

A Generic Platform for the Evolution of Hardware

A thesis submitted to Auckland University of Technology in partial fulfilment of the

requirements of the Post Graduate Diploma in Engineering Research

School of Engineering

Auckland University of Technology

By

Abhishek Bedi

Under the supervision of

Dr. John Collins

i

Acknowledgements

This dissertation is a part of the Post Graduate Diploma at Auckland University of Technology

New Zealand.

This piece of work is a result of hard work, patience, sacrifice and unconditional support of

many people. I wish to thank everyone who has supported and helped me in completing this

research.

Firstly, I wish express my gratitude to Snjezana Soltic for inspiring me to carry out this work.

I am thankful to my supervisors Dr. John Collins and Mr. Robert Murphy for keeping

patience, being a motivating force and taking care of me during the process. I would like to

thank them for the guidance they have given me throughout the period.

I express my honest thanks to the AUT library for their overall support for the entire period of

the study at AUT.

At the end, I am grateful to my parents and family members, specially my partner for her

extreme sacrifices and providing moral support.

ii

Statement of Originality

‗I hereby declare that this submission is my own work and that , to the best of my knowledge

and belief, it contains no material previously published or written by another person nor

material which to a substantial extent has been accepted for qualification of any other degree

or diploma of a university or other institution of higher learning, except where due

acknowledgement is made in the acknowledgements.‘

Abhishek Bedi

iii

Abstract

Evolvable Hardware is a technique derived from evolutionary computation applied to a

hardware design. The term evolutionary computation involves similar steps as involved in the

human evolution. It has been given names in accordance with the electronic technology like,

Genetic Algorithm (GA), Evolutionary Strategy (ES) and Genetic Programming (GP). In

evolutionary computing, a configured bit is considered as a human chromosome for a genetic

algorithm, which has to be downloaded into hardware.

Early evolvable hardware experiments were conducted in simulation and the only elite

chromosome was downloaded to the hardware, which was labelled as Extrinsic Hardware.

With the invent of Field Programmable Gate Arrays (FPGAs) and Reconfigurable Processing

Units (RPUs), it is now possible for the implementation solutions to be fast enough to evaluate

a real hardware circuit within an evolutionary computation framework; this is called an

Intrinsic Evolvable Hardware.

This research has been taken in continuation with project 'Evolvable Hardware' done at

Manukau Institute of Technology (MIT). The project was able to manually evolve two simple

electronic circuits of NAND and NOR gates in simulation. In relation to the project done at

MIT this research focuses on the following:

To automate the simulation by using In Circuit Debugging Emulators (IDEs), and

To develop a strategy of configuring hardware like an FPGA without the use of their company

supplied in circuit debugging emulators, so that the evolution of an intrinsic evolvable

hardware could be controlled, and is hardware independent.

As mentioned, the research conducted here was able to develop an evolvable hardware

friendly Generic Structure which could be used for the development of evolvable hardware.

The structure developed was hardware independent and was able to run on various FPGA

hardware‘s for the purpose of intrinsic evolution. The structure developed used few

configuration bits as compared to current evolvable hardware designs.

iv

Table of Contents

Acknowledgements ... i
Statement of Originality .. ii

Abstract...... ... iii
Table of Contents .. iv
List of Figures ... vi
List of Tables ... viii
Definitions... .. ix

Abbreviations .. xi

Companion CD ... xiii
1 Introduction ... 1

2 Evolvable Hardware .. 3
2.1 Background .. 3
2.2 Definition of Evolvable Hardware .. 5
2.2.1 Natural Evolution .. 5
2.2.2 Hardware Evolution ... 5

2.3 EHW – Types of Evolution ... 8
2.4 Genetic Algorithms ... 9

2.4.1 Genetic Algorithm Terminology ... 10
2.4.2 A Simple Genetic Algorithm[36] .. 12

3 Hardware Platforms .. 13
3.1 The History and Development of FPGA ... 14

3.2 General Architecture of an FPGA ... 16
3.3 Xilinx XC6200 FPGA ... 17

3.3.1 Logical and Physical Organisation .. 18
3.3.2 Basic Cell ... 19
3.3.3 The Configurable Logic Block Structure .. 21

3.4 EHW friendly Structures ... 22
3.4.1 POEtic Chip ... 22

3.4.2 EHW Chip ... 26
3.5 The Virtual Sblock FPGA ... 30
3.5.1 Architecture ... 30

3.5.2 Configuration ... 32
3.5.3 Configuration Data .. 32
3.5.4 Feedback of Information ... 32
3.6 Analysis of These Designs .. 32

4 Generic Platform ... 34
4.1 Introduction ... 34
4.2 Experiment- An Introduction .. 35
4.3 The Cell Design ... 36
4.3.1 NAND Gate ... 36

4.3.2 Multiplexer (MUX) ... 37
4.3.3 Shift Register ... 38

4.4 The Complete Cell Structure ... 38
4.5 Cell Operation ... 39
4.5.1 The Input Multiplexers .. 39
4.5.2 Shift Register ... 40
4.5.3 The Output Section .. 42

v

4.6 The Generic Platform .. 43
4.6.1 1x2 Cell Generic Platform for Test ... 44
4.6.2 Generic Platform for 2x2 Cell array .. 46
4.7 Development in CAD Software ... 48
4.7.1 Section D: Testing in Quartus-II

®
 ... 49

5 The Genetic Algorithm Code .. 55
5.1 Introduction ... 55
5.2 Parameters of GA .. 57
5.2.1 Fitness Function ... 57
5.2.2 Test Function: .. 58

5.2.3 Selection Function ... 58

5.3 Crossover Function: ... 59
5.4 Mutation Function ... 60

5.5 Output of the GA ... 61

6 Hardware Testing .. 62
6.1 Introduction ... 62
6.2 Hardware Tests .. 63
6.2.1 1x1 Array Test ... 63

6.2.2 1x2 array Test .. 63

6.2.3 2x2 Array Test ... 66

7 Genetic Algorithm Results .. 67
7.1 Initial Results of Evolution .. 67

7.2 Analysis of the Initial Results .. 73

7.3 The Solution for Oscillation Detection .. 74
7.3.1 Observations of the Oscillation Testing .. 76
7.4 Evolution of OR Gate .. 77

7.5 Analysis of the OR Gate Results ... 82
7.6 Bistable Detection ... 85

7.6.1 Explanation of the Algorithm: ... 87

8 Conclusion and Future Work ... 92
8.1 Conclusion ... 92

8.2 Future Work ... 93

APPENDICES .. 94
APPENDIX I : Procedure for Running Quartus Experiment ... 94

APPENDIX II: Testing done before running experiment ... 99
APPENDIX III: Results achieved during experimentation .. 103

REFERENCES ... 107

vi

List of Figures

FIGURE 1 EVOLVABLE HARDWARE [5] ... 3
FIGURE 2 ORIGINATION OF EHW FROM THE INTERSECTION OF THREE SCIENCES [16] .. 6
FIGURE 3 OPERATION OF AN EVOLVABLE SYSTEM [1] ... 8
FIGURE 4 THREE TYPES OF EVOLUTION [26] ... 9
FIGURE 5 A SIMPLE EXAMPLE OF GENETIC ALGORITHM [2] AND [33] ... 10
FIGURE 6 ROULETTE WHEEL SELECTION [35] .. 11
FIGURE 7 CROSSOVER AND MUTATION [1]... 12
FIGURE 8 STRUCTURE OF A PAL [43] ... 15
FIGURE 9 A MACROCELL OF MAX 7000 [44] .. 15
FIGURE 10 STRUCTURE OF AN FPGA [45] .. 16
FIGURE 11 NEAREST NEIGHBOUR INTERCONNECT ARRAY STRUCTURE [48] ... 18
FIGURE 12 XC6200 STRUCTURE [48] ... 19
FIGURE 13 XC6200 BASIC CELL [48]... 20
FIGURE 14 THE CONFIGURABLE LOGIC BLOCK / THE FUNCTION UNIT [48] ... 21
FIGURE 15 THE POETIC CHIP SHOWING THE MICROPROCESSOR, AND THE RECONFIGURABLE ARRAY [47]. 23
FIGURE 16 POETIC CHIP -- SWITCH BOX [47] .. 24
FIGURE 17 BLOCK DIAGRAM OF EHW CHIP [55] ... 26
FIGURE 18 GA UNIT BLOCK DIAGRAM [55] .. 27
FIGURE 19 BLOCK DIAGRAM OF ONE PLA [55] .. 28
FIGURE 20 BLOCK DIAGRAM OF THE COMPLETE EHW CHIPBOARD [55] .. 29
FIGURE 21 SBLOCK – ROUTING AND LOGIC/MEMORY BLOCK [60] .. 31
FIGURE 22 SBLOCK LOGIC [3] .. 31
FIGURE 23 COMBINATIONAL LOGIC WITH NAND GATE ... 37
FIGURE 24 2-TO-1 MUX AND TRUTH TABLE [61] ... 37
FIGURE 25 A SHIFT REGISTER [62] .. 38
FIGURE 26 THE CELL ... 38
FIGURE 27 INPUT SECTION OF THE ‗CELL‘ ... 39
FIGURE 28 THE FUNCTIONAL SECTION ... 40
FIGURE 29 OUTPUT SECTION .. 42
FIGURE 30 SHIFT REGISTER CONNECTION BETWEEN CELLS .. 44
FIGURE 31 THE GENERIC PLATFORM FOR 1X2 CELLS ... 44
FIGURE 32 NAND + NOT GATE DIAGRAM ... 45
FIGURE 33 GP 2X2 STRUCTURE; SHOWING THE TWO SECTIONS .. 47
FIGURE 34 FLOW CHART FOR CAD SOFTWARE [63] ... 49
FIGURE 35 BEHAVIOUR OF CELL AS A NAND GATE AND THE SHIFT REGISTER VALUES EXPLAINED 50
FIGURE 36 THE CIRCUIT DIAGRAM WITH OTHER PINS GROUNDED, FUNCTIONAL SIMULATION SHOWN IN APPENDIX51
FIGURE 37 CELL AS A ROUTER WAVEFORM .. 52
FIGURE 38 BIT CONFIGURATION EXPLANATION FOR 1X1 ARRAY .. 52
FIGURE 39 FUNCTIONAL SIMULATION FOR 1X2 ARRAY .. 53
FIGURE 40 BIT CONFIGURATION EXPLANATION FOR 2X2-ARRAY FUNCTIONAL SIMULATION IN APPENDIX 53
FIGURE 41 FUNCTIONAL SIMULATION FOR 2X2 ARRAY .. 54
FIGURE 42 DIAGRAM SHOWING THE VARIOUS STEPS OF GENETIC ALGORITHM .. 56
FIGURE 43 CODE FOR FITNESS .. 57
FIGURE 44 CODE FOR TEST FUNCTION SHOWING ONLY THE FIRST TEST ... 58
FIGURE 45 CODE FOR SELECTION OF POPULATION USING SORTING .. 59
FIGURE 46 SINGLE POINT CROSSOVER [64] .. 59
FIGURE 47 LINES OF CODE SHOWING CROSSOVER .. 60
FIGURE 48 CODE FOR MUTATION ... 60
FIGURE 49 JPEG PHOTO OF THE EHW SYSTEM SHOWING PORTS AND DEVELOPMENT BOARDS 62
FIGURE 50 INTERPRETATION OF RESULTS ACHIEVED FOR NAND GATE ... 63
FIGURE 51 KNOWN 10-BIT CONFIGURATION FOR AND GATE, USING 10-BITS. ... 64
FIGURE 52 NOT GATE 10- BIT KNOWN CONFIGURATION .. 64
FIGURE 53 BEHAVIOUR OF 1X2 STRUCTURE AS A NOT GATE WITH 10- BIT KNOWN CONFIGURATION 65
FIGURE 54 ROUTER 10- BIT KNOWN CONFIGURATION .. 65
FIGURE 55 ROUTER GATE 10- BIT KNOWN CONFIGURATION ... 66
FIGURE 56 RESULTS EVOLVED AFTER THE FIRST RUN.. 67

vii

FIGURE 57 MANUAL ANALYSIS WITH EXPECTED WORKING AND SIMULATION RESULT QUARTUS II 68
FIGURE 58 MANUAL ANALYSIS WITH EXPECTED WORKING AND SIMULATION RESULT FOR 0X35339 70
FIGURE 59 MANUAL ANALYSIS WITH EXPECTED WORKING AND SIMULATION RESULT IN QUARTUS II 72
FIGURE 60 OSCILLATION DETECTION CIRCUIT ON A CELL ... 74
FIGURE 61 MODIFIED GA CODE FOR OSCILLATION DETECTION .. 75
FIGURE 62 GP DESIGN WITH OSCILLATION DETECTION .. 76
FIGURE 63 RESULTS EVOLVED AFTER THE INTRODUCTION OF OSCILLATION CHECKER CIRCUIT 77
FIGURE 64 MANUAL ANALYSIS AS WITH EXPECTED WORKING AND SIMULATION RESULT 78
FIGURE 65 MANUAL ANALYSIS WITH EXPECTED WORKING AND SIMULATION RESULT ... 80
FIGURE 66 MANUAL ANALYSIS WITH EXPECTED WORKING .. 81
FIGURE 67 GATE STRUCTURE EMPHASISING FEEDBACK FOR 0X 71020 .. 83
FIGURE 68 GATE STRUCTURE EMPHASISING ON FEEDBACK IN 0X74301 ... 84
FIGURE 69 BISTABLE DETECTION CIRCUIT ON A CELL WITH A MUX .. 85
FIGURE 70 ALGORITHM FOR DETERMINING CLOCK CYCLES ... 87
FIGURE 71 GP WITH COUNTER ... 88
FIGURE 72 CONTROL CIRCUIT .. 88
FIGURE 73 WORKING OF CONTROL CIRCUIT IN THE GP WITH THE INTRODUCTION OF FLIP-FLOPS E.G 0X71020. ... 89
FIGURE 74 FLOW CHART DEPICTING THE STEPS ABOVE .. 91
FIGURE 75 SELECTION OF CLOCK CYCLES .. 95
FIGURE 76 SETTING UP OF SER_IN .. 96
FIGURE 77 AND GATE FUNCTION ... 96
FIGURE 78 FIGURE SHOWING NOT GATE SIMULATION ... 100
FIGURE 79 SIMULATION OF NAND GATE ... 100
FIGURE 80 GP SHOWING TEST POINTS .. 101
FIGURE 81 SIMULATION OF 2X2 ARRAY ... 102
FIGURE 82 MANUAL ANALYSIS OF 0XF1003 WHILE CIRCUIT WAS BEHAVING AS AN OR GATE 104
FIGURE 83 MANUAL ANALYSIS OF 0XF10D9 WHILE CIRCUIT WAS BEHAVING AS AN OR GATE 105
FIGURE 84 SIMULATION OF 0XF1003 ... 106
FIGURE 85 SIMULATION OF 0XF10D9 .. 106

viii

List of Tables

Table 1. the five blocks of configuration bits for POEtic hip [47] 25
Table 2. Table for the shift register sequence .. 41
Table 3. Truth Table for NAND + NOT = AND Gate .. 46
Table 4. Table for the Input Select bits in MUX-A and MUX-B 50

Table 5. Known 20-Bit configuration for ‘AND’ using 20-bits 66
Table 6. Known 20-Bit configuration for ‘OR’ using 20-bitsits 66
Table 7. Sequence of inputs for 0x71020 .. 82
Table 8. alternative sequence of inputs for 0x71020 ... 83

Table 9. Table for Mux behaviour .. 86
Table 10. Truth Table showing introduction of Counter for 0x71020. 90
Table 11. Pin selection .. 97
Table 12. Truth table for desired function. .. 97

Table 13. Pin setup table .. 98
Table 14. Pin selection table for FLEX .. 99
Table 15. Pin selection for MAX ... 99

ix

Definitions

AMBA protocol: The AMBA® protocol is an open standard, on-chip bus specification that

details a strategy for the interconnection and management of functional blocks that makes up a

System-on-Chip (SoC).

API: Application Program Interface is a set of routines, protocols, and tools for building

software applications. A good API makes it easier to develop a program by providing all the

building blocks. A programmer puts the blocks together.

Cell: Here the Cell has been referred to as the building block of the generic cellular structure

required for the research. It consists of basic elements required to perform the evolvable

hardware functioning.

Cellular Automata: CA evolves in discrete steps with the next value of one site determined by

its previous value and that of the neighbour sites

D-type register: A shift register formation consisting of D-type Flip-flops is known as D-type

Register.

Flip Flop: A Flip-flop is a simple memory element constructed using logic circuits. It consists

of a latch circuit, which can store a state for given input combination.

