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Abstract 
 

This thesis is aimed to evaluate three electrical stimulation systems in beef 

processing. A new setting has replaced the traditional 15 Hz immobilisation setting in 

all processing plants.  However, the impact of the new setting on various meat 

quality parameters – pH decline rate, tenderness, drip loss, colour, etc. – was of 

interest.  That is the first objective of this study. The second objective of this study is 

to understand the behaviour of representative meat cuts in response to the three 

stimulation treatments. The output from this work will be a comprehensive muscle 

profile database of commercial value.   

36 pasture-fed steers (male castrates), aged 18 to 28 months and weighing between 

280 and 330 kg were singly selected for the study. The subcutaneous fat thickness 

was between 2 and 4 mm. The steers were electrically stunned across the head only, 

bled and dressed according to Ministry for Primary Industries (MPI) requirements.  The 

time at this point of the experiment was designated Day 0. Three stimulation 

treatments were devised: the traditional 15 Hz treatment is Stimul 1 and the new 

setting, 15 Hz and 400 Hz. is Stimul 2.  Stimul 3 is Stimul 2 paired with Smart 

Stimulation. The 36 animals were randomly assigned to one of them.  

Six pH and temperature measurements were taken from each carcass with a TESTO® 

205 pH meter (Testo AG, Lenzkirk, Germany) at approximately hourly intervals from the 

start of chilling to about 8 hours post slaughter, then finally at 24 hours: the pHu. The 

pH meter was calibrated before use and at regular intervals using pH 4 and pH 7 

buffers at room temperature (Thermofisher, New Zealand). The glass probe was 

inserted through the longissimus between the 12th and 13th ribs and into the core of 

the deeper M. semimembranosus on the hindquarter.  

One day after slaughter (Day 1) six single muscles: rectus femoris, longissimus dorsi, 

psoas major, gluteus medius, gluteobiceps and infraspinatus were excised from one 

side of the carcasses. Depending on the size and orientation of each muscle, 2 or 4 

submuscles (100 mm x 50 mm x 50 mm) were excised, trimmed of visible fat, and 

labelled as Position 1, 2 etc. from a defined site depending on the muscle. In 

summary, a grand total of 648 samples were collected in this study. Each muscle 

subsample was vacuumed packed and randomly assigned to one of six different aging 
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days, 1, 3, 5, 7, 14 or 21 days. At the prescribed day, the muscles were measured for 

drip loss, colour and tenderness.  

Although the pH-temperature data were unfortunately limited for Stimul 1, historical 

data strongly suggested that there would be a severe risk of heat shortening, 

particularly in the deeper semimembranous muscle. By contrast, the pH-temperature 

results in Stimul 2 and 3 showed little tendencies for heat shortening.  The 15 Hz and 

400 Hz combination in Stimul 2 reduces the incidence of burst tenderloins and 

ecchymosis. Stimul 3 did demonstrate an ability to control pH decline rate in the first 

few hours but only in longissimus dorsi and not extended to semimembranosus. In the 

two indicator muscles, Stimul 1 had the most variable pH values, particularly at early 

times after slaughter. Variability was reduced in Stimul 2 and – especially - Stimul 3 

(Smart Stimulation).  Thus, Stimul 3 appears more attractive.  

The stimulation treatments had no effect on drip loss, saturation, Hue angle and shear 

force, but the data reveal the rank order of drip loss amongst muscles is the same as 

saturation and Hue angle: Gluteus medius (RUMH, highest drip loss and most 

coloured) > Gluteobiceps (RUMC) > Psoas major (TEND) > Rectus femoris (KNUCK) 

> Longissimus dorsi (STRL)> Infraspinatus (BLD, lowest percent drip loss). The initial 

shear force values for infraspinatus (BLD), rectus femoris (KNUCK) gluteobiceps 

(RUMC), gluteus medius (RUMH) and psoas major (TEND) were below 10 kgF, and 

would provide an acceptable eating experience even one day after slaughter. The 

longissimus dorsi (STRL) showed a high variation of tenderness (between 5 kgF to 12 

kgF). The tenderness variability of all muscles decreases with time and they would 

provide a good eating experience after 7 to 10 days after slaughter. The remarkably 

precise inverse relationship between the Japan colour score and L* showed that the 

colour tiles were as good, certainly cheaper and more reliable by virtue of their 

simplicity. This colour grading technique is currently in commercial practice by Silver 

Fern Farms. 
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Chapter 1 
Introduction 

The challenge for red meat industry 

In the year ended June 2013, the top New Zealand export commodities were dairy, 

meat and wood, which accounted for 44% of the total export (Statistics New Zealand, 

2013).  Among the export goods, the red meat and co-products exports worth $6.3 

billion, nearly $300 million more than in 2012. Therefore, red meat remains as one of 

New Zealand’s major export earners (MIA, 2013).  

Despite being a major export earner, the red meat industry faces many challenges. 

The main challenge is the time lag between production and processing, because the 

conversion of pasture into edible muscle (i.e. meat) takes months. The period between 

a farmer’s decision to produce and deliver livestock to a meat processor can be over a 

year for lamb and at least two years for beef. Additionally, there are several months 

between livestock processing and consumption by overseas customers (MIA, 2013).  

Due to the seasonal nature of the New Zealand climate, the supply of livestock is 

neither even nor continuous throughout the year. The supply trend is like a roller 

coaster ride: oversupply in summer and autumn, but an undersupply in winter. This 

seasonal mismatch of supply and demand creates pricing volatility. Unlike other 

manufacturers, it is impossible for the red meat processor to resolve this issue by 

simply holding back livestock and product inventory and then later adjusting their 

production based on market price fluctuations.  

These challenges were evident following two seasons of unsatisfactory prices for 

farmers and financial results for meat processors in 2012 and 2013 (Silver Fern 

Farms, 2012, 2013). The current conditions have been aggravated by the ongoing 

conversion of land from sheep and beef farming to dairy farming; and a corresponding 

reduction in sheep and beef livestock numbers.  These conditions have led to a call for 

structural reform of the red meat sector.  
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The call to restructure the red meat sector 

In 2010, Silver Fern Farms Limited, PGG Wrightson, Landcorp Farming and the 

Ministry of Primary Industries established a jointly-funded seven-year programme to 

turn the meat industry’s production-led approach into a market-led approach. The 

programme focused on responding to consumer needs through a pasture-to-plate 

integrated value chain.  It is run as a joint venture through a purpose-created company 

called the Farm IQ Systems Limited. By the end of this Primary Growth Partnership 

(PGP) programme, it should grow New Zealand’s Gross Domestic Product (GDP) by 

$1.1b in year 2017, accumulating to $8.8b by 2025. According to Farm IQ (2010), this 

value increase is crucial for the survival of the farmers and meat processors. 

Under the PGP programme, Silver Fern Farms has identified a number of areas that 

could be evaluated: meat quality measurement, meat quality improvement, process 

optimisation, product traceability and meat yield measurement projects. This electrical 

stimulation thesis project is funded under the meat quality improvement and 

measurement categories.  

Silver Fern Farms process evaluation 

In 2011, Silver Fern Farms approached Carne Technologies to review their electrical 

processing protocols in all beef plants. The aim was to create a benchmark 

understanding of the current processing standards and to identify any areas for 

improvement. In Halal beef plants, with head-only stun, the animals are rendered 

unconscious and completely unresponsive to pain when the slaughter cut is made.  By 

the time that the animals regain conscious from stun, the brain has ceased function 

due to oxygen deprivation through excessive blood loss. However, there are a number 

of reflexive movements mediated by the spinal cord after stunning. Violent kicking and 

walking movements will occur during the first few minutes after stunning, especially 

when the dressing procedure is carried out. To prevent these reflex movements, 

electrical stimulation is applied to contract the muscles, so that the carcass remains 

rigid. The electrical stimulation normally lasts for 40 to 45 seconds and is termed 

‘immobilisation’ throughout the thesis.  

