
How (not) to write an introductory programming exam

 Simon Judy Sheard Daryl D’Souza
 University of Newcastle Monash University RMIT University
 Australia Australia Australia
 simon@newcastle.edu.au judy.sheard@monash.edu daryl.dsouza@rmit.edu.au

 Mike Lopez Andrew Luxton-Reilly Iwan Handoyo Putro
Christchurch Polytechnic Inst of Tech University of Auckland Monash University
 New Zealand New Zealand Australia
 mike.lopez@cpit.ac.nz a.luxton-riley@auckland.ac.nz iwan.putro@monash.edu

 Phil Robbins Donna Teague Jacqueline Whalley
Auckland University of Technology Queensland University of Technology Auckland University of Technology
 New Zealand Australia New Zealand
 phil.robbins@aut.ac.nz d.teague@qut.edu.au jacqueline.whalley@aut.ac.nz

Abstract
The computing education literature shows some recent
interest in summative assessment in introductory
programming, with papers analysing final examinations
and other papers proposing small sets of examination
questions that might be used in multiple institutions as
part of a benchmarking exercise. This paper reports on a
project to expand the set of questions suitable for use in
benchmarking exercises, and at the same time to identify
guidelines for writing good examination questions for
introductory programming courses – and, by implication,
practices to avoid when writing questions. The paper
presents a set of ten questions deemed suitable for use in
the exams of multiple courses, and invites readers to use
the questions in their own exams. It also presents the
guidelines that emerged from the study, in the hope that
they will be helpful to computing educators writing
exams for their own courses..

Keywords: introductory programming, CS1, assessment,
benchmarking, examination.

1 Introduction
McCracken et al (2001) appeared to discover that many
of the students who pass programming courses cannot
actually program. The BRACElet project (Whalley et al
2006) explored this issue in great depth and effectively
confirmed the problem. Addressing the question of how
students might be able to pass programming courses
without being able to program, Traynor et al (2006)
provided some insight with this excerpt from a student
interview: “Most of the questions are looking for the
same thing, and you usually get the marks for making the
answer look correct. Like if it’s a searching problem, you
put down a loop, and you have an array and an if

Copyright © 2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computing Education
Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 160. D. D’Souza and K. Falkner,
Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

statement. That usually gets you the marks . . . Not all of
them, but definitely a pass.”

One response to this issue is to analyse the final exams
in programming courses, to try to establish how they
align with the skills and knowledge that students are
expected to acquire. Simon et al (2010) analysed data
structures exams in this light, and Petersen et al (2011)
and Sheard et al (2013) looked at introductory
programming exams.

In an early stage of the current project, 11 common
questions were included in the introductory programming
exams of six institutions in Australia and New Zealand
(Sheard et al 2014). We concluded that four of the
questions were suitable for benchmarking purposes, and
invited other academics to use these questions in their
own exams and compare their students’ performance with
the published results.

Benchmarking is not an attempt to impose uniformity
on courses and assessments across the sector. Rather, it is
a way of permitting comparisons: does university A,
which has a high reputation and a correspondingly high
entry requirement, produce better student outcomes than
university B, which accepts the students who are not
admitted to the other universities?

Such questions cannot be reasonably asked until there
is a meaningful way of answering them. This is what we
believe to be the purpose of benchmarking. If interested
participants at different institutions can include a
reasonable set of common questions in their final
examinations, they can compare the results of their
students with a published benchmark and form their own
conclusions as to the quality of their courses in the
context of the student cohorts that they attract.

In reducing an original set of 76 questions to the final
11 (Sheard et al 2014), we noted a number of reasons
why participants did not consider questions suitable for
use across multiple institutions:
 Question is too easy.
 Question is too large.
 Topic is too advanced or not usually covered in a

typical introductory programming course.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

137

 Student may not be familiar with the style of
question.

 Style of question is not suitable for an exam
situation, e.g. is it reasonable to ask students to
identify syntax errors?

 Wording of the question is unclear or ambiguous.
 Question is idiosyncratic, e.g. referring to the

coding style guide of a particular course.
 Question involves tricky code, which may obfuscate

its purpose.
In the current phase of the project we set out to further

explore these and other reasons, while at the same time
expanding the set of questions that can be used for
benchmarking. We thus addressed the following
questions:
 Can we identify some principles of good question

design that others can apply when writing their own
questions?

 Can we identify some aspects of poor question
design that others can try to avoid when writing
their own questions?

 Can we identify examination questions that a group
of instructors would all be willing to use in their
introductory programming exams?

2 Research approach
The 11 questions from the previous phase of the project
were supplemented by a further 20 candidate examination
questions, sourced from the literature (principally from
publications of the BABELnot project (Lister et al 2012))
and from questions that had been used in exams at the
lead authors’ institutions. Two additional versions of one
question were added, so that the same basic question
could be considered in three distinct forms.

The two lead authors conducted a workshop in
conjunction with ACE 2014, for academics with current
or recent involvement in assessing students in an
introductory programming course. The remaining seven
authors joined the project by attending the workshop.

The bulk of the workshop consisted of discussion of
the 33 questions. For each question, participants rated the
likelihood that they would use it in an introductory
programming exam, on a scale from 1 (would definitely
not use it) to 5 (would definitely use it). At the same time
they were asked to give reasons for their choices.
Members were at liberty to change their ratings during or
after the discussion of each question.

Discussion was lively on many questions, and most
members did not complete the rating exercise in the
course of the meeting. Members therefore completed the
exercise individually in their own time, and submitted
their full set of ratings and reasons to the project leaders
for analysis.

