentions of the

original developers and the rationale behind the implemented code components

before they can contribute further components to the system or maintain its existing

code base. While presenting the code components ― that is, the implementation ―

visually is significantly valuable and can ease comprehension (according to the

literature), still yet, augmenting that visualisation with some form of original

conceptual model and information concerning the processes that created each of

those components (which are normally not available in the code) is considered to be

particularly of even more significance and value. This typically unavailable knowledge

has the potential to inform other software tasks and activities for various stakeholders.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

5 | P a g e

Further details and discussions on this prospect are presented in the next chapter as

well as in Chapter 5.

According to the literature survey conducted for this thesis, and reported in the next

chapter, presenting the conceptual model as well as the software development

processes that resulted in the different software product artefacts, right within the

context of the software structure, has not been undertaken to date in SV research.

1.1.2 Problem Statement

Current software visualisation approaches do not make available the

conceptual design ― being a representation of developers’ original intentions,

their rationale, and development activities (also referred to in this thesis as

‘software development processes’) ― behind software systems. Most

approaches focus on visually re-presenting the already available

implementation (which exists as textual data) using visual imagery to support

comprehension.

In this research, a need has been identified to augment software visualisation

techniques of the static structure with information about the software development

processes ― which capture developers’ original intentions, rationale, design concepts,

and activities ― and present this collectively in a synchronised mechanism alongside

related software product artefacts directly into the visualisation scene. Those software

processes possess information that is important and valuable for various tasks but are

found to be commonly not documented. Moreover, developers inspecting the source

code typically have no immediate access to this information even if it were actually

available somewhere in the organization. Hence, linking and synchronizing these

valuable pieces of information right alongside their relevant code artefacts, that is, the

artefacts created as a result of those processes, and then presenting that visually in an

interactive environment is conceived to potentially introduce many advantages and

implications for the software development industry (Petre & de Quincey, 2006).

Further justification for the significance of presenting this information to stakeholders

is presented in the following sections.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

6 | P a g e

1.2 Motivation and Rationale

The motivation and rationale behind this research can be realised by considering three

points: the original fundamental drive behind software visualisation, the state of the

art in software visualisation taking into account specific areas lacking attention, and

the availability of an opportunity where addressing such a lack has the potential to

bring real benefits and applications to the current software industry. The discussion

that follows presents and discusses these three essential points.

Departing the Textual(-Only) Dimension

The role of visual models and diagrams in helping to convey and share knowledge is

well-known across almost all scientific disciplines. Communicating information through

imagery has been universally utilized by humans since the beginning of time. It is also a

well-known fact that the human brain perceives knowledge most primarily via the

visual system (Teyseyre & Campo, 2009). Moreover, all modern day engineering

disciplines depend heavily on visual diagrams to convey knowledge. Despite all that,

and despite the fact that software systems are considered amongst the most complex

artefacts that humans has ever created (Panas, Epperly, Quinlan, Saebjornsen, &

Vuduc, 2007), prominent software architect Grady Booch remarked in a 2010 keynote

presentation (at SOFTVIS’10) that the vast majority of developers still live entirely in

the textual dimension, and “like Flatlanders, have no understanding of or desire for the

visual dimension save for a few diagrams with dubious semantics that they may hastily

and ethereally sketch on a whiteboard”.

Rather than the developers being at fault, it is contended that the above situation is

largely the case due to the fact that software is intangible – something that sits it apart

from almost all other engineering disciplines. Software development shares with other

disciplines the fact that each has their own special processes that are systematically

followed to produce a desired product. However, in the case of software development,

the product is made unique by its non-physical and intangible nature. Hence, visual

models and diagrams cannot be put into immediate application. The products in this

case have no direct physical manifestation against which they can be compared.

Instead, metaphorical representations have to be devised first and then mapped to the

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

7 | P a g e

different aspects of the intangible software artefacts. It is presumed here that this

intermediary step is the obstacle that has truly hindered – and hinders still – the

software engineering discipline from taking full advantage of the visual dimension, i.e.,

from adopting visualisation technologies early on like other natural science and

engineering disciplines. In fact, almost all software visualisation researchers agree that

the main challenge for SV is in finding the effective mappings from the different

software aspects of interest to suitable graphical representations (metaphors), that

can support the maximum exploitation of humans’ visual perceptual (and

interpretational) skills (Caserta & Zendra, 2010; Gračanin et al., 2005; Teyseyre &

Campo, 2009). Taking the above into context, this research is motivated by an

assumption that software visualisation has numerous implications and potential

applications to offer to the software industry.

Contemporary Software Visualisation

The section above sheds some light on the original motives behind the emergence of

software visualisation as a field of research, and has concluded that it is fundamentally

concerned with supporting human comprehension by using metaphorical imagery to

minimise cognitive load. As addressed in depth in the literature review (Chapter 2), SV

research has evolved rapidly over the past two decades and researchers have

introduced a multitude of techniques and prototype tools, some of which have proved

to be highly effective and promising. It has been observed, however, that the majority

of current works in SV are primarily oriented toward addressing the product – the

software artefacts – whereas the process has been rather left behind. Petre and de

Quincey (2006) noted that visualisation in other domains is primarily oriented toward

the development process, not the artefact.

It is not difficult to deduce why this is the case. In most other disciplines, the eventual

product is physical and can be readily experienced and examined, whereas the process,

which can be seen as being more important to the producing organization, is ethereal.

It is therefore unsurprising to see visualisation being utilised in those fields to capture

and communicate a common picture of the development process amongst interested

stakeholders. On the other hand, in the software industry, both the product and the

development process are intangible. Software visualisation has largely succeeded in

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

8 | P a g e

materialising the product artefacts; it now needs to move on to the next step, which is

visualising the development process. Some researchers have even expressed that

there is currently no lack of techniques in software visualisation, but rather, there is a

true lack in addressing other important aspects of software and developing proper

mappings to present those aspects in context alongside the visualised artefacts (Storey

et al., 2005). In fact, no single tool or approach seems to exist that considers the

presentation of software development processes in the context of the software

structure; that is, presenting artefacts alongside their original development processes.

Software Development Processes in Agile Methods

Since their early advent, agile development paradigms have been much celebrated as

being amongst the most successful software development processes. They have been

instrumental in saving the software industry from a long notorious period of high

project failure rates. Thus there is significant motivation to consider agile processes in

particular in terms of supporting contemporary software development. Nonetheless,

most agile methods have been criticised for advocating a minimalistic approach when

it comes to documentation. For example, in the Scrum methodology, system

requirements typically exist only as user stories that are recorded, temporarily, on

sticky paper notes (or sometimes their digital equivalent). Those user stories are

eventually transformed or manifest into real software artefacts – the product. Over

time, as the development of the system advances, the system requirements, as

originally represented on those paper fragments, tend to get neglected and forgotten.

Soon, it becomes almost impossible to track individual software artefacts back to their

original processes – the user stories and the Scrum Artefacts that have produced

them.

This is a well-known issue in software engineering that is often referred to as

requirements traceability (and is also described more generally as artefact

traceability), referring to the ability to trace the implemented code components back

to the original functional requirements (as further discussed in Chapter 2). The entire

software system becomes eventually detached from its original development

processes. Those development processes, however, carry important information that

is considered valuable for various stakeholders. Managers (or developers), for

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

9 | P a g e

example, cannot then trace a certain feature in the system back to its original

specification. Such tracing-ability is important if there is a need to verify whether a

certain feature was implemented according to its original specification. Another

example is a developer who is trying to maintain someone else’s work but who may

not be able to easily understand the original intent or concept of the component that

needs to be maintained. In fact, researchers claim that one of the most practised

software tasks amongst developers is Concept Location (also called Feature Location),

which means finding the part of the source code that implements a specific domain

concept (Kuhn, Erni, & Nierstrasz, 2010; Xie, Poshyvanyk, & Marcus, 2006). Chapter 5

presents more details on this topic when considering the potential applications of SV.

This ‘detachment’ state between product and process is in fact a common issue not

just evident in Scrum practice, but even in many traditional development approaches.

Summary

Reflecting on the prior discussion of the fact that current software visualisation

approaches have failed to address the conceptual design model in their visualisations,

the complete picture of the primary motivation behind this research should emerge.

Software development processes in the case of Scrum practices are being captured by

user stories and those in turn collectively capture the conceptual design model –the

originators’ intents, concepts, and activities. In other words, the user stories and

details of their enactment account for the system’s conceptual design. Currently,

Scrum processes and their resulting software product artefacts typically exist

separately. This research envisions that a promising potential exists in exploiting

software visualisation to bring together and synchronise these two currently detached

artefacts – the Scrum process artefacts and the software product artefacts. This

research work emanates and derives from this particular vision.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

10 | P a g e

1.3 Research Objectives and Contributions

Taking the above discussion into account, and addressing the legitimate need to bring

together software artefacts with their original software processes, this work develops

a novel visualisation technique that captures and visually presents software processes

― design concepts, intents, and development activities ― linked and synchronized to

the software artefacts produced by those processes, directly into the visualisation

scene. A prototype tool is further developed as part of this research to implement this

new visualisation approach and demonstrate its potential capabilities. The three

subsections that follow describe the three core objectives of the research and the

contributions that derive from their achievement.

1.3.1 Capturing and Presenting the Conceptual Design

This work shares many connections and commonality with the Petre and de Quincey

(2006) earlier call to integrate a system’s conceptual design within the visualisation

scene, a call that forms the first research objective. The research reported here is seen

as an extension of Petre’s original idea that takes it to its natural next level. The

popular Scrum practice of the agile software development paradigm has been

identified as presenting a promising opportunity to demonstrate how a conceptual

design can be integrated into and presented using present-day software visualisation

techniques. Furthermore, this work demonstrates several potential application

contexts resulting from the proposed visualisation approach that are foreseen to

support different stakeholder groups in undertaking various software tasks and

activities. This research builds on and makes use of two pivotal concepts, the Scrum

practice and the City Metaphor.

Assuming a Scrum development environment, the Scrum artefacts – primarily user

stories in this case – and their enactment activities capture to a great extent the

original developers’ intentions, concepts, and rationale behind each software artefact

created. Hence, Scrum artefacts and activities in this situation represent the

conceptual design that Petre emphasised as a critical aspect missing from current

software visualisation techniques. Furthermore, the Scrum practice is highly systematic

and modular, and so its data model has a consistent and reasonably standardised

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

11 | P a g e

format rendering it fairly easy for collection and then correlation with software

artefacts. Hence, by merging and synchronising these two normally detached artefacts,

the visualisation approach introduced here enables stakeholders to visually examine

and reason about individual system artefacts contextually and alongside their original

concepts and processes.

The popular city metaphor of 3D software visualisation is considered to be appropriate

in terms of supporting the synchronised representation of product and process. Its

metaphorical representations capture and convey the true structure of software

artefacts and it has been shown to be highly flexible in accommodating various facets

of software information. Moreover, the city metaphor has been empirically

demonstrated to significantly reduce cognitive load and aid human comprehension of

large-scale software systems (Wettel et al., 2010; Wettel & Lanza, 2011). Taking this

into consideration, this research adopts the Wettel and Lanza version of the city

metaphor introduced first in their 2007 paper (with some slight modifications) (Wettel

& Lanza, 2007a). In fact, by integrating the Scrum artefacts within the city metaphor,

this work lends further support to Wettel’s primary claim in his PhD thesis that the city

metaphor is highly versatile (Wettel, 2010).

1.3.2 IDE Integration

One criticism directed towards many current software visualisation tools is that they

are implemented as standalone applications, hence significantly impeding their

adoption and practical use in the software industry and the wider SE research and

practice communities (Kienle & Muller, 2007; Sensalire, Ogao, & Telea, 2008). Even

though the recent few years have witnessed the appearance of a few IDE-integrated

tools, their number is still very limited (and is more so for 3D-based tools, in particular)

and most are short of functionality that would render them practical or useful to

stakeholders. In fact, based on the literature survey of this research, only four such 3D-

based tools that are IDE-integrated exist, namely Citylyzer, Manhattan, EvoSpaces (see

Chapter 2, section 2.2) and VisMOOS (Fronk, Bruckhoff, & Kern, 2006). Hence, a

second objective of this research is to address the lack of integration of visualisation

tools with IDEs by developing a proof-of-concept prototype tool as an Eclipse plug-in,

to make it potentially more accessible and hence useful to developers and

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

12 | P a g e

practitioners in the SE community. Eclipse was chosen due to its large user base and

strong support for plug-in development.

1.3.3 Feature Richness in Visualisation

Besides the shortcoming of being standalone, another highlighted drawback of existing

software visualisation tools is their limited support and the modest set of features

made available to the user. While the visual presentation of otherwise intangible

system artefacts is undoubtedly an advantage, to render a tool practically usable and

realise the true power and capabilities of software visualisation many researchers (see

Chapter 5) have stressed the need for feature-rich tools that can solidly demonstrate

the practical benefits of SV to the SE community and industry. Even though the tool

presented here is a prototype and a proof-of-concept, one important objective of this

research is to take advantage of new technological advances in 3D graphics. For this

reason, the tool is built as a fully automated and immersive 3D environment directly

into the Eclipse IDE. Many features that specifically aid different user tasks are

implemented such as artefact search, animated transition to targets and in-situ

documentation. User disorientation is a major issue in 3D environments so special

attention is also paid to user interactivity and navigation enhancement. The tool

supports a rich user experience through the use of multiple native GUIs right within

the virtual 3D environment, significantly enhancing the immersive nature. It is

anticipated that with the various task-oriented features made available, the tool can

further contribute in facilitating the adoption of 3D software visualisation in the

industry as a respected and practically useful technology.

To summarise the research objectives, this work introduces a new contextual

visualisation approach for synchronising the product (the software artefacts) with its

original development processes (represented by Scrum artefacts and activities) and

then presents this approach in an immersive and interactive visual representation that

has the potential to inform several software tasks. The approach contextually

highlights human activities and reveals their impact on individual software artefacts.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

13 | P a g e

1.4 Scope of Research

It has been stated above that research in software visualisation is primarily undertaken

to visualise three different aspects of software; software static structure, software

evolution, and runtime behaviour. The work reported in this thesis is specifically

focused on visualising the static structure of software systems while also exploring

other techniques to extend this form of visualisation to accommodate other aspects of

software development. In other words, this work is primarily concerned with

investigating other possible application contexts of software structure visualisation. To

achieve this, a new technique has been devised to augment the city metaphor

approach with information regarding software development processes (Scrum

artefacts and activities) and then a tool developed that implements the new

visualisation technique. While the Scrum process presents a promising opportunity for

synchronising the product with its original process (and hence realising the Conceptual

Visualisation notion), it is acknowledged nonetheless that the choice of Scrum as a

specific process represents an inherent limitation on the scope of this research.

Lastly, as with all academic research endeavours, such an undertaking is constrained

by various restricting and limiting factors, the most prominent of which is the course of

time. This work has involved the exploration and evaluation of existing 3D software

visualisation metaphors and the 3D graphics libraries available in order to choose

those that best match the needs of this work. This has been essential but costly in

terms of research time. For that reason, undertaking a form of empirical evaluation to

soundly support and validate this research has not been feasible. Nonetheless, to

demonstrate the effectiveness of the devised technique and its success in addressing

the research objectives, several case studies have been carried out where the tool is

used to visualise several open source software systems of different sizes. The different

task-oriented features of the tool and its potential capabilities for supporting various

software tasks are also demonstrated. This material is presented in Chapter 5.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

14 | P a g e

1.5 Research Methodology

This research is primarily concerned with the development of a new technique to

address the advancement, growth, and improvement of a relatively novice discipline in

software engineering. The technique is practically demonstrated by implementing it in

a newly developed tool. This form of research is commonly known as Design Science,

which can be simply defined as the practice of undertaking research with the aim of

developing a solution that addresses a particular need or problem (Hevner, March,

Park, & Ram, 2004). The design science research methodology aligns very well with the

direction and intent of this research and hence it is adopted here. This research

approach is also referred to as employing a Constructivist Methodology in other

philosophical schools of thoughts. Chapter 3 of this thesis elaborates further on this

topic.

1.6 Structure of the Thesis

This chapter has presented software visualisation as a discipline, pinpointing

particularly important but less explored and investigated areas, and has described how

this research is intended to contribute to the discipline by addressing those specific

areas. Chapter 2 of this thesis introduces a more focused and elaborated literature

review of past SV research, paying particular attention to previous related works.

Chapter 3 describes in detail the approach followed in this research for achieving its

objectives in light of the methodology adopted. The selected tools and technologies

are also introduced in this chapter. Details of the design and architecture of the

developed technique and system, along with discussion of the implementation

process, are presented in Chapter 4. In Chapter 5 some evaluation criteria drawn from

the literature are introduced and then a discussion of the laboratory evaluations based

on those criteria is presented. Chapter 6 concludes this research presenting a

summary and highlighting its major contributions, as well as its limitations, and then

ends with recommendations for desired future improvements and research paths.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

15 | P a g e

2
Literature Review

This chapter presents a focused and concise summary of software visualisation

research. Prior research that is particularly relevant to this work is discussed focusing

primarily on three areas of interest: software structure visualisation, 3D software

visualisation techniques, and recent emerging issues in software visualisation research.

Prominent and influential tools/techniques in each respect are highlighted in the

process. Most importantly, the inadequacy of current visualisation techniques in

presenting the user with several important aspects of the software engineering

discipline is discussed, revealing thereupon the point and context from which this work

specifically emanates.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

16 | P a g e

2.1 Software Visualisation

The introductory chapter has provided a brief background on Software Visualisation

(SV) as a research discipline explaining its core concepts and assumptions, its

fundamental motives, and why it is deemed valuable for various software engineering

(SE) tasks. This section presents a more formal and detailed introduction to the domain

of Software Visualisation, shedding light on its early beginnings and how it came to be

a recognised and respected field of research in the SE discipline.

Definition. Software Visualisation has been defined in the literature as:

“… the use of the crafts of typography, graphic design, animation, and
cinematography with modern human-computer interaction technology to facilitate
both the human understanding and effective use of computer software”.

This is the definition provided by Price et al. in 1994. While aspects of this definition

remain accurate, the field has since grown significantly, making this definition

somewhat obsolete according to some researchers. Knight and Munro in 1999 put

forward a similar definition but added to it the emphasis on ‘reduction of complexity’

as a fundamental characteristic of the field. Michele Lanza in a 2009 conference on

software visualisation reduced the Price et al. definition to simply “The use of

computer graphics to facilitate the understanding of software”, which more succinctly

conveys the essence of the field as it is currently practised.

Classification. Although a range of definitions such as those just described exist,

current software visualisation research is also commonly defined by how it is used.

Use is often classified under three primary categories (with respect to the aspect of

software they address) which are: visualisation of software static structure (including

lower source code and higher architectural levels), visualisation of runtime behaviour

(also called Trace Visualisation), and visualisation of software evolution (Diehl, 2007b).

This widely used categorisation shapes almost all research in the field and might have

even unintentionally played a role in limiting its growth and its slow-paced embrace of

other aspects of software. As was introduced in Chapter 1, software visualisation is

essentially concerned with supporting user comprehension, and thus the above

categorisation implies that research in each category should address the

comprehension of those three aspects of software. However, the software industry

and software engineering disciplines constitute several other aspects that are likely to

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

17 | P a g e

benefit from software visualisation, such as software management, software

development processes, and software maintenance. As is revealed in the following

sections, it is only recently that researchers have recognised the need, and the

potential, to utilise contemporary visualisation technologies to aid comprehension and

awareness of these and other aspects of software engineering practice.

Comprehension. The case for software visualisation and its role in supporting

cognition and comprehension, amplifying knowledge and intelligence, and increasing

awareness in the domain of software engineering, has already been introduced in

Chapter 1. The potential and value of software visualisation as a research discipline is

in fact very much established in literature and has its roots in older disciplines,

particularly in the information visualisation domain. Some prominent research works

that deal with software visualisation’s role in supporting comprehension include (Bassil

& Keller, 2001; Boccuzzo & Gall, 2009a; Brooks, 1983; Carneiro, Magnavita, &

Mendonça, 2008; Eichberg, Haupt, Mezini, & Schäfer, 2005; Knight & Munro, 1999,

2002; Knight, 1999; Kot, Grundy, & Hosking, 2005; Lemieux & Salois, 2006; Pacione,

2004; Panas, Epperly, Quinlan, Sæbjørnsen, & Vuduc, 2007; Von Mayrhauser & Vans,

1995; Wettel & Lanza, 2007a; Young & Munro, 1998). Moreover, some recent

empirical studies that further attest for SV in aiding software comprehension have

already been mentioned (in Chapter 1). The essential concepts underpinning those

studies revolve around the fact that software systems often comprise a large number

of complex, interrelated artefacts, that those artefacts are intangible, and that they

generally involve relatively large numbers of people working on them. With these

concepts in mind, building a visualisation of a system and augmenting it with the

information of interest is then conjectured to make it significantly easier and more

effective for stakeholders to construct a mental picture of the system and to gain

awareness of different aspects of it, such as the scale and state of its components,

their inter-relationships, and who is/are involved in their development.

Software visualisation also draws significant support from existing cognitive theories

and from cognitive models that were introduced by researchers studying

comprehension in software engineering (Bacim et al., 2010; Cockburn, 2004; Petre,

Blackwell, & Green, 1998; Sulaiman, Idris, & Sahibuddin, 2005; Tudoreanu, 2003; Xu,

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

18 | P a g e

Chen, & Liu, 2009). One of the most important (and highly cited) works investigating

the cognitive aspects involved in the software comprehension process is the 1999

paper by Storey, Fracchia, & Müller titled “Cognitive design elements to support the

construction of a mental model during software exploration” where they studied

different strategies and cognitive models involved in program understanding as

undertaken by different stakeholders performing various tasks. Their paper is noted

for promoting the top-down comprehension model as being particularly suitable for

software visualisation techniques. Tudoreanu (2003) has also studied how visualisation

tools can reach the goal of reducing cognitive effort by focusing on maintaining

‘cognitive economy’. He suggested that to reduce cognitive effort, a tool needs to

reduce the overall amount of information handled by users while at the same time

maximising those specific elements of information that are directly related to the

problem at hand, implying that to be truly effective, a visualisation tool needs to be

specifically customised for each category of task it intends to support.

SV Literature. The software visualisation body of literature is abundant with a wide

spectrum of research works that have noticeably flourished after the field gained

momentum with the inauguration of its first international Dagstuhl (one day

symposium) seminar in 2001. The very first work on software visualisation can,

however, be traced back to the mid-1980s with the appearance of probably the

earliest visualisation tool called Rigi in 1986 (Eichberg et al., 2005) that provided

visualisation of high level software structure (subsystems and modules). Since then, a

plethora of visualisation techniques and tools have appeared, with several other

review papers that have sought to provide classifications, taxonomies, and surveys of

those studies. During the early stages of the field’s establishment the majority of

studies were focused on ‘algorithms’ runtime visualisation and animation’ as can be

seen from one of the earliest survey studies conducted by Ellershaw and Oudshoorn in

1994. That said, some researchers tend to classify algorithm visualisation as a separate

field, referring to it instead as algorithm simulation.

More directly relevant to the research reported here are the surveys and literature

studies focused on the three categories of software visualisation mentioned above.

Some of those studies were comprehensive general surveys such as (Gračanin et al.,

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

19 | P a g e

2005; Lemieux & Salois, 2006; Sensalire et al., 2009; Sensalire & Ogao, 2007a), some

focused specifically on techniques and tools that visualise software static structure

(Caserta & Zendra, 2010; Ghanam & Carpendale, 2008; Sharafi, 2011), others focused

exclusively on 3D techniques (Rilling & Mudur, 2005; Teyseyre & Campo, 2009), while

others have conducted survey studies to primarily investigate issues in existing

software visualisations and to help guide future researchers. Among the most

prominent works falling into that last category are the series of studies compiled by

Sensalire et al. (Sensalire et al., 2008, 2009; Sensalire & Ogao, 2007a, 2007b) and the

Petre & de Quincey (2006) paper titled “A gentle overview of software visualisation”. In

that same theme Kienle and Muller, in their 2007 paper titled “Requirements of

Software Visualization Tools: A Literature Survey”, reported several quality attributes

and functional requirements that are presumed to make a visualisation tool more

effective, based on a comprehensive literature survey. Gallagher, Hatch, & Munro

(2008) have also proposed an evaluation framework to help researchers assess the

effectiveness of software architecture visualisation tools in particular, and they have

highlighted some of the most desired requirements in that regard. Given the existence

of this number of diverse literature studies, it is largely redundant to present here a

broad overview of past work in this field. Moreover, taking into consideration the fact

that this work is focused on 3D visualisations of software structure, the following

section is hence purposefully limited to presenting and exploring a selected number of

past related studies that either involve 3D visualisation techniques, or that specifically

visualise the software structure, or that address a combination of both.

It is relevant also to highlight here that the last two survey studies just mentioned,

namely the Sensalire et al. series and the Petre and de Quincey (2006) paper, were

particularly valuable and indispensable for this work as they inspired different aspects

of it. The relevance of the Petre and de Quincey work has already been discussed in

the introductory chapter, while that of Sensalire et al. features prominently in Chapter

5 when discussing the ‘desired features’ for software visualisation tools.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

20 | P a g e

2.2 Related Work in Software Visualisation

This section provides an overview and brief description of some past research works

that are deemed most relevant to this research. Where appropriate, newly introduced

visualisation metaphors or techniques that are of particular interest are highlighted.

SeeSoft and SHriMP are widely held to be the earliest tools to have introduced

visualisation of the static structure of software systems, and so are among the most

frequently discussed works in the SV literature. SeeSoft was introduced in 1992 by Eick

et al. and its visualisation technique was based on mapping a system’s source code

lines to 2D coloured pixels. It gained a high profile in the 1990’s after the authors

reported its successful application at Bell Laboratories “on a software [sic] containing

millions of lines of code and developed by thousands of software developers” (Caserta

& Zendra, 2010). SHriMP was introduced in 1995 by Storey et al. and it primarily

provided a hierarchical Treemap-based 2D visualisation of software systems at high

levels (packages, classes, and so on), but also incorporated several other different

views including one at source code level. SHriMP (which is still being maintained and

supported today) is best known for being a well-supported visualisation tool that

incorporated many core functionalities including versatile zooming approaches and

animated transition, both of which were later attributed by other researchers to be

highly valuable to users from a cognitive perspective.

In 1997, Andrews et al. introduced a 3D visualisation technique called Information

Pyramids (Figure 2.1) that used nested 3D cuboids to visualise hierarchical structures.

The authors applied the technique to visualise file systems (directories and

documents). While this approach belongs to the Information Visualisation domain

rather than Software visualisation, it has however inspired some later metaphors of

software visualisation work.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

21 | P a g e

A year later, Feijs & De Jong used the VRML language (now replaced by its successor

X3D) to introduce a simplistic form of 3D visualisation of software architecture based

on what was to be later known as Geons (3D primitive shapes) and Lego Bricks. Being

based on VRML, the created 3D worlds were viewable in web browsers and allowed for

basic navigation and user interactions (see Figure 2.2). In 1999, Churcher et al. also

used the 3D VRML language in experimental studies to implement different 3D

visualisation techniques such as cone trees, treemaps, and forests (see Figure 2.3) that

primarily visualised the inheritance structures in systems.

