A Generic Platform for the Evolution of Hardware

A thesis submitted to Auckland University of Technology in partial fulfilment of the
requirements of the Post Graduate Diploma in Engineering Research
School of Engineering
Auckland University of Technology
By
Abhishek Bedi
Under the supervision of

Dr. John Collins

AUCKLAND UNIVERSITY OF TECHNOLOGY
TE WANANGA ARONUI 0 TAMAKI MAKAU RAU

Acknowledgements

This dissertation is a part of the Post Graduate Diploma at Auckland University of Technology
New Zealand.

This piece of work is a result of hard work, patience, sacrifice and unconditional support of
many people. | wish to thank everyone who has supported and helped me in completing this

research.

Firstly, I wish express my gratitude to Snjezana Soltic for inspiring me to carry out this work.
I am thankful to my supervisors Dr. John Collins and Mr. Robert Murphy for keeping
patience, being a motivating force and taking care of me during the process. | would like to

thank them for the guidance they have given me throughout the period.

I express my honest thanks to the AUT library for their overall support for the entire period of
the study at AUT.

At the end, | am grateful to my parents and family members, specially my partner for her

extreme sacrifices and providing moral support.

Statement of Originality

‘I hereby declare that this submission is my own work and that , to the best of my knowledge
and belief, it contains no material previously published or written by another person nor
material which to a substantial extent has been accepted for qualification of any other degree
or diploma of a university or other institution of higher learning, except where due

acknowledgement is made in the acknowledgements.’

Abhishek Bedi

Abstract

Evolvable Hardware is a technique derived from evolutionary computation applied to a
hardware design. The term evolutionary computation involves similar steps as involved in the
human evolution. It has been given names in accordance with the electronic technology like,
Genetic Algorithm (GA), Evolutionary Strategy (ES) and Genetic Programming (GP). In
evolutionary computing, a configured bit is considered as a human chromosome for a genetic

algorithm, which has to be downloaded into hardware.

Early evolvable hardware experiments were conducted in simulation and the only elite
chromosome was downloaded to the hardware, which was labelled as Extrinsic Hardware.
With the invent of Field Programmable Gate Arrays (FPGAs) and Reconfigurable Processing
Units (RPUs), it is now possible for the implementation solutions to be fast enough to evaluate
a real hardware circuit within an evolutionary computation framework; this is called an

Intrinsic Evolvable Hardware.

This research has been taken in continuation with project 'Evolvable Hardware' done at
Manukau Institute of Technology (MIT). The project was able to manually evolve two simple
electronic circuits of NAND and NOR gates in simulation. In relation to the project done at
MIT this research focuses on the following:

To automate the simulation by using In Circuit Debugging Emulators (IDEs), and

To develop a strategy of configuring hardware like an FPGA without the use of their company
supplied in circuit debugging emulators, so that the evolution of an intrinsic evolvable

hardware could be controlled, and is hardware independent.

As mentioned, the research conducted here was able to develop an evolvable hardware
friendly Generic Structure which could be used for the development of evolvable hardware.
The structure developed was hardware independent and was able to run on various FPGA
hardware’s for the purpose of intrinsic evolution. The structure developed used few

configuration bits as compared to current evolvable hardware designs.

Table of Contents

ACKNOWIEAGEMENTS ...t te e re e ae e e neenns i
Statement OF OrIgINAITY.......ccooviiiii e i
ADSTFACT ... oo bbb bbbt neas i
TabIE OFf CONTENTS.....ccuiiice e e sre et e \Y;
I TS o) T 10 1 USSR vi
[TS A0 B = o] 5 PSSSRT viii
DETINITIONS. .. ettt bbbt bbb e et et et nbesbe st b rennean iX
F N o] o] €51V = LA (o] PRSI Xi
(O70] 0] 0= T 1 [0] 0 1K O I S SSURORN xiii
1 1 8 oo 18 od L] o IO SRR 1
2 Evolvable Hardware.............coiiieiiiis s 3
2.1 BaCKGrOUNG.........eouiiiiie e 3
2.2 Definition of Evolvable Hardware ..., 5
2.2.1 Natural EVOIULIONooiiiiecicece e 5
2.2.2 Hardware EVOIULION. ..ot 5
2.3 EHW — Types of EVOIULION ..o 8
2.4 Genetic AIGOITNMSooicice e 9
24.1 Genetic Algorithm Terminologycccocvviiiriiieieee e 10
2.4.2 A Simple Genetic Algorithm[36]ccoveveiieiieieee e 12
3 Hardware PIatforms..........cccooiiiiiic e 13
3.1 The History and Development of FPGA ... 14
3.2 General Architecture 0f an FPGA ..o 16
3.3 XilinX XCB200 FPGA ...ttt 17
3.3.1 Logical and Physical OrganiSationc.ccoouvevirieienene e 18
3.3.2 BaSIC Celll.....oiiiieeee s 19
3.3.3 The Configurable Logic BIOCK STrUCLUIeccoviiiiiiiincrieceee, 21
3.4 EHW friendly StrUCLUIESocveeieeee et 22
34.1 POELIC CRIP .ttt 22
34.2 EHW CRID oo 26
3.5 The Virtual SDIOCK FPGAot 30
35.1 ATCNITECIUIE ...t 30
3.5.2 CONTIGUIALTION ... 32
353 ConfigUration DAtaccccueereeieiiiieie e 32
354 Feedback of INfOrmation ..o 32
3.6 ANalysis Of ThESE DESIGNSccviiiriiiiiieieie et 32
4 GENENIC PlatfOrm ..o 34
4.1 100 801 o] o USSR 34
4.2 Experiment- An INTrOAUCLIONoiviiiieiiecec e 35
4.3 THE Cll DESION ... 36
4.3.1 NAND GALEeevveiieieie ettt sttt ne e e 36
4.3.2 MUIEIPIEXET (IMUX) ..o 37
4.3.3 SNITE REQISIEN ... 38
4.4 The Complete Cell StrUCTUIEoocvveecee e e 38
4.5 Cell OPEIALION ...ttt ettt e b snee e 39
45.1 The INPUL MUILIPIEXETS ..ot 39
45.2 STt REGISTEN ... 40
45.3 The OULPUL SECTIONeeiieie e 42