Analysis began by considering the simple average
rating of each question, resulting in a ranking of the 33
questions. This was then supplemented by a qualitative
analysis of the members’ reasons for their ranking
decisions, which resulted in some re-ordering of the list.
Finally, questions were selected from the high end of the
ranked list, but with consideration to question types and
subject matter, so that we did not end up with a
substantial number of similar questions.

3 Issues for consideration
In this section we list and discuss issues that arose as we
discussed the questions, both at the workshop and in the
subsequent data presented for analysis. The issues are in
no particular order, and are grouped where possible.

3.1 Question preambles and complexity
Sheard et al (2013) propose a number of measures of
question complexity, some of which they suggest should
be avoided, while others might be considered a necessary
part of what is being tested. One of the measures to be
minimised is linguistic complexity, the complexity of the
language in which the question is expressed. The essence
of the message is that if a question can be expressed more
simply, it should be. Among other considerations, this is
likely to assist students with a weak grasp of English.

Linguistic complexity is typically encountered in the
preamble to a question, the part that sets the scene for
what the students are actually being asked to do. Consider
Q4, one of the 11 questions from Sheard et al (2014).

Q4. A dependent child can be very loosely defined as a
person under 18 years of age who does not earn $10,000
or more a year. An expression that would define a
dependent child is
(a) age < 18 && salary < 10000
(b) age < 18 || salary < 10000
(c) age <= 18 && salary <= 10000
(d) age <= 18 || salary <= 10000

This question might appear to be expressed in
reasonably clear and simple terms. However, one
participant questioned the use of the phrase ‘very
loosely’: what did this signify, and might it confuse
students into believing that the subsequent definition was
not the one to be implemented? In response to this
question, the preamble was rephrased to begin “If a
dependent child is defined as…”. Another participant
then queried the use of the word “If”, preferring the
question to start “A dependent child is defined as…”.
This wording was rejected on the basis that it appears to
be stating a factual definition of dependent children,
whereas the intent was simply to provide a definition that
could be used for the purposes of this particular question.

There was broader agreement with regard to other
questions. For example, the participants all agreed that
Q12 would be easier to grasp if the four initialisations
were simply presented as the first line of the code, rather
than appearing after it with a message telling students to
assume that they took place before it.

Q12. This question refers to the following code, where
the variables p, q, r, and s all have integer values:
 if (p < q) {
 if (q > 4) {
 s = 5;
 } else {
 s = 6;
 }
 }

Assume that, before the above code is executed, the
values in the four variables are:
 int p=1; int q=2; int r=3; int s=4;

What would be the value in variable s after the code is
executed?

CRPIT Volume 160 - Computing Education 2015

138

Q1. It is an odd fact that the more people there are in a
group, the less pizza each of them will eat. Using the
following code, how many pizzas would you expect 10
people to eat?
 if people < 5:
 pizzas = people
 elif people < 10:
 pizzas = 3 * people / 4
 elif people < 15:
 pizzas = 2 * people / 3
 else:
 pizzas = people / 2

Considerations of linguistic complexity lead to the
issue of contextualising questions. Some examiners like
to set their questions in some sort of real-world scenario,
while others prefer to limit the question to explicit
instructions as to what is required of the students.
Consider Q1: one participant said of this question that
“the first sentence is distracting and not relevant to what
the code is asking about”; others expressed similar
concerns. One said “if people should be initialised to 10,
say so explicitly”. There appear to be two schools of
thought in this regard. One suggests that students should
be given instructions solely about what is required, with
no superfluous information; the other, that reading and
understanding superfluous information is a necessary
aspect of problem-solving, and can be legitimately
included in programming questions. The participants in
this study did not reach consensus on this question.

A related consideration is the explicitness of
instruction. Another question mentioned in its preamble
that the elements of an array were initialised. One
participant wanted students to be told what the initial
values were, although this was not relevant to what was
subsequently being asked.

Another form of question complexity identified by
Sheard et al (2013) is called ‘external domain reference’.
They noted that some questions refer to subject matter
that might not be known to students in an introductory
programming course, and they distinguished between
cases where such knowledge is integral to the question
and cases where it is incidental and can be overlooked.
Q19 falls into the latter category, which Sheard et al call
medium-level external domain reference. One participant
remarked that the “Question requires some real-world
knowledge about what payments and balances mean,
which may make it difficult for some students”. Others
presumably felt that the question could be answered even
by students lacking that knowledge.

Q19. What is the purpose or outcome of the following
piece of code?
 for (int i=0; i<payment.Length; i++)
 {
 balance = balance + payment[i];
 }

(a) to add a payment to a balance
(b) to count the payments
(c) to add all payments except the last to the balance
(d) to add all payments to the balance

3.2 Diagrams and examples
In some questions, where it seems that a certain level of
complexity is inescapable, diagrams and/or examples can
be provided to help students understand the question. Q9

illustrates the point. However, any use of diagrams should
be highly contingent on what notation has been used
during the course. If students have seen similar diagrams
used to explain variable assignment, this diagram would
be acceptable; but the final exam is not the place to
introduce a graphical notation that the students have not
previously encountered.

Some participants noted in passing that they were not
comfortable with the use of the word ‘swap’ to indicate
movements among more than two items.