Knight & Munro (2000) in a paper titled “Virtual but Visible Software” introduced the

first full-scale virtual reality environment for visualising software. Inspired by earlier

researchers that highlighted the benefits of virtual reality worlds in exploiting the

natural perceptual skills of humans (such as navigation, orientation, and sub-conscious

filtering) to comprehend vast amounts of information, they developed a Software

World visualisation technique to visualise the structure of Java source code using a real

world metaphor (see Figure 2.4). In their visual metaphor, they mapped source files to

cities, classes to districts within cities, and methods as individual buildings. The

Figure 2.1: A view from Information Pyramids, from
(Andrews et al., 1997)

Figure 2.2: Lego Bricks and Geons-based early
software structure visualisation, from (Feijs &
De Jong, 1998)

Figure 2.3: 3D treemaps (left) and 3D cone trees (right), from (Churcher et al., 1999)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

22 | P a g e

buildings’ height, colour, and the number of doors they had, were further mapped to

different metrics (lines of code (LOC), access modifiers, and number of parameters,

respectively). An immediately notable issue associated with this approach is that by

depicting each source file as a separate city and individual methods as buildings, the

visualisation will hardly be capable of accommodating large-scale systems and will

have scalability issues in both graphic cost and view complexity. Knight et al. in

following studies explored several aspects of software visualisation, focusing

particularly on virtual reality worlds and their advantages over simple 3D shapes, and

have investigated issues such as the aspects of software that can take advantage of

this technology (or as they put it, ‘are acquiescent to visualisation’), the nature of the

data that can be visualised, and the scope and nature of tasks that can be supported

(Knight & Munro, 2000a, 2000c, 2001). In 2002, joined by Charters and Thomas, they

extended their Software World to visualise software structure at the component

(module) level, which they named Component City (Charters, Knight, Thomas, &

Munro, 2002).

In 2003, Panas et al., motivated by the concept that realism better exploits humans’

natural and intuitive interpretation skills, took real world metaphors to the extreme

Figure 2.4: Software World, from (Claire Knight
& Munro, 2000a)

Figure 2.5: Top (a): Original proposed approach of
Panas et al. (2003), from (T. Panas et al., 2003).
Bottom (b): A view of the 2007 implementation,
from (Panas, Epperly, Quinlan, Saebjornsen, et al.,
2007)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

23 | P a g e

and proposed a highly realistic visualisation approach based on a 3D Cities Metaphor

that incorporated trees, street lamps, moving cars, and a variety of buildings, all

realistically textured (see Figure 2.5a). The approach was intended primarily to inform

project decision makers by visualising software systems at the production stage in

order to visually highlight cost-related information and issues. Even though the authors

originally reported their metaphor as ‘3D City Metaphor’, it is described here as ‘Cities

Metaphor’ to highlight the fact that their metaphor mapped each package to a

separate city (hence creating multiple cities) and classes were then mapped to

individual buildings on top of those cities – this classification strategy was adopted

originally by Caserta & Zendra in their 2010 survey study. Two years later, the same

authors developed a versatile visualisation framework called Vizz3D that allowed users

to create different visualisation views by configuring the model-to-view and view-to-

scene mappings instead of hardcoding them (Panas, Lincke, & Löwe, 2005). In 2007,

the authors used Vizz3D to build a single-view visualisation technique (Figure 2.5b)

that incorporated many ideas from their original 2003 proposition (Panas, Epperly,

Quinlan, Saebjornsen, & Vuduc, 2007).

In a further effort to utilise real world metaphors, Graham et al. (2003) proposed a 3D

visualisation approach named Solar System (see Figure 2.6) to visualise software

structure (at package and class levels) augmented with software metrics, and

implemented a prototype tool to demonstrate the concept (Graham, Yang, & Berrigan,

2004; Yang & Graham, 2003).

Bonyuet et al. (2004) have also experimented with new 3D technologies to help push

the interactivity level in software visualisations to even greater realism (see Figure

2.7). They utilised a 4-wall digital CAVE© display, a virtual reality magic wand, and a

pair of LCD glasses to allow users to literally ‘inhabit’ their 3D software world, named

Code Mapping. However, the visualisation technique itself was very simplistic and was

based on connected geons. This type of visualisation is referred to as graph-based, in

relation to graph theory, and is known in SV literature to be impractical at scale,

leading to extremely cluttered views (Ghanam & Carpendale, 2008; Marcus, Feng, &

Maletic, 2003).

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

24 | P a g e

In 2004, Balzer et al. presented yet another 3D visualisation technique called Software

Landscapes aimed at visualising the static structure of large-scale object-oriented

software systems. In their metaphor, they used 3D spheres to represent packages with

the spheres being nested inside each other to depict the hierarchical structure of

packages. Each sphere can have a platform with 2D circles on its surface representing

classes, and in each circle, 3D coloured cuboids were used to represent both methods

and attributes (see Figure 2.8). One key contribution of their work, however, is the

introduction of the Hierarchical Net approach to route the connections between

different artefacts through their parents, eliminating the elusive problem of cluttered-

views associated with representing interrelations in many other software visualisation

techniques. Their approach also involved an automatically-adjusted transparency

approach to reduce visual complexity such that as users approached a sphere, it

became more and more transparent until the sphere’s surface was completely

invisible. On the other hand, the approach makes it very difficult, if not impossible, for

the user to have a global overview of the whole system structure. Users cannot see the

contents of a package, including the classes, until they approach it, hence losing the

ability to see the entire structure at once.

In 2007, Wettel and Lanza introduced a new City Metaphor called CodeCity that has

attracted extensive attention from the SV community and according to (Lanza, Gall, &

Dugerdil, 2009) had ‘a remarkable impact in terms of scientific publications’. Wettel (as

part of his PhD thesis) implemented the visualisation technique in a tool with the same

name and that was reported to have been downloaded more than 1400 times in less

than a year.

Figure 2.6: Solar System metaphor, from (Yang &

Graham, 2003)

Figure 2.7: A view from Code Mapping, from (Bonyuet et
al., 2004)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

25 | P a g e

CodeCity was promoted as supporting software habitability through a well-designed

version of the city metaphor that corresponded better to reality, allowing viewers to

feel ‘at home’ when navigating and exploring the virtual city, hence maximising the

exploitation of humans’ orientation and perceptual skills to support comprehension of

software (see Figure 2.9). Wettel further developed the tool to support identification

of specific design problems, and to support different software evolution views.

Amongst all the 3D metaphors studied in this research, CodeCity was found to possess

simplicity and good navigability experience, and displays the most natural-looking

structure when it comes to its layout technique. It was also empirically evaluated and

reported as significantly supporting user comprehension of software structure, as was

noted above (see Chapter 1, section 1.3). The research work reported here is based on

a slightly modified version of CodeCity, as was disclosed in Chapter 1, and hence more

details and discussion of this visualisation approach are provided later in this work. A

simplified version of this metaphor was later integrated into the Eclipse platform as a

plug-in called Citylyzer1 (Biaggi 2008).

CodeCity was in fact part of a Swiss-wide research project aimed at researching and

exploring new 3D software visualisation techniques that further included two other

separate works. One of those is called CocoViz (Boccuzzo & Gall, 2007a, 2007b, 2009b)

and it explored the novel idea of introducing audio into software visualisation (see

Figure 2.10). The third tool is named EvoSpaces and was introduced in 2007 by Alam

and Dugerdil. EvoSpaces has a dedicated developer and is intended to be a distillate of

the successful concepts introduced in both CodeCity and CocoViz. It has extended

CodeCity’s original city metaphor and so allows users to navigate inside individual

1 http://www.pedevilla.net/down.php

Figure 2.8: Software landscape, from (Balzer et

al., 2004)
Figure 2.9: A view from CodeCity, from (Wettel & Lanza,
2007a)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

26 | P a g e

buildings where they can find people working on different levels, in a representation of

methods (Figure 2.11). EvoSpaces also supports trace visualisation at runtime.

Another 3D visualisation approach based on a city metaphor was presented in 2010 by

Steinbrückner and Lewerentz who introduced a novel layout technique that not only

accounted for the software structure, but also made software development history

explicitly visible in the layout. Their layout mechanism was called Evo-Streets and is

based on a hierarchically-structured street layout where a certain subsystem (or

package) is represented by a street and then contained subsystems or sub-packages

subsequently form branching streets. Classes are then represented as buildings

attached to their immediate parent package. To represent development history for

each class (or module), a terrain is then introduced to elevate each class according to

its development version (higher is older) where contour lines are also added to

indicate the number of versions for each class (see Figure 2.12). The approach was

implemented and demonstrated in a prototype tool that provided different views for

system evolution.

In 2011, Francesco Rigotti developed an Eclipse plug-in tool called Manhattan that was

based on the City Metaphor of Wettel and Lanza and that introduced a new aspect of

software to the 3D city metaphor. Utilising another Eclipse plug-in called Syde (Hattori

& Lanza, 2010) that extracted and made available software data from a versioning

repository, Rigotti added the capability to monitor team activities (mainly commits)

projected on top of the visualised city. The approach highlighted modifications made

to the system in real time and accounted for deletion, additions, and updates (see

Figure 2.13a).

Figure 2.10: CocoViz, from (Lanza et al., 2009) Figure 2.11: A view from EvoSpaces, from (Alam &

Dugerdil, 2007b)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

27 | P a g e

To conclude this section, during the course of this research (in what might be the first

industrial adoption of 3D software visualisation techniques) a tool named City Model1

was released in early 2012 as a plug-in to the widely used SONAR code quality

management and analysis platform (see figure 2.13b). The tool is based on a city

layout that is remarkably similar to Wettel’s CodeCity and was developed by a

company named eXcentia. However, it uses different metaphor mappings than

Wettel’s approach such that the LOC metric is depicted as the height of a building (in

Wettel’s CodeCity, buildings are colour-coded to depict LOC range) and the number of

methods is represented by the width of a building. While it is particularly significant

from a scientific point of view to see this technology being adopted beyond the

academic arena and being applied in the real world, the specific metric mappings used

in City Model lead to undesirable results. Extremely large buildings can be observed to

quickly dominate the city landscape while the rest of buildings become, on the other

hand, comparatively very small and jammed between the gigantic buildings, making

them hard to distinguishing and interact with. More importantly, mapping the LOC

metric to buildings’ height was specifically reported by (Kuhn et al., 2010) as

1 http://qualilogy.com/en/city-model/

Figure 2.12: Evo-Streets layout with contour-lined

elevated terrain, from (Steinbrückner & Lewerentz,

2010)

Figures 2.13: Top (a) a view from Manhattan, adapted

from (Bacchelli et al., 2011). Bottom (b) a view from

City Model, from the tool’s webpage.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

28 | P a g e

significantly confusing and misleading in an experimental study involving experienced

developers. The confusion was attributed to the fact that the LOC metric was not

always an indicator of centrality or importance.

The above focused review summarises the current scope and breadth of research that

has been undertaken in the space of 3D software visualisation and/or visualisation of

software static structure. As explained above, the fundamental concept behind all

these explored approaches revolves around the notion of using ‘spatial’

representations to help materialise the virtual components (and aspects) constituting

software systems, hence rendering them more comprehensible for humans. The

distinguishing characteristic of each approach that could essentially deem it effective

or not in achieving that goal relies heavily on the nature of the visualisation metaphor

being employed. The SV literature is abundant with studies and guidelines highlighting

the characteristics and aspects of metaphors that are presumed more effective than

others but experimental validation is nonetheless an essential factor to truly justify the

effectiveness of any such metaphor. A notable trend, however, is that both real-world

as well as 3D metaphors are found to dominate most recent SV works (Caserta &

Zendra, 2010). The research conducted and reported in this thesis is well-informed by

many of these prior works as the following chapters reveals (and as reported in

Chapter 1) and it directly addresses some of their shortcomings.

2.3 Software Processes and Software Artefacts

Software project management is a highly complex task often accompanied by a high

risk of failure. It involves a multitude of inter-related tasks and decision making

activities that are critically dependent on obtaining accurate information from various

sources, on top of which is the development process. This data is critical for informing

the various activities and tasks of project management such as cost management,

scheduling and human resource allocation, quality and risk management, performance

monitoring, and even for stakeholder communication.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

29 | P a g e

2.3.1 Software Process and Artefact management

To support software managers in their day-to-day work many project management

and planning tools have been developed and are considered currently indispensable

assets to any mature and well-managed software development organisation. However,

most such tools have a common missing link. They provide process information about

the product being developed but that information is completely and physically

disconnected from that product. Information therefore can get quickly out of sync and

outdated as the product evolves or is updated. Moreover, as time passes, and

particularly after deployment, tracing the product back to the original process that

created it becomes very difficult. In software management this problem is known as

‘artefact traceability’ and it has led to the emergence of a new area of research called

artefact management. In a recent study on this subject, Fasano and Oliveto (2009)

highlighted this issue stating that both project planning tools and Process Support

Systems (PSSs) are often missing adequate support for enabling artefact traceability,

making management of changes difficult. In their paper, they introduced a novel

software management tool named ADAMS to enable fine-grained traceability between

software artefacts and the software processes that produced them. In their own words

(p.146), ADAMS “enables the definition of a process in terms of the artefacts to be

produced and the relations among them, supporting a more agile software process

management than activity-based PSSs”. To explain further, their tool allows a manager

to link a file (or even entities inside that file) to its/their related processes and team

members. The concept behind their tool is based on allowing project managers to use

a product-oriented work breakdown structure (WBS) augmented with extra process

information to define a hierarchy of the software artefacts that would be produced by

each team member, and to define any relations and dependencies between them. The

emergent model then forms the bases for their tool where each defined WBS entity

can be linked to the actual code implementation.

The overall idea behind this work is that, by linking and unifying the software artefacts

with their related processes, various kinds of management tasks and activities can be

significantly better-informed.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

30 | P a g e

The efforts of Fasano and Oliveto work are well-aligned to the work presented here in

terms of objective – which is to synchronise the software product with its processes

(down to an individual and fine-grained level) in order to better inform various aspects

of software management and software development processes. A key difference

between the two is that the work presented here makes this synchronisation process

explicitly visible within the context of the software structure by taking advantage of

software visualisation technology. During the course of this work different frameworks

of software decomposition were in fact considered (as discussed in Chapter 3)

including the WBS framework. However, it became evident that use of this framework

is declining in present day software development organisations as agile approaches

become predominant. Furthermore, the product-oriented WBS is typically defined as a

high-level architecture decomposition of a project, that is, in terms of modules and

components, never reaching the fine-grained granularity anticipated by the Fasano

and Oliveto tool. In this regard, it can be argued that their approach is disconnected

from current practice in the software community. For the aforementioned reasons and

as is revealed later, a different approach that is more connected to current practice

has been adopted in this research for defining and consolidating the product artefacts

(code implementations) with their processes.

2.3.2 The Software Development Process in Present SV Research

In addition to the various anticipated benefits of representing the software

development process in software visualisation, this research is further motivated by

the fact that this aspect of software is not accounted for in existing software

visualisation techniques. In fact, many aspects of software are absent or only weakly

supported in current software visualisation techniques, and many recent researchers

have highlighted the need to address this inadequacy. Storey et al. in their (2005)

survey dealing with the support of human awareness in SV tools specifically stated

(p.200): “there does not appear to be a lack of visualization techniques that can be

applied to providing activity awareness in software development. What is lacking is

how to integrate the various techniques so that they can be effectively used in

combination to answer the questions the users will have.” Petre and de Quincey (2006)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

31 | P a g e

also emphasised this issue, stating that to adequately support a particular application

of use in software visualisation one needs to carefully determine and account for the

information that will specifically support those tasks – thus highlighting the fact that

different tasks require different information. They further discussed four application

scenarios and illustrated the possible information that would need to be accounted for

by the visualisation technique in order to adequately support each scenario.

Petre and de Quincey (2006) focused particularly on the lack of representation of the

“concepts” and “developers’ original intentions and rationale” that together underpin

the delivered software products, and highlighted their importance for supporting

design reasoning. They specifically stated that, in contrast to other fields of

information visualisation, software visualisation has limited itself to the artefact and

has left behind the development process (where the concepts and rationale are

captured). This was discussed in detail in the previous chapter when introducing the

notion and importance of Conceptual Visualisation.

Storey et al., on the other hand, focused in their study on representing human

activities in order to support awareness in software visualisation techniques. They

defined awareness as “an understanding of the activities of others, which provide a

context for [one’s] own activity”. They explored several existing SV tools in this respect

and concluded that only few have offered reasonable support for human activity

awareness. To adequately support activity awareness they cited and listed specific

questions that a visualisation tool should be able to answer and those questions have

been recognised earlier by some researchers as ‘important elements’ for supporting

awareness. These questions are:

 Who is or has been working on the artefacts?

 Who is the person responsible for or expert in a particular part of the system?

 What happened since a developer last worked on the project? (modifications,

additions details)

 Where did this take place?

 When did this happen?

 Why were these changes made?

 How has a file changed and is there a relationship with other files?

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

32 | P a g e

The authors have finally summarised these questions into four categories; authorship,

rationale, time, and artefacts, from which users should be able to gain insight when

using the tool.

Notably, Petre and de Quincey considered the missing development process as the

focal point behind promoting awareness and referred to the concerns of Storey et al.

as ‘subtle’ aspects of awareness that are a by-product of attention to software change.

Indeed, as is revealed in the following sections, by attending to the development

process and explicitly representing it in the visualisation, almost all of the questions

that Storey et al. considered as ‘important elements’ of activity awareness become

readily available in addition to a more important element which is the ‘rationale’ or

‘original concept’ behind each artefact.

There are two important aspects of the Storey et al. study that also need to be

highlighted. The first is the source and nature of the data that the tools they surveyed

depended on to present ‘awareness’ in the visualisation. Their survey included 12

tools, 9 of which extracted their data mainly from version control systems, two by

analysing differences between different versions of the system (parsing source code

files), and one by capturing information directly from the development environment.

Some of the tools used a multiple of those sources. It is evident that the amount and

value of information/knowledge that can be extracted from these sources and then

visually represented to the user is constrained, especially when compared to what

Petre and de Quincey propose in terms of capturing and representing aspects of the

entire development processes (conceptual design data) and making the associated

data available in the visualisation.

The second aspect that needs to be highlighted is the nature of the visualisations that

the tools produced. All the tools surveyed had not considered providing the extracted

data within the context of the software structure (two exceptions were a tool called

Creole and another proposition called VRCS (Figure 2.14) but both used a graph-based

approach which does not expose well the actual structure of the artefacts). Most of

the tools used different graphs, bar charts, pie charts, and text displays to present the

extracted data.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

33 | P a g e

The above two highlighted aspects are predominant and characterise almost all

existing software visualisation tools that are classified as ‘supportive of activity

awareness’. Hence, for all these tools, the knowledge and information that they

represent is inherently limited to what the version control systems make available,

which is generally commit-related information. Those two characterising aspects were

found to apply even in recent tools and studies published after 2005 (i.e., after the

Storey et al. survey). Examples of those later studies include StarGate (Ogawa & Ma,

2008), a chart-based tool (Theron, Gonzalez, & Garcia, 2008), and Code_Swarm

(Ogawa & Ma, 2009). Figure 2.15 shows views from all three tools. The Manhattan

tool, introduced in the previous section, represents a slight exception in that it

presents the data within the context of the system structure, but it still relies on the

same type of data.

Figure 2.14: A conceptual view from VRCS (left) and a visualisation view from
Creole (right), from: (Storey et al., 2005)

Figure 2.15: Top Left: A view from StarGate, from (Ogawa & Ma, 2008). Top Right: a view
from Code_Swarm, adapted from (Ogawa & Ma, 2009). Bottom: a view from the chart-
based visualisation tool, from (Theron et al., 2008).

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

34 | P a g e

2.3.3 The Role of Software Structure Decomposition in the

Comprehension Process

The previously stated emphasis on representing relevant and important data within

the context of the software structure is purposeful and well-justified. Evidence exists in

the literature that strongly indicates that the software structural decomposition is

strongly connected to how developers construct understanding and build knowledge

about the system they are developing (or maintaining). For instance, in an

experimental study that involved a software visualisation approach called Codemap

(Kuhn et al., 2010), the authors were surprised to find that even though their

visualisation technique used a topic-based layout, participants used the tool “as if its

layout were based on package structure—even though they were aware of the

underlying topic-based layout”, when solving the various comprehension tasks of the

experiment; suggesting that this decomposition structure plays a significant role in the

software comprehension process. Developers appear to intuitively (and sub-

consciously) build an internal map of the software structure decomposition that is then

utilised by the brain to recall and locate an artefact of interest.

Evidence supporting this inference can also be found in earlier studies of software

cognition theories and comprehension models. Most of the established cognition

models are found to incorporate some form of a mental model that developers

construct internally based on the inherent ‘decomposition’ of software (examples

include the top-down, the bottom-up, and the integrated comprehension models)

(Storey et al., 1999). Furthermore, in a highly cited research article on program

comprehension where six cognition models were analysed and discussed, the outcome

of the study suggested that developers construct understanding by combining and

building bigger chunks of code blocks (or artefacts) from smaller ones. The authors

further stated that evidence and experimental results seem to go in favour of the top-

down approach being the most effective in the comprehension process (Von

Mayrhauser & Vans, 1995).

Software systems are inherently structural and as such it is unsurprising that

developers tend to intuitively construct knowledge based on the actual structure of

the system. This result is in strong alignment with what recent researchers have called

‘spatial memory’, which refers to how the brain utilises locality to retrieve and recall

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

35 | P a g e

information (Bragdon et al., 2010; Cockburn, 2004; Cockburn, 2004; Kot et al., 2005;

Kuhn et al., 2010; Marcus et al., 2003; Teyseyre & Campo, 2009). In fact according to

many of these research works, one of the motives and justifications behind software

visualisation theory (particularly that related to visualising the static structure) is that it

provides spatial representations that allow users to readily leverage their natural

cognitive abilities.

For this particular reason, the research undertaken and reported in this thesis

deliberately takes advantage of this phenomenon and presents the software

development process within the context of the software structure. This natural affinity

between software decomposition and constructing knowledge is not merely beneficial

for people working individually, but it is also important for teams as a whole, aiding

them to create a commonly shared mental map or picture of the system that is then

used to relate to or discuss various issues about it (Kuhn et al., 2010).

2.3.4 Connecting the Dots

Although Petre and de Quincey have recognised the importance and value of

representing the conceptual design in software visualisation, they did not propose or

suggest any solution/approach to realise this concept practically. This is the

opportunity that forms the core of the research reported in this thesis. Specifically, it

utilises the increasingly prominent Scrum agile process as a promising means of

introducing the software development process (in terms of original concepts and

rationale) to the software visualisation domain, resulting in synchronisation of those

processes with their associated product artefacts. As has been discussed in the

introductory chapter (and is detailed in the Chapters that follow), various software

tasks and activities (including some management tasks) are expected to benefit and be

better-informed by this approach. Chapter 1 has revealed how the Scrum agile practice

captures all the conceptual design elements that were called for by Petre and de

Quincey (essentially capturing all user requirements) and how the Scrum data in itself

represents further a valuable source of information that has the potential to inform

many software management tasks, including most importantly artefact traceability and

management. In this respect, the approach introduced in this work also shares many

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

36 | P a g e

commonalities with the Fasano and Oliveto approach (2009) in that it aims to unify the

product with its related processes in order to inform several software management

tasks. The present work, however, is conjectured to have the advantage of using a

popular and commonly practiced approach for collecting artefact definitions and their

processes (i.e., Scrum instead of the product-oriented WBS), and then using spatial

visualisation (based on actual system decomposition) to represent those

artefacts/processes in context. Lastly, as is also revealed in Chapter 5, because of the

nature of the Scrum data that is being captured and represented, the approach

developed and tested here will enable users to readily answer almost all of the

‘awareness’ questions highlighted by Storey et al. (2005) as essential elements for

supporting activity awareness in SV tools.

2.4 Summary

This chapter has explored a range of prior research works deemed most relevant to

the research initiative described in the chapters that follow. Some of the most

influential compendia and literature reviews on software visualisation produced by

recent researchers were introduced and then a selection of previous studies were

discussed in some detail based on the criteria of them either incorporating a software

static structure visualisation technique, a 3D visualisation technique, or a combination

of both. The chapter then elaborated on three particular issues in contemporary

software visualisation research, which are the potential of SV for artefact management

and tracing, the lack of support to incorporate the development process (from the

conceptual design perspective) in current SV research, and the essential and intrinsic

role of software structural decomposition in the comprehension process (hence the

importance of utilising it as a means of conveying and communicating other less-

spatial aspects of software). Three prominent and particularly relevant past research

studies (Fasano & Oliveto, 2009; Petre & de Quincey, 2006; Storey et al., 2005) were

examined and discussed in some detail uncovering in the process the context for this

research work in relation to past research and the motives behind it. A significant

conclusion drawn from this review was that integrating Scrum processes (as currently

practised in agile development) with software structure visualisation represents a

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

37 | P a g e

promising opportunity for realising and potentially solving some important issues in

software engineering, due to the nature of the Scrum data that captures and accounts

for the development process as well as informing the management of those processes.

The richness of the Scrum data allows for valuable information and knowledge to be

presented to software visualisation users thus enabling them (in principle at this stage)

to achieve different goals, such as supporting artefact and requirement traceability,

providing awareness of human activities, and presenting explicit projections and

mappings of developers’ conceptual design. The methodology used to develop and

deliver this potentially valuable solution is now described in detail in the following

Chapter.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

38 | P a g e

 3
Research Methodology and Design

This chapter comprises a description of the research methodology and design and

reflects on the stated research objectives in that regard. It also sets out the evaluation

approach in the light of the adopted research methodology. A brief discussion of

common research paradigms in the IT/IS discipline is first presented, based on which

the selection of research methodology for this work is highlighted and justified. The

way in which the selected research approach serves to inform the different stages of

the research project is then explained.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

39 | P a g e

3.1 Research Paradigm

For any research to be robust and so receive appropriate recognition from the

scientific community, it must follow a rigorous and well-defined methodology that can

assure peer researchers of the validity of its outcomes.

Background

Early research in information science and/or information technology (IT/IS) was the

subject of scepticism by members of the scientific community of other disciplines,

specifically, by natural scientists. The legitimacy of its research nature as well as the

validity of the research methodologies used were questioned (Nunamaker, Chen, &

Purdin, 1991). As a reaction to this, in the last two decades the IT/IS discipline has

witnessed the emergence of some prominent work that has aimed to address these

issues. Some of the most notable and influential of those works are the Nunamaker et

al. 1991 paper followed by the work of March and Smith in 1995, and most recently

the Hevner et al. work in 2004. All of these papers aimed to make clear the intrinsic

difference between the objectives of natural sciences as compared to the objectives of

the sciences of the artificial, i.e., design sciences, and hence the legitimate variance of

methodologies adopted in both fields.

‘Design Science’ has therefore become popular terminology to refer to the research

approach adopted in many engineering disciplines including IS/IT, as opposed to other

natural sciences. Design science research belongs to the philosophical constructivist

paradigm and, along with Behavioural Science, constitutes the two most common

paradigms of research adopted in IT/IS. Design science is a developmental approach

that is commonly used for creating artefacts that serve a specific purpose or solve

particular problems. Behavioural science, on the other hand, is an evaluative approach

that in the IT/IS domain is typically employed for studying the impact and effect of

software artefacts on users, organizations, and societies (March & Smith, 1995;

Nunamaker et al., 1991).

