


Andrei A Markov (1856 – 1922) 



John G Kemeny (1926 – 1992) 



Outline 

 

1. Preliminaries
2. Kemeny's constant
3. Expected time to mixing
4.   Random surfer
5.   Examples
6. Perturbation results
7. Mixing on directed graphs
8.   Kirchhoff index
9.   Variances of mixing times



Introduction 

  

Let {Xn }, (n ≥ 0) be a finite irreducible (ergodic), discrete time 
Markov chain (MC).
Let S = {1, 2,…, m} be its state space.
Let pij  = P[Xn+1 = j | Xn = i ] be the transition probability 

from state i  to state j.
Let P =  [pij ] be the transition matrix of the MC.

P  stochastic  ⇒ pijj=1

m
∑ = 1,  i ∈S.

Let {pj
(n) } = {P[Xn = j  ]} be the probability distribution 

at the n-th trial.   



Limiting & Stationary Distribns 

   

When the MC is regular  (finite, aperiodic & irreducible)
a limiting distribution exists, that does not depend 
on the initial distribution and that the limiting distribution
is the stationary distribution. ie.  {Xn } has a unique 

stationary distribution {π j }, j ∈S and lim
n→∞

pj
(n) = π j . 

When the MC is finite, irreducible and periodic
a limiting distribution does not exist. However 
there is a unique stationary distribution. 
  



Stationary Distributions 

   

Irreducible  or ergodic MCs {Xn } have a unique stationary 
distribution {π j }, j ∈S.  

  
The stationary probabities are given as the solution 
of the stationary equations:

            π j = π ipiji=1

m
∑  ( j ∈S) with π i = 1

i=1

m
∑ .

The "stationary probability vector" is πT = (π1,π 2,...,πm).
  



Primer on g-inverses of I – P 

   

A 'one condition' g-inverse or an 'equation solving' g- inverse
of a matrix A is any matrix A−  such that AA−A =  A.

Let P  be the transition matrix of a finite irreducible MC with 
stationary probability vector πT .  Let t  and u  be any vectors.
Let eT  = (1,1, ..., 1).

I − P + tuT  is non-singular ⇔  πTt ≠ 0 and uTe ≠ 0.

πTt ≠ 0 and uTe ≠ 0⇒  [I − P + tuT ]−1 is a g-inverse of I − P.
                                                                        (Hunter, 1982)



Use of g-inverses 

  

A necessary and sufficient condition for  AXB =C  
to have a solution is that AA−CB−B =C. 
 
If this consistency condition is satisfied the general solution
 is given by X = A−CB− +W − A−AWBB−,
where W  is an arbitrary matrix.                             (Rao,1966)

AX =C  has a solution X =  A−C + (I – A−A)W , 
where W  is arbitrary,  provided AA−C =C.



Special g-inverses of I – P 

    

If G is any g-inverse of I − P  then there exists vectors 
f , g, t and u  with  πTt ≠ 0 and uTe ≠ 0 such that    

               G = [I − P + tuT ]−1 + ef T + gπT .

Z  = [I − P +Π]−1, (Π ≡  eπT )  "fundamental matrix" of 
irreducible (ergodic) Markov chains. (Kemeny & Snell, 1960) 
(I − P)# = A# = Z –Π,  “group inverse” of I − P. (Meyer, 1975)

If G is any generalized inverse of I − P, 
(I – P)G(I – P) is invariant and = A#. 
(Meyer, 1975), (Hunter, 1982)                



First Passage Times in MCs 

  

Let Tij  be the first passage time r.v. from state i  to state j,

i.e.Tij  = min{n ≥1 such that Xn =  j  given that X0 = i}, 

Tii  is the "first return to state i ". 
The irreducibility of the MC ensures that the Tij  are all 

proper random variables. Under the finite state space 
restriction, all the moments of  Tij  are finite.

Let  mij  be the mean first passage time from state i  to state j.

i.e. mij =E[Tij | X0 = i ]  for all (i, j)∈S ×S.



Mean First Passage Times  

   

For an irreducible finite MC with transition matrix P, 
let M = mij

⎡⎣ ⎤⎦  be the matrix of expected first passage

times from state i  to state j.

M  satisfies the matrix equation  
                        (I −P)M  =  E −PMd

where E  = eeT  = [1],  Md = [δijmij ] = (Πd )−1 ≡  D. 