Generic Platform: The term Generic Platform has been introduced in this research, for the

complete generic cellular structure formed by the building block ‗Cell‘. A generic platform

usually consists of ‗Cell‘ in the form of arrays of 1x2, 2x2 or more.

GATE: A gate may consist of one or more inputs and an output depending on the function of

its inputs.

Genotypes: The genotype is the specific genetic makeup (the specific genome) of an

individual, in the form of DNA. In biology, the genome of an organism is its hereditary

information and is encoded in the DNA.

Logical Element (LE): As the name suggest, they are the basic elements that are responsible

for logical functioning of programmable logical devices like PAL, FPGA etc.

http://www.webopedia.com/TERM/A/routine.html
http://www.webopedia.com/TERM/A/protocol.html
http://www.webopedia.com/TERM/A/application.html
http://www.webopedia.com/TERM/A/program.html
http://www.webopedia.com/TERM/A/API.html
http://www.webopedia.com/TERM/A/programmer.html

x

MPGA: MPGAs are not at all similar to the PLDs in architecture. These devices usually

consist of an array of transistors that are pre fabricated into the chips and are customizable by

the user into his logic. This customization is done by connecting the transistors with custom

wires. In addition, the customization is performed during chip fabrication by specifying the

metal interconnect; hence, this requires a lot of manufacturing cost and time.

Multiplexer: A Multiplexer (MUX) is a logic circuit formed together by the combination of a

NOT, two AND gates and an OR gate. It is a circuit that generates an output reflecting the

state of one of a number of data inputs, based on the value of one or more selection control

inputs. A multiplexer can have n number of data inputs with [log2n] select inputs, but only

have one output.

NAND GATE: A ‗NAND‘ gate is the combination of an ‗AND‘ followed by a ‗NOT‘ gate.

Shift Register: A flip-flop can store only one bit of information. When a number of flip-flops

are joined together with a common clock signal, it is known as a Register. A register that

provides the capability to shift the data bits is called a Shift-Register.

Phylogenetics: In biology, phylogenetics is the study of evolutionary relatedness among

various groups of organisms (e.g., species, populations).

PLA (Programmable Logic Array): It is a programmable device used to implement

combinational logic circuits. The PLA has a set of programmable AND planes, which link to a

set of programmable OR planes.

Uniform Crossover: It is a type of crossover in which, each gene of the offspring is randomly

selected from the parent gene. This type of crossover can only produce one offspring.

VHDL: It is a hardware description language (HDL) used to design electronic systems at the

component, board and system level.

xi

Abbreviations

ANN Artificial Neural Network

API Application Program Interface

ATR Advanced Telecommunications Research Institute International

CAD Computer Aided Design

CHE Complete hardware evolution

CLB Configurable Logic Block

CPLD Complex Programmable Logical Device

DNA Deoxyribonucleic acid

DOD Department of Defence, USA

EC Evolutionary Computation

EHW Evolvable Hardware

EPLD Electrically Programmable Logic Device

ES Evolutionary Strategy

FPD Field-programmable device

GA Genetic Algorithm

GP Generic Platform, this thesis only

GP Genetic Programming

IOBs Input/output blocks -- Sblocks only

LE Logical Element

xii

LUT Lookup Table

MPGA Mask-Programmable Gate Arrays

MUX Multiplexer

NASA National Aeronautics and Space Administration, USA

PAL Programmable array logic

PLA Programmable Logic Array

PLD Programmable Logical Device

POE Phylogenesis Ontogenesis Epigenesis

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RPU Reconfigurable Processing Unit

SPLD Simple Programmable Logical Device

VHSIC Very High Speed Integrated Circuit

VHDL VHSIC Hardware Description Language

xiii

Companion CD

The Companion CD provided comes with all the white papers, websites and other electronic

sources referred while compiling this thesis. The CD also comes with the experiments done

while doing the research both in the Quartus II and MPLab software as well.

1

1 Introduction

Evolvable Hardware (EHW) is a scheme, inspired by biological evolution, for automatic

design of hardware systems. By exploring a large design search space, EHW may find

solutions for a problem that is unsolvable using traditional methods or it may find more

optimal solutions than those found using traditional methods [1].

Evolvable Hardware involves the same steps as biological evolution. In EHW a Genetic

Algorithm (GA) develops a range of circuits (similar to a biological population) in the form of

configuration bits (similar to chromosomes), which are downloaded one by one into hardware

such as field-programmable gate arrays (FPGA) for fast evolution. The evolved circuits are

then fed back to the GA and are compared to the desired circuit. This process keeps on

running until the desired circuit is achieved automatically by the system, from the generated

population.

A field-programmable gate array or FPGA is a semiconductor device containing up to

hundreds of thousands of gates, programmable logic components, switches and programmable

interconnects. Early evolvable hardware experiments were conducted in simulation and only

the elite chromosome was downloaded to the hardware. Now in modern times, most of the

evolution is being done on the hardware.

An Evolvable Hardware System mainly consists of two components, a Genetic Algorithm and

Hardware.

As mentioned earlier, in the early evolvable hardware experiments only elite chromosomes

were downloaded to the hardware, but now the focus has shifted to generating solutions on the

hardware.

This research is a continuation of the Project ‗Evolvable Hardware‘ conducted at Manukau

Institute of Technology, Auckland [2]. That project was more oriented towards simulation.

The project team was successfully able to generate a simple NAND gate in simulation using a

GA. The future work proposed in the project was to get the NAND gate evaluated in the

hardware and this became the starting point of this research.

The field of EHW is relatively young but already researchers have not only had to move

through different technology platforms such as Xilinx 6200,400 and Virtex
®
 series, but also

2

evolution friendly features (like, availability of bit stream configuration to the programmer)

have disappeared from FPGAs [3]. Due to the new designs of modern FPGAs the bit

configuration for an FPGA is not available anymore as it is considered as an intellectual

property and hence it is not possible to modify or use the configuration bits for the

development of EHW.

Due to this problem, a new approach of developing a ‗Generic Cellular Structure‘ (a high level

structure for FPGAs) for EHW has been brought forward to use any available hardware in the

market for the development EHW. This research aims to develop such a platform.

Different kinds of hardware available in the market were reviewed for this research, and a

sound knowledge was developed of the capabilities of hardware currently available in the

global market.

The main requirement of the research was that a simple generic cellular structure with a small

chromosome size was to be designed and implemented into FPGA hardware. In addition, this

structure was to be verified for the purpose of intrinsic evolution of an electronic circuit. A

microcontroller was used for running the genetic algorithm and an FPGA was chosen as the

hardware for the generic platform. The research also composed of evolving two basic

electronic structures using the Generic Structure with a Genetic Algorithm.

The testing of the generic platform and the genetic algorithm were first to be done in

simulation and then they were to be loaded into the hardware for internal evolution as

evolvable hardware.

Another requirement for this research, was that the functionality of the evolvable hardware

was to be tested using two different Hardware Systems. The two circuits to be evolved were

an AND gate and an OR gate.

The circuits evolved by the evolvable hardware system were also to be manually crosschecked

for mistakes, to prove the functioning of the developed system.

A literature review including an explanation of evolvable hardware and the history of its

elements is given in chapter 2 and chapter 3 respectively. The experiment has been explained

in Chapter 4 and Chapter 5 with its solutions analysed in Chapter 6. The final chapter is

Chapter 7 where the conclusions of the experiment and future work have been described.

3

2 Evolvable Hardware Background

In 1992, a new field applying biological evolutionary techniques to hardware design and

synthesis was introduced, which gave a new approach for hardware design. The new approach

used evolutionary concepts to design innovative and robust circuits automatically. This design

scheme was called Evolvable Hardware (EHW) [4].

Higuchi and Furuya [4] first officially proposed the field of Evolvable Hardware at the 2nd

International Conference on the Simulation of Adaptive Behaviour. In the words of the

proposer, ―Evolvable Hardware (EHW) is hardware which is built on software-reconfigurable

logic devices (e.g. PLD (Programmable Logic Device) and FPGA (Field Programmable Gate

Array)) and whose architecture can be reconfigured by using genetic learning to adapt to the

new environment‖ [5]. The basic idea of EHW is to regard the architecture bits of PLDs as

chromosomes of GAs and to find out better hardware structure by GAs, as shown in the figure

below:

Figure 1 Evolvable Hardware [5]

EHW was considered a system capable of finding solutions to unsolvable problems. The

system could also find more optimal solutions than those found using traditional approaches

and hence lead to the design of robust systems that found application in the fields of defence,

space, automation and fault tolerant systems; this was displayed at the NASA/DOD 2005

conference [6].

After the introduction of the concept many international conferences such as the Genetic and

Evolutionary conference, the Congress on Evolutionary Computation, the International

4

Conference on Evolvable Systems and the NASA/DOD Workshop on Evolvable Hardware

were established and since then, new ideas for research in the EHW field have steadily

increased [7].

Many research experiments in the field have been carried out around the world including:

 The application to an electro-muscular control artificial arm [8],

 An evolutionary robot navigation system [9],

 Digital Filter design at gate level [10] and

 An Evolved Circuit of a Tone Discriminator [11].

EHW is a young research area and, many organisations around the world are currently

working for its further development in various fields of technology. The main research

organisations include:

 The Stanford University and NASA in the USA [12], intend to use the evolvable

hardware for space research.

 The University of Sussex in Great Britain is working for general research purposes in

the field of computers and electronics [13].

 The Electro Technical Laboratory and the ATR (Advanced Telecommunications

Research Institute International) in Japan intend to use of EHW in the field of

communications [14], and

 The California Institute of Technology in United States of America is one of the other

institutes involved in the field [15].

 Although the concept of EHW is relatively new, some EHW applications are already

being evaluated for their commercial value [16].

5

2.2 Definition of Evolvable Hardware

2.2.1 Natural Evolution

Evolvable hardware is a scheme, which was derived from the concept of natural evolution

based on Darwin‘s theory of evolution.

Darwin [17] in his work ―The Origin of Species by Means of Natural Selection‖ has explained

the process of natural selection of organisms based on the concept of ‗Survival of the Fittest‘.

The concept of natural selection explains how the weak organisms having more chance of

elimination, eventually die and the fit organisms survive and reproduce. In this process of

natural selection, the fit individuals produce a new population with their genes crossing over

to form new individuals with chromosomes.

The chromosomes developed after crossover, have some different characteristics that may or

may not be better than the original chromosomes. This genetic change in a deoxyribonucleic

acid (DNA) sequence is known as mutation. These new individuals again go through the

process of selection in which the weak are eliminated, and the process carries on producing

new population of individuals with steadily improved characteristics.

This concept of natural selection has led to the development of humans and other biological

organisms. EHW was invented to design the hardware using the same concept of natural

selection.

 EHW deals with the designing of analog or digital circuits using the genetic algorithms. This

technique acts like an engineer in the design task, and can be used in many different areas.

2.2.2 Hardware Evolution

The field of Evolvable Hardware is a fusion of several different fields. Figure 2 shows the

origination of EHW from the intersection of three sciences. As depicted the sciences of

biology, computer science and electronic engineering form the basis of fusion for the field of

Evolvable Hardware.

As observed by Bentley & Gordon [16], ―For many years computer scientists have modelled

their learning algorithms on self-organising processes observed in nature. Perhaps the most

well known example is the artificial neural network (ANN)‖ [18]. The work on these learning

6

algorithms that is based on self-organising processes found in nature is known as bio-inspired

software.

Bio-inspired hardware is an established field of electronic engineering that utilises ideas from

nature to develop hardware. One recent example of this field is simulated annealing

algorithms, which are based on the physical phenomenon of annealing in cooling metals [16].

Figure 2 Origination of EHW from the intersection of three sciences [16]

―Evolvable hardware applies techniques derived from Evolutionary Computation (EC), i.e.

Genetic Algorithms (GAs), Evolutionary Strategy (ES) and Genetic Programming (GP), to

hardware design and synthesis‖ [19]. These terms are defined below:

Evolutionary Computation (EC) is defined as the field that solves problems using search

algorithms inspired by biological evolution [20]. EC involves the same steps as occur in the

natural evolution [21].

A Genetic Algorithm (GA) is an algorithm that was adapted from the concept of genes in

natural evolution and contains steps like mutation, crossover, reproduction and selection. In

this algorithm a population consisting of a lot of circuits i.e. circuit representations, is

randomly generated .The behaviour of each circuit is evaluated and the best circuits are

combined to generate a new and better population of circuits.

Genetic Programming (GP) is a method for automatically generating computer programs using

the process of natural selection [22]. It uses a genetic algorithm to search a computer program

7

that is nearly most favourable for performing a special task. Even though it is not the first

method, but it is so far considered one of the most successful methods of automatic

programming [23].

Evolutionary Strategy (ES) is a process that can continuously reproduce new generations, and

does trial and selection on the newly generated population. Each new generation is an

improvement on the one that went before, thus resulting in systems that are more efficient and

more organised than their primitive systems [24]. ES is an important algorithm of GA [25] .It

primarily uses real-vector coding, with its search operators being mutation, recombination, and

environmental selection. In ES, diversity is not essential because of a greater reliance on

mutation, whereas a GA relies more on diversity as crossing over a homogenous population

does not yield new solutions.

According to Haddow and Guner [26], Evolvable hardware (EHW) can also be defined as the

application of genetic algorithms (GA) and Genetic Programming (GP) to electronic circuits

and devices.

Field Programmable Gate Arrays or FPGAs are the electronic devices that are commonly as

the platforms for EHW. FPGA are integrated circuit arrays containing of electronic logic

hardware that provide designers with reconfigurable logic [27]. It usually contains thousands

of programmable elements and interconnects. The interconnects take up a lot of FPGA real

estate, resulting in a chip with low gate density compared to other technologies. The

programmable logic components can be programmed to duplicate the functionality of basic

logic gates (such as AND, OR, XOR, NOT) or more complex combinatorial functions such as

decoders or simple math functions.

In most FPGAs, these programmable logic components (or logic blocks, in FPGA

terminology) also include memory elements, which may be simple flip-flops or complex

blocks of memories.

FPGAs have their historical roots in the complex programmable logic devices (CPLDs) of the

early 1970s to mid 1980s. CPLDs and FPGAs include a relatively large number of

programmable logic elements. CPLD logic gate densities range from the equivalent of several

thousand to tens of thousands of logic gates, while FPGAs typically range from tens of

thousands to several million.

8

In this research, a field-programmable gate array is used as a platform for the technique of

EHW and a Genetic Algorithm is used to provide a required design.

The general procedure of the evolvable system is shown below in Figure 3.

Figure 3 Operation of an Evolvable System [1]

2.3 EHW – Types of Evolution

Early evolvable hardware experiments were conducted by simulation and the best

chromosome was downloaded to the hardware for final testing. With the invention of FPGAs,

it is now possible for the implementation of solutions to be fast enough to evaluate a real

hardware circuit within an evolutionary computation framework; this is termed as an Intrinsic

Evolvable Hardware [19].

Hugo de Garis [28] states there are three main methods for achieving evolvable hardware:

Extrinsic, Intrinsic and Complete Hardware (on-chip) Evolution. These are shown below in

figure 4.

The first method known as Extrinsic EHW is the evolution of electronic circuits through

simulation. In this type of evolution, the entire process of evolution including fitness

evaluation of the individuals is implemented in software [26] and, at the end of each

generation, the best individual is downloaded to the electronic device for final testing.

The second method, Intrinsic EHW, is when each genotype is assessed on the device by

downloading the new configuration and testing the device directly.

9

Figure 4 Three types of evolution [26]

The third type and less used form of evolution is an on-chip strategy, also termed complete

hardware evolution (CHE) [29, 30]. In this, the complete evolution process is located on the

same chip as the evolving circuit. Another similar approach is the use of an on-board

processor running the evolutionary algorithm [31].

2.4 Genetic Algorithms

A genetic algorithm (GA) is an algorithm that is capable of finding a solution to a problem by

developing a pool of random solutions then working its way towards the an optimum or near

optimum solution [32].

The genetic algorithm replicates the same concept of natural selection in computing. In this

algorithm a set of circuit representations are first randomly generated, this is the initial

population. The behaviour of each circuit is then evaluated (as per the defined fitness function

in the genetic algorithm) and the best circuits are combined to generate a new array of circuits

that hopefully includes a better circuit solution [1] .

Each individual circuit description is known as a genotype. Genotype describes the genetic

constitution of an individual, that is the specific allelic (an allele is a viable DNA coding that

occupies a given position on a chromosome) makeup of an individual. The genotypes consist

of an array of bits and each bit contained in them is known as a gene.

http://en.wikipedia.org/wiki/Allele
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Chromosome

10

These newly generated genotypes are passed through the same process, until a new fittest

circuit is evolved to behave according to the specification desired by the user. Mutation can

also occur in the generated population. This can lead to a chromosome with better fitness.

