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Abstract  

Evolvable Hardware is a technique derived from evolutionary computation applied to a 

hardware design. The term evolutionary computation involves similar steps as involved in the 

human evolution. It has been given names in accordance with the electronic technology like, 

Genetic Algorithm (GA), Evolutionary Strategy (ES) and Genetic Programming (GP). In 

evolutionary computing, a configured bit is considered as a human chromosome for a genetic 

algorithm, which has to be downloaded into hardware.  

Early evolvable hardware experiments were conducted in simulation and the only elite 

chromosome was downloaded to the hardware, which was labelled as Extrinsic Hardware. 

With the invent of Field Programmable Gate Arrays (FPGAs) and Reconfigurable Processing 

Units (RPUs), it is now possible for the implementation solutions to be fast enough to evaluate 

a real hardware circuit within an evolutionary computation framework; this is called an 

Intrinsic Evolvable Hardware. 

This research has been taken in continuation with project 'Evolvable Hardware' done at 

Manukau Institute of Technology (MIT). The project was able to manually evolve two simple 

electronic circuits of NAND and NOR gates in simulation. In relation to the project done at 

MIT this research focuses on the following: 

To automate the simulation by using In Circuit Debugging Emulators (IDEs), and 

To develop a strategy of configuring hardware like an FPGA without the use of their company 

supplied in circuit debugging emulators, so that the evolution of an intrinsic evolvable 

hardware could be controlled, and is hardware independent. 

As mentioned, the research conducted here was able to develop an evolvable hardware 

friendly Generic Structure which could be used for the development of evolvable hardware. 

The structure developed was hardware independent and was able to run on various FPGA 

hardware‘s for the purpose of intrinsic evolution. The structure developed used few 

configuration bits as compared to current evolvable hardware designs. 
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Definitions                         

AMBA protocol: The AMBA® protocol is an open standard, on-chip bus specification that 

details a strategy for the interconnection and management of functional blocks that makes up a 

System-on-Chip (SoC). 

API:  Application Program Interface is a set of routines, protocols, and tools for building 

software applications. A good API makes it easier to develop a program by providing all the 

building blocks. A programmer puts the blocks together.  

Cell: Here the Cell has been referred to as the building block of the generic cellular structure 

required for the research. It consists of basic elements required to perform the evolvable 

hardware functioning. 

Cellular Automata: CA evolves in discrete steps with the next value of one site determined by 

its previous value and that of the neighbour sites  

D-type register: A shift register formation consisting of D-type Flip-flops is known as D-type 

Register.  

Flip Flop: A Flip-flop is a simple memory element constructed using logic circuits. It consists 

of a latch circuit, which can store a state for given input combination.  

Generic Platform: The term Generic Platform has been introduced in this research, for the 

complete generic cellular structure formed by the building block ‗Cell‘. A generic platform 

usually consists of ‗Cell‘ in the form of arrays of 1x2, 2x2 or more. 

GATE:  A gate may consist of one or more inputs and an output depending on the function of 

its inputs. 

Genotypes: The genotype is the specific genetic makeup (the specific genome) of an 

individual, in the form of DNA. In biology, the genome of an organism is its hereditary 

information and is encoded in the DNA.  

Logical Element (LE): As the name suggest, they are the basic elements that are responsible 

for logical functioning of programmable logical devices like PAL, FPGA etc. 

http://www.webopedia.com/TERM/A/routine.html
http://www.webopedia.com/TERM/A/protocol.html
http://www.webopedia.com/TERM/A/application.html
http://www.webopedia.com/TERM/A/program.html
http://www.webopedia.com/TERM/A/API.html
http://www.webopedia.com/TERM/A/programmer.html
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MPGA: MPGAs are not at all similar to the PLDs in architecture. These devices usually 

consist of an array of transistors that are pre fabricated into the chips and are customizable by 

the user into his logic. This customization is done by connecting the transistors with custom 

wires. In addition, the customization is performed during chip fabrication by specifying the 

metal interconnect; hence, this requires a lot of manufacturing cost and time. 

Multiplexer: A Multiplexer (MUX) is a logic circuit formed together by the combination of a 

NOT, two AND gates and an OR gate. It is a circuit that generates an output reflecting the 

state of one of a number of data inputs, based on the value of one or more selection control 

inputs. A multiplexer can have n number of data inputs with [log2n] select inputs, but only 

have one output. 

NAND GATE: A ‗NAND‘ gate is the combination of an ‗AND‘ followed by a ‗NOT‘ gate. 

Shift Register:  A flip-flop can store only one bit of information. When a number of flip-flops 

are joined together with a common clock signal, it is known as a Register. A register that 

provides the capability to shift the data bits is called a Shift-Register. 

Phylogenetics: In biology, phylogenetics is the study of evolutionary relatedness among 

various groups of organisms (e.g., species, populations). 

PLA (Programmable Logic Array): It is a programmable device used to implement 

combinational logic circuits. The PLA has a set of programmable AND planes, which link to a 

set of programmable OR planes. 

Uniform Crossover:  It is a type of crossover in which, each gene of the offspring is randomly 

selected from the parent gene. This type of crossover can only produce one offspring. 

VHDL:  It is a hardware description language (HDL) used to design electronic systems at the 

component, board and system level. 
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1 Introduction 

Evolvable Hardware (EHW) is a scheme, inspired by biological evolution, for automatic 

design of hardware systems. By exploring a large design search space, EHW may find 

solutions for a problem that is unsolvable using traditional methods or it may find more 

optimal  solutions than those found using traditional  methods [1]. 

Evolvable Hardware involves the same steps as biological evolution. In EHW a Genetic 

Algorithm (GA) develops a range of circuits (similar to a biological population) in the form of 

configuration bits (similar to chromosomes), which are downloaded one by one into hardware 

such as field-programmable gate arrays (FPGA) for fast evolution. The evolved circuits are 

then fed back to the GA and are compared to the desired circuit. This process keeps on 

running until the desired circuit is achieved automatically by the system, from the generated 

population. 

A field-programmable gate array or FPGA is a semiconductor device containing up to 

hundreds of thousands of gates, programmable logic components, switches and programmable 

interconnects. Early evolvable hardware experiments were conducted in simulation and only 

the elite chromosome was downloaded to the hardware. Now in modern times, most of the 

evolution is being done on the hardware. 

An Evolvable Hardware System mainly consists of two components, a Genetic Algorithm and 

Hardware. 

As mentioned earlier, in the early evolvable hardware experiments only elite chromosomes 

were downloaded to the hardware, but now the focus has shifted to generating solutions on the 

hardware. 

This research is a continuation of the Project ‗Evolvable Hardware‘ conducted at Manukau 

Institute of Technology, Auckland [2]. That project was more oriented towards simulation. 

The project team was successfully able to generate a simple NAND gate in simulation using a 

GA. The future work proposed in the project was to get the NAND gate evaluated in the 

hardware and this became the starting point of this research. 

The field of EHW is relatively young but already researchers have not only had to move 

through different technology platforms such as Xilinx 6200,400 and Virtex
®
 series, but also 
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evolution friendly features (like, availability of bit stream configuration to the programmer) 

have disappeared from FPGAs [3]. Due to the new designs of modern FPGAs the bit 

configuration for an FPGA is not available anymore as it is considered as an intellectual 

property and hence it is not possible to modify or use the configuration bits for the 

development of EHW. 

Due to this problem, a new approach of developing a ‗Generic Cellular Structure‘ (a high level 

structure for FPGAs) for EHW has been brought forward to use any available hardware in the 

market for the development EHW. This research aims to develop such a platform. 

Different kinds of hardware available in the market were reviewed for this research, and a 

sound knowledge was developed of the capabilities of hardware currently available in the 

global market. 

The main requirement of the research was that a simple generic cellular structure with a small 

chromosome size was to be designed and implemented into FPGA hardware. In addition, this 

structure was to be verified for the purpose of intrinsic evolution of an electronic circuit. A 

microcontroller was used for running the genetic algorithm and an FPGA was chosen as the 

hardware for the generic platform. The research also composed of evolving two basic 

electronic structures using the Generic Structure with a Genetic Algorithm. 

The testing of the generic platform and the genetic algorithm were first to be done in 

simulation and then they were to be loaded into the hardware for internal evolution as 

evolvable hardware. 

Another requirement for this research, was that the functionality of the evolvable hardware 

was to be tested using two different Hardware Systems. The two circuits to be evolved were 

an AND gate and an OR gate. 

The circuits evolved by the evolvable hardware system were also to be manually crosschecked 

for mistakes, to prove the functioning of the developed system. 

A literature review including an explanation of evolvable hardware and the history of its 

elements is given in chapter 2 and chapter 3 respectively. The experiment has been explained 

in Chapter 4 and Chapter 5 with its solutions analysed in Chapter 6.  The final chapter is 

Chapter 7 where the conclusions of the experiment and future work have been described. 



  

3 

 

2 Evolvable Hardware Background 

In 1992, a new field applying biological evolutionary techniques to hardware design and 

synthesis was introduced, which gave a new approach for hardware design. The new approach 

used evolutionary concepts to design innovative and robust circuits automatically. This design 

scheme was called Evolvable Hardware (EHW) [4]. 

Higuchi and Furuya [4] first officially proposed the field of Evolvable Hardware at the 2nd 

International Conference on the Simulation of Adaptive Behaviour. In the words of the 

proposer, ―Evolvable Hardware (EHW) is hardware which is built on software-reconfigurable 

logic devices (e.g. PLD (Programmable Logic Device) and FPGA (Field Programmable Gate 

Array)) and whose architecture can be reconfigured by using genetic learning to adapt to the 

new environment‖ [5]. The basic idea of EHW is to regard the architecture bits of PLDs as 

chromosomes of GAs and to find out better hardware structure by GAs, as shown in the figure 

below: 

 

Figure 1 Evolvable Hardware [5] 

EHW was considered a system capable of finding solutions to unsolvable problems. The 

system could also find more optimal solutions than those found using traditional approaches 

and hence lead to the design of robust systems that found application in the fields of defence, 

space, automation and fault tolerant systems; this was displayed at the NASA/DOD 2005 

conference [6]. 

After the introduction of the concept many international conferences such as the Genetic and 

Evolutionary conference, the Congress on Evolutionary Computation, the International 



  

4 

 

Conference on Evolvable Systems and the NASA/DOD Workshop on Evolvable Hardware 

were established and since then, new ideas for research in the EHW field have steadily 

increased [7].  

Many research experiments in the field have been carried out around the world including: 

 The application to an electro-muscular control artificial arm [8],  

 An evolutionary robot navigation system [9],  

 Digital Filter design at gate level [10] and 

 An Evolved Circuit of a Tone Discriminator [11]. 

EHW is a young research area and, many organisations around the world are currently 

working for its further development in various fields of technology. The main research 

organisations include:  

 The Stanford University and NASA in the USA [12], intend to use the evolvable 

hardware for space research. 

 The University of Sussex in Great Britain is working for general research purposes in 

the field of computers and electronics [13]. 

 The Electro Technical Laboratory and the ATR (Advanced Telecommunications 

Research Institute International) in Japan intend to use of EHW in the field of 

communications [14], and  

 The California Institute of Technology in United States of America is one of the other 

institutes involved in the field [15]. 

 Although the concept of EHW is relatively new, some EHW applications are already 

being evaluated for their commercial value [16]. 
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2.2 Definition of Evolvable Hardware 

2.2.1 Natural Evolution 

 

Evolvable hardware is a scheme, which was derived from the concept of natural evolution 

based on Darwin‘s theory of evolution.  

Darwin [17] in his work ―The Origin of Species by Means of Natural Selection‖ has explained 

the process of natural selection of organisms based on the concept of ‗Survival of the Fittest‘. 

The concept of natural selection explains how the weak organisms having more chance of 

elimination, eventually die and the fit organisms survive and reproduce. In this process of 

natural selection, the fit individuals produce a new population with their genes crossing over 

to form new individuals with chromosomes.  

The chromosomes developed after crossover, have some different characteristics that may or 

may not be better than the original chromosomes. This genetic change in a deoxyribonucleic 

acid (DNA) sequence is known as mutation. These new individuals again go through the 

process of selection in which the weak are eliminated, and the process carries on producing 

new population of individuals with steadily improved characteristics. 

This concept of natural selection has led to the development of humans and other biological 

organisms. EHW was invented to design the hardware using the same concept of natural 

selection. 

 EHW deals with the designing of analog or digital circuits using the genetic algorithms. This 

technique acts like an engineer in the design task, and can be used in many different areas. 

2.2.2 Hardware Evolution  

The field of Evolvable Hardware is a fusion of several different fields. Figure 2 shows the 

origination of EHW from the intersection of three sciences. As depicted the sciences of 

biology, computer science and electronic engineering form the basis of fusion for the field of 

Evolvable Hardware. 

As observed by Bentley & Gordon [16], ―For many years computer scientists have modelled 

their learning algorithms on self-organising processes observed in nature. Perhaps the most 

well known example is the artificial neural network (ANN)‖ [18]. The work on these learning 
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algorithms that is based on self-organising processes found in nature is known as bio-inspired 

software.  

Bio-inspired hardware is an established field of electronic engineering that utilises ideas from 

nature to develop hardware. One recent example of this field is simulated annealing 

algorithms, which are based on the physical phenomenon of annealing in cooling metals [16].  

 

Figure 2  Origination of EHW from the intersection of three sciences [16] 

―Evolvable hardware applies techniques derived from Evolutionary Computation (EC), i.e. 