The impact of immobilisation parameters on meat quality are of interest. The process 

evaluation by Carne showed that under the traditional low frequency (15 Hz), low 
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voltage (100 V) immobilization, the pH values of an indicator muscle, longissimus 

dorsi, were mostly lower than pH 6 at chiller entry, and therefore posed a high risk of 

heat shortening.  Carne recommended that Silver Fern Farms upgraded  the existing 

immobilization setting (15 Hz) to a high frequency 400 Hz in beef to minimise rapid pH 

fall while the carcasses were still hot.  Carne Technologies also recommended that 

Silver Fern Farms should install a Smart Stimulation system, which was claimed to 

control the rate of pH fall during chilling and predict ultimate pH (Simmons et al., 

2006). 

Silver Fern Farms installed Smart Stimulation units in the Pareora lamb/sheep 

processing plant in 2008 and another in the Finegand (Balclutha) beef plant following 

the process evaluation.  However, the outcomes were unknown and that is the partly 

the subject of this thesis. Because of the higher potential value for beef, my research 

was directed at Finegand only. The research aimed to evaluate the effectiveness of 

these new stimulation systems –  high frequency immobilisation and Smart Stimulation 

– by measuring the subsequent meat quality and related events after slaughter to 21 

days post mortem. This is because profound biochemical and structural changes are 

directly associated with the transformation of muscle tissue from the pre-rigor to post-

rigor states. These transformations have crucial impact on the quality attributes and 

thus the choice of storage/processing conditions.  

Chapter 2 will describe and discuss the biochemical reaction during the conversion 

from muscle to meat, the concepts of heat and cold shortening, and the role of 

electrical stimulation in improving meat quality with particular reference to gaps in 

knowledge.  In respect of the new Smart Stimulation and high frequency 

immobilization system, it is noted that because this technology is very young, there is 

limited knowledge about its properties and no references in the meat science 

literature. This work will help to fill that gap.  

Chapter 3 will describe the material and methods for the study, which includes the 

animal selection, processing treatment, measurements on muscles, data handling and 

statistical analysis.  

Chapter 4 and Chapter 5 reported the results and discussion for the two parts of this 

project, where bovine carcasses were subjected to three electrical treatments after 
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slaughter. Chapter 4 focused on the pH and temperature decline; whereas Chapter 5 

discussed the meat quality attributes.  

Chapter 6 concluded the main findings for the study and potential future work.  
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Chapter 2 
Literature Review 

Myology 

Apart from the skin/hide, the carcass component of animals consists of three main 

parts: muscle, fat and bone. Of these, the most dominant is the muscle tissue.  It 

comprises 30 to 40% of the live weight of an animal, which is about 100 to 150 kg of 

meat tissue (Lawrie & Ledward, 2006). The skeletal muscle tissue connects to bone 

and transmits force to bones to enable locomotion.  Fat can be subcutaneous (sited 

under the skin of the animal), intermuscular (sited between individual muscles) or 

intramuscular (present within the body of a muscle). The subcutaneous fat is the most 

obvious and is easily removed to produce a leaner-looking meat (if that is what is 

wanted).  The intermuscular fat is more difficult to remove and the intramuscular is an 

intrinsic part of the muscle (Warris, 2000).  Where intramuscular fat levels are high, 

and thus obvious to the eye, the muscle is said to be marbled.  

Under a transmission light or electron microscope, the skeletal muscle tissue is seen 

to be crossed by parallel lines (striations), and for this reason, the skeletal muscle is 

also called striated muscle.  Its contractions are controlled by the higher nervous 

system, and thus can also be called voluntary muscle.  Involuntary muscle – also 

known as smooth muscle because it is unstriated – is dominant in the viscera 

components such as intestines and glands, but is also present in artery walls (Lawrie 

& Ledward, 2006), but these are a minor part of carcass muscle and are of no 

interest in this study. 

Individual skeletal muscles vary greatly in size and shape.  In all cases however, 

they are made up of parallel arrangements of elongated, multinucleated cells called 

myofibres or muscle fibres. Each bovine myofibre ranges from 10 to 100 µm in width 

and from a few millimetres to several centimetres long, and sometimes spanning the 

entire length of a muscle.  The myofibres are arranged in a hierarchical fashion, as 

shown in Figure 1.  Each myofibre is encased in a layer of connective tissue – 

dominated by collagen – called the endomysium.  On the next level, groups of 

myofibres are organised into primary and secondary fascicles that are separated by 

yet another layer of connective tissue called the perimysium. Finally, a layer of heavy 

connective tissue – the epimysium – surrounds the whole muscle.  The endomysium 
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merges with the collagenous tendons that link the muscle to bones (Strasburg, 

Xiong, & Chiang, 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Diagrammatic representative of the structural organisation of muscle from 
subcellular myofibrils to whole organ (reprinted from Tortoa & Derrickson, 2006).  

 

The muscle is permeated by a complex nervous system, which is responsible for the 

regulation of muscle contraction and maintenance of muscle tone, and a vascular 

system, in which the blood provides oxygen and nutrients to the muscle while also 

removing metabolic end products. The perimysium and endomysium combine to 

create the necessary framework that maintains the structural integrity of these 

tissues during muscle relaxation and contraction (Strasburg et al., 2008).  
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The structure of muscle cells allows the translation of electrochemical impulses into 

force. This is triggered by a neural stimulation, which then increases the intracellular 

calcium concentration and eventually triggers a muscle contraction, as explained 

below.  

The myofibre is bounded by a plasma membrane, which is called the sarcolemma 

(Figure 2). The skeletal muscle sarcolemma differentiates from the plasmalemma of 

other cells by having periodic invaginations of the membrane into the interior of the 

muscle cell. The structure is like creating gaps by poking fingers into a plastic 

balloon skin. These invaginations of the sarcolemma - referred to as transverse 

tubules or T-tubules - transmit the depolarization signal for contraction from the 

neuromuscular junction to the interior of the myofibre.  In the interior, the transverse 

tubules are physically contacted to the sarcoplasmic reticulum at periodic intervals. 

The Sarcoplasmic reticulum is an extensive and highly developed intracellular 

network that encircles the contractile organelles and acts as a reservoir of calcium 

ions, Ca2+, which trigger muscle contraction after entering the sarcoplasm.  Many 

proteins are embedded in the sarcoplasmic reticulum and are responsible for 

specific functions related to calcium regulation. Some proteins in the sarcoplasmic 

reticulum lumen bind calcium ions when the muscle is at rest (Rossi & Dirksen, 

2006). Other proteins form channels that open in response to the depolarization 

signal and allow the diffusion of calcium ions from within the lumen to the 

sarcoplasm, triggering a muscle contraction (Dulhunty et al., 2002).  
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Figure 2 Schematic representative of the structural organization of a muscle fibre (reprinted 
from Tortoa & Derrickson, 2006). 

 

The other muscle fibre features can also be seen in Figure 2.  Specifically, the 

myofibres are multinucleated.  The nuclei are distributed around the periphery of the 

cell and immediately beneath the sarcoplasmic reticulum. The mitochondria acts as 

energy transducers for the myofibre and is also found throughout the cell in close 

association with the contractile thick and thin filaments.  

Muscle contraction is activated through the action of specialised proteins organized  

into the parallel, interdigitating thin and thick filaments (Figure 3a).  The filaments 

make up 80 to 90% of the volume of a myofibre.  Under polarised light microscopy, 

dark bands are anisotropic and therefore known as ‘A-bands’; whereas the lighter 

bands, ‘I-bands’ are isotropic. The boundaries of the sarcomere are defined as Z-

discs, which are narrow, dark and electron-dense bands proteins in the centre of I-

band. The protein matrix that comprises the Z-discs, acts as a foundation that 

supports the thin filaments that originate from both sides of Z-discs.  
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Figure 3 Structural arrangement of the sacromere (reprinted from Tortoa & Derrickson, 
2006). 