Nunamaker et al. in their seminal 1991 paper introduced a multi-methodological

approach to IS research which came to be known as the systems development

methodology and was originally based on two basic processes, build and evaluate. The

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

40 | P a g e

authors further identified five stages to conducting robust systems development

research which have been concisely summarised by (March & Smith, 1995) in their

following statement:

“… Real Problems must be properly conceptualized and represented,

appropriate techniques for their solution must be constructed, and solutions

must be implemented and evaluated using appropriate criteria”

More recently, Hevner et al. (2004) expanded on the work of Nunamaker et al. and

other earlier works and introduced a more articulated framework for conducting

research in the IT/IS discipline, combining elements from design as well as behavioural

science. A set of seven guidelines for conducting and evaluating good design science

research were introduced and extensively discussed. Those guidelines align very well

with – and seem to have been originally drawn from – the five stages of system

development research promoted by Nunamaker et al. Together the work of

Nunamaker et al. and Hevner et al. have implicitly or explicitly underpinned research in

this discipline. The annual conference specially focused on design science (the DESRIST

conference) as well as the existence of special issues of research journals that are

specifically dedicated to design science can attest to this.

The introductory chapter of this thesis has indicated the constructivist and design

science nature of the research undertaken here. This work specifically adopts the

Nunamaker et al. systems development methodology and carries it out in cognisance

of the seven guidelines for conducting proper design-science research proposed by

Hevner et al. Further justification for this approach, as well as details on how this

research applies and adheres to the methodology and guidelines, are discussed in the

following sections. Relevant details are also provided and stated in context when

discussing the research objectives, design, and evaluation criteria. It should be noted,

however, that the guidelines are not necessarily meant to be followed to the letter; as

Hevner et al. themselves have specifically put it, “we advise against mandatory or rote

use of the guidelines”. While they contend that each guideline should be addressed in

some manner, they advise researchers to use their own judgement for when and

where each one is applied and to adapt each as necessary.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

41 | P a g e

3.2 Design Science Research: Key Concepts

To better illuminate the reasons behind the selection of the design science

methodology of Nunamaker et al. and the use of the Hevner et al. guidelines, it is

necessary to highlight some of the primary concepts that underpinned the

introduction of those key works on contemporary IS/IT research methodology. This will

also help to bring the subsequent discussion in the next section into context.

It has been indicated in the previous section that there is an intrinsic distinction

between natural and design sciences in terms of general research objectives. There are

some important concepts in this regard that deserve particular emphasis. There exists

a key difference in how progress is achieved in design science research compared to

how it is achieved in the natural sciences. In the natural sciences, progress is made by

the discovery of new knowledge or propositions of new theories; whereas in design

science, progress is made by devising new purposeful artefacts or replacing a

technology with a more effective one (March & Smith, 1995). Put another way, natural

science strives to explain natural phenomena, hence producing knowledge; whereas

design science is concerned with “devising artifacts to attain goals” – as aptly

described by March and Smith (1995), hence exploiting knowledge to develop

technology. Hevner et al. (2004) further highlight that the typical goal of design science

is utility, whereas truth is the typical goal in natural sciences. Reflecting on this, it is

easy to relate how the creation of new and innovative artefacts – the products of

design science – has extended the boundaries of humans’ as well as organizations’

problem-solving capabilities.

Systems Development Uncovers New Knowledge

Another important but sometimes overlooked concept is the expectation that the

actual process of conducting design science or systems development may be (and often

should be) an important means of generating understanding as well as uncovering new

knowledge about the problem at hand. Design science is inherently concerned with

problem solving and thus each design science research is a different attempt to solve a

particular problem (Hevner et al., 2004), or to create things that serves human

purposes (March & Smith, 1995). Artefacts produced by those attempts are in fact

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

42 | P a g e

each “an experiment” that brings new questions to the domain (Newell & Simon

(1976) as cited by Hevner et al. (2004)). Thus each of those attempts, assuming their

sound design and conduct, should enable researchers to better understand the

problem addressed by the designed artefact, much like field studies allow behavioural

science researchers to understand organizational phenomena in context. Ensuing

studies and independent evaluations of those artefacts can further lead to significant

advancement in the field (March & Smith, 1995).

Systems Development as a Research Cycle

Furthermore, any good design science research will typically be founded on a well-

studied base of prior research and discipline references and will hence exploit previous

results, theories, instruments, and frameworks to solve and address a new or yet

unexplored but important problem. Therefore, each sound design science research

endeavour will utilise prior knowledge (assuming the needed knowledge exists) to

solve particular problems, producing in the process new knowledge that adds to the

overall archival knowledge in the domain, and thus contributing to incremental

advancement of the field. Markus et al. (2002) remark, however, that in systems

development research the requisite knowledge is often non-existent, requiring

researchers to employ creativity and trial-and-error search to reach or obtain the

desired results (Markus, Majchrzak, & Gasser, 2002). Emergent knowledge and results

of such efforts that are found to have general utility or applicability will eventually find

their way to the knowledge base and/or will become best practice.

Design Science vs. Routine Design

This brings to prominence another key point that sets apart design research and

distinguishes it from routine design or system building. Hevner et al. stressed that the

key distinction between those practices is the identification of a real and explicit novel

contribution to the archival knowledge base of the domain. Routine design simply

applies existing knowledge and best practices to create artefacts to fulfil the needs of

organizations or users. Design science, however, is driven by the identification of

important yet unsolved problems and the desire to present a novel solution, or the

desire to solve a solved problem but in a more effective or efficient way. Design

science thus creates best practices and contributes with new foundations or methods.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

43 | P a g e

It is therefore important to realise that innovation is a key aspect of design science

research. Further, design science has the potential to introduce new theories to the

discipline. Gregor (2006) and (Wieringa, Daneva, & Condori-Fernandez, 2011;

Wieringa, 2010) have particularly explored and studied this issue.

3.3 Revisiting the Research Objectives

In Chapter 1, various aspects of the motivation for this research were introduced and

the problem statement exposed the specific direction for the course of this research.

This section relates the objectives of this research to the adopted research paradigm

taking into consideration the earlier highlighted aspects distinctive to design science

research. This is intended to demonstrate how the various elements of this research

relate to those aspects.

The primary aim of this research is to develop a software system that utilises 3D

software visualisation technology to present aspects of software development

processes – specifically, processes of Scrum practice – in context with their resultant

software artefacts in the same visualisation scene. The tool or system devised serves

as a proof of concept for the introduced technique of mapping software processes to

their product artefacts in the 3D environment, which (based on prior literature) is

anticipated to contribute to the SV body of knowledge. The motivation for this work is

based on an identified real need in the domain as addressed in the previous chapters.

In particular, the capture and presentation of the conceptual design of software

systems along with the lack of attention and support afforded to different aspects of

software processes in existing software visualisations were identified and presented

with supporting arguments from the domain literature. In section 1.2 it was also

emphasised how finding appropriate and effective mappings from different software

aspects to graphical representations represents a fundamental challenge to research in

SV (Caserta & Zendra, 2010; Gračanin et al., 2005; Teyseyre & Campo, 2009). Lastly, it

was stated that the devised visualisation technique has promise in enabling rapid and

direct traceability between the original user requirements and the implemented

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

44 | P a g e

system components. This research should therefore bring the cognitive advantage of

software visualisation technology to a new aspect of software development.

The introduced mapping technique (see Chapter 4) is built on top of the recently

proposed yet popular 3D City Metaphor (Wettel & Lanza, 2007b, 2008; Wettel, 2010)

which is claimed to be a versatile metaphor that can accommodate numerous aspects

of software systems. Hence this work further serves as yet another real-world

verification for that claim of versatility.

Finally, there are few secondary goals of this research that are collectively intended to

contribute in drawing more attention to software visualisation from industry, and to

potentially facilitate its adoption. These include integration with the Eclipse IDE (in the

interests of accessibility and availability), offering a useful set of task-oriented

features, and facilitating better utilisation of the capabilities that 3D libraries have to

offer. Many prior researchers have highlighted the absence of these aspects in existing

tools and have called upon future researchers to attend to them, stating their

importance in making SV tools more accessible to the SE community. (Further

discussion on this is provided in Chapter 5 when introducing the evaluation criteria).

Needless to say, relevant and clear research objectives, and hence a successful

research outcome, cannot be achieved without a thorough and complete

understanding of the research domain (Nunamaker et al., 1991). As was presented in

the previous chapter, this work is well-informed by prior relevant research and is built

on top of earlier research findings, their analyses, as well as recommendations of

previous researchers, many of which are individually highlighted as appropriate

throughout this thesis.

The next section discusses the approach followed in carrying out this research and

illustrates how the selected methodology serves to inform the different stages of its

execution.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

45 | P a g e

3.4 Research Design

Presenting the details of how research is conducted is essential in helping to convey

that the work has sufficient rigor and robustness for the scientific community. It

further demonstrates the credibility of the research to other researchers and enables

appropriate peer validation of its outcomes.

It was stated previously that this research adopts the classic Nunamaker et al. Systems

Development methodology while also taking into account the seven guidelines for

conducting high-quality design science research promoted by Hevner et al. Here in this

section the details of this research approach are stated and discussed.

The central principles of the Nunamaker et al. methodology revolve around four basic

processes: theorising, building, experimenting, and observing, with building depicted

as occupying the centre of these processes. The methodology encourages iterative

cycles among these four processes where each consumes the outcomes of the others

and feeds results back to all, with no strict sequence or starting point. This reflects the

degree of freedom required in systems development research due to its explorative

nature.

The subsequent analysis serves to highlight how these processes have occurred in this

research. The research has been carried out through multiple systematic phases. These

are organised and outlined below in a scheme resembling the Nunamaker et al. five

stages of research mentioned previously.

3.4.1 Understanding and Defining the Problem Space

This research is founded on the recognition of an opportunity for a novel contribution

in the area of software visualisation based on prior knowledge and experience.

Extensive exploration of the relevant bodies of literature has been carried out in order

to acquire a fuller understanding of the problem and to justify its relevance and the

legitimate motives behind it as a gap or need in relation to prior research in the field.

The problem addressed by this research has first been noted as an established concept

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

46 | P a g e

in the literature, and then described in detail. This has included identifying exactly

what contributions are anticipated from this research, how the problems it addresses

reflect a legitimate need and interest to the discipline, and how it attends to the

recommendations and paths that have been called for by previous researchers. This

has demanded careful and systematic investigation and exploration of the relevant

literature. Both the introductory and literature review chapters are dedicated to

covering and discussing these aspects of the research. They together serve to explain

how this research is positioned in relation to relevant prior research in the area of

software visualisation.

3.4.2 Building the Conceptual Framework

Since the primary objective of this research is to incorporate aspects of software

processes in software visualisation, this has meant a need to gain sufficient insight

about the relevant aspects of software management, software development, and

software process management. Thus relevant literature in those particular topics has

been investigated in order to identify which aspects can be supported and how they

can be supported. It has already been noted that the software development process

has largely been overlooked as almost all current SV research addresses the artefact

only, with a few exceptions touching on team activities extracted from versioning

repositories. Particularly, the Petre and de Quincey (2006) call for Conceptual

Visualisation comprising the capture and representation of the originators’ intentions,

rationale, and activities, has been embraced here as a fundamental goal. For this to be

realised, a framework or a scheme is needed that can account for such aspects of

software processes and that is structurally suitable for projection onto contemporary

software product artefacts. In other words, its structure has to be easily aligned or

mapped to the structure of the software artefacts. Only a few such schemes have been

identified, notably, the Work Breakdown Structure (WBS) and the Functional

Decomposition scheme. Their unsuitability in terms of granularity, however, has been

noted, as well as the fact that they are not commonly applied in everyday software

development practice. The search effort has eventually led to the domain of Scrum

agile development practice. Firstly, the data that are typically captured and found in

“user stories” (also called features) account very well for the conceptual design called

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

47 | P a g e

for by Petre and de Quincey, and collectively, user stories and data of their enactment

truly reflect the actual development process that is to be incorporated in software

visualisation. Secondly, in terms of structure, user stories are very well suited for

mapping to the software artefacts. Moreover, Scrum is an increasingly popular practice

in the software development industry, in daily use by many organisations. Based on

this, the Scrum data model has been chosen as a promising scheme for presenting the

software development processes contextually in software structure visualisation.

To complete the conceptual model of this research’s design, a suitable visualisation

metaphor is needed such that it can accommodate the presentation of the Scrum data

model. Furthermore, an appropriate technique has to be established for correctly

mapping the different Scrum data elements onto the graphical and visual metaphors.

On top of that, at a lower level, the Scrum data model as represented by releases,

sprints, and user stories has to be correctly mapped to a software source code model

in a manner that can be efficiently automated. These three elements together

represent a crucial step for this work and their achievement has required a

considerable amount of effort to develop a well-designed overall model. The intent is

not to invent a new metaphor – as many researchers have noted, there is no shortage

of metaphors – but rather, to find the best one that can be readily modified or

extended to accommodate the new perspective of data to be presented.

Several trials and experiments have been performed in order to choose a final suitable

metaphor and design an appropriate mapping of the Scrum data model for it. The

basic criteria behind the metaphor and mapping search are: a mapping that is visually

non-cluttering, having prior evidence of its cognitive advantage in aiding

comprehension, providing simplicity in application, and very importantly, one that,

with the Scrum data imposed on it, appears naturally expressive and not overreached

or overloaded. The metaphor that has produced the best results during the exploration

and mapping experiments is the City Metaphor, and specifically, the version

introduced by (Wettel & Lanza, 2007b). Details of this chosen metaphor and the

devised mapping scheme are disclosed and presented in Chapter 4 (specifically, section

4.3). Some of the other metaphors that have been considered include the Software

Landscape and the recently introduced Evo-Streets approach – both were introduced

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

48 | P a g e

and described in the previous Chapter. The Software Landscape approach has a much

less expressive visual metaphor, does not allow for global overviews of the system

structure, and has not been supported with empirical evaluations of its effectiveness in

supporting comprehension. The Evo-Streets approach has promise but it also lacks

empirical evaluation of its effectiveness, and its layout has been found to result in

considerably much larger city landscapes (than Wettel’s City Metaphor) that might

hinder navigability in the 3D environment (which is a serious issue in 3D SV tools, as

reported and discussed throughout this thesis – see, for instance, Chapter 4, section

4.5.9 and Chapter 5, section 5.4.2).

While in the Scrum methodology user stories are classically captured and kept on

sticky notes, recently, a few software applications have been introduced to manage

the Scrum data electronically while retaining the methodology’s essence and revered

methods. Examples of such applications include OnTime1 and ScrumDesk2. Since the

approach introduced here needs to access the Scrum data in a certain automated

mechanism, it has been decided that adopting a data model based on XML is sensible

considering that this language is the current de facto data format for exchanging

information in many software environments. However, even though the overall

scheme of the Scrum data model is very much agreed upon in the agile community,

still there does not exist a published standardised format for exchanging this data.

Hence, a suitable XML schema for exchanging projects’ Scrum data has had to be built.

Consequently, to be able to use the prototype tool introduced here, one is assumed to

have access to a project’s Scrum data conforming to the introduced Scrum XML

Schema. Again, Chapter 4 discusses all design aspects of the visualisation technique as

well as the tool, and presents all the required details and wider contextual information

on this matter.

3.4.3 Architecture Designing and System Construction

The next phase of this research project is to design the architecture of the envisioned

visualisation technique. In accomplishing this, designs of earlier visualisation

1 http://www.ontimenow.com/
2 http://www.scrumdesk.com/

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

49 | P a g e

techniques and tools have been examined to gain relevant insights and take advantage

of past experiences. Two particular tools have proved to be inspirational to this work,

namely, X-Ray (Malnati, 2007) and Manhattan (Rigotti, 2011). The fundamental

concept behind visualisation techniques of software structure is based on two key

steps. The first is extracting or building a model of the source code of the system. In

the case of object oriented development, the model usually reflects the actual

hierarchical structure and containment of packages, sub-packages, classes and

methods. For completeness it is important that the model makes available all

information about individual components, their properties, and relations. In many

recent SV tools (e.g., Evo-Streets, CodeCity, and Manhattan), it is typical that an

external tool is utilised for building and providing this model (Rigotti, 2011;

Steinbrückner & Lewerentz, 2010; Wettel, 2010). The second primary step lies in

designing the mapping model to map each artefact of the source code to a

corresponding visual metaphorical representation. In the case at hand, the Scrum data

model must also be incorporated in this mapping architecture. Since the city metaphor

of Wettel & Lanza (2007) is being utilised here, it has been modified and extended to

fit it to the purpose of this research and particularly to accommodate the Scrum data

model. Details are provided in Chapter 4.

For building and implementing the proof of concept tool, the popular Eclipse IDE has

been chosen. This is a deliberate selection, given that one of the research objectives is

to address the separation of visualisation tools from development environments which

has hindered their practical usefulness as well as accessibility to the community. While

this decision might impose some restrictions of capabilities and other limitations, the

gained advantages far outweigh this concern as is disclosed later (see Chapter 4,

section 4.1). Specifically, the tool is developed as an Eclipse plug-in.

Next, an appropriate 3D graphics library must be chosen. This research started with

the intent of using the X3D language (Anslow, Marshall, Noble, & Biddle, 2006) – an

open source ISO standard based on XML – for reasons of interoperability and the

capability of being viewed in web browsers. However, after extensive experimentation

and evaluation this option was deemed infeasible for this research. This is briefly

discussed in Chapter 4, section 4.4. With the abandoning of X3D, attention has been

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

50 | P a g e

focused on full-fledged 3D engines and APIs. Ardor3D and jMonkeyEngine3 have

surfaced as the best two candidates and after personal lab evaluation of their features

and capabilities, jMonkeyEngine3 has been chosen to implement the prototype tool.

It has been mentioned above that the first step in visualisation is acquiring the

architectural model of the source code of a system. While many standalone tools exist

for accomplishing this task, in the situation at hand an API or framework is needed that

can be integrated into the prototype tool. Since the tool is to be implemented as an

Eclipse plug-in, one option is to utilise Eclipse’s native APIs for this purpose. Eclipse

provides two means of accessing a project’s source code model, the JDT’s Java Model

and the AST’s library. However both libraries are considered low level for the purpose

of this research. After some search effort, the X-Ray1 eclipse plug-in has been

identified as a potential candidate. However, a very recently developed Eclipse plug-in

called Vera2 has also been encountered and has proved to be very suitable. Not only

does it provide the source code model at the appropriate level required, the plug-in is

specially created to readily host other software visualisation plug-ins on top of it.

Furthermore, it is based on the FAMIX (Tichelaar, Ducasse, Demeyer, & Nierstrasz,

2000) language-independent modelling framework thus it can potentially allow

visualisations to be language-independent. Consequently, Vera (Krebs, 2012) has been

chosen as a host plug-in for the developed visualisation plug-in tool. Chapter 4

presents more details on this matter and how Vera specifically fits in the developed

prototype.

To decide on the functionalities and features that should be implemented by the tool

prior research has been considered in order to learn from their experiences. It was

mentioned above that one of this study’s research objectives is to address some of the

shortcomings of earlier tools that, according to the literature, have to some extent

impeded their adoption. Thus surveys and taxonomies of earlier tools have been

carefully examined to identify these shortcomings and the aspects that need more

attention. In fact, due to the relative youth of the field, some studies dedicated to

1 Sincere appreciation goes to Jacopo Malnati, developer of X-Ray for providing advice and help.
2 Sandro De Zanet, developer of Moose Brewer, has kindly brought attention to the newly published
tool, Vera. Deep gratitude goes to Sandro too.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

51 | P a g e

identifying and highlighting the shortcomings of existing tools and techniques and

presenting the ‘desired features’ that future researchers should address (Petre & de

Quincey, 2006; Sensalire et al., 2008; Storey et al., 2005) have been especially useful in

this regard.

3.4.4 Evaluation and Communication

A crucial component of sound design science research is the appropriate evaluation

and validation of the designed artefact. Hevner et al. (2004) emphasise the need to

demonstrate the utility of the designed artefact as well as its quality and efficacy. The

implementation of an instantiation of the artefact – the technique – represents “a

proof by construction” (Nunamaker et al., 1991) that serves to demonstrate the

feasibility of the devised technique. In addition, evaluation of the technique’s utility is

needed to practically demonstrate its success in addressing the stated research

objectives. The evaluation criteria must hence specifically address the goals and

objectives set above for the research. The main objective of this research is to address

the absence of the presentation of software development processes in current SV

techniques. Consequently, the first evaluation criterion is oriented to testing whether

or not this idea is conceptually possible; in other words, testing its feasibility. This

question, as is explained above, is answered by the actual construction of the tool. The

other objectives of this research revolve primarily around claims of various potential

contexts of use, applications, and real benefits to the SE community. Therefore, this

leaves demonstration of the utility of the technique as the main focus of the

evaluation process of this work.

Hevner et al. mention five generic categories of appropriate evaluation methods;

under which they list Simulation, Functional Testing, Scenarios, as well as Informed

Arguments. These different types of validation are intended to attest for various

properties and aspects of the research artefact; for example, functional testing may

attest for quality, informed arguments may attest for and defend the conceptual idea.

While functional testing is addressed during artefact development in this thesis, and

informed arguments appear in different places in support of the work, formally this

research uses simulations and scenarios in the evaluation process. Simulations are

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

52 | P a g e

executed using real data being represented by the source code of selected open

source projects, in order to lend credibility to the simulation results. The scenarios are

intended to demonstrate the utility of the technique via various task-oriented features

and potential contexts of use. Chapter 5 of this thesis is dedicated to presenting the

details of the evaluation process and reporting the outcomes.

3.5 Summary

This chapter has presented a brief background on research paradigms in the IT/IS

disciplines and has then described the adopted research methodology and justified its

selection. Some important concepts of the selected methodology were then discussed

in order to illustrate how this research and its objectives relate to and satisfy the

different elements of the methodology. Lastly, the research design and approach were

described in the light of the selected methodology, highlighting how the different

stages of conducting this research have been informed by, and adhere to, the

methodology.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

53 | P a g e

4
System Design and Development

This chapter presents the details of the architecture, design, and development of the

proof-of-concept tool, named ScrumCity, which is a major component of this research

and is intended to demonstrate the feasibility of the proposed visualisation approach.

The novel conceptual visualisation technique is also unveiled and presented in this

chapter, along with detailed descriptions of the tool implementing the technique and

its features.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

54 | P a g e

4.1 Introduction

Building a prototype artefact is a significant element of design science as has been

discussed extensively in Chapter 3. On the one hand, it serves as a basic and

preliminary step to demonstrate the feasibility of the research artefact; or as

Nunamaker et al. (1991) put it (p.98), it presents “a proof-by-demonstration” (Hevner

et al. (2004) refer to it as “proof by construction” (p.14)). On the other hand, the

building process itself has the potential to contribute to the body of knowledge in the

field through the expected introduction of techniques and methods to solve the

particular problems being addressed, as well as playing a role in the progressive

advancement of the field. In this regard, this chapter serves to cover the design

concepts and implementation details of the developed tool.

Based on the recommendations of several researchers who have carried out taxonomy

and survey studies of existing SV work, there is a pressing need to build IDE-integrated

visualisation tools as the vast majority of past attempts produced primarily stand-

alone systems (Caserta & Zendra, 2010; Ghanam & Carpendale, 2008; Lemieux &

Salois, 2006; Maletic, Marcus, & Collard, 2002; Storey et al., 2005; Teyseyre & Campo,

2009). These and other researchers have discussed different incentives and reasons

behind this need, and in sum it can be stated that IDE-integrated visualisation tools

present greater potential to bring this technology closer to developers and potential

stakeholders, thus establishing a better chance to make available its advantages to the

field’s practitioners. Even though a stand-alone application will usually permit greater

functional freedom and higher capabilities in terms of processing power and memory

for a 3D application, it has been concluded here, due to the aforementioned reasons,

that the advantages of IDE integration outweigh the benefits of developing the tool as

a stand-alone application. Hence, ScrumCity has been developed as an Eclipse plug-in,

making it easily available to install and explore for potential stakeholders.

However, as is well known, reinventing the wheel goes against advancement. In

developing ScrumCity, then, extensive effort has been expended in studying existing

and prior work to learn from past attempts as well as to look for suitable tools to

utilise or augment. Particularly, as has been indicated above, ScrumCity requires a

means of providing a ready and well-structured model of the source code of a project

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

55 | P a g e

before it can be visualised. Parsing source code to build and provide such a model is a

major work in itself and is beyond the scope of the intended research. The explorative

effort has proved particularly fruitful given the recently released tool named Vera

(Krebs, 2012) has been found.

ScrumCity has therefore been built on top of Vera which itself is an Eclipse plug-in. The

following sections present the architecture, design, and implementation details of

ScrumCity and also describe how Vera specifically fits in the design.

4.2 System Architecture

Three primary stages of processing can be identified in almost all software visualisation

systems for representing code static structure (Alam & Dugerdil, 2007a; Churcher &

Irwin, 2005; Greevy, Lanza, & Wysseier, 2006; Rigotti, 2011), which can be generalised

as: source code processing, graphical metaphor and layout processing, and scene

rendering. Considering the nature of software static structure visualisation, the three

identified stages in fact simply reflect the essential concept behind software

visualisation, which is taking as input textual source code and outputting a graphical

representation of it that has lower cognitive overhead and is easier to understand and

process by the human brain. Source code of the system to be visualised must hence be

first processed to extract all required information, which typically results in the

production of a model of that system’s source code conforming to the requirement of

the visualisation system. That model is typically then processed by another module of

the visualisation system which generates the mappings from source code entities

(product artefacts) and their attributes to abstract graphical representations (spatial

metaphors or simply, abstract glyphs). This phase also includes the layout processing

that is responsible for giving each abstract glyph its proper place in the visualisation

scene. The third and final stage is then concerned with rendering those abstract glyphs

into visual representations (turning them into real and visible glyphs) using a graphical

rendering library. Whether it is a 2D or 3D visualisation approach, those three main

stages (illustrated in Figure 4.1) will always be essential parts of it.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

56 | P a g e

These three general processes of SV systems represent thus the backbone of the

generic and shared architecture of software visualisation systems. Needless to say, the

actual architecture of any particular system will have its own variations depending on

the specific technologies used and the nature of the visualisation technique employed.

The specific architecture of ScrumCity is now introduced.

Figure 4.2 shows the general architecture of ScrumCity from a process-oriented

perspective. It consists of five abstract processing layers that map to real modules of

the developed system. In brief, the source code of the system to be visualised is input

to the top module and execution continues until 3D scenery is produced and displayed

by the lower module. Explanation and brief discussion of each module is presented

here and the reader is referred to sections 4.3 and 4.4 for a more elaborated

discussion on the inner workings of each module. Since each layer maps to a physical

module of the system, they are referred to as processes and modules interchangeably.

It is relevant here to note that as the ScrumCity tool has been developed as an Eclipse

plug-in, it has been specifically designed to visualise Java Systems. This also means that

Scene & Glyphs Rendering

Source Code Processing

Metaphor & Layout Processing

Figure 4.1: The Common Main
Processing Stages of SV Systems

Source Code

Modeller

Hierarchy-Structure

Builder

Scrum Data

Importer & Mapper

 Scene Rendering

Layout Processing

E
x
e

c
u

tio
n

Figure 4.2: Layered Architecture of ScrumCity

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

57 | P a g e

projects to be visualised must be imported into the Eclipse project format so they can

be properly opened by the Eclipse IDE. Nevertheless, ScrumCity is merely a proof-of-

concept tool that demonstrates the introduced conceptual visualisation technique.