Thus, the final design is based on incremental improvement of a population, initially which

was randomly generated. Figure 5 below shows pseudo code for a simple genetic algorithm.

The flow chart for a genetic algorithm is shown in figure 42.

Figure 5 A Simple example of Genetic Algorithm [2] and [33]

2.4.1 Genetic Algorithm Terminology

Population size: This is the number of chromosomes in one generation. This number should

not be too small as this causes only a small part of the search space to be explored. On the

other hand, too many chromosomes slow down the GA. Population size is chosen depending

on the nature of the evolution being done.

Selection: It is the first operator of a genetic algorithm that selects chromosomes in the

population for reproduction. The fitter the chromosome, the more times it is likely to be

selected to reproduce. Selection can be done using various selection techniques such as

Roulette Wheel selection, Tournament selection, Random selection etc. For example, in the

roulette wheel selection also known as stochastic sampling with replacement [34], the

11

individuals are mapped to contiguous segments of a line, such that each individual's segment

is equal in size to its fitness. A random number is generated and the individual whose segment

spans the random number is selected (with a possibility of same individuals being selected as

well). Hence, the probability of selecting individual is proportional to its fitness. The process

is repeated until the desired number of individuals is obtained. This is called mating

population. This technique is analogous to a roulette wheel with each slice proportional in size

to the fitness, see figure 6.

Figure 6 Roulette Wheel Selection [35]

Crossover: It is a GA operator that randomly chooses a locus and exchanges the subsequence

before and after the locus between two chromosomes to create two offspring. The crossover

method emulates the process of natural crossover by generating offspring that carries forward

the important genetic material of the parents, whilst introducing enough variation so that they

can potentially become fitter than the parents can. For example as shown in figure 7, the

strings 00000000000000 and 11111111111111 could be crossed over after the seventh locus

in each to produce the two offspring 00000001111111 11111110000000. Crossover shown

below is an example of single point crossover where a single locus has been chosen to

crossover the chromosomes, but crossover can also be done at multiple points and is known as

multi point crossover.

Mutation: This is also a GA operator, which randomly flips some of the bits in a

chromosome. Mutation prevents the GA from being stuck to a local maximum of fitness. For

example, as shown below third bit is flipped in first offspring to get 00100001111111 and

sixth bit is flipped in the second offspring.

12

Figure 7 Crossover and Mutation [1]

2.4.2 A Simple Genetic Algorithm[36]

I. [Start] Generate a random population of p n-bit chromosomes (candidate

solutions to a problem).

II. [Fitness] Calculate the fitness f(x) of each chromosome in the population.

III. [New Population] Create a new population by applying the following steps

(4 to 7) until p offspring have been created:

IV. [Selection] Select a pair of parent chromosomes from the current

population according to their fitness (chromosomes with better fitness have

a bigger chance to be selected).Selection is done ―with replacement,‖

meaning that the same chromosome can selected more than once to

become a parent.

V. [Crossover] With the given crossover rate pc, the parent genes are crossed

over to form new offspring at a randomly chosen point. If no crossover is

performed, then the offspring are an exact copy of the parent.

VI. [Mutation] Mutate the two offspring at each locus with mutation rate pm,

and place the resulting chromosomes in the new population.

VII. If p is odd, one new population member can be discarded randomly.

VIII. [Replace] Use the new generated population for further processing by

replacing the current population.

IX. [Loop] Go to step 2.

13

3 Hardware Platforms

Field Programmable Gate Arrays (FPGAs) are digital circuits that can be reconfigured, and

thus they are excellent candidates for implementing EHW [3]. Commercial FPGAs are based

on a 2-dimensional array of cells, in which it is possible to define the cells‘ functionalities and

routing.

As noted by Pauline Haddow [3], current development in FPGA designs have led to

disappearance of evolvable hardware friendly features from FPGAs, due to the change in

design of new FPGAs which does not give the option of configuration bits to be controlled by

a programmer.

The most widely used FPGA for EHW experiments a decade ago was the VIRTEX® XC6200

[11, 37-40] . Hence, this chapter will emphasise the design of evolvable friendly hardware that

is available or being developed by different researchers around the world.

The chapter has been mainly divided into five sections, the first two sections describe the

history and development of the FPGA. The third section analyses the XC6200 architecture, as

it was one of the best evolvable friendly FPGAs and was the basis of many evolvable

experiments. The following section discusses recent research being conducted on designing

new hardware chips for the purpose of evolvable hardware. The fifth section describes the

hardware structure that forms the basis of our design.

14

3.1 The History and Development of FPGA

The history of the FPGA goes back three decades, to the 1970s when the first Programmable

Logic Devices (PLDs) were introduced [41], for implementing logic circuitry in electronic

chips. Since then many modifications and developments have been made in the architecture

and structure of these devices to meet the needs of electronics. They have been termed as

field-programmable devices (FPDs), but we will be referring them as PLDs.

There are several types of PLD available commercially. The three main categories of PLDs

are:

 Simple PLDs (SPLDs),

 Complex PLDs (CPLDs), and

 Field-Programmable Gate Arrays (FPGAs)

Simple PLDs usually refer to small types of PLDs, generally containing two planes of logic.

The first to be developed in this category was the Programmable Logic Array (PLA)

containing two programmable planes, an AND-plane and an OR-plane .Both these planes are

programmable by the user and are used to generate logic functions using the ‗Sum of

Products‘ form of digital logic.

Typical parameters of a PLA are sixteen inputs, thirty-two product terms and eight outputs.

PLAs are efficient in terms of area needed for their implementation on an integrated circuit

chip and hence they usually form a part of larger chips such as microprocessors. PLAs were

difficult to fabricate and they reduced the speed-performance of circuits implemented in them.

This led to the development of a similar device in which the AND- plane was programmable

but the OR-plane was fixed [36]. This device was known as programmable array logic (PAL).

PAL is a trademark of Advanced Micro Devices Corporation [42].

15

Figure 8 Structure of a PAL [43]

 The second category of PLDs, known as Complex Programmable Logic Devices, was

introduced in the early to mid 1980s. CPLD logic gate densities range from the equivalent of

several thousand to tens of thousands of logic gates. A CPLD is also known as Enhanced PLD

(EPLD), Super PAL or Mega PAL [43].

A CPLD comprises of PLA or a PAL-like structures together with input-output blocks and

interconnection wires. Normally extra circuitry is added to the output of a PAL. This structure

as a whole is known as a Macrocell. This macrocell forms the building block of a CPLD; a

macrocell is illustrated in figure 9.

Figure 9 A Macrocell of MAX 7000 [44]

16

 CPLDs were pioneered by Altera, first in their family of chips called Classic EPLDs, and then

in three additional series, called MAX 5000, MAX 7000 and MAX 9000. A typical CPLD can

provide a functionality equivalent to 50 SPLD devices, but for higher logic capacity, a

different approach is required [43].

3.2 General Architecture of an FPGA

Figure 10 Structure of an FPGA [45]

As illustrated in the above figure, an FPGA consists of an array of logic blocks and

interconnect resources, which can be configured through programming to realize different

designs.

There is an architectural difference between a PLD and an FPGA. The PLD has a more

restrictive structure consisting of one or more programmable sum-of-products logic arrays

feeding a relatively small number of clocked registers, leading to predictable timing delays

and a higher logic-to-interconnect ratio. The FPGA architectures, on the other hand, are

dominated by interconnects which make them more flexible for larger designs, but also far

more complex to design for relatively smaller designs. FPGAs can achieve higher level of

integration than PLDs, due to more complex routing architectures and logic implementations

[45].

17

An FPGA can be as simple as a transistor or as complex as a microprocessor. It is typically

capable of implementing a lot of combinational and sequential logic [45].

FPGAs include a relatively large number of programmable logic elements thus allowing a

very high logic capacity [43]. In general, CPLD logic gate densities range from the equivalent

of several thousand to tens of thousands of logic gates, while FPGAs typically range from tens

of thousands to several million gates.

3.3 Xilinx XC6200 FPGA

FPGAs often took a number of seconds to reconfigure in the past, making them too slow for

EHW. This changed with the development of the Xilinx XC6200 series devices. The device

held the configuration in Static RAM, meaning that it could be quickly accessed, read and

changed, thus making it the favourite choice for EHW.

The main evolvable favourable features of XC6200 were:

 Fast reconfiguration: The device used a parallel interface rather than the conventional

serial approach and therefore was able to be configured much faster than previous

devices.

 Known data format: The bit-stream format was available so that the user could alter

individual parts of the configuration; this was a useful feature for EHW.

 Safe configuration: The device had been designed in such a way, that it restricts the

connections between the logic block. Thus, it was safe to load any random

configuration into the hardware [46].

 Routing implementation: Its routing implementation was based on multiplexers rather

than on anti-fuse or memory bits, (short circuits could be generated in almost every

other FPGA) [47].

Other features of the XC6200 were:

 Microprocessor interface: A standard microprocessor interface to static RAM was used

to configure the device.

 Partial reconfiguration: Configuring the device was easier and was not interlinked

between different areas of the device; hence, configuration in one area could be

changed without affecting another area of the device [46].

18

 However, the production of XC6200 was stopped, leaving the EHW world with no

choice except to develop its own evolvable friendly hardware.

 Most of these EHW hardware chips were based on the architecture of the XC6200 due

to its reconfigurable characteristics, which prevented the outputs of a structure from

being connected together. A brief description of this architecture is given below.

3.3.1 Logical and Physical Organisation

The XC6200 was a second-generation fine-grain architecture, employing a hierarchical

cellular array structure[48]. The XC6200 architecture may be viewed as a hierarchy. A large

array of simple cells lies at the lowest level of the hierarchy (Figure 11) and has been termed

as a ‗sea of gates‘. Each cell in this array is individually programmable to implement a D-type

register and a logic function such as a multiplexer or gate. Any cell may be configured to

implement a purely combinatorial function, with no registers involved.

Figure 11 Nearest Neighbour interconnect array structure [48]

The structure of the XC6200 is a combination of an array structure formed by connecting

neighbouring cells, which are then grouped into different levels of hierarchy such as a unit

cell, 4x4 cellblocks, 16x16 cellblocks, 64x64 cellblocks etc.

19

In addition, each level has its own routing resources. Wires of length 1 are provided to allow

basic cells to route across themselves and length 4 wires allow 4x4 cells to route amongst

themselves. Larger XC6200 products extend this process of routing wires, by using a scaling

factor of four at each hierarchical level. There are also long wires at each level, which are of

chip-length and are termed as ‗FastLANEs
TM

‘. The structure is shown below.

Figure 12 XC6200 structure [48]

3.3.2 Basic Cell

The basic cell of the XC6200 is shown in figure 13 below. Here the inputs from neighbouring

cells are labelled N, S, W, E and those from the length 4 wires N4, S4, W4 and E4 according

to their signal direction. Additional inputs include clock and asynchronous clear for the

functional unit D-type register. Here, the output of the cell function unit implementing the

gates and registers has been labelled as F. There is another output, labelled as ‗Magic‘. The

magic output is an additional routing resource located in each cell, but is not always available

for routing. The availability of the magic output is dependent on the logic function

20

implemented in the cell. Bits within the configuration memory control the multiplexers within

the cell.

Figure 13 XC6200 Basic Cell [48]

21

3.3.3 The Configurable Logic Block Structure

The Function Unit is also known as the Configurable Logic Block (CLB).The implementation

of the XC6200 CLB is shown in figure 14 below. Y2 and Y3 are the input multiplexers and

provide the conditional inversion of the X2 and X3 inputs. The CS output multiplexer selects a

combinational or sequential output based on the programming. The RP multiplexer allows the

contents of the register (D flip-flop) to be ‗protected‘.

Hence, there are two paths in the structure:

 The Sequential Path: Passing through the input multiplexers and then through the flip-

flop [49].

 The Combinational Path: Bypasses the flip-flop.

Figure 14 The Configurable Logic Block / The Function Unit [48]

22

3.4 EHW friendly Structures

Based on the above features and the design of the XC6200, researchers have tried to create

different evolvable friendly designs like POEtic chip [47] , evolvable motherboard [50] ,

Processing Integrated Grid (PIG) [51] and ETLs GRD chip [31]. Some researchers have also

tried to improve the XC6200 design for more power and performance, e.g. Gigahertz FPGAs

with new power saving techniques.

This section will describe two designs, which may have an effect on EHW development in the

future. In addition, the inefficiencies of these designs that lead to this research have been

explained later in this chapter.

3.4.1 POEtic Chip

The POEtic chip is a new system on chip platform, which is intended to compensate for the

unavailability of the Xilinx XC6200, for the field of EHW. The POEtic chip has been

specifically designed to ease the development of bio-inspired applications. The composition of

the chip consists of a microprocessor in the environmental subsystem and a 2D reconfigurable

array called the Organic Subsystem. The reconfigurable array consists of basic elements called

molecules, that are mainly 4 input look up tables (LUT) and flip flops. There is a second layer

in the organic subsystem that implements a dynamic routing algorithm that is intended to

allow multi chip designs, letting the user work with a bigger reconfigurable virtual array.

The name of the POEtic chip was inspired from the three-life axis of nature:

 Phylogenesis is the way species are evolving, by transmitting genes from parents to

children.

 Ontogenesis corresponds to the growth of an organism and self-healing in living

beings.

 Epigenesis deals with learning capabilities like the brain.

3.4.1.1 The Microprocessor

The microprocessor is a 32-bit RISC processor, specially designed for the POEtic chip. It

exposes 57 instructions, two of which give access to a hardware pseudo random number

generator for the evolutionary process. There is an AMBA bus [52], which is used for

communication with all the internal elements, (as shown in figure15) as well the external

23

world. It also can be used to connect several POEtic chips to create a bigger array. The

microprocessor can configure the array, and retrieve its state. Access to the array is made in a

parallel manner because the array is mapped onto the microprocessor address space. As a

result, it is fast to configure or reconfigure the array.

The researchers have also developed a C compiler and an assembler, making it easy for the

user to write programs. In addition, they plan to supply an API that can help the user to build a

genetic algorithm by choosing the type of crossover, the selection process, and so on.

Figure 15 The POEtic chip showing the Microprocessor, and the Reconfigurable Array [47].

3.4.1.2 The Reconfigurable Array

The reconfigurable array of the chip comprises of two planes: The first plane is a grid of basic

elements, called molecules, mainly consisting of a 4-input look-up table, and a flip-flop. The

second plane is a grid of routing units that can dynamically create paths at runtime between

points of the circuit. These routing units implement a distributed dynamic routing algorithm,

based on addresses. The array can be used to create connections between cells in a cellular

system to connect chips together or can be used to create long distance connections at runtime.

The molecules execute a function, according to an operational mode defined for each molecule

by three configuration bits (refer [53] for details). There are eight operational modes for the

molecule.

24

3.4.1.3 Molecular communication

As in the XC6200, inter-molecular communication is implemented with multiplexers. This

feature avoids short circuits that could happen when partially reconfiguring a molecule, or

during an unconstrained evolution process. As shown in figure16, every molecule is directly

connected to its four neighbours, sending them its output while long-distance connections are

implemented by the way of switch boxes. Each cardinal direction provides two input lines and

two corresponding outputs. The six input lines from the cardinal directions or from the output

of the molecule (or the inverse of both) can be used to select each output.

Figure 16 POEtic chip -- Switch Box [47]

3.4.1.4 Configuration Bits

The POEtic chip has seventy-six configuration bits. The bits are split into five blocks as shown

in Table 1. The first bit is used to indicate whether reconfiguration is required in a block or

not. In terms of execution, the microprocessor has a 32-bit bus to access these bits. As there

are only two clock cycles needed to write and three words of 32 bits define a molecule, the

configuration of the entire array is very fast. The reconfiguration is made in parallel as

compared to Xilinx‘s JBits ([46]and [54]), in which the entire bit stream is sent each time in

serial.

25

Table 1. THE FIVE BLOCKS OF CONFIGURATION BITS FOR POETIC HIP [47]

3.4.1.5 Conclusion of the Design

The POEtic chip is a useful EHW platform. It has dynamic routing capabilities that allow

functional level evolution using sine generators, adders, multipliers as building blocks [47].

The entire bit stream can be used to execute an unconstrained evolution. At present, a test chip

containing around 12 molecules is being fabricated. After the functional test of this chip, the

researchers intend to manufacture a final POEtic chip, containing about 200 molecules.