Genetic Algorithms (GAs), Evolutionary Strategy (ES) and Genetic Programming (GP), to 

hardware design and synthesis‖ [19]. These terms are defined below: 

Evolutionary Computation (EC) is defined as the field that solves problems using search 

algorithms inspired by biological evolution [20]. EC involves the same steps as occur in the 

natural evolution [21]. 

A Genetic Algorithm (GA) is an algorithm that was adapted from the concept of genes in 

natural evolution and contains steps like mutation, crossover, reproduction and selection. In 

this algorithm a population consisting of a lot of circuits i.e. circuit representations, is 

randomly generated .The behaviour of each circuit is evaluated and the best circuits are 

combined to generate a new and better population of circuits.  

Genetic Programming (GP) is a method for automatically generating computer programs using 

the process of natural selection [22]. It uses a genetic algorithm to search a computer program 
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that is nearly most favourable for performing a special task. Even though it is not the first 

method, but it is so far considered one of the most successful methods of automatic 

programming [23]. 

Evolutionary Strategy (ES) is a process that can continuously reproduce new generations, and 

does trial and selection on the newly generated population. Each new generation is an 

improvement on the one that went before, thus resulting in systems that are more efficient and 

more organised than their primitive systems [24]. ES is an important algorithm of GA [25] .It 

primarily uses real-vector coding, with its search operators being mutation, recombination, and 

environmental selection. In ES, diversity is not essential because of a greater reliance on 

mutation, whereas a GA relies more on diversity as crossing over a homogenous population 

does not yield new solutions. 

According to Haddow and Guner [26],  Evolvable hardware (EHW)  can also be defined as the 

application of genetic algorithms (GA) and Genetic Programming (GP) to electronic circuits 

and devices. 

Field Programmable Gate Arrays or FPGAs are the electronic devices that are commonly as 

the platforms for EHW. FPGA are integrated circuit arrays containing of electronic logic 

hardware that provide designers with reconfigurable logic [27]. It usually contains thousands 

of programmable elements and interconnects. The interconnects take up a lot of FPGA real 

estate, resulting in a chip with low gate density compared to other technologies. The 

programmable logic components can be programmed to duplicate the functionality of basic 

logic gates (such as AND, OR, XOR, NOT) or more complex combinatorial functions such as 

decoders or simple math functions.  

In most FPGAs, these programmable logic components (or logic blocks, in FPGA 

terminology) also include memory elements, which may be simple flip-flops or complex 

blocks of memories. 

FPGAs have their historical roots in the complex programmable logic devices (CPLDs) of the 

early 1970s to mid 1980s. CPLDs and FPGAs include a relatively large number of 

programmable logic elements. CPLD logic gate densities range from the equivalent of several 

thousand to tens of thousands of logic gates, while FPGAs typically range from tens of 

thousands to several million. 
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In this research, a field-programmable gate array is used as a platform for the technique of 

EHW and a Genetic Algorithm is used to provide a required design. 

The general procedure of the evolvable system is shown below in Figure 3. 

 

Figure 3 Operation of an Evolvable System [1] 

2.3  EHW – Types of Evolution  

Early evolvable hardware experiments were conducted by simulation and the best 

chromosome was downloaded to the hardware for final testing. With the invention of FPGAs, 

it is now possible for the implementation of solutions to be fast enough to evaluate a real 

hardware circuit within an evolutionary computation framework; this is termed as an Intrinsic 

Evolvable Hardware [19]. 

Hugo de Garis [28] states there are three main methods for achieving evolvable hardware: 

Extrinsic, Intrinsic and Complete Hardware (on-chip) Evolution. These are shown below in     

figure 4.  

The first method known as Extrinsic EHW is the evolution of electronic circuits through 

simulation. In this type of evolution, the entire process of evolution including fitness 

evaluation of the individuals is implemented in software [26] and, at the end of each 

generation, the best individual is downloaded to the electronic device for final testing. 

The second method, Intrinsic EHW, is when each genotype is assessed on the device by 

downloading the new configuration and testing the device directly. 
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Figure 4 Three types of evolution [26] 

The third type and less used form of evolution is an on-chip strategy, also termed complete 

hardware evolution (CHE) [29, 30]. In this, the complete evolution process is located on the 

same chip as the evolving circuit. Another similar approach is the use of an on-board 

processor running the evolutionary algorithm [31].  

2.4 Genetic Algorithms  

A genetic algorithm (GA) is an algorithm that is capable of finding a solution to a problem by 

developing a pool of random solutions then working its way towards the an optimum or near 

optimum solution [32]. 

The genetic algorithm replicates the same concept of natural selection in computing. In this 

algorithm a set of circuit representations are first randomly generated, this is the initial 

population. The behaviour of each circuit is then evaluated (as per the defined fitness function 

in the genetic algorithm) and the best circuits are combined to generate a new array of circuits 

that hopefully includes a better circuit solution [1] . 

Each individual circuit description is known as a genotype. Genotype describes the genetic 

constitution of an individual, that is the specific allelic (an allele is a viable DNA coding that 

occupies a given position on a chromosome) makeup of an individual. The genotypes consist 

of an array of bits and each bit contained in them is known as a gene.  

http://en.wikipedia.org/wiki/Allele
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Chromosome
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These newly generated genotypes are passed through the same process, until a new fittest 

circuit is evolved to behave according to the specification desired by the user. Mutation can 

also occur in the generated population. This can lead to a chromosome with better fitness. 

Thus, the final design is based on incremental improvement of a population, initially which 

was randomly generated. Figure 5 below shows pseudo code for a simple genetic algorithm. 

The flow chart for a genetic algorithm is shown in figure 42. 

 

Figure 5 A Simple example of Genetic Algorithm [2] and [33] 

2.4.1 Genetic Algorithm Terminology  

Population size: This is the number of chromosomes in one generation. This number should 

not be too small as this causes only a small part of the search space to be explored. On the 

other hand, too many chromosomes slow down the GA. Population size is chosen depending 

on the nature of the evolution being done. 

Selection: It is the first operator of a genetic algorithm that selects chromosomes in the 

population for reproduction. The fitter the chromosome, the more times it is likely to be 

selected to reproduce. Selection can be done using various selection techniques such as 

Roulette Wheel selection, Tournament selection, Random selection etc. For example, in the 

roulette wheel selection also known as stochastic sampling with replacement [34], the 
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individuals are mapped to contiguous segments of a line, such that each individual's segment 

is equal in size to its fitness. A random number is generated and the individual whose segment 

spans the random number is selected (with a possibility of same individuals being selected as 

well). Hence, the probability of selecting individual is proportional to its fitness. The process 

is repeated until the desired number of individuals is obtained. This is called mating 

population. This technique is analogous to a roulette wheel with each slice proportional in size 

to the fitness, see figure 6. 

 

Figure 6  Roulette Wheel Selection [35] 

Crossover:  It is a GA operator that randomly chooses a locus and exchanges the subsequence 

before and after the locus between two chromosomes to create two offspring. The crossover 

method emulates the process of natural crossover by generating offspring that carries forward 

the important genetic material of the parents, whilst introducing enough variation so that they 

can potentially become fitter than the parents can. For example as shown in figure 7, the 

strings 00000000000000 and 11111111111111 could be crossed over after the seventh locus 

in each to produce the two offspring 00000001111111 11111110000000. Crossover shown 

below is an example of single point crossover where a single locus has been chosen to 

crossover the chromosomes, but crossover can also be done at multiple points and is known as 

multi point crossover.  

Mutation: This is also a GA operator, which randomly flips some of the bits in a 

chromosome. Mutation prevents the GA from being stuck to a local maximum of fitness. For 

example, as shown below third bit is flipped in first offspring to get 00100001111111 and 

sixth bit is flipped in the second offspring. 
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Figure 7 Crossover and Mutation [1] 

2.4.2 A Simple Genetic Algorithm[36]  

I. [Start] Generate a random population of p n-bit chromosomes (candidate 

solutions to a problem). 

II. [Fitness] Calculate the fitness f(x) of each chromosome in the population. 

III. [New Population] Create a new population by applying the following steps 

(4 to 7) until p offspring have been created: 

IV. [Selection] Select a pair of parent chromosomes from the current 

population according to their fitness (chromosomes with better fitness have 

a bigger chance to be selected).Selection is done ―with replacement,‖ 

meaning that the same chromosome can selected more than once to 

become a parent. 

V. [Crossover] With the given crossover rate pc, the parent genes are crossed 

over to form new offspring at a randomly chosen point. If no crossover is 

performed, then the offspring are an exact copy of the parent. 

VI. [Mutation] Mutate the two offspring at each locus with mutation rate pm, 

and place the resulting chromosomes in the new population. 

VII. If p is odd, one new population member can be discarded randomly. 

VIII.  [Replace] Use the new generated population for further processing by 

replacing the current population. 

IX.  [Loop] Go to step 2. 
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3 Hardware Platforms 

Field Programmable Gate Arrays (FPGAs) are digital circuits that can be reconfigured, and 

thus they are excellent candidates for implementing EHW [3]. Commercial FPGAs are based 

on a 2-dimensional array of cells, in which it is possible to define the cells‘ functionalities and 

routing. 

As noted by Pauline Haddow [3], current development in FPGA designs have led to 

disappearance of evolvable hardware friendly features from FPGAs, due to the change in 

design of new FPGAs which does not give the option of configuration bits to be controlled by 

a programmer.  

The most widely used FPGA for EHW experiments a decade ago was the VIRTEX® XC6200 

[11, 37-40] . Hence, this chapter will emphasise the design of evolvable friendly hardware that 

is available or being developed by different researchers around the world.  

The chapter has been mainly divided into five sections, the first two sections describe the 

history and development of the FPGA. The third section analyses the XC6200 architecture, as 

it was one of the best evolvable friendly FPGAs and was the basis of many evolvable 

experiments. The following section discusses recent research being conducted on designing 

new hardware chips for the purpose of evolvable hardware. The fifth section describes the 

hardware structure that forms the basis of our design. 
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3.1 The History and Development of FPGA  

The history of the FPGA goes back three decades, to the 1970s when the first Programmable 

Logic Devices (PLDs) were introduced [41], for implementing logic circuitry in electronic 

chips.  Since then many modifications and developments have been made in the architecture 

and structure of these devices to meet the needs of electronics. They have been termed as 

field-programmable devices (FPDs), but we will be referring them as PLDs. 

There are several types of PLD available commercially. The three main categories of PLDs 

are:  

 Simple PLDs (SPLDs),  

 Complex PLDs (CPLDs), and  

 Field-Programmable Gate Arrays (FPGAs) 

Simple PLDs usually refer to small types of PLDs, generally containing two planes of logic. 

The first to be developed in this category was the Programmable Logic Array (PLA) 

containing two programmable planes, an AND-plane and an OR-plane .Both these planes are 

programmable by the user and are used to generate logic functions using the ‗Sum of 

Products‘ form of digital logic.  

Typical parameters of a PLA are sixteen inputs, thirty-two product terms and eight outputs. 

PLAs are efficient in terms of area needed for their implementation on an integrated circuit 

chip and hence they usually form a part of larger chips such as microprocessors. PLAs were 

difficult to fabricate and they reduced the speed-performance of circuits implemented in them. 

This led to the development of a similar device in which the AND- plane was programmable 

but the OR-plane was fixed [36]. This device was known as programmable array logic (PAL). 

PAL is a trademark of Advanced Micro Devices Corporation [42]. 



  

15 

 

 

Figure 8 Structure of a PAL [43] 

 The second category of PLDs, known as Complex Programmable Logic Devices, was 

introduced in the early to mid 1980s. CPLD logic gate densities range from the equivalent of 

several thousand to tens of thousands of logic gates. A CPLD is also known as Enhanced PLD 

(EPLD), Super PAL or Mega PAL [43]. 

A CPLD comprises of PLA or a PAL-like structures together with input-output blocks and 

interconnection wires. Normally extra circuitry is added to the output of a PAL. This structure 

as a whole is known as a Macrocell. This macrocell forms the building block of a CPLD; a 

macrocell is illustrated in figure 9. 

 

Figure 9 A Macrocell of MAX 7000 [44]  
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 CPLDs were pioneered by Altera, first in their family of chips called Classic EPLDs, and then 

in three additional series, called MAX 5000, MAX 7000 and MAX 9000. A typical CPLD can 

provide a functionality equivalent to 50 SPLD devices, but for higher logic capacity, a 

different approach is required [43]. 

3.2 General Architecture of an FPGA 

 

Figure 10  Structure of an FPGA [45] 

As illustrated in the above figure, an FPGA consists of an array of logic blocks and 

interconnect resources, which can be configured through programming to realize different 

designs. 

There is an architectural difference between a PLD and an FPGA. The PLD has a more 

restrictive structure consisting of one or more programmable sum-of-products logic arrays 

feeding a relatively small number of clocked registers, leading to predictable timing delays 

and a higher logic-to-interconnect ratio. The FPGA architectures, on the other hand, are 

dominated by interconnects which make them more flexible for larger designs, but also far 

more complex to design for relatively smaller designs. FPGAs can achieve higher level of 

integration than PLDs, due to more complex routing architectures and logic implementations 

[45]. 
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An FPGA can be as simple as a transistor or as complex as a microprocessor. It is typically 

capable of implementing a lot of combinational and sequential logic [45]. 

FPGAs include a relatively large number of programmable logic elements thus allowing a 

very high logic capacity [43]. In general, CPLD logic gate densities range from the equivalent 

of several thousand to tens of thousands of logic gates, while FPGAs typically range from tens 

of thousands to several million gates. 

3.3  Xilinx XC6200 FPGA 

FPGAs often took a number of seconds to reconfigure in the past, making them too slow for 

EHW. This changed with the development of the Xilinx XC6200 series devices. The device 

held the configuration in Static RAM, meaning that it could be quickly accessed, read and 

changed, thus making it the favourite choice for EHW.  