Mean first passage times 

   

If G is any g-inverse of I – P, then
M  =  [GΠ− E(GΠ)d + I −G + EGd ]D.         (Hunter, 1982)
Under any of the following three equivalent conditions:
(i)   Ge  =  ge, g  a constant,
(ii)  GE − E(GΠ)d D = 0,
(iii)  GΠ− E(GΠ)d = 0,  
               M = [I −G + EGd ]D.                      (Hunter, 2008)
Special cases: 
 G = Z, Kemeny and Snell’s fundamental matrix (g  = 1) 
 G = A# = Z − Π,  Meyer’s group inverse of I − P, (g  = 0) 



Mean first passage times 

    

If G = [ gij ] is any generalized inverse of I – P, 

then  mij =
gjj − gij +δij

π j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+ (gi i − gj i ),   for all i, j.

Ge = ge  ⇒ mij =
gjj − gij +δij

π j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟,   for all i, j.

Thus mij =

zjj − zij

π j

=
a#

jj −a#
ij

π j

, i ≠ j,

1
π j

i = j.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

        

where Z = [z ij ] (Kemeny & Snell, 1960), A# = [aij
# ] (Meyer, 1975)



Kemeny’s constant 

   

Key Result : For all i ∈S, 

                      mijj =1

m
∑ π j = K, "Kemeny's constant". 

 
Equivalently,           Mπ = Ke.

One of the simplest proofs is based upon Z :
                               Mπ = [I − Z + EZd ]Dπ  

                                    = [I − Z + EZd ]e
                                    = e − Ze + eeTZde = Ke,
where K = eTZde = tr (Z).



Initial appearance - 1960 



Kemeny & Snell - Initial result 

   

In terms of our notation: c = tr (Z), αT = π  ,η = eT ,ξ = e  so that  
                                   Mπ = (tr (Z))e.

(Kemeny & Snell, “Finite Markov Chains”,1960)



Kemeny’s constant 

    

Define k = Mπ , where kT = (K1,K2,....,Km).

Since (I − P)M = E − PMd ,

(I − P)k = (I − P)Mπ = Eπ − PMdπ = eeTπ − Pe = e − e = 0.

i.e.           Pk = k,     or     pijj =1

m
∑ K j = Ki

The irreducubility of the MC implies that k is the right 
eigenvector of P corresponding to the eigenvalue λ = 1
⇒ k = Ke.  i.e Ki = K  for  all  i  =  1, 2, ..., m.

i.e. Ki = mijj =1

m
∑ π j = K, "Kemeny's constant" for all i ∈S.



Kemeny’s K - Clarification 

   

Note that mii  is  the "mean recurrence time for  state i ".  
It is well known that   mii = 1 π i  and thus miiπ i = 1.
Consequently  "Kemeny's constant" 

K = mijj=1

m
∑ π j = miiπ i + mijj≠ i∑ π j = 1+ mijj≠ i∑ π j .

Some authors  define, by convention, that mii = 0 
so that  the expression for the mean first passage times 
taken as mij =  (zjj − zij ) π j  holds for all i, j.

We will stay with the expression as defined above for K, bearing
in mind that in some books and papers K  is replaced by K −1.



Grinstead & Snell - 2006 - Update 



Grinstead & Snell - Update 



Grinstead & Snell - Update 



Peter Doyle – 2009 - Update 



  Kemeny’s constant: G-inverses 

     

If G = [gij ] is any g-inverse of I − P, then

K = 1+ tr (G) − tr (GΠ) = 1+ (gjjj=1

m
∑ − gj iπ j ).

When Ge = ge,

K = 1− g + tr (G) = 1− g + gjjj=1

m
∑ .

In particular, K = tr (Z) = zjjj=1

m
∑

and               K = 1+ tr (A# ).
"Classical result" (Hunter, 2006). 
"Random target lemma" (with Z) (Lovasz &Winkler,1998).
 Book "Reversible MCs & RWs" (Aldous & Fill, 1999).
  



Kemeny’s constant: Eigenvalues 

   

P  irreducible ⇒
The eigenvalues of P,{λi } (i =1,2,...,m)
are such that λ1 =1, with |λi |≤1 and λi ≠1 (i = 2,...,m).