26

3.4.2 EHW Chip

This section discusses the second chip known as the EHW Chip. Generally, there are two main

restrictions associated with the EHW:

 Slow learning speed of the systems and

 Large size of the EHW systems

To overcome these problems, a gate-level Evolvable Hardware Chip has been described [55].

The chip intends to integrate both the GA hardware and the reconfigurable hardware within a

single LSI chip. This chip was initially proposed in 1998 [56] and now the same team has

developed an improved design. A block diagram of the EHW chip is shown in fig 15. The chip

consists of a genetic algorithm (GA) unit, a PLA (Programmable Logic Array) unit as the

reconfigurable hardware logic, registers, and control logic. The main advantage of the chip

design is that it has two ports for parallel access connected to the external two-port RAM and

hence, it can process two chromosomes at a time in parallel. The GA unit and PLA unit also

have a parallel accessing architecture for the data stream from the two ports. The chip has to

be connected to an external memory and a CPU.

Figure 17 Block Diagram of EHW chip [55]

3.4.2.1 The GA Unit

This unit executes the GA learning operations using the steady state GA (In a steady-state

genetic algorithm one member of the population is changed at a time) and elitist

recombination (in this children compete with their parents to be included in next population)

27

[57]. The block diagram of the GA unit is shown in figure 18. Here the GA unit is used to

select two chromosomes in units of 32 bits, from the chromosome memory in parallel. Then it

carries out uniform crossover and mutation on these to make two chromosome segments of 32

bits. Uniform crossover is carried out using a random 32-bit string. A mutation rate of zero,

1/256, 2/256, or 3/256 can be selected. The two new chromosome segments are then sent to

the PLA. After all chromosome segments have been sent, their fitness values are calculated

using training patterns. In addition, this chip has an on-line editing mode for the training-

pattern memory and it allows the changing of training-pattern memory during learning, to

provide online learning. This helps to ensure a smooth adaptation process[8].

Figure 18 GA unit Block diagram [55]

3.4.2.2 The PLA unit

There are two PLA blocks for parallel evaluation of two circuits in the PLA unit. These blocks

read two chromosomes from the GA unit in parallel in units of 32 bits to implement two

circuits in parallel. The evaluation of two cells is the done by using the training data. There are

two input-output modes available for selection: an 8-bit input/8-bit output mode or a 12-bit

input/4-bit output mode.

28

The architecture of the PLA is shown in Figure 19. In the PLA, 32 product term lines are

divided into two groups of 16 lines. Each bit of the output (8-bits) from the two groups can be

connected to either an OR, or an XOR gate. The operation is the same as a conventional PLA

if the OR gate is selected. If the XOR gate is selected, then the XOR operation is executed on

each bit of the two outputs from the two groups. If XOR is used with ‗AND‘ and ‗OR‘ gates,

the PLA can generate a circuit with less product term lines [58]. This option is useful for

circuits that need many product term lines.

Figure 19 Block diagram of one PLA [55]

An option for selecting a feedback loop from the output to the input is provided to each PLA.

If this option is selected, the upper 4 bits of the PLA output is connected to the upper 4 bits of

the PLA input via a register (Figure 19). As the feedback loop can store the state of the circuit,

it can be used when the EHW has to learn a sequential circuit.

3.4.2.3 Random Number Generator:

 A parallel random number generator using cellular automata [59] had been selected for

implementation on the EHW chip, and could produce a 560 bit random bit-string at every

clock cycle.

29

3.4.2.4 The RAM

The EHW chip works with an external 2-port RAM on the board. It has been divided into

three memories: a chromosome memory, a training pattern memory, and a memory for the

fitness value. All the individuals in 16 bits x 2048 words are stored in the chromosome

memory. The chromosome length is 1024 bits, and the population number is 32. This memory

has two input/output ports. Two chromosomes of 16 bits can be read or written in parallel

from the GA unit using these two ports. The training data memory can store a maximum of

256 training data set of 16 bits each. The memory for the fitness data stores all the fitness

values for all 32 chromosomes with an 8-bit integer value.

Figure 20 Block Diagram of the complete EHW chipboard [55]

30

3.5 The Virtual Sblock FPGA

Another type of design that has been proposed by a group of researchers [3] is known as the

Virtual Sblock FPGA. This design is a virtual evolution friendly reconfigurable platform that

can be mapped onto a given technology, and thus was chosen as the starting point for the

development of a generic platform in this research.

The Virtual Sblock FPGA is a technology independent platform for evolvable hardware. The

key feature is that it is a more evolution friendly hardware platform for evolving digital

circuits than commercial FPGAs. However, the platform may be mapped onto today's FPGAs.

3.5.1 Architecture

This virtual EHW platform consists of blocks (named Sblocks) that have been laid out as a

symmetric grid. Each Sblock connects to the Sblocks on its four sides (north N, east E, south S

and west W). The output value of a Sblock is synchronously updated and sent to all its four

neighbours (its von Neumann neighbourhood), and as a feedback signal to itself.

Each Sblock consists of both a simple logic/memory component and routing resources. The

Sblock can be configured as a logic or memory element or it can be configured as a routing

element to connect one or more neighbours to non-local nodes. Several nodes of Sblocks can

be connected together as routing elements to realise longer connections.

The internal connections of the Sblocks include four pairs of unidirectional wires attached

through routing logic to a routing channel. Each pair includes one input and one output

connection.

The routing logic chooses the appropriate wire of the routing channel and forwards this to the

neighbouring Sblock. Incoming data is forwarded to the appropriate channel wire for either

forwarding to logic/memory or to the given output channel. The Sblock is illustrated in figure

21. As each Sblock can communicate on each of its edges to neighbouring Sblocks, this

provides a symmetrical and scalable architecture.

31

Figure 21 Sblock – Routing and Logic/Memory Block [60]

The internal routing of each Sblock only allows inputs to be routed to outputs and the interface

between Sblocks only allows outputs to be routed to the inputs. This way, generation of illegal

configurations by evolution is prevented. IOBs (input/output blocks) are placed at the

perimeter of the chip. Researchers have also proposed an on-board oscillator for their

architecture [24]. A more detailed view of the Sblock logic is shown in figure below.

Figure 22 Sblock Logic [3]

Inputs from the neighbouring Sblock and a feedback from the output are connected to a five

input lookup table (LUT). The LUT can be configured to hold a function. If Don‘t Care (DC)

bits are placed by a GA at a given input, then that neighbouring Sblock is not connected to it.

In this way the LUT is programmed not only for desired functionality but external

connectivity of sblocks [3].

32

3.5.2 Configuration

The Sblocks have two global configuration buses, an address and a data bus that traverses the

grid. Each bus is 16-bits wide. The address bus can thus address approximately 64000 CLBs.

The buses traverse each row in the grid thus allowing both serial and column parallel

configuration of the complete grid. Addressing each CLB individually opens up the possibility

for partial reconfiguration. The number of frames needed to address a complete column is 48

frames, as 48 bits are needed to configure a single CLB. This restricts partial configuration to

one or more columns.

3.5.3 Configuration Data

In the current structure of Sblock, routing is an interdependent resource of logic/memory.

Each Sblocks‘ configuration data includes its necessary routing and logic data.. This also

decreases the speed of evolution, since the process handles more individuals and the

configuration time is higher with a lot of routing configuration data to handle.

3.5.4 Feedback of Information

In the Sblock, any CLB, IOB, or range of CLBs/IOBs may be accessed through the

configuration buses to read back the data lying in these blocks.

3.6 Analysis of These Designs

Although the designs presented are evolution friendly they all (except Sblock) have a common

drawback of being confined to one FPGA design or one range of FPGAs .The POEtic chip is a

chip itself with limited capabilities going up to a maximum of 256x256 molecules, also it is

still under trial and has not been manufactured. Whereas, the EHW chip is again a supporting

chip for the FPGA and one can only use the design board for any type of EHW experiments.

Only the Sblock seems to be a generalised solution but it tends to use a long configuration bit

stream (32 bits) for one chromosome, which could be cumbersome for larger designs for

EHW.

To avoid these problems a new design for a ‗Generic Cellular Structure‘ for EHW has been

developed so that any available FPGA hardware in the market can be used for the

development of EHW. This research aims at developing a more generalised virtual EHW

33

platform that can be used on any past or present FPGA chip of any type. In addition, this

design will require fewer configuration bits than the Sblock.

34

4 Generic Platform

4.1 Introduction

A ―Generic Platform‖ is a generic cellular structure designed and implemented into FPGA

hardware for the purpose of intrinsic evolution of an electronic circuit.

The Generic Platform is a general design implemented in Very High Speed Integrated Circuit

(VHSIC) Hardware Description Language (VHDL) or any other High Level Language.

An evolvable hardware system mainly consists of two components:

 Genetic Algorithm: An algorithm used to evolve and test a desired circuit

 Hardware: This may be a field programmable gate array, which can be used to

evaluate the evolved circuit.

The genetic algorithm being a program, the platform required for this program could be any

personal computer, a microcontroller, or an FPGA depending on the type of evolution

required.

In EHW, FPGA‘s may be seen to be the target technology as they provide a commercially

available re-configurable platform with fast processing speeds. The main elements of FPGA

chips are configurable logic blocks (CLBs) connected together in a grid format and

configurable routing resources. In addition, configurable input/output blocks (IOBs) are

connected to the grid at the perimeter of the chip, making FPGA‘s really suitable as hardware

for EHW.[60]

The most vital feature required in the hardware is that it should be evolution friendly, which as

stated by Haddow and Tufte [3] has disappeared from the latest FPGA models available.

Therefore, there is a demand for a generic cell structure specifically EHW friendly, which

could be easily loaded onto any FPGA hardware available now or in future.

35

4.2 Experiment- An Introduction

The main requirement of the research was to develop an Evolvable Hardware friendly generic

cellular structure that could be created using a VHDL compiler or VHDL design tools. This

structure was to be implemented on an FPGA and a microcontroller was used to run the

genetic algorithm. Computer Aided Design (CAD) software was to be used to check the actual

behaviour of the generic structure in simulation on a PC.

A cell structure was designed in CAD software using VHDL Tools. This cell was the basic

element of the Generic Platform.

The cell structure was initially inspired from the design of the Xilinx 6200, where the

multiplexers are used for selection of inputs, which was discussed (in section 3.3) as one of the

evolvable friendly FPGAs.

The Generic Platform was constructed using an array of two by two cells, giving a minimum

usable platform for a basic circuit to be developed by the EHW scheme. The two basic

structures evolved using the EHW scheme were the ‗AND‘ and the ‗OR‘ gates.

The Altera
®
 MAX

®
 7000S (FPGA) was chosen as the hardware for the generic platform. The

selected hardware was chosen, as it was readily available, where it was being used for various

electronics projects.

The cell and the Generic Platform were developed in VHDL, using the Quartus-II
®

- Computer

Aided Design (CAD) software, provided by Altera
®
, manufacturer for the FPGA.

Once designed, the generic structures were tested in Quartus-II
®

, by using the simulation

facility provided in the software. The generic platform structure was then loaded into the

hardware (FPGA) for the evaluation of the circuits developed by the genetic algorithm.

A PIC
®
 microcontroller (16F877) was used to run the GA program, as it was readily available

with university, to complete the intrinsic evolution process. The program was used to generate

the chromosome population for a particular cell structure. These chromosomes were then sent

to the microcontroller for evaluation. The correct chromosomes were selected by the program

and displayed on a personal computer, connected to the microcontroller through a serial port.

36

All the solutions were then stored into a file for manual verification of the circuits. The

circuits formed by the program were manually verified as correct solutions.

Once the working of the platform was verified, it was loaded into another FPGA to test the

generalised nature of the design. The GA program was loaded into the ATMEL
®

ATMega128 microcontroller, the other FPGA used to test was Altera‘s FLEX
®
, as it was

readily available. The obtained results were verified manually to confirm the correct operation

of the GA.

4.3 The Cell Design

The cell structure as described earlier was the building block of the complete generic platform.

This structure was to be a simple evolvable friendly structure, which would require the

minimum amount of resources on modern FPGAs. In addition, it was required that the cell

structure could be scalable and could be accommodated into almost any available

FPGA/CPLD in the market.

Hence, the cell design was based on one of the basic elements of digital electronics and the

foundation of almost all digital logic circuits, a NAND gate. The design was inspired by the

Xilinx
®
 6200 architecture, but it is much simpler than that architecture.

The main elements of the cell were:

 A NAND gate – It is the core component of the cell.

 Multiplexers – These have been used to select the inputs and the final output of the

cell.

 Flip-flops – Flip-flops are used to create a 5 bit serial in parallel out shift register to

store the cell configuration (chromosome) produced by the genetic algorithm.

4.3.1 NAND Gate

The NAND gate is treated as the basic gate of many combinational circuits as they can be used

to implement any combinational circuit. A few possible combinational circuits using NAND

gates are shown below.

37

Figure 23 Combinational logic with NAND gate

4.3.2 Multiplexer (MUX)

The most basic 2-to-1 multiplexers have 2 data inputs, 1 select input, and 1 output. The figure

below shows, the graphical symbol and truth table of a two input multiplexer. The output

equals one of the data inputs, depending on the state of the select input. Larger multiplexers

behave the same, having 2
n
 inputs and n select bits.

Figure 24 2-to-1 MUX and truth table [61]

Three multiplexers have been used in the construction of the cell. At the input, two 4-to-1

multiplexers have been used to select the desired inputs to the cell and a 2-to-l MUX selects

the output of the cell. The select inputs of the multiplexers are driven by the shift register,

described in the next section.

38

4.3.3 Shift Register

 The Preset and Clear inputs to the flip-flops have been set high (‗1‘), to allow synchronous

operation of the shift register, using the clock inputs. The flip-flops have a common clock

signal for loading the flip-flops in series. Five clock pulses are required to load the shift

register.

Figure 25 A Shift Register [62]

4.4 The Complete Cell Structure

Figure 26 The Cell

As shown above, the 2 input NAND gate forms the heart of the cell structure. Each of the two

inputs of the NAND gate is connected to a 4-to-1 multiplexer that selects one of the inputs as

39

the NAND gate input. The two input multiplexers have four input pins labelled IN_N (north),

IN_S (south), IN_W (west) and IN_E (east). Similarly, the output multiplexer has one final

output connected to all four output pins OUT_N, OUT_S, OUT_W, and OUT_E.

In addition, the structure has a shift register consisting of five-flops, which are controlled

through a clock signal (CLK pin) driven by the genetic algorithm. The SER_IN pin is also

controlled by the GA, and is used to send the configuration stream into the shift register. The

RST pin is the reset pin used to clear the shift register if required. SER_OUT pin is the output

of the last flip-flop of the shift register.

4.5 Cell Operation

The cell structure has been divided into three sections to explain its operation.

4.5.1 The Input Multiplexers

Figure 27 INPUT Section of the ‘Cell’

40

 As shown above, the input section of the cell consists of four input pins connected to the two

multiplexers (MUX - A and MUX - B), which are used to select the input values for the

NAND gate. The input pins are connected to the input pins of the FPGA or they connect to the

output pins of other cells as per the configuration loaded (described later).

4.5.2 Shift Register

The other input pins are:

The SER_IN pin is connected to the input of the shift register internally in the cell. Externally

it could be connected to the micro controller so that chromosome bits can be loaded serially in

to the Generic Platform. Alternatively, it is connected to the serial output of the other cells in

the Generic Platform.

Other input pin is the CLK pin that is an external clock. This clock is provided by the

microcontroller through the genetic algorithm and is used to control the loading of the cell

shift registers.

The RST pin is used to clear the shift-register if required; this pin was initially used to test the

cell structure and then was removed from the design as this was later initiated using the GA.

Figure 28 The Functional section

41

The shift register is used to store the configuration of the chromosome that is further used to

set up the whole cell. As described the shift register consists of five flip-flops, out of which the

first two flip-flops set the first multiplexer i.e. MUX-A (refer to Table2).

 The third and fourth flip-flops control the second multiplexer MUX-B (the table below shows

the selection bits for the flip flop) and the last flip-flop controls the last multiplexer which is

used to decide whether the cell will act as a gating structure or a routing structure.

Table 2. TABLE FOR THE SHIFT REGISTER SEQUENCE

The shift register also controls the functioning of the heart of the cell – the NAND gate. The

NAND gate can act as a NAND or a NOT gate depending on the inputs selected by the

configuration of first four flip- flops of the shift register. If the same input is selected to the

NAND gate by the four flip-flops the NAND gate act as a NOT gate otherwise it acts as a

NAND gate with the two inputs selected.