When examples are used instead of diagrams or in
addition to diagrams, there is a concern that some
students will take them as definitive. In Q24, for example,
some students might assume that the array will have
exactly four elements, and so might write four if
statements rather than a single if statement within an
appropriate loop; others might even assume that the code
will only be given the array {0, 2, 1, 3}. One participant
expressed concern about another question that described
an array of unspecified length but gave as an example an
array of length 11. But an example is necessarily a
particular instance of a generalisation, so it would rarely
be possible to provide an example that retains complete
generality.

Q24. Suppose you had an array of integers called
mirrors. Write code that would print out every element
of that array that had the same value as its index
position. For example, given the array {0, 2, 1, 3}, the
code would print the values 0 and 3.

3.3 Material covered in course
It is generally understood that an exam for an early-level
course will not test concepts that were not covered in the
course. This impacts on our study in that different
introductory programming courses do not all cover the
same material, even when they are taught using the same
language. Questions that are reasonable in the context of
one particular course might not be so reasonable in a
range of courses at different institutions.

One example of this is the concept of integer division
(as in Q1), which one participant describes as “a
peculiarity of Java operators being overloaded rather than
a core programming concept”. It might be reasonable to
test the students’ knowledge of integer division in a
course in which this concept was explicitly taught, but
caution should be applied in deciding whether to
incorporate the knowledge into questions in other
courses.

In addressing our goal of finding a set of questions that
can be used in multiple courses using different languages,

Q9. There are three integer variables, rock, paper and
scissors, which have been initialised. Write code to
swap the values in these variables around so that rock is
given paper's original value, paper is given scissors’s
original value, and scissors is given rock’s original
value. The following diagram illustrates the result of
the swaps:
 rock

 paper

 scissors

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

139

we quickly decided that input and output must be
regarded as off limits. One obvious reason for this is that
different programming languages have very different
ways of dealing with input and output. A less obvious
reason is that different teaching approaches place
different emphasis on input and output. For example, an
objects-first approach using Java within the BlueJ
environment (bluej.org) need not address I/O at all, as the
approach focuses on method calls and their results.
Similarly, the media computation approach of Guzdial
and Ericson (2013) focuses on the input and output of
image and sound files, and touches only briefly on
keyboard input, many weeks into the course. A code-
tracing question with output statements would therefore
be better replaced with an output-less version that asks
what values certain variables will have when the code has
executed.

Terminology will often differ between courses. Q24,
in section 3.2, refers to the ‘index position’ of an array
element. In some courses this might simply be called the
index, while in others it might be the position. When
adopting questions from other courses, great care must be
taken to use the terminology that has been used in the
target course.

A further consideration is the preparation that students
have undergone during the semester. Some of the
questions for our study were provided by a participant
who gradually prepares the students for such questions
with a series of graded exercises throughout the semester.
It seems reasonable to expect that this participant’s
students would perform better on these questions than
students who had not been offered the same preparation.

Finally, consideration should be given to any high-
level programming tasks that might be provided by the
language being studied, and that might have been covered
in the course. Simple array-processing tasks that might be
tested in an exam include sorting the elements of an
array, reversing the order of elements in an array, and
finding the average of the elements in an array of
numbers. These tasks become somewhat trivial in a
language with inbuilt sort, reverse, and average methods.
Even if students have not been taught these features,
some might have come across them, and might short-
circuit the intention of the question by using them in their
answers.

3.4 Variable names (and comments) in code
When code is provided as part of an exam question, the
author has three options with regard to the variable
names: to make them meaningful, neutral, or ‘anti-
meaningful’ (explained below).

Most programming educators impress on their students
the importance of using meaningful variable names, and
most apply this practice in their own programming
(although many seem not to accept that temp and flag are
sadly lacking in meaning). However, meaningful names
can lead students to understand code without having to
study the code itself. In Q∞ – which was not part of our
study – a student with poorly developed code-reading
skills would probably be able to deduce the answer just
by reading the variable names.

For examination purposes, therefore, some instructors
choose to make the names – or at least those names that

might give away the answer – neutral. They might leave
person and height there, to tell students that this is a list
or array of people’s heights, but replace totalHeight and
avgHeight with, say, value1 and value2.

A number of the code-tracing and code-explaining
questions in our study included such neutral names. In
one question, the code compares two arrays, returning the
last index at which the element in the first array is less
than the corresponding element in the second. In a similar
question, the code counts the number of times the
corresponding elements in the arrays are not equal.
Several participants expressed concern that the arrays
were called number1 and number2, one suggesting that
“it would be better with variable names that provided
more meaningful context, for example, arrays of coffee
consumed in the morning and the afternoon, and counting
the number of days when there are unequal numbers of
coffee consumed.”

On this same point, consider Q12, in section 3.1. One
participant wrote of this question “The responses to the
question might be different if the variable names were
less abstract and had more context. As academics we
often abstract away the variable identifiers as being
irrelevant to the question, but then ask students to write
code that does use meaningful variable names, so our
assessment is not well aligned with our expectations of
practice. I would use this question with meaningful
names.” Complying with this expressed need for context
might then raise another problem: this particular piece of
code might have been written with no real-world context
in mind. The variables might simply be numbers, not
representing any particular quantities. Should the
instructor nevertheless contrive some plausible context?
Or is it in fact acceptable to ask students to reason about
the code itself, without the additional information
provided by meaningful variable names?