4.6 The GeneriC PIAtFOIM ...cooeeeeeeeee e, 43

4.6.1 1x2 Cell Generic Platform for TeSt........ccocvieiininiiiiee e 44
4.6.2 Generic Platform for 2x2 Cell arrayccooeiviiieienncccee 46
4.7 Development in CAD SOFtWAIE...........cvcvviieiiee e 48
471 Section D: Testing in QUArtUS-1®cov.ovveervereeereeieseesseseeenes s, 49
5 The Genetic Algorithm Code.........cccoveiiiiiiicce e 55
5.1 INEFOTUCTION ..ttt enes 55
5.2 Parameters OF GA ..ot 57
521 FItNESS FUNCLION.iiiiiie et et 57
5.2.2 TESE FUNCHION: ...t bbb 58
523 SeleCtioN FUNCLIONoiuiiiiiie e 58
5.3 CrOSSOVEN FUNCHION: ...etiiieiiiieie ettt 59
54 MUEBEION FUNCLION ... st ee e 60
55 OULPUL OF thE GA ...t 61
6 Hardware TeSTINGooiiiiiiiiiceiee e 62
6.1 INEFOAUCTION ..t 62
6.2 HArOWAIE TOSES .. eiiuieiiieiieie ettt ettt e eneenneenne e 63
6.2.1 DXL ATTAY TSttt e e bne s 63
6.2.2 IX2 AITAY TEST ..ot 63
6.2.3 2X2 ATTAY TBSE.eiiiiiii ittt et 66
7 Genetic Algorithm RESUITS.........ccoiiiiiii e 67
7.1 Initial Results Of EVOIULION...........cooiiiiiiiiiee e 67
7.2 Analysis of the Initial RESUIES............ccooiii 73
7.3 The Solution for Oscillation DeteCtion..............ccoovvieieieieneiese e 74
7.3.1 Observations of the Oscillation TeStiNGcccvieiiiereneeeeeeeee 76
7.4 EVOIULION OF OR GaLE......oviiiieiieciieieee e 77
7.5 Analysis of the OR Gate RESUILSc.coveiiiiiiiceee e 82
7.6 Bistable DEtECLIONcc.oiiiiiiiiiceee s 85
7.6.1 Explanation of the AlQOrithm:ccooeiiiiiie 87
8 Conclusion and FUtUre WOrK ... 92
8.1 (OF0] 100 113 [o USSR 92
8.2 FULUIE WOTK ..ottt 93
AAPPENDICESitiiittie ettt ettt ettt sttt ettt s sttt e e s ket e e ab et e ekt e e ekt e e e nb e e e kb e e e br e e e nn e e ennn e e 94
APPENDIX | : Procedure for Running Quartus EXperimentccccoceveveiveiecviciecce e, 94
APPENDIX IlI: Testing done before running eXperiment...........cooeererereneneseseseeeeeees 99
APPENDIX I11: Results achieved during experimentationcccccceevvevveeviiecveesie e, 103
REFERENCESotiiiiiie ittt ettt ettt sttt et e s st e e s st e e ssb e e e s bt e e s ab e e e bbeeebbeeannneean 107