Flip-Flop Number Bit for Select Bus of Multiplexers Multiplexer Selected

1 E MUX-C

2 Sel_A[0] MUX-B

3 Sel_A[1] MUX-B

4 Sel_B0] MUX-A

5 Sel_B[1] MUX-A

42

4.5.3 The Output Section

Figure 29 Output Section

The output section consists of a multiplexer MUX- C that has 2 inputs, ‗data 0‘ and ‗data 1‘.

The ‗data 0‘ is connected to the NAND gate output and ‗data1‘ is connected directly to the

MUX-A output. The input from the NAND gate is chosen if the circuit is selected as a gating

structure otherwise the MUX-A output is selected as the output of the cell, if it is selected as a

routing structure.

 The output of MUX-C is directed either as the output to other cells connected or as the final

output to an output pin of the FPGA. The output also consists of a final output pin from the

shift register, which transfers the configuration bits from one cell to the next.

43

4.6 The Generic Platform

The Generic Platform (GP) is the basic evolvable friendly structure based on the cell.

GP is an expanded version of the cell, which can be used to evolve electronic circuits with the

help of a genetic algorithm. Depending on the need of the design, various numbers of cells can

be used and the GP can be designed (by changing number of cells) for evolving a particular

function.

To check the integrity of the design, the functionality of the cell was tested alone by itself, and

then in a 1 x 2-array .Then the GP structure of 2 x 2 Cells, was used to evolve two basic

structures, an AND gate and an OR gate.

A few standards were developed for designing the GP. The main reason for these standards

was to maintain uniformity while expanding the GP design to a larger scale. The other

important reason was to make sure the inputs and the outputs of the structure were not

accidentally connected to each other while the design was generated, as this could be harmful

for the hardware. In addition, the GP was meant to be designed in such a manner that it would

be very flexible and could be used with any available hardware. Hence, to satisfy all these

conditions, the following standards were applied:

 Unused pins were grounded, so that they had a definite known value at all times. This

standard applied to cell inputs on the edge of the GP that had no adjacent cell.

 All cell clock signals were connected together and driven from the same the clock

source.

 For a particular application, the number of cells in the GP was fixed and could not be

increased dynamically while the GA was running.

 The cell shift registers were connected in a sequence across each row of the array of

cells with the last cell of the row being connected to the first cell of next row as shown

in Figure 30.

44

Figure 30 Shift register connection between cells

4.6.1 1x2 Cell Generic Platform for Test

VCC
Ser_in INPUT

VCC
Clk INPUT

VCC
Rst INPUT

Ser_outOUTPUT

IN_N

IN_S

IN_E

IN_W

SER_IN

CLK

RST

OUT_N

OUT_S

OUT_E

OUT_W

SER_OUT

TestCell

inst

IN_N

IN_S

IN_E

IN_W

SER_IN

CLK

RST

OUT_N

OUT_S

OUT_E

OUT_W

SER_OUT

TestCell

inst1

VCC
NORTH_IN2 INPUT

VCC
NORTH_IN1 INPUT

VCC
SOUTH_IN1 INPUT

VCC
WEST_IN1 INPUT

VCC
SOUTH_IN2 INPUT

VCC
EAST_IN2 INPUT

NORTH_OUT1OUTPUT

NORTH_OUT2OUTPUT

SOUTH_OUT2OUTPUT

EAST_OUT2OUTPUT

SOUTH_OUT1OUTPUT

WEST_OUT1OUTPUT

Figure 31 The Generic Platform for 1x2 cells

45

As shown above, this GP has been designed using an array of 1x2 cells. This structure was

only used for testing the functionality of the GP. It was designed to generate an AND gate,

using a NAND in the first cell and an Inverter in the second (shown below). The external

inputs to the GP are the N (north) and W (west) inputs to the cell1. The output of the GP is Q

(east) from the cell2.

Figure 32 NAND + NOT gate diagram

Here the two cells are joined together sideways, with the first cell acting as a NAND gate

joined to the second cell through its East output and East input. The first cell has two inputs

from the micro connected to its North and West inputs. The second cell, acting as an inverter,

has its West input connected to the East output of the first cell.

As described in the standards, other inputs are not used for the design and all the unused pins

are grounded. Hence, in the first cell the South input pin is grounded, whereas, in the second

cell the North, South and East input pins are grounded. The truth table based on figure 32

describing the working of 1x2 cells is shown below:

46

Table 3. TRUTH TABLE FOR NAND + NOT = AND GATE

4.6.2 Generic Platform for 2x2 Cell array

After the successful development of the 1x2 array cells, the generic platform was developed

into the final desired structure of a 2x2 array. Therefore, there are four cells instead of two in

the Generic Platform. To explain the structure of the 2x2 array, the GP is divided into two

sections; the Upper Section and the Lower Section. Both sections have two cells joined

together sideways, similar to the 1x2-array structure. Vertically adjacent cells in these two

segments are also interconnected through input and output pins.

As shown below, the upper section has both the cells 1and 2 connected to the lower section

cells 3 and 4 through the South input and output pins. Similarly, the lower segment is

connected to the upper segment with the North input and output pins. In addition, the shift

registers in the cells are linked in series following a path from Cell 1to Cell 4, with the

connection between Cell 2 and Cell 3 acting as the link between the two layers, shown in

figure 33.

N W P Q

0 0 1 0

0 1 1 0

1 0 1 0

1 1 0 1

47

Figure 33 GP 2x2 structure; showing the two sections

48

4.7 Development in CAD Software

Once the generic platform was designed, it was developed in a VHDL Tool. Quartus-II® was

used as the VHDL tool for the generic platform, because it was freely available CAD software

consisting of VHDL tools for the Altera CPLD MAX 7000S used in this research.

As the design consists of basic elements of digital electronics like flip-flops, multiplexer and

the logic gates, the intellectual property (IP) designs/structures from Altera® were used to

design the Generic Platform.

All the desired elements were assembled together to design a simple cell structure schematic

in the Quartus software. The entity cell was compiled and the symbol generated for the cell

was further used to develop the top-level entity, the generic platform, in a schematic form. To

implement the logic circuit of the Generic Platform onto an FPGA, Quartus was used as the

Computer Aided Design software. CAD software makes it easy to implement a desired logic

circuit using a programmable logic device, such as a field-programmable gate array (FPGA)

chip. A typical FPGA CAD flow is illustrated below [63]:

49

Figure 34 Flow chart for CAD software [63]

Following the design flow, the design entities of the cell and the GP were first analysed and

synthesised in Quartus. The designs were then tested in simulation, as described next.

4.7.1 Section D: Testing in Quartus-II®

 The cell being the building block of the generic platform, the functional testing of the cell was

done first. After successful testing of the cell, the GP was tested for its desired functioning.

Depending on the configuration bits, the cell could behave as a NAND gate, NOT gate or a

ROUTER. The cell was tested for all of these three functioning in the Quartus simulation.

Then the timing simulation was performed for the same logical circuits, using output pins as

various test outputs. The timing simulation allowed observation of the expected behaviour of

the structures, when loaded onto the FPGA. Once the cell was tested, the generic platform was

tested in the forms of one by two array and two by two arrays.

50

4.7.1.1 The testing of Cell as a NAND gate

To test the functioning of NAND structure, two the cell inputs (North and West) were selected

to be the inputs to the NAND gate. Other two cell inputs (South and East) were grounded to

have a definite state during testing. To configure cell for these inputs, the shift register was

loaded with a binary value of ―00110‖ or decimal value of ―06‖ (in figure 35).

Figure 35 Behaviour of cell as a NAND gate and the shift register values explained

The state of the input pins (north and west) was represented by waveforms in Quartus. The

results produced by the circuit on the output (EAST_OUT) waveform, were crosschecked with

the NAND gate truth table. Other outputs (NORTH_OUT, WEST_OUT and SOUTH_OUT)

got the same result, as the output of the cell is same for each direction. The simulation of the

NAND gate is given in appendices. Table 4, below shows the how the inputs are selected by

the appropriate bits in the shift register.

Table 4. TABLE FOR THE INPUT SELECT BITS IN MUX-A AND MUX-B

Bits in the ‗Select Bus’ of Multiplexers Input Selected

00 West

01 East

10 South

11 North

51

4.7.1.2 The Testing of Cell as a NOT gate:

The NOT gate was tested in a similar fashion, except in this case the North input to the Cell

was also grounded. To test the structure as a NOT gate the West input was selected by both

the multiplexers and the cell was selected as a gating structure by bit number 5. Therefore, the

shift register was loaded with a Binary value of ―00000‖ or a Decimal value of ―0‖ (depicted

below).

Figure 36 The circuit diagram with other pins grounded, functional simulation shown in appendix

4.7.1.3 The Testing of Cell as a ROUTER:

The cell structure this time was tested for routing functionality, by selecting the West pin as

the input to be passed on to the output. Also the output multiplexer,(MUX-C) was selected to

‗1‘, to cause the cell structure to function as a router. The shift register was loaded with a

Binary value of ―00001‖ or a Decimal value of ―01‖. The functional testing of the router is

shown below:

52

Figure 37 Cell as a router waveform

After the successful functional testing of the cell, the Generic Platform was tested for

functioning as a 1x2-array structure and a 2x2-array structure. As explained earlier, the 1x2

GP was tested for an AND gate and the 2x2 GP was tested for both ‗AND‘ and ‗OR‘ gate.

4.7.1.4 The Testing of Generic Platform in a 1x2-array:

The top-level design Generic Platform consisting of two cells in a 1x2 form was tested for

functioning as an AND gate. The design generated had the unused pins grounded as described

by the standard in section 4.6. Here again, in the 1x2 cell structure the north and west input

pins to the cell 1 were selected as input pins and EAST_OUT2 from cell 2 was selected as an

AND output. A point to note is that the shift register in this design was turned into a shift

register chain i.e. two 5-bit shift registers were joined together. The testing of shift register

was done by using a test point in-between the two cells 1 and 2 (TP1, diagram in Appendix II).

The configuration loaded in the register was ―0011000000‖ and was decided in accordance

with Table 4 on a per cell basis.

The explanation of the Configuration Bit loaded in the 1x2 Array is as follows:

Figure 38 Bit configuration explanation for 1x1 array

0 0 1 1 0 0 0 0 0 0

West North Gate West West Gate

CELL 1 CELL 2

53

Figure 39 Functional simulation for 1x2 array

4.7.1.5 Testing of GP for 2x2-array:

The Generic Platform for the 2x2-array was tested for functioning as an OR gate. Here the two

inputs for the OR gate were chosen from two different cells; cell 1 and cell 3, but the output

was still fixed on to the cell 2 output pin EAST_OUT2. In addition, the four cells had test

points between four shift registers, to check the correct functioning of the shift registers. All

the unused pins were again grounded. For this GP the size of the shift register was 20 bits.

Hence, the following configuration was loaded into the shift register chain, binary

―11110001000000000111‖. The configuration bit loaded has been explained in the figure 40:

Figure 40 Bit configuration explanation for 2x2-array Functional simulation in appendix

1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1

Noth North Gate West South Gate West West Gate West North Router

CELL 1 CELL 2 CELL 3 CELL 4

54

Figure 41 Functional simulation for 2x2 array

After the functional simulation of the design as shown above, the design was passed through

the CAD Fitter tool, which determined the placement of the Logical Elements (LEs) in an

actual FPGA chip. Fitter also chose routing wires in the chip to make the required connections

between specific LEs. After this, the Timing Analysis was done, where propagation delays

along the various paths in the fitted circuit were analysed to provide an indication of the

expected performance of the circuit.

Once the timing analysis was finished, the Timing Simulation came into effect. Here the fitted

circuit was tested to verify both its functional correctness and timing. Once the circuit behaved

as required in the timing simulation, it was ready to be programmed into the FPGA.

Finally, the programming and configuration of the designed circuit was implemented in a

physical FPGA chip by programming it through the CAD software (the complete process of

designing a circuit and programming onto an FPGA is provided in Appendix I).

55

5 The Genetic Algorithm Code

5.1 Introduction

This chapter will discuss the genetic algorithm code that was written in the high-level

programming language C and was loaded into the microcontroller as described earlier. In

addition, here the expected results will be discussed.

The GA program was distributed in four main functions, named as follows:

 Fitness

 Selection,

 Crossover and

 Mutation

The diagram in figure 42 shows the structure of the GA program.

56

Figure 42 Diagram showing the various steps of Genetic Algorithm

At the beginning of the program, various parameters required for the execution of the GA are

defined, based on the design of the Generic Platform being tested. These parameters formed

the base of the GA run.

Fitness

Calculate total

Fitness

Crossover

Selection

Roulette Wheel

Selection

Random

Population

Create

Population

Sends Total Fitness

and Probability for

Selection

Passes the New

Population

Mutation

Check the

Fitness

Passes the Crossover

Population

Mutates the

Population

Check

Display the

final

Chromosome
Fitness

achieved,

STOP

57

5.2 Parameters of GA

The parameters decided by the user, before the beginning of the algorithm were:

Population Size – Could be anything between 5 and 10 chromosomes to start as parent

population. It has been represented by ‗p‘ in the program.

Length of Chromosome – Depends on the design of the GP. The chromosome requires 5 bits

for each cell in the GP. The variable used to represent length of chromosome is ‗n‘.

Crossover Rate – This parameter is the rate of chromosomes to be selected for crossover. The

rate was generated randomly, up to a maximum of 50 percent of the total population.

Mutation Rate – The mutation rate was generated randomly, to mutate upto half the

chromosomes in the new population generated after the crossover. For each of the

chromosomes, one randomly selected bit was mutated.

Maximum Generation Number – It defines the maximum number of times the GA performs

the optimization of the parent population.

5.2.1 Fitness Function

This function determines the fitness of each individual (chromosome) in the population. The

function reads each individual chromosome in the population and passes it onto the FPGA to

configure the GP for evaluation. It then calls a function Test to evaluate the fitness of the

chromosome for the desired circuit behaviour e.g. an ‗AND‘ gate. After the test is performed,

the fitness value for each chromosome is stored in an array named fu[i].

//====================== (6) FITNESS=============================

void fitness(char p)

 { char j;

 for (j=0;j<p;j++) //fills the array from 0-9

 {

 config_data=c[j]; // Start the fitness function

 load_register(); // Sends the configuration to the FPGA

 test(); // Tests the configuration

 if (flag2==0) //

 checkpattern(); // Only check for answer if passes the test.

 fu[j]=score; // Reads the Fitness

 }

 }

Figure 43 Code for fitness

58

5.2.2 Test Function:

The test function checks the behaviour of the Generic Platform for a particular chromosome.

void test(void)

{ score = 1; // test 1

 RD2=0; // SET INPUT 1

 RD3=0; // SET INPUT 2

 if(RD4==1) //Read Output

 { score = 0; // Discard the Chromosome

 return; // Return out of test function

 }

 else if (RD4==0) // Read Output

 score=score+1; // Inc. the score from FPGA

 // Fitness is 0 to 4

}

Figure 44 Code for Test function showing only the first test

As shown, in this function, the inputs to the GP (RD2 and RD3) are set and then the output

(RD4) is read from the output pin of the generic platform on the FPGA. This function

calculates the fitness value for each individual chromosome and passes it back to the fitness

function. The variable score is incremented every time an expected result is generated on the

output to a maximum limit of four for an AND/OR gate, as they can only have four possible

conditions as per their truth table. Hence, for every chromosome configuration, the test

function is run and then the function calculates how many outputs match the outputs of the

required circuit function.

Condition: After every run of the fitness function, the condition for desired score is checked.

If the desired score is achieved, the GA stops and displays the results, or else it continues to

further tasks for optimisation of the parent population.

5.2.3 Selection Function

This function selects chromosomes that become the parents of the next generation using

different selection criteria. Due to memory constrains of the microcontroller, instead of using

any particular method for selection, the GA, sorts out the fitness array fu[j] in descending

order. The elite chromosomes (chromosomes that are closest to the expected result) are placed

on top of the newly generated population, as they have the highest fitness. It then stores the

sorted population as a selected population.

59

void selection (char p) // Selection function

{

 char i,j,temp1;

unsigned long tem;

 for (i=0;i<p;i++)

 {

 for (j=i+1;j<p;j++)

 {

 if (fu[i]<fu[j]) // Checks for the Fitness of the population

 { // arranges array according to fitness

 tem=c[i]; // SORTING IN DESCENDING ORDER !!!

 temp1=fu[i];

 c[i]=c[j]; // Highest Fitness

 fu[i]=fu[j];

 c[j]=tem; // Lowest Fitness

 fu[j]=temp1;

 }

 }

 }

}

Figure 45 Code for Selection of population using sorting

 After selection, this newly generated population is treated as an initial population by the next

function, the crossover function.