Instructors who do use neutral names should consider
one further issue: are the different names in the code clear
and distinct? During the presentation of a paper at ICER
2013 (Ahadi & Lister 2013) the presenter displayed a
code-explaining question and asked why so many
students answered it wrongly, and one member of the
audience murmured “because they’re dyslexic?” The
code in the question used two variables, p and q, which
are indeed readily confused by people with certain
learning difficulties. The same applies to b and d.
Similarly, the commonly used variable i is readily
mistaken for the digit 1, which can have a serious impact
on a student’s understanding of a statement such as count
= count + i. Instructors who are accustomed to reading
and understanding code should take care to ensure that it
is not open to misreadings of this sort.

As an aside, most instructors also urge their students to
imbue their code with explanatory comments. The code
provided for code-tracing and code-explaining questions

Q∞. What is the purpose or outcome of the following
piece of code?
 totalHeight = 0
 for person in range(0, len(height)):
 totalHeight = totalHeight + height[person]
 if totalHeight <> 0:
 avgHeight = totalHeight / len(height)
 else:
 avgHeight = 0

CRPIT Volume 160 - Computing Education 2015

140

tends to have few or no comments, and certainly does not
have comments explaining what the code does. Because
the code is therefore not of the standard we expect of our
students, does this mean that we cannot ask our students
to read and explain it?

Finally, in some of our questions the instructors had
used what we might call ‘anti-meaningful’ names, names
that have a meaning, but a meaning that appears unrelated
to the purpose of the code, and that might therefore
mislead students. Instead of a neutral name such as
number1, an array might be called fantasy. Another
example is the name mirrors in Q24 (section 3.2). The
participant who had contributed this question explained
that the code was finding array elements that reflect or
mirror their indexes. Nevertheless, other participants
found the reference a little obscure, suggesting for
example that the name mirrors might confuse students
into thinking about mirror-images of variables, whatever
that might mean. In general, it was clear that most of the
participants disliked the use of anti-meaningful names.

3.5 Avoidable obfuscation
All computer code has some inherent complexity.
However, any task can be coded in different ways that
evince different levels of complexity. Is it reasonable to
knowingly express the code in a more complex form to
test the students’ ability to deal with such a form? Q3
provides a simple illustration of this point.

Q3. What will be the value assigned to the variable x as
a result of the following statement?
 int x = 10+56 / 5+3 % 12;

(a) 13
(b) 11
(c) 24
(d) 10
(e) Generates RunTimeException

The justification for this question was that students had
been warned to take care with operator precedence, and
that this was a reasonable way to test whether they were
doing so. Nevertheless, most participants said that they
would use this question only if the spacing were uniform
throughout the expression.

Obfuscation can also be unintentional. One example of
this is the discontinuity of the code in Q12 (section 3.1);
another is the perhaps unthinking use of unnecessary
code. In general, participants felt that Q6 tested nothing
that would not be tested by a shorter code snippet.

Another question asked students to write a loop to
print all the numbers between p and q, inclusive, that are
divisible by N. Some code provided to scaffold the
question included declarations of p, q, and N, declaration

of a scanner, and prompt-input sequences for p, q, and N.
The general feeling among participants was that it would
be better simply to tell students that the variables had
been appropriately initialised, rather than giving them
unnecessary input/output code to read.

Another form of obfuscation, or tricky code, is code
that looks very like something the students have been
taught to use and recognise, but with a subtle twist. The
last three lines of Q5 look like the standard three-
statement swap, but are in the wrong order, and give the
same value to each variable.

Q5. What values will the variables a, b, and c have after
the following code has been executed?
 int a = 23;
 int b = 11;
 int c = 61;
 a = b;
 c = a;
 b = c;

We tend to value students who can form an overview
of a piece of code without examining it in detail, but this
question has the potential to lure these students into a
wrong answer, giving the advantage to the struggling but
systematic student who needs to work through the code in
detail. All of the participants said that they would be
willing to use this question, although some proposed that
the problem could be overcome by explicitly asking
students to trace the code. However, it was considered
preferable to test students’ tracing abilities with code that
is not so easily mistaken for a recognised algorithm.

3.6 A mix of difficulties
Analysing 20 introductory programming exams from ten
institutions in five countries, Simon et al (2012) rated the
difficulty of every question as low, medium, or high.
While three of the exams they studied had no questions of
high difficulty, over the 20 exams, nearly a quarter of the
questions were rated at the high difficulty level.
Examiners clearly believe it appropriate to include a mix
of easy, medium, and hard questions in an exam.

Nevertheless, there are some questions in our study
that the participants deemed too difficult. One of these
was Q2, Soloway’s rainfall problem (Soloway 1986), in
what appears to be close to its original formulation.

Q2. Read in integers that represent daily rainfall, and
print out the average daily rainfall; if the input value of
rainfall is less than zero, prompt the user for a new
rainfall.

Participants were unanimous that this question was too
open, ambiguous, and poorly specified. Some felt that it
might be suitable for a practical programming test, but
none thought it suitable for a written exam.

Q28, on the other hand, was considered to be difficult
but usable. None of the participants expressed concern
about the assumption that left represents the lower
indexes of the array and right represents the upper
indexes – an assumption that is supported by the diagram.
The general response was approval (especially when the
explicit ‘5’ was removed from the first sentence). The
participants liked this question, at the same time
acknowledging that this was one of the most difficult
questions in the set. That is, they tended to agree with the

Q6. What will be printed when the following code is
executed?
 a = 7
 b = 3
 c = 2
 d = 4
 e = a
 a = b
 b = e
 e = c
 c = d
 d = e
 print a, b, c, d, e

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

141

unspoken notion that an exam should include a mix of
easy, medium, and hard questions, and that this question
could be one of the last group. Nevertheless, in a
subsequent project to use the selected questions in a
number of final exams, one instructor decided that the
improved version of this question was too difficult and
could not be used. It is not clear whether the question was
considered too hard even to be one of the exam’s more
difficult questions, or whether that instructor chooses not
to include any difficult questions in exams.