List of Figures

FIGURE 1 EVOLVABLE HARDWARE [D]. i tiitiitiiteitieieieieste st sttt ettt st aena et et stestesneanaaneeneestennestesneanaenes 3
FIGURE 2 ORIGINATION OF EHW FROM THE INTERSECTION OF THREE SCIENCES [16]......ceieiiiiieinienieiscsieseieeen, 6
FIGURE 3 OPERATION OF AN EVOLVABLE SYSTEM [L]..etitiiiiiitiieiiieeisie et 8
FIGURE 4 THREE TYPES OF EVOLUTION [26]....c.vtutitiitiietiiteietiste ettt sttt bttt 9
FIGURE 5 A SIMPLE EXAMPLE OF GENETIC ALGORITHM [2] AND [33] ...ooiviiiiiriiieiinieieesie et 10
FIGURE 6 ROULETTE WHEEL SELECTION [35]....cutitttiiietiiteiietisteieie sttt 11
FIGURE 7 CROSSOVER AND MUTATION [L]..cttteiiitiiteiietiiteiet sttt 12
FIGURE 8 STRUCTURE OF A PAL [43] ... iiieie ittt sttt ettt ettt st st sneenaeseenae b nnenteaneeneas 15
FIGURE 9 A MACROCELL OF MAX 7000 [44] ...vviuteieiteie st sttt este et testa ettt sbesta e e esnesaesbestenteaneaneas 15
FIGURE 10 STRUCTURE OF AN FPGA [45]...eeeieee ettt sttt st e sttt ba e te e ae et e snaennn e 16
FIGURE 11 NEAREST NEIGHBOUR INTERCONNECT ARRAY STRUCTURE [48]....ccviiiiiiiciecieseecee e 18
FIGURE 12 XCB200 STRUCTURE [48]eteeitieiieeiie ettt st e st e e st te e ste e steeteantesneesnaentaetaestaeseaanaesneesnaesneennas 19
FIGURE 13 XCB200 BASIC CELL [48]... ettt iteeiteeie et ctiestee st ettt e s ae s e st ste e ste e et esneesnaentaestaesteeseaenaeaneesnnesnnennas 20
FIGURE 14 THE CONFIGURABLE LOGIC BLOCK / THE FUNCTION UNIT [48]...ccviieieiiniie e 21
FIGURE 15 THE POETIC CHIP SHOWING THE MICROPROCESSOR, AND THE RECONFIGURABLE ARRAY [47]. 23
FIGURE 16 POETIC CHIP == SWITCH BOX [AT] ..ottt 24
FIGURE 17 BLOCK DIAGRAM OF EHW CHIP [55] ...ttt 26
FIGURE 18 GA UNIT BLOCK DIAGRAM [55]...ttteititiiiiiitiiteiete sttt 27
FIGURE 19 BLOCK DIAGRAM OF ONE PLA [55] ...ttt ettt sttt st et te e an et nne e 28
FIGURE 20 BLOCK DIAGRAM OF THE COMPLETE EHW CHIPBOARD [55]....cciiiiiiiicie et 29
FIGURE 21 SBLOCK — ROUTING AND LOGIC/MEMORY BLOCK [60].....cccuiiiiiiiiiieiicie e siee e e e 31
e TeTU S =T 0o g o] o < ST 31
FIGURE 23 COMBINATIONAL LOGIC WITH NAND GATEcii ittt ettt saabbrn e e saabrnes 37
FIGURE 24 2-TO-1 MUX AND TRUTH TABLE [B1] ...uviiviiiiitieiieiie ettt sttt te e ae e snnesnn e 37
FIGURE 25 A SHIFT REGISTER [B2]ttt ettt b et 38
[LETU = ST I = O = I T 38
FIGURE 27 INPUT SECTION OF THE “CELL” 1uvvtiiiiiiiititeiiieeesseiittteeteesssssttiesssssssssastsssssesssssssssssssssssssssssssesssssssssenes 39
FIGURE 28 THE FUNCTIONAL SECTIONuutttttiieeetiititeteeeeesssessaetessessssssssssessessssssssssssssesssssssssssssesssssssssssssesssssssseees 40
FIGURE 29 OUTPUT SECTIONiuttttiieeeesiitttttieeessssisssstsssesssaessaseessesssaasstsessessssssstastsesssssssbsesssesssssssrssssesssssssrenes 42
FIGURE 30 SHIFT REGISTER CONNECTION BETWEEN CELLS .. .eeiiviiiiteeeitieeeteeeireeeetesessesessessssessssesssssssssnessssessssesssneens 44
FIGURE 31 THE GENERIC PLATFORM FOR 1X2 CELLS .uuviiiiiiiiiititiiiieeiiiiitriees e e s s esiasbieesesssesiasbassssesssssassssssssssssssssnnes 44
FIGURE 32 NAND 4 NOT GATE DIAGRAM ...uttiiiiiiiiiittttiee et et seittttee s e e st ssibbbaetssessasiabbaetseessesiabbbateeessssibbasseeessssssbranes 45
FIGURE 33 GP 2X2 STRUCTURE; SHOWING THE TWO SECTIONS ...ueiiiiiiiiitiiieieeeeeeiiiirieeeeessesissrassesssssssasssssessssssssssnnes 47
FIGURE 34 FLOW CHART FOR CAD SOFTWARE [63].....iivieitieiiieiieie st ste et te sttt et ta e ae e ae s snaesne e 49
FIGURE 35 BEHAVIOUR OF CELL AS A NAND GATE AND THE SHIFT REGISTER VALUES EXPLAINEDcccccevvinnnnee. 50
FIGURE 36 THE CIRCUIT DIAGRAM WITH OTHER PINS GROUNDED, FUNCTIONAL SIMULATION SHOWN IN APPENDIX51
FIGURE 37 CELL AS A ROUTER WAVEFORMutiiiiiiiiettttiettessiieitstessessssssssssesssssssssssssssssssssssssssssssesssssssssssesssssisssseses 52
FIGURE 38 BIT CONFIGURATION EXPLANATION FOR IX1 ARRAYveiiiviiicrieeitieecteseitesesseesssessstessssessssessssesssssssssseens 52
FIGURE 39 FUNCTIONAL SIMULATION FOR 1X2 ARRAY ..eoieiiiieiuttietieesiisistietteessssiisssetssees 53
FIGURE 40 BIT CONFIGURATION EXPLANATION FOR 2X2-ARRAY FUNCTIONAL SIMULATION IN APPENDIX 53
FIGURE 41 FUNCTIONAL SIMULATION FOR 2X2 ARRAYvvtiitieeitteeiteesisesassessisesassessssesessessssesssessssssssssssssssssessssseens 54
FIGURE 42 DIAGRAM SHOWING THE VARIOUS STEPS OF GENETIC ALGORITHMuvviiiiiiiiiiiiiiiieee e esiiiieieee e e ssvvanns 56
FIGURE 43 CODE FOR FITNESSuuttttitteiiiiiittttteesessiiisssstessesssasssssssssesssasisssssssssssssisssssssssssmissssssssessssissssssseessssisssenes 57
FIGURE 44 CODE FOR TEST FUNCTION SHOWING ONLY THE FIRST TEST .uvvtttiiiiiiiiiriiieeeeiiiiiiieseeesssssssssssessssssssssnes 58
FIGURE 45 CODE FOR SELECTION OF POPULATION USING SORTINGcccuvviiiiieiiiiiiriiieeessesiitieseseessssassssseessssssasssnnes 59
FIGURE 46 SINGLE POINT CROSSOVER [B4].....cttiuieiiiieie ittt sttt sttt st se et bbb s e e e e et seesbesneeneas 59
FIGURE 47 LINES OF CODE SHOWING CROSSOVERuuvviiiiiiiiiitiiiiesteesiisisitiesssessssissssssssessssisssssssssssssssssssssssssssssssssnes 60
FIGURE 48 CODE FOR MUTATION ..tttttiieeitiitttttteeessseesssstessesssasssssssssesssassssssssssssssissssssssssssissssssssessssissssssssessssissseees 60
FIGURE 49 JPEG PHOTO OF THE EHW SYSTEM SHOWING PORTS AND DEVELOPMENT BOARDSocovueeivieeiereiniens 62
FIGURE 50 INTERPRETATION OF RESULTS ACHIEVED FOR NAND GATEveoiitiiiiteeiitie sttt seeesrvessveeesnne e 63
FIGURE 51 KNOWN 10-BIT CONFIGURATION FOR AND GATE, USING 10-BITS.eeeiiiiieeierieeeeeerieeeeieee e s enveeeseree e 64
FIGURE 52 NOT GATE 10- BIT KNOWN CONFIGURATIONuvviiiitiieeiiteteeiesteeesiterssssssesssesssssssssesssssssssssssessssssessesns 64
FIGURE 53 BEHAVIOUR OF 1X2 STRUCTURE AS A NOT GATE WITH 10- BIT KNOWN CONFIGURATIONccevvenenne 65
FIGURE 54 ROUTER 10- BIT KNOWN CONFIGURATION ...iiiiiiiiittttiiteeesiiibtrierssessssisssnes 65
FIGURE 55 ROUTER GATE 10- BIT KNOWN CONFIGURATIONuuutiiiieeiiiiititiereeesississriesesessssssssssssssssssssssssssssssssssssssnes 66
FIGURE 56 RESULTS EVOLVED AFTER THE FIRST RUNciiiiiiiiiiiiiiic ettt ettt n e s s saabbaas 67