5.3 Crossover Function:

This function creates new individuals (chromosomes) from the mating population produced by

the selection function. Pairs of chromosomes are selected at random from the mating

population and single point crossover is used to create new chromosomes. In single point

crossover, a crossover point on the parent chromosome is selected randomly. All genes

beyond that point in the chromosome are swapped between the two parent chromosomes. The

resulting chromosomes are the children chromosomes. If the parent chromosomes are same

then there is no change in the offspring.

Figure 46 Single Point Crossover [64]

60

The following code implements single point crossover:

 // Find the Point

 // for Single Point Crossover

 j=random(n+1); //Random point for Crossover

p1=0b11111111111111111111>>(20-j); //convert the no. to binary equivalent

a=(v1&(~p1))|(v2&p1); // Single point crossover

b=(v1&p1)|(v2&(~p1));

v1=a; //Read variable1

v2=b; //Read variable2

c[k]=v1; //Store variable1

c[k+1]=v2; //Store variable2

Figure 47 Lines of code showing crossover

A random variable is generated to decide the point of crossover, which is denoted by ‗j‘ (n is

the number of the bits in the chromosome). This is converted into a binary mask ‗p1‘, which

has 1‘s for bits that will be crossed over. This number ‗p1‘is used to perform crossover, by

taking the complement of ‗p1‘. The complement of p1 is ANDed with one of the

chromosomes (v1) and ‗p1‘ is ‗ANDed‘ with other chromosome (v2) as shown above.

Once the crossover is complete, these newly generated chromosomes ‗a‘ and ‗b‘ replace the

parent chromosomes in the population.

5.4 Mutation Function

Here the population generated by the selection and crossover function is mutated, depending

on the mutation probability ‗Pm‘ defined by the user. A chromosome is randomly chosen and

then a bit in the chromosome is randomly chosen and its value changed. As shown below, the

mutation is done using the boolean operator ‗XOR‘. This process is repeated for a number of

times, depending on by the mutation probability ‗Pm‘.

Variable = c[k]; //select the chromosome from the population array

r = random (n); //Find the Bit to be Mutated

I = 1L<<r; //Create a 20 bit long variable

Var = variable ^ I; //XOR the 20 bits

C[k] = var; //Save the mutated variable

 //Chromosome to be mutated entered in original array

Figure 48 Code for mutation

Mutation stops the GA (best fitness) from being stuck at a local maximum that is not an ideal

solution.

61

Replacing and Testing:

After the mutation, the fitness of the new optimised population is again checked for the

desired value. If the total fitness desired is achieved, the GA stops or else it again continues

with these tasks (as shown in state diagram).

5.5 Output of the GA

For the second and any other consecutive runs, the randomly generated parent population is

replaced by the new optimised chromosomes. This modified population now acts as the parent

population for further optimisation.

If an ideal fitness is achieved the program returns the number of iterations and the ideal

chromosome with its fitness. This is displayed on the PC screen. In addition, it displays the

final population of chromosomes.

62

6 Hardware Testing

6.1 Introduction

The hardware involved in the process was a microcontroller and an FPGA. The genetic

algorithm was loaded onto the microcontroller and the Generic Platform was loaded into the

FPGA. The hardware was tested in the same way as using the simulator. First the GP

consisting of a 1x2 array of cells was used to evolve an ‗AND‘ gate. Then a 2x2 array of cells

was evolved for an ‗OR‘ and an ‗AND‘ gate.

The functionality of the evolvable hardware was tested by using two different hardware

systems:

 The MAX CPLD with a PIC 16F877 microcontroller, and

 The FLEX FPGA with an AT Mega 128 microcontroller

In this section, the intrinsic evolution will be discussed further in details. In addition, the GA

code for the hardware system can be found in appendices.

Figure 49 Jpeg photo of the EHW system showing ports and development boards

63

6.2 Hardware Tests

6.2.1 1x1 Array Test

Before conducting the intrinsic evolution on the hardware, a simple testing of the cell structure

was performed on the hardware. In the experiment, a single cell structure was loaded into the

FPGA and a test program was loaded into the microcontroller to confirm the functioning of

the cell in hardware. The test program loaded all the possible chromosomes into the cell. As

the length of chromosome for the cell is five bits, the program generated configuration bit

streams from ―00000‖ binary (0 decimal) to ―11111‖ binary (31 decimal). This generated bit

stream was passed onto the FPGA for testing if the design behaved as a simple NAND gate,

using the North and West as the two inputs. The cell behaved as a NAND gate with

configuration bit values decimal 6 and decimal 24.

Interpretation of the result:

Figure 50 Interpretation of results achieved for NAND gate

6.2.2 1x2 array Test

The 1x2 array was used to generate an ‗AND‘ gate, a ‗NOT‘ gate, and a router. The GP, being

the combination of two cells, had 10-bit long chromosomes. The first cell had the two inputs

going to it and the second cell had the final output coming out of it.

0 0 1 1 0

West North Gate Configuration for Hexadecimal 0x06

CELL 1

1 1 0 0 0

North West Gate Configuration for Hexadecimal 0x18

CELL 1

64

The microcontroller and the FPGA were connected through their respective development

boards, using an 8-bit serial port. The control pins on the micro and the FPGA were different

for both the hardware setup as two different development boards were used. It has been shown

in the Appendix II.

First, the testing was done by running the program in a controlled way by using few known

10-bit chromosomes for ‗AND‘ gate, as given below.

The known Hexadecimal value of 0xC0 was fed into the Structure.

Figure 51 Known 10-Bit configuration for AND gate, using 10-bits.

Similarly, the behaviour of a ‗ROUTER‘ and a ‗NOT‘ gate were checked using a 10-bit

known configuration. The configuration bits used for the ‗NOT‘ gate were as follows:

Figure 52 NOT gate 10- bit known configuration

0 0 0 0 0 0 0 0 0 1

West West Gate West West Router

CELL 1 CELL 2

0 0 1 1 0 0 0 0 0 0

West North Gate West West Gate

CELL 1 CELL 2

65

Figure 53 Behaviour of 1x2 Structure as a NOT gate with 10- bit known configuration

Bits used for the behaviour of GP as a router are:

West is routed as Output.

Figure 54 Router 10- bit known configuration

 0 0 1 1 0 0 0 0 0 1

West North Gate West West Router

CELL 1 CELL 2

66

Figure 55 Router gate 10- bit known configuration

6.2.3 2x2 Array Test

The GP was also tested as a 2x2 array. In this instance, the GP, contained four cells and had a

20-bit long chromosome. In this test, the first cell and the third cell each had one input and the

second cell produced the output. The selection of inputs for the ‗OR‘ gate was different from

the ‗AND‘ gate design as it had Cell -1 and Cell -3 with inputs and Cell -2 had the output

connected to it.

The known 20-bit chromosome configurations that were used to test the behaviour of ‗AND‘

and ‗OR‘ gates, are given below.

Table 5. KNOWN 20-BIT CONFIGURATION FOR ‘AND’ USING 20-BITS

1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1

Noth West Gate West West Gate South West Router West North Router

CELL 1 CELL 2 CELL 3 CELL 4

Table 6. KNOWN 20-BIT CONFIGURATION FOR ‘OR’ USING 20-BITSITS

1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1

Noth North Gate West South Gate West West Gate West North Router

CELL 1 CELL2 CELL3 CELL 4

67

7 Genetic Algorithm Results

7.1 Initial Results of Evolution

All results in this chapter were obtained using the 2x2 array on the Generic Platform. Only

few evolved results are discussed here and other evolved results are outlined in the

Appendix III.

The first run of the experiment was a complete evolvable hardware run using 20-bit

configuration streams as the chromosomes. The EHW system was run to evolve an ‗AND‘

gate and an ‗OR‘ gate. The GA was run until a correct solution was evolved or for a maximum

of five thousand generations. The final evolved configuration stream was displayed in

hexadecimal form by the GA. The solutions evolved by the GA, that it found to behave as an

‗AND‘ gate and an ‗OR‘ gate, are as follows:

 0x30021 (‘AND’ gate)

 0x35339 (‘AND’ gate)

 0xE10C7 (‘OR’ gate)

 0xF1005 (‘OR’ gate)

Figure 56 Results evolved after the First Run

The GA found 4940 correct solutions for ‗AND‘ gate in 5000 iterations, this meant that the

GA would find a correct solution for 98.8 percent of the generated population. This result

became a point of concern, as expected correct solutions for an ‗AND‘ gate should have been

less than 98.8 percent of the population generated. Hence, there was the need for manual

analysis of the derived solutions. Most of the ―correct solutions‖ as found by the GA were

manually analysed. The manual analysis of the ‗AND‘ gate configurations is given here. The

‗OR‘ gate analysis are given in the appendix. In addition, behaviour of these configurations in

simulation is depicted after the manual analysis.

68

I. Configuration value, 0x30021:

Figure 57 Manual analysis with expected working and simulation result Quartus II

69

The results obtained after manual analysis of the chromosome configuration are as follows:

 Cell 1 behaves as NAND gate

 Cell 2 behaves as NOT gate

 Cell 3 and cell 4 will always have ‘0’ as output as the selected pins by

configuration are grounded

This is a correct solution for ‗AND‘ gate.

70

II. Configuration value, 0x35339:

Figure 58 Manual analysis with expected working and simulation result for 0x35339

71

The results obtained after manual analysis of the chromosome configuration are as follows:

 Cell 1 is a NAND gate

 Cell 3 is a Router

 Cell 2 and Cell 4 may oscillate

This is not a correct solution for ‗AND‘ gate.

72

III. Configuration value, 0xE10C7:

Figure 59 Manual analysis with expected working and simulation result in Quartus II

73

The results obtained after manual analysis of the chromosome configuration are as follows:

 Cell 1 and cell 3 may oscillate due to the feedback

 Cell 2 is a NAND gate

 Cell 4 is Router

This is not a correct solution for ‗OR‘ gate.

7.2 Analysis of the Initial Results

The manual analysis of the evolved results showed that some solutions produced by the GA

were not actually correct solutions. The results like 0x35339, that were actually oscillating

were identified by the GA as correct solutions. To test the operation of the GP, it was

continually loaded with the same chromosome and its fitness evaluated during this run, the

chromosome e.g. 0x35339 was constantly loaded with the output pin at Cell 2 being observed

on an oscilloscope. The output pin was oscillating with values ‗0‘ and ‗1‘, in agreement with

the manual analysis.

The microcontroller only sampled the circuit output once for each input combination. When

the output oscillated the value measured by the microcontroller was random, and sometimes

identified the chromosome as a correct solution.

74

7.3 The Solution for Oscillation Detection

It was not possible to detect oscillation reliably in the GA so a hardware oscillation detector

was designed. The oscillation detection circuit was added to each Cell. As shown below, this

circuit consisted of a flip-flop and a XOR gate.

Figure 60 Oscillation Detection Circuit on a Cell

One reason for not detecting the oscillation was the uncontrolled changing of the output of

each cell. An edge-triggered flip-flop was added on the output pin of every cell to control the

changing of the output pin. The clock for the flip-flop was provided by the microcontroller, so

the changes in the cell output could be co-ordinated with the GA. As there were four flip-

flops, 5 clock pulses were chosen to check the consistency of the circuit for one combination

of inputs on the north and west inputs. Four clock pulses for the flip flops and one extra pulse

to check the consistency.

The output of the flip-flop was the current output of the cell and the D input to the flip-flop

was the next output of the cell.

An XOR gate was also added to compare the current state and next state of the cell. The XOR

output is ‗0‘ if the cell output is going to change on the next clock pulse or ‗0‘ if the cell

output will not change.

75

Hence, the output of the XOR gate only for the output Cell was checked by the GA, as

oscillation in other cells did not matter. If the GA detected a ‗1‘ on the XOR pin, it discarded

the chromosome as an oscillating chromosome and provided it a score of decimal 0. Thus

putting the chromosome at the end of the selected population and giving it a high chance to be

discarded by the GA selection task. There were four tests run on the inputs for four different

inputs. Code for the first test has been shown below:

 // test 1

RD2=0; // input 1

RD3=0; // input 2

for (l=0;l<5;l++) // Clock 5 Pulses for the Flip Flop

clock1(); //

for (l=0;l<5;l++) // Check Oscillation

{ clock1(); // For Five pulses

 if(RD5==1) // Check pin for Oscillation

 { score = 0; // Change Score to 0

 //-- Used for Oscillation

 return; // Return from the function

 }

}

if (RD4==0) // Check circuit Output

score=score+1; // Increment Score

Figure 61 Modified GA code for oscillation detection

Once the oscillation detection circuit was added on to the Cell, a new Generic Platform design

was created (shown in Figure 62). This design was again loaded onto the FPGA and the GA

was tested by loading it with known chromosome configurations.

76

Figure 62 GP design with oscillation detection

The fitness function was modified to produce a fitness of 0 if any oscillation was detected.

Otherwise, the fitness was 1 plus the number of the correct outputs. The fitness could now

range from 0 to 5.

7.3.1 Observations of the Oscillation Testing

 The GA was run using a single 20-bit configuration stream to check the functioning of the

oscillation system.

A few runs of the GA yielded the following results:

 The circuit did not always detect oscillation i.e. the error was always different for the

same chromosome. – It showed the inconsistency for the same chromosome.

 The oscillating circuit did not detect oscillations in other three cells. It only picked up

oscillation in the output cell. – It behaved in the way expected, as oscillation in other

cells was not being detected by the design.

 Higher generations/ runs of the GA program gave higher errors as compared to fewer

generations. – It again proved to be inconsistent.

These results clearly showed the inconsistency in the oscillation detection and hence were

problematic for a design. It was found that introducing a delay in the checking of the

oscillations reduced number of errors, but it did not eliminate all oscillation errors.

77

7.4 Evolution of OR Gate

 After the introduction of the oscillation circuit in the GP design, the EHW experiment was

run for the second time using a complete GA with a 20-bit configuration stream. The EHW

system was run to evolve an OR gate. The only difference in the GP was the input pins, this

time they were assigned to two different cells i.e. Cell 1 and Cell 3, whereas the output was

still at Cell 2. These inputs were named as North1 and West3 and the output was still East2.

Some of the solutions evolved by the GA were:

 0xE10C3,

 0xF1005,

 0xB1007 and

 0x71020

Figure 63 Results evolved after the introduction of Oscillation Checker circuit

In this run of the GA, there were 99.6 percent incorrect solutions for OR gate in a run of 5024

iterations, leading to a mere 0.4 percent success rate. This time the results were realistic, as the

‗OR‘ gate was expected to have much lower result than the previous run for ‗AND‘ and ‗OR‘

gate. To confirm the results found by the GA, a manual analysis of the derived solution was

performed.

78

IV. Configuration value, 0xF1005:

Final_Out is the XOR output for Oscillation checking.

Figure 64 Manual analysis as with expected working and simulation result

79

The results obtained after manual analysis are as follows:

 Cell 1 and cell 3 act as NOT gates.

 Cell 2 is a NAND gate.

 Cell 4 is a Router, routing the West input to the North output.

This is a correct solution for an ‗OR‘ gate as two NOT gates are followed by a NAND gate as

shown above.

80

V. Configuration value, 0x71020:

Figure 65 Manual analysis with expected working and simulation result

The results obtained after manual analysis are as follows:

 Cell 1 is a NAND gate with East input as feedback from cell 2.

 Cell 2 is a NAND gate of cell 1 and cell 4 outputs

 Cell 3 is a Router, routing the West input to the West input of cell 4.

 Cell 4 is a NOT of West input.

This is not a correct solution for ‗OR‘ gate as per the manual analysis

81

VI. Configuration value, 0xB1007:

Figure 66 Manual analysis with expected working

The results obtained after manual analysis are as follows:

 Cell 1 is a NAND gate with South input coming from cell 3.

 Cell 2 is a NAND gate with inputs from cell 1 and cell 4.

 Cell 3 is a NOT of West input.

 Cell 4 is a Router, routing the West input to the North output

This is a correct solution for ‗OR‘ gate.

82

7.5 Analysis of the OR Gate Results

From the manual analysis of the evolved results, it was found that some of the experiment-

evolved solutions did not behave as expected. The chromosomes 0xB1198 and 0x71020 that

were not correct solutions were identified as correct solutions. To find the reason for these

results the incorrect chromosomes (e.g.0x71020) were continuously loaded into the GP and

the fitness evaluated.

 It was observed that the output pin had different values on different tests run for the same

chromosome value as compared to the manual analysis results.

To check the difference in the manual results and the results found by the GA, we analysed the

effect of using input combinations in a different order for 0x71020. It was found that this

analysis agreed with evolved behaviour of the 0x71020 circuit i.e. a different sequence of

input values produced different outputs. When observed as per the previous section, many

chromosomes had outputs depending on the sequence in which input combination was

applied. Hence, the reason for different solutions was discovered and a detailed explanation is

given in the next section.