The main evolvable favourable features of XC6200 were: 

 Fast reconfiguration: The device used a parallel interface rather than the conventional 

serial approach and therefore was able to be configured much faster than previous 

devices. 

 Known data format: The bit-stream format was available so that the user could alter 

individual parts of the configuration; this was a useful feature for EHW. 

 Safe configuration: The device had been designed in such a way, that it restricts the 

connections between the logic block. Thus, it was safe to load any random 

configuration into the hardware [46]. 

 Routing implementation: Its routing implementation was based on multiplexers rather 

than on anti-fuse or memory bits, (short circuits could be generated in almost every 

other FPGA) [47]. 

Other features of the XC6200 were: 

 Microprocessor interface: A standard microprocessor interface to static RAM was used 

to configure the device. 

 Partial reconfiguration: Configuring the device was easier and was not interlinked 

between different areas of the device; hence, configuration in one area could be 

changed without affecting another area of the device [46]. 
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 However, the production of XC6200 was stopped, leaving the EHW world with no 

choice except to develop its own evolvable friendly hardware. 

 Most of these EHW hardware chips were based on the architecture of the XC6200 due 

to its reconfigurable characteristics, which prevented the outputs of a structure from 

being connected together. A brief description of this architecture is given below. 

3.3.1 Logical and Physical Organisation  

The XC6200 was a second-generation fine-grain architecture, employing a hierarchical 

cellular array structure[48]. The XC6200 architecture may be viewed as a hierarchy. A large 

array of simple cells lies at the lowest level of the hierarchy (Figure 11) and has been termed 

as a ‗sea of gates‘. Each cell in this array is individually programmable to implement a D-type 

register and a logic function such as a multiplexer or gate.  Any cell may be configured to 

implement a purely combinatorial function, with no registers involved. 

 

Figure 11 Nearest Neighbour interconnect array structure [48] 

The structure of the XC6200 is a combination of an array structure formed by connecting 

neighbouring cells, which are then grouped into different levels of hierarchy such as a unit 

cell, 4x4 cellblocks, 16x16 cellblocks, 64x64 cellblocks etc. 
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In addition, each level has its own routing resources. Wires of length 1 are provided to allow 

basic cells to route across themselves and length 4 wires allow 4x4 cells to route amongst 

themselves. Larger XC6200 products extend this process of routing wires, by using a scaling 

factor of four at each hierarchical level. There are also long wires at each level, which are of 

chip-length and are termed as ‗FastLANEs 
TM

‘. The structure is shown below. 

 

Figure 12 XC6200 structure [48] 

3.3.2 Basic Cell 

The basic cell of the XC6200 is shown in figure 13 below. Here the inputs from neighbouring 

cells are labelled N, S, W, E and those from the length 4 wires N4, S4, W4 and E4 according 

to their signal direction. Additional inputs include clock and asynchronous clear for the 

functional unit D-type register. Here, the output of the cell function unit implementing the 

gates and registers has been labelled as F. There is another output, labelled as ‗Magic‘. The 

magic output is an additional routing resource located in each cell, but is not always available 

for routing. The availability of the magic output is dependent on the logic function 
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implemented in the cell. Bits within the configuration memory control the multiplexers within 

the cell.  

 

 

Figure 13 XC6200 Basic Cell [48] 
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3.3.3 The Configurable Logic Block Structure  

The Function Unit is also known as the Configurable Logic Block (CLB).The implementation 

of the XC6200 CLB is shown in figure 14 below. Y2 and Y3 are the input multiplexers and 

provide the conditional inversion of the X2 and X3 inputs. The CS output multiplexer selects a 

combinational or sequential output based on the programming. The RP multiplexer allows the 

contents of the register (D flip-flop) to be ‗protected‘.  

Hence, there are two paths in the structure: 

 The Sequential Path:  Passing through the input multiplexers and then through the flip-

flop [49]. 

 The Combinational Path: Bypasses the flip-flop. 

 

Figure 14  The Configurable Logic Block / The Function Unit [48] 



  

22 

 

3.4  EHW friendly Structures 

Based on the above features and the design of the XC6200, researchers have tried to create 

different evolvable friendly designs like POEtic chip [47] , evolvable motherboard [50] , 

Processing Integrated Grid (PIG) [51] and ETLs GRD chip [31]. Some researchers have also 

tried to improve the XC6200 design for more power and performance, e.g. Gigahertz FPGAs 

with new power saving techniques.  

This section will describe two designs, which may have an effect on EHW development in the 

future. In addition, the inefficiencies of these designs that lead to this research have been 

explained later in this chapter. 

3.4.1 POEtic Chip 

The POEtic chip is a new system on chip platform, which is intended to compensate for the 

unavailability of the Xilinx XC6200, for the field of EHW. The POEtic chip has been 

specifically designed to ease the development of bio-inspired applications. The composition of 

the chip consists of a microprocessor in the environmental subsystem and a 2D reconfigurable 

array called the Organic Subsystem. The reconfigurable array consists of basic elements called 

molecules, that are mainly 4 input look up tables (LUT) and flip flops. There is a second layer 

in the organic subsystem that implements a dynamic routing algorithm that is intended to 

allow multi chip designs, letting the user work with a bigger reconfigurable virtual array. 

The name of the POEtic chip was inspired from the three-life axis of nature: 

 Phylogenesis is the way species are evolving, by transmitting genes from parents to 

children. 

 Ontogenesis corresponds to the growth of an organism and self-healing in living 

beings.  

 Epigenesis deals with learning capabilities like the brain. 

3.4.1.1 The Microprocessor  

The microprocessor is a 32-bit RISC processor, specially designed for the POEtic chip. It 

exposes 57 instructions, two of which give access to a hardware pseudo random number 

generator for the evolutionary process. There is an AMBA bus [52], which is used for 

communication with all the internal elements, (as shown in figure15) as well the external 
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world. It also can be used to connect several POEtic chips to create a bigger array. The 

microprocessor can configure the array, and retrieve its state. Access to the array is made in a 

parallel manner because the array is mapped onto the microprocessor address space. As a 

result, it is fast to configure or reconfigure the array. 

The researchers have also developed a C compiler and an assembler, making it easy for the 

user to write programs. In addition, they plan to supply an API that can help the user to build a 

genetic algorithm by choosing the type of crossover, the selection process, and so on. 

 

Figure 15 The POEtic chip  showing the Microprocessor, and the Reconfigurable Array [47]. 

3.4.1.2 The Reconfigurable Array  

The reconfigurable array of the chip comprises of two planes:  The first plane is a grid of basic 

elements, called molecules, mainly consisting of a 4-input look-up table, and a flip-flop. The 

second plane is a grid of routing units that can dynamically create paths at runtime between 

points of the circuit. These routing units implement a distributed dynamic routing algorithm, 

based on addresses. The array can be used to create connections between cells in a cellular 

system to connect chips together or can be used to create long distance connections at runtime. 

The molecules execute a function, according to an operational mode defined for each molecule 

by three configuration bits (refer [53] for details). There are eight operational modes for the 

molecule. 
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3.4.1.3 Molecular communication 

As in the XC6200, inter-molecular communication is implemented with multiplexers. This 

feature avoids short circuits that could happen when partially reconfiguring a molecule, or 

during an unconstrained evolution process. As shown in figure16, every molecule is directly 

connected to its four neighbours, sending them its output while long-distance connections are 

implemented by the way of switch boxes. Each cardinal direction provides two input lines and 

two corresponding outputs. The six input lines from the cardinal directions or from the output 

of the molecule (or the inverse of both) can be used to select each output. 

 

Figure 16 POEtic chip -- Switch Box [47] 

3.4.1.4 Configuration Bits  

The POEtic chip has seventy-six configuration bits. The bits are split into five blocks as shown 

in Table 1. The first bit is used to indicate whether reconfiguration is required in a block or 

not. In terms of execution, the microprocessor has a 32-bit bus to access these bits. As there 

are only two clock cycles needed to write and three words of 32 bits define a molecule, the 

configuration of the entire array is very fast. The reconfiguration is made in parallel as 

compared to Xilinx‘s JBits ([46]and [54]), in which the entire bit stream is sent each time in 

serial.  
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Table 1. THE FIVE BLOCKS OF CONFIGURATION BITS FOR POETIC HIP [47] 

 

 

3.4.1.5 Conclusion of the Design  

The POEtic chip is a useful EHW platform. It has dynamic routing capabilities that allow 

functional level evolution using sine generators, adders, multipliers as building blocks [47]. 

The entire bit stream can be used to execute an unconstrained evolution. At present, a test chip 

containing around 12 molecules is being fabricated. After the functional test of this chip, the 

researchers intend to manufacture a final POEtic chip, containing about 200 molecules. 
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3.4.2 EHW Chip 

This section discusses the second chip known as the EHW Chip. Generally, there are two main 

restrictions associated with the EHW:  

 Slow learning speed of the systems and 

 Large size of the EHW systems 

To overcome these problems, a gate-level Evolvable Hardware Chip has been described [55]. 

The chip intends to integrate both the GA hardware and the reconfigurable hardware within a 

single LSI chip. This chip was initially proposed in 1998 [56] and now the same team has 

developed an improved design. A block diagram of the EHW chip is shown in fig 15. The chip 

consists of a genetic algorithm (GA) unit, a PLA (Programmable Logic Array) unit as the 

reconfigurable hardware logic, registers, and control logic. The main advantage of the chip 

design is that it has two ports for parallel access connected to the external two-port RAM and 

hence, it can process two chromosomes at a time in parallel. The GA unit and PLA unit also 

have a parallel accessing architecture for the data stream from the two ports. The chip has to 

be connected to an external memory and a CPU.  

 

Figure 17 Block Diagram of EHW chip [55] 

3.4.2.1 The GA Unit 

This unit executes the GA learning operations using the steady state GA (In a steady-state 

genetic algorithm one member of the population is changed at a time) and elitist 

recombination (in this children compete with their parents to be included in next population) 
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[57]. The block diagram of the GA unit is shown in figure 18. Here the GA unit is used to 

select two chromosomes in units of 32 bits, from the chromosome memory in parallel. Then it 

carries out uniform crossover and mutation on these to make two chromosome segments of 32 

bits. Uniform crossover is carried out using a random 32-bit string. A mutation rate of zero, 

1/256, 2/256, or 3/256 can be selected. The two new chromosome segments are then sent to 

the PLA. After all chromosome segments have been sent, their fitness values are calculated 

using training patterns. In addition, this chip has an on-line editing mode for the training-

pattern memory and it allows the changing of training-pattern memory during learning, to 

provide online learning. This helps to ensure a smooth adaptation process[8]. 

 

Figure 18 GA unit Block diagram [55] 

3.4.2.2 The PLA unit  

There are two PLA blocks for parallel evaluation of two circuits in the PLA unit. These blocks 

read two chromosomes from the GA unit in parallel in units of 32 bits to implement two 

circuits in parallel. The evaluation of two cells is the done by using the training data. There are 

two input-output modes available for selection: an 8-bit input/8-bit output mode or a 12-bit 

input/4-bit output mode. 
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The architecture of the PLA is shown in Figure 19. In the PLA, 32 product term lines are 

divided into two groups of 16 lines. Each bit of the output (8-bits) from the two groups can be 

connected to either an OR, or an XOR gate. The operation is the same as a conventional PLA 

if the OR gate is selected. If the XOR gate is selected, then the XOR operation is executed on 

each bit of the two outputs from the two groups. If XOR is used with ‗AND‘ and ‗OR‘ gates, 

the PLA can generate a circuit with less product term lines [58]. This option is useful for 

circuits that need many product term lines. 

 

Figure 19 Block diagram of one PLA [55] 

An option for selecting a feedback loop from the output to the input is provided to each PLA. 

If this option is selected, the upper 4 bits of the PLA output is connected to the upper 4 bits of 

the PLA input via a register (Figure 19). As the feedback loop can store the state of the circuit, 

it can be used when the EHW has to learn a sequential circuit. 

3.4.2.3 Random Number Generator: 

 A parallel random number generator using cellular automata [59] had been selected for 

implementation on the EHW chip, and could produce a 560 bit random bit-string at every 

clock cycle. 
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3.4.2.4 The RAM  

The EHW chip works with an external 2-port RAM on the board. It has been divided into 

three memories: a chromosome memory, a training pattern memory, and a memory for the 

fitness value. All the individuals in 16 bits x 2048 words are stored in the chromosome 

memory. The chromosome length is 1024 bits, and the population number is 32. This memory 

has two input/output ports. Two chromosomes of 16 bits can be read or written in parallel 

from the GA unit using these two ports. The training data memory can store a maximum of 

256 training data set of 16 bits each. The memory for the fitness data stores all the fitness 

values for all 32 chromosomes with an 8-bit integer value. 

 

Figure 20 Block Diagram of the complete EHW chipboard [55] 
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3.5  The Virtual Sblock FPGA 

Another type of design that has been proposed by a group of researchers [3] is known as the 

Virtual Sblock FPGA. This design is a virtual evolution friendly reconfigurable platform that 

can be mapped onto a given technology, and thus was chosen as the starting point for the 

development of a generic platform in this research. 

The Virtual Sblock FPGA is a technology independent platform for evolvable hardware. The 

key feature is that it is a more evolution friendly hardware platform for evolving digital 

circuits than commercial FPGAs. However, the platform may be mapped onto today's FPGAs. 

3.5.1 Architecture 

This virtual EHW platform consists of blocks (named Sblocks) that have been laid out as a 

symmetric grid. Each Sblock connects to the Sblocks on its four sides (north N, east E, south S 

and west W). The output value of a Sblock is synchronously updated and sent to all its four 

neighbours (its von Neumann neighbourhood), and as a feedback signal to itself. 