FIGURE 57 MANUAL ANALYSIS WITH EXPECTED WORKING AND SIMULATION RESULT QUARTUS Iooviiiiinne. 68

FIGURE 58 MANUAL ANALYSIS WITH EXPECTED WORKING AND SIMULATION RESULT FOR 0X35339......ccccceevveene 70
FIGURE 59 MANUAL ANALYSIS WITH EXPECTED WORKING AND SIMULATION RESULT IN QUARTUS Ilc.cce... 72
FIGURE 60 OSCILLATION DETECTION CIRCUIT ON A CELL ...iiiuttviiiieiiiiiiiiiiie e e e s esiittiise e e s s e ssibbassseessssasbsssssssssssasssnnns 74
FIGURE 61 MODIFIED GA CODE FOR OSCILLATION DETECTION ..utiiiiiiiieittiiieeesseiitttieeeeessessisbsssseessssssssssssssssssasssnnes 75
FIGURE 62 GP DESIGN WITH OSCILLATION DETECTION ..eiiiiiiiittttiiiieeiiiiitttiereeessesissbsessssssesisssssssssssssssssssssssssssssssssnes 76
FIGURE 63 RESULTS EVOLVED AFTER THE INTRODUCTION OF OSCILLATION CHECKER CIRCUITcccvvviieeeeeninvnnne, 77
FIGURE 64 MANUAL ANALYSIS AS WITH EXPECTED WORKING AND SIMULATION RESULT ..evvvviiieeiiiiiiieieee e e s ivvvenns 78
FIGURE 65 MANUAL ANALYSIS WITH EXPECTED WORKING AND SIMULATION RESULTcocuvviiiieeeieiiriieieee e e sasvveens 80
FIGURE 66 MANUAL ANALYSIS WITH EXPECTED WORKINGccciiuviieeiiteieesiteeeesssteeeseistsessesesesssssessssssesssssssessssssensesns 81
FIGURE 67 GATE STRUCTURE EMPHASISING FEEDBACK FOR OX 71020vvviiiiiiiiieiiie ettt eiee e snvee e 83
FIGURE 68 GATE STRUCTURE EMPHASISING ON FEEDBACK IN OX74301L......uciiiiiiieieiiieeieeiee et eiee e 84
FIGURE 69 BISTABLE DETECTION CIRCUIT ON A CELL WITHA MUX L..oiiiiiiiiictiee ettt 85
FIGURE 70 ALGORITHM FOR DETERMINING CLOCK CYCLES ..veiiiitiiiiiteiieiittieeseireeessittessseseessssssessssssasssssnsessssssensesns 87
FIGURE 71 GP WITH COUNTER ... uttttitiiiiiiittttiie e e e s seitbasie s s e st sibastes s e et s asabbbbeessessaabbbbeeeeesseabbbbaseseessssabbbebaeeessssasbbnees 88
FIGURE 72 CONTROL CIRCUIT ..ittttttiieeesieitttieeeessssitbaeteesesssssbassessesssasssstaessssssasasbasssessssssabbaasssesssssasbbessseessssassrenes 88