To explain the causes of the problem consider sequence of inputs for 0x71020 below:

‘X’ =Undefined Value

Table 7. SEQUENCE OF INPUTS FOR 0X71020

Table 7 above shows the sequence of inputs for 0x71020 chromosome with inputs North1 and

West 3 and the output of ‗Cell 2‘ as the final output. When 0x71020 had North 1 and West 3

second and third input combinations as ‗10‘ followed by ‗11‘ instead of ‗01‘ and ‗10‘ the

truth table was very different as shown below

North1 West3 Out 1 Out 2 Out 3 Out 4

0 0 1 0 0 1

0 1 1 1 1 0

1 0 0 1 0 1

1 1 X X 1 0

83

Table 8. ALTERNATIVE SEQUENCE OF INPUTS FOR 0X71020

:

This analysis shows that the sequence in which input combinations are tested can affect the

final output obtained (Out 2). These incorrect chromosomes (e.g. 0x71020, 0x74301) have

feedback between cells, leading to a situation in which the GP can give different output values

for the same combinational input depending on the sequence in which the combinational

inputs are tested.

We use the term ‗bistable‘ to refer to the condition in which outputs can have different values

due to feedback.

Figure 67 Gate structure emphasising feedback for 0x 71020

North1 West3 Out 1 Out 2 Out 3 Out 4

0 0 1 0 0 1

1 0 1 0 0 1

1 1 X X 1 0

0 1 1 1 1 0

84

Figure 68 Gate structure emphasising on feedback in 0x74301

For some designs, this bistable state could be beneficial. However, in this research, the

bistable state was undesirable because we were attempting to evolve combinational circuits.

85

7.6 Bistable Detection

It was found that when the evolved circuit included feedback, the behaviour of the circuit

depended on the sequence in which input combinations were tested. To detect the bistability of

a circuit, the GP was modified by adding a 2-to-1 multiplexer on the output pin of the output

cell, cell 2. The modified design of the GP with a multiplexer added has been shown in the

figure below:

Pin connections:

Xo –Input to the multiplexer, connected to the output from the cell2 i.e. East2

Y – Input 2 to the multiplexer, connected to the microcontroller

Sel – Select input, connected to the microcontroller

Figure 69 Bistable Detection Circuit on a Cell with a MUX

86

Based on the observations of the evolved bistable chromosomes (0x74301 and 0x71020),

MUX was used for detecting the bistability in the circuits by manipulating the feedback to

Cell 1. To explain the functioning of MUX please refer to the figure below:

Table 9. TABLE FOR MUX BEHAVIOUR

X0 is the output from the cell.

To check the exact behaviour of the evolved circuit depending on the Xo input to the MUX,

‗Y‘ was changed and fed through the circuit. Depending on the initial value of Xo , ‗Y‘ was

fed to the circuit using the ‗Sel‘ input, so as to check the state of the circuit after the feedback

to the circuit was changed. This was done to test the effect of feedback on the final output

‗OUT_N‘, as shown in table 9. Hence, the behaviour of the circuit was concluded depending

on the table above and constantly reading the final output ‗OUT_N‘.

 The GP was loaded with the same 20-bit configuration stream to check the functioning of the

bistable system. After a few runs of the modified GA, while trying to make the program run

faster and efficiently by changing the clock cycles, it was found, introduction of a MUX did

find the correct evolved solutions but if the clock cycles in the testing bit of the GA were

altered, the results came different from expected. For example when the evolved solution

0x71320 was observed, it was detected as bistable on 4-clock cycles and oscillating on 2-clock

cycles. Similarly chromosome 0x61741 was detected oscillating on 5-clock cycles and stable

on 8-clock cycles.

Hence, these results clearly showed the inconsistency in the bistable detection and were

challenging for a design.

Again, a careful manual analysis of the design was done where it was decided that based on

the number of flip-flops present in the design of the GP, the maximum clock cycles to check

Y=0 Y=1 State

Xo =0 Xo=0 Stable with Xo =0

Xo =0 Xo =1 Oscillation

Xo =1 Xo =0 Bistable

Xo =1 Xo =1 Stable with Xo =1

87

circuit stability would be defined. In addition, the results were only confirmed once the result

was stable for at least half the maximum clock pulses required and an extra clock pulse.

Therefore, the following algorithm for the GA was created:

Read Mux = X0;

Clock (2
n
+2

n-1
) pulses or until stable for consecutive (2

n-1
) clock cycles.

Read Xout;

If stable

Mux =! X;

Read Mux = Xout;

If stable

Test the conditions for the ‘OR’ gate

Figure 70 Algorithm for determining clock cycles

7.6.1 Explanation of the Algorithm:

The GP contained four cells (n=4) so the number of combination states of the cell flip-flops is

2
n
 = 16.

 Hence, maximum clock pulses required to force the system to pass from these sixteen states

would be sixteen. Also, to confirm the functionality of the GP another 2
n-1

 = 8 clock pulses

plus one extra clock pulse would be required (as decided to check the stability of the circuit)

hence a total of 25 clock pulses are required to test the complete functionality of the GP

system

Due to memory and pin out limitations in the microcontroller, it was decided to test for

bistability in the GP design itself. Hence, a new modified version of the Generic Platform

(GP) was designed without the testing multiplexer.

In this new design, a four-bit counter was introduced to implement the logic of the clock

pulses and initial states of the four cell flip-flops as explained earlier. In addition, to remove

the inconsistency of the starting value of the flip-flops, they were attached to a control circuit

that set their starting value equal to the value of the counter. The XOR output for cell2 was

read individually as well as it was XORed with other cell outputs as shown in figure 71.

88

Figure 71 GP with Counter

 Figure 71 shows the entire generic platform while figure 72 shows the control circuit of a

single cell.

Figure 72 Control circuit

89

The four bits of the counter are used to set the initial values of the four flip-flops. The control

(clock) pulse to the counter is fed from the microcontroller. The same control pulse is also fed

to the control circuit as shown in figure 72. To set the initial state of each flip-flop, a control

circuit consisting of a NOT gate and two OR gates is used. This circuit is connected to the

‗Clear‘ and ‗Preset‘ pins of the flip-flop.

When the control pulse is provided from the microcontroller, it increments the counter and

sets or clears the four flip-flops according to the four counter outputs. This is done using the

clear and preset pins on the flip-flops.

When the clear is ‗1‘ it has no effect on the flip-flop and when it is ‗0‘ it clears the flip-flop to

‗0‘, whereas when preset is ‗1‘ it has no effect but when it is set to ‗0‘ it sets the flip-flop to

‗1‘. Figure 73 shows the introduction of the counter in the GP and explains the change of

‗Final_out‘ to Q‘ instead of Q from cell2.

Figure 73 Working of Control Circuit in the GP with the introduction of flip-flops e.g 0x71020.

90

Table 10. TRUTH TABLE SHOWING INTRODUCTION OF COUNTER FOR 0X71020.

Here P, Q, R and S are the outputs of the cells and the P‘, Q‘, R‘ and S‘ are the outputs of the

cells after the flip-flops.

Based on the truth table (Table 10), the steps to be implemented in the genetic algorithm

running on the microcontroller were as follows:

STEPS:

I. Set the states for the two external inputs, e.g. North1 = ‗0‘ and West3= ‗0‘.

II. Force the flip-flops to an initial state using the counter.

III. Clock the circuit once and read the XOR output for any oscillations in the circuit.

IV. Clock the circuit up to 24 times, reading the XOR output each time, comparing the

output from the first clock pulse (step 3). If the XOR output is same for all the

consecutive pulses the circuit is stable, otherwise it is oscillating.

V. Repeat the steps from 2 to 4 for all sixteen counter values, to test all possible flip-flops

starting value combinations. If the final output is different for any of the sixteen states,

the circuit is bistable

VI. Repeat steps 1 to 5 for each of the 4 external input combinations.

N W P Q R S P’ Q’ R’ S’

1 0 1 0 0 0 1 1 0 1

1 0 1 1 0 1 0 0 0 1

1 0 0 0 0 1 1 1 0 1

Continues for all the possible states of North and West

91

This is shown in the flow chart in Figure 74.

Figure 74 Flow Chart depicting the steps above

92

8 Conclusion and Future Work

8.1 Conclusion

The literature review for evolvable hardware found that there have been many experiments

carried out in this field. Mostly these experiments are specific to an individual field or, are

confined to particular hardware only. The experimental evolvable hardware system described

herein has attempted to generalise this limitation of current and past experiments. Firstly, the

designed generic platform is limited to a particular, hardware or platform. Secondly, it can be

used for evolvable hardware even in the absence of evolvable friendly features. Thirdly, it uses

a very small bit stream of 5 bits per cell, much less than other designs using a cell structure.

Finally, the generic platform has eliminated FPGA intellectual property limitations, such as

the non-availability of information bit stream used to control the FPGA hardware.

Though an intrinsic evolution was done on this evolvable hardware system, but due to

constrains of the microcontroller the bonus objective of expansion of the generic platform to a

larger structure could not be achieved at this stage. The experimental results do show the

intrinsic evolution on the generic platform implemented on different hardware platforms as

opposed to the confinement of evolutionary experiments on single hardware, described in the

reviewed literature.

The oscillation and bistable problems of the generic platform were handled successfully, thus

providing a stable error free base for the development of such systems. However, the clocking

of the generic platform depends on the number of flip-flops, with the number of clock pulses

increasing exponentially, thus limiting the scalability of this platform.

A generic platform for the intrinsic evolution on any available hardware was developed, but

due to the available hardware constrains, the system could not be elaborated to a large scale. In

addition, the solution developed for bistability was confined to this particular generic platform

and could not be extended to higher array GP, as clocking large GP structures could be

cumbersome.

It could be possible that all of the above problems are resolvable, and the work involved

would be subject to future research.

93

8.2 Future Work

The generic platform can be extended to a greater array structure to facilitate complex

electronic designs for evolvable hardware. A larger structure would thus require a better

hardware as compared to the one used, hence the hitch of microcontroller can be resolved by

introducing an FPGA instead for the running of GA.

Another option would be the incorporation of the microcontroller into the FPGA as a soft-core

processor, to increase the speed of the system.

A faster method can be developed for the clocking of individual flip-flops, if both the GP and

GA are run in the same hardware by the same clock.

Provided the microcontroller used for the GA has enough memory and speed, the generic

platform can be modified so that it uses fewer resources on the FPGA hardware. This can be

done by running the counter for bistability checking in the GA rather than in the GP .

It is hoped that the introduction of a better hardware for the platform would solve these

glitches efficiently, thus leading to a resource friendly and superior generic platform.

 94

APPENDICES

APPENDIX I : Procedure for Running Quartus Experiment

Basic Cell Structure, Programming and Testing Procedure

1. Make a folder for your work e.g. ‗Testcell‘.

2. Invoke Quartus II.

3. Go to File | New Project Wizard. On the introduction, screen click- Next.

4. Enter the working directory e.g. C:\Testcell.

5. The Wizard will automatically select the working directory name as the default for

project name i.e. Testcell. Also ensure the Top-level design entity name is also same

as project name i.e. Testcell – click Next.

6. The wizard will ask to add files in the project, leave the space blank and click Next.

Note: Do not add any files yet.

7. In the ‗Family and Device Settings‘ choose ‗MAX7000S‘ in the Family and select

‗EPM7128SLC84-15‘ in the Target device category. Leave other options to default

and click Next.

8. On the EDA Tool setting leave everything to default – Next.

9. Click Finish on the Summary page.

10. As we have already created the schematic design for the project – Copy and rename

the ‗.bdf‘ and ‗lpm‘ max files into the working folder i.e. C:\Testcell. Note: The ‗bdf‘

file should be named exactly as the working folder.

11. Checking of the Code: Open the ‗Testcell.bdf‘ and go to Select – Processing – Start –

Start Analysis & Synthesis.

12. Assigning Pins: Pin assignment in the design can be done by selecting Assignments –

Pins. Make sure the Category (on the Right Hand Side) is ‗Pins‘.

13. Under the ‗To‘ column or <<New>> double left click and highlight the pin name e.g.

Clk.

14. Then under the ‗location‘ column or <<New>>double left click and highlight the Pin

number e.g. Pin_76. Complete the list of pins as shown in the Appendix.

Hint: Already allocated pins would show in Italics.

15. Close the window and save when prompted.

 95

16. Go to Assignments – Settings – Simulator – choose ‗Functional‘ in the Simulation

mode on the Right Hand Side and leave rest to default.

17. Compilation: To compile the design go to Processing – Start Compilation.

Compilation should complete, showing usage as 10 % of the total macrocells.

18. Simulation: Now to simulate the design, do the following:

i. Processing – Generate Functional Simulation Net list.

ii. File – New – Other Files – Vector Waveform File – Ok.

iii. Edit – End Time – 300ms.

iv. View – Fit in Window.

v. Edit – Insert Node or Bus.

vi. Click on Node Finder

vii. In Filter select Pins: all – List.

viii. Transfer all the signals on LHS to RHS – Ok – Ok.

ix. In the waveform editor move any inputs to the top of the sequence by selecting

(Highlight + Hold +Move) the desired ones.

x. Place clock signal: Highlight clock and right click – value – clock – accept

default 10 ns – Ok.

xi. Make sure ‗RST‘ is low for the 1
st
 clock period, after that is should be ‗1‘

throughout. As shown :

Figure 75 Selection of clock cycles

xii. We wish to simulate the configuration of the following function :

B (1) =0 B (0) =0 A (1) =0 A (0) =1 E=0

xiii. Set the ‗SER_IN‘ as shown, after the ‗RST‘ is set to 1 :

Clk

Rst

 96

Make sure clock signal is only 6 clock periods.

Figure 76 Setting up of SER_IN

The desired function will be:

Figure 77 AND gate function

xiv. After the configuration is loaded, set ‗IN_E‘ to ‗1‘ for more than one clock

period and ‗IN_W‘ to ‗1‘ for the same time. This will set the desired inputs

‗East‘ and ‗West‘ to ‗1‘.

19. Save the design as ‗Testcell.vwf‘.

20. Processing – Start Simulation.

You should see ‗OUT_N‘ go to ‗0‘ when ‗IN_E‘ =1 and ‗IN_W‘= ‗1‘.

Programming the Device

1. Connect Power Supply for MAX7000S Target Board to the Power point.

2. Connect ‗Byte Blaster‘ cable to the parallel port of the PC and to the Target Board.

3. In Quartus, go to Tools – Programmer – Select Hardware Setup (RHS).

4. Add Hardware—Hardware Setup.

& OUT_E

IN_W

IN_E

Clk

SER_IN

1

l

k

0

l

k

0

l

k

0

l

k

0

l

k

0

l

k

 97

 Make sure Byte Blaster MV or Byte Blaster II is selected on LPT1—Ok—Close.

5. Make Sure File ‗Testcell.pof‘ is selected.

6. Also make sure that the Programming /Configuration box is checked.

7. Select Start, Observe Progress --- 100%.

It should show that the CPLD has been programmed.

Make a simple microcontroller program and connect the micro controller to the CPLD. Select

the Baud Rate of 4800.

A test program was designed for 16F877 called ‗cell_test.c‘, which was connected to the

CPLD as follows:

Table 11. PIN SELECTION

PORT D PIN Name PIN Number

RD0 Clk 76

RD1 SER_IN 64

RD2 IN_E 75

RD3 IN_W 73

RD4 OUT_E 70

Testing

The simulation of the design showed the following results:

Table 12. TRUTH TABLE FOR DESIRED FUNCTION.