 

Figure 3b shows that the sarcomere is made up of alternately located thin and thick 

filaments.  The I-band consists of thin filaments; whereas the A-band consists of 

overlapping thin and thick filaments. The centre of the A-band is slightly less 

electron-dense than the distal regions and thus appears brighter. This brighter zone 

is referred as the H-zone and consists of only thick filaments with no overlapping thin 

filaments. At the centre of H-zone, there is a dark zone analogous to the Z-disc: the 

M-line.  It comprises proteins that maintain the structural arrangement of the thick 

filament protein and act as an anchoring point for the scaffolding protein titin 

(Strasburg et al., 2008). Figure 3c shows the structural detail of the thin filament, 
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where the dominant proteins are actin, tropomyosin1 and troponin. Although not 

shown in Figure 3c, the sole protein of thick filament is myosin, to be discussed in 

more detail later. 

Muscle contraction  

Huxley and Hanson (1954) proposed a theory of muscle contraction named the 

sliding filament theory. This theory is based on the observations that the lengths of 

both thin and thick filaments remain constant, regardless of whether the muscle is 

stretched, contracted or in resting state.  However, the sarcomere length – that is 

defined as the distance between the adjacent Z-discs – varies depending on the 

state of contraction or stretch force applied to the muscle fibre.  When contraction 

takes place, the thin and thick filaments slide past each other and the sarcomere 

length becomes shorter. Conversely, during stretching, the thin filaments of 

sarcomere slide away from each other as they move along the A-band, the 

sarcomere length becomes longer (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Illustration of the sliding filament theory: (a) Relaxed (b) Partially contracted, and 
(c) Maximally contracted (reprinted from Tortoa & Derrickson, 2006). 

 

                                            
1 Tropomyosin and troponin have subunits, but that is beyond the scope of this review. 



11 

 

From a meat science perspective, the extent of thin and thick filament overlap has a 

significant effect on meat tenderness (Huxley & Hanson, 1954). There is a negative 

correlation between the sarcomere length and meat toughness. When the muscle is 

maximally contracted, the sarcomeres are at their shortest, with the highest degree 

of overlap between the filaments and a large number of rigor bonds formed between 

the two filament types (Figure 4c). This results in increased toughness.  

Molecular details of muscle contraction and relaxation 

There is a significant difference between a live muscle tissue and meat. Once an 

animal dies, the muscle tissue enters a series of transitional reaction: the conversion 

of muscle to meat, which will be discussed in later section. The biochemical events 

are the same as muscle contraction in a live muscle, and are significant 

determinants of meat quality (Strasburg et al., 2008).  

When a muscle is at rest, the voltage difference across the sarcolemma is about 90 

mV and the intracellular Ca2+ concentration is very low: <10-7 M. In the myofibrils, the 

tropomyosin is located on the actin filament in such way that prevents myosin-actin 

cross-bridge formation (the basis of muscle contraction).  When a motor neuron that 

adheres to the sarcolemma (Figure 1) triggers stimulation, the muscle cell 

depolarizes at that neuromuscular join point. The depolarization propagates along 

the sarcolemma and the T-tubules. There is a mechanism in sarcoplasmic reticulum 

involved in this early phase of muscle contraction: the ryanodine receptor (RyR) and 

the dihydropyridine receptor (DHPR). The DHPR responds to the depolarization by 

undergoing a conformational change that is transmitted across the T-tubule to the 

RyR, which is located in the membrane of the sarcoplasmic reticulum terminal 

cisterns (Figure 2).  The RyR is a channel that opens in response to the 

conformational change and allows calcium ions to flow into the sarcoplasmic 

reticulum. At this stage, the calcium concentration increases over 100-fold: from 10-7 

M to >10-5 M. The Ca2+ binds to the troponin complex (Figure 3c; Figure 5), causing 

a conformation change that is transmitted to tropomyosin. Consequently, the 

tropomyosin is pushed deeper into the actin groove (Figure 3c; Figure 5) exposing 

the actin filament to the myosin head, enabling actin-myosin cross-bridge formation 

(muscle contraction) (Figure 5) (MacIntosh, Gardiner, & McComas, 2005).  
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Figure 5 Regulation of contraction and relaxation by the tropomyosin-troponin 
complex.  The dark lobes are myosin heads that can interact with the actin when the 
tropomyosin-troponin complex slides into the actin groove in response to Ca2+ binding 
(reprinted from Chiang, Strasburg, & Byrem, 2007). 

 

A complete muscle contraction cycle is illustrated in Figure 6.  The nucleotide-

binding site of the myosin heads contains ADP and inorganic phosphate (Pi), which 

are the end-products from ATP hydrolysis (Figure 6 Step 1). The exposed myosin-

binding sites on the actin filament allows a weak binding between the actin head to 

thin filament with an almost orthogonal binding to the thick filament axis. Upon 

binding, the myosin head releases Pi, causes a small conformational change, and 

strengthens the binding between actin and myosin (Step 2). This is immediately 

followed by the power stroke: a large conformation change where the myosin heads 

pull the actin filament along the thick filament towards the M-line, thus causing the 

sarcomere length to shorten (Step 3).  ADP is released from the myosin head and 

the available ATP then binds to the empty nucleotide-binding site. This triggers 

myosin head to release from actin (Step 4). As long as the neuronal stimulation 

continues, which depletes ATP, the muscle contraction cycle will restart from Step 1 

(Raymen & Holden, 1994).  
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Figure 6 Cross-bridge cycling during muscle contraction (reprinted from Tortoa & 
Derrickson, 2006). 

 

At the end of stimulus, the sarcoplasmic Ca2+ concentration lowers to its resting state 

through the activity of a calcium pump, which is present within the sarcoplasmic 

reticulum. The troponin complex thus becomes deficient in Ca2+ and the muscle 

reverts to a resting state, which blocks the myosin-actin cross-bridge formation 

(Strasburg et al., 2008).  

To this point the muscle fibres have been considered as unvarying, and certainly the 

concepts described above apply to all skeletal muscles. However, muscle fibres 

show some variation even within a fibre bundle. Before discussing the conversion of 

muscle to meat after slaughter, it is useful to consider the broad variations in muscle 

fibre type: differences in the speed of contraction (fast versus slow) and supporting 

mechanism (oxidative versus anaerobic).  Speed of contraction – termed twitch 

speed – can be measured in isolated muscle fibres held in a suitable physiological 

medium when a stimulus is applied.  

Slow-twitch fibres are classed as Type I and fast-twitch are Type II. There are at 

least two subclasses of Type II: IIA and IIB (Young, 1984). Type I fibres that 

dominate slow twitch muscles – like the bovine masseter muscle of the cheek – 
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contain a high concentrations of mitochondria and lipids; and provide energy for 

oxidative metabolism. Since oxygen is needed for metabolism, slow twitch muscles 

are predominately red due to their myoglobin content.  These muscles are involved 

in posture and steady repetitive actions: cud chewing or low speed swimming in fish; 

low speed swimming is accomplished by the subcutaneous lateral line muscle, which 

is notably red.  Type II fibres (or fast twitch muscles) are more equipped for 

anaerobic metabolism fuelled by carbohydrate, for example during sprinting (Young, 

1984; Spangenburg & Booth, 2003).  

According to Young (1984), some carcass muscles are pure Type I: like masseter; 

and some pure Type II(B): like cutaneous trunci2. But most carcass muscles are a 

blend of the three basic types (Type I, Type IIA & IIB). Each muscle’s composition 

reflects its role in posture, locomotion or repetitive action in the live animal, and in 

turn the composition will have some effect during the conversion of muscle to meat, 

which takes place during the 24 hours of so after slaughter.  

Conversion of muscle to meat  

As discussed in previous section, the muscle contraction requires a supply of ATP 

that contains a high energy phosphate bond (Figure 6).   ATP is generated in the 

muscle cell by a number of mechanisms that result in a resting concentration of 

around 5mM.  After the animal dies, blood cannot deliver oxygen and energy 

(carbohydrates and fatty acids) to muscle tissue; and remove carbon dioxide.  