3.7 Form of the question
Most of the exams studied by Sheard et al (2013)
included a mix of multiple-choice, short-answer, and
code-writing questions, and our question set included
examples of all three types.

One issue that does not yet seem to have been
addressed in the literature is whether different forms of
the same question are equivalent. Our study explicitly
addressed this question by including three different forms
of the same question, Q29.

Most participants liked the code-writing form of the
question, Q29a, with the qualification that some courses
might prefer the word ‘position’ to ‘index’.

Q29b, filling in the blanks, was regarded much less
favourably. One participant saw it as a trick question that
encouraged the students to copy code directly from the
first listing to the second, especially as it omits the
description of the difference, that is, that the first piece
remembers the element while the second should

remember the index. Another participant felt that this
version was an improvement, removing the potentially
confusing wording. A third simply said that students
would be horribly confused by this question, while a
fourth thought that it might be better as a Parsons
problem (Parsons & Haden 2006) – presumably the
variant in which multiple options are available for each
line of code, as otherwise it could be solved trivially by
comparison with the preceding listing.

Q28. The purpose of the code below is to take an array
of numbers (values) containing 5 integers and move all
elements of the array one place to the left, with the
leftmost element moving to the rightmost position.
 temp = values[0];
 for (int i=0; i<values.Length-1; i++)
 values[i] = values[i+1];
 values[values.Length – 1] = temp;

For example, if values initially has the value [1, 2, 3, 4,
5], then after the code has executed, it would contain [2,
3, 4, 5, 1]. If we were to show the effect of moving all
the elements of an array in this way in a diagram, it
would look something like this:

Write code that does the opposite of the original block of
code above. That is, write code to move all elements of
the array values one place to the right, with the rightmost
element being moved to the leftmost position.

Q29a. The following piece of code sets answer to the
smallest element of the integer array num.
 int best = num[0];
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < best) best = num[i];
 }
 answer = best;

This code works by remembering, in best, the value of the
smallest element met so far as it works through the array.
Write a piece of code that achieves exactly the same
outcome, setting answer to the smallest element of num,
but by remembering the index of the smallest element met
so far.

Q29b. The following piece of code sets answer to the
smallest element of the integer array num.
 int smallest = num[0];
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < smallest)
 {
 smallest = num[i];
 }
 }
 answer = smallest;

Complete the code in the boxes below so that it also sets
answer to the smallest element of num. Note that the
sixth line is different in the two listings.
 int where = ;
 for (int i=0; i < num.Length; i++)
 {

 if num[i] <)
 {
 where = i; // Note difference
 }
 }

 answer = ;

Q29c. The following piece of code sets answer to the
smallest element of the integer array num.
 int best = num[0];
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < best) best = num[i];
 }
 answer = best;

Which of the following pieces of code does exactly the
same thing, that is, sets answer to the smallest element of
num?
(a) int best = 0;
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < num[best]) best = i;
 }
 answer = num[best];

(b) int best = 0;
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < num[best]) best = num[i];
 }
 answer = num[best];

(c) int best = 0;
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < num[best]) best = i;
 }
 answer = best;

(d) int best = num[0];
 for (int i=1; i < num.Length; i++)
 {
 if (num[i] < num[best]) best = i;
 }
 answer = num[best];

... etc ...

temp

CRPIT Volume 160 - Computing Education 2015

142

The multiple-choice version, Q29c, was seen by one
participant as the best of the options. On the other hand,
three believed that it would be too easy to find the answer
by strategic guessing or reverse engineering as opposed to
reading and understanding the four different pieces of
code. It remains an open question whether the strategic
guessing or reverse engineering would require students to
reason in a similar way as they would if reading and
understanding the code pieces, in which case there might
not be a problem.

In addition to asking whether participants would use
each version of this question in their exams, we asked
whether they thought that the three versions were the
same, and why.

Nobody thought that they were the same. One
participant thought they were equivalent, “essentially but
not exactly” the same, and some noted that they were
testing the same thing in different ways. Others, however,
felt the versions to be quite different as they test different
skills: code writing, scaffolded code writing, and code
tracing. Most participants thought the multiple-choice
version to be the easiest, but one thought that the pure-
code writing version was easiest, and two favoured the
scaffolded code-writing version.

3.8 Multiple-choice questions
Multiple-choice questions have been the subject of much
discussion in the literature, essentially addressing the
question of whether they are a legitimate form of
assessment. There are guides to writing good MCQs
(Hansen 1997, Isaacs 1994), a number of papers
proposing how MCQs can be validly used in computing
assessment (Lister 2005, Roberts 2006, Woodford &
Bancroft 2005), but at least one survey showing that
many instructors remain highly suspicious of this
question form (Shuhidan et al 2010).

Some participants in our study echoed this suspicion.
Of the 33 questions in the study, 11 were presented in the
multiple-choice form, and all but three of those drew
suggestions that the answers would be too easy to guess,
requirements to add further distractors, or both. Some
participants who normally use MCQs in their exams
expressed no such concerns, but this form of question is
clearly still worrying to many instructors.

3.9 Code-explaining questions
A number of the questions in this study ask students to
explain the purpose or outcome of a given piece of code.

Q19 in section 3.1 and the hypothetical Q∞ in section 3.4
are examples; Q14 is another.