IN_E IN_W OUT_E

0 0 1

0 1 1

1 0 1

1 1 0

 98

The Pin setup to be used while configuring the device:

Table 13. PIN SETUP TABLE

PIN Name PIN Number

Clk 76

IN_E 75

IN_N 74

IN_W 73

OUT_E 70

OUT_N 69

OUT_S 68

OUT_W 67

RST 1

SER_IN 64

SEROUT 63

IN_S 61

 99

APPENDIX II: Testing done before running experiment

1. Pin selection for FLEX CPLD and ATMEL Microprocessor

Table 14. PIN SELECTION TABLE FOR FLEX

Pin name on ATMega128 Pin Number on FLEX Pin state from Micro

Input1 158 Output

Input2 156 Output

SER_IN 161 Output

Clk 163 Output

Clk1 91 Output

OUT2 149 Intput

Final_Out 144 Output

Ser_Out 153 Output

2. Pin selection for MAX CPLD and PIC Microprocessor

Table 15. PIN SELECTION FOR MAX

Pin name on PIC 16F877 Pin Number on MAX Pin state from Micro

Input1 17 Output

Input2 18 Output

SER_IN 16 Output

Clk 15 Output

Clk1 24 Output

OUT2 20 Intput

Final_Out 21 Output

Ser_Out 22 Output

 100

3. Simulation of NOT gate —Input is the IN_W (West input)

Figure 78 Figure showing NOT gate simulation

4. Simulation of NAND gate—Inputs are the IN_N(North)and IN_W(West)

Figure 79 Simulation of NAND gate

 101

5. Test Point Diagram for 2x2 array structure

Figure 80 GP showing Test points

 102

6. Simulation of 2x2 array with Test point

Figure 81 Simulation of 2x2 array

 103

APPENDIX III: Results achieved during experimentation

List of some of the evolved solutions after the first run of experiment (all the values are

Hexadecimal digits)

 F10D9

 B1303

 B10C5

 E4303

 F1005

 B4307

 34130

 64DD6

 30021

 C03F0

 C028D

 35539

 3130A

 104

MANUAL ANALYSIS OF EVOLVED SOLUTIONS (OR GATE) AFTER THE FIRST RUN OF EXPERIMENT

1. Manual analysis of 0xF1003 while circuit was behaving as an OR Gate

NOT NAND

NOT

1

CELL 1

CELL 3

CELL 2

CELL 4

EAST_OUT2

1 1 1 0 100 00

10 10000000

EAST_OUT1

EAST_OUT3 EAST_OUT4

NORTH_IN1

SOUTH_IN2

WEST_IN3

WEST_IN4

Selects North_IN
Gate

Selects East_IN

Selects South_IN

Router

Selects West_IN

Selects West_IN
Gate

ROUTER

WEST_IN2

Selects West_IN Selects West_IN
Gate

THE GENERIC PLATFORM

ABHISHEK BEDI

The results obtained after manual analysis are as follows:

 Cell 1 and Cell 3 act as a NOT gate

 Cell 2 is a NAND gate.

 Cell 4 is a Router, routing the West input to the North output.

This is a correct solution for ‗OR‘ gate.

Figure 82 Manual analysis of 0xF1003 while circuit was behaving as an OR Gate

 105

2. Manual analysis of 0xF10D9 while circuit was behaving as an OR Gate

NOT NAND

NAND

1

CELL 1

CELL 3

CELL 2

CELL 4

EAST_OUT2

1 1 1 0 100 00

101 0101100

EAST_OUT1

EAST_OUT3 EAST_OUT4

NORTH_IN1

SOUTH_IN2

WEST_IN3

WEST_IN4

Selects North_IN
Gate

Selects North_IN

Selects South_IN

Router

Selects North_IN

Selects West_IN
Gate

ROUTER

WEST_IN2

Selects West_IN Selects West_IN
Gate

NORTH_IN3

NORTH_IN4

THE GENERIC PLATFORM

ABHISHEK BEDI

The results obtained after manual analysis are as follows:

 Cell 1 is a NOT gate

 Cell 2 and Cell 3 act as NAND gates.

 Cell 4 is a Router, routing the North input to the North output.

This is not a correct solution for ‗OR‘ gate.

Figure 83 Manual analysis of 0xF10D9 while circuit was behaving as an OR Gate

 106

SIMULATION OF EVOLVED SOLUTIONS (OR GATE) AFTER THE FIRST RUN OF EXPERIMENT

 Simulation of 0xF1003

Figure 84 Simulation of 0xF1003

 Simulation of 0xF10D9

Figure 85 Simulation of 0xF10D9

 107

REFERENCES

[1] J. Torreson, "An Evolvable Hardware Tutorial " in 14th International Antwerp,

Belgium, 2004.

[2] A. Parikh and S. Soltic, "Evolvable Hardware," in BE mini conference Manukau

Institute of Technology,Auckland,New Zealand, 2005.

[3] P. Haddow and G. Tufte, "Bridging The Genotype-Phenotype Mapping For Digital

FPGAs," in The Third NASA/DoD Workshop on Evolvable Hardware, Los Alamitos, CA,

USA, 2001, p. 0109.

[4] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and T. Furuya, "Evolvable

Hardware with Genetic Learning," in Proc. of Simulated Adaptive Behavior, 1993, pp. 417-

424.

[5] T. Higuchi, M. Iwata, I. Kajitani, H. Yamada, B. Manderick, Y. Hirao, M. Murakawa,

S. Yoshizawa, and T. Furuya, "Evolvable hardware with genetic learning," Circuits and

Systems, 1996. ISCAS'96.,'Connecting the World'., 1996 IEEE International Symposium on,

vol. 4, 1996.

[6] "NASA/DOD 2005 Conference on Evolvable Hardware." vol. 2007 Washington D.C.,

2005.

[7] Y. Sato, "Proposal for a Field-Evolvable Hardware based on a Microprocessor

Incorporated Flash Memory," in Proceedings of the 2001 Congress on Evolutionary

Computation, Seoul, Korea, 2001, pp. 608-615.

[8] I. Kajitani, T. Hoshino, N. Kajihara, M. Iwata, and T. Higuchi, "An evolvable

hardware chip and its application as a multi-function prosthetic hand controller," Proceedings

of the sixteenth national conference on artificial intelligence and eleventh innovation

applications of AI conference on Artificial intelligence and innovative applications of artificial

intelligence table of contents, pp. 182-187, 1999.

 108

[9] D. Keymeulen, M. Durantez, K. Konaka, Y. Kuniyoshi, and T. Higuchi, "An

evolutionary robot navigation system using a gate-level evolvable hardware," in Evolvable

Systems: From Biology to Hardware, 1997, pp. 193-209.

[10] J. F. Miller, "Digital filter design at gate-level using evolutionary algorithms,"

Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1127-1134,

1999.

[11] T. C. Fogarty, J. F. Miller, and P. Thomson, "Evolving Digital Logic Circuits on

Xilinx 6000 Family FPGAs," in Soft Computing in Engineering Design and Manufacturing,

London, 1998, pp. 299-305.

[12] "Proceedings of the First NASA/DoD Workshop on Evolvable Hardware," in The First

NASA/DoD Workshop on Evolvable Hardware, Jet Propulsion Laboratory, California Institute

of Technology,Pasadena, California, USA., 1999.

[13] U. o. Sussex, "Evolutionary and Adaptive Systems at Sussex," Sussex.

[14] Y. Kamiya, S. Denno, Y. Mizuguchi, M. Katayama, A. Ogawa, and Y. Karasawa,

"Development of an adaptive array based on subband signal processing," Electronics and

Communications in Japan (Part III: Fundamental Electronic Science), vol. 85, pp. 19-30,

2002.

[15] A. Stoica, R. S. Zebulum, D. Keymeulen, M. I. Ferguson, V. Duong, and X. Guo,

"Evolvable hardware techniques for on-chip automated reconfiguration of programmable

devices " Soft Comput., vol. 8, pp. 354-365, 2004 2004.

[16] P. Bentley, J and T. Gordon, G.W, "On Evolvable Hardware," in Soft Computing in

Industrial Electronics, S. Ovaska and L. Sztandera, Eds. Heidelberg,Germany: Physica-

Verlag, 2002.

[17] C. Darwin, The Origin of Species by Means of Natural Selection. New York: Random

House Inc., 1859.

[18] D. Rumelhart , E, B. Widrow, and M. A. Lehr, "The basic ideas in neural networks,"

Commun. ACM, vol. 37, pp. 87-92, 1994.

 109

[19] Y. Zhang, S. Smith, L. , and A. Tyrnell, M. , "Digital Circuit Design using Intrinsic

Evolvable Hardware," in 6th NASA/DoD Workhsop on Evolution Hardware (EH 2004),

Seattle,USA, 2004, pp. 55-62.

[20] T. Gordon and P. Bentley, "Evolving Hardware," in Handbook of Nature-Inspired and

Innovative Computing, 2006, pp. 387-432.

[21] A. J. Hirst, "Notes on the evolution of adaptive hardware," in Adaptive Computing in

Engineering Design and Control 1996 University of Plymouth,UK, 1996.

[22] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of

Natural Selection. . London,England: The MIT Press, 1992.

[23] D. J. Montana, "Strongly Typed Genetic Programming," Evolutionary Computation,

vol. 3, pp. 199-230, 1995.

[24] S. Systems, "Evolutionary Strategy," P. Small, Ed. Berkshire, 2003.

[25] H. Jing-song, Z. Hao-ran, F. Qian-sheng, and W. Xu-fa, "Evolving the strategy of

evolutionary strategy," vol. 24, pp. 1715-17, September 2003 2003.

[26] P. Haddow, G. Tufte, and P. V. Remortel, "Evolvable Hardware: Pumping life into

dead silicon," in On growth, Form and Computers, S. Kumar and P. J. Bentley, Eds. London:

Academic Press, 2003.

[27] G. Borriello, C. Ebeling, S. A. Hauck, and S. Burns, "The Triptych FPGA

architecture," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 3, pp.

491-501, 1995.

[28] H. de Garis, "CAM-Brain the evolutionary engineering of a billion neuron artificial

brain by 2001 which grows/evolves at electronic speeds inside a cellular automata machine

(CAM)," in Towards Evolvable Hardware, 1996, pp. 76-98.

[29] N. Macias, "Ring Around the PIG: A Parallel GA with Only Local Interactions

Coupled with a Self-Reconfigurable Hardware Platform to Implement an O (1) Evolutionary

Cycle for Evolvable Hardware," in Congress on Evolutionary Computation Washington, DC,

USA, 1999, p. 1075.

 110

[30] G. Tufte and P. C. Haddow, "Prototyping a GA Pipeline for complete hardware

evolution," in Evolvable Hardware, 1999. Proceedings of the First NASA/DoD Workshop on,

Pasadena, CA, United States, 1999, pp. 18-25.

[31] M. Murakawa, S. Yoshizawa, I. Kajitani, X. Yao, N. Kajihara, M. Iwata, and T.

Higuchi, "The GRD chip: genetic reconfiguration of DSPs for neural network processing,"

IEEE Transactions on Computers, vol. 48, pp. 628-639, June 1999.

[32] C. Bauer, P. Zipf, and H. Wojtkowiak, "System Design with Genetic Algorithms," in

Field-Programmable Logic and Applications. The Roadmap to Reconfigurable Computing:

10th International Conference, FPL 2000, Villach, Austria, August 27-30, 2000. Proceedings,

2000, p. 250.

[33] A. Joglekar and M. Tungare, "Genetic Algorithms and their use in the design of

Evolvable Hardware," in IEEE Region 10 Conference for Student Papers, Mumbai, India.

[34] J. E. Baker, "Reducing bias and inefficiency in the selection algorithm," Proceedings

of the Second International Conference on Genetic Algorithms on Genetic algorithms and

their application table of contents, pp. 14-21, 1987.

[35] H. Pohlheim, "GEATbx: Genetic and Evolutionary Algorithm Toolbox for use with

MATLAB Documentation," 2005.

[36] M. Mitchell, An introduction to genetc algorithms. Cambdrige: MIT Press, 1998.

[37] A. Thompson, "Silicon evolution," in Proceedings of First Annual Conference,

Stanford University,CA,USA, 1996, pp. 444-452.

[38] L. Huelsbergen, E. Rietman, and R. Slous, "Evolution of Astable Multivibrators in

Silico," in Proceedings of the Second International Conference on Evolvable Systems: From

Biology to Hardware London,UK, 1998, pp. 66-77.

[39] U. Tangen and J. S. McCaskill, "Hardware Evolution with a Massively Parallel

Dynamically Reconfigurable Computer: POLYP," Proceedings of the Second International

Conference on Evolvable Systems: From Biology to Hardware, pp. 364-371, 1998.

 111

[40] A. Thomson, "On the automatic design of robust electronics through artificial

evolution " in Evolvable Systems: From Biology to Hardware. vol. 1478/1998 Heidelberg:

Springer Berlin 1998, pp. 13-24.

[41] S. D. Brown, "Fundamentals of Digital Logic with VHDL Design (McGraw-Hill

Series in Electrical and Computer Engineering)," 2005.

[42] J. A. Lewis, "Architectural innovations for high performance in PLDs," 1991, pp. P2-

2/1-4.

[43] S. Brown and J. Rose, "FPGA and CPLD architectures: a tutorial," Design & Test of

Computers, IEEE, vol. 13, pp. 42-57, 1996.

[44] A. Corporation, "Max 7000 Programmable Logic Device Family," in Data Sheet, ver.

6.7 ed: Altera Corporation, 2005, pp. 1-66.

[45] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, "Architecture of field-

programmable gate arrays," Proceedings of the IEEE, vol. 81, pp. 1013-1029, 1993.

[46] G. Hollingworth, S. Smith, and A. Tyrrell, "Safe intrinsic evolution of Virtex devices,"

Evolvable Hardware, 2000. Proceedings. The Second NASA/DoD Workshop on, pp. 195-202,

2000.

[47] Y. Thoma and E. Sanchez, "A Reconfigurable Chip for Evolvable Hardware," in

Genetic and Evolutionary Computation – GECCO 2004. vol. Volume 3102/2004: Springer

Berlin 2004, pp. 816-827.

[48] X. Corporation, "XC6200 Field Programmable Gate Arrays," in Data Sheet, Ver 1.10

ed: Xilinx Corporation, 1997, pp. 1-73.

[49] Channakeshav, K. Zhou, R. Kraft, and J. F. McDonald, "Gigahertz FPGAs with new

power saving techniques and decoding logic," in NASA/DoD Conference on Evolvable

Hardware NY, USA, 2002, pp. 60-62.

[50] P. Layzell, "A new research tool for intrinsic hardware evolution," in Evolvable

Systems: From Biology to Hardware: Springer, 1998, pp. 47-56.

 112

[51] N. Macias, "The PIG Paradigm: The Design and Use of a Massively Parallel Fine

Grained Self-Reconfigurable Infinitely Scalable Architecture," Proceedings of The First

NASA/DOD Workshop on Evolvable Hardware (EH’99), 1999.

[52] A. R. M. Limited, "AMBA Specification (Rev 2.0)," ARM Limited, 1999.

[53] Y. Thoma, E. Sanchez, J. M. M. Arostegui, and G. Tempesti, "A Dynamic Routing

Algorithm for a Bio-inspired Reconfigurable Circuit," in Submitted to the 13th International

Conference on Field Programmable Logic (FPL’03), 2003, pp. 681-690.

[54] S. A. Guccione, D. Levi, and P. Sundararajan, "JBits: A Java-based Interface for

Reconfigurable Computing," 2nd Annual Military and Aerospace Applications of

Programmable Devices and Technologies Conference (MAPLD), vol. 261, 1999.

[55] M. Iwata, I. Kajitani, Y. Liu, N. Kajihara, and T. Higuchi, "Implementation of a Gate-

Level Evolvable Hardware Chip," in Evolvable Systems: From Biology to Hardware: 4th

International Conference, ICES 2001 Tokyo, Japan, October 3-5, 2001, Proceedings, 2001, pp.

38-49.

[56] I. Kajitani, T. Hoshino, D. Nishikawa, H. Yokoi, S. Nakaya, T. Yamauchi, T. Inuo, N.

Kajihara, M. Iwata, D. Keymeulen, and T. Higuchi, "A Gate-Level EHW Chip: Implementing

GA Operations and Reconfigurable Hardware on a Single LSI," in Evolvable Systems: From

Biology to Hardware. vol. 1478/1998: Springer Berlin / Heidelberg, 1998, pp. 1-12.

[57] D. Thierens and D. Goldberg, "Elitist recombination: an integrated selection

recombination GA," Evolutionary Computation, 1994. IEEE World Congress on

Computational Intelligence., Proceedings of the First IEEE Conference on, pp. 508-512, 1994.

[58] D. Debnath and T. Sasao, "Minimization of AND-OR-EXOR Three-Level Networks

with AND Gate Sharing," IEICE TRANSACTIONS on Information and Systems, vol. 80, pp.

1001-1008, 1997.

[59] P. D. Hortensius, R. D. McLeod, and H. C. Card, "Parallel random number generation

for VLSI systems using cellular automata," Transactions on Computers, vol. 38, pp. 1466-

1473, 1989.

 113

[60] P. C. Haddow and G. Tufte, "An evolvable hardware FPGA for adaptive hardware,"

2000, pp. 553-560 vol.1.

[61] W. Encyclopedia, "Multiplexer," Wikimedia Foundation, 2007.

[62] W. Encyclopedia, "Shift register," Wikimedia Foundation, Inc., 2006.

[63] A. Corporation, "Quartus II Introduction Using VHDL Design." vol. 2006: Altera,

2006, p. OnlineTutorial.

[64] W. Encyclopedia, "Crossover," Answers.com, 2007.