Thus, even though Java systems are generally assumed throughout this thesis,

generalisation to other object-oriented languages should be relatively straightforward.

4.2.1 Main System Modules (Process-Oriented Perspective)

Source Code Modeller

In this module, the source code of the target system (i.e., the one to be visualised) is

parsed and processed in order to build an object model containing all the required

information about the target system. The object model can be thought of as a logical

and abstract decomposition of a system to its constituting components (also referred

to as artefacts in this thesis). In an object-oriented system those artefacts specifically

refer to packages, classes (including abstract classes and interfaces), and methods.

Those artefacts collectively represent the low-level architecture of a system (as

compared to a top module-level one), which is the level of system visualisation on

which this research is focused. This module hence captures the model of a target

system into a single ‘object model’ that is then fed to the next module.

Hierarchy-Structure Builder

The adopted City Metaphor is based on a hierarchically-structured containment

approach where child components are nested inside their parent components. The

model captured in the previous process does not, however, exhibit this hierarchical

and containment structure. Packages, for example, are provided in a flat structure

instead of being nested. For this reason, and also due to the nature of the layout

algorithm used (discussed in section 4.4), it is necessary to build a secondary model of

the system to be visualised where this hierarchical structure is embodied in the inner

structure of the model. This module is thus specifically responsible to achieve this

requirement by consuming the model of the previous process and producing a new

secondary model conforming to this requirement.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

58 | P a g e

Layout Processing

Since the City Metaphor uses glyphs (geometrical shapes) to visually represent the

system artefacts, a mechanism is needed to calculate the proper dimensions and

position of each glyph. This module hence performs all layout calculations for the

entire ‘city’; producing specific dimensions and 3D-coordinate values for each glyph.

Since this work is based on the city metaphor version of Wettel and Lanza (2007), this

module thus uses Wettel’s (2010) layout algorithm. More details and description are

provided in the implementation section (i.e., section 4.4).

Scrum Data Importer and Mapper

A special ‘Scrum’ object data model has been specifically designed (introduced in the

design section of this chapter) based on observation of common usage of the Scrum

methodology in the agile community, since there does not exist a formal scheme for

representing Scrum data. In this module, XML files of Scrum data are loaded from a

designated file directory, validated, parsed, and the data is then stored into instances

of the defined data model. Those data objects are then mapped to the corresponding

related objects of the secondary system object model (the one created by the

Hierarchy-Structure Builder module). In other words, Scrum data artefacts are mapped

to their related system artefacts that are being represented in the secondary object

model in a hierarchical structure. Again, details of the mapping technique appear in

the design section of this chapter. A similar approach is also used to load and map

documentation data to the system artefacts, which is handled by a similar module.

Scene Rendering

This module is responsible for building the scene graph of the virtual 3D environment

where each glyph representing a corresponding system artefact is finally visually

rendered on the screen. This module comprises a sub-module that uses the 3D

graphics library of jME3 to construct the meshes for each glyph (called Geometry in

jME3) and sets its specific attributes such as colour, dimensions, and location

coordinates. It also sets special interactive controls for each glyph based on its type.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

59 | P a g e

4.2.2 GUI Module

In line with its visual nature, ScrumCity requires a significant number of GUI

components to facilitate proper interaction with the visualisation. So in keeping with

the modular approach taken for the system architecture, ScrumCity has a sixth module

specifically designated to handle all GUI creation and functionality issues. As the

functionality of this module does not relate to the general ‘processes’ of the system, it

is not represented in the main architecture diagram introduced in the beginning of this

section. As Figure 4.3 shows, this module consists of two sub-modules, a GUI builder

component, and a GUI interaction controller. To help minimise user distraction and

lend a greater sense of immersion, all GUI components are specifically designed within

the 3D environment allowing users to work with the visualisation in a full-screen-like

mode. From a usability point of view, this has a certain implied advantage that is

discussed and demonstrated throughout this thesis (particularly, see sections 4.3.2

(Scrum Presentation Layer), 4.4.6 and 4.5.3).

4.2.3 Summary

Now that each module has been briefly presented, the diagram in Figure 4.3 is

provided to give an overall picture of the complete architecture of the system,

highlighting inputs, outputs, and paths of interaction between the modules.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

60 | P a g e

Figure 4.3: ScrumCity’s Overall Architecture Model

GUI Module

 Scene Rendering (jME3)

Scrum Data Importer &

Mapper

Glyph Mesh Builder

Layout Processor

Hierarchy-Structure

Builder
Secondary

Hierarchical Source

Code Model

Vera’s Source

Code Model

Project’s

Source Code

Scrum XML

Data

Source Code Modeller

Vera Plugin

Scene Interaction

Controller

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

61 | P a g e

4.3 System Design

4.3.1 Description of the Visualisation Technique

This section describes the details of the conceptual visualisation technique that is the

main subject and a primary outcome of this research.

As has been introduced in Chapter 1, the main goal of the conceptual visualisation is to

present the software development process (represented in this research by Scrum

artefacts and activities) in the context of software structure in a synchronised

mechanism. Scrum artefacts are thus to be mapped to their related software artefacts

and then presented in the visualisation scene.

The Case for Scrum

To understand this technique it is necessary to elaborate further on how the Scrum

methodology is used in contemporary systems development. The intent is not to

describe the Scrum practice per se, but rather, to highlight how it fits in the introduced

visualisation technique.

In the Scrum methodology, system development is carried out through the rapid

implementation and delivery of self-contained chunks of user requirements known in

the agile community as user stories or features (both terms are used interchangeably

in this thesis). This occurs in short repeating cycles known as Sprints, where each Sprint

contains a pre-determined number of user stories. Each user story normally describes

a small functional component of the system (hence the other name, feature) that

requires a day or less of working effort to develop. A sequence of Sprints represents a

Release (normally fewer than 15 Sprints), which is intended to provide a coherent set

of working functionality – a deliverable. A complete system is realised and sustained

over multiple iterations of Releases.

With the brief Scrum description just provided, it should be evident that user stories

are the smallest units of user requirements, whose implementation results in the

creation of different system artefacts; which on a similar level of scale, map to classes

and methods. Packages are simply logical groupings of classes that do not represent

immediate manifestations of user stories. Since a user story by definition captures a

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

62 | P a g e

small and specific feature of the system, it is expected to contribute to the system with

a set of new classes or methods, or simply with additions to existing classes. In other

words, the different system artefacts created are nothing more and nothing less than

manifestations of user stories. This is the main concept underpinning the introduced

visualisation technique.

QNames. In systems development, each artefact (a method, a class, or a package) has

a unique identifier that can be used to refer to that specific artefact. This identifier is

commonly called a QName and for Java systems, its format is a de facto standard

amongst all development environments. So taking advantage of this QName, it

becomes possible to link and map each user story to the specific method(s) or class(es)

that it created, or to which it significantly contributed.

Since each developer is assigned (or selects) a set of user stories to implement, they

then know exactly what classes or methods they have created or significantly modified

to implement a particular user story. It is thus presumed in this research that each

developer plays a key role in realising this mapping. In the traditional manner of Scrum

practice where user stories are jotted down on sticky paper notes, this mapping would

not be feasible due to the absence of electronic record of the user stories. However, as

has been mentioned above, the agile community has recently seen the emergence of

several Scrum tools1 that automate aspects of the Scrum practice. These tools are

becoming popular and many high-profile organisations that utilise Scrum practices

have migrated to such automated applications to manage their system development2.

A prominent feature of such tools is that they enable developers to manage their

assigned user stories; marking the current status of each one, performing daily updates

of remaining work hours, setting a priority level for each story, and various other

operations. In such situations it becomes safe and practical to presume such tools have

the capability to allow developers to specify the system artefact(s) that were created

(or significantly modified) as a direct result of implementing a particular user story.

This is simply achieved by having the developer add the QName of the related system

artefact(s) as an attribute to that user story. In a real world scenario, a given user story

1 Examples include OnTime, AgileBuddy, ScrumDesk, and ScrumNinja
2 www.ontimenow.com claims that more than 10,000 organisations are using their product, including
high profile organizations such as NASA, Microsoft, IBM, and others.

http://www.ontimenow.com/

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

63 | P a g e

will typically manifest to either a single or a very limited number of system artefacts;

given the small size and short-time requirement nature of user stories.

While an informal survey of some Scrum tools reveals that such a feature is not

currently provided, the advantages and benefits gained by adding such simple data

elements to user stories are in fact far-reaching and are of significant value to various

stakeholders. One significant advantage would be enabling traceability from original

user requirements to actual implemented features, in a bidirectional manner. This,

along with other implications, is presented in detail in Chapter 5, section 5.4.1.

Work Hours. In Scrum practice, each user story is designated a specific estimate of

work-hours (also called man-hours or, more appropriately, person-hours), representing

the effort that is predicted to be required for implementing that user story. During

development, it is conventional that each developer makes daily updates of that

estimate to reflect the ‘remaining’ work-hours until it reaches zero, which marks the

completion of that user story. The remaining work-hours estimate can decrease or

increase according to the actual progress made during implementation. Many current

Scrum management tools provide the capability for developers to record such

information, which is then used to inform different statistical project data reports and

predictions such as burn-down charts – a key element of the Scrum methodology.

These important data elements are used in the ScrumCity visualisation technique to

present a visual cue for each system artefact – particularly for classes – giving users an

immediate visual impression of how much work has been completed and how much is

left for a particular user story.

-WorkEntry<List>

User Story

-QName

Class

-QName

Method

0..*
0..*

0..*
0..*

Figure 4.4: Simple UML diagram showing Class and Method Relationships to a User Story

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

64 | P a g e

To complete the picture, this research thus assumes that the Scrum data of a system to

be visualised is available. Most importantly is that the QNames of system artefacts for

each user story have to be available according to the scheme explained above. Figure

4.4 illustrates the conceived relationships between user stories and system artefacts.

The next section explains the mechanism used to import the Scrum data.

Scrum Merged with the City Metaphor

Another key aim of the proposed visualisation technique is that the Scrum artefacts

are to be presented visually in the context of the software structure. As introduced and

discussed above, the City Metaphor has been chosen as a suitable approach among

other software static structure visualisation techniques. In the city metaphor,

packages, classes, and methods are represented by special glyphs (geometries) in a

layout that closely reflects the real structure of software. Furthermore, as also

mentioned above, the specific version of the city metaphor that is adopted here has

been demonstrated and empirically validated to aid comprehension of, and support

learning about, software systems. Cognitive overhead is significantly reduced when

exploring a software system in such a visual representation as compared to

conventional textual scanning and probing.

Hence, the city metaphor is adopted here to present the software structure and then

the Scrum artefacts are mapped and presented in a synchronised manner on top of it.

Glyphs of classes and methods are mapped to the specific user stories to which they

relate. Users of the visualisation can select a particular user story to see the system

artefact(s) that have resulted from its development (or significant modification). In a

similar manner, a particular system artefact can be selected so that the user can see

the user stories that were involved in its creation. This overall representation is

expected to support the user in exploring, inspecting, and reasoning about software

systems and places development activities into context. Development processes

become seamlessly integrated and unified with the individual components of the

product. The next section describes how this mapping is achieved.

Inspired by the work of Petre and de Quincey (2006), the term ‘Conceptual

Visualisation’ is used to describe the proposed visualisation technique.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

65 | P a g e

4.3.2 Mapping Technique

To accomplish the mapping between the system artefacts and the Scrum artefacts, an

object model for each is required. For the system artefacts, the model is already

provided (albeit it needs some remodelling) by external tools as mentioned above

(discussed further in section 4.4), created by parsing a system’s source code. For the

Scrum artefacts, however, an object model has been specially designed. As noted

above, there is currently no standard in the agile community for a data model of

Scrum. The data elements of Scrum are, however, widely known and represent a

conventional de facto scheme among agile developers when implementing the Scrum

methodology.

For the purpose of this research an object data model for Scrum, as well as an XML

schema, have been designed based on that convention. The XML schema is necessary

for acquiring and importing the Scrum data of a software project into the visualisation.

The data model, on the other hand, is required to properly handle the different Scrum

artefacts inside the visualisation.

The Scrum Data Model

The UML diagram in Figure 4.5 describes the newly developed Scrum Data Model. For

those with a close affinity to agile methods, the model structure is straightforward. A

Release stands as a main object consisting of some properties that include a list of

Sprint objects, which each in turn have some conventional properties that include a list

of Features (user stories). Features in turn have their own properties. The properties

that are of particular interest are the lists of Class and Method references, and the lists

of Work Entries.

Class and Method Reference lists. Each user story object has its own list in which the

QNames of system artefacts that are directly related to it are kept. A user story, as has

been explained above, can be immediately related to either a class or a method. For

simplicity reasons, the model keeps the QNames of each type in a different, separate

list. QNames are stored in those lists as simple String objects.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

66 | P a g e

Work Entries lists. Records of the work-hours daily updates for each user story are

similarly kept in a list. Each update record has a number of data items that are of

interest and thus a special data object has been created to capture those data

elements. The date and hours elements are self-explanatory. With regard to the

QName element, since a single user story can relate to multiple system artefacts, it is

desirable to be able to link each update record of remaining work hours to a specific

system artefact (as this enables the implementation of the remaining/completed work

depiction that is discussed in section 4.4.4). As for the work entry type, since estimates

of remaining work hours can decrease as well as increase during the course of

development, it is impossible to determine a correct value of how much has been

actually done at a given point of time only by inspecting the recorded remaining hours.

For this reason, it is again postulated that an ability to record the ‘completed’ work-

hours value is desired, and hence there are the two types of Work Entries. While most

surveyed Scrum tools only provide a mechanism to record the estimated remaining

work-hours, in some organisations employees are asked to record their actual spent

hours of work which is then used for determining employee payment as well as billing

to the customer. While expecting the availability of the completed work hours remains

in the realm of theory, its practicality is however not overreached.

-ID

Sprint

-ID

Release

-QName
-MethodRefs<List>
-ClassRefs<List>
-WorkEntries<List>
-Tasks
-Priority
-Category

Feature (User Story)

-QName
-Date
-Hours
-Type

WorkEntry

1

0..*

1

0..* 1

0..*

Figure 4.5: UML diagram of the Scrum Data Model (showing partial attributes only)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

67 | P a g e

The Scrum XML Schema

The other component needed to achieve the mapping between Scrum and system

artefacts is the XML file representation. XML is a popular and widely used standard of

the World Wide Web Consortium for exchanging data. An XML schema for Scrum has

been created to reflect the exact data model described above; which, as explained,

was conceived based on the conventional application of Scrum practice as found in the

agile community. Design of the schema is provided in Figures 4.6 through to 4.9, which

are self-explanatory. The complete schema document is provided in Appendix A along

with an example of an instance file.

Figure 4.6: Scrum XML Schema Design (Release-Type Details)

Figure 4.7: Scrum XML Schema Design (Sprint-Type Details)

Figure 4.8: Scrum XML Schema Design (WorkEntry-Type Details)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

68 | P a g e

In addition to the Scrum XML Schema, a similar Schema for system artefact

documentation has also been designed with the purpose of illustrating the advantage

of having in situ and in-context ability for inspecting, exploring, and learning about a

system. The schema is depicted in Figure 4.10 while some discussion on this is found in

Chapter 5 (the complete schema document is provided in Appendix A).

Scrum Presentation Layer

The Scrum data model, as presented above, has a hierarchical and tree-like structure.

This naturally implies that a graphical user interface in which elements are represented

in a tree list would be a good choice to present the Scrum elements to the user. Since

the tool being developed in this work is an Eclipse plug-in, a common first choice might

also be to use the native Eclipse GUI libraries to build the interface. However, this

Figure 4.9: Scrum XML Schema Design (Feature-Type Details)

Figure 4.10: XML Schema Design of System Artefact Documentation

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

69 | P a g e

means the interface would take a precious amount of space of the available screen

area. Given the user-navigable nature of virtual 3D environments, available screen

area plays a significant role, and full-screen working mode is commonly preferred.

Visualisations of software structure also tend to be of large scale and size because of

the typically large number of constituting system components, hence requiring a large

display area. (Small and/or simple systems do not need to be visualised in order to be

understood.) For this reason and for other usability and aesthetic purposes (discussed

in Chapter 5), an inside-the-3D-scene interface is preferred.

Hence, to present the Scrum model over the 3D city metaphor representation of

software structure, a special non-intrusive graphical user interface has been designed

to provide easy interaction right inside the scene graph of the 3D environment. The

interface is designed as an overlay layer that can be instantly shown or hidden with a

single keyboard press. It presents the Scrum data in situ via an integrated non-intrusive

mechanism; allowing users to interact with the visualisation without bearing the

overhead of switching back and forth between the scene graph window and external

GUIs. Even though the tool is an Eclipse plug-in, users can work uninterrupted in full-

screen mode to inspect and investigate their system.

Scrum-To-Glyph Synched Mapping. The interface provides a bidirectional mapping

between the Scrum artefacts and the city metaphor glyphs (i.e., the system artefacts).

A user can select a specific Scrum element from the user interface and the related

system artefact glyphs are then highlighted. If the selected Scrum element is a user

story, the user is automatically ‘transported’ using an animated transition to the

specific system artefact glyph(s) that this user story has created or modified.

Justification for the animated transition can be found in section 4.5.3 (Scrum-To-Glyph

Mapping). Selecting a Sprint results in all system artefacts involved in that Sprint being

highlighted; giving an immediate visual cue as to where in the overall software

structure that specific Sprint has contributed.

In a similar manner, when the user selects a particular system artefact glyph

(specifically, a method or a class), all of the related user story records in the interface

are then selected, guiding the user to the original user stories that were responsible

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

70 | P a g e

for creating that artefact. Users can then choose to view the details of each user story,

which are displayed in a similar non-cluttering overlay GUI. The user can also interact

with each glyph and can choose to read its documentation, view Scrum details related

to it, or view the source code. The source code view opens the native Eclipse Java

editor window which inevitably interrupts the full-screen mode. Figure 4.11 shows a

sample view of ScrumCity visualising itself with some simulated Scrum data being

shown.

4.4 System Implementation

This section sheds some light on important implementation aspects of the system.

Whereas the previous two sections were focused primarily on providing a higher level

picture that conveys the general outline and main features of the proposed

visualisation technique, this section discusses details that are more specific to the

development of the proof-of-concept tool.

Figure 4.11: ScrumCity visualising itself

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

71 | P a g e

4.4.1 Vera

Vera was introduced above as an Eclipse plug-in on top of which ScrumCity was to be

built, and which provides the source code model of systems to be visualised. During

the course of this research, Vera1 was released as part of Krebs’ Master’s thesis. It was

immediately found to be particularly suitable for the purposes of this research

because, on top of modelling projects’ source code, it also provides a ready and

convenient special GUI support to host software visualisations. Plug-ins that hook to

Vera get their own icon and toolbar command as well as a contextual right-click menu

command where that plug-in can be invoked and launched. A shared canvas pane is

then used to display the resulting visualisation view after the invoked guest plug-in

completes processing. Figures 4.12 and 4.13 show the Vera plug-in running (showing a

native example of a visualisation view). The reader is referred to the original thesis for

more details about Vera.

Source Code Modelling

In order to visualise the structure of a system, detailed information about each of its

individual components needs to be extracted and provided in some accessible manner.

Each artefact of the target system, e.g., a package, a class, a method, or an attribute,

will have different properties that are important to the visualisation system and must

thus be extracted from the original source code. For example, the parent of each

package and a list of its sub-packages must be known. For classes and methods, all of

the basic and conventional software metrics such as lines of code (LOC), number of

methods (NOM), and number of attributes (NOA) are recorded in addition to other

information such as method invocations and inheritance relationships.

In early software visualisation systems, those data were extracted and recorded in

tabular formats in a database for later access. However, to take full advantage of the

intrinsic modular nature of object-oriented development languages, it would be more

sensible and practical to build real ‘object models’ that capture all the required

information about each constituting code artefact. As open-source frameworks and

libraries for automatically building such object models of systems started to appear,

software visualisation tools quickly started to adopt them.

1 http://scg.unibe.ch/download/Vera/

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

72 | P a g e

Vera is one such recent tool that provides this capability. It parses the system to be

visualised and outputs a single Java object model that can be considered as a logical

and abstract representation of that system. The model contains child objects, i.e.,

variables, portraying each single code artefact (package, class, method) of the original

system. Each child object keeps the information about the corresponding code

artefact. That single Java object is then input to ScrumCity where it is processed to

build the visualisation.

Shared Canvas pane where

visualisations get displayed

ScrumCity

Command

Toolbar Commands of Vera’s

native visualisations

Figure 4.12: Vera's Eclipse Plugin showing ScrumCity's Toolbar command (Vera’s native visualisation
shown in canvas)

Figure 4.13: Vera's Contextual Menu (displayed when a Java Project is selected in Eclipse’s ‘Package
Explorer’ view)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

73 | P a g e

4.4.2 Building a Hierarchically-Structured Model

As briefly mentioned above, the model produced by Vera cannot be used ‘out of the

box’ for the purposes of the city metaphor visualisation. To understand why this is the

case, it is helpful to reflect on the layout employed in the city metaphor. Classes in the

city metaphor are visually represented on top of their parent packages, and sub-

packages in the same way are also represented on top of their parent packages. This

results in a nested structure in which each system artefact is placed on top of its

parent one. As a result, and due also to the nature of the layout algorithm (discussed

next), it is necessary to have a secondary logical model to overlay the original model of

the target system. That secondary model needs to reflect and exhibit the internal

hierarchical structure of the original system. It needs to be in a tree-structure scheme

where a root object is set to represent the project, and then that object holds child

objects representing each root package, which in turn each have their own child

objects representing sub-packages. This continues until methods of each class are

represented by child objects of their parent classes. Figure 4.14 illustrates this

hierarchical and containment structure. This model is necessary because it can

eventually be utilised as a blue-print when creating the glyphs of the visualisation

scene, and which will result in obtaining a visual replica of the system’s actual

containment structure.

While the Java object model produced by Vera captures all the required information

about the system entities in a single and easily accessible model, the internal structure

of that model object does not reflect the real hierarchical structure described above1.

For this reason, a secondary model conforming to the described scheme has to be

built. To accomplish that, Vera’s object model is traversed and the full names

(QNames) of packages are used to recursively build the hierarchical containment

structure of packages. A similar approach is also used to build the class and method

containment relationship. This process finally results in a secondary logical object

model that overlays Vera’s original source code model (see Figure 4.14). As has been

1 The Vera Java Object Model uses a HashMap internally to store the child objects so in reality the
structure of the object model is entirely different than the original system’s structure. However, this
object model provides access methods that make the whole model appear structurally similar to the
original system’s structure, except for packages which can only be accessed in a flat way.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

74 | P a g e

introduced in the architecture section, this resultant model is processed by the layout

algorithm first and then it is used to create and render the visualisation glyphs.

-ProjectModel<IProjectModelRepository>

Project Spatial

1 0..*
-package<ch.unibe.scg.famix.core.entities.Package>

Package Spatial

-class<ch.unibe.scg.famix.core.entities.Class>

Class Spatial

-method<ch.unibe.scg.famix.core.entities.Method>

Method Spatial

1

0..*

10..*

Figure 4.14: A class diagram illustrating the hierarchical structure of the secondary logical model and
showing how the different elements of Vera’s original source code model are eventually mapped into
an all-encompassing single object model that embodies the true structure of the system.

4.4.3 City Metaphor Layout Algorithm

Before discussing the layout algorithm, it is relevant to briefly review (see Figure 4.11)

the city metaphor graphical representation technique. In the specific city metaphor

version adopted here, a main platform represented by a thin cuboid is used to

simulate a city real-estate landscape. Root packages are then represented by other

thin layers of cuboids residing on top of the city platform. To obtain the containment

structure view, sub-packages (also represented as thin cuboids) are further placed on

top of their parent packages, each sharing a portion of the total surface space of their

parent package, giving a district-like appearance. Classes are then represented by

buildings placed on top of their corresponding parent package. The dimensions of each

Class glyph are determined by two metrics: NOM for height and NOA for width (and

further discussion on this is provided in Chapter 5, section 5.4.2 (Normalised City

Metaphor)).

To understand the layout mechanism, it is important to note that the size of each

container, i.e., a package or class cuboid, is directly related to the size of its

constituting child containers. For example, to calculate the surface dimensions of a

container representing a given package that contains three sub-packages and two

classes, the surface areas of the two class cuboids as well as that of the three sub-

package cuboids need to be calculated first. In other words, to determine the size of a

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

75 | P a g e

parent glyph, the sizes of its constituting child glyphs must be first determined. Since

parent-to-child hierarchies can go down to unknown numbers of levels, this suggests a

recursive approach is needed where the size of each glyph is determined by traversing

bottom-up into the hierarchical structure of the system model. This is in fact exactly

how the City Metaphor layout algorithm introduced by Wettel and Lanza (2007)

behaves. This also explains now the need for building the secondary hierarchical

structured model discussed above. Each object in that model corresponds in reality to

a glyph object which is eventually assigned a geometrical mesh and is visually

rendered.

The interested reader is referred to Richard Wettel’s PhD thesis for a full and detailed

description of the layout algorithm. That same algorithm was in fact also implemented

by Rigotti in Manhattan (2011). ScrumCity adapts and uses the same algorithm, albeit

with slight variations. The main variation relates particularly to presenting the methods

inside their classes using the same layout technique as is used for presenting the

classes on top of their parent packages in Wettel’s original city metaphor. In their

original version of the City Metaphor, Wettel and Lanza (2007) did not go so far as to

represent methods, although later in his PhD (2010) Wettel provided a fine-grained

variation where glyphs of classes were entirely replaced by buildings of bricks where

each brick corresponded to a method.

4.4.4 Implementation of Remaining and Completed Work

As part of the proposed conceptual visualisation technique a special mechanism has

been devised to enable users to monitor the progress of development for a given

Release. On a mapping scale between Class glyphs and user stories, users are able to

see a visual depiction indicating how much user story work has been completed for a

particular Class. When this is extended to a collection of classes of a particular package

(which from a software architecture perspective usually maps to a system module or

sub-module) a potentially useful picture emerges providing a visual impression of how

much work has been completed and how much is remaining for a particular system

component or module.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

76 | P a g e

Similarly, a User Story or a Sprint can be selected and the remaining/completed work

depiction is then displayed for those classes involved in that user story or Sprint. This

provides another potentially informative visual view of remaining/completed work

from the perspective of a user story or a Sprint, where various classes, not necessarily

in the same package, will be involved in the depiction.

To implement this mechanism, for each given class, the remaining work-hours of all

user stories related to this class are added up to get the total remaining hours standing

for this class. The same is done for the completed work-hours. The ratio of these two

values is then computed and the Class glyph is turned partially transparent, where the

height of the transparent portion is determined by the percentage of remaining work.

Furthermore, the other portion, representing the completed work, is colour-coded (as

per section 4.5.6) to provide a richer visual sensation of development progress. For

example, classes with less than 20% completed work (relative to the remaining work)

are assigned a red colour.

If a specific user story or a specific Sprint is selected, then data obtained from that

selected Scrum artefact only (as opposed to all related user stories in the previous

case) are involved in the completed/remaining work depiction.

This mechanism has been implemented mainly for Classes at this stage of

development, but a preliminary experimental implementation has also been instituted

for a Method-to-user story mapping scale.