Code-explaining questions were brought into wide use
by the BRACElet project (Whalley et al 2006), to test the
notion that perhaps students should be able to read code
before they can be expected to write code. That project
consistently found that introductory programming
students had great difficulty deducing the purpose of
small pieces of code (Sheard et al 2008, Teague & Lister
2014), even if the questions were presented in multiple-
choice form (Simon & Snowdon 2011).

The greatest concern expressed by participants about
these questions is their use of non-meaningful variable
names. However, as discussed in section 3.4, it would be
difficult to provide meaningful variable names without
giving away the purpose of the code. Therefore it would
seem that neutral variable names might be an unavoidable
cost associated with using questions of this type.

With code-explaining questions, as with other
questions, it is important to avoid obfuscation. The point
can be illustrated with Q14. A knowledgeable
programmer might respond that the code prints the
smallest value of the variables a, b, and c. Others,
however, might wonder how to describe what will happen
if two or three of the variables are equal. Would that
notion of ‘smallest’ then strictly apply, and if not, how
should they describe which of the equal variables would
have its value printed? It is unlikely that these questions
were considered by the question’s author, yet they have
the potential to seriously confuse some students.

Is there, then, any point in setting code-explaining
questions? Many appear to think so, and the participants
in this study certainly expressed general approval of some
of the code-explaining questions provided.

One point that was clearly made by the BRACElet
project is that students are less likely to do well on code-
explaining questions if they are not familiar with this
question type. A final examination is seldom the best
place to introduce students to a type of question they have
not seen before. Instructors deciding to introduce code-
explaining questions to their exams should certainly give
students ample prior practice with this type of question.

4 Results: ten questions for broad use
On a scale from 1 (would definitely not use) to 5 (would
definitely use), the 33 questions were accorded average
ratings ranging from 2.9 (Q2, discussed in section 3.6) to
4.9 (Q5, discussed in section 3.5). Fourteen of the
questions, nearly half of them, rated at 4 or above, and
only five rated below 3.5.

When participants ranked a question less than 5, their
comments sometimes made it clear that they would be
happy to use the question with suitable amendments.

We selected ten questions, working from the highest-
ranked, so as to produce a mix of question styles and
topics. The lowest-ranked question that we selected had
an average of 3.6, but was substantially altered (for
example, changing it from multiple-choice to short-
answer type) to address some of the concerns expressed;
the question would therefore have rated more highly if it
had been presented in this altered form. All of the other
questions chosen had average ratings of 3.9 or higher.

All ten questions are presented in the appendix.

Q14. Consider the following block of code, where
variables a, b, and c each store integer values:
 if (a > b) {
 if (b > c) {
 Console.WriteLine(c);
 } else {
 Console.WriteLine(b);
 }
 } else if (a > c) {
 Console.WriteLine(c);
 } else {
 Console.WriteLine(a);
 }

In one sentence, describe the purpose of the above code
(i.e. the if/else if/else block). Do NOT give a line-by-line
description of what the code does. Instead, tell us the
purpose of the code.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

143

5 Results: how (not) to write an introductory
programming exam

The ratings given to the various questions in our study,
and the discussion on whether the participants would use
each question, lead to a set of guidelines that can be used
when writing an exam. The guidelines can be used as a
set of positive recommendations, or used in their
converse forms as a set of practices to be avoided. Some
of these guidelines are already well known, but we
believe that there is value in presenting them here as a
full set.

Keep questions as simple as possible. Unless you are
deliberately making a question complex to test your
students’ skills in gathering requirements and solving
problems, simplify question preambles as much as you
possibly can. Then check them to see if you can
simplify them still further. Finally, have some
colleagues check them, to be sure that they interpret
them the same way you do. Include questions in a
range of difficulty levels, but be sure that the difficulty
of a question is germane, deriving from the inherent
difficulty of the task to be performed, not from
difficulty in understanding what that task might be.

Consider not contextualising questions. If it is your
preference to provide a little real-world (or pretend-
world) context for your exam questions, consider
whether that context might in fact tend to confuse or
mislead students. If it might, consider removing the
context so that students will focus on the question you
are actually asking.

Use diagrams and examples to help students
understand the question. This comes back to the
question of what is germane. If it is your goal to see
whether students can answer the question, do
everything you can, within reason, to ensure that the
students understand what the question is. If a diagram
or example seems more likely to help students than to
further confuse them, provide one. A diagram is far
less likely to confuse students if they have seen a
number of similar diagrams during the course.

Ensure that students are familiar with the types of
question used. It is good to consider adding new
question types to an exam, but it might be unfair on
the students if the exam is the first place that they see
questions of this type. Try to ensure that they have
prior exposure to each type of question used in the
exam.

When providing code as part of a question, write it as
you have taught the students to write. If you have
spent a semester trying to teach the students to use
good programming style, do not present them with
code written in poor style. The exception to this is that
neutral variable names should be used if meaningful
variable names would give away the answer in a code-
explaining or code-tracing question.

Avoid variable names that are easily confused with
one another or with other symbols. Consider the
ease of confusing p and q, b and d, i and 1, l and 1, O
and 0; wherever possible, avoid using these single-
letter variable names.

Eschew obfuscation. Do not deliberately complicate
code. Your exam should determine who can read and
understand well-written code – not who can
unscramble code that has been written poorly. That
skill might be better left for a course on code
maintenance.

Include questions of a range of difficulties. Have some
easy questions, some moderate questions, and some
difficult questions. Easy questions give almost all
students a chance to show that they know something
about what was taught. Difficult questions, preferably
not weighted too heavily, help to distinguish the best
students from the rest of the class.