Each Sblock consists of both a simple logic/memory component and routing resources. The 

Sblock can be configured as a logic or memory element or it can be configured as a routing 

element to connect one or more neighbours to non-local nodes. Several nodes of Sblocks can 

be connected together as routing elements to realise longer connections. 

The internal connections of the Sblocks include four pairs of unidirectional wires attached 

through routing logic to a routing channel. Each pair includes one input and one output 

connection.  

The routing logic chooses the appropriate wire of the routing channel and forwards this to the 

neighbouring Sblock. Incoming data is forwarded to the appropriate channel wire for either 

forwarding to logic/memory or to the given output channel. The Sblock is illustrated in figure 

21. As each Sblock can communicate on each of its edges to neighbouring Sblocks, this 

provides a symmetrical and scalable architecture. 
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Figure 21 Sblock – Routing and Logic/Memory Block [60] 

The internal routing of each Sblock only allows inputs to be routed to outputs and the interface 

between Sblocks only allows outputs to be routed to the inputs. This way, generation of illegal 

configurations by evolution is prevented. IOBs (input/output blocks) are placed at the 

perimeter of the chip. Researchers have also proposed an on-board oscillator for their 

architecture [24]. A more detailed view of the Sblock logic is shown in figure below.  

 

Figure 22 Sblock Logic [3] 

Inputs from the neighbouring Sblock and a feedback from the output are connected to a five 

input lookup table (LUT). The LUT can be configured to hold a function. If Don‘t Care (DC) 

bits are placed by a GA at a given input, then that neighbouring Sblock is not connected to it. 

In this way the LUT is programmed not only for desired functionality but external 

connectivity of sblocks [3]. 



  

32 

 

3.5.2 Configuration 

The Sblocks have two global configuration buses, an address and a data bus that traverses the 

grid. Each bus is 16-bits wide. The address bus can thus address approximately 64000 CLBs. 

The buses traverse each row in the grid thus allowing both serial and column parallel 

configuration of the complete grid. Addressing each CLB individually opens up the possibility 

for partial reconfiguration. The number of frames needed to address a complete column is 48 

frames, as 48 bits are needed to configure a single CLB. This restricts partial configuration to 

one or more columns. 

3.5.3 Configuration Data 

In the current structure of Sblock, routing is an interdependent resource of logic/memory. 

Each Sblocks‘ configuration data includes its necessary routing and logic data.. This also 

decreases the speed of evolution, since the process handles more individuals and the 

configuration time is higher with a lot of routing configuration data to handle. 

3.5.4 Feedback of Information 

In the Sblock, any CLB, IOB, or range of CLBs/IOBs may be accessed through the 

configuration buses to read back the data lying in these blocks. 

3.6 Analysis of These Designs  

Although the designs presented are evolution friendly they all (except Sblock) have a common 

drawback of being confined to one FPGA design or one range of FPGAs .The POEtic chip is a 

chip itself with limited capabilities going up to a maximum of 256x256 molecules, also it is 

still under trial and has not been manufactured. Whereas, the EHW chip is again a supporting 

chip for the FPGA and one can only use the design board for any type of EHW experiments.  

Only the Sblock seems to be a generalised solution but it tends to use a long configuration bit 

stream (32 bits) for one chromosome, which could be cumbersome for larger designs for 

EHW. 

To avoid these problems a new design for a ‗Generic Cellular Structure‘ for EHW has been 

developed so that any available FPGA hardware in the market can be used for the 

development of EHW. This research aims at developing a more generalised virtual EHW 
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platform that can be used on any past or present FPGA chip of any type. In addition, this 

design will require fewer configuration bits than the Sblock. 
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4 Generic Platform 

4.1 Introduction  

A ―Generic Platform‖ is a generic cellular structure designed and implemented into FPGA 

hardware for the purpose of intrinsic evolution of an electronic circuit. 

The Generic Platform is a general design implemented in Very High Speed Integrated Circuit 

(VHSIC)  Hardware Description Language (VHDL) or any other High Level Language.  

An evolvable hardware system mainly consists of two components: 

 Genetic Algorithm: An algorithm used to evolve and test a desired circuit 

 Hardware: This may be a field programmable gate array, which can be used to 

evaluate the evolved circuit. 

The genetic algorithm being a program, the platform required for this program could be any 

personal computer, a microcontroller, or an FPGA depending on the type of evolution 

required.  

In EHW, FPGA‘s may be seen to be the target technology as they provide a commercially 

available re-configurable platform with fast processing speeds. The main elements of FPGA 

chips are configurable logic blocks (CLBs) connected together in a grid format and 

configurable routing resources. In addition, configurable input/output blocks (IOBs) are 

connected to the grid at the perimeter of the chip, making FPGA‘s really suitable as hardware 

for EHW.[60]  

The most vital feature required in the hardware is that it should be evolution friendly, which as 

stated by Haddow and Tufte [3] has disappeared from the latest FPGA models available.  

Therefore, there is a demand for a generic cell structure specifically EHW friendly, which 

could be easily loaded onto any FPGA hardware available now or in future.  
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4.2 Experiment- An Introduction 

The main requirement of the research was to develop an Evolvable Hardware friendly generic 

cellular structure that could be created using a VHDL compiler or VHDL design tools.  This 

structure was to be implemented on an FPGA and a microcontroller was used to run the 

genetic algorithm. Computer Aided Design (CAD) software was to be used to check the actual 

behaviour of the generic structure in simulation on a PC. 

A cell structure was designed in CAD software using VHDL Tools. This cell was the basic 

element of the Generic Platform.  

The cell structure was initially inspired from the design of the Xilinx 6200, where the 

multiplexers are used for selection of inputs, which was discussed (in section 3.3) as one of the 

evolvable friendly FPGAs. 

The Generic Platform was constructed using an array of two by two cells, giving a minimum 

usable platform for a basic circuit to be developed by the EHW scheme. The two basic 

structures evolved using the EHW scheme were the ‗AND‘ and the ‗OR‘ gates.  

The Altera
®
 MAX

®
 7000S (FPGA) was chosen as the hardware for the generic platform. The 

selected hardware was chosen, as it was readily available, where it was being used for various 

electronics projects. 

The cell and the Generic Platform were developed in VHDL, using the Quartus-II
®

- Computer 

Aided Design (CAD) software, provided by Altera
®
, manufacturer for the FPGA.  

Once designed, the generic structures were tested in Quartus-II
®

, by using the simulation 

facility provided in the software. The generic platform structure was then loaded into the 

hardware (FPGA) for the evaluation of the circuits developed by the genetic algorithm.  

A PIC
®
 microcontroller (16F877) was used to run the GA program, as it was readily available 

with university, to complete the intrinsic evolution process. The program was used to generate 

the chromosome population for a particular cell structure. These chromosomes were then sent 

to the microcontroller for evaluation. The correct chromosomes were selected by the program 

and displayed on a personal computer, connected to the microcontroller through a serial port. 
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All the solutions were then stored into a file for manual verification of the circuits. The 

circuits formed by the program were manually verified as correct solutions. 

Once the working of the platform was verified, it was loaded into another FPGA to test the 

generalised nature of the design. The GA program was loaded into the ATMEL
®

   

ATMega128 microcontroller, the other FPGA used to test was Altera‘s FLEX
®
, as it was 

readily available. The obtained results were verified manually to confirm the correct operation 

of the GA. 

4.3 The Cell Design 

The cell structure as described earlier was the building block of the complete generic platform. 

This structure was to be a simple evolvable friendly structure, which would require the 

minimum amount of resources on modern FPGAs. In addition, it was required that the cell 

structure could be scalable and could be accommodated into almost any available 

FPGA/CPLD in the market.  

Hence, the cell design was based on one of the basic elements of digital electronics and the 

foundation of almost all digital logic circuits, a NAND gate. The design was inspired by the 

Xilinx
®
 6200 architecture, but it is much simpler than that architecture.  

The main elements of the cell were: 

 A NAND gate – It is the core component of the cell. 

 Multiplexers – These have been used to select the inputs and the final output of the 

cell. 

 Flip-flops – Flip-flops are used to create a 5 bit serial in parallel out shift register to 

store the cell configuration (chromosome) produced by the genetic algorithm.  

4.3.1 NAND Gate  

The NAND gate is treated as the basic gate of many combinational circuits as they can be used 

to implement any combinational circuit. A few possible combinational circuits using NAND 

gates are shown below. 
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Figure 23  Combinational logic with NAND gate 

4.3.2 Multiplexer (MUX) 

The most basic 2-to-1 multiplexers have 2 data inputs, 1 select input, and 1 output. The figure 

below shows, the graphical symbol and truth table of a two input multiplexer. The output 

equals one of the data inputs, depending on the state of the select input. Larger multiplexers 

behave the same, having 2
n
 inputs and n select bits.  

 

Figure 24      2-to-1 MUX and truth table [61] 

Three multiplexers have been used in the construction of the cell. At the input, two 4-to-1 

multiplexers have been used to select the desired inputs to the cell and a 2-to-l MUX selects 

the output of the cell. The select inputs of the multiplexers are driven by the shift register, 

described in the next section.  
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4.3.3 Shift Register 

 The Preset and Clear inputs to the flip-flops have been set high (‗1‘), to allow synchronous 

operation of the shift register, using the clock inputs. The flip-flops have a common clock 

signal for loading the flip-flops in series. Five clock pulses are required to load the shift 

register.  

 

Figure 25 A Shift Register [62] 

4.4 The Complete Cell Structure 

 

Figure 26  The Cell 

As shown above, the 2 input NAND gate forms the heart of the cell structure. Each of the two 

inputs of the NAND gate is connected to a 4-to-1 multiplexer that selects one of the inputs as 
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the NAND gate input. The two input multiplexers have four input pins labelled IN_N (north), 

IN_S (south), IN_W (west) and IN_E (east). Similarly, the output multiplexer has one final 

output connected to all four output pins OUT_N, OUT_S, OUT_W, and OUT_E. 

In addition, the structure has a shift register consisting of five-flops, which are controlled 

through a clock signal (CLK pin) driven by the genetic algorithm. The SER_IN pin is also 

controlled by the GA, and is used to send the configuration stream into the shift register. The 

RST pin is the reset pin used to clear the shift register if required. SER_OUT pin is the output 

of the last flip-flop of the shift register. 

 

4.5 Cell Operation 

The cell structure has been divided into three sections to explain its operation. 

4.5.1 The Input Multiplexers 

 

Figure 27 INPUT Section of the ‘Cell’ 
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 As shown above, the input section of the cell consists of four input pins connected to the two 

multiplexers (MUX - A and MUX - B), which are used to select the input values for the 

NAND gate. The input pins are connected to the input pins of the FPGA or they connect to the 

output pins of other cells as per the configuration loaded (described later). 

4.5.2 Shift Register 

The other input pins are: 

The SER_IN pin is connected to the input of the shift register internally in the cell. Externally 

it could be connected to the micro controller so that chromosome bits can be loaded serially in 

to the Generic Platform. Alternatively, it is connected to the serial output of the other cells in 

the Generic Platform.  

Other input pin is the CLK pin that is an external clock. This clock is provided by the 

microcontroller through the genetic algorithm and is used to control the loading of the cell 

shift registers. 

The RST pin is used to clear the shift-register if required; this pin was initially used to test the 

cell structure and then was removed from the design as this was later initiated using the GA.  

 

 

 

 

 

 

 

Figure 28 The Functional section 



  

41 

 

The shift register is used to store the configuration of the chromosome that is further used to 

set up the whole cell. As described the shift register consists of five flip-flops, out of which the 

first two flip-flops set the first multiplexer i.e. MUX-A (refer to Table2). 

 The third and fourth flip-flops control the second multiplexer MUX-B (the table below shows 

the selection bits for the flip flop) and the last flip-flop controls the last multiplexer which is 

used to decide whether the cell will act as a gating structure or a routing structure.  

Table 2. TABLE FOR THE SHIFT REGISTER SEQUENCE 

 

The shift register also controls the functioning of the heart of the cell – the NAND gate. The 

NAND gate can act as a NAND or a NOT gate depending on the inputs selected by the 

configuration of first four flip- flops of the shift register. If the same input is selected to the 

NAND gate by the four flip-flops the NAND gate act as a NOT gate otherwise it acts as a 

NAND gate with the two inputs selected. 

Flip-Flop Number Bit for Select Bus of Multiplexers Multiplexer Selected 

1 E MUX-C 

2 Sel_A[0] MUX-B 

3 Sel_A[1] MUX-B 

4 Sel_B0] MUX-A 

5 Sel_B[1] MUX-A 
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4.5.3 The Output Section  

 

Figure 29 Output Section  

The output section consists of a multiplexer MUX- C that has 2 inputs, ‗data 0‘ and ‗data 1‘. 

The ‗data 0‘ is connected to the NAND gate output and ‗data1‘ is connected directly to the 

MUX-A output. The input from the NAND gate is chosen if the circuit is selected as a gating 

structure otherwise the MUX-A output is selected as the output of the cell, if it is selected as a 

routing structure. 

 The output of MUX-C is directed either as the output to other cells connected or as the final 

output to an output pin of the FPGA. The output also consists of a final output pin from the 

shift register, which transfers the configuration bits from one cell to the next. 
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4.6  The Generic Platform  

The Generic Platform (GP) is the basic evolvable friendly structure based on the cell.  

GP is an expanded version of the cell, which can be used to evolve electronic circuits with the 

help of a genetic algorithm. Depending on the need of the design, various numbers of cells can 

be used and the GP can be designed (by changing number of cells) for evolving a particular 

function.  