4.4.5 Implementation of the Burn-down Chart

The burn-down chart is a core feature of Scrum practice as it provides project

managers with various valuable statistics regarding progress and projections of

estimated delivery dates. For this reason, it is contended that adding this feature is

desirable for its inherent management value, rather than any conceived advantage

from a software visualisation perspective.

Thus for each Sprint, a user can choose to display a 3D burn-down chart. The time span

of the chart for each Sprint is determined based on either the start date and expected

completion date attributes of a Sprint, or determined by finding the oldest and newest

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

77 | P a g e

dates of work entries. Furthermore, Work Entry records represent the major source of

data for implementing this feature and thus they are heavily involved in various

computations.

After determining the timespan of a Sprint, column bars are used to represent each

day of a Sprint’s duration where its height indicates the total amount of remaining

work-hours up to that day. Future days of a Sprint (where no work entries yet exist)

are represented by place-marks which allow the overall chart to give a visual cue of the

days to go before a Sprint’s expected completion date is reached.

Section 4.5.11 provides illustrations of this feature along with brief descriptions.

4.4.6 Implementation of a Custom Tool Tip

An implicit requirement of conceptual visualisation is to enable contextual and in situ

exploration, learning, and reasoning about system artefacts and their design, and this

has meant that textual information must be presented to the user in an integrated

fashion within the visualisation and with minimal possible distractions. For ScrumCity,

three categories of information are displayed to users: system artefact information,

Scrum artefact information, and system artefact documentation. While the 3D

graphics library (jME3) provides a well-supported third-party GUI (called Nifty GUI)

which integrates well into the 3D environment, unfortunately the GUI library was not

yet fully-fledged at the time of ScrumCity’s development. Many GUI components have

a very simplistic implementation and a few of them are hampered by bugs. As a result,

a special Tool Tip GUI component has been custom-built so that it conforms to the

desired behaviour.

The implemented tool tip can be triggered on and off with a simple key press, and

different modes of operation can be further chosen with other keys. The custom

implementation makes the tool tip behaves much like an information centre, with

other modes of operation available to be configured.

Section 4.5.5 presents an example view of this tooltip in action.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

78 | P a g e

4.4.7 Implementation of Automatic Transparency

It has been mentioned above that methods in ScrumCity are represented as glyphs

contained inside their parent classes. Because visualisation of software structure down

to the method level might not be desired by some stakeholders (e.g., due to potential

clutter), it was decided that their representation should be made available only on-

demand. To achieve this, class glyphs are by default rendered as completely opaque.

However, during navigation when the user comes ‘close’ to a Class glyph (as measured

by a specific distance), it is made transparent so that method glyphs inside become

visible. When the user moves away, the glyph returns back to its default opaque

status. The user can also select one or more different glyphs and invoke the

transparency mode from a contextual right click menu, irrespective of their proximity.

This transparency mechanism was inspired by a similar approach introduced by Balzer

et al. (2004, 2007) in their ‘software landscape’ metaphor (introduced in Chapter 2)

and was called dynamic transparency in that work. In their metaphor, spheres of

multiple nesting levels were turned transparent, with changing scale of transparency

based on the viewer’s distance from the spheres.

Turning glyphs transparent, however, enables users to only view the method glyphs

contained inside, but not interact with them. To solve the latter need, another

technique has been implemented to automatically detach and restore the parent class

glyph automatically. After a class glyph turns into transparent mode, when the user

moves even closer, the class glyph is completely detached allowing users to interact

freely with the methods. The Class glyph is restored once the user moves away from

those Method glyphs.

Illustration of this feature in operation can be found in section 4.5.2.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

79 | P a g e

4.5 System Features

This section presents the main features implemented in the ScrumCity tool along with

brief descriptions of each1. While some features are Scrum-specific and are intended

to support the main theme of the tool, other features are more general and so are

intended to enhance the utility of software visualisation tools in general. Many of

those features have been informed by the literature and so address specific areas that

have previously received minimal or no attention (see section 2 of Chapter 5). Thus,

collectively they attend to and aim to fulfil the secondary objectives of this research

that were disclosed in the introductory chapter of this thesis.

4.5.1 The City Metaphor Layout

Figure 4.15 shows an example of the initial view produced by ScrumCity when a

project is first visualised. The view shows a system’s static artefacts (the system is

1 The reader is referred at this point to the accompanied video demo where all the features and
functionalities described here are illustrated. The demo was created on a different machine
(MacBookPro OS X 10.7.5, 2.4 GHz) that is of lower performance than the machine used to create the
majority of the figures in this thesis (see Table 5.2 for that machine’s specifications). The video demo is
also available on YouTube: http://youtu.be/XEEcXOk-KW0

Figure 4.15: Example view of the City Metaphor Layout as implemented in ScrumCity

http://youtu.be/XEEcXOk-KW0

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

80 | P a g e

jME3 itself in this case) being visualised using an enhanced version of the Wettel et al.

city metaphor. Cylindrical glyphs are used to distinguish interfaces from concrete

classes1.

4.5.2 Method Representations (On-demand Transparency and Detachment)

Figure 4.16 shows views of two different scenarios where Method glyphs that are

rendered inside Class glyphs can be viewed and interacted with. Depending on the

user’s distance from a Class glyph, the glyph is automatically turned transparent or is

detached completely to allow interaction with methods. Upon moving away by a

certain distance, glyphs are restored to normal appearance.

4.5.3 Presentation of Software Processes (Scrum Artefacts and Activities)

ScrumCity presents a unified view of software processes and software products. This

presentation is achieved via various mechanisms illustrated as follows.

1 Although not part of Wettel’s original city metaphor, cylinders and cuboids have been commonly used
in 3D software visualisation metaphors since the field’s early days. Cylindrical shapes were also used in
Manhattan (2011) to represent interfaces.

Figure 4.16: Class glyph is turned transparent due to user navigating closely (Left). As user
approaches further, the Class glyph is detached allowing interaction with methods (Right).

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

81 | P a g e

Scrum Artefact List

By pressing the ‘1’ key on the keyboard, a special graphical interface showing a list of

Scrum artefacts, namely Releases, Sprints, and Features (user stories), is displayed.

Those Scrum data are loaded from a user-provided XML file. Ideally, a tree-list based

GUI would be used in such a scenario for the presentation. Unfortunately, at the time

of ScrumCity development, the available version of Nifty GUI (v1.3.1), which is a third-

party GUI library integrated into jME3, had a very primitive implementation of a

TreeBox GUI control that was plagued by bugs hindering its usage1. Hence, to

demonstrate the concept being introduced here, a simple ListBox control has been

used instead (more information is revealed in Chapter 6, section 6.4). Figure 4.17

shows this control with simulated Scrum data being displayed. To work around the fact

that hierarchical tree representation is not possible at this stage, simple empty records

have been used to separate release, sprint, and feature records with special prefixes

used for further distinction.

The same keyboard key is used to hide or show the Scrum List GUI (toggle on/off).

1 Some discussion of the technical problems encountered can be found on a jME3 forum post at:
http://jmonkeyengine.org/forum/topic/treeitemselectedevent-is-not-being-published/#post-182530

Figure 4.17: Scrum Artefact List

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

82 | P a g e

Depending on the type of the Scrum artefact selected, the Scrum List GUI control

provides various other functions accessible via the buttons at the bottom. These

functions are presented below.

Scrum-To-Glyph Mapping

As has been introduced above, the Scrum-To-Glyph mapping must be implemented to

work in a bi-directional mechanism in order to realise the conceived advantage of the

introduced conceptual visualisation.

When a feature is selected from the Scrum List GUI, the user is automatically

‘transported’ using animated transition to the specific Class or Method Glyph with

which the selected feature is involved. Once the target glyph is positioned at the

centre of the view scene, the glyph is highlighted with a blinking effect in place for a

few seconds. The reader is referred to the accompanying video demo to see the

feature at work. Figure 4.18 shows the final scene where the target glyph is highlighted

and presented at the centre of the view scene.

Figure 4.19 shows the visual effect after selecting a Sprint from the Scrum List user

interface.

Figure 4.18: User is automatically transported using animated transition to
the related system artefact after a feature is selected (final scene is shown)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

83 | P a g e

Working the other way, by selecting a glyph from the scene (i.e., a Class or a Method

glyph), all related user stories are highlighted in the Scrum List user control, allowing

the user to identify the related user stories and giving them the opportunity to inspect

and examine the details of those user stories as needed.

In situ Information (Overlay Popup Screens)

The Scrum List GUI control provides access to view the details of a selected Scrum

artefact. Figures 4.20 shows different detail views (based on the type of a selected

Scrum artefact) accessed using the ‘View Details’ button. Special overlay popup

screens have been designed to present the data in context and in a potentially non-

distracting manner while the user is exploring or examining the system components.

Figure 4.19: Selecting a Sprint reveals the locality of its contribution within the system’s
structure

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

84 | P a g e

4.5.4 System Artefact Search

Since real world software tends to consist of large numbers of components, trying to

manually find an artefact of particular interest in the city visualisation would likely be a

tedious and impractical task. Hence an artefact search feature has been implemented

with various search strategies. The search functionality can be instantly displayed or

hidden using the ‘2’ numerical key. Figure 4.21 shows the search mechanism displayed.

Figure 4.20: Two examples of information being presented in context.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

85 | P a g e

Once an artefact is found, the user is automatically ‘transported’ to it using animated

transition and the artefact is then blinked and highlighted in the same manner

described above. The prefix ‘#’ can be used to selectively search for methods only. If

the hash prefix is not used then only class and package names are searched. In all

cases, the search term is compared only to the last part of a QName to give proper

search results. The simple justification for this strategy is that comparison to the whole

QName string would mean that artefacts whose parents have a matching term would

be returned and this is most often not the desired behaviour.

The ‘All Matches’ button only searches for and highlights artefacts found with

matching terms, without performing any transition. The reader is again referred to the

accompanying video demo to see this feature in action.

4.5.5 Custom-Built Tool Tip

The reasons behind the creation of the custom tool tip have been discussed above. The

tool tip has three mode of operation: Scrum Mode, Documentation Mode, and

Combined Mode. The modes can be easily selected by pressing the ‘3’, ‘4’, or ‘5’

numerical keyboard keys, respectively. The tool tip can be disabled using the ‘9’

keyboard key. The default operation mode for the tool tip is the combined mode,

which is shown in Figure 4.22.

Figure 4.21: The Search functionality

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

86 | P a g e

4.5.6 Remaining and Completed Work View

Figure 4.23 depicts an example scenario of the completed/remaining work view

discussed in the previous section. By right clicking on a class glyph, the user can

choose to view a visual depiction of the ratio of completed work to that which is

remaining. The numerical key ‘6’ of the keyboard can be used to toggle the

completed/remaining work view for all classes. Figure 4.24 shows the 5 colour-code

scheme used to give a further visual cue to the percentage of remaining work.

Figure 4.22: Tool tip in combined mode

Figure 4.24: Colour-coding for completed work-
hours percentage. From top left, clockwise: <20%,
<40%, <70%, and >70%. Percentage is calculated in
relation to remaining work-hours.

Figure 4.23: Example Scenario
showing a depiction of completed
to remaining work-hours ratio.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

87 | P a g e

4.5.7 Contextual User Interaction

By right clicking on a glyph, a contextual menu is displayed from which specific

functions can be performed based on the type of the glyph. For a Class type glyph,

those functions include viewing full details of related features (user stories), viewing

artefact documentation, showing contained artefacts (methods), showing the

completed/remaining work depiction, and detaching the class glyph to interact with

inner components. Figure 4.25(a) shows an example view of these menu commands.

4.5.8 Glyph Selection

Any glyph in the city landscape can be selected by clicking the mouse’s left-button

while holding down the ALT key. When selected, a glyph glows in reddish colour. This

enables the user to highlight an area of interest. Moreover, depending on the type of

the selected glyph(s) and the current status of the scene, right-clicking on an empty

area of the scene while some glyphs are selected will reveal a general pop-up menu

with various commands according to the situation in place. Figure 4.25(b) depicts an

example of this contextual menu

4.5.9 Enhanced Navigation

Navigation in a 3D environment is a major issue in software visualisation as has been

indicated in the literature review chapter of this thesis (and see also Chapter 5, section

5.2), with many researchers highlighting it as a core issue in need of suitable treatment

before 3D software visualisation can enjoy practical use in the SE industry. As a result,

Figure 4.25: Left (a): Contextual right-click menu for glyphs. Right (b): Example of
the general contextual menu.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

88 | P a g e

special attention and effort have been expended in this regard in the hope of attaining

an acceptable resolution.

The standard navigation mode commonly found in 3D software visualisation tools is

the conventional WASD key combination. In this standard WASD navigation mode, the

‘W’ and ‘S’ keys are conventionally used for zooming-in and zooming-out, respectively,

while the ‘A’ and ‘D’ keys are used for left and right panning, respectively. Many of the

3D software visualisation tools surveyed during the course of this research offered only

this conventional WASD navigation mode, with a few also offering rotation around

axes using the arrow keys. As a result, the navigation experience offered by these tools

is hampered and laden with limitations making it far from ideal. ScrumCity, in contrast,

uses a variety of navigation mechanisms in order to enhance the user experience.

Combined Fly-Camera Mode

ScrumCity implements a special navigation configuration that combines the WASD

mode with a fly-camera mode allowing the user to use both the mouse and the

conventional WASD keys simultaneously, resulting in a smooth navigation experience.

Furthermore, another two keys, ‘Q’ and ‘Z’, can be used in the same mode for upward

or downward elevation. With this configuration, the user can virtually walk-around and

explore the neighbourhoods of the city. Compared with other configurations, this is

considered to provide an improved navigation experience. The combined fly-camera

mode can be toggled on using the CTRL key, which captures and locks the mouse

cursor in the 3D scene, allowing the user to start to use the mouse and WASD keys

together. When the CTRL key is pressed again, the mouse is released and the

navigation mode returns back to the default WASD mode.

Enhanced WASD Mode

Some enhancements have also been added to the default WASD mode. In this mode,

the four arrow keys can be used to rotate the city around its own axes, enabling the

user to move to the desired side of the city or tot tilt the city to a desired angle. In

addition, this mode has also been augmented with mouse interactivity. The mouse is

not locked in this mode; rather, the user can use it to hold and drag the city to a

desired location, by pressing and holding the left mouse button during the interaction.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

89 | P a g e

This produces a pan-like effect in the four directions. The mouse wheel can also be

used to zoom in or out at a speed slower than that offered with the WD keys.

The accompanying video demo demonstrates these various enhancements to the

navigation experience.

4.5.10 Source Code Integration

Class and Method glyphs are tightly integrated with the actual source code artefacts

that they represent. By clicking the mouse’s left button on such a glyph while holding

the SHIFT key down, the source code of that artefact is opened in Eclipse’s native Java

editor. If the artefact is a method, the editor opens to the exact location of that

method in the file.

To open the source code of more than one glyph, the glyphs of interest can be first

selected and then right-clicking over an empty area of the scene graph reveals a

contextual menu with a command for opening the source code of the selected glyphs.

This can also be achieved by holding the SHIFT key and then pressing the ‘O’ key.

4.5.11 Burn-down Chart

By selecting a Sprint from the Scrum List GUI control, a burn-down chart can be

displayed showing a graph of the remaining work-hours per day across the Sprint’s

timespan. When placing the mouse cursor over a particular bar column (representing a

day) or over the chart base, different statistical details are displayed in the tool tip.

Figure 4.26 shows an example view of the burn-down chart functionality. The ‘back to

city’ button returns the user back to the main city visualisation.

4.5.12 Colour-Coding for LOC

In ScrumCity, Class glyphs are colour coded according to their LOC metric value. The

colour scheme should enable viewers to easily identify where in a system the various

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

90 | P a g e

levels of responsibility occur1. Figure 4.27 illustrates this colour-coding scheme and the

criteria used within it.

1 Mapping the LOC metric to particular colours is part of Wettel’s original City Metaphor but since
ScrumCity uses a different colour-coding scheme, it is necessary to illustrate this scheme here.

Figure 4.26: Burn-down chart for a simulated Sprint data

Figure 4.27: LOC colour mapping. From left to right clockwise: <200, <500, <1000,
<1500, and >2000

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

91 | P a g e

4.5.13 Colour-Coding for Package Nesting Level

Similar to the approach just described for mapping Class colours to the LOC value, the

nesting level of packages is also indicated in ScrumCity using a similar colour-coding

scheme technique. Root packages are given a dark grey colour, and as the nesting level

increases, the colour becomes lighter. This technique is part of Wettel’s original city

metaphor. Figure 4.28 demonstrates this characteristic.

4.5.14 Top-down and Side Views

Top-down and side views of the city can be displayed by pressing the ‘U’, or the ‘I’ key

respectively, while holding down the SHIFT key. Pressing the ‘R’ key while holding the

SHIFT key down resets the visualisation scene to the default isometric view. Figure

4.29 shows examples of the side and top-down views.

4.5.15 Keyboard functions Map

ScrumCity makes extensive use of keyboard commands, a common feature in 3D

virtual environments. To help guide new users to the available functions, a keyboard

function map can be found in Appendix B.

Figure 4.28: Package nesting level indicated using colour
mappings.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

92 | P a g e

4.6 Summary

In all design-science research, communicating the development process is a major

activity and one through which the continuous gradual advancement of a field can

occur. Hence, in accordance with the guidelines of design science methodologies, this

chapter set out to communicate the details of the development process as instantiated

in this research project. It began with a discussion of the overall architectural design of

the developed proof of concept tool, highlighting the major elements and components

behind it. Each of those major components was also presented separately in detail,

explaining its purpose and working mechanisms. Furthermore, the commonality of

design shared by most other software visualisation tools was highlighted, indicating

where ScrumCity differs and why.

Most importantly, this chapter has introduced and elaborately described the design of

the proposed visualisation technique which is the main anticipated contribution of this

research. Some important implementation details were then discussed, and the

chapter was concluded with a description of the tool’s features and functionalities.

Figure 4.29: Side View (Top) and Top-down View (bottom) of JMonkeyEngine3

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

93 | P a g e

5
System Evaluation

Validation of the proposed Conceptual Visualisation technique and assessment of its

capabilities and potential applications are presented and demonstrated in this chapter.

Evaluation criteria drawn from the literature along with recommendations of previous

researchers are first presented, and these then form the basis against which the

visualisation technique and the prototype tool are assessed.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

94 | P a g e

5.1 Introduction

As stated, the primary objective of this research is the introduction and manifestation

of the novel visualisation technique referred to here as Conceptual Visualisation.

According to the discussion in Chapter 3, the feasibility of this technique is asserted by

the actual construction (and then demonstration) of the prototype tool, ScrumCity.

However, this work also has other important secondary objectives that are intended to

address issues in software visualisation that, according to previous researchers, need

attention.

Two strategies are therefore adopted in the evaluation procedure for this research.

Initially, the utility of the new concept is demonstrated in case studies by applying the

visualisation to several real-world open-source systems using simulated Scrum data.

Potential real-world applications are then revealed and discussed in light of prior

literature and past development work in order to further demonstrate the utility of the

technique and its relevance. In addition, some of the issues that have been deemed by

previous researchers to hinder the practicality of 3D software visualisation in the SE

community are specifically discussed, showing how they have been addressed in

ScrumCity – in the hope of taking this relatively new technology closer to the life of the

everyday developer as well as other potential software stakeholders. Those issues

constitute the secondary objectives of this work and their achievement is collectively

anticipated to help in mitigating the low rate of adoption of ‘3D’ software visualisation,

in particular.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

95 | P a g e

5.2 Issues in 3D Software Visualisation

To initially guide this research in an appropriate direction, some effort was expended

on identifying the most prominent issues that stood in the face of SV use in general

and 3D SV use in particular. Such efforts are also important in order to avoid ‘re-

inventing the wheel’. With an apparent increase of interest by academia in software

visualisation research during the past decade, the field has recently witnessed a

proliferation of reviews, surveys, and taxonomies. As was indicated in Chapter 2, some

of those surveys were specifically oriented to identifying ‘desirable features’ or

‘features that make for an effective software visualisation’. Sensalire et al. (Sensalire et

al., 2008, 2009; Sensalire & Ogao, 2007a, 2007b) in particular have published a series

of four papers to identify such issues based on empirical work. In total, 21 survey

studies and literature reviews were carefully examined and studied as part of this

research effort in order to identify the most prominent and/or enduring issues in SV

research. Table 5.1 summarises those issues that are particularly relevant to 3D

visualisation. These important elements, drawn from the literature, may be considered

to act as broad evaluation criteria for the secondary objectives of this research. They

are presented here to enable the reader to relate the anticipated contributions of this

work to the literature and also to help in assessing the ScrumCity tool. Some of these

issues have been tackled before with variable degrees of attention and success, but

are still being identified as in need of further work. Those marked with a star suffix

have, on the other hand, been identified as having received minimal attention from

previous researchers.

Even from a brief, initial glance at the table, it is evident that most of the issues

identified pertain to tool design and only a few relate to visualisation techniques. This

apparently suggests that tool design and the technologies involved should receive

more attention from future researchers. While most of these identified issues have

been given some consideration during the design and development of the conceptual

visualisation technique and during the design and implementation of the ScrumCity

tool, this research has been focused primarily on the first seven issues. Hence those

seven issues receive particular attention during the evaluation process in order to

show how they render a visualisation more usable and therefore more effective and

practical. Further general discussion is presented in section 4 of this chapter.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

96 | P a g e

Table 5.1: Major Issues facing 3D software visualisation as drawn from literature

Feature Citation
1 IDE-integration* (Sensalire et al., 2008), (Sensalire & Ogao,

2007a), (Kuhn et al., 2010)
2 Good Searching Mechanism/ Query

Support (including at visualisation
level) *

(Sensalire et al., 2008), (Sensalire & Ogao,
2007a), (Sensalire & Ogao, 2007a), (Kienle
& Muller, 2007), (Gallagher et al., 2008),
(Bassil & Keller, 2001)

3 Navigation in the 3D environment* (Sensalire et al., 2008), (Petre & de
Quincey, 2006), (Gračanin et al., 2005),
(Ghanam & Carpendale, 2008), (Young &
Munro, 1998), (Gallagher et al., 2008)

4 Non-distracting and approachable
user interface*

(Petre & de Quincey, 2006), (Kienle &
Muller, 2007), (Bassil & Keller, 2001)

5 Utilisation of Animation* (Sensalire et al., 2008),

6 On demand display of details and
meta-data*

(Sensalire & Ogao, 2007a), (Sensalire &
Ogao, 2007a), (Petre & de Quincey, 2006),
(Beck & Diehl, 2010)

7 Scalability (in terms of the visual
metaphor when visualising large-
scale systems)*

(Sensalire et al., 2008), (F. Steinbrückner
& Lewerentz, 2010), (Bassil & Keller,
2001)

8 Simplicity (of use & installation) (Sensalire & Ogao, 2007a), (Bassil &
Keller, 2001)

9 Responsiveness (Sensalire & Ogao, 2007a), (Bassil & Keller,
2001)

10 Varying Level Of Detail (Metaphor)
– a.k.a. Elision

(Petre & de Quincey, 2006), (Beck & Diehl,
2010), (Gračanin et al., 2005)

11 Source Code Integration (Petre & de Quincey, 2006),

12 A metaphor that is resilient to
change

(Petre & de Quincey, 2006), (Gračanin et

al., 2005), (F. Steinbrückner &
Lewerentz, 2010)

13 Good use of visual metaphors (Petre & de Quincey, 2006), (Ghanam &
Carpendale, 2008), (Young & Munro, 1998)

14 User interactivity (in the 3D
environment)

(Petre & de Quincey, 2006), (Young &
Munro, 1998), (Ghanam & Carpendale,
2008), (Gallagher et al., 2008), (Kienle &
Muller, 2007)

15 Integration of documentation and
other informal sources of
information (e.g. email
communications)

(Storey et al., 2005)

16 Level of Automation (e.g.
mechanism of importing the source
code to be visualised)

(Sensalire & Ogao, 2007a), (Gračanin et
al., 2005)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

97 | P a g e

5.3 Laboratory Validation

The aim of this section is to demonstrate the utility of the principal concepts behind

the introduced visualisation technique and to verify that it achieves the objectives of

this research. As introduced and described in Chapter 4, the conceptual visualisation

technique relies on the availability of real Scrum data (reflecting Scrum artefacts and

activities) for the system to be visualised. Scrum data, as has also been explained,

intrinsically represents and captures the software development processes – which

through their enactment produce the various system artefacts. Since obtaining such

data for a real-world system is beyond the scope of this research, a simple mechanism

has been employed in ScrumCity to optionally allow for the generation of simulated

Scrum data specific to the system being visualised when no real XML Scrum data is

available. In this way, it becomes possible to test and demonstrate the visualisation

technique for any system for which only the source code is available.

So for demonstration and validation purposes, six real-world open-source systems

have been chosen taking into account that they collectively cover a reasonable range

of system sizes (and working from the stance that very small systems do not benefit

significantly from visualisation). The smallest system of those chosen consists of 66

classes while the largest has a total of 1315 classes. More importantly, the selected

systems have various characteristics that help to highlight particular features of the

developed tool, and that are disclosed in context as each system’s visualisation is

discussed. The chosen systems are: AntViz, Apache IvyDE, jEdit, jMonkeyEngine3,

Shrimp Suite, and ScrumCity itself. A brief description of each system is provided in

context in the following sections.

5.3.1 Environment Specification

ScrumCity was developed on a MacBook Pro machine with a 15-inch display. However,

to take advantage of a bigger screen size, the validation process was carried out on a

Windows 7 Desktop machine equipped with a 22-inch screen. Table 5.2 shows the

hardware specification details of this machine.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

98 | P a g e

 Table 5.2: Specification details of the machine used in the validation process

Processor 2 GHz Intel Core 2

Memory 4 GB

Graphics Radeon X1600

5.3.2 Case Studies

This section reports a sequence of case studies using the six mentioned subject

systems, in order to demonstrate the main functionalities of ScrumCity across multiple

real-world systems1. A brief description and comments are provided here as

appropriate for each case, while the discussion section that follows deals with other

important general aspects.

AntViz

Description. AntViz2 is a small application designed as a plug-in for the jEdit

programming environment. It serves to provide graphical representations of

dependencies in Ant scripts with some debugging capabilities.

Initial Visualisation view. Figure 5.1 shows the city metaphor representation of AntViz

as produced in ScrumCity. As can be seen in the diagram, the system is relatively small

and simple consisting of only 66 classes, most of which comprise fewer than 200 LOC.

It took ScrumCity 5 seconds to produce the visualisation for AntViz.

1 Higher resolution screenshots are available at : http://scrumcitytool.wordpress.com/
2 http://sourceforge.net/projects/antviz/

http://scrumcitytool.wordpress.com/

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

99 | P a g e

Some artefacts of particular interest have been annotated to give the reader a sense of

how glyphs’ colour and size mappings should be interpreted. In the actual visualisation

environment, upon the mouse hovering on a certain glyph, relevant metric data as well

as the artefact’s QName are displayed accordingly in information bars (shown top and

bottom).

Remaining/Completed Work Depiction. During the visualisation process, ScrumCity

was set to generate simulated Scrum data for AntViz, as explained above. This included

generation of random WorkEntry records (see Chapter 4, sections 4.3.1 and 4.4.4) for

each user story. Figure 5.2(a) shows the Remaining/Completed Work depiction for all

the buildings of AntViz city as visualised using those randomly generated work entries.