⇒ The eigenvalues of Z = [zij ] = [I −P +eπT ]−1are

λi (Z) =1 (i =1), 1
1− λi

 (i = 2,...,m).

Thus  K = tr (Z) = ziii=1

m
∑ = λi (Z)

i=1

m
∑ =1+ 1

1− λi
i=2

m
∑ .               

 (Levene & Loizou, 2002), (Hunter, 2006), (Doyle, 2009)



Kemeny’s constant: Bounds 

  

K = 1+ 1
1− λi

i=2

m
∑  and P  is irreducible.

Hence λ1 = 1, with |λi |≤1 and λi ≠ 1 (i = 2,...,m).  
If any eigenvalue appears on the unit circle | λ |  = 1 must appear 
as a root of unity and be associated with a periodic chain (whose 
periodicity cannot exceed m). 
Any complex root λ = a + bi  must be associated with its complex 
conjugate λ = a − bi, with a2 + b2 ≤1. 
For this pair of conjugate roots 

1
1− λ

+
1

1− λ
=

2 − (λ + λ )
(1− λ)(1− λ )

=
2 − 2a

1− (λ + λ ) + λλ
=

2 − 2a
1− 2a + a2 + b2 ≥1 .   



Bounds on K 

   

For conjugate pair of roots 1
1− λ

+
1

1− λ
≥1 . For any real roots,

−1≤ λ ≤1⇒ 1
1− λ

≥
1
2

. The only possible root at λ = −1 occurs 

with a periodic MC with even period. Thus taking the real roots 
individually and complex roots in pairs

                        K =1+ 1
1− λi

i=2

m
∑ ≥1+ m −1

2
=

m+1
2

.  

(Hunter(2006)) Proof based on results of Styan (1964) with λi  real.
If the MC is reversible (all the λi  real) and regular (aperiodic)

then m −1
2

≤
1

1− λi
i=2

m
∑ ≤

m −1
1− λ2

.   (Levene & Loizou, 2002).

      



Improved Bounds on  K 

  

Suppose the the MC is irreducible & reversible so that

1= λ1 >  λ2 ≥ ...≥ λm > −1. Note  K =1+ 1
1− λi

i=2

m
∑ =m+

λi

1− λi
i=2

m
∑

Apply the method of Lagrange multipliers to the function  

f (x2,...,xm) =
xi

1− xi
i=2

m
∑ , 

subject to 1+ x2 + ...+ xm = 0 on the domain 1 > x2 ≥ ...≥ xm > −1

⇒  minimum of f (x1,x2,...,xm) attained at x2 = ..= xm =
−1

m −1
.

⇒  (m −1)2

m
≤

1
1− λi

i=2

m
∑ ≤

m −1
1− λ2

.   (Palocois & Remon, 2010).

 - an improvement on the earlier bounds of Levene & Loizoiu).     



Alternative representation of K 

   

                             K = tr (Aj
−1) −

Ajj
#

π j

+1,  

where Aj
−1 is (m −1) × (m −1) principal submatrix of 

A = I − P  obtained by deleting j − th row and column. 
                    (Catral, Kirkland, Neumann, Sze, 2010)

The proof is based upon expressing A# = [aij
# ] in terms of An

−1 and πT

Without loss of generality, take  j = m. Use mijπ j = ajj
# − aij

#  

and the result (Meyer, 1973) that if B is the leading (m −1) × (m −1) 
principal submatrix of A#, then B = A−1

n + βW − An
−1W −WAn

−1,

where β = uT An
−1e, W = euT   and πT = (uT ,πn).



Stationarity in Markov chains 

  

For all irreducible MCs (including periodic chains),
if for some k ≥ 0, pj

(k ) = P[Xk = j ] = π j  for all j ∈S,

then pj
(n) = P[Xn = j ] = π j  for all n ≥ k  and all j ∈S. 

How many trials do we need to take so that 
P[Xn = j  ] = π j  for all j ∈S ?

  



Mixing Times in Markov chains 

  

Let Y be a RV whose probability distribution is the stationary
distribution {π j }.  

The MC {Xn  }, achieves "mixing", at time T = k, when Xk =Y
for the smallest such k ≥1.
T   is the "time to mixing" in a Markov chain.
Thus, we first sample from the stationary distribution {π j } to 

determine a value of the random variable Y, say Y = j.  
 Now observe the MC, starting at a given state i. We achieve 
"mixing" at time T = n when Xn = j   for the first such n ≥  1. 
  