To check the integrity of the design, the functionality of the cell was tested alone by itself, and 

then in a 1 x 2-array .Then the GP structure of 2 x 2 Cells, was used to evolve two basic 

structures, an AND gate and an OR gate.  

A few standards were developed for designing the GP. The main reason for these standards 

was to maintain uniformity while expanding the GP design to a larger scale. The other 

important reason was to make sure the inputs and the outputs of the structure were not 

accidentally connected to each other while the design was generated, as this could be harmful 

for the hardware. In addition, the GP was meant to be designed in such a manner that it would 

be very flexible and could be used with any available hardware. Hence, to satisfy all these 

conditions, the following standards were applied: 

 Unused pins were grounded, so that they had a definite known value at all times. This 

standard applied to cell inputs on the edge of the GP that had no adjacent cell. 

 All cell clock signals were connected together and driven from the same the clock 

source. 

 For a particular application, the number of cells in the GP was fixed and could not be 

increased dynamically while the GA was running. 

 The cell shift registers were connected in a sequence across each row of the array of 

cells with the last cell of the row being connected to the first cell of next row as shown 

in Figure 30. 
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Figure 30  Shift register connection between cells  

 

4.6.1 1x2 Cell Generic Platform for Test 
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Figure 31  The Generic Platform for 1x2 cells 
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As shown above, this GP has been designed using an array of 1x2 cells. This structure was 

only used for testing the functionality of the GP. It was designed to generate an AND gate, 

using a NAND in the first cell and an Inverter in the second (shown below). The external 

inputs to the GP are the N (north) and W (west) inputs to the cell1. The output of the GP is Q 

(east) from the cell2. 

 

 

Figure 32  NAND + NOT gate diagram 

Here the two cells are joined together sideways, with the first cell acting as a NAND gate 

joined to the second cell through its East output and East input. The first cell has two inputs 

from the micro connected to its North and West inputs. The second cell, acting as an inverter, 

has its West input connected to the East output of the first cell.  

As described in the standards, other inputs are not used for the design and all the unused pins 

are grounded. Hence, in the first cell the South input pin is grounded, whereas, in the second 

cell the North, South and East input pins are grounded. The truth table based on figure 32 

describing the working of 1x2 cells is shown below:  
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Table 3. TRUTH TABLE FOR NAND + NOT = AND GATE 

 

 

 

 

 

 

4.6.2 Generic Platform for 2x2 Cell array 

After the successful development of the 1x2 array cells, the generic platform was developed 

into the final desired structure of a 2x2 array. Therefore, there are four cells instead of two in 

the Generic Platform. To explain the structure of the 2x2 array, the GP is divided into two 

sections; the Upper Section and the Lower Section. Both sections have two cells joined 

together sideways, similar to the 1x2-array structure. Vertically adjacent cells in these two 

segments are also interconnected through input and output pins.  

As shown below, the upper section has both the cells 1and 2 connected to the lower section 

cells 3 and 4 through the South input and output pins. Similarly, the lower segment is 

connected to the upper segment with the North input and output pins. In addition, the shift 

registers in the cells are linked in series following a path from Cell 1to Cell 4, with the 

connection between Cell 2 and Cell 3 acting as the link between the two layers, shown in 

figure 33.  

N W P Q  

0 0 1 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 
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Figure 33  GP 2x2 structure; showing the two sections  
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4.7 Development in CAD Software 

 

Once the generic platform was designed, it was developed in a VHDL Tool.  Quartus-II® was 

used as the VHDL tool for the generic platform, because it was freely available CAD software 

consisting of VHDL tools for the Altera CPLD MAX 7000S used in this research.  

As the design consists of basic elements of digital electronics like flip-flops, multiplexer and 

the logic gates, the intellectual property (IP) designs/structures from Altera® were used to 

design the Generic Platform. 

All the desired elements were assembled together to design a simple cell structure schematic 

in the Quartus software. The entity cell was compiled and the symbol generated for the cell 

was further used to develop the top-level entity, the generic platform, in a schematic form. To 

implement the logic circuit of the Generic Platform onto an FPGA, Quartus was used as the 

Computer Aided Design software. CAD software makes it easy to implement a desired logic 

circuit using a programmable logic device, such as a field-programmable gate array (FPGA) 

chip. A typical FPGA CAD flow is illustrated below [63]: 
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Figure 34  Flow chart for CAD software [63] 

Following the design flow, the design entities of the cell and the GP were first analysed and 

synthesised in Quartus. The designs were then tested in simulation, as described next. 

4.7.1 Section D: Testing in Quartus-II®  

 The cell being the building block of the generic platform, the functional testing of the cell was 

done first. After successful testing of the cell, the GP was tested for its desired functioning. 

Depending on the configuration bits, the cell could behave as a NAND gate, NOT gate or a 

ROUTER. The cell was tested for all of these three functioning in the Quartus simulation. 

Then the timing simulation was performed for the same logical circuits, using output pins as 

various test outputs. The timing simulation allowed observation of the expected behaviour of 

the structures, when loaded onto the FPGA. Once the cell was tested, the generic platform was 

tested in the forms of one by two array and two by two arrays.  
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4.7.1.1 The testing of Cell as a NAND gate       

To test the functioning of NAND structure, two the cell inputs (North and West) were selected 

to be the inputs to the NAND gate. Other two cell inputs (South and East) were grounded to 

have a definite state during testing. To configure cell for these inputs, the shift register was 

loaded with a binary value of ―00110‖ or decimal value of ―06‖ (in figure 35).  

 

Figure 35  Behaviour of cell as a NAND gate and the shift register values explained 

The state of the input pins (north and west) was represented by waveforms in Quartus. The 

results produced by the circuit on the output (EAST_OUT) waveform, were crosschecked with 

the NAND gate truth table. Other outputs (NORTH_OUT, WEST_OUT and SOUTH_OUT) 

got the same result, as the output of the cell is same for each direction. The simulation of the 

NAND gate is given in appendices. Table 4, below shows the how the inputs are selected by 

the appropriate bits in the shift register. 

Table 4. TABLE FOR THE INPUT SELECT BITS IN MUX-A AND MUX-B 

Bits in the ‗Select Bus’ of Multiplexers Input Selected 

00  West 

01  East    

10  South  

11  North    
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4.7.1.2 The Testing of Cell as a NOT gate: 

The NOT gate was tested in a similar fashion, except in this case the North input to the Cell 

was also grounded. To test the structure as a NOT gate the West input was selected by both 

the multiplexers and the cell was selected as a gating structure by bit number 5. Therefore, the 

shift register was loaded with a Binary value of ―00000‖ or a Decimal value of ―0‖ (depicted 

below).  

 

Figure 36  The circuit diagram with other pins grounded, functional simulation shown in appendix 

 

4.7.1.3 The Testing of Cell as a ROUTER: 

The cell structure this time was tested for routing functionality, by selecting the West pin as 

the input to be passed on to the output. Also the output multiplexer,(MUX-C) was selected to 

‗1‘, to cause the cell structure to function as a router. The shift register was loaded with a 

Binary value of ―00001‖ or a Decimal value of ―01‖. The functional testing of the router is 

shown below:  
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Figure 37 Cell as a router waveform 

After the successful functional testing of the cell, the Generic Platform was tested for 

functioning as a 1x2-array structure and a 2x2-array structure. As explained earlier, the 1x2 

GP was tested for an AND gate and the 2x2 GP was tested for both ‗AND‘ and ‗OR‘ gate. 

4.7.1.4 The Testing of Generic Platform in a 1x2-array:  

The top-level design Generic Platform consisting of two cells in a 1x2 form was tested for 

functioning as an AND gate. The design generated had the unused pins grounded as described 

by the standard in section 4.6. Here again, in the 1x2 cell structure the north and west input 

pins to the cell 1 were selected as input pins and EAST_OUT2 from cell 2 was selected as an 

AND output. A point to note is that the shift register in this design was turned into a shift 

register chain i.e. two 5-bit shift registers were joined together. The testing of shift register 

was done by using a test point in-between the two cells 1 and 2 (TP1, diagram in Appendix II). 

The configuration loaded in the register was ―0011000000‖ and was decided in accordance 

with Table 4 on a per cell basis.  

The explanation of the Configuration Bit loaded in the 1x2 Array is as follows: 

 

 

 

Figure 38 Bit configuration explanation for 1x1 array 

0 0        1 1          0     0 0         0 0          0   

West     North     Gate  West     West     Gate 

 

CELL 1     CELL 2 
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Figure 39  Functional simulation for 1x2 array  

4.7.1.5 Testing of GP for 2x2-array: 

The Generic Platform for the 2x2-array was tested for functioning as an OR gate. Here the two 

inputs for the OR gate were chosen from two different cells; cell 1 and cell 3, but the output 

was still fixed on to the cell 2 output pin EAST_OUT2. In addition, the four cells had test 

points between four shift registers, to check the correct functioning of the shift registers. All 

the unused pins were again grounded. For this GP the size of the shift register was 20 bits. 

Hence, the following configuration was loaded into the shift register chain, binary 

―11110001000000000111‖. The configuration bit loaded has been explained in the figure 40: 

 

 

 

Figure 40  Bit configuration explanation for 2x2-array Functional simulation in appendix 

1 1      1 1       0   0 0      1 0       0   0 0      0 0       0   0 0      1 1       1   

Noth  North  Gate West  South  Gate West  West  Gate West  North  Router 

 

CELL 1   CELL 2  CELL 3  CELL 4 
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Figure 41  Functional simulation for 2x2 array  

After the functional simulation of the design as shown above, the design was passed through 

the CAD Fitter tool, which determined the placement of the Logical Elements (LEs) in an 

actual FPGA chip. Fitter also chose routing wires in the chip to make the required connections 

between specific LEs. After this, the Timing Analysis was done, where propagation delays 

along the various paths in the fitted circuit were analysed to provide an indication of the 

expected performance of the circuit. 

Once the timing analysis was finished, the Timing Simulation came into effect. Here the fitted 

circuit was tested to verify both its functional correctness and timing. Once the circuit behaved 

as required in the timing simulation, it was ready to be programmed into the FPGA. 

Finally, the programming and configuration of the designed circuit was implemented in a 

physical FPGA chip by programming it through the CAD software (the complete process of 

designing a circuit and programming onto an FPGA is provided in Appendix I). 
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5 The Genetic Algorithm Code  

5.1 Introduction 

This chapter will discuss the genetic algorithm code that was written in the high-level 

programming language C and was loaded into the microcontroller as described earlier. In 

addition, here the expected results will be discussed. 

The GA program was distributed in four main functions, named as follows: 

 Fitness 

 Selection, 

 Crossover and 

 Mutation 

The diagram in figure 42 shows the structure of the GA program.  
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Figure 42  Diagram showing the various steps of Genetic Algorithm 

 

At the beginning of the program, various parameters required for the execution of the GA are 

defined, based on the design of the Generic Platform being tested. These parameters formed 

the base of the GA run. 
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5.2 Parameters of GA 

The parameters decided by the user, before the beginning of the algorithm were: 

Population Size – Could be anything between 5 and 10 chromosomes to start as parent 

population. It has been represented by ‗p‘ in the program. 

Length of Chromosome – Depends on the design of the GP. The chromosome requires 5 bits 

for each cell in the GP. The variable used to represent length of chromosome is ‗n‘. 

Crossover Rate – This parameter is the rate of chromosomes to be selected for crossover. The 

rate was generated randomly, up to a maximum of 50 percent of the total population. 

Mutation Rate – The mutation rate was generated randomly, to mutate upto half the 

chromosomes in the new population generated after the crossover. For each of the 

chromosomes, one randomly selected bit was mutated. 

Maximum Generation Number – It defines the maximum number of times the GA performs 

the optimization of the parent population.  

5.2.1 Fitness Function  

This function determines the fitness of each individual (chromosome) in the population. The 

function reads each individual chromosome in the population and passes it onto the FPGA to 

configure the GP for evaluation. It then calls a function Test to evaluate the fitness of the 

chromosome for the desired circuit behaviour e.g. an ‗AND‘ gate. After the test is performed, 

the fitness value for each chromosome is stored in an array named fu[i]. 

//====================== (6) FITNESS============================= 

 

void fitness(char p) 

   {    char j; 

        for (j=0;j<p;j++)  //fills the array from 0-9 

        { 

 config_data=c[j];        // Start the fitness function 

          load_register();  // Sends the configuration to the FPGA 

 test();   // Tests the configuration  

 if (flag2==0)  //  

 checkpattern();  // Only check for answer if passes the test. 

 fu[j]=score;  // Reads the Fitness 

        } 

 } 

Figure 43  Code for fitness  
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5.2.2  Test Function:  

The test function checks the behaviour of the Generic Platform for a particular chromosome.  

void test(void) 

{ score = 1;  // test 1 

 RD2=0;   // SET INPUT 1 

 RD3=0;   // SET INPUT 2 

 if(RD4==1)  //Read Output 

 { score = 0; // Discard the Chromosome 

  return;  // Return out of test function  

 } 

 else if (RD4==0)  // Read Output 

 score=score+1;  // Inc. the score from FPGA     

  // Fitness is 0 to 4 

} 

Figure 44  Code for Test function showing only the first test 

As shown, in this function, the inputs to the GP (RD2 and RD3) are set and then the output 

(RD4) is read from the output pin of the generic platform on the FPGA. This function 

calculates the fitness value for each individual chromosome and passes it back to the fitness 

function. The variable score is incremented every time an expected result is generated on the 

output to a maximum limit of four for an AND/OR gate, as they can only have four possible 

conditions as per their truth table. Hence, for every chromosome configuration, the test 

function is run and then the function calculates how many outputs match the outputs of the 

required circuit function. 