FIGURE 73 WORKING OF CONTROL CIRCUIT IN THE GP WITH THE INTRODUCTION OF FLIP-FLOPS E.G 0X71020. ... 89
FIGURE 74 FLOW CHART DEPICTING THE STEPS ABOVE
FIGURE 75 SELECTION OF CLOCK CYCLES ..uttttiiieeeiiittttieeeesssiistttessesssssssssessssssssissssssssessssisssssssessssssssssseesssssssssenes
FIGURE 76 SETTING UP OF SER_IN...
FIGURE 77 AND GATE FUNCTION

FIGURE 78 FIGURE SHOWING NOT GATE SIMULATION ..vvtetiieiiititrieeeeessiibrtieeseessssiabbsesesesssssssssssessssssssssssssssesssnnns
FIGURE 79 SIMULATION OF NAND GATE ...utttiiiiie ittt ettt e st et re e s e e s s s e bbb b et e s e s s s sabbbaseesessssabbaabaessessines
FIGURE 80 GP SHOWING TEST POINTS . ..ciiiiittttttieeeiiiiitreteesesssiisssssessesssiasssssssssssssissssssssessssisssssssssssssisssssseessesssnns
FIGURE 81 SIMULATION OF 2X2 ARRAY ...iiitttttiieeiiiiiittrieesesssiittstessssssiaisssssssssssssissssssssssssissssssessssssisissssesssessinn
FIGURE 82 MANUAL ANALYSIS OF 0XF1003 WHILE CIRCUIT WAS BEHAVING AS AN OR GATEcoocvivieeeieiiinns 104
FIGURE 83 MANUAL ANALYSIS OF 0XF10D9 WHILE CIRCUIT WAS BEHAVING ASAN OR GATEcoovvvvviiieeeee 105
FIGURE 84 SIMULATION OF OXFLO03oiiiitiiiiiee ettt e e e ettt e e e s s ettt s e e e s s sesab bt e e s e e s ssssabbaeaeeeessssasbaeteeesesssases 106
FIGURE 85 SIMULATION OF OXFLODY ...ttt ettt e s ettt et e e e s s e e bbb e e e e e s s s s bbb b et e e eessssssbbeaneesesssanes 106

vii

List of Tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.

the five blocks of configuration bits for POEtic hip [47]ccoovvviieiennee. 25
Table for the shift register SEQUENCEccccoveiviii i 41
Truth Table for NAND + NOT = AND Gatecccccevvrirnieniieie e 46
Table for the Input Select bits in MUX-A and MUX-Bc..ccccccevvennne 50
Known 20-Bit configuration for ‘AND’ using 20-bitS.............c.ccccevvninnnnn. 66
Known 20-Bit configuration for ‘OR’ using 20-bitsSits...............cccereenenn. 66
Sequence of INPULS FOr OX71020cccoiiiiiiiiiieeee e 82
alternative sequence of inputs for 0X71020cccccevveieiiene e 83
Table for Mux Behaviour ... 86
Truth Table showing introduction of Counter for 0x71020. 90
PIN SEIECTIONt nreas 97
Truth table for desired fUNCLION. ...t 97
Pin setup table... ... 98
Pin selection table fOr FLEX ..o 99
Pin Selection TOr MAX ... 99

viii

Definitions

AMBA protocol: The AMBA® protocol is an open standard, on-chip bus specification that
details a strategy for the interconnection and management of functional blocks that makes up a
System-on-Chip (SoC).

API: Application Program Interface is a set of routines, protocols, and tools for building
software applications. A good APl makes it easier to develop a program by providing all the
building blocks. A programmer puts the blocks together.

Cell: Here the Cell has been referred to as the building block of the generic cellular structure
required for the research. It consists of basic elements required to perform the evolvable

hardware functioning.

Cellular Automata: CA evolves in discrete steps with the next value of one site determined by
its previous value and that of the neighbour sites

D-type register: A shift register formation consisting of D-type Flip-flops is known as D-type
Register.

Flip Flop: A Flip-flop is a simple memory element constructed using logic circuits. It consists

of a latch circuit, which can store a state for given input combination.

Generic Platform: The term Generic Platform has been introduced in this research, for the
complete generic cellular structure formed by the building block ‘Cell’. A generic platform

usually consists of ‘Cell’ in the form of arrays of 1x2, 2x2 or more.

GATE: A gate may consist of one or more inputs and an output depending on the function of

its inputs.

Genotypes: The genotype is the specific genetic makeup (the specific genome) of an
individual, in the form of DNA. In biology, the genome of an organism is its hereditary

information and is encoded in the DNA.

Logical Element (LE): As the name suggest, they are the basic elements that are responsible
for logical functioning of programmable logical devices like PAL, FPGA etc.

http://www.webopedia.com/TERM/A/routine.html
http://www.webopedia.com/TERM/A/protocol.html
http://www.webopedia.com/TERM/A/application.html
http://www.webopedia.com/TERM/A/program.html
http://www.webopedia.com/TERM/A/API.html
http://www.webopedia.com/TERM/A/programmer.html

MPGA: MPGAs are not at all similar to the PLDs in architecture. These devices usually
consist of an array of transistors that are pre fabricated into the chips and are customizable by
the user into his logic. This customization is done by connecting the transistors with custom
wires. In addition, the customization is performed during chip fabrication by specifying the

metal interconnect; hence, this requires a lot of manufacturing cost and time.