Expected time to Mixing 

Sampled state j 

Starting state i 

State space 

Trial number 0   1     2      3     4     5      6      7      8      9    10    11    12    

Mixing occurs 

Ti “mixing time” starting in i 



Expected Time to Mixing 

  

The finite state space & irreducibility of the Xn  
 ⇒   T  is finite (a.s), with finite moments.
Let τM ,i  be the "expected  time to mixing ", starting at state i,

(assuming that mixing cannot occur at the first trial).
Conditional upon X0 = i,

E[T ] = EY (E[T |Y ]) = E[T |Y = j ]P[Y = j ]
j=1

m
∑

= E[Tij | X0 = i ]π jj=1

m
∑ = mijπ jj= i

m
∑   

i.e. τM ,i = E[T  | X0 = i ] = mijπ jj= i

m
∑ = mijπ jj=1

m
∑  =  τM = K.

i.e. Expected time to mixing, starting in any state, is K.
                                                                (Hunter, 2006)



Mixing or Hitting Times 

  

Suppose the sampled stationary state ("mixing state") is j and 
the initial "starting state" is i.
We have assumed that the MC {Xn  }, achieves “mixing”, 
at time T = k, when Xk =Y  for the smallest such k ≥1.
Suppose however we allow mixing to be possible when k = 0
when i = j. i.e. we permit “mixing” to occur at time T = 0, 
when state i is the "hitting" state (rather than "returned state")
The expected time to mixing in this situation would be 

mijj≠ i∑ π j = K −1, since miiπ i = 1.     

(Hunter - 2010 preprint - considers the distribution of the time to 
mixing and time to hitting in each of the above situations.)       



Random surfer 

  

Note that  K = π ii=1

m
∑ π jj=1

m
∑ mij = π ii=1

m
∑ Mi  where Mi = π jj=1

m
∑ mij .

Mi  can represent the mean first passage time from state i when 
the destination state is unknown. 

K = π ii=1

m
∑ Mi  can be interpreted as the mean first passage time 

from an unknown starting state to an unknown destination state.
Imagine a random surfer who is "lost" and doesnt know the state 
he is at and where he is heading. 
K  can be intrepeted as the mean number of links the random surfer 
follows before reaching his destination.  Thus the random surfer 
is not "lost" anymore, he just has to follow K  random links and he 
can expect to arrive at his final destination. (Levene & Loizou, 2002)



Ex: Two state Markov Chains  

  

 Let P =
p11 p12

p21 p22

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= 1− a a

b 1− b
⎡

⎣
⎢

⎤

⎦
⎥,

(0 ≤ a ≤1, 0 ≤ b ≤1).  Let d = 1− a − b.
MC irreducible ⇔ −1≤ d <1.
MC has a unique stationary probability vector

πT = (π1,π 2) = b
a + b

, a
a + b

⎛

⎝⎜
⎞

⎠⎟
=

b
1− d

, a
1− d

⎛

⎝⎜
⎞

⎠⎟
.

−1< d <1⇔  MC is regular and the stationary distribution
                     is the limiting distribution of the MC.
d  = − 1 ⇔  MC is irreducible, periodic, period 2.



 Ex: Two state Markov Chains  

  For all two state MCs: 1.5 ≤ K <∞

0
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                        K =1+ 1
a+b

=1+ 1
1−d

.

d =1⇔  Periodic, period 2, MC with a =1, b =1.
       ⇔K =1.5 (minimum value of K ).
d = 0⇔  Independent trials ⇔K = 2.
d →1 (both a→ 0 and b→ 0)⇒ arbitrarily large K.



 Ex: Two state Markov Chains  
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 Ex:  Three state Markov Chains  

  

P = pij
⎡
⎣

⎤
⎦ =

1− p2 − p3 p2 p3

q1 1− q1 − q3 q3

r1 r2 1− r1 − r2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

Six constrained parameters with 
0 < p2 + p3 ≤ 1, 0 < q1 + q3 ≤ 1 and 0 < r1 + r2 ≤ 1. 
Let Δ1 ≡ q3r1 + q1r2 + q1r1, 
     Δ2 ≡ r1p2 + r2p3 + r2p2,
     Δ3 ≡ p2q3 + p3q1 + p3q3, 
     Δ ≡  Δ1 + Δ2 + Δ3.