Condition: After every run of the fitness function, the condition for desired score is checked. 

If the desired score is achieved, the GA stops and displays the results, or else it continues to 

further tasks for optimisation of the parent population. 

5.2.3  Selection Function  

This function selects chromosomes that become the parents of the next generation using 

different selection criteria. Due to memory constrains of the microcontroller, instead of using 

any particular method for selection, the GA, sorts out the fitness array fu[j] in descending 

order. The elite chromosomes (chromosomes that are closest to the expected result) are placed 

on top of the newly generated population, as they have the highest fitness. It then stores the 

sorted population as a selected population. 
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void selection ( char p)    // Selection function  

{            

     

  char i,j,temp1; 

unsigned long tem;    

        for (i=0;i<p;i++) 

         { 

                for (j=i+1;j<p;j++) 

         { 

                    if ( fu[i]<fu[j]) // Checks for the Fitness of the population 

                      {   // arranges array according to fitness 

                tem=c[i]; // SORTING IN DESCENDING ORDER !!!  

                temp1=fu[i]; 

                              c[i]=c[j];       // Highest Fitness 

                fu[i]=fu[j]; 

                c[j]=tem;     // Lowest Fitness 

   fu[j]=temp1; 

          } 

            }   

         

        }  

            

} 

Figure 45  Code for Selection of population using sorting  

 After selection, this newly generated population is treated as an initial population by the next 

function, the crossover function.  

5.3 Crossover Function:  

This function creates new individuals (chromosomes) from the mating population produced by 

the selection function. Pairs of chromosomes are selected at random from the mating 

population and single point crossover is used to create new chromosomes. In single point 

crossover, a crossover point on the parent chromosome is selected randomly. All genes 

beyond that point in the chromosome are swapped between the two parent chromosomes. The 

resulting chromosomes are the children chromosomes. If the parent chromosomes are same 

then there is no change in the offspring. 

 

Figure 46  Single Point Crossover [64] 
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The following code implements single point crossover: 

    // Find the Point                 

  // for Single Point Crossover 

 j=random(n+1);   //Random point for Crossover 

p1=0b11111111111111111111>>(20-j); //convert the no. to binary equivalent 

a=(v1&(~p1))|(v2&p1);  // Single point crossover 

b=(v1&p1)|(v2&(~p1)); 

v1=a;    //Read variable1 

v2=b;    //Read variable2 

c[k]=v1;    //Store variable1 

c[k+1]=v2;   //Store variable2 

Figure 47  Lines of code showing crossover   

A random variable is generated to decide the point of crossover, which is denoted by ‗j‘ (n is 

the number of the bits in the chromosome). This is converted into a binary mask ‗p1‘, which 

has 1‘s for bits that will be crossed over. This number ‗p1‘is used to perform crossover, by 

taking the complement of ‗p1‘. The complement of p1 is ANDed with one of the 

chromosomes (v1) and ‗p1‘ is ‗ANDed‘ with other chromosome (v2) as shown above. 

Once the crossover is complete, these newly generated chromosomes ‗a‘ and ‗b‘ replace the 

parent chromosomes in the population. 

5.4 Mutation Function   

Here the population generated by the selection and crossover function is mutated, depending 

on the mutation probability ‗Pm‘ defined by the user. A chromosome is randomly chosen and 

then a bit in the chromosome is randomly chosen and its value changed. As shown below, the 

mutation is done using the boolean operator ‗XOR‘. This process is repeated for a number of 

times, depending on by the mutation probability ‗Pm‘. 

Variable = c[k];   //select the chromosome from the population array  

r = random (n);  //Find the Bit to be Mutated  

I = 1L<<r;  //Create a 20 bit long variable 

Var  = variable ^ I;  //XOR the 20 bits  

C[k]  = var;   //Save the mutated variable 

   //Chromosome to be mutated entered in original array 

Figure 48  Code for mutation 

Mutation stops the GA (best fitness) from being stuck at a local maximum that is not an ideal 

solution.  
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Replacing and Testing: 

After the mutation, the fitness of the new optimised population is again checked for the 

desired value. If the total fitness desired is achieved, the GA stops or else it again continues 

with these tasks (as shown in state diagram). 

5.5 Output of the GA  

For the second and any other consecutive runs, the randomly generated parent population is 

replaced by the new optimised chromosomes. This modified population now acts as the parent 

population for further optimisation. 

If an ideal fitness is achieved the program returns the number of iterations and the ideal 

chromosome with its fitness. This is displayed on the PC screen. In addition, it displays the 

final population of chromosomes. 
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6 Hardware Testing 

6.1 Introduction 

The hardware involved in the process was a microcontroller and an FPGA. The genetic 

algorithm was loaded onto the microcontroller and the Generic Platform was loaded into the 

FPGA. The hardware was tested in the same way as using the simulator. First the GP 

consisting of a 1x2 array of cells was used to evolve an ‗AND‘ gate. Then a 2x2 array of cells 

was evolved for an ‗OR‘ and an ‗AND‘ gate.  

The functionality of the evolvable hardware was tested by using two different hardware 

systems:  

 The MAX CPLD with a PIC 16F877 microcontroller, and 

 The FLEX FPGA with an AT Mega 128 microcontroller 

In this section, the intrinsic evolution will be discussed further in details. In addition, the GA 

code for the hardware system can be found in appendices. 

 

Figure 49  Jpeg photo of the EHW system showing ports and development boards 
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6.2 Hardware Tests 

6.2.1 1x1 Array Test 

Before conducting the intrinsic evolution on the hardware, a simple testing of the cell structure 

was performed on the hardware. In the experiment, a single cell structure was loaded into the 

FPGA and a test program was loaded into the microcontroller to confirm the functioning of 

the cell in hardware. The test program loaded all the possible chromosomes into the cell. As 

the length of chromosome for the cell is five bits, the program generated configuration bit 

streams from ―00000‖ binary (0 decimal) to ―11111‖ binary (31 decimal). This generated bit 

stream was passed onto the FPGA for testing if the design behaved as a simple NAND gate, 

using the North and West as the two inputs. The cell behaved as a NAND gate with 

configuration bit values decimal 6 and decimal 24. 

Interpretation of the result: 

 

 

 

 

 

 

 

Figure 50  Interpretation of results achieved for NAND gate 

 

6.2.2  1x2 array Test 

The 1x2 array was used to generate an ‗AND‘ gate, a ‗NOT‘ gate, and a router. The GP, being 

the combination of two cells, had 10-bit long chromosomes. The first cell had the two inputs 

going to it and the second cell had the final output coming out of it. 

0 0        1 1          0       

West     North     Gate  Configuration for Hexadecimal 0x06 

 

CELL 1    

   

1 1        0 0          0       

North   West     Gate   Configuration for Hexadecimal 0x18 

 

CELL 1   
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The microcontroller and the FPGA were connected through their respective development 

boards, using an 8-bit serial port. The control pins on the micro and the FPGA were different 

for both the hardware setup as two different development boards were used. It has been shown 

in the Appendix II. 

First, the testing was done by running the program in a controlled way by using few known 

10-bit chromosomes for ‗AND‘ gate, as given below.  

The known Hexadecimal value of 0xC0 was fed into the Structure.  

 

 

 

Figure 51    Known 10-Bit configuration for AND gate, using 10-bits. 

Similarly, the behaviour of a ‗ROUTER‘ and a ‗NOT‘ gate were checked using a 10-bit 

known configuration. The configuration bits used for the ‗NOT‘ gate were as follows: 

 

 

 

 

Figure 52   NOT gate 10- bit known configuration 

0 0        0 0          0    0 0         0 0          1   

West     West     Gate  West     West     Router 

 

CELL 1    CELL 2 

0 0        1 1          0    0 0         0 0          0   

West     North     Gate  West     West     Gate 

 

CELL 1    CELL 2 
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Figure 53   Behaviour of 1x2 Structure as a NOT gate with 10- bit known configuration 

Bits used for the behaviour of GP as a router are: 

 

 

 

 

West is routed as Output. 

Figure 54  Router 10- bit known configuration 

 

 0 0        1 1          0    0 0         0 0          1   

West     North     Gate  West     West     Router       

 

CELL 1    CELL 2 
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Figure 55   Router gate 10- bit known configuration 

6.2.3  2x2 Array Test 

The GP was also tested as a 2x2 array. In this instance, the GP, contained four cells and had a 

20-bit long chromosome. In this test, the first cell and the third cell each had one input and the 

second cell produced the output. The selection of inputs for the ‗OR‘ gate was different from 

the ‗AND‘ gate design as it had Cell -1 and Cell -3 with inputs and Cell -2 had the output 

connected to it.   

The known 20-bit chromosome configurations that were used to test the behaviour of ‗AND‘ 

and ‗OR‘ gates, are given below.  

Table 5. KNOWN 20-BIT CONFIGURATION FOR ‘AND’ USING 20-BITS  

1 1      0 0       0   0 0      0 0       0   1 0      0 0       1   0 0      1 1       1   

Noth  West  Gate West  West  Gate South  West  Router West  North Router 

CELL 1   CELL 2  CELL 3  CELL 4 

Table 6. KNOWN 20-BIT CONFIGURATION FOR ‘OR’ USING 20-BITSITS  

1 1      1 1       0   0 0      1 0       0   0 0      0 0       0   0 0      1 1       1   

Noth  North  Gate West  South  Gate West  West  Gate West  North  Router 

CELL 1   CELL2  CELL3  CELL 4 
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7 Genetic Algorithm Results 

7.1 Initial Results of Evolution 

All results in this chapter were obtained using the 2x2 array on the Generic Platform. Only 

few evolved results are discussed here and other evolved results are outlined in the     

Appendix III.  

The first run of the experiment was a complete evolvable hardware run using 20-bit 

configuration streams as the chromosomes. The EHW system was run to evolve an ‗AND‘ 

gate and an ‗OR‘ gate. The GA was run until a correct solution was evolved or for a maximum 

of five thousand generations. The final evolved configuration stream was displayed in 

hexadecimal form by the GA. The solutions evolved by the GA, that it found to behave as an 

‗AND‘ gate and an ‗OR‘ gate, are as follows: 

 0x30021 (‘AND’ gate) 

 0x35339 (‘AND’ gate) 

 0xE10C7 (‘OR’ gate) 

 0xF1005 (‘OR’ gate) 

Figure 56 Results evolved after the First Run 

The GA found 4940 correct solutions for ‗AND‘ gate in 5000 iterations, this meant that the 

GA would find a correct solution for 98.8 percent of the generated population. This result 

became a point of concern, as expected correct solutions for an ‗AND‘ gate should have been 

less than 98.8 percent of the population generated. Hence, there was the need for manual 

analysis of the derived solutions. Most of the ―correct solutions‖ as found by the GA were 

manually analysed. The manual analysis of the ‗AND‘ gate configurations is given here. The 

‗OR‘ gate analysis are given in the appendix. In addition, behaviour of these configurations in 

simulation is depicted after the manual analysis. 
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I. Configuration value, 0x30021:  

 

 

 

Figure 57   Manual analysis with expected working and simulation result Quartus II 
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The results obtained after manual analysis of the chromosome configuration are as follows: 

 Cell 1 behaves as NAND gate  

 Cell 2 behaves as NOT gate 

 Cell 3 and cell 4 will always have ‘0’ as output as the selected pins by 

configuration are grounded 

This is a correct solution for ‗AND‘ gate. 

 

 



  

70 

 

II. Configuration value, 0x35339:  

 

 

 

Figure 58 Manual analysis with expected working and simulation result for 0x35339 
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The results obtained after manual analysis of the chromosome configuration are as follows: 

 Cell 1 is a NAND gate 

 Cell 3 is a Router 

 Cell 2 and Cell 4 may oscillate 

This is not a correct solution for ‗AND‘ gate. 

 



  

72 

 

III. Configuration value, 0xE10C7:  

 

 

 

Figure 59   Manual analysis with expected working and simulation result in Quartus II 
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The results obtained after manual analysis of the chromosome configuration are as follows: 

 Cell 1 and cell 3 may oscillate due to the feedback 

 Cell 2 is a NAND gate 

 Cell 4 is Router 

This is not a correct solution for ‗OR‘ gate. 

 

7.2 Analysis of the Initial Results  

The manual analysis of the evolved results showed that some solutions produced by the GA 

were not actually correct solutions. The results like 0x35339, that were actually oscillating 

were identified by the GA as correct solutions. To test the operation of the GP, it was 

continually loaded with the same chromosome and its fitness evaluated during this run, the 

chromosome e.g. 0x35339 was constantly loaded with the output pin at Cell 2 being observed 

on an oscilloscope. The output pin was oscillating with values ‗0‘ and ‗1‘, in agreement with 

the manual analysis.  

The microcontroller only sampled the circuit output once for each input combination. When 

the output oscillated the value measured by the microcontroller was random, and sometimes 

identified the chromosome as a correct solution. 
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7.3 The Solution for Oscillation Detection 

It was not possible to detect oscillation reliably in the GA so a hardware oscillation detector 

was designed. The oscillation detection circuit was added to each Cell. As shown below, this 

circuit consisted of a flip-flop and a XOR gate.  

 

Figure 60   Oscillation Detection Circuit on a Cell 

One reason for not detecting the oscillation was the uncontrolled changing of the output of 

each cell. An edge-triggered flip-flop was added on the output pin of every cell to control the 

changing of the output pin. The clock for the flip-flop was provided by the microcontroller, so 

the changes in the cell output could be co-ordinated with the GA. As there were four flip-

flops, 5 clock pulses were chosen to check the consistency of the circuit for one combination 

of inputs on the north and west inputs. Four clock pulses for the flip flops and one extra pulse 

to check the consistency.  