Multiplexer: A Multiplexer (MUX) is a logic circuit formed together by the combination of a
NOT, two AND gates and an OR gate. It is a circuit that generates an output reflecting the
state of one of a number of data inputs, based on the value of one or more selection control
inputs. A multiplexer can have n number of data inputs with [log2n] select inputs, but only

have one output.
NAND GATE: A ‘NAND’ gate is the combination of an ‘AND’ followed by a ‘NOT” gate.

Shift Register: A flip-flop can store only one bit of information. When a number of flip-flops
are joined together with a common clock signal, it is known as a Register. A register that

provides the capability to shift the data bits is called a Shift-Register.

Phylogenetics: In biology, phylogenetics is the study of evolutionary relatedness among

various groups of organisms (e.g., species, populations).

PLA (Programmable Logic Array): It is a programmable device used to implement
combinational logic circuits. The PLA has a set of programmable AND planes, which link to a

set of programmable OR planes.

Uniform Crossover: It is a type of crossover in which, each gene of the offspring is randomly

selected from the parent gene. This type of crossover can only produce one offspring.

VHDL.: It is a hardware description language (HDL) used to design electronic systems at the

component, board and system level.

Abbreviations

ANN Artificial Neural Network

APl Application Program Interface

ATR Advanced Telecommunications Research Institute International

CAD Computer Aided Design

CHE Complete hardware evolution

CLB Configurable Logic Block

CPLD Complex Programmable Logical Device

DNA Deoxyribonucleic acid

DOD Department of Defence, USA

EC Evolutionary Computation

EHW Evolvable Hardware

EPLD Electrically Programmable Logic Device

ES Evolutionary Strategy

FPD Field-programmable device

GA Genetic Algorithm

GP Generic Platform, this thesis only

GP Genetic Programming

I0Bs Input/output blocks -- Sblocks only

LE Logical Element

Xi

LUT Lookup Table

MPGA Mask-Programmable Gate Arrays

MUX Multiplexer

NASA National Aeronautics and Space Administration, USA

PAL Programmable array logic

PLA Programmable Logic Array

PLD Programmable Logical Device

POE Phylogenesis Ontogenesis Epigenesis

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RPU Reconfigurable Processing Unit

SPLD Simple Programmable Logical Device

VHSIC Very High Speed Integrated Circuit

VHDL VHSIC Hardware Description Language

Xii

Companion CD

The Companion CD provided comes with all the white papers, websites and other electronic
sources referred while compiling this thesis. The CD also comes with the experiments done
while doing the research both in the Quartus Il and MPLab software as well.

Xiii

1 Introduction

Evolvable Hardware (EHW) is a scheme, inspired by biological evolution, for automatic
design of hardware systems. By exploring a large design search space, EHW may find
solutions for a problem that is unsolvable using traditional methods or it may find more

optimal solutions than those found using traditional methods [1].

Evolvable Hardware involves the same steps as biological evolution. In EHW a Genetic
Algorithm (GA) develops a range of circuits (similar to a biological population) in the form of
configuration bits (similar to chromosomes), which are downloaded one by one into hardware
such as field-programmable gate arrays (FPGA) for fast evolution. The evolved circuits are
then fed back to the GA and are compared to the desired circuit. This process keeps on
running until the desired circuit is achieved automatically by the system, from the generated

population.

A field-programmable gate array or FPGA is a semiconductor device containing up to
hundreds of thousands of gates, programmable logic components, switches and programmable
interconnects. Early evolvable hardware experiments were conducted in simulation and only
the elite chromosome was downloaded to the hardware. Now in modern times, most of the

evolution is being done on the hardware.

An Evolvable Hardware System mainly consists of two components, a Genetic Algorithm and

Hardware.

As mentioned earlier, in the early evolvable hardware experiments only elite chromosomes
were downloaded to the hardware, but now the focus has shifted to generating solutions on the

hardware.

This research is a continuation of the Project ‘Evolvable Hardware’ conducted at Manukau
Institute of Technology, Auckland [2]. That project was more oriented towards simulation.
The project team was successfully able to generate a simple NAND gate in simulation using a
GA. The future work proposed in the project was to get the NAND gate evaluated in the

hardware and this became the starting point of this research.

The field of EHW s relatively young but already researchers have not only had to move

through different technology platforms such as Xilinx 6200,400 and Virtex® series, but also

1

evolution friendly features (like, availability of bit stream configuration to the programmer)
have disappeared from FPGAs [3]. Due to the new designs of modern FPGAs the bit
configuration for an FPGA is not available anymore as it is considered as an intellectual
property and hence it is not possible to modify or use the configuration bits for the
development of EHW.

Due to this problem, a new approach of developing a ‘Generic Cellular Structure’ (a high level
structure for FPGAs) for EHW has been brought forward to use any available hardware in the

market for the development EHW. This research aims to develop such a platform.

Different kinds of hardware available in the market were reviewed for this research, and a
sound knowledge was developed of the capabilities of hardware currently available in the

global market.

The main requirement of the research was that a simple generic cellular structure with a small
chromosome size was to be designed and implemented into FPGA hardware. In addition, this
structure was to be verified for the purpose of intrinsic evolution of an electronic circuit. A
microcontroller was used for running the genetic algorithm and an FPGA was chosen as the
hardware for the generic platform. The research also composed of evolving two basic

electronic structures using the Generic Structure with a Genetic Algorithm.

The testing of the generic platform and the genetic algorithm were first to be done in
simulation and then they were to be loaded into the hardware for internal evolution as

evolvable hardware.