 Ex: Three state Markov Chains 

 

MC is irreducible 
(and hence a stationary distribution exists) 
⇔   Δ1 > 0, Δ2 > 0, Δ3 > 0.

Stationary distribution given by

(π1,π 2, π3 ) = 1
Δ

(Δ1,Δ2,Δ3 ).

 



 Ex: Three state Markov Chains 

  

Let τ12 = p3 + r1 + r2, τ13 = p2 + q1 + q3,τ 21 = q3 + r1 + r2,
     τ 23 =  q1 + p2 + p3, τ31 = r2 + q1 + q3, τ32 = r1 + p2 + p3, 
Let  τ = p2 + p3 + q1 + q3 + r1 + r2

⇒   τ = τ12 + τ13 = τ 21 + τ 23 = τ31 + τ32. 

            M =

Δ Δ1 τ12 Δ2 τ13 Δ3

τ 21 Δ1 Δ Δ2 τ 23 Δ3

τ31 Δ1 τ32 Δ2 Δ Δ3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥



Ex: Three state Markov Chains  

  

Kemeny's constant: K =1 +  τ
Δ

For all three-state irreducible MCs, K ≥  2.

K= 2 achieved in "the minimal period 3" case 

when p2 = q3 = r1, i.e. when P =
0 1 0
0 0 1
1 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.



 Ex: Three state Markov Chains 

  

"Period-2 case":  Transitions between {1,3} and {2}
P =

0 1 0
q1 0 q3

0 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, (q1 + q3 = 1)⇒ K = 2.5

"Constant movement" case:
P =

0 p2 p3

q1 0 q3

r1 r2 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, (p2 + p3 = q1 + q3 = r1 + r2 = 1)

                             K = 1+ 3
3 − q3r2 − r1p3 − p2q1

⇒ 2 ≤ K ≤ 2.5



General m - state MCs 

  

Periodic, period-m chain K =
m +1

2
.

Independent trials with m possible outcomes: K  =  m.

For all irreducible m - state MCs:      m +1
2

≤ K < ∞.

                                                          (Hunter, 2006)



Perturbation results 

    

Consider perturbing P = [pij ] (where P  associated with an ergodic,

m-state MC, to P  = [pij ] = P + E  where E = [ε ij ], ( ε ij = 0).
j=1

m
∑

Let πT = (π1,π 2,...,πm) and π
T
= (π1,π 2,...,πm) be the associated 

stationary probability vectors.
For all irreducuible m-state MCs undergoing a perturbation E = [ε ij ]

          πT − π
T
1≤ (K −1) E 

∞

i.e.       |π j
T − π j

T
|

j=1

m
∑ ≤ (K −1)max1≤i≤m | εki | .  

k=1

m
∑

                                                                         (Hunter, 2006)



Elementary perturbations 

   

Let M  and M  be the mean first passage matrices and

 K  and K  be the Kemeny constants associated with P  and P  

Type 1 perturbation: Let P  = P + E  where E = erh
T .

Then             mir = mir  for all i ≠ r,

                      mij ≥ mij ⇔π j ≤ π j  for all i, j ≠ r.

and                 K ≤ K ⇔ (
i≠r∑ π i − π i )mir ≥ 0.

Type 2 perturbation: Let P  = P + E  where E = ehT .

Then K = K.                 (Catral, Kirkland, Neumann, Sze, 2010)
                                        



Extended perturbations 

   

Extensions:
1. Let P  be  a symmetric stochastic, irreducible matrix

P = P − E  where E  is a positive semi definite matrix with  

P  stochastic. 

Then    mij
j=1

m
∑  ≤ mijj=1

m
∑ , and K ≤ K.

2. Let P  be  a stochastic, irreducible matrix and suppose 0 ≤ α ≤1.

P = αP + (1−α)evT  where vT  is a positive probability vector,

 Then K ≤ K.   
                                   (Catral, Kirkland, Neumann, Sze, 2010)



Directed Graphs 

      

A directed graph, or digraph, G = (V, E ) is a collection of vertices
(or nodes) i ∈V = {1,...,m} and directed edges or arcs (i → j)∈ E . 
One can assign weights to each directed edge, making it a 
weighted digraph.
An unweighted digraph has common edge weight 1.  
G can be represented by its m ×m adjacency  matrix A = [aij ] where

 aij ≠ 0 is the weight on arc (i → j) and aij = 0 if (i → j)∉E .