The output of the flip-flop was the current output of the cell and the D input to the flip-flop 

was the next output of the cell. 

An XOR gate was also added to compare the current state and next state of the cell. The XOR 

output is ‗0‘ if the cell output is going to change on the next clock pulse or ‗0‘ if the cell 

output will not change. 
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Hence, the output of the XOR gate only for the output Cell was checked by the GA, as 

oscillation in other cells did not matter. If the GA detected a ‗1‘ on the XOR pin, it discarded 

the chromosome as an oscillating chromosome and provided it a score of decimal 0. Thus 

putting the chromosome at the end of the selected population and giving it a high chance to be 

discarded by the GA selection task. There were four tests run on the inputs for four different 

inputs. Code for the first test has been shown below: 

 

                                            // test 1   

 

RD2=0;    // input 1  

RD3=0;   // input 2 

     

for (l=0;l<5;l++)  // Clock 5 Pulses for the Flip Flop 

clock1();  //   

for (l=0;l<5;l++)  // Check Oscillation 

{ clock1(); // For Five pulses 

 if(RD5==1) // Check pin for Oscillation 

 {  score = 0;  // Change Score to 0 

   //-- Used for Oscillation 

    return; // Return from the function  

 } 

} 

if (RD4==0)  // Check circuit Output  

 

score=score+1;  // Increment Score      

 

     

 

Figure 61   Modified GA code for oscillation detection 

Once the oscillation detection circuit was added on to the Cell, a new Generic Platform design 

was created (shown in Figure 62). This design was again loaded onto the FPGA and the GA 

was tested by loading it with known chromosome configurations. 
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Figure 62   GP design with oscillation detection 

The fitness function was modified to produce a fitness of 0 if any oscillation was detected. 

Otherwise, the fitness was 1 plus the number of the correct outputs. The fitness could now 

range from 0 to 5. 

7.3.1 Observations of the Oscillation Testing 

 The GA was run using a single 20-bit configuration stream to check the functioning of the 

oscillation system.  

A few runs of the GA yielded the following results:  

 The circuit did not always detect oscillation i.e. the error was always different for the 

same chromosome. – It showed the inconsistency for the same chromosome. 

 The oscillating circuit did not detect oscillations in other three cells. It only picked up 

oscillation in the output cell. – It behaved in the way expected, as oscillation in other 

cells was not being detected by the design. 

 Higher generations/ runs of the GA program gave higher errors as compared to fewer 

generations. – It again proved to be inconsistent. 

These results clearly showed the inconsistency in the oscillation detection and hence were 

problematic for a design. It was found that introducing a delay in the checking of the 

oscillations reduced number of errors, but it did not eliminate all oscillation errors. 
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7.4 Evolution of OR Gate 

 After the introduction of the oscillation circuit in the GP design, the EHW experiment was 

run for the second time using a complete GA with a 20-bit configuration stream. The EHW 

system was run to evolve an OR gate.  The only difference in the GP was the input pins, this 

time they were assigned to two different cells i.e. Cell 1 and Cell 3, whereas the output was 

still at Cell 2. These inputs were named as North1 and West3 and the output was still East2. 

Some of the solutions evolved by the GA were: 

 0xE10C3, 

 0xF1005, 

 0xB1007 and  

 0x71020 

Figure 63  Results evolved after the introduction of Oscillation Checker circuit 

In this run of the GA, there were 99.6 percent incorrect solutions for OR gate in a run of 5024 

iterations, leading to a mere 0.4 percent success rate. This time the results were realistic, as the 

‗OR‘ gate was expected to have much lower result than the previous run for ‗AND‘ and ‗OR‘ 

gate. To confirm the results found by the GA, a manual analysis of the derived solution was 

performed.  
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IV. Configuration value, 0xF1005:  

 

Final_Out is the XOR output for Oscillation checking. 

 

 

Figure 64   Manual analysis as with expected working and simulation result 
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The results obtained after manual analysis are as follows: 

 Cell 1 and cell 3 act as NOT gates. 

 Cell 2 is a NAND gate. 

 Cell 4 is a Router, routing the West input to the North output. 

This is a correct solution for an ‗OR‘ gate as two NOT gates are followed by a NAND gate as 

shown above. 
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V. Configuration value, 0x71020:  

 

 

 

Figure 65   Manual analysis with expected working and simulation result 

 

The results obtained after manual analysis are as follows: 

 Cell 1 is a NAND gate with East input as feedback from cell 2. 

 Cell 2 is a NAND gate of cell 1 and cell 4 outputs 

 Cell 3 is a Router, routing the West input to the West input of cell 4. 

 Cell 4 is a NOT of West input. 

This is not a correct solution for ‗OR‘ gate as per the manual analysis 
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VI. Configuration value, 0xB1007:  

 

 

Figure 66   Manual analysis with expected working  

 

The results obtained after manual analysis are as follows: 

 Cell 1 is a NAND gate with South input coming from cell 3. 

 Cell 2 is a NAND gate with inputs from cell 1 and cell 4. 

 Cell 3 is a NOT of West input. 

 Cell 4 is a Router, routing the West input to the North output 

This is a correct solution for ‗OR‘ gate. 
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7.5 Analysis of the OR Gate Results 

From the manual analysis of the evolved results, it was found that some of the experiment-

evolved solutions did not behave as expected. The chromosomes 0xB1198 and 0x71020 that 

were not correct solutions were identified as correct solutions. To find the reason for these 

results the incorrect chromosomes (e.g.0x71020) were continuously loaded into the GP and 

the fitness evaluated.  

 It was observed that the output pin had different values on different tests run for the same 

chromosome value as compared to the manual analysis results. 

To check the difference in the manual results and the results found by the GA, we analysed the 

effect of using input combinations in a different order for 0x71020. It was found that this 

analysis agreed with evolved behaviour of the 0x71020 circuit i.e. a different sequence of 

input values produced different outputs. When observed as per the previous section,  many 

chromosomes had outputs depending on the sequence in which input combination was 

applied. Hence, the reason for different solutions was discovered and a detailed explanation is 

given in the next section.  

To explain the causes of the problem consider sequence of inputs for 0x71020 below: 

 

‘X’ =Undefined Value 

 

Table 7. SEQUENCE OF INPUTS FOR 0X71020  

 

Table 7 above shows the sequence of inputs for 0x71020 chromosome with inputs North1 and 

West 3 and the output of ‗Cell 2‘ as the final output. When 0x71020 had North 1 and West 3 

second and third input combinations as ‗10‘ followed by ‗11‘ instead of ‗01‘ and ‗10‘  the 

truth table was very different as shown below 

North1 West3 Out 1 Out 2 Out 3 Out 4 

0 0 1 0 0 1 

0 1 1 1 1 0 

1 0 0 1 0 1 

1 1 X X 1 0 
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Table 8. ALTERNATIVE SEQUENCE OF INPUTS FOR 0X71020 

 

 

 

: 

This analysis shows that the sequence in which input combinations are tested can affect the 

final output obtained (Out 2). These incorrect chromosomes (e.g. 0x71020, 0x74301) have 

feedback between cells, leading to a situation in which the GP can give different output values 

for the same combinational input depending on the sequence in which the combinational 

inputs are tested. 

We use the term ‗bistable‘ to refer to the condition in which outputs can have different values 

due to feedback. 

 

Figure 67   Gate structure emphasising feedback for 0x 71020  

North1 West3 Out 1 Out 2 Out 3 Out 4 

0 0 1 0 0 1 

1 0 1 0 0 1 

1 1 X X 1 0 

0 1 1 1 1 0 
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Figure 68   Gate structure emphasising on feedback in 0x74301 

For some designs, this bistable state could be beneficial. However, in this research, the 

bistable state was undesirable because we were attempting to evolve combinational circuits. 
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7.6  Bistable Detection 

It was found that when the evolved circuit included feedback, the behaviour of the circuit 

depended on the sequence in which input combinations were tested. To detect the bistability of 

a circuit, the GP was modified by adding a 2-to-1 multiplexer on the output pin of the output 

cell, cell 2. The modified design of the GP with a multiplexer added has been shown in the 

figure below: 

 

Pin connections: 

Xo –Input to the multiplexer, connected to the output from the cell2 i.e. East2 

Y – Input 2 to the multiplexer, connected to the microcontroller 

Sel – Select input, connected to the microcontroller 

Figure 69   Bistable Detection Circuit on a Cell with a MUX  
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Based on the observations of the evolved bistable chromosomes (0x74301 and 0x71020), 

MUX was used for detecting the bistability in the circuits by manipulating the feedback to 

Cell 1. To explain the functioning of MUX please refer to the figure below: 

Table 9. TABLE FOR MUX BEHAVIOUR 

X0 is the output from the cell. 

To check the exact behaviour of the evolved circuit depending on the Xo input to the MUX, 

‗Y‘ was changed and fed through the circuit. Depending on the initial value of Xo , ‗Y‘ was 

fed to the circuit using the ‗Sel‘ input, so as to check the state of the circuit after the feedback 

to the circuit was changed. This was done to test the effect of feedback on the final output 

‗OUT_N‘, as shown in table 9.  Hence, the behaviour of the circuit was concluded depending 

on the table above and constantly reading the final output ‗OUT_N‘.  

 The GP was loaded with the same 20-bit configuration stream to check the functioning of the 

bistable system. After a few runs of the modified GA, while trying to make the program run 

faster and efficiently by changing the clock cycles, it was found, introduction of a MUX did 

find the correct evolved solutions but if the clock cycles in the testing bit of the GA were 

altered, the results came different from expected. For example when the evolved solution 

0x71320 was observed, it was detected as bistable on 4-clock cycles and oscillating on 2-clock 

cycles. Similarly chromosome 0x61741 was detected oscillating on 5-clock cycles and stable 

on 8-clock cycles.  

Hence, these results clearly showed the inconsistency in the bistable detection and were 

challenging for a design.  

Again, a careful manual analysis of the design was done where it was decided that based on 

the number of flip-flops present in the design of the GP, the maximum clock cycles to check 

Y=0 Y=1 State  

Xo =0 Xo=0 Stable with  Xo =0 

Xo =0 Xo =1 Oscillation 

Xo =1 Xo =0 Bistable 

Xo =1 Xo =1 Stable with  Xo =1 
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circuit stability would be defined. In addition, the results were only confirmed once the result 

was stable for at least half the maximum clock pulses required and an extra clock pulse. 

Therefore, the following algorithm for the GA was created: 

Read Mux = X0; 

Clock (2
n
+2

n-1
) pulses or until stable for consecutive (2

n-1
) clock cycles. 

Read Xout; 

If stable  

Mux =! X; 

Read Mux = Xout; 

If stable 

Test the conditions for the ‘OR’ gate 

Figure 70   Algorithm for determining clock cycles 

7.6.1 Explanation of the Algorithm: 

The GP contained four cells (n=4) so the number of combination states of the cell flip-flops is 

2
n
 = 16. 

 Hence, maximum clock pulses required to force the system to pass from these sixteen states 

would be sixteen. Also, to confirm the functionality of the GP another 2
n-1

 = 8 clock pulses 

plus one extra clock pulse would be required (as decided to check the stability of the circuit) 

hence a total of 25 clock pulses are required to test the complete functionality of the GP 

system 

Due to memory and pin out limitations in the microcontroller, it was decided to test for 

bistability in the GP design itself. Hence, a new modified version of the Generic Platform 

(GP) was designed without the testing multiplexer.  

In this new design, a four-bit counter was introduced to implement the logic of the clock 

pulses and initial states of the four cell flip-flops as explained earlier. In addition, to remove 

the inconsistency of the starting value of the flip-flops, they were attached to a control circuit 

that set their starting value equal to the value of the counter. The XOR output for cell2 was 

read individually as well as it was XORed with other cell outputs as shown in figure 71.  
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Figure 71  GP with Counter 

 Figure 71 shows the entire generic platform while figure 72 shows the control circuit of a 

single cell. 

 

 

 

Figure 72  Control circuit 
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The four bits of the counter are used to set the initial values of the four flip-flops. The control 

(clock) pulse to the counter is fed from the microcontroller. The same control pulse is also fed 

to the control circuit as shown in figure 72. To set the initial state of each flip-flop, a control 

circuit consisting of a NOT gate and two OR gates is used. This circuit is connected to the 

‗Clear‘ and ‗Preset‘ pins of the flip-flop.  

When the control pulse is provided from the microcontroller, it increments the counter and 

sets or clears the four flip-flops according to the four counter outputs. This is done using the 

clear and preset pins on the flip-flops.  

When the clear is ‗1‘ it has no effect on the flip-flop and when it is ‗0‘ it clears the flip-flop to 

‗0‘, whereas when preset is ‗1‘ it has no effect but when it is set to ‗0‘ it sets the flip-flop to 

‗1‘. Figure 73 shows the introduction of the counter in the GP and explains the change of 

‗Final_out‘ to Q‘ instead of Q from cell2.  

 

Figure 73  Working of Control Circuit in the GP with the introduction of flip-flops e.g 0x71020. 
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Table 10. TRUTH TABLE SHOWING INTRODUCTION OF COUNTER FOR 0X71020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here P, Q, R and S are the outputs of the cells and the P‘, Q‘, R‘ and S‘ are the outputs of the 

cells after the flip-flops.  

Based on the truth table (Table 10), the steps to be implemented in the genetic algorithm 

running on the microcontroller were as follows:  

STEPS: 

I. Set the states for the two external inputs, e.g. North1 = ‗0‘ and West3= ‗0‘.  

II. Force the flip-flops to an initial state using the counter.  

III. Clock the circuit once and read the XOR output for any oscillations in the circuit. 

IV. Clock the circuit up to 24 times, reading the XOR output each time, comparing the 

output from the first clock pulse (step 3). If the XOR output is same for all the 

consecutive pulses the circuit is stable, otherwise it is oscillating. 