Another requirement for this research, was that the functionality of the evolvable hardware
was to be tested using two different Hardware Systems. The two circuits to be evolved were
an AND gate and an OR gate.

The circuits evolved by the evolvable hardware system were also to be manually crosschecked

for mistakes, to prove the functioning of the developed system.

A literature review including an explanation of evolvable hardware and the history of its
elements is given in chapter 2 and chapter 3 respectively. The experiment has been explained
in Chapter 4 and Chapter 5 with its solutions analysed in Chapter 6. The final chapter is
Chapter 7 where the conclusions of the experiment and future work have been described.

2

2 Evolvable Hardware Background

In 1992, a new field applying biological evolutionary techniques to hardware design and
synthesis was introduced, which gave a new approach for hardware design. The new approach
used evolutionary concepts to design innovative and robust circuits automatically. This design

scheme was called Evolvable Hardware (EHW) [4].

Higuchi and Furuya [4] first officially proposed the field of Evolvable Hardware at the 2nd
International Conference on the Simulation of Adaptive Behaviour. In the words of the
proposer, “Evolvable Hardware (EHW) is hardware which is built on software-reconfigurable
logic devices (e.g. PLD (Programmable Logic Device) and FPGA (Field Programmable Gate
Array)) and whose architecture can be reconfigured by using genetic learning to adapt to the
new environment” [5]. The basic idea of EHW is to regard the architecture bits of PLDs as

chromosomes of GAs and to find out better hardware structure by GAs, as shown in the figure

below:
architecture bit architecture bit —
1001101000001 10001000 —5:-" 1001101000001 1000128
‘ down load J down load
LD [
’0~—L IO_—L
11 '—|>°— TR TR 3 1 4%
evolve
i2 iz
evaluate in the environment evolved circuit

Figure 1 Evolvable Hardware [5]

EHW was considered a system capable of finding solutions to unsolvable problems. The
system could also find more optimal solutions than those found using traditional approaches
and hence lead to the design of robust systems that found application in the fields of defence,
space, automation and fault tolerant systems; this was displayed at the NASA/DOD 2005

conference [6].

After the introduction of the concept many international conferences such as the Genetic and
Evolutionary conference, the Congress on Evolutionary Computation, the International

3

Conference on Evolvable Systems and the NASA/DOD Workshop on Evolvable Hardware
were established and since then, new ideas for research in the EHW field have steadily

increased [7].
Many research experiments in the field have been carried out around the world including:

e The application to an electro-muscular control artificial arm [8],
e An evolutionary robot navigation system [9],
¢ Digital Filter design at gate level [10] and

e An Evolved Circuit of a Tone Discriminator [11].

EHW is a young research area and, many organisations around the world are currently
working for its further development in various fields of technology. The main research

organisations include:

e The Stanford University and NASA in the USA [12], intend to use the evolvable
hardware for space research.

e The University of Sussex in Great Britain is working for general research purposes in
the field of computers and electronics [13].

e The Electro Technical Laboratory and the ATR (Advanced Telecommunications
Research Institute International) in Japan intend to use of EHW in the field of
communications [14], and

e The California Institute of Technology in United States of America is one of the other
institutes involved in the field [15].

e Although the concept of EHW is relatively new, some EHW applications are already
being evaluated for their commercial value [16].

2.2 Definition of Evolvable Hardware

2.2.1 Natural Evolution

Evolvable hardware is a scheme, which was derived from the concept of natural evolution

based on Darwin’s theory of evolution.

Darwin [17] in his work “The Origin of Species by Means of Natural Selection” has explained
the process of natural selection of organisms based on the concept of ‘Survival of the Fittest’.
The concept of natural selection explains how the weak organisms having more chance of
elimination, eventually die and the fit organisms survive and reproduce. In this process of
natural selection, the fit individuals produce a new population with their genes crossing over

to form new individuals with chromosomes.

The chromosomes developed after crossover, have some different characteristics that may or
may not be better than the original chromosomes. This genetic change in a deoxyribonucleic
acid (DNA) sequence is known as mutation. These new individuals again go through the
process of selection in which the weak are eliminated, and the process carries on producing

new population of individuals with steadily improved characteristics.

This concept of natural selection has led to the development of humans and other biological
organisms. EHW was invented to design the hardware using the same concept of natural

selection.

EHW deals with the designing of analog or digital circuits using the genetic algorithms. This

technique acts like an engineer in the design task, and can be used in many different areas.

2.2.2 Hardware Evolution

The field of Evolvable Hardware is a fusion of several different fields. Figure 2 shows the
origination of EHW from the intersection of three sciences. As depicted the sciences of
biology, computer science and electronic engineering form the basis of fusion for the field of

Evolvable Hardware.

As observed by Bentley & Gordon [16], “For many years computer scientists have modelled
their learning algorithms on self-organising processes observed in nature. Perhaps the most
well known example is the artificial neural network (ANN)” [18]. The work on these learning

5

algorithms that is based on self-organising processes found in nature is known as bio-inspired

software.

Bio-inspired hardware is an established field of electronic engineering that utilises ideas from
nature to develop hardware. One recent example of this field is simulated annealing

algorithms, which are based on the physical phenomenon of annealing in cooling metals [16].