Consider including some multiple-choice questions. It
really is possible to write MCQs that test skills other
than memory recall, and that distinguish well between
the poor students and the good students. They are
definitely easier to mark than written-answer
questions. And while bright students might be able to
deduce the answers by some form of elimination, these
are the students who don’t need to do so, because they
can answer the questions in the way that was intended.
Despite the concerns of some of our participants,
many students do select wrong answers to MCQs.

Consider including some code-reading questions. Do
not assume that your students can read and understand
code simply because in a code-writing question they
can cobble together an approximation to the answer
you were expecting. Be prepared to explicitly test their
code comprehension skills.

Include questions of different forms. Be aware of the
many different types of question that can be used in an
exam, and consider which question type is best suited
to each question you intend to ask. Be aware that the
same question in different forms is likely to be testing
different skills, and choose the form that tests the skills
you wish to assess.

6 Conclusions
We set out to answer three questions. Our results show
that all three questions can be answered in the
affirmative.

Can we identify some principles of good question
design that others can apply in writing their own
questions? Can we identify some aspects of poor question
design that others can try to avoid when writing their own
questions? We can and we have. The guidelines in section
5 should be useful to anyone writing an exam, not just in
introductory programming but in programming at any
level, though of course matters such as question difficulty
will need to be adjusted for higher-level courses. Some of
the guidelines extend beyond programming, and apply to
exam writing in general.

Can we identify examination questions that a group of
instructors would all be willing to use in their
introductory programming exams? We can and we have.
The questions provided in the appendix have been
selected on the basis of evaluation by nine academics
involved with the assessment of introductory
programming courses.

CRPIT Volume 160 - Computing Education 2015

144

We invite others to include the questions in their own
exams, and to either join us in publishing the results, or
simply to compare their own students’ performance with
the benchmark results that we expect to publish. The
versions in the appendix are all written in Java, but the
project leaders can supply versions of the same questions
in C, C#, Visual Basic, Python, and TouchDevelop, and
are willing to work on versions for other suitable
languages if required. However, we hope it is clear that
the questions are not suited to all programming
languages, and in particular that they are unlikely to be
usable in courses that teach using a functional language
and approach.

7 References
Ahadi, A., and Lister, R. (2013). Geek Genes, Prior

Knowledge, Stumbling Points and Learning Edge
Momentum: Parts of the One Elephant? Ninth
International Computing Education Research
workshop (ICER 2013), 123-128.

Guzdial, M.J. and Ericson, B. (2013). Introduction to
Programming and Computing in Python: a
Multimedia Approach, 3rd edition, Pearson Education
Inc.

Hansen, J.D. and Dexter, L. (1997). Quality multiple-
choice test questions: item-writing guidelines and an
analysis of auditing testbanks. Journal of Education
for Business 73(2):94-97.

Isaacs, G. (1994). Multiple choice testing. HERDSA
Green Guide No 16. Higher Education Research and
Development Society of Australasia Inc,
Campbelltown, Australia.

Lister, R. (2005). One small step toward a culture of peer
review and multi-institutional sharing of educational
resources: a multiple choice exam for first semester
programming students. Seventh Australasian
Computing Education Conference (ACE2005), 155-
164.

Lister, R., Corney, M., Curran, J., D'Souza, D., Fidge, C.,
Gluga, R., Hamilton, M., Harland, J., Hogan, J., Kay,
J., Murphy, T., Roggenkamp, M., Sheard, J., Simon,
and Teague, D. (2012). Toward a shared
understanding of competency in programming: An
invitation to the BABELnot project. 14th Australasian
Computing Education Conference (ACE 2012), 53-
60.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Ben-David Kolikant, Y., Laxer, C.,
Thomas, L., Utting, I., and Wilusz, T. (2001). A
multi-national, multi-institutional study assessment of
programming skills of first-year CS students. SIGCSE
Bulletin, 33(4):125-140.

Parsons, D. and Haden, P. (2006). Parson’s programmimg
puzzles: a fun and effective learning tool for first
programming courses. Eighth Australasian Computing
Education Conference (ACE 2006), 157-163

Petersen, A., Craig, M., and Zingaro, D. (2011).
Reviewing CS1 exam question content. 42nd ACM
Technical Symposium on Computer Science
Education (SIGCSE 2011), Dallas, Texas, USA.

Roberts, Tim (2006). The use of multiple choice tests for
formative and summative assessment. Eighth
Australasian Computing Education Conference
(ACE2006), 175-180.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson,
E., and Whalleyt, J. (2008). Going SOLO to assess
novice programmers. 13th Conference on Innovation
and Technology on Computer Science Education
(ITiCSE 2008), 209-213.

Sheard, J., Simon, Carbone, A., Chinn, D., Clear, T.,
Corney, M., D'Souza, D., Fenwick, J., Harland, J.,
Laakso, M.-J., and Teague, D. (2013): How difficult
are exams? A framework for assessing the complexity
of introductory programming exams. 15th
Australasian Computing Education Conference (ACE
2013), 145-154.

Sheard, J., Simon, Dermoudy, J., D’Souza, D., Hu, M.,
and Parson, D. (2014). Benchmarking a set of exam
questions for introductory programming. 16th
Australasian Computing Education Conference (ACE
2014), 113-121.

Shuhidan, S., Hamilton, M., and D’Souza, D. (2010).
Instructor perspectives of multiple-choice questions in
summative assessment for novice programmers.
Computer Science Education 20(3):229-259.