Anaerobic glycolysis rapidly dominates the metabolic pathway to regenerate ATP 

lost by metabolism including the activity of the calcium pump.  The substrates for 

anaerobic glycolysis are creatine phosphate and later glycogen, also known as 

animal starch.  When creatine phosphate is exhausted, glycogen takes over. The 

enzyme phosphorylase cleaves monomeric glucose units from glycogen, yielding 

glucose-1-phoshate; and enters glycolytic pathway, generating limited quantities of 

ATP. Under the anaerobic environment, the end product of glycolysis is lactic acid 

(because the pyruvate cannot enter the Krebs cycle) (Strasburg et al., 2008).  Since 

the bloodstream cannot remove lactic acid, the muscle will acidify and convert to 

meat.  When the muscle glycogen is exhausted or the pH falls to levels where 

                                            
2 Cutaneus trunci is a pale muscle beneath the lateral trunk skin, and in bovines can be seen to twitch 
rapidly to discourage flies. 



15 

 

enzyme(s) activities become limiting, glycolysis ceases and ATP can no longer be 

generated. The myosin heads will permanently attach to the actin (lower drawing 

Figure 6) and the muscle is said to be in rigor mortis and is thus meat.   

When the meat pH falls no further, it is called the ultimate pH (often abbreviated to 

pHu). The time to attain ultimate pH is variable and it is dependent on species, 

animal genetics, proportions of Type I, IIA and IIB fibres in a muscle, ante-mortem 

nutritional and animal management conditions that affect glycogen concentration at 

slaughter, and also processing treatments like electrical stimulation (Lawrie & 

Ledward, 2006).  

An example of pHu attainment for different types of muscles is shown in Figure 7 

(Bendall, 1978). Without any processing intervention, the process normally takes 4 

to 8 hours for pigs, 12 to 24 hours for sheep and 15 to 36 hours for cattle (Figure 8) 

(Dransfield, 1994).  

 

Figure 7 The effect of muscle type and species on the rate of post-mortem pH fall at 37°C.  
Zero time is this case was 60 min post mortem.  The graphic is from Bendall, 1978) 
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Figure 8 The rate of pH decline of the longissimus dorsi muscle in pigs and cattle. The 
curves are the average of 15 cattle and 30 pigs, with vertical bars as the standard errors 
(Dransfield, 1994). 

 

Tenderisation of meat after rigor onset 

It is well known that many higher priced chilled meat cuts are low in connective 

tissue.  For these cuts, the cooked meat tenderness will improve during the days and 

weeks after slaughter.  However, there is a financial cost associated with storing 

meat at all points of the value chain and after consumer purchase.  Thus, there is a 

pressure to consume meat as soon as possible after slaughter, but at the cost of 

frequently tough meat.  Also, there is another driver of early consumption: meat 

spoilage.  The longer the meat is held and the warmer it is, the greater the chance of 

meat spoilage due to microbial growth.  For these reasons, much research effort has 

been directed to understand the kinetics of tenderness development.  Indeed, that is 

part of this research project that will be described later. 
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Tenderness development is influenced by endogenous proteases, which act on 

specific muscle proteins (but notably not collagen, which is why collagenous cuts 

can only be tenderised by extended cooking).  At least two enzyme classes are 

involved: the calpains and cathepsins. The calpains have been studied intensively 

for their role in degrading post-mortem muscle protein and high activity in the neutral 

pH range. Calpains, of which there are at least two well-described variants, are 

calcium-activated enzymes that occur widely in nature.  Their activities are regulated 

by calcium concentration, phospholipids and calpastatin.  Calpastatin is a calpain-

specific protein inhibitor (Goll, Thompson, Li, Wei, & Cong, 2002).  After slaughter, 

when the muscle is gradually entering rigor, the Ca2+ concentration increases in the 

muscle fibre and activates the calpain system, which eventually initiates muscle 

protein hydrolysis, leading to tenderness development.  In contrast to the calcium-

activated calpains, the cathepsins are activated by the acidic pH condition (due to 

lactic acid generation), which prevails as ultimate pH in the days and weeks after 

slaughter.   Both proteases (calpains and cathepsins ) are responsible for 

hydrolysing muscle proteins like troponin-T, titin, nebulin, C-protein, desmin, filamin, 

vinculin and synemin (Huff-Lonergan et al., 1996), which are either directly attached 

or associated with the Z-discs. This process will contribute to meat aging and 

tenderness improvement (Strasburg et al., 2008).  In a commercial environment with 

an export focus, as is the case in New Zealand, meat storage that allows tenderness 

development (ageing) is achieved by holding the meat at -1.5°C, just above its 

freezing point. The low temperature minimises spoilage (Lawrie & Ledward, 2006) 

and also slows tenderness development, so weeks may pass before optimum 

tenderness develops.  However, that is not a problem in the export industry because 

it can take up to six weeks for chilled meat to reach its destination. 
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Meat quality  

The discussion in the previous section implies that the kinetics of tenderness 

development is affected only by the temperature during ageing. However, this is not 

the case. In the early 1960s, New Zealand lamb processing industry received 

complaints from the Europe and North America consumers about excessively tough 

meat. Yet, the lamb consumed in New Zealand from the same abattoirs was not 

tough.  The difference could be traced back to post mortem handling (Marsh & 

Thompson, 1958). The meat for the local market was not frozen; rather it entered 

cooling rooms prior to distribution and sold at chilled temperatures.  This allowed 

ageing and improved tenderness.  In contrast to export meat, the carcasses were 

blast frozen immediately after dressing and before the onset of rigor. This had two 

implications: the ageing process could not occur; and when the meat was cooled 

below 10°C while the pH was still higher than 6.0 ( before the onset of rigor), a 

phenomenon called cold shortening occurred. 

The degree to which (excised) pre-rigor muscles contract in response to low 

temperatures is shown in Figure 9, indicating that the pre-rigor muscle will shorten 

significantly when the temperature is below 10°C. C old shortening is where the 

muscles permanently contract in response to high concentrations of Ca2+ in the 

muscle fibre. This is because at cold temperatures, the calcium pump becomes less 

effective in lowering the muscle cell Ca2+ concentrations (Pearson & Young, 1989). 

The outcome is tough cooked meat when muscles have been cold shortened. 
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Figure 9 Percent shortening of excised pre-rigor beef muscle as a function of storage 
temperature (from Locker & Hagyard, 1963). 

 

Figure 9 also shows another phenomenon: heat shortening.  If muscles are held at 

temperatures above 30°C, while the pH falls below 6 .0 and before rigor onset, 

contraction will occur (Warris, 2000). 

Geesink, Bekhit, & Bickerstaffe (2000) showed that a high pre-rigor temperature 

accelerates the attainment of low pH, which induces protein denaturation. Offer 

(1991) explained that because the contractile proteins are denatured at higher 

temperatures, combined with lower pH, the effectiveness of tenderising enzymes 

(calpains and cathepsins) is reduced. Protein denaturation also causes the 

myofibrillar proteins to shrink and expel fluid into the extracellular space. This 

manifests as excessive drip.  Also, the shrinkage of the myofibrillar components 

increases the amount of light reflected from the meat. As a result, heat shortened 

meat is paler, less red and more yellow. 

Thus, both high and low temperatures during rigor onset can adversely affect meat 

quality.  The relationship between muscle pH and muscle temperature in Figure 10 

shows how to avoid those conditions for the loin muscle (longissimus dorsi) in 

particular, and carcass muscles in general.    
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Figure 10 Post mortem pH-temperature plot showing the window through which muscle 
show pass to avoid cold and heat shortening (adapted from Meat & Livestock Australia, 2010). 

 

Figure 10 suggests that cold and heat shortening could simply be avoided by 

controlling the rate of cooling and pH fall after slaughter. However, that is not a 

simple task because of different abattoirs having their own production speed, chiller 

capacity and electrical inputs to control rigor onset, the last of which is the focus of 

this thesis.  
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Electrical stimulation 

History 

In 1749, the polymath Benjamin Franklin discovered that an electric current applied 

across a turkey carcass immediately post-mortem would rapidly tenderise the meat 

(Lopez & Herbert, 1975). Years later, Harsham and Deatherage (1951) used high 

voltage electrical stimulation on freshly slaughtered beef carcasses to rapidly 

tenderise meat and filed a patent for the application.  Commercial application was 

not seriously considered until 1973, when the first practical system was developed in 

New Zealand and then Australia to avoid toughness resulting from cold shortening. 