V. Repeat the steps from 2 to 4 for all sixteen counter values, to test all possible flip-flops 

starting value combinations. If the final output is different for any of the sixteen states, 

the circuit is bistable 

VI. Repeat steps 1 to 5 for each of the 4 external input combinations. 

N W P Q R S P’ Q’ R’ S’ 

1 0 1 0 0 0 1 1 0 1 

1 0 1 1 0 1 0 0 0 1 

1 0 0 0 0 1 1 1 0 1 

  

 

       

Continues for all the possible states of North and West 
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This is shown in the flow chart in Figure 74. 

 

Figure 74  Flow Chart depicting the steps above 
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8 Conclusion and Future Work 

8.1 Conclusion 

The literature review for evolvable hardware found that there have been many experiments 

carried out in this field. Mostly these experiments are specific to an individual field or, are 

confined to particular hardware only. The experimental evolvable hardware system described 

herein has attempted to generalise this limitation of current and past experiments. Firstly, the 

designed generic platform is limited to a particular, hardware or platform. Secondly, it can be 

used for evolvable hardware even in the absence of evolvable friendly features. Thirdly, it uses 

a very small bit stream of 5 bits per cell, much less than other designs using a cell structure. 

Finally, the generic platform has eliminated FPGA intellectual property limitations, such as 

the non-availability of information bit stream used to control the FPGA hardware. 

Though an intrinsic evolution was done on this evolvable hardware system, but due to 

constrains of the microcontroller the bonus objective of expansion of the generic platform to a 

larger structure could not be achieved at this stage. The experimental results do show the 

intrinsic evolution on the generic platform implemented on different hardware platforms as 

opposed to the confinement of evolutionary experiments on single hardware, described in the 

reviewed literature. 

The oscillation and bistable problems of the generic platform were handled successfully, thus 

providing a stable error free base for the development of such systems. However, the clocking 

of the generic platform depends on the number of flip-flops, with the number of clock pulses 

increasing exponentially, thus limiting the scalability of this platform. 

A generic platform for the intrinsic evolution on any available hardware was developed, but 

due to the available hardware constrains, the system could not be elaborated to a large scale. In 

addition, the solution developed for bistability was confined to this particular generic platform 

and could not be extended to higher array GP, as clocking large GP structures could be 

cumbersome. 

It could be possible that all of the above problems are resolvable, and the work involved 

would be subject to future research. 
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8.2 Future Work  

The generic platform can be extended to a greater array structure to facilitate complex 

electronic designs for evolvable hardware. A larger structure would thus require a better 

hardware as compared to the one used, hence the hitch of microcontroller can be resolved by 

introducing an FPGA instead for the running of GA.  

Another option would be the incorporation of the microcontroller into the FPGA as a soft-core 

processor, to increase the speed of the system. 

A faster method can be developed for the clocking of individual flip-flops, if both the GP and 

GA are run in the same hardware by the same clock.  

Provided the microcontroller used for the GA has enough memory and speed, the generic 

platform can be modified so that it uses fewer resources on the FPGA hardware. This can be 

done by running the counter for bistability checking in the GA rather than in the GP . 

It is hoped that the introduction of a better hardware for the platform would solve these 

glitches efficiently, thus leading to a resource friendly and superior generic platform. 
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APPENDICES 

 

APPENDIX I : Procedure for Running Quartus Experiment 

 
Basic Cell Structure, Programming and Testing Procedure 

 

1. Make a folder for your work e.g. ‗Testcell‘. 

2. Invoke Quartus II. 

3. Go to File | New Project Wizard. On the introduction, screen click- Next. 

4. Enter the working directory e.g. C:\Testcell. 

5. The Wizard will automatically select the working directory name as the default for 

project name i.e. Testcell. Also ensure the Top-level design entity name is also same 

as project name i.e. Testcell – click Next. 

6. The wizard will ask to add files in the project, leave the space blank and click Next.  

Note: Do not add any files yet. 

7. In the ‗Family and Device Settings‘ choose ‗MAX7000S‘ in the Family and select 

‗EPM7128SLC84-15‘ in the Target device category. Leave other options to default 

and click Next. 

8. On the EDA Tool setting leave everything to default – Next. 

9. Click Finish on the Summary page. 

10. As we have already created the schematic design for the project – Copy and rename 

the ‗.bdf‘ and ‗lpm‘ max files into the working folder i.e. C:\Testcell. Note: The ‗bdf‘ 

file should be named exactly as the working folder. 

11. Checking of the Code: Open the ‗Testcell.bdf‘ and go to Select – Processing – Start – 

Start Analysis & Synthesis.  

12. Assigning Pins: Pin assignment in the design can be done by selecting Assignments – 

Pins. Make sure the Category (on the Right Hand Side) is ‗Pins‘.  

13. Under the ‗To‘ column or <<New>> double left click and highlight the pin name e.g. 

Clk. 

14. Then under the ‗location‘ column or <<New>>double left click and highlight the Pin 

number e.g. Pin_76. Complete the list of pins as shown in the Appendix. 

Hint: Already allocated pins would show in Italics. 

15. Close the window and save when prompted. 
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16. Go to Assignments – Settings – Simulator – choose ‗Functional‘ in the Simulation 

mode on the Right Hand Side and leave rest to default. 

17. Compilation: To compile the design go to Processing – Start Compilation. 

Compilation should complete, showing usage as 10 % of the total macrocells. 

18. Simulation:  Now to simulate the design, do the following: 

i. Processing – Generate Functional Simulation Net list. 

ii. File – New – Other Files – Vector Waveform File – Ok. 

iii. Edit – End Time – 300ms. 

iv. View – Fit in Window.  

v. Edit – Insert Node or Bus. 

vi. Click on Node Finder 

vii. In Filter select Pins: all – List. 

viii. Transfer all the signals on LHS to RHS – Ok – Ok. 

ix. In the waveform editor move any inputs to the top of the sequence by selecting 

(Highlight + Hold +Move) the desired ones. 

x. Place clock signal: Highlight clock and right click – value – clock – accept 

default 10 ns – Ok. 

xi. Make sure ‗RST‘ is low for the 1
st
 clock period, after that is should be ‗1‘ 

throughout. As shown : 

 

 

 

 

 

 

Figure 75 Selection of clock cycles 

xii. We wish to simulate the configuration of the following function : 

B (1) =0 B (0) =0 A (1) =0 A (0) =1 E=0 

xiii. Set the ‗SER_IN‘ as shown, after the ‗RST‘ is set to 1 : 

 

 

 

 

Clk 

Rst 
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Make sure clock signal is only 6 clock periods. 

Figure 76 Setting up of SER_IN 

 

The desired function will be: 

 

 

Figure 77 AND gate function 

 

xiv. After the configuration is loaded, set ‗IN_E‘ to ‗1‘ for more than one clock 

period and ‗IN_W‘ to ‗1‘ for the same time. This will set the desired inputs 

‗East‘ and ‗West‘ to ‗1‘. 

 

19. Save the design as ‗Testcell.vwf‘. 

20. Processing – Start Simulation.  

You should see ‗OUT_N‘ go to ‗0‘ when ‗IN_E‘ =1 and ‗IN_W‘= ‗1‘. 

 

Programming the Device  

 

1. Connect Power Supply for MAX7000S Target Board to the Power point. 

2. Connect ‗Byte Blaster‘ cable to the parallel port of the PC and to the Target Board.  

3. In Quartus, go to Tools – Programmer – Select Hardware Setup (RHS). 

4. Add Hardware—Hardware Setup. 

& OUT_E 

IN_W 

IN_E 

Clk 

SER_IN 

1

l

k 

0

l

k 

0

l

k 

0

l

k 

0

l

k 

0

l

k 
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      Make sure Byte Blaster MV or Byte Blaster II is selected on LPT1—Ok—Close. 

5. Make Sure File ‗Testcell.pof‘ is selected. 

6. Also make sure that the Programming /Configuration box is checked. 

7. Select Start, Observe Progress --- 100%.  

It should show that the CPLD has been programmed. 

 

Make a simple microcontroller program and connect the micro controller to the CPLD. Select 

the Baud Rate of 4800. 

 

A test program was designed for 16F877 called ‗cell_test.c‘, which was connected to the 

CPLD as follows: 

Table 11. PIN SELECTION 

PORT D PIN Name PIN Number 

RD0 Clk 76 

RD1 SER_IN 64 

RD2 IN_E 75 

RD3 IN_W 73 

RD4 OUT_E 70 

 

Testing  

The simulation of the design showed the following results: 

 

Table 12. TRUTH TABLE FOR DESIRED FUNCTION. 

 

IN_E IN_W OUT_E 

0 0 1 

0 1 1 

1 0 1 

1 1 0 
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The Pin setup to be used while configuring the device: 

 

Table 13. PIN SETUP TABLE 

PIN Name PIN Number 

Clk 76 

IN_E 75 

IN_N 74 

IN_W 73 

OUT_E 70 

OUT_N 69 

OUT_S 68 

OUT_W 67 

RST 1 

SER_IN 64 

SEROUT 63 

IN_S 61 
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APPENDIX II: Testing done before running experiment 

 

1. Pin selection for FLEX CPLD and ATMEL  Microprocessor 

 

Table 14. PIN SELECTION TABLE FOR FLEX 

Pin name on ATMega128 Pin Number on FLEX Pin state from Micro 

Input1 158 Output 

Input2 156 Output 

SER_IN 161 Output 

Clk 163 Output 

Clk1 91 Output 

OUT2 149 Intput 

Final_Out 144 Output 

Ser_Out 153 Output 

 

2. Pin selection for MAX  CPLD and PIC Microprocessor 

 

Table 15. PIN SELECTION FOR MAX  

Pin name on PIC 16F877 Pin Number on MAX Pin state from Micro 

Input1 17 Output 

Input2 18 Output 

SER_IN 16 Output 

Clk 15 Output 

Clk1 24 Output 

OUT2 20 Intput 

Final_Out 21 Output 

Ser_Out 22 Output 
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3. Simulation of NOT gate —Input is the IN_W (West input) 

 

 

 

Figure 78  Figure showing NOT gate simulation 

 
4. Simulation of NAND gate—Inputs are the IN_N(North)and IN_W(West) 

 

 

 

Figure 79  Simulation of NAND gate 
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5. Test Point Diagram for 2x2 array structure 

 

 
 

Figure 80  GP showing Test points 
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6. Simulation of 2x2 array with Test point  

 

 

 

Figure 81  Simulation of 2x2 array 
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APPENDIX III: Results achieved during experimentation 

 
List of some of the evolved solutions after the first run of experiment (all the values are 

Hexadecimal digits) 

  F10D9 

  B1303 

  B10C5 

  E4303 

  F1005 

 B4307 

 34130 

 64DD6 

 30021 

 C03F0 

 C028D 

 35539 

 3130A 
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MANUAL ANALYSIS OF EVOLVED SOLUTIONS (OR GATE) AFTER THE FIRST RUN OF EXPERIMENT 

1. Manual analysis of 0xF1003 while circuit was behaving as an OR Gate 

 

 

NOT NAND

NOT

1

CELL 1

CELL 3

CELL 2

CELL 4

EAST_OUT2

1 1 1 0 100 00

10 10000000

EAST_OUT1

EAST_OUT3 EAST_OUT4

NORTH_IN1

SOUTH_IN2

WEST_IN3

WEST_IN4

Selects North_IN
Gate

Selects East_IN

Selects South_IN

Router

Selects West_IN

Selects West_IN
Gate

ROUTER

WEST_IN2

Selects West_IN Selects West_IN
Gate

THE GENERIC PLATFORM

ABHISHEK BEDI

 
 

 

 

The results obtained after manual analysis are as follows: 

 Cell 1 and Cell 3 act as a NOT gate 

 Cell 2 is a NAND gate. 

 Cell 4 is a Router, routing the West input to the North output. 

This is a correct solution for ‗OR‘ gate. 

Figure 82 Manual analysis of 0xF1003 while circuit was behaving as an OR Gate 



 

 105  

 
2. Manual analysis of 0xF10D9 while circuit was behaving as an OR Gate  

 

 

NOT NAND
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1

CELL 1

CELL 3

CELL 2

CELL 4

EAST_OUT2

1 1 1 0 100 00

101 0101100

EAST_OUT1

EAST_OUT3 EAST_OUT4

NORTH_IN1

SOUTH_IN2

WEST_IN3

WEST_IN4

Selects North_IN
Gate

Selects North_IN

Selects South_IN

Router

Selects North_IN

Selects West_IN
Gate

ROUTER

WEST_IN2

Selects West_IN Selects West_IN
Gate

NORTH_IN3

NORTH_IN4

THE GENERIC PLATFORM

ABHISHEK BEDI

 
 

The results obtained after manual analysis are as follows: 

 Cell 1 is a NOT gate 

 Cell 2 and Cell 3 act as NAND gates. 

 Cell 4 is a Router, routing the North input to the North output. 

This is not a correct solution for ‗OR‘ gate. 

 

Figure 83 Manual analysis of 0xF10D9 while circuit was behaving as an OR Gate  
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SIMULATION OF EVOLVED SOLUTIONS (OR GATE) AFTER THE FIRST RUN OF EXPERIMENT 

 

 Simulation of 0xF1003  

 

 

 

Figure 84  Simulation of 0xF1003 

 Simulation of 0xF10D9  

 

 

 

Figure 85 Simulation of 0xF10D9 
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