Simon, Sheard, J., Carbone, A., Chinn, D., Laakso, M.-J.,
Clear, T., de Raadt, M., D'Souza, D., Lister, R.,
Philpott, A., Skene, J., and Warburton, G. (2012).
Introductory programming: examining the exams.
14th Australasian Computing Education Conference
(ACE 2012), 61-70.

Simon and Snowdon, S. (2011). Explaining program
code: giving students the answer helps – but only just.
Seventh International Computing Education Research
Workshop (ICER 2011), 93-99.

Simon, B., Clancy, M., McCartney, R., Morrison, B.,
Richards, B., and Sanders, K. (2010). Making sense of
data structures exams. Sixth International Computing
Education Research workshop (ICER 2010), 97-105.

Soloway, E. (1986). Learning to program = learning to
construct mechanisms and explanations.
Communications of the ACM, 29(9), 850-858.

Teague, D. and Lister, R. (2014). Blinded by their Plight:
Tracing and the Preoperational Programmer. 25th
Psychology of Programming Interest Group Annual
Conference (PPIG 2014).

Traynor, D., Bergin, S., and Gibson, J.P. (2006).
Automated assessment in CS1. Eighth Australasian
Computing Education Conference (ACE 2006), 223-
228.

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins,
P., Kumar, P.K.A., and Prasad, C. (2006). An
Australasian study of reading and comprehension
skills in novice programmers, using the Bloom and
SOLO taxonomies. Eighth Australasian Computing
Education Conference (ACE 2006), 243-252.

Woodford, K. and Bancroft, P (2005). Multiple choice
questions not considered harmful. Seventh
Australasian Computing Education Conference
(ACE2005), 109-115.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

145

Appendix: the ten selected questions (renumbered for subsequent use)

Q1. If a dependent child is a person under 18 years of age who
does not earn $10,000 or more a year, which expression would
define a dependent child?

(a) age < 18 && salary < 10000
(b) age < 18 || salary < 10000
(c) age <= 18 && salary <= 10000
(d) age <= 18 || salary <= 10000

Q2. What are the values of girls, boys, and children after the
following code has been executed?
 int girls = 0;
 int boys = 0;
 int children = 0;
 children = girls + boys;
 girls = 15;
 boys = 12;

(a) 0, 0, 0
(b) 0, 0, 27
(c) 15, 12, 0
(d) 15, 12, 27

Q3. There are three integer variables, a, b and c, which have
been initialised. Write code to shift the values in these variables
around so that a is given b’s original value, b is given c’s
original value, and c is given a’s original value. The following
diagram illustrates the direction of the shifts:

Q4. What will be the value of the variable z after the following
code is executed?
 int x = 1; int y = 2; int z = 3;
 if (x < y) {
 if (y > 4) {
 z = 5;
 } else {
 z = 6;
 }
 }

Q5. Consider the following block of code, where variables a, b,
c, and answer each store integer values:
 if (a > b) {
 if (b > c) {
 answer = c;
 } else {
 answer = b;
 }
 } else if (a > c) {
 answer = c;
 } else {
 answer = a;
 }
Which of the following sets of values for a, b, and c will cause
answer to be assigned the value in variable b?

(a) a = 1, b = 2, c = 3
(b) a = 1, b = 3, c = 2
(c) a = 2, b = 1, c = 3
(d) a = 3, b = 2, c = 1

Q6. What will be the value of result after the following code
statements are executed?
 int[] nums1 = { 1, -5, 2, 0, 4, 2, -3 };
 int[] nums2 = { 1, -5, 2, 4, 4, 2, 7 };
 int result = 0;
 int j = 0;
 while (j < nums1.length)
 {
 if (nums1[j] != nums2[j])
 {
 result = result + 1;
 }
 j = j + 1;
 }

Q7. What is the outcome or likely purpose of the following
piece of code?
 int result = 0;
 for (int j = 0; j < number.length; j++)
 {
 if (number[j] < 0)
 {
 result = result + 1;
 }
 }

(a) to find the smallest number in the array
(b) to count the negative numbers in the array
(c) to sum the negative numbers in the array
(d) to add 1 to each of the negative numbers in the array
(e) to find the index of the first negative number in the array

Q8. What is the outcome or likely purpose of the following
piece of code? Express your answer as a short phrase, like the
phrases provided as possible answers in question 7.
 int result = 0;
 for (int count = 1; count <= num; count++)
 {
 result = result + count;
 }

Q9. We can represent an array of integers as a sequence of
elements arranged from left to right, with the first element at the
left and the last element at the right. Using this representation, a
programmer wishes to move all elements of an array one place
to the right, with the rightmost element being ‘wrapped around’
to the leftmost position, as shown in this diagram.

Here is the code that performs that shift for an array referred to
by the name values:
 int oldRight = values[values.length - 1];
 for (int j = values.length - 1; j > 0; j--)
 values[j] = values[j - 1];
 values[0] = oldRight;
For example, if values initially contains the integers [1, 2, 3, 4,
5], once the code has executed it would contain [5, 1, 2, 3, 4].
Write code that will undo the effect of the above code. That is,
write code that will move all the elements of the array one place
to the left, with the leftmost element being wrapped around to
the rightmost position.

Q10. Write a method that will be given an array of integers and
will calculate and return (as a double) the mean (average) of all
the integers in the array.

a b

c

... etc ...

oldRight

CRPIT Volume 160 - Computing Education 2015

146