In New Zealand, electrical stimulation was initially used to accelerate rigor mortis 

before freezing sheep and beef carcasses, and now it is widely used to improve 

meat quality.  Electrical stimulation is now considered as part of a total process from 

slaughter through chilling and optional freezing to final sale.  For electrical 

stimulation to be useful, the waveform and pulse frequency, the stimulation duration, 

and the delay from moment of slaughter, must be matched to the species in question 

and the chilling rate.  Table 1 summarises a number of typical electrical stimulation 

parameters in commercial use (Devine, Hopkins, Hwang, Ferguson, & Richards, 

2004). 

 

Table 1 Typical electrical stimulation parameters in commercial use. 

Voltage 
(V) 

Duration 
(seconds) 

Frequency 
(Hz) 

Delay from 
slaughter 

(min) 

Country Species 

200 60 60 Immediate U.S.A. Bovine 
1,130 90 14.3, alternate 30  N.Z. Ovine 

80 15-30 15, unipolar, 
square or half 

sine wave 

5 N.Z. Bovine 

40 40-50 15, unipolar 5 Australia Bovine 
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Beef electrical stimulation systems 

Electrical stimulation can be applied in many methods. In this context, we are only 

interested in the beef electrical stimulation systems. 

The beef stimulation systems extend to both batch and continuous methods.  The 

batch method is administrated during immobilisation.  The beef carcasses are 

immobilised on the bleeding table using a short metal bar or rubbing bar electrode 

that contacts the hindquarter muscles (Figure 11).  A second option is to attach a 

battery clamp to the lip, with the return current carried by a clip or probe that 

attached at either the anus; or the chain that is used to hoist the animals.  The first 

configuration is more frequently used as it is mechanically controlled, safer to 

operate and able to match up with the production speed (1 beef carcass per minute).  

Continuous systems consist of a series of stationary electrodes rubbing against the 

moving carcasses, with or without hides on (Figure 12) (Devine et al., 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Batch method of stimulation applied 
with a rubber bar electrode. 

Figure 12 A continuous stimulation 
system.  



23 

 

Events during electrical stimulation  

Electrical stimulation passes electric current through the muscles and causes 

vigorous muscle contractions. As a result, the muscle releases cathpetic enzymes 

that were associated with early tenderisation.  Many researchers like Gilbert, Davey, 

and Newton (1977), Koohmaraie, Babiker, Merkel and Dutson (1988) and Kastner et 

al., (1993) agree that the electric current will affect the charge polarisation of the 

cellular membrane. The sarcoplasmic reticulum releases calcium ions into the 

myofibre and triggers contraction. This induced contraction enhances hydrolysis of 

ATP, which leads to accelerated glycolysis to regenerate ATP.  Lactic acid is 

produced at the same time, so pH drops falls more rapidly, and rigor onset occurs 

much earlier. 

For an industry that is focused on freezing meat as soon as possible after slaughter, 

electrical stimulation was quickly adopted to avoid cold shortening (Carse, 1973).  

However, the frozen meat could still be tough on subsequent cooking, because the 

meat had no chance to tenderise to optimum tenderness.  Nonetheless, rapid rigor 

onset due to stimulation can trigger some tenderisation before freezing.  According to 

Smith (1985), when electrical stimulation is applied immediately after the death of 

animals, Ca2+ ions are released at a time when the muscle temperature and pH are 

relatively high. This leads to early activation of calpains that results in greater 

proteolytic breakdown and gives tenderisation a head start. A stimulated carcass will 

attain ultimate tenderness much earlier time than unstimulated carcass (Figure 13).  

 

 

 

 

 

 

 

 

Figure 13 Tenderness curves for stimulated and unstimulated carcasses.  
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Although electrical stimulation is undeniably useful, problems can arise, one to be 

discussed now and others to be discussed in later sections.  The most obvious 

problem is the potential for heat shortening. With accelerated glycolysis from 

electrical stimulation, the low pH meat can be exposed to a relatively high 

temperature (Figure 10). The rapid pH decline leads to some protein denaturation 

and greater reflectance of light.  As a result, the colour of stimulated beef carcasses 

is brighter (Warris, 2000).  

The paragraph above also suggests that electrical stimulation can be used to resolve 

‘heat ring’ issues. The term ‘heat ring’ is defined as the two-tone appearance of the 

longissimus dorsi.  With very cold air temperature at the beginning of chilling cycle, 

glycolysis is arrested on the outer portion of pre-rigor longissimus dorsi while pH is 

high, resulting in darker colour.  In contrast, the inner portion of the muscle is 

unexposed to the cold air, chills at a slower rate and is subject to denaturation. The 

application of electrical stimulation will allow both muscles to decline at a similar pH 

rate.   

What are the effects of electrical stimulation on muscle structure? This was an 

important question because the contractions induced by electrical stimulation are 

particularly strong.  The question has been answered by transmission electron 

microscopy (Figure 14), showing a clear physical disruption within the muscle fibres.  

Savell, Duston, Smith and Carpenter (1978) suggested that the electrical stimulation 

at 100 V, DC, could improve tenderness by means of physical disruption and 

formation of contracture bands, but not necessarily by preventing cold shortening. 

The light micrographs from Hwang & Thompson (2002) revealed contracture bands 

throughout the myofibres, stretched areas on either side of the contracture bands 

and some contracture bands along with physical disruption of the myofibirils on 

either side of the bands (Figure 14). 
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Figure 14  Characteristics of contracture bands in electrically stimulated beef longissimus 
compared with controls, and changes during ageing (reprinted from Hwang & Thompson, 
2002). 

 

In summary, electrical stimulation can elicit changes in post-mortem muscles by (1) 

acceleration of proteolysis; (2) prevention of cold shortening by ensuring rigor mortis 

is attained under optimum condition (pH and temperature); and (3) physical 

disruption of the muscle fibre (Hwang, Devine and Hopkins, 2003).  

The descriptions and discussion above imply that electrical stimulation is responsible 

for the generally positive outcomes in meat quality.  The electrical stimulation setting 

must be carefully tailored to prevent rapid decline of pH, or else heat shortening will 

occur that causes toughness and increases drip loss (Pearce et al., 2009). In our 

study, inappropriate stimulation setting could cause blood splash as well. The details 

will be discussed in later sections.  



26 

 

Before discussing the uncertainties and problems surrounding Silver Fern Farms’ 

electrical stimulation technologies, it is useful to note the various electrical inputs that 

can be applied.  Electrical inputs variously come from electrical stunning, 

immobilisation and any means of stimulation process that acts as a processing aid 

during or after the dressing procedure. Electrical stunning is used to either kill or 

render the animal unconscious prior to throat cutting.  After death, the carcass is 

immobilised to allow for safe dressing procedures.  A back stiffener is installed in 

some processing plants, which applies a current through the longissimus dorsi 

during hide pulling and causes muscle contraction (CSIRO, 2006).  The combined 

strength of the contracted muscles and spinal column prevents damage/breakage to 

the muscle.  With multiple electrical inputs that could be applied across the carcass 

muscle in a processing chain, they can contribute to pH decline rate and thus 

improve meat quality.  

The pattern of pH decline is governed by the voltage, pulse amplitude, pulse width, 

frequency, muscle temperature and time, and the pre-stimulation time delay. These 

parameters will be discussed in details in the following sections.  
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Electrical stimulation types and factors affecting electrical 
stimulation 

Voltage 

Voltage determines the amount of electric current generated during electrical 

stimulation. It can range from 9 to 3,000 V and the effectiveness depends mainly on 

the animal species and the time of application after slaughter (pre-stimulation time 

delay) (Polidori, Kauffman & Valfre, 1996). Depending on the voltage, the electrical 

stimulation treatment is commonly grouped into: (1) extra low voltage stimulation, 

with a maximum peak voltage of 45 V;  (2) low voltage stimulation, with a maximum 

peak voltage of 100 V and (3) high voltage electrical stimulation, ranging between 

100 and 3,000 V (Bouton, Ford, Harris, & Shaw, 1980).  