The depiction shows the proportion of remaining work as unfilled space for each

building, as compared to that of completed work. The exact percentage figure can be

read from the tooltip upon placing the mouse over a glyph.

src.antviz.Command (interface)
LOC: 6
NOA: 0
NOM: 1

DependencyNode
In: src.antviz
LOC: 135
NOA: 9
NOM: 19

FileSystemModel2
In: src.antviz.debugger
LOC: 751
NOA: 10

NOM: 22

TreeTableExample2
In: src.antviz.debugger
LOC: 454
NOA: 10

NOM: 9

src.antviz.AntViz
LOC: 1187
NOA: 33
NOM: 14

Figure 5.1: AntViz system as visualised by ScrumCity (initial view)

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

100 | P a g e

Remaining work can be displayed for the entire city at once, for a particular building,

or for a group of buildings related to a currently selected Sprint (illustrated later).

Feature Locality. As explained in Chapter 4, the main novel characteristic of the

conceptual visualisation is the seamless and tight integration between the Scrum

processes and their manifested product artefacts. Figure 5.2b (bottom) shows the

effect of selecting a particular Sprint from the Scrum Features list box. All system

artefacts in relation to the selected Sprint are instantly highlighted. One particular

building is seen to have been turned to transparent mode. This is because, while this

building is not directly related to the selected Sprint, a method inside it has a direct

relation to that Sprint, and hence it is made transparent so the highlighted method(s)

inside can be properly noted. (In this case, due to the random generation of simulated

data, both methods happen to be in direct relation to the Sprint but not their parent

Class.) A single user story (feature) can also be selected from the list box to find out the

Figure 5.2: Top (a): Remaining Work Depiction of AntViz City. Bottom (b):
Feature locality view for a selected user story.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

101 | P a g e

buildings related to that feature in particular. The Scrum artefacts in the list box are

tightly integrated with the city in the sense that a manual selection of a building in the

scene graph will reveal the related Scrum features in the list box, i.e., the integration

works in both directions.

Burn-down Chart. Figure 5.3 shows a burn-down chart being displayed for the selected

Sprint. Hovering over a particular day-column displays the exact figures of remaining

and completed work-hours for that day. The flat pads represent the days left until the

expected completion date of the Sprint. The tooltip shown displays more statistical

information which includes: time span, original and revised productivity rates1,

estimated days to completion based on both original and revised productivity rates,

total remaining and total completed work-hours, days elapsed since commencement

of the sprint, and total number of features. Extra details about the Sprint can be

displayed via the ‘View Details’ button.

1
 ‘Original Productivity Rate’ refers to the average value of completed work-hours per day obtained by

dividing the difference in remaining work-hours between the ‘first’ and the ‘lowest’ days of a Sprint’s
time span by the number of elapsed days. In the particular situation observed in Figure 5.3, the ‘first’
and the ‘lowest’ days happen to be the same day and hence this results in the ‘0’ value seen in the
tooltip. On the other hand, the ‘Revised Productivity Rate’ is calculated by taking the difference
between the ‘highest’ and the ‘lowest’ days, irrespective of the sequence they occur in.

Figure 5.3: Burn-down chart displayed for a selected AntViz Sprint

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

102 | P a g e

ScrumCity

Description. It has become conventional in the research community of software

visualisation to have the designed visualisation tool visualising itself, providing some

insights into the tool’s development in retrospect while serving as a validation

measure at the same time.

Main City View. The city landscape1 of ScrumCity can be seen in Figure 5.4 containing

a total of 115 buildings and with execution time in this case of 8 seconds. The system

has a degree of variance in terms of components’ complexities (LOC and NOM) which

is also dispersed across the different modules (packages). A single building stands out

distinctively in the middle, which happens to be the ‘ScrumScreenController’ class –

responsible for handling user interactivity in the virtual environment.

Other Scrum Views. Figures 5.5 and 5.6 both provide different scenarios for reasoning

about and inspecting the system in terms of locality of Scrum artefacts and the status

of development activities. Figure 5.5b shows particularly the added utility of depicting

the ‘completeness’ level of a selected Sprint.

1 The landscape of ScrumCity as it appears in the video demo varies slightly from what is depicted here.
This is due to the fact that since the time of creating the figures for this Chapter, the package structure
of ScrumCity code has been modified slightly as a result of final fine-tuning process.

Figure 5.4: Main City View of ScrumCity

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

103 | P a g e

Figure 5.5: Top (a): Feature locality in ScrumCity for a selected Sprint.
Bottom (b): Remaining work depiction view for the same selected Sprint.

Figure 5.6: A burn-down chart of a selected Sprint

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

104 | P a g e

Apache’s IvyDE

Description. IvyDE1 is an open-source Eclipse plug-in developed by the Apache

foundation which brings the popular Apache Ivy dependency management tool to the

Eclipse community.

Visualisation. The bird’s eye view of IvyDE’s city landscape shown in Figure 5.7 gives an

immediate visual cue about the system’s structure as well as its complexity. The key

feature evident in the city’s visualised landscape is that it consists of two main districts

(a very small third module can in fact be spotted at the furthest corner). The smaller

district in the front of the visualisation is a relatively well-sized test module. The whole

system consists of a total of 793 classes dispersed across 130 packages. Another

interesting characteristic of this city is that most of the system artefacts are of low

complexity, having low numbers of methods and lines of code counts fewer than 200.

The ‘IvySettings’ class stands out as a central class having a LOC count over 1500 and a

NOM measure of 29.

Scrum. The glowing buildings in Figure 5.7 demonstrate the advantage of identifying

the exact location, in such a relatively large system, of where in the landscape a Sprint

or a User Story is involved or is contributing to the system.

1 http://ant.apache.org/ivy/ivyde/

IvySettings
In: src.java.org.apache.ivy.core.settings
LOC: 1508
NOA: 8

NOM: 29

IvyBuildListTest
In: test.java.org.apache.ivy.ant
LOC: 458
NOA: 0
NOM: 23

Sub-Package: src.example

IvyResolve
In: src.java.org.apache.ivy.ant
LOC: 534
NOA: 10

NOM: 25

Figure 5.7: Main City Landscape of Apache IvyDE Eclipse Plugin

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

105 | P a g e

Shrimp Suite

Description. SHriMP has already been introduced in the literature review as one of the

earliest and most popular 2D software visualisation tools. Shrimp Suite1 comprises in

one system a collection of different visualisation features that were developed over

time as SHriMP add-ons.

Visualisation. Figure 5.8(a) shows the structure of this system as visualised by

ScrumCity (in the remaining/completed work mode). A peculiar, large rectangular

patch (aptly dubbed as a parking lot by Richard Wettel in similar findings of his work)

claims the city’s main attraction. This feature, unseen in the landscape of the

previously visualised systems, happens to be a ‘Constants’ class with no methods. Four

other smaller patches can also be seen in the city, which unsurprisingly, all happen to

be similar ‘Constants’ classes as well. Another distinctive feature of the city is the

number of large skyscraper buildings that dominate its skyline. The largest of these,

PShrimpNode, comprises a total of 157 methods and 2367 lines of code. It is also worth

noting that, as would naturally be expected, buildings’ colours (see Figure 5.8b) are

observed to generally move up the scale as building size increases.

1 http://thechiselgroup.org/shrimp-user-manual/. Code obtained from:
http://sourceforge.net/projects/chiselgroup/

Figure 5.8 (a): a simulated view showing the progress status of a Release projected over the affected
system artefacts (in this case, all artefacts are involved).

http://thechiselgroup.org/shrimp-user-manual/
http://sourceforge.net/projects/chiselgroup/

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

106 | P a g e

Scrum. Apart from providing a visual perspective of the system’s structure, Figure

5.8(a) shows also at the same time a bird’s eye view of the progress status of an entire

release. The depiction of the remaining-to-completed work proportions allows the user

to perceive a localised completeness level for each artefact, as well as providing a

broader overall awareness of work progress over the whole system. It is important to

mention that in a real-world situation, the contribution of a certain release would most

probably not be dispersed over the whole system as is seen in this case of simulated

data. In other words, it is unexpected that all system artefacts would be involved in a

single release – an exception of that would be in the case of the first release being

projected over the first version of the system.

In addition to the unfilled space representation, the four-colour coding scale (as

defined in Chapter 4, section 4.5.6) serves to depict the range of completeness ratio of

each artefact, particularly when viewing the whole system at once. All four colours can

be seen with different distributions in Figure 5.8(a) as a result of the randomly

generated data. A prevailing sky-blue colour, however, would have indicated a

complete or near-complete status (>70%) of a current release. Furthermore, the exact

percentage figure is displayed in the tooltip when the user places the mouse over a

building (see Figure 5.9).

Figure 5.8(c) is provided to show an example of what a close-up view looks like as a

user is interacting with and ‘walking through’ the city.

Figure 5.8: Left (b): Normal city view of Shrimp Suite showing original colour mappings. Right (c): A
close-up view of Shrimp Suite city.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

107 | P a g e

jMonkeyEngine3 (jME3)

jMonkeyEngine3 has also been introduced above, as the 3D graphics library used in

ScrumCity to render the virtual environment. It is an open-source 3D gaming library

that has been witnessing an increase in popularity for the past two years due to an

active community of developers. The main city view of jME3 can be seen in Figure 5.10

with 3 main districts characterising its landscape. The jme3test module stands out with

an interesting appearance of structure featuring a uniform distribution of classes, each

having a limited number of methods and a low LOC count. This module alone

comprises 36 packages and a total of 430 classes. The main ‘jme3’ module, on the

other hand, features a round flat patch along with a few skyscrapers of varying sizes.

As with the parking lots exhibited in Shrimp Suite, the flat round patch seen here

(KeyInput) correspond to a ‘Constants’ keeping place, except this time a Java Interface

is used instead of a Class for this purpose. Other interpretations and conclusions can

by drawn by a software engineer by examining the various city buildings, their sizes,

colours, and distributions. Overall, the jME3 city consists of 138 districts and a total of

1249 buildings (inner methods, i.e., rooms, are exempt from this count). Execution

time taken by ScrumCity to process and render jME3 city was 1 minute and 9 seconds.

Figure 5.11 shows two different views of jME3 city in Remaining/Completed work

mode while Figure 5.12 shows a burn-down chart of a selected Sprint. This particular

example of a burn-down chart is presented here to show that, in this case, the date

range of work entry records exceeded the expected Sprint completion time set

originally; hence no empty place-marks can be observed since the last column

corresponds to the most recent day found in the work entries.

Figure 5.9: A ToolTip showing some details of a class from Shrimp Suite city.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

108 | P a g e

Figure 5.10: A view of jMonkeyEngine3 city landscape as produced by ScrumCity

Matrix4f
In: com.jme3.math
LOC: 2333
NOA: 20
NOM: 91

KeyInput (interface)
In: com.jme3.input.
LOC: 544
NOA: 125
NOM: 0

jme3test
(Top level package)

InputCapsule (interface)
In: com.jme3.export
LOC: 160
NOA: 0
NOM: 74

jme3tools
(Top level package)

Figure 5.11: Top (a): An isometric view of jMonkeyEngine3 city in remaining/completed work mode,
showing work progress of a simulated Release. Bottom (b): a side view of the same scene.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

109 | P a g e

jEdit

During the validation process of ScrumCity, the jEdit1 city landscape was found to be

among the most interesting as it exhibited an abnormal structure – making it hard to

resist the temptation of presenting it. jEdit is a very popular open-source text editor

for programmers supporting a wide range of programing languages and file formats. It

consists of 58 packages and a total of 1315 classes, and took 54 seconds to be

rendered by ScrumCity. Its skyline boasts a number of extremely large skyscrapers

situated among mostly small and short buildings (see Figure 5.13). Interestingly, many

districts feature a single very large skyscraper surrounded by other very small

buildings.

This has many software engineering interpretations and most certainly would lead a

manager or a software engineer to investigate the reasons behind the abnormal

concentrations of functionalities in particular classes. Many of those classes are likely

to exhibit the god or blob design anti-patterns and refactoring might need to be

considered. Two classes particularly show LOC and NOM values on the extreme side,

namely TextArea and Parser, having lines of code of 6711 and 5816, respectively. The

two round patches correspond to ‘Constants’ Java Interfaces, just as in the previous

observed cases. Figure 5.14 shows the jEdit city from a different perspective with

several buildings in different modes.

1 http://jedit.org/

Figure 5.12: A burn-down chart from jME3 City.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

110 | P a g e

Figure 5.13: City Landscape of jEdit

TextArea
In: org.gjt.sp.jedit.textarea
LOC: 6711
NOA: 61
NOM: 264

Parser
In: org.gjt.sp.jedit.bsh
LOC: 5816
NOA: 13
NOM: 351

Constants (interface)
LOC: 274
NOA: 179

NOM: 0

jEdit
In: org.gjt.sp.jedit
LOC: 4667
NOA: 33
NOM: 146

Figure 5.14: A view of jEdit City from a different perspective showing several buildings in different
modes.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

111 | P a g e

5.3.3 Summary of Case Studies

To conclude this section, a table summarising the subject systems’ sizes and the

execution time taken by ScrumCity to generate the visualisation for each is presented

(Table 5.3). While performance was not formally one of the concerns of this research,

presenting this information may be of interest. The execution time presented here is

as experienced on the test machine described above. The figures are generally

consistent over multiple runs with a noticed difference not exceeding 8 seconds. A

general pattern of increases in execution time as the system sizes increase is evident;

however, IvyDE was found to violate this convention (although investigating the reason

behind this was deemed out of scope at this time). One last particular note with

respect to performance is that due the extensive graphic processing demanded by 3D

graphic tools, a level of degradation in responsiveness is encountered as system size

increases. This is a common issue intrinsic to and shared by almost all existing 3D SV

tools. However, the general consensus of the SV community is that machine

performance as well as 3D graphics processing power are rapidly improving, both of

which will consequently mitigate this intrinsic problem.

Table 5.3: Summary of subject system's sizes and execution time as experienced on the validation
machine.

 System Packages Classes Execution Time

1 AntViz 5 66 05 seconds

2 ScrumCity 18 115 08 seconds

3 IvyDE 130 793 3 minutes, 09 seconds

4 Shrimp Suite 43 1054 47 seconds

5 Jme 138 1249 1 min, 10 seconds

6 jEdit 58 1315 54 seconds

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

112 | P a g e

5.4 Discussion

This section presents and discusses various aspects of the introduced visualisation

technique including the features and functionalities provided in the prototype tool.

The purpose is to highlight the anticipated advantages, the enhancements to existing

techniques, and most importantly, the foreseen potential applications of use. Some

discussion is also presented on how particular concerns of previous researchers have

been addressed by this research.

5.4.1 Potential Applications

During the conceptualisation phase of this research many potential applications were

envisioned to benefit (to varying degrees) from the introduced conceptual visualisation

as well as from the specific functionalities implemented in the tool. A collection of the

most important potential applications is presented and briefly discussed here to

highlight the tool’s prospective utility.

Requirements Traceability

The major realised advantage that ScrumCity brings is the immediate visual tracing of

various system components (down to class and method level) back to their original

user requirements. Losing the original developer’s intentions and concepts behind the

code artefacts is a well-known issue in software engineering, and Petre and de Quincey

(2006) expressed particular thoughts in favour of capturing these original design

concepts into software visualisation. The way that ScrumCity integrates and

synchronises the Scrum data with the produced code artefacts make this traceability

particularly straightforward and visually evident. Different software stakeholders are

anticipated to benefit from this gained advantage. A project manager, for example, can

look through the list of the Scrum User Stories and select one of interest to find exactly

where in the system that user story has manifested (see the previous section for

examples). For a software engineer, the ability to display and read the details of the

Scrum artefacts (user stories, sprints, and releases) at the scene makes it feasible to

trace the different user stories and determine whether or not the intended user

requirements have been correctly implemented. It can support engineers in reasoning

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

113 | P a g e

about and studying the system’s design and architecture, since they have the

opportunity to visually relate the concepts to the architecture. For a new developer

joining the team, or a maintainer, they can select a particular class or a method from

the scene and readily identify all the user stories that have contributed to that class or

method. Some of those user stories may be bug fixes, enhancements, or simply new

functionality being added. For each user story, they can then display and read its

description, identify its original author, in addition to other details right on the spot,

with no need to shift attention to other textual documents or to switch applications;

hence avoiding mental distractions and ensuring the developer’s focus remains in

context. This can enable a maintainer or newcomer to be readily informed about the

purpose of the artefact in question and the original concepts behind it, before they

commence maintaining it or adding enhancements to it.

The introduced visualisation technique makes possible two perspectives for looking at

a system. An inspector can choose to focus on the Scrum artefacts (e.g., Sprints and

User Stories) and has the ability to locate their exact manifestations within the system

Figure 5.15: Top (a): Right Contextual menu. Bottom (b): Overlay GUIs displaying a list of
related features on the left pertaining to the selected artefact, and details of the selected
feature on the right.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

114 | P a g e

structure. Another perspective, which is more beneficial to developers and

maintainers, is to focus on particular system artefacts, and then be able to identify the

user stories involved in that specific artefact. The first perspective has already been

demonstrated with several examples in the previously presented case studies (the red

glowing highlight of glyphs upon selection from the Scrum list). Figure 5.15

demonstrates an example scenario of the other perspective. The user right-clicks on a

building (a class or a method) and chooses to display the related features (Figure

5.15a). An overlay GUI is then displayed with a list of associated user stories on the left

(Figure 5.15b). Selecting a user story displays its textual details on the right. For

convenience, Figure 5.9 shows that brief information of each involved user story is also

displayed in the tooltip as a user points the mouse to a building. Working from this

perspective, a software engineer can draw different reasoning and conclusions about

the current design. For example, a class found to be involved with many features could

mean that it is being continuously updated or is starting to develop into a god class.

The nature of the involved features in a certain class could also enable an engineer to

deduce other undesired design anti-patterns. Those two important perspectives are

contended to be of real value aiding different stakeholders in their tasks.

Lastly, the search functionality available in the tool is considered to be an especially

supportive feature for the different scenarios of the ‘requirements traceability’ task

discussed here. In fact, Kienle and Muller (2007) reported that search functionality for

textual and graphical elements was rated as the most useful functional aspect of

software visualisation tools with 74% of participants in a survey rating it as ‘absolutely

essential’. The Kienle and Muller report was based on the electronically-conducted

study of Bassil and Keller (2001) that involved 107 participants (two thirds of whom

were industrial practitioners and 41 were specifically ‘expert users’). Sensalire et al.

(2007a & 2007b) also highlighted the need for more adequate searching and querying

capabilities in SV tools.

Feature Locality

Locating specific features of interest within the structure of a system’s source code

(also called Concept Location) is a well-known challenge in software engineering. In

fact, it represents one of the most carried out tasks by software developers in their day

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

115 | P a g e

to day activities (Kuhn et al., 2010; Xie et al., 2006). Given a particular piece of

functionality (a feature), a developer needs to identify and locate the specific code

artefacts involved in that functionality before they can maintain, enhance, or debug it.

Kuhn et al. (2010), in an empirical pilot study of a visualisation tool called CODEMAP,

found that participants actually made the most frequent (and ‘more interesting’) use

of their visualisation tool to complete the ‘feature location’ task, more than any other

task. Their pilot study involved 3 professional developers and 4 graduate students that

carried out 5 program comprehension tasks (of which one was ‘feature location’) in

addition to a sixth bug-fix task. In that experiment participants used nouns and verbs

found in the feature description as search terms, and then used the visualisation to

assess the search result dispersion. ScrumCity makes the actual list of features readily

available and tightly integrated into the visualisation scene. It is contended that this

form of presentation will be more advantageous, and should give more precise results,

since selecting a feature highlights only those artefacts that were deemed relevant by

the original implementer of that feature. Even though not currently implemented,

adding a search mechanism to search the textual description of the features in the

Scrum list is expected to further increase the value and convenience of using the

Scrum list.

Monitoring Development Progress

A particularly evident potential application of use is the opportunity for managers to

visually watch over and monitor the progress of development. Given the Scrum-centric

nature of the tool at present, this could be specifically valuable for Scrum Masters. The

visual projection of work progress over the individual system code artefacts is believed

to be unprecedented. The ability to monitor the remaining work of user stories at the

individual artefact level as well as across an entire system is expected to be of real

value to Scrum-practicing software teams, providing a tool-supported means of

viewing individual as well as team performance. The burn-down chart also contributes

to this task. Since all details of features (i.e., user stories) are synchronised with the

code artefacts and are made available, a manager can also access more information

about any system artefact that is of special concern (e.g., displaying a low-complete

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

116 | P a g e

work portion) such as finding which developer is involved or reading the feature

description.

This facility to pay focused as well as broad attention to the progress status of

development has actually been discussed by (Ghanam & Carpendale, 2008), who

emphasized that it is important to developers, maintainers and managers, and that

software visualisation tools are particularly suited to providing this sort of

functionality. While managers need a high level overview to determine the completion

of development goals, developers and maintainers need to know the most recent

status of particular artefacts so they can continue the development process.

Projecting Scrum Data over Different System Versions

Another conceived application of potential interest to software project managers and

engineers is the result that can be observed by having a specific Scrum release

projected on different versions of the system. Taking an early release and projecting it

on various late versions of the system would reveal potentially insightful views

exposing the change of locality of Scrum artefacts as the system has grown. Taking it

from the opposite perspective, multiple Scrum releases can be projected (one at a

time) over a specific late version of the system exposing visually how the different

releases have contributed to the system. This can be valuable, for example, in terms of

understanding the effect and impact of the different releases – and their parameters

(e.g., tools used, practices employed, developers involved) – on the evolving structure

of the system. This potentially interesting observation unfortunately could not be

demonstrated here due to the fact that it requires real Scrum data which was not

available within the scope of this research.

Studying, Exploring, and Discovering

The presentation of all three aspects of software – the product’s visual structure, the

development processes (Scrum), and the code artefact documentation – synchronised

and integrated together in one place, is expected to provide multiple benefits for

different groups of stakeholders. It brings into one place, and in an aesthetically

appealing and accessible way, all the information required for a potential user who

needs to gain some knowledge about the system. It is asserted here that stakeholders

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

117 | P a g e

new to the system, particularly new developers, would find the tool valuable in terms

of being ‘introduced’ to the system and in exploring its structure and artefacts.

Focusing on a specific artefact, they are able to view and read the features that this

artefact implements as well as the documentation (see Figure 5.16) about this artefact.

Again, the artefact search mechanism, as well as the non-distracting in situ GUIs for

displaying textual information, are conceived to also be helpful for such tasks.

One of the main drives behind software visualisation, as discussed very early in this

thesis, is to depart from the textual(-only) dimension and take full advantage of new

visualisation technologies. Instead of being presented with large textual documents to

learn a new system, a newcomer can be instead presented with a fully interactive

visualisation environment with documentation, user requirements, and software

structure all integrated and unified in one place. In addition to making the learning

experience more interesting, it should also significantly reduce the cognitive load faced

in the traditional way of learning about new systems.

This on-demand presentation of meta-data and details has been highlighted by many

researchers as an important feature that should be incorporated in software

visualisation tools to render them more useful (Beck & Diehl, 2010; Petre & de

Quincey, 2006; Sensalire & Ogao, 2007a, 2007b; Storey et al., 2005). Storey et al. and

Sensalire et al. in particular reported that requirements documentation and informal

Figure 5.16: Example of the in-situ presentation of artefact documentation.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

118 | P a g e

code comments were found to be very important to software stakeholders (based on

studies aimed to find requirements that lead to supportive visualisation tools), yet

almost all recent software visualisation tools have failed to incorporate these valuable

information sources. (Ironically, one of the earliest visualisation tools, SHriMP,

provided contextual integration for traditional HTML documentation.).

Stakeholder Communication

Another potential application of the introduced conceptual visualisation technique is in

supporting information communication between different software stakeholders. The

fact that this visualisation brings all three major aspects of software together in one

place, as discussed above, is thought to make it particularly suitable for this purpose.

Since this aggregation of information comprises various forms of knowledge important

to different stakeholders, it deems the visualisation tool as being potentially useful in

meetings and group sessions for reasoning and analysis. It can bring managers,

engineers, designers, architects, and developers ‘under one roof’. The 3D visual

representation of the software structure could even prove to be of particular

marketing benefit to potential customers. Further, the remaining/completed work

view may be suitable to visually demonstrate the current status of a project to the

software owners. The potential of software visualisation as being a suitable

mechanism for communication between and among this widely varying range of

audiences has already been conceived by other researchers (Boccuzzo & Gall, 2008;

Ghanam & Carpendale, 2008; Parnin & Görg, 2007) and it is anticipated that the

techniques introduced in ScrumCity make this particularly feasible.

5.4.2 Enhancements

Apart from introducing and then implementing the conceptual visualisation technique,

this research was also focused on introducing some specific enhancements to 3D

software visualisation and to addressing some concerns and issues highlighted by

previous researchers. Table 5.1, presented at the beginning of this chapter,

summarised the concerns and/or recommendations deemed to be most prominent in

the software visualisation literature (or ‘continuing issues’ as Petre and de Quincey

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

119 | P a g e

(2006) referred to them). As mentioned above, this set of ‘desired features’ has been

given significant consideration during the course of this research. The system features

section of the previous chapter (section 4.5) presented how ScrumCity has addressed

some of those issues. This section elaborates on some of these aspects, particularly in

order to relate them to literature and previous developmental research.

Normalised City Metaphor

Table 5.1 shows that ‘good use of visual metaphor’ and ‘metaphors that are resilient to

change’ are among the major concerns in software visualisation. The city metaphor

version introduced by Wettel and Lanza has been discussed as a very promising 3D

metaphor that has been empirically validated to support software comprehension and

to reduce cognitive load, hence it was specifically chosen in this research. Moreover, it

was also mentioned in Chapter 4 that some specific enhancements were introduced to

the metaphor to make it more suitable for the purpose of this research. A major issue

with the Wettel and Lanza metaphor, which was criticised by some researchers

(Caserta & Zendra, 2010), is the fact that it produces software cities with unrealistic

appearance. In the Wettel and Lanza metaphor, the NOM metric is mapped to a

building’s height while the NOA is mapped to a building’s width. This can lead

particularly to two irregularly shaped buildings that dominate the city rendering it

unrealistic. Classes with high NOM but very low NOA appear extremely thin or ‘needle-

like’. On the other hand, buildings with low NOM and low NOA appear as ‘dot-like’,

making them hard to distinguish individually. The end result is a city with ‘very diverse

building shapes’ that, according to Caserta & Zandra, works against the gestalt

principle, which states that humans can often distinguish 4 to 6 different shapes

efficiently at one time. Figure 5.17 shows a view of the argoUML system as visualised

by Wettel’s CodeCity tool.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

120 | P a g e

Wettel actually recognised this issue in his PhD thesis and tried two different strategies

to restrict the buildings’ sizes, but after some evaluations concluded that leaving the

metaphor as is produced the best results.

Improvement

In this work, the metaphor has been slightly modified in two aspects. First, methods

had to be visualised to meet the purpose of this work and so they were rendered in

the naturally expected way, i.e., as small rooms inside the building of their parent

class. The same layout mechanism used to render classes on top of their parent

packages was used to render the methods, but instead they were rendered inside their

classes. Second, even though the width of a class’ building was initially mapped to the

class’ NOA metric, the class’ building width was later allowed to expand to

accommodate the methods (rooms) that were rendered inside of it.