.].-!]nl_l.'

mspired
Computer [Software Biology
scence '
/Tvolvable™

\\ Hardware / / B

" mspired
" Hardware

AN Electronic Engineermg

Figure 2 Origination of EHW from the intersection of three sciences [16]

“Evolvable hardware applies techniques derived from Evolutionary Computation (EC), i.e.
Genetic Algorithms (GAs), Evolutionary Strategy (ES) and Genetic Programming (GP), to
hardware design and synthesis” [19]. These terms are defined below:

Evolutionary Computation (EC) is defined as the field that solves problems using search
algorithms inspired by biological evolution [20]. EC involves the same steps as occur in the

natural evolution [21].

A Genetic Algorithm (GA) is an algorithm that was adapted from the concept of genes in
natural evolution and contains steps like mutation, crossover, reproduction and selection. In
this algorithm a population consisting of a lot of circuits i.e. circuit representations, is
randomly generated .The behaviour of each circuit is evaluated and the best circuits are

combined to generate a new and better population of circuits.

Genetic Programming (GP) is a method for automatically generating computer programs using

the process of natural selection [22]. It uses a genetic algorithm to search a computer program

that is nearly most favourable for performing a special task. Even though it is not the first
method, but it is so far considered one of the most successful methods of automatic

programming [23].

Evolutionary Strategy (ES) is a process that can continuously reproduce new generations, and
does trial and selection on the newly generated population. Each new generation is an
improvement on the one that went before, thus resulting in systems that are more efficient and
more organised than their primitive systems [24]. ES is an important algorithm of GA [25] .It
primarily uses real-vector coding, with its search operators being mutation, recombination, and
environmental selection. In ES, diversity is not essential because of a greater reliance on
mutation, whereas a GA relies more on diversity as crossing over a homogenous population

does not yield new solutions.

According to Haddow and Guner [26], Evolvable hardware (EHW) can also be defined as the
application of genetic algorithms (GA) and Genetic Programming (GP) to electronic circuits

and devices.

Field Programmable Gate Arrays or FPGAs are the electronic devices that are commonly as
the platforms for EHW. FPGA are integrated circuit arrays containing of electronic logic
hardware that provide designers with reconfigurable logic [27]. It usually contains thousands
of programmable elements and interconnects. The interconnects take up a lot of FPGA real
estate, resulting in a chip with low gate density compared to other technologies. The
programmable logic components can be programmed to duplicate the functionality of basic
logic gates (such as AND, OR, XOR, NOT) or more complex combinatorial functions such as

decoders or simple math functions.

In most FPGASs, these programmable logic components (or logic blocks, in FPGA
terminology) also include memory elements, which may be simple flip-flops or complex

blocks of memories.

FPGASs have their historical roots in the complex programmable logic devices (CPLDs) of the
early 1970s to mid 1980s. CPLDs and FPGAs include a relatively large number of
programmable logic elements. CPLD logic gate densities range from the equivalent of several
thousand to tens of thousands of logic gates, while FPGAs typically range from tens of

thousands to several million.

In this research, a field-programmable gate array is used as a platform for the technique of

EHW and a Genetic Algorithm is used to provide a required design.

The general procedure of the evolvable system is shown below in Figure 3.

Chromosome Value

Decode Execute/
Ne— — ————<___ Simulate

.

Circuit Behavioral ™
Description (Data Set) _/

.

< Circuit +

Figure 3 Operation of an Evolvable System [1]

2.3 EHW -Types of Evolution

Early evolvable hardware experiments were conducted by simulation and the best
chromosome was downloaded to the hardware for final testing. With the invention of FPGAS,
it is now possible for the implementation of solutions to be fast enough to evaluate a real
hardware circuit within an evolutionary computation framework; this is termed as an Intrinsic
Evolvable Hardware [19].

Hugo de Garis [28] states there are three main methods for achieving evolvable hardware:
Extrinsic, Intrinsic and Complete Hardware (on-chip) Evolution. These are shown below in

figure 4.

The first method known as Extrinsic EHW is the evolution of electronic circuits through
simulation. In this type of evolution, the entire process of evolution including fitness
evaluation of the individuals is implemented in software [26] and, at the end of each

generation, the best individual is downloaded to the electronic device for final testing.

The second method, Intrinsic EHW, is when each genotype is assessed on the device by

downloading the new configuration and testing the device directly.

4

Evolution Provess
. Evolution
process
Indvidus Simulat Finess
Yalues l
L

[-——]
-] =| i
I- = — Individual under Individual f,i,';?:::
evaluation
A: Extrinsic I
Evolution Process V:;s;rs i
- r A
Test
\ 4 Indis Fitness
Vectors ndividual i. P FPGA-Device
- Al Evolving Individual under
FPGA-Device sircuit evaluation
Individual under o
evaluation B: Intrinsic

C: Complete Hardware Evolution

Figure 4 Three types of evolution [26]

The third type and less used form of evolution is an on-chip strategy, also termed complete
hardware evolution (CHE) [29, 30]. In this, the complete evolution process is located on the
same chip as the evolving circuit. Another similar approach is the use of an on-board

processor running the evolutionary algorithm [31].

2.4 Genetic Algorithms

A genetic algorithm (GA) is an algorithm that is capable of finding a solution to a problem by
developing a pool of random solutions then working its way towards the an optimum or near

optimum solution [32].

The genetic algorithm replicates the same concept of natural selection in computing. In this
algorithm a set of circuit representations are first randomly generated, this is the initial
population. The behaviour of each circuit is then evaluated (as per the defined fitness function
in the genetic algorithm) and the best circuits are combined to generate a new array of circuits

that hopefully includes a better circuit solution [1] .

Each individual circuit description is known as a genotype. Genotype describes the genetic
constitution of an individual, that is the specific allelic (an allele i