While the nervous system is still active post slaughter, a relatively low voltage 

electrical stimulation can be effectively applied (Devine, Hopkins, Hwang, Ferguson, 

& Richards, 2004). Polidori et al. (1996) recommended that low voltage stimulation is 

applied as soon as possible after slaughter. This is because it could stimulate 

through an active nervous system and give uniform effects throughout the muscles. 

When stimulation is delayed 30 to 45 minutes post slaughter and the nervous 

system is becoming inactive, higher voltage must be used to directly stimulate the 

muscles (Devine et al., 2004) . This theory is widely applied in many meat 

processing plants. Low voltage stimulation (<100 V) is deployed after neck cutting; 

whereas the high voltage stimulation is applied at the end of slaughter chain, 

typically using more than 400 V (Simmons et al., 2008).  

In industrial practice, the lower the voltage, the less danger there is to the operator, 

and the safety requirements imposed by the electricity authorities will be less 

stringent for protecting the operator from electric shocks. 

Pulse width and amplitude  

The impact of pulse width and amplitude on muscle responses is based on the 

physiological principle of muscle contraction response. According to Aston (1991), 

for a given pulse amplitude, a reduction in the pulse width will simultaneously reduce 

the muscle response.  However, the pulse amplitude and pulse width are 

interchangeable: the response that is lost by reducing the pulse amplitude can be 

regained by increasing the pulse width. These principles can be described in a 



28 

 

classic pulse strength-duration curve (Figure 15), which shows the threshold for 

producing an electrically induced stimulus.  

 

Figure 15 Pulse strength-duration curve to define the threshold for a response to an 
electrical stimulus (Aston, 1991).  

 

Simmons et al. (2008) investigated the relationship between electrical stimulation 

parameters and muscle responses in lamb carcasses. They used a constant current 

stimulation unit that delivered electrical pulses of defined amperage and pulse width 

to stimulate the longissimus in lamb carcasses. The magnitude of the responses was 

measured by the intramuscular pressure changes. 

The time of stimulation application after slaughter determined the effectiveness of 

stimulation.  Simmons et al. (2008) found a distinctive pattern when the carcasses 

were stimulated immediately after slaughter: the threshold current required to 

produce a muscle response could be less than 50 mA.  The muscle pressure curve 

(Figure 16) showed a very steep increase and attained a maximum muscle pressure 

after 10 seconds of stimulation. Then, after a further 30 seconds of continuous 

stimulation, the muscle pressure was reduced by 80%. They concluded that the 

muscle contraction responses are highly mediated by nervous system at this time. 
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Figure 16 Muscle pressure response of a lamb carcass to electrical stimuli immediately after 
slaughter, 10 seconds of stimulation, and then followed by 30 seconds of stimulation.  

 

Another trial was carried out by Simmons et  al., 2008 on lamb carcasses at 20 to 30 

minutes post slaughter. The carcasses were stimulated for 10 seconds, and then 30 

seconds – both with 0.5 msec pulse width. The same cycle was repeated with a 10 

msec pulse width.  Figure 17 shows that as the carcass becomes increasingly 

fatigued and the pH declined, higher pulse amplitude and wider pulse widths are 

required to maintain the muscle response.  

Thus, by applying all the above information/knowledge, it is possible to tailor and 

optimise a stimulation system to satisfy a particular industrial outcome.  
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Figure 17 Muscle pressure response in a lamb carcass at 20 to 30 minutes after slaughter: 
Comparison of responses to two different pulse width under 2 different times:  after 10 
seconds, then followed by 30 seconds of stimulation. 

 

Frequency 

Takahashi, Lochnert, & Marsh (1984) and Takahashi, Wang, Lochner, & Marsh 

(1987) evaluated how different frequencies relate to the contracture bands formation 

in muscle (Figure 14) and to tenderness improvement. These studies showed that 

the electrical stimulation of 50 to 60 Hz at 500 V, 40 minutes after slaughter, would 

create excessive structural disruption and improve tenderness; a 2 Hz treatment at 

40 minutes after slaughter did not affect structure and failed to improve tenderness. 

They concluded that the formation of contracture bands depends on the frequency. 

With a 2 Hz frequency, the time interval between successive stimuli is at 0.25 

seconds. That allows ample time for muscle relaxation and therefore no cumulative 

effect to provoke a tetanic response.  Thus, the muscle tetanic shortening is 

reversible, and the muscle can return to its original length after stimulation. However, 

at higher frequencies, there is insufficient time for relaxation between the twitches. 

Eventually, the muscle achieves supraphysiological tetanus and forms irreversible 

contracture bands (Figure 14).  
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Simmons et al. (2008) evaluated the relationship between frequency and the fraction 

of maximal muscle contraction on ovine longissimus at 15 and 50 Hz (Figure 18).  

The higher frequency produced a higher peak of muscle contraction force, but the 

response decay was much faster.  The areas under the curves, which reflect the rate 

of pH decline, show that the pH decline rate at 50 Hz is about 35% less than at 15 

Hz. These results were similar to those found by Chrystall and Devine (1978), where 

the maximum pH differences due to stimulation – 0.7 pH units – was achieved from 

5 to 16.6 Hz; declining to 0.60 pH units at 25 Hz and to 0.50 pH units at 100 Hz 

(Figure 19).  

 

Figure 18 Muscle pressure response in lamb carcasses stimulated at 15 and 50 Hz (adapted 
from Simmons et al., 2008) 
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Figure 19 Effect of frequency on ∆pH for 120 seconds (adapted from Chrystall & Devine, 
1978).  

 

Muscle type and temperature 

The effect of electrical stimulation is also dependent on fibre type. Muscles with a 

higher fraction of slow-twitch-oxidative (Type I) fibres (e.g. longissimus dorsi) 

respond less intensively to electrical stimulation than muscles with a higher 

percentage of fast-twitch oxidative-glycolytic (Type IIA) or fast-twitch-glycolytic (Type 

IIB) fibres (e.g. semimembranosus) (Devine, Ellery, & Averill, 1984).  

When muscle temperature decreases, the magnitude of the pH fall reduces. For 

example in beef sternomandibularis, the pH change due to stimulation was 0.6 pH 

units at 35°C, but only 0.018 pH units at 15°C, sta rting from the same initial pH 

(Devine et al., 2004).  
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Meat quality outcomes of electrical stimulation for Silver Fern Farms 

The quality outcomes of electrical stimulation are usually positive. However, Carne 

Technology’s process evaluation for Silver Fern Farms showed that beef carcasses 

have routinely been overstimulated thus posing a risk of heat shortening.  To 

overcome this problem Carne Technologies introduced high frequency 

immobilisation and Smart Stimulation to the Finegand beef processing plant. 

High frequency immobilisation  

Simmons et al. (2006) performed trials on sheep carcasses and demonstrated that 

high frequency electrical immobilisation – up to 400 Hz and medium voltage – had 

minimal effect on pH fall.  Based on this result, the proposal was that with beef 

carcasses, the meat pH drop should be minimal before and after high frequency 

immobilisation. That would create a condition where the subsequent pH decline rate 

could be controlled and standardised by Smart Stimulation.  

Smart Stimulation 

The Smart Stimulation technology records the contraction responses of carcass 

sides as they are progressively stimulated, in such a way that when a desired pH is 

reached in an indicator muscle, chosen to be the large and valuable longissimus 

thoracicus et lumborum, stimulation stops (Simmons et al., 2006).  It is one of the 

three stimulation systems compared in this thesis. The Smart Stimulation unit can be 

configured in two ways, either a small stimulation bar unit or stimulation tunnel.  

Figure 20 shows a small Smart Stimulation unit installed in the Finegand abattoir, 

where the stimulation is applied 30 minutes after slaughter. When a carcass reached 

the test weight sensor on the rail, the stimulation bar contacts and stimulates the 

longissimus thoracicus et lumborum muscles. This is where the study is carried out.  
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Figure 20  A Smart Stimulation unit in the Finegand 
abattoir, where the stimulation bar contacts the 
longissimus thoracicus et lumborum muscles.  