Unexpectedly, this strategy has proved to consistently result in a more uniform city

that has a more realistic landscape and appearance than Wettel’s original city

metaphor. The number and diversity of visualised systems presented in the case

studies were chosen in part to demonstrate and attest to how the enhanced metaphor

employed in ScrumCity produces neither the ‘dot-like’ buildings nor the ‘needle-like’

Figure 5.17: A visualisation of ArgoUML as visualised by Wettel’s CodeCity tool, obtained from
(Wettel, 2010).

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

121 | P a g e

buildings; making the overall appearance of the resulting city being much closer to

‘reality’ with realistic building sizes dominating the landscape.

In addition to the advantage of representing methods, this strategy also has some

other benefits, as follows.

Drawing attention to what is significant

For software engineers or any software stakeholder, a low NOA is not normally

considered to be a characteristic of concern for a class. Hence, allowing a building to

be tall but extremely thin just to reflect the fact that it has a very limited number of

attributes, not only falsely draws viewers’ attention to a non-significant attribute, but

has the drawback of not communicating the actual largeness of a class. A class with

over 100 methods is a large class that stakeholders would normally be concerned

about, irrespective of it having few attributes. So by visualising it as a needle-like

building, its importance is falsely downplayed and belittled. Even worse, if the class

does not happen to be especially tall compared to its surroundings, it becomes hard to

spot and distinguish. Interestingly, and in stark contrast to Wettel’s original metaphor,

the recently released Sonar plug-in ‘City Model’ that was introduced briefly in Chapter

2, completely dropped the NOA metric from their metaphor mappings, thus discarding

the opportunity to bring to viewers’ attention some important characteristics of

software, such as the parking lots that correspond to large constant classes.

The modified city metaphor introduced and used in ScrumCity is considered to not

only make the city look more uniform and realistic, but it makes sure only those

artefacts that have significant or peculiar characteristics stand out among the other

artefacts. As the number of methods in a class grows, the class’ building not only

increases in height, but also correspondingly increases in width – giving the building a

more realistic volume reflecting the class’ actual large size. Yet, if the number of

attributes were significantly high, the class’ building will in that case have an

abnormally and immediately noticeable width, creating the rectangular or round flat

patches demonstrated previously. Thus in this way, this strategy avoids the unrealistic

and irregular shapes, creates a much more uniform landscape, and viewers’ immediate

attention is drawn to what is truly significant or to what is commonly considered to be

of particular importance.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

122 | P a g e

Another advantage of this strategy – albeit a more mechanical one – is that the needle-

like and the dot-like buildings are difficult to interact with practically inside the 3D

virtual environment (e.g., by right-clicking or hovering the mouse to view a tooltip).

Thus by avoiding those irregular shapes in ScrumCity, all buildings in the city

visualisation become both noticeable and practical to interact with.

Since this enhanced version of the city metaphor avoids the irregularities found in

Wettel’s original city metaphor, it was hence dubbed as a ‘normalised city metaphor’.

Addressing Navigation Issues

As discussed in the literature review chapter of this thesis, navigation in 3D virtual

environments is a major issue in software visualisation, with many researchers

highlighting it as a core concern requiring proper attention before 3D software

visualisation can enjoy practical use in the SE industry. As a result, special attention

and effort was paid to navigation while developing ScrumCity, in the hope of attaining

an acceptable result.

The standard navigation mechanism commonly found in 3D software visualisation

tools is the conventional WASD key combinations as described in Chapter 4. The 3D

software visualisation tools surveyed during the course of this research principally

offered this conventional WASD navigation mode; with very few offering other

mechanisms such as rotation around axes. The Manhattan Eclipse plug-in, for example,

offers an ‘orbital’ mode in addition to the WASD mode, which is a positive

enhancement, but the tool still suffers other navigational limitations that hamper

users’ freedom to ‘walk through’ and explore the virtual city. Enhancements were still

needed in order to provide users with a better navigational experience.

In order to support navigation in ScrumCity, different solutions were initially

experimented with to find out those that gave the best results. This led eventually to a

fly-camera mode being combined with the standard WASD navigation mode. This

special configuration allows the user to optionally use both the mouse and the

conventional WASD keys simultaneously to walk-through and explore the city, resulting

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

123 | P a g e

in what is believed to be a smooth navigation experience (particularly if a modern

multi-touch desktop screen was in use, see Chapter 6, section 6.5).

As presented above in Chapter 4 section 4.5.9, some other enhancements were also

added to the default WASD mode which included the ability to rotate the city around

the y and x axes, upward and downward elevations, and drag-&-pan and slow zooming

using the mouse device. The accompanying video demo demonstrates this enhanced

navigation experience.

Utilising Animation

Animation in the 3D virtual environment is a potentially very supportive feature that

should be utilised appropriately in software visualisations. Caserta and Zendra in their

2010 literature survey 'Visualisation of the Static Aspects of Software’ noted that

utilisation of animation in 3D software visualisation not only makes the visualisation

enjoyable – which is a characteristic that many researchers believe to be strongly

desirable (Bassil & Keller, 2001; Kienle & Muller, 2007) – but it also has cognitive and

perceptual benefits if used well. In spite of this, they concluded that animation has

rarely been utilised in visualisation tools. Other researchers that highlighted the lack of

animation use in software visualisation tools include Sensalire et al. in their highly-

cited 2008 paper titled 'Classifying desirable features of software visualization tools for

corrective maintenance' and Storey et al. in their 1997 paper – demonstrating that this

absence is long-standing. In ScrumCity, as introduced in Chapter 4, a feature to

automatically move the viewer to a target building (in the case of a successful search

result or a relationship match to a selected feature) has been implemented using

smooth animated transition. According to the findings of early researchers, such an

approach is believed to significantly help the user to mentally relate to the part of city

landscape (which resembles the actual software structure) in which the artefact in

question is located. Instantly showing the target glyph, on the other hand, would leave

the viewer completely unaware of the relative artefact location until they zoom out of

view, putting unnecessary overhead on their perception. Such utilisation of animation,

as far as the literature review in this research could ascertain, has not been witnessed

in previous 3D visualisation tools.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

124 | P a g e

5.5 Summary

This chapter has presented some of the contributions to the software visualisation

field anticipated from this research and has specifically highlighted how different

aspects of the research relate to prior literature and attend to the calls and

recommendations of previous researchers. Case studies were also presented and

discussed using real-world subject systems in order to demonstrate and evaluate the

utility of the devised tool.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

125 | P a g e

6
Summary and Conclusion

This chapter comes as the end and culmination point of this research journey. It

presents a summary of the main milestones and highlights major accomplishments as

well as the anticipated contributions to the body of knowledge of the Software

Visualisation domain. Some encountered research difficulties and limitations are also

acknowledged, with recommendations and directions to future research being finally

suggested.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

126 | P a g e

6.1 Summary

Before a conclusion to this research and its key contributions are presented, this

section provides a concise account of the previous chapters in this work.

The introductory chapter opened with a brief account of the software visualisation

field, what it is, the nature of problems it deals with, and how it is deemed useful to

various stakeholders in the software development industry. The lack of attention

directed towards development processes in current software visualisation techniques

was then identified and highlighted, and it was pointed out that most contemporary

techniques focus merely on re-presenting a system’s source code (when considering

software structure visualisation specifically). Similar concerns raised by previous

researchers, emphasising the field’s failure to address the ‘process’ aspects of software

in SV techniques, were also discussed. In particular, work by Petre and de Quincey

(2006) that called for the representation of developers’ original intentions, rationale,

design concepts, and activities underlying individual software artefacts was given

special attention, laying the ground work for the introduced Conceptual Visualisation.

The popular and widely adopted agile development method of Scrum was then

introduced as being particularly promising for integration into software structure

visualisation –given excellent alignment with the requirements of the conceived

Conceptual Visualisation. The novel integration and synchronisation between the

Scrum artefacts and the software artefacts, both contextually visualised within a single

software structure, has been deemed to potentially benefit and inform a range of

software tasks and activities.

In Chapter 2, prior research in software visualisation was introduced, focusing

particularly on 3D software visualisation of system structure. The importance of finding

effective visual metaphors to employ in visualisation techniques was discussed,

highlighting its role and significance in leveraging human perceptual skills and,

therefore, amplifying cognition and aiding comprehension. The major early metaphors

used in software structure visualisation were also presented along with reviews of

some tools that had implemented them. Several previous works that were of particular

relevance to this research were discussed, emphasising the software tasks and

activities that those approaches were intended to support, and what elements/aspects

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

127 | P a g e

of software were involved in those approaches. From that basis, the stance and

position of this work in the context of other research in the field were explained.

Chapter 3 focused on the research methodology adopted in this research - the Design

Science methodology. A detailed discussion and analysis was provided setting out the

distinctive characteristics, requirements, and expectations that shape the design

science (or systems development) paradigm of research and that set it apart from

other behavioural and natural science research paradigms. Key papers related to

research methodologies in IT/IS were reviewed in this regard, including Hevner et al.

(2004), Markus et al. (2002), March & Smith (1995), and Nunamaker et al. (1991). The

problem space of this work was then outlined in the context of earlier research and the

major objectives and goals were highlighted. The chapter was concluded with detailed

descriptions of the specific design steps as well as the broader methodological

approach within which this work was conducted.

The development process and any resulting prototype tools are considered to be

important aspects of design science research that each contribute to the knowledge

base of the field and its ongoing progress. Chapter 4 therefore presented detailed

descriptions and technical explanations of the novel system architecture as well as the

design of the proof of concept tool, ScrumCity. Most importantly, the design discussion

included details of the introduced conceptual visualisation technique, the Scrum

Artefact to Software Artefact mapping mechanism, and the data model that enabled

this mapping. Relevant details of the important aspects of the implementation were

also introduced in this chapter. This technical information was provided not only to

provide better understanding of the visualisation technique and how it was

implemented in ScrumCity, but also in the interests of prospective researchers who

might wish to build on top of the introduced technique or take it into further

development and enhancement. The chapter concluded with pictorial representations

of the tool’s major functionalities and features.

Finally, Chapter 5 began with a tabular summary of the major issues and concerns that

face present day software visualisation research, drawn and extracted from recent key

literature and survey studies. Those identified ‘desired features’ (as they were called by

some researchers) stood as significant goals and ambitions driving the tool and the

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

128 | P a g e

technique development strategy in this work, and thus could be viewed as broad

criteria against which this work could be assessed. ScrumCity was then validated using

case studies of six real-world systems of varying sizes in order to demonstrate the

introduced visualisation technique ‘in action’ across those different real systems. Main

usage scenarios were illustrated and described using those case studies. The chapter

then presented some potential applications of use, highlighting a range of software

tasks and activities that are anticipated to benefit from the devised technique; the

most significant of which are requirements traceability, feature (or concept) location,

design reasoning, and stakeholder communication. Additionally, some of the key

contributions of this work pertaining to improvements to the visual metaphor adopted

and some user experience enhancement techniques were also revealed in this chapter

and were informally evaluated and contrasted against existing approaches.

6.2 Conclusions and Contributions

This research work began with a number of motivations that shared the common

ambition to contribute to the advancement of the field of software visualisation.

Specifically, this work has focused on a particular category of software visualisation,

which is the 3D visualisation of the static structure of software in virtual environments.

Software visualisation was identified from the outset as a domain possessing great

potential for research and industry and one that has experienced an increase in

popularity during the past decade. This work has reviewed a considerable number of

existing research works in order to identify areas of interest that are lacking attention,

to gain insight on the findings and recommendations of prior researchers, and to find

guidance to potential directions of research. Two aspects of SV were found to have

received a considerable lack of attention, an issue that late researchers have started to

emphasise: the need to better adapt this new technology to the practical/real-life

requirements of its potential users (hence solving the ‘lack of adoption’ issue); and,

with equivalent importance, the need to explore and discover the seemingly vast

potential applications of use and to then develop novel approaches to exploit these

opportunities using SV tools.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

129 | P a g e

This research thus identified that development processes had been largely neglected in

the existing literature, which had been focused on materialising code structure only.

Just a few works had tried to augment such visualisations with external information,

such as data extracted from versioning repositories, to render the tools more useful.

The key contribution of this work lies in the novel incorporation of the Scrum

development processes into existing visualisation techniques. Inspired by the calls of

prior researchers, integration of the Scrum processes into such visualisation merges

and unifies the concept with the product, which according to prior literature, is

strongly desired but has so far not been achieved. Furthermore, the specific linking and

synchronisation mechanism introduced here takes advantage of the visual

decomposition of a system’s structure to make the concept contextually available to

its related product. The importance of utilising this decomposition structure to

represent other aspects of information is further supported by the recent experiment

of Kuhn et al. (2010) (discussed in Chapter 2) that revealed that developers of all levels

subconsciously construct a mental model of a system based on its package structure to

help guide their daily activities. This work has also revealed several software tasks and

activities that are conceived to benefit from this novel visualisation technique.

Other contributions of this work have also been highlighted and discussed in previous

chapters, and are summarised as follows:

 An enhanced version of the city metaphor ‘named Normalised City Metaphor’

that has been shown to result in a more uniform and realistic landscape of a

visualised software city.

 The introduction of an XML Schema for representing a Scrum Data Model. As

stated above, Scrum practice in the agile community has a universally agreed-

on de facto model when it comes to representing data, but a formal standard

for that model does not exist. It is thus hoped that the XML Schema model

introduced in this work will contribute to a standardised format for

representing and exchanging (at least at an organisation’s systems-level) Scrum

data in the future.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

130 | P a g e

 The prototype tool, which features a novel approach making available three

important aspects of software – its structure, its user requirements, and its

documentation – all integrated and presented in one place using non-intrusive

and non-distracting displays.

 Novel techniques implemented in the tool aimed at enhancing the user

experience in terms of navigation and usability.

The next section summarises the key implications for practice that arise from the

devised visualisation technique.

6.3 Implications for Practice

Software comprehension is the fundamental driver behind all software visualisation

research. The problem space for software visualisation research is thus oriented to

identifying the aspects of software tasks and activities that are likely to gain benefit

from this technology, and then finding or developing suitable techniques and tools to

support those tasks. Consequently, this work has some specific conceived applications

and foreseen implications for the software engineering community. Chapter 5 (section

5.4.1) has presented detailed discussions on those anticipated potential applications

and has also highlighted prior research in the field that called for or conceived similar

applications. A brief summary of those potential applications of use is presented here

for the reader’s convenience.

Requirements Traceability: The introduced conceptual visualisation approach captures

the original user requirements, intentions, and concepts, and explicitly links and

synchronises them with related individual system components before making them

contextually available to the user projected over the visualised software structure. This

enables immediate and direct traceability from original user requirement to the

produced system artefacts, in both directions.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

131 | P a g e

Feature Locality: The captured user requirements (user stories) inherently represent

the system’s features, so the synchronisation of artefacts enables users to search for

and/or readily locate the system artefacts involved in a particular feature in question.

Monitoring Development Progress: The novel approach of visualising developers’

remaining vs. completed work projected over the software structure has the

advantage of enabling stakeholders to monitor development progress at both the

individual artefact level as well as the overall system level.

Projecting Scrum Data over Different System Versions: The introduced visualisation

approach is considered to be potentially useful for system design review and

inspection purposes. This can be realised by visualising a given Scrum Release over

different later versions of software, or by visualising a given later version of software

and then inspecting and studying the contribution and evolution effect that different

Scrum Releases impose on the system.

Learning and Design Reasoning: The presentation of a system’s user requirements,

documentation, and software structure in one integrated environment is considered to

be particularly suitable for learning about a new system (for newcomers) and for

analysing and reasoning sessions (for developers and software engineers).

Stakeholder Communication: The visualisation of system structure, user requirements,

and development progress unified in one place has a realised potential for information

communication for various stakeholders including teams group meetings, managerial

and, potentially, customer meetings.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

132 | P a g e

6.4 Research Limitations and Difficulties Encountered

During the course of this research various difficulties were encountered, many of

which were associated with the technologies involved. Some limitations have also

confined the reaches of this work and have restrained some desired achievements.

This section introduces and discusses some of those confining elements.

6.4.1 Real-world Scrum Data

This work, as will now be evident, relies extensively on Scrum Data as it plays a key role

in the introduced conceptual visualisation approach. Even though the developed proof

of concept tool was validated using real-world systems, the Scrum data projected on

those systems was fictional. It is evident that real-world Scrum data belonging to the

actual system being visualised would instead be strongly desired. It would be

particularly interesting from a research point of view to actually study, examine, and

analyse the resultant visual scene, and the effect and behaviour from applying this

novel visualisation technique on real-world Scrum Data mapped and synchronised over

the actual system that the Scrum activities produced. It would enable, probably for the

first time, development stakeholders to visually see how the user requirements (user

stories) map collectively to the evolution of the system. It is believed that various

findings and results will emerge visually to the surface, but which have previously

existed only in the minds of the developers (some such expected results were

discussed in Chapter 5). With only a very slight modification to the currently used

Scrum management tools, team members could see their exact contributions and their

locality within the software structure, and how they relate to other developers’ work.

Engineers could explicitly trace all user requirements and their direct effect on the

system. In order to realise this, and to study the real-world practicality of the work,

effort is needed to engage a Scrum-practising organisation to collect their Scrum data

over a period of time (several Sprints, for example) and then have that data visualised

on their developed system. Unfortunately, this is beyond the scope and resources of

this research work. Moreover, use of the simulated Scrum data enabled initial insights

to be gained and was sufficient to demonstrate the feasibility of the approach.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

133 | P a g e

6.4.2 Empirical Evaluation

Pertaining to the same area of concern just described is the desire for empirical

validation. Wettel, in his PhD thesis, stressed a critical issue in regard to expectations

for experimental validation in software visualisation research. He highlighted major

distinctions between the software visualisation domain and other software

engineering domains, being the lack of a definite problem space, the intrinsic

explorative nature of software visualisation, and the fact that software visualisation

effectiveness is measured by the extent of the scaffolding that it can provide to human

cognitive skills and perceptions and therefore the assistance it provides for different

software comprehension tasks. In other words, many other software engineering

disciplines have benchmarks against which a research result can be compared or for

which their problems can be clearly defined and objectively measured. Software

visualisation, on the other hand, is highly and inherently subjective with its major

problem being cognition and knowledge amplification. This implies that a sound and

defendable experiment in this field requires extensive effort to design ‘comprehension

tasks and activities’ based on which the experiment is then carried out. The design of

such tasks not only involves knowledge of software engineering, but also of cognition

theories. For these reasons, preparing and designing experimental studies in software

visualisation research is a challenging and time-consuming task. Taking into

consideration the ‘tool design’ or ‘Design Science’ nature of this research, time

constraints rendered such preparation of a well-designed scientific experiment beyond

the scope of this work. Unsurprisingly, case studies are the most commonly found

form of validation in software visualisation research, with solid empirical studies being

noted by many researchers as significantly lacking compared to other SE fields.

However, the fact that major parts of this research were aimed at addressing and

fulfilling a set of ‘desired features’ and ‘recommendations’ identified by previous

researchers (some of which were based on user studies and surveys) is thought to give

this research rigor at least in this respect.

6.4.3 Difficulties Faced

Choosing the appropriate technologies to implement the proof of concept tool was a

major challenge in this research. This was due in particular to the desire to address the

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

134 | P a g e

navigation issue in 3D software visualisation. As has been mentioned briefly above, the

X3D1 library (an extension of the old VRML97 3D modelling standard) appeared

particularly promising. It was lightweight, based on XML, provided most of the desired

features, and was highly interoperable in the sense that it can easily run on standard

web browsers with the help of plug-ins. Moreover, a Java toolkit for it (Xj3D2) existed

that supposedly enabled it to be integrated into the Eclipse development environment.

In addition, a particular plug-in (BS Contact3) that supported the X3D standard also

supported a 3D mouse device (SpaceNavigator4) which was seen as providing a useful

opportunity to address the navigation issue in the 3D environment, especially given

that such devices have not been previously employed in software visualisation studies.

For these reasons, extensive effort was initially spent with the intent to base the

ScrumCity tool design on X3D. Unfortunately, the Xj3D toolkit proved to suffer from a

serious lack of documentation, and the documentation that was found to be available

was obsolete and outdated compared to the available version of the toolkit.

Integrating the Xj3D toolkit with the Eclipse development environment was therefore

never accomplished. This was a major difficulty encountered during this work.

After evaluating other potential full-fledged libraries, the jME3 library was chosen (as

was introduced in Chapter 4). jME3 proved to be very suitable, with comprehensive

and up–to-date documentation resources, a very active community of developers, and,

most importantly of all, an extensive set of features and functionalities. The integrated

third party GUI library called Nifty5 was particularly promising since it enabled the

implementation of the overlay graphical user interfaces that were seen as a principal

means to provide the desired user interactivity and in situ textual information in a non-

distracting mechanism. However, use of the Nifty GUI library was not totally problem

free. During the course of the prototype development, the available version (v1.3.1)

suffered some bugs and technical problems (see Chapter 4, section 4.5.3) that to some

extent affected the prototype tool. The major problems noted are:

1 http://www.web3d.org/x3d/
2 http://www.xj3d.org/
3 http://bitmanagement.de/en/products/interactive-3d-clients/bs-contact
4 http://www.3dconnexion.com/products/spacenavigator.html
5 http://sourceforge.net/projects/nifty-gui/files/nifty-gui/

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

135 | P a g e

 A mouse event handling bug that appears intermittently where the jME3 scene

graph competes with the Nifty GUI in consumption of mouse events. This

renders interaction with the GUI to be improper in some random cases where

the mouse for short periods appears to be locked by the scene or by the GUI.

 A TreeBox user control was available that was intended to be used for

displaying the hierarchically-structured Scrum Data Model, but unfortunately,

mouse events were not properly handled by the tree-structured list. For this

reason, the simple ListBox control was used instead (as explained in Chapter 4,

section 4.5.3).

 Lastly, even though Nifty supposedly provided one of the most customizable

user interfaces for 3D libraries, some issues were encountered in changing

default text colours and getting text to be wrapped in some cases.

While these technical issues certainly affected the usability of the developed prototype

tool, they nonetheless did not hinder the demonstration of the introduced conceptual

visualisation technique. Based on the highly active developer communities of both

jME3 and Nifty, it is strongly believed that such issues will soon be addressed in future

releases.

6.5 Future Research

As was stated at the beginning of this work, software visualisation is a relatively young

discipline compared to other software engineering fields, and even though it has

witnessed in the past decade an amazing proliferation of research work and new

advancements, it still has a long journey in front of it before it begins to gain similar

standing to other fields of software engineering. Leveraging awareness and

comprehension are the fundamental drives behind SV research, but the implications

for practice appear to be limitless. This is unsurprising since comprehension and

awareness underpin almost all activities in software development. Furthermore,

software visualisation has a close affinity with technology (particularly graphics

technology) and therefore as technology advances, new approaches will inevitably

appear that seek to utilise those technologies. With that being said, it is important to

emphasise that while representation techniques have received much of the attention

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

136 | P a g e

of existing SV research, far less attention has been directed toward exploring the

potential applications of use and how to provide support for these applications in

existing visualisation techniques. Of similar importance is studying how visualisation

tools can be brought closer to the industry and potential users. SV literature is affluent

with potentially useful techniques but many of those techniques have never seen the

light of practical use, due mainly to the lack of adequately supported tools that

implement those techniques.

To conclude this thesis, some anticipated and (other envisioned) future improvements

to the developed prototype tool are summarised here.

At present, ScrumCity has the capability to load only a single version of a system (as an

Eclipse Project) and also a single Scrum Release that will be projected on that version

of the system. It is strongly desirable that accommodation for multiple Scrum Releases

and multiple versions of a system is provided in future releases of ScrumCity. This has

the potential to render the tool even more useful, enabling users to gain insights on,

monitor, and reason about how the various Scrum processes are collaboratively

affecting the gradually evolving system, and allowing users to visually examine this

evolution process in a way that was not previously possible.

New enabling technologies such as 3D mouse, multi-touch screens, and large display

screens are believed to greatly support the usability of any 3D visualisation technique,

and hence increasing its reach to the public. In this regard, there is strong potential to

bring 3D mouse and multi-touch technologies to ScrumCity. The 3D graphics library

used to develop ScrumCity (i.e., jME3) already provides support for multi-touch

screens. Potential 3D mouse devices are also currently available in the market

(although their support for jME3 could not be confirmed at this time). It would be

strongly desired to test and study the impact and behaviour that these technologies

could bring to ScrumCity (or any 3D SV tool, in this regard) in terms of navigational

enhancement and improved user experience. Since ScrumCity is an Eclipse plug-in, it

would be particularly interesting to SV research to test and evaluate it on a Windows 8

machine equipped with a multi-touch screen. Users would be able to manipulate and

interact with their 3D software city in the virtual environment using both hand

gestures as well as the traditional mouse device.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

137 | P a g e

A last desired improvement to ScrumCity relates to the mechanism behind acquiring

the system artefact documentation. Due to time constraints, the current mechanism

for integrating system documentation into the visualisation relies on reading it from a

user-provided XML file (which must conform to the specifically designed XML schema).

A better approach that is certainly more practical would be to extract the in-code

developer comments instead. This in fact aligns well with the fundamental motivations

and drives behind the conceptual visualisation, one of the main objectives of which is

to make available all developer’s intents and rationale behind individual software

artefacts. Those informal documentation sources (or meta-data, as some researchers

refer to them) capture knowledge that is likely to be particularly valuable to other

developers and maintainers and thus would be especially useful for users who would

utilise the visualisation to learn about a new system. As stated in the foregoing

discussion, this issue has been identified by previous researches who considered it an

important aspect that future software visualisation research should address (Beck &

Diehl, 2010; Burch, Diehl, & Weißgerber, 2005; Sensalire & Ogao, 2007b; Storey et al.,

1999; Storey et al., 2005). While the current implementation in ScrumCity is thought to

serve well to illustrate the concept, the design of the integration and presentation

mechanism makes it also relatively straightforward to simply switch to another source

of system documentation when it is available.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

138 | P a g e

References

Alam, S., & Dugerdil, P. (2007a). EvoSpaces: 3D Visualization of Software

Architecture. Database. Retrieved from

http://www.myblogmap.de/diplom/literature/paper_09_-

_EvoSpaces_3D_Visualization_of_Software_Architecture.pdf

Alam, S., & Dugerdil, P. (2007b). Evospaces visualization tool: Exploring software

architecture in 3d. Reverse Engineering, 2007. WCRE 2007. 14th Working

Conference on (pp. 269–270). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4400173

Andrews, K., Wolte, J., & Pichler, M. (1997). Information Pyramids (TM): A New

Approach to Visualizing Large Hierarchies. Proceedings of the IEEE

Visualization’97, (October), 49–52. Retrieved from http://courses.iicm.tu-

graz.ac.at/liberation/iicm_papers/vis97.pdf

Anslow, C., Marshall, S., Noble, J., & Biddle, R. (2006). Evaluating X3D for use in

software visualization. Proceedings of the 2006 ACM symposium on Software

visualization - SoftVis ’06, 161. doi:10.1145/1148493.1148524

Bacchelli, A., Rigotti, F., Hattori, L., & Lanza, M. (2011). Manhattan — 3D City

Visualizations in Eclipse. Milano.

Bacim, F., Polys, N., Chen, J., Setareh, M., Ji, L., & Ma, L. (2010). Cognitive

scaffolding in Web3D learning systems: a case study for form and structure.