A digraph G  is strongly connected or a strong digraph if there is a
path i = i0 → i1 → ...→ ik = j  for any pair of nodes where each link 
ir −1 → ir ∈E .  We focus on strong digraphs.



Random walks over a graph 

   

A random walk over a graph can be represented as a MC with 
transition matrix P =D−1A where D =Diag(Ae) =Diag(d). 
We assume that every node has at least one out-going edge, 
which can include self loops. Note that Dii = di ,the degree of node i. 

The graph is stongly connected ⇒ the associated MC is irreducible
with pij =1 d j for those states j  such that i →  j, 0 otherwise.

The graph is undirected ⇒ the associated MC is reversible,
and the stationary probability vector πT =d dTe .



Mixing on Directed Graphs 

  

For any stochastic matrix P  of order m, the directed  graph
associated  with P, D(P) is the directed graph on vertices
labelled 1, 2, ..., m such that for each i, j =1, 2, ..., m, i  → j  
is an arc on D(P) if and only if pij > 0.

For a strongly connected graph D  on m vertices define the class
=

D∑  {P | P  is stochastic and m×m and for each i, j =1, 2, ..., m,

           i  → j  is an arc on D(P) only if  i  → j  is an arc in D} 
Define Kemeny's constant K(P) with the convention that mii = 0.  

Let µ(D) = inf{K(P) | P ∈ and  P
D∑  has 1 as a simple eigenvalue} 

Let k = the length if the longest cycle in D, (i.e. period m⇒ d =m) 

then                     µ(D) = 2m − k −1
2

.                      (Kirkland, 2010)



Electric networks and graphs 

  

There is a connection between electric networks and random 
walks (RWs) and graphs.                              (Doyle & Snell,1984).
On a connected graph G with vertex set V = {1,2, ...,m} assign to 
the edge (i, j) a resistance rij . The conductance of an edge 

(i, j) is Cij =1 / rij . Define a RW on G to be a MC with

transition probabilities  pij =Cij Ci  with Ci = Cijj∑ .

The graph is connected ⇒  MC is ergodic with a stationary
probability vector πT = (π1,...,πm) where π j =Cj C with C = Cii∑ .

The MC is in fact reversible. 
On the electric network we define Cij = π ipij .

(If pii ≠ 0 the resulting network will need a conductance from i  to i.)



Electric networks and graphs 

  

For a network of resistors assigned to the edges of a connected
graph choose two points a and b and put a 1-volt battery
across these points establishing a voltage va =1, vb = 0. 
We are interested in finding the voltages vi  and the currents Iij

in the circuit and to give a probabilistic interpretation.
By Ohm's Law Iij = (vi −v j ) rij = (vi −v j )Cij .  Note Iij = −I ji .

By Kirchhoff's current law  Iijj∑ = 0 for i ≠ a, b. 

i.e if (vi −v j )Cijj∑ = 0⇒ vi = v jj∑ pij  for i ≠ a, b.

Let hi  be the probability of starting at i, that state a is reached
before b. Then hi  also satisfies above equations with va = ha =1
and vb = hb = 0. i.e. interpret the voltage as a "hitting probability".



Electric networks and graphs 

   

Let  EaTb  be the expected value, starting from the vertex a,
of the hitting time Tb  of the vertex b.
Let π i  be the stationary probability of the MC at vertex i.
When we impose a voltage v  between points a and b a voltage 
va = v  is established at a and vb = 0 and a current Ia  = Iaxx∑
will flow into the circuit from outside the source.
We define the effective resistance between a and b as 
Rab  = va ia ,as calculated using Ohm's Law.
Then

              EaTb  = 1
2

Cii∑ {Rab +Rbi −Rai }     (Palacios &Tetali,1996)



Kirchhoff index 

    

Let G be a simple connected graph with vertex set
V = {1,2, ...,m}.
Let Rij  be the effective resistance between i  and j. 

The Kirchhoff  index  is defined as
                                Kf (G) = Riji< j∑ .      (Klein & Randic,1993)

Since Rij = Rji  and Rii = 0,  Kf (G) = 1
2

Riji, j∑ . 