 

Meat quality outcomes 

Under Carne’s recommendation, Silver Fern Farms upgraded their immobilisation 

settings to high frequency 400 Hz in all beef processing plant. However, soon after the 

upgrade, the company identified two major quality issues: burst tenderloins (Figure 21) 

and blood splash, also known as ecchymosis (Figure 22).  
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Figure 21 Burst psoas major.  

 

 

 

 

 

 

Figure 22 Blood splash on striploins (longissimus dorsi) (right) and on chuck 
(biceps femoris) (left).  

With these unexpected problems, I spent several months collecting muscle 

information in all processing plants and held many discussions with Carne 

Technologies. Together we aimed to come up with an optimum immobilization 

setting.  Ecchymosis is normally caused by a momentary and rapid rise in blood 

pressure at the time of stunning, leading to the rupture of capillaries. The issue 

becomes worse when there is a delay between stunning and bleeding (Collins, 

1954). The company has reviewed its stunning and slaughter procedures and failed 

to find any outstanding change, apart from the upgrade in immobilization setting. 

Thus, we proposed the following theory. 
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Figure 18 demonstrates that with high frequency immobilisation, the muscle attains 

maximal contraction pressure within a very short time.  In our protocol, the high 

frequency immobilisation - up to 400Hz - is applied immediately after slaughter.  We 

speculate that the stimulation increases the blood pressure momentarily and the 

contraction force exceeds the limit that the muscle structure can withstand. This 

would explain why we observe blood clots and broken muscle fibre inside burst 

tenderloin cuts (Figure 21).   

The unsatisfactory meat qualities from the 400 Hz immobilisation have resulted in a 

change to the protocol.  From Carne’s recommendation, the immobilisation setting 

has changed from continuous 400 Hz to an alternating mixture of 15Hz and 400 Hz, 

identical to a protocol used by Pearce et al. (2009) on sheep carcasses. This mixture 

is intended to initiate some muscle contraction pressure at 15 Hz before attaining 

maximal muscle pressure with 400 Hz.  An analogy is warm-up exercises prior to a 

100 m sprint race, so that you would not suffer from muscle cramp or injury.  

Since 15 Hz accelerates pH decline rate (Figure 19) and 400 Hz could damage 

muscle, the frequencies setting pattern is important.  After several optimisation trials, 

we settled on a frequency pattern that had minimal effect on pH decline and reduced 

blood splash and burst tenderloin incidence.  

Objectives of the thesis 

The new setting replaced the traditional 15 Hz immobilisation setting in all 

processing plants.  However, the impact of the new setting on various meat quality 

parameters –  pH decline rate, tenderness, drip loss, colour, etc. – was unknown, 

and how it differs from the traditional 15 Hz immobilisation was of interest.  That is 

the first objective of this study.   

We thus devised three treatments: the traditional 15 Hz treatment is Stimul 1 and the 

new setting, 15 Hz and 400 Hz. is Stimul 2.  Stimul 3 is Stimul 2 paired with Smart 

Stimulation; the effect – if any – of Smart Stimulation on meat quality has yet to be 

demonstrated. 

The second objective of this study is to understand the behaviour of representative 

meat cuts in response to the three stimulation treatments. The output from this work 

will be a comprehensive muscle profile database of commercial value.  The intention 
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was to build a database through a monitoring of pH-temperature profiling, purge 

loss, colour, and tenderness development.  This will allow Silver Fern Farms to 

recommend optimal ageing times before consumption or freezing. 

Chapter 3 will describe the materials and methods for the study.  
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Chapter 3  
Material and Methods  

Animal selection 

This experimental design study was conducted in a commercial abattoir at Finegand 

(ME26), Otago, in mid July 2013. The carcasses of 36 pasture-fed steers (male 

castrates), aged 18 to 28 months and weighing between 280 and 330 kg were singly 

selected for the study. The subcutaneous fat thickness was between 2 and 4 mm. The 

steers were electrically stunned across the head only, and bled according to Ministry 

for Primary Industries (MPI) approved humane slaughter requirements.  The time at 

this point of the experiment was designated Day 0. After the electrical stimulation 

treatments, the carcasses were dressed according to standard New Zealand industry 

practices.  

Electrical stimulation treatments  

The 36 carcasses were randomly assigned to three stimulation groups. The 

stimulation settings and the number of animals in each treatment are listed in Table 

2.The Phase I and II stimulation treatments were conducted during bleeding, which 

was immediately after the first stick on the throat. The treatment was applied by 

pushing an electric bar perpendicularly (Figure 11) against the hind and Achilles 

tendons of the animals for 40 seconds. Further down the production line, the new 

stimulation system, called the Smart Stimulation (Phase III), was applied 

approximately 30 minutes from exsanguination. The new system was applied by 

pushing a U shape stainless bar against the back of the carcasses, where the long, 

valuable M. Longissimus lumborum dorsi, otherwise known as the striploin (STRL), 

was located (Figure 20). Three stimulation cycles were programmed on Smart 

Stimulation.  By recording the contraction responses of the longissimus dorsi (STRL) 

muscle, the stimulation cycles were different for each carcass in order to attain its 

desired pH at that time post slaughter. 
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Table 2 Electrical stimulation treatments 

Stimulation Phase I Phase II Phase III Number of 
carcasses 

1 5 ms pulse direct 
current, 100 V, 15 
Hz, continuous for 40 
seconds 

None None 12 

2 5 ms pulse direct 
current, 100 V, 15 
Hz, continuous for 4 
seconds 

0.3 ms pulse direct 
current, 2.5 ms 
interval, 100 V, 400 
Hz, continuous for 
36 seconds 

None 12 

3 5 ms pulse direct 
current, 100 V, 15 
Hz, continuous for 4 
seconds  

0.3 ms pulse direct 
current, 2.5 ms 
interval, 100 V, 400 
Hz, continuous for 
36 seconds 

0.5 ms pulse 
DC, 300 V, 15 
Hz (Smart 
Stimulation) 

12 
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Measurements on muscles 

pH and temperature profiling with two indicator muscles 

As it is extremely difficult to access and monitor all 6 muscles on the entire carcass, 

only two muscles were chosen for this work, i.e. the superficial M. longissimus dorsi, 

also known as the striploin; and the deeper M. semimembranosus, known as the 

topside. Intuitively, the deeper muscles will cool more slowly than superficial muscles, 

so the choice of these two was designed to give an indication of the range of cooling 

profiles that a carcass would encounter during rigor onset. 

The aim of this work, which was done on up to 15 carcasses per stimulation treatment, 

was two-fold. Firstly, it would reveal between-animal variability for each treatment: the 

rationale being that low between-animal variability is desirable for consistent quality.  

Secondly, it would show if, on average, a given stimulation treatment would present 

risks of cold- and heat-shortening. The pH values for 15 carcasses on each stimulation 

treatment were reviewed on the basis that the latter pH value should be lower than the 

previous value during the 8 hour post slaughter period. The second selection criteria is 

based on the ultimate pH (pHu), carcasses with pHu>5.8 is excluded. This is because 

the study is targeted on high value chilled market products and the customers had 

specified the company to exclude high pH, dark meat carcasses. The 15 carcasses 

were filtered down to 12 carcasses and preceded for fabrication.   

Six pH and temperature measurements were taken from each carcass with a TESTO® 

205 pH meter (Testo AG, Lenzkirk, Germany) at approximately hourly intervals from the 

start of chilling to about 8 hours post slaughter, then finally at 24 hours: the pHu. The 

pH meter was calibrated before use and at regular intervals using pH 4 and pH 7 

buffers at room temperature (Thermofisher, New Zealand). The glass probe was 

inserted through the longissimus between the 12th and 13th ribs and into the core of 

the deeper M. semimembranosus on the hindquarter.  

The carcasses were spray chilled according to the programme shown in Table 3. After 

20 hours of refrigeration, a final pHu was measured at the designated Day 1.  
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Table 3  Spray chilling programme. 