Proceedings of the 15th International Conference on Web 3D Technology-

Web3D ’10, 93–100. Retrieved from http://dl.acm.org/citation.cfm?id=1836063

Balzer, M., & Deussen, O. (2007). Level-of-detail visualization of clustered graph

layouts. 2007 6th International Asia-Pacific Symposium on Visualization, 133–

140. doi:10.1109/APVIS.2007.329288

Balzer, M., Noack, A., Deussen, O., & Lewerentz, C. (2004). Software landscapes:

Visualizing the structure of large software systems. In Eurographics Association

(Ed.), VisSym 2004, Symposium on Visualization. Konstanz, Germany: Bibliothek

der Universität Konstanz. Retrieved from http://graphics.uni-

konstanz.de/publikationen/2004/software_landscapes/Balzer et al. -- Software

Landscapes - Visualizing the Structure of Large Software Systems.pdf

Bassil, S., & Keller, R. K. (2001). Software visualization tools: Survey and analysis.

Program Comprehension, 2001. IWPC 2001. Proceedings. 9th International

Workshop on (pp. 7–17). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=921708

Beck, F., & Diehl, S. (2010). Visual comparison of software architectures. Proceedings

of the 5th international symposium on Software visualization (pp. 183–192). ACM.

Retrieved from http://portal.acm.org/citation.cfm?id=1879238

Biaggi, A. (2008). Citylyzer: A 3D Visualization Plug-in for Eclipse. Università della

Svizzera italiana.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

139 | P a g e

Boccuzzo, S., & Gall, H. (2007a). Cocoviz: Towards cognitive software visualizations.

Visualizing Software for Understanding and Analysis, 2007. VISSOFT 2007. 4th

IEEE International Workshop on (pp. 72–79). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4290703

Boccuzzo, S., & Gall, H. C. (2007b). Cocoviz: Supported cognitive software

visualization. Reverse Engineering, 2007. WCRE 2007. 14th Working Conference

on (pp. 273–274). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4400175

Boccuzzo, S., & Gall, H. C. (2008). Software visualization with audio supported

cognitive glyphs. 2008 IEEE International Conference on Software Maintenance,

366–375. doi:10.1109/ICSM.2008.4658085

Boccuzzo, S., & Gall, H. C. (2009a). Automated comprehension tasks in software

exploration. Proceedings of the 2009 IEEE/ACM International Conference on

Automated Software Engineering (pp. 570–574). IEEE Computer Society.

Retrieved from http://dl.acm.org/citation.cfm?id=1747558

Boccuzzo, S., & Gall, H. C. (2009b). CocoViz with ambient audio software exploration.

Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on

(pp. 571–574). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5070558

Bonyuet, D., Ma, M., & Jaffrey, K. (2004). 3D visualization for software development.

Proceedings. IEEE International Conference on Web Services, 2004., 708–715.

doi:10.1109/ICWS.2004.1314802

Booch, G. (2010). Why don’t developers draw diagrams? Proceedings of the 5th

international symposium on Software visualization (pp. 3–4). ACM. Retrieved

from http://dl.acm.org/citation.cfm?id=1879214

Bragdon, A., Zeleznik, R., Reiss, S. P., Karumuri, S., Cheung, W., Kaplan, J., Coleman,

C., et al. (2010). Code bubbles: a working set-based interface for code

understanding and maintenance. Proceedings of the 28th international conference

on Human factors in computing systems (pp. 2503–2512). ACM. Retrieved from

http://dl.acm.org/citation.cfm?id=1753706

Brooks, R. (1983). Towards a theory of the comprehension of computer programs.

International Journal of ManMachine Studies, 18(6), 543–554.

doi:10.1016/S0020-7373(83)80031-5

Burch, M., Diehl, S., & Weißgerber, P. (2005). Visual data mining in software archives.

Proceedings of the 2005 ACM symposium on Software visualization - SoftVis ’05,

37. doi:10.1145/1056018.1056024

Carneiro, G., Orrico, A., & Mendonça, M. (2007). Empirically Evaluating the

Usefulness of Software Visualization Techniques in Program Comprehension

Activities. Universidade Salvador, Brasil. Retrieved from

http://www.nuperc.unifacs.br/grupos-de-pesquisa/gesa/projetos/source-miner-

plugin-visualization/experimental-results-and-publications/Final Paper JIISIC

2007.pdf

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

140 | P a g e

Caserta, P., & Zendra, O. (2010). Visualization of the Static aspects of Software: a

survey. IEEE transactions on visualization and computer graphics, 17(7), 1–20.

doi:10.1109/TVCG.2010.110

Charters, S. M., Knight, C., Thomas, N., & Munro, M. (2002). Visualisation for

informed decision making; from code to components. Proceedings of the 14th

international conference on Software engineering and knowledge engineering (pp.

765–772). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=568891

Churcher, N., & Irwin, W. (2005). Informing the design of pipeline-based software

visualisations. proceedings of the 2005 Asia-Pacific symposium on Information

visualisation-Volume 45 (pp. 59–68). Australian Computer Society, Inc. Retrieved

from http://dl.acm.org/citation.cfm?id=1082325

Churcher, N., Keown, L., & Irwin, W. (1999). Virtual worlds for software visualisation.

Retrieved from

http://www.cosc.canterbury.ac.nz/research/RG/svg/softvis99/softvis99-churcher-

keown-irwin.pdf

Cockburn, A. (2004). Evaluating Spatial Memory in Two and Three Dimensions.

International Journal of Human-Computer, 1–17. Retrieved from

http://www.sciencedirect.com/science/article/pii/S1071581904000096

Cockburn, Andy. (2004). Revisiting 2D vs 3D Implications on Spatial Memory.

Proceeding AUIC ’04 Proceedings of the fifth conference on Australasian user

interface - Volume 28 (Vol. 28, pp. 25–31). Retrieved from

http://dl.acm.org/citation.cfm?id=976314

Cornelissen, B., Zaidman, A., & Van Deursen, A. (2011). A controlled experiment for

program comprehension through trace visualization. IEEE Transactions on

Software Engineering, 37(3), 341–355. doi:10.1109/TSE.2010.47

De F. Carneiro, G., Magnavita, R., & Mendonça, M. (2008). Combining software

visualization paradigms to support software comprehension activities. Proceedings

of the 4th ACM symposium on Software visuallization - SoftVis ’08, 201.

doi:10.1145/1409720.1409755

Diehl, S. (2007a). Software Visualization - Visualizing the Structure, Behaviour, and

Evolution of Software (p. 187). Springer.

Diehl, S. (2007b). Software visualization in the large. Computer (Vol. 29, pp. 1–191).

Springer-Verlag Berlin Heidelberg 2007. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=488299

Eichberg, M., Haupt, M., Mezini, M., & Schäfer, T. (2005). Comprehensive software

understanding with SEXTANT. Software Maintenance, 2005. ICSM’05.

Proceedings of the 21st IEEE International Conference on (pp. 315–324).

Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1510127

Ellershaw, S., & Oudshoorn, M. (1994). Program Visualization - The State of the Art.

Program (pp. 1–34). Citeseer. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.7410

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

141 | P a g e

Fasano, F., & Oliveto, R. (2009). Supporting Project Management with Fine-Grained

Artefact Management in ADAMS. International Journal of Computers and

Applications - 2009, 31(3), 145–152. doi:10.2316/Journal.202.2009.3.202-2961

Feijs, L., & De Jong, R. (1998). 3D visualization of software architectures.

Communications of the ACM, 41(12), 73–78. doi:10.1145/290133.290151

Fronk, A., Bruckhoff, A., & Kern, M. (2006). 3D Visualisation of Code Structures in

Java Software Systems. Proceedings of the 2006 ACM symposium on Software

visualization (pp. 145–146). ACM. Retrieved from

http://dl.acm.org/citation.cfm?id=1148515

Gallagher, K., Hatch, A., & Munro, M. (2008). Software Architecture Visualization: An

Evaluation Framework and Its Application. IEEE Transactions on Software

Engineering, 34(2), 260–270. doi:10.1109/TSE.2007.70757

Ghanam, Y., & Carpendale, S. (2008). A Survey Paper on Software Architecture

Visualization. Software Engineering, IEEE Transactions on. Retrieved from

http://dspace.ucalgary.ca/bitstream/1880/46648/1/2008-906-19.pdf

Gračanin, D., Matković, K., & Eltoweissy, M. (2005). Software visualization.

Innovations in Systems and Software Engineering, 1(2), 221–230.

doi:10.1007/s11334-005-0019-8

Graham, H., Yang, H., & Berrigan, R. (2004). A solar system metaphor for 3D

visualisation of object oriented software metrics. Proc. Australasian Symp.

Information Visualization, 35, 53–59. Retrieved from

http://dl.acm.org/citation.cfm?id=1082108

Greevy, O., Lanza, M., & Wysseier, C. (2006). Visualizing live software systems in 3D.

Proceedings of the 2006 ACM symposium on Software visualization - SoftVis ’06,

47. doi:10.1145/1148493.1148501

Gregor, S. (2006). The nature of theory in information systems. MIS Quarterly, 30(3),

611–642. doi:10.1080/0268396022000017725

Hattori, L., & Lanza, M. (2010). Syde: A tool for collaborative software development.

Software Engineering, 2010 ACM/IEEE 32nd International Conference on (Vol. 2,

pp. 235–238). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6062168

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information

Systems Research. MIS Quarterly, 28(1), 75–105. doi:10.2307/249422

Kienle, H. M., & Muller, H. a. (2007). Requirements of Software Visualization Tools:

A Literature Survey. 2007 4th IEEE International Workshop on Visualizing

Software for Understanding and Analysis, 2–9.

doi:10.1109/VISSOF.2007.4290693

Knight, C. (1999). Comprehension with virtual environment visualisations. Program

Comprehension, 1999. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=777733

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

142 | P a g e

Knight, C., & Munro, M. (1999). Visualising software-a key research area. Proceedings

of the IEEE International Conference on Software Maintenance (p. 437). Citeseer.

Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.3385&rep=rep1

&type=pdf

Knight, C., & Munro, M. (2002). Program comprehension experiences with GXL;

comprehension for comprehension. Proceedings 10th International Workshop on

Program Comprehension, 147–156. doi:10.1109/WPC.2002.1021336

Knight, Claire, & Munro, M. (2000a). Mindless visualisations. The 6th ERCIM “User

Interfaces for All” Workshop, (October). Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.2183&rep=rep

1&type=pdf

Knight, Claire, & Munro, M. (2000b). Virtual but visible software. Information

Visualization, 2000. Proceedings. IEEE International Conference on (pp. 198–

205). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=859756

Knight, Claire, & Munro, M. (2000c). Should users inhabit visualisations? Enabling

Technologies: Infrastructure for Collaborative Enterprises, 2000.(WET ICE 2000).

Proeedings. IEEE 9th International Workshops on (pp. 43–50). IEEE. Retrieved

from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=883703

Knight, Claire, & Munro, M. (2001). Software visualisation conundrums. History,

(July). Retrieved from http://www.dur.ac.uk/CompSci/research/technical-

reports/2001/tech_report-05-01.pdf

Kot, B., Grundy, J., & Hosking, J. (2005). Information Visualisation Utilising 3D

Computer Game Engines Case Study : A source code comprehension tool. Source,

53–60.

Krebs, R. (2012). Vera: An extensible Eclipse Plug-In for Java Enterprise Application

Analysis. University of Bern. Retrieved from

http://scg.unibe.ch/archive/masters/Kreb12a.pdf

Kuhn, A., Erni, D., & Nierstrasz, O. (2010). Embedding spatial software visualization in

the IDE: an exploratory study. Proceedings of the 5th international symposium on

Software visualization (pp. 113–122). ACM. Retrieved from

http://portal.acm.org/citation.cfm?id=1879229

Lanza, M., Gall, H., & Dugerdil, P. (2009). EvoSpaces: Multi-dimensional Navigation

Spaces for Software Evolution. 2009 13th European Conference on Software

Maintenance and Reengineering, 293–296. doi:10.1109/CSMR.2009.14

Lemieux, F., & Salois, M. (2006). Visualization techniques for program

comprehension: A literature review. The 2006 conference on new trends in

software methodologies, tools and techniques: proceedings of the fifth SoMeT_06

(pp. 22–47). Amsterdam, The Netherlands: IOS Press.

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

143 | P a g e

Maletic, J. I., Marcus, A., & Collard, M. L. (2002). A task oriented view of software

visualization. Proceedings First International Workshop on Visualizing Software

for Understanding and Analysis (pp. 32–40). IEEE Comput. Soc.

doi:10.1109/VISSOF.2002.1019792

Malnati, J. (2007). X-Ray: An Eclipse Plug-in for Software Visualization. University of

Lugano. Retrieved from

http://www.inf.usi.ch/faculty/lanza/Downloads/Maln07a.pdf

March, S. T., & Smith, G. F. (1995). Design and natural science research on

information technology. Decision Support Systems, 15(4), 251–266.

doi:10.1016/0167-9236(94)00041-2

Marcus, A., Feng, L., & Maletic, J. I. (2003). 3D Representations for Software

Visualization. Proceedings of the 2003 ACM symposium on Software visualization

- SoftVis ’03, 27. doi:10.1145/774834.774837

Markus, M., Majchrzak, A., & Gasser, L. (2002). A design theory for systems that

support emergent knowledge processes. Mis Quarterly, 26(3), 179–212. Retrieved

from http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract

Nunamaker, J. F., Chen, M., & Purdin, T. D. M. (1991). Systems development in

information systems research. Journal of Management Information Systems, 7(3),

89–106. doi:10.1109/HICSS.1990.205401

Ogawa, M., & Ma, K.-L. (2008). StarGate: A unified, interactive visualization of

software projects. Visualization Symposium, 2008. PacificVIS’08. IEEE …, (VIDi),

191–198. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4475476

Ogawa, M., & Ma, K.-L. (2009). Code_Swarm: a Design Study in Organic Software

Visualization. IEEE transactions on visualization and computer graphics, 15(6),

1097–104. doi:10.1109/TVCG.2009.123

Pacione, M. (2004). Software visualization for object-oriented program comprehension.

Software Engineering, 2004. ICSE 2004., 5–7. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1317423

Panas, T., Berrigan, R., & Grundy, J. (2003). A 3D metaphor for software production

visualization. Proceedings on Seventh International Conference on Information

Visualization, 2003. IV 2003. (pp. 314–319). IEEE Comput. Soc.

doi:10.1109/IV.2003.1217996

Panas, Thomas, Epperly, T., Quinlan, D., Sæbjørnsen, A., & Vuduc, R. (2007).

Architectural Visualization of C / C ++ Source Code for Program Comprehension.

29th International Conference on Software Engineering Minneapolis, MN, United

States.

Panas, Thomas, Epperly, T., Quinlan, D., Saebjornsen, A., & Vuduc, R. W. (2007).

Communicating Software Architecture using a Single-View Visualization. Babel,

(Iceccs), 217–228. doi:10.1109/ICECCS.2007.20

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

144 | P a g e

Panas, Thomas, Lincke, R., & Löwe, W. (2005). Online-configuration of software

visualizations with Vizz3D. Proceedings of the 2005 ACM symposium on Software

visualization - SoftVis ’05, 1(212), 173. doi:10.1145/1056018.1056043

Parnin, C., & Görg, C. (2007). Design Guidelines for Ambient Software Visualization

in the Workplace. Visualizing Software for Understanding and Analysis, 2007.

VISSOFT 2007. 4th IEEE International Workshop on (pp. 18–25). IEEE. Retrieved

from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4290695

Petre, M, Blackwell, A., & Green, T. (1998). Cognitive questions in software

visualization. Software visualization: Programming as a multimedia experience.

MIT Press. Retrieved from http://www.cl.cam.ac.uk/~afb21/publications/book-

chapter.html

Petre, Marian. (2002). Mental imagery, visualisation tools and team work. Proceedings

of the Second Program Visualization Workshop (pp. 2–13). HornstrupCentret,

Denmark: University of Aarhus. Retrieved from

http://www.daimi.au.dk/PB/567/PB-567.pdf

Petre, Marian, & de Quincey, E. (2006). A gentle overview of software visualisation.

Autumn 2006 PPIG Newsletter, (September), 1–10. Retrieved from

http://www.ppig.org/newsletters/2006-09/1-overview-swviz.pdf

Price, B. A., Baecker, R. M., & Small, I. S. (1994). A Principled Taxonomy of Software

Visualization. Journal of Visual Languages and Computing, 4(3), 211–266.

Rigotti, F. (2011). Visualizing Software Systems and Team Activity. Università della

Svizzera Italiana. Retrieved from

http://www.inf.usi.ch/faculty/lanza/Downloads/Rigo2011a.pdf

Rilling, J., & Mudur, S. P. (2005). 3D visualization techniques to support slicing-based

program comprehension. Computers & Graphics, 29(3), 311–329.

doi:10.1016/j.cag.2005.03.007

Sensalire, M., & Ogao, P. (2007a). Visualizing object oriented software: towards a point

of reference for developing tools for industry. Visualizing Software for

Understanding and Analysis, 2007. VISSOFT 2007. 4th IEEE International

Workshop on, 26–29. doi:10.1109/VISSOF.2007.4290696

Sensalire, M., & Ogao, P. (2007b). Tool users requirements classification: how software

visualization tools measure up. Proceedings of the 5th international conference on

Computer graphics, virtual reality, visualisation and interaction in Africa -

AFRIGRAPH ’07, 1(212), 119–124. Retrieved from

http://dl.acm.org/citation.cfm?id=1294705

Sensalire, M., Ogao, P., & Telea, A. (2008). Classifying desirable features of software

visualization tools for corrective maintenance. Proceedings of the 4th ACM

symposium on Software visuallization - SoftVis ’08, 87.

doi:10.1145/1409720.1409734

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

145 | P a g e

Sensalire, M., Ogao, P., & Telea, A. (2009). Evaluation of software visualization tools:

Lessons learned. 2009 5th IEEE International Workshop on Visualizing Software

for Understanding and Analysis, 19–26. doi:10.1109/VISSOF.2009.5336431

Sharafi, Z. (2011). A Systematic Analysis of Software Architecture Visualization

Techniques. 2011 IEEE 19th International Conference on Program

Comprehension, 254–257. doi:10.1109/ICPC.2011.40

Steinbrückner, F., & Lewerentz, C. (2010). Representing development history in

software cities. Proceedings of the 5th international symposium on Software

visualization (pp. 193–202). ACM. Retrieved from

http://portal.acm.org/citation.cfm?id=1879239

Steinbrückner, Frank. (2010). Coherent Software Cities. 2010 IEEE International

Conference on Software Maintenance (ICSM) (pp. 1–2). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5610421

Storey, M. A. D., Fracchia, F. D., & Müller, H. A. (1999). Cognitive design elements to

support the construction of a mental model during software exploration. Journal of

Systems and Software, 44(3), 171–185. doi:10.1016/S0164-1212(98)10055-9

Storey, M.-A. D., Čubranić, D., & German, D. M. (2005). On the use of visualization to

support awareness of human activities in software development. Proceedings of the

2005 ACM symposium on Software visualization - SoftVis ’05 (Vol. 1, p. 193).

New York, New York, USA: ACM Press. doi:10.1145/1056018.1056045

Storey, M.-A.-A. D., Wong, K., Fracchia, F. D., & Müller, H. A. (1997). On Integrating

Visualization Techniques for Effective Software Exploration. 1997. Proceedings.,

IEEE Symposium on Information Visualization (pp. 38–45). Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=636784

Sulaiman, S., Idris, N. B., & Sahibuddin, S. (2005). Enhancing Cognitive Aspects of

Software Visualization Using DocLike Modularized Graph. The International

Arab Journal of Information Technology, 2(1), 1–9. Retrieved from

http://www.uop.edu.jo/download/Research/members/1-Shahida.pdf

Teyseyre, A. R., & Campo, M. R. (2009). An overview of 3D software visualization.

IEEE transactions on visualization and computer graphics, 15(1), 87–105.

doi:10.1109/TVCG.2008.86

Theron, R., Gonzalez, A., & Garcia, F. J. (2008). Supporting the understanding of the

evolution of software items. Proceedings of the 4th ACM symposium on Software

visuallization - SoftVis ’08, 189. doi:10.1145/1409720.1409750

Tichelaar, S., Ducasse, S., Demeyer, S., & Nierstrasz, O. (2000). A meta-model for

language-independent refactoring. 2000. Proceedings. International Symposium on

Principles of Software Evolution (pp. 154–164). IEEE Comput. Soc.

doi:10.1109/ISPSE.2000.913233

Tudoreanu, M. E. (2003). Designing effective program visualization tools for reducing

user’s cognitive effort. Proceedings of the 2003 ACM symposium on Software

visualization - SoftVis ’03, 105. doi:10.1145/774845.774848

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

146 | P a g e

Von Mayrhauser, A., & Vans, A. M. (1995). Program comprehension during software

maintenance and evolution. Computer, 28(8), 44–55. doi:10.1109/2.402076

Wettel, R. (2010). Software Systems as Cities. Faculty of Informatics of the Università

della Svizzera Italiana. Retrieved from

http://www.inf.usi.ch/phd/wettel/download.php?f=Wettel10b-PhDThesis.pdf

Wettel, R., & Lanza, M. (2007a). Program comprehension through software

habitability. Program Comprehension, 2007. ICPC’07. 15th IEEE International

Conference on (pp. 231–240). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4268257

Wettel, R., & Lanza, M. (2007b). Visualizing Software Systems as Cities. 2007 4th

IEEE International Workshop on Visualizing Software for Understanding and

Analysis, 92–99. doi:10.1109/VISSOF.2007.4290706

Wettel, R., & Lanza, M. (2008). Codecity: 3d visualization of large-scale software.

Companion of the 30th international conference on Software engineering (pp.

921–922). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1370188

Wettel, R., & Lanza, M. (2011). Software systems as cities: A controlled experiment.

international conference on Software. University of Lugano. Retrieved from

http://dl.acm.org/citation.cfm?id=1985868

Wettel, R., Lanza, M., & Robbes, R. (2010). Empirical validation of CodeCity: A

controlled experiment. Retrieved from

http://doc.rero.ch/lm.php?url=1000,42,6,20110309110626-OX/ITR1005.pdf

Wieringa, R. (2010). Design science methodology. Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering - ICSE ’10 (Vol. 2, p. 493).

New York, New York, USA: ACM Press. doi:10.1145/1810295.1810446

Wieringa, R., Daneva, M., & Condori-Fernandez, N. (2011). The Structure of Design

Theories, and an Analysis of their Use in Software Engineering Experiments. 2011

International Symposium on Empirical Software Engineering and Measurement,

295–304. doi:10.1109/ESEM.2011.38

Xie, X., Poshyvanyk, D., & Marcus, A. (2006). 3D Visualization for Concept Location

in Source Code. Proceeding ICSE ’06 Proceedings of the 28th international

conference on Software engineering (pp. 839–842).

Xu, S., Chen, X., & Liu, D. (2009). Classifying software visualization tools using the

Bloom’s taxonomy of cognitive domain. Electrical and Computer Engineering,

2009. CCECE’09. Canadian Conference on (pp. 13–18). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5090082

Yang, H., & Graham, H. (2003). Software Metrics and Visualisation. Univ. of Auckland,

Tech. Rep. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.7600&rep=rep1&ty

pe=pdf

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

147 | P a g e

Young, P., & Munro, M. (1998). Visualising software in virtual reality. Program

Comprehension, 1998. IWPC ’98. Proceedings., 6th International Workshop on

(pp. 19–26). Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=693276

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

148 | P a g e

Appendices

Appendix A: XML Schemas

1. Scrum XML Schema

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

149 | P a g e

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

150 | P a g e

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

151 | P a g e

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

152 | P a g e

2. System Artefact Documentation XML Schema

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

153 | P a g e

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

154 | P a g e

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

155 | P a g e

3. Example XML Scrum Data

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

156 | P a g e

4. Example XML System Artefact Documentation

ScrumCity: Synchronised Visualisation of Software Process and Product Artefacts

157 | P a g e

Appendix B: Keyboard Function Map

	List of Figures
	List of Tables
	List of Abbreviations
	Attestation of Authorship
	Acknowledgments
	Abstract
	Introduction
	1.1 Background and Problem Statement
	1.1.1 Conceptual Visualisation
	1.1.2 Problem Statement

	1.2 Motivation and Rationale
	1.3 Research Objectives and Contributions
	1.3.1 Capturing and Presenting the Conceptual Design
	1.3.2 IDE Integration
	1.3.3 Feature Richness in Visualisation

	1.4 Scope of Research
	1.5 Research Methodology
	1.6 Structure of the Thesis
	Literature Review
	2.1 Software Visualisation
	2.2 Related Work in Software Visualisation
	2.3 Software Processes and Software Artefacts
	2.3.1 Software Process and Artefact management
	2.3.2 The Software Development Process in Present SV Research
	2.3.3 The Role of Software Structure Decomposition in the Comprehension Process
	2.3.4 Connecting the Dots

	2.4 Summary
	Research Methodology and Design
	3.1 Research Paradigm
	3.2 Design Science Research: Key Concepts
	3.3 Revisiting the Research Objectives
	3.4 Research Design
	3.4.1 Understanding and Defining the Problem Space
	3.4.2 Building the Conceptual Framework
	3.4.3 Architecture Designing and System Construction
	3.4.4 Evaluation and Communication

	3.5 Summary
	System Design and Development
	4.1 Introduction
	4.2 System Architecture
	4.2.1 Main System Modules (Process-Oriented Perspective)
	4.2.2 GUI Module
	4.2.3 Summary

	4.3 System Design
	4.3.1 Description of the Visualisation Technique
	4.3.2 Mapping Technique

	4.4 System Implementation
	4.4.1 Vera
	4.4.2 Building a Hierarchically-Structured Model
	4.4.3 City Metaphor Layout Algorithm
	4.4.4 Implementation of Remaining and Completed Work
	4.4.5 Implementation of the Burn-down Chart
	4.4.6 Implementation of a Custom Tool Tip
	4.4.7 Implementation of Automatic Transparency

	4.5 System Features
	4.5.1 The City Metaphor Layout
	4.5.2 Method Representations (On-demand Transparency and Detachment)
	4.5.3 Presentation of Software Processes (Scrum Artefacts and Activities)
	4.5.4 System Artefact Search
	4.5.5 Custom-Built Tool Tip
	4.5.6 Remaining and Completed Work View
	4.5.7 Contextual User Interaction
	4.5.8 Glyph Selection
	4.5.9 Enhanced Navigation
	4.5.10 Source Code Integration
	4.5.11 Burn-down Chart
	4.5.12 Colour-Coding for LOC
	4.5.13 Colour-Coding for Package Nesting Level
	4.5.14 Top-down and Side Views
	4.5.15 Keyboard functions Map

	4.6 Summary
	System Evaluation
	5.1 Introduction
	5.2 Issues in 3D Software Visualisation
	5.3 Laboratory Validation
	5.3.1 Environment Specification
	5.3.2 Case Studies
	5.3.3 Summary of Case Studies

	5.4 Discussion
	5.4.1 Potential Applications
	5.4.2 Enhancements

	5.5 Summary
	Summary and Conclusion
	6.1 Summary
	6.2 Conclusions and Contributions
	6.3 Implications for Practice
	6.4 Research Limitations and Difficulties Encountered
	6.4.1 Real-world Scrum Data
	6.4.2 Empirical Evaluation
	6.4.3 Difficulties Faced

	6.5 Future Research
	References
	Appendices