(Used in Chemistry to discriminate between different molecules 
with similar shapes and cycle structures.)
A lot of interest in recent years - graph theory, Laplacian and
normalised Laplacians, electric networks, hitting times.



Gustav R Kirchhoff (1824 – 1887) 



Kirchhoff index 

   

                                   Kf (G) = Riji< j∑ .

We use the relations between electric networks and RWs on graphs. 
For a graph of m vertices computing Kf (G)  entails finding 
O(m2) values of the Rij  which is equivalent to finding O(m2) 

values of the EiTj  for the RW on the graph.

Kf (G) can be characterised as  (Palacois & Renom, 2010)

                                Kf (G) = 1
2 | E |

EiTji, j∑

- based on the fact that the "commute times" can be expressed as
                               EiTj +EjTi = 2 | E | Rij       (Aldous & Fill, 2002)

     



Kirchhoff index 

   

Kf (G) can also be characterised as  Kf (G) = m 1
µi

i=1

m−1
∑   

(Zhu, Klein, Lukovits, 1996) (Gutman, Mohar, 1996)
where the µi 's (i  = 1, 2, ..,m) with µm = 0, are the eigenvalues 
of the (ordinary or combinatorial) Laplacian matrix L of G, 
i.e. L = D − A = D(I − P).

Using the above characterisation, upper and lower bounds for 
Kf  have been found (Zhou and Trinajstic, 2009). They also found
bounds in terms of the eigenvalues of the normalised Laplacian
L = D−1/2LD−1/2.    



Kirchhoff index and Z 

    

In the case of d-regular graphs,(where all vertices have exactly d  
neighbours) using the characterisation of the Kirchhoff index as

                          Kf (G) = 1
d

 E1Tjj∑
it was shown (Palacois, 2010) that

                          Kf (G) = m
d

 [tr (Z) −1]

where  Z = (I − P + eπT )−1, with P the transition matrix of the
random walk and πT  its stationary probability vector.
Thus we have a connection between the Kirchhof index
and Kemeny's constant K = tr (Z) −1.
     



Variances of mixing times 

  

The expected time to mixing starting in any state is K,
a constant independent of the starting state.
What about the variance of the mixing times? 
Do these depend on the starting state? 
If so, can we choose a desirable starting state?
We explore some results on the second moments of the 
first passage time variables.
Let  mij

(2)  be the 2-nd moment of the first passage time 

from state i  to state j. i.e. mij
(2) =E[Tij

2 | X0 = i ]  for all (i, j)∈S ×S;

and let M (2) = mij
(2)⎡

⎣
⎤
⎦.



Variances of the Mixing Times 

   

Let T  be the mixing time variable and let

ηi
(k ) = E[T k | X0 = i ] = m(k )

ijj=1

m
∑  π j  and η(k )T = (η1

(k ),η2
(k ),....,ηm

(k ) ).

We have seen that η(1)T = Ke,  i.e the expected mixing times,
starting at i, is constant.
The variance of the mixing time, starting at i, is given by 
ν i = η i

(2) −η2.  If νT = (ν1,ν2,...,νm) then ν = η(2) −η2e.

From (Hunter, 2006), if G is any g-inverse of I − P,such that Ge = e
η(2) = [2tr (G2) − 3tr (G) − (1− 2g)(1− g)]e + 2Lα,
ν = [2tr (G2) − (tr (G))2 − (5 − 2g)tr (G) − (1− g)(2 − 3g)]e + 2Lα,
where L = I −G + EGd  and α = e − (ΠG)d De +GdDe.
ν i = ν  for all i ⇔ Lα = le. A sufficient condition is α = αe.



Variances Mixing Times, 2-states 

  

For the 2-state case, P = 1− a a
b 1− b

⎡

⎣
⎢

⎤

⎦
⎥  and d = 1− a − b.

ν =
ν1

ν2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

1
ab(1− d)2

(2a2 + 2b − 3ab)(a + b) − ab
(2b2 + 2a − 3ab)(a + b) − ab

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Lines a = b & a + b = 1 partition the parameter space
(a,b) to give regions where ν1 = ν2,ν1 < ν2  and ν1 > ν2.
ν1 < ν2  if p21 < p11 < p22   or  p22 < p11 < p21.



Variances Mixing Times, 2-states 

 Graph of ν1 −ν2 :

(Hunter, 2008) 
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