Cycle 1 2 3 4 

Temperature (°C) set at  8 (6 to 10) 6 4 to 6 4 to 6 

Hours set at 4 4 12 Infinite 

Humidity (%) set at  98 98 98 98 

 

Collection and storage of individual meat cuts  

One day after slaughter (Day 1) six single muscles: rectus femoris, longissimus dorsi, 

psoas major, gluteus medius, gluteobiceps and infraspinatus were excised from one 

side of the carcasses by boning personnel in the abattoir. The muscles were checked 

against New Zealand beef cut specification (Beef and Lamb New Zealand, 2010) 

Depending on the size and orientation of each muscle, 2 or 4 submuscles (100 mm x 

50 mm x 50 mm) were excised, trimmed of visible fat, and labelled as Position 1, 2 etc. 

from a defined site depending on the muscle (Table 4).  In summary, a grand total of 

648 samples were collected in this study. 
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Table 4 Description of muscle subsamples 

Muscle name Abbreviation  Number of cuts Position numbering direction 

Longissimus dorsi STRL 4 Anterior to posterior 

Psoas major TEND 2 Anterior to posterior 

Rectus femoris KNUCK 4 Dorsal to ventral 

Gluteus medius RUMH 2 Dorsal to ventral 

Gluteobiceps RUMC 2 Dorsal to ventral 

Infraspinatus BLD 4 Dorsal to ventral 

Total cuts from each 
carcass 

 18  

Total cuts from each 
treatment 

 18 x 12 = 216  

Grand total from 3 
treatments 

 216 x 3 = 648  

 

Each muscle subsample was vacuumed packed and randomly assigned to one of six 

different aging days, 1, 3, 5, 7, 14 or 21 days. As some muscles were small, it was not 

possible to assign subsamples to all six days. The muscles were stored and aged at    

-1.5 ± 2°C.  The samples from the 5, 7, 14 and 21 d ay groups were shipped chilled to 

the Belfast, Canterbury laboratory. Temperature data loggers were randomly inserted 

at the thermal centres of each 22 kg cartons to monitor temperature fluctuation during 

transportation.  Fluctuations were found to be minimal.  At the prescribed day, the 

chilled muscles were measured for drip loss and colour, transferred to a plastic bag, 

and then blast frozen at -18°C for at least two day s.  The tenderness measurements 

were carried out as described later.   
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Drip loss 

Drip loss was determined with a pan balance accurate to 10 mg.  The meat was first 

weighed in its vacuum bag, then weighed after removal from the bag.  The empty 

package was cleaned with warm water and dried overnight in a 30°C incubator, then 

weighed.  Drip loss was calculated by the following formula: 

Drip	loss	% = ��
��	�����
	��	���
	���	�������������
	�����
��������	���������	�	���
 ��
	�����
	

  

Colour  

Thirty minutes after meat was removed from packaging and exposed to air, lean meat 

colour was recorded with a calibrated Hunter Lab MiniScan® XE plus 

spectrophotometer (Hunter Associates, Reston, USA), Model D45/0-s, using D65 light 

conditions, a 10° standard observer through a 5 mm aperture in the measuring head.  

Colour was recorded in CIE colour space for L*(lightness), a* (redness/greenness) 

and b*(yellowness/blueness). These values were further calculated for Hue angle and 

saturation index by the following formula (AMSA, 2001): 

!"#	$%&'# = 	 tan��(, ∗/$ ∗) 

0$1"2$134%	3%5#6 = 	 7$ ∗8+ , ∗8:
 

Additionally, the L*, a * and b* values were converted to a reference value that is 

equivalent to colour tiles. This value has been commonly used in Japan as a way to 

measure meat colour. Also, the value serves as a commercially benefit communication 

tool between the company and its customer, as the colour can be physically 

visualised.  

 

 

 

 

 

Figure 23 Japan beef colour standard score 
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Silver Fern Farms has conducted a number of calibration exercises for each Hunter 

meter. These exercises involved panellists who had been trained at scoring Japan 

meat colour tiles. Then, the results were correlated against L*, a* and b*, and derived 

a relation equation. For this trial, the relation equation for the Hunter meter used is: 

;$<$%	=4'4"2 = >	∗× (−0.22135) + $ ∗× (−0.001273) + , ∗× (−0.008098) + 12.53046 

Tenderness 

The frozen subsamples were placed in weighted plastic barrier bags and cooked from 

frozen in a water bath maintained at 85 ± 2oC. The water bath was fitted with a 

circulator and a Grant Optima™ GR150 thermostat/circulator (Grant, X, Y) (Figure 24).  

After 10 minutes, a T-type thermocouple was inserted to the approximate thermal 

centre of mass, which the temperature was displayed in a 3081 Hybrid Recorder 

(Yew, Yokogawa Hokushin Electric, Japan) (Figure 25). When each subsample 

reached 75 ± 2°C, the bagged cooked meat was remove d from the bath, the 

thermocouple withdrawn and the bagged meat was chilled in ice slurry for at least 30 

minutes.  

Subsequently, 10 × 10 mm cross section strips (4 to 6 replicates for each piece) were 

excised parallel to the fibre direction, which were sheared perpendicularly by the 

MIRINZ tenderometer (Figure 26). The results were displayed in kPa, and then 

converted into units of kgF/cm2. This is because kgF/cm2 is more commonly used in 

the industry and technical publications.  

 

 

 

 

 

 

 

 

Figure 24 The water bath fitted with a Grant Optima thermostat/circulator. 
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 Figure 25    The hybrid recorder 

 

 

 

 

 

 

 

 

 

 

 

 

          

    Figure 26   MIRINZ tenderometer.  
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Data handling and statistical analysis 

Statistical software and its application 

Much preliminary data handling and inspection was performed with routines in 

Microsoft Excel, but for more insightful analysis, the R statistical software (Free 

Software Foundation) was used by Dr Martin Bader of Scion Limited, Rotorua.  The 

use of R or any other sophisticated statistical software on this data set was beyond my 

capability and I freely acknowledge that.  However, I made every attempt to 

understand what Dr Bader did and why he did it.  R was applied to all analyses 

described below titled with ‘Effects of...’.  The statisticians report was very thorough 

and what is described in these sections is an abstracted version.  A fuller description 

from Dr Bader of the logic behind the choice of analysis is shown in the Appendix.   

Data preparation for pH and temperature decline analysis of two indicator 

muscles 

The pH and temperature values of the two indicator muscles from the 45 carcasses 

were not taken at the same time for each animal.  For example, if data from the first 

animal were taken at time T1, and the equivalent data from the 12th animal was taken 

about 25 minutes later.  The following method was used to convert the raw data into a 

summary form.   

First, the hours and minutes from slaughter were converted to decimal hours from 

slaughter and for each animal the values were plotted as continuous data up to 8 

hours, e.g. pH (Y axis) against time in hours from slaughter (X axis)  (Table 5).   After 

inspecting the data and trial curve fitting in Excel, it was shown that quadratic 

equations fitted the data best.  These equations had the form: 

Y = Ax8 + Bx + Constant		 

where Y = the predicted temperature or pH, x = time from slaughter 

For each stimulation treatment, there were 12 animals and each generating an 

equation for pH and temperature decline.   To standardise the pH and temperature at 

each time interval, 6 = 1, 2, 3, 4, 5 and 6 hours were input into each quadratic 

equation, generating six values for each of A, B and Constant from the 12 carcasses 

(Table 5).  The means and standard deviations were calculated so that a single plot 

could be generated, with standard deviations as error bars for each of the two 
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indicator muscles, for pH and temperature, under the three treatments (Table 5).  

Figure 27 shows a typical result of this data summary, in this case for Stimul 2 pH 

decline on longissimus dorsi muscle. 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 Typical pH decline curve with standard deviations, in this case for striploin in 
Stimul 2 from 12 carcasses.  
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Table 5  Data handling for pH and temperature decline in the two indicator muscles. 

Sequence Action pH decline Temperature decline 

1 Input pH and 
temperature values for 
15 animals as XY 
scatter. Categorise 
the animal by its 
weight: light, medium 
& heavy 

Create 2 muscles x 3 
treatments x 15 
carcasses = 90 plots 

Create 2 muscles x 3 
treatments x 15 
carcasses = 90 plots 

2 Select 12 animals out 
of 15. 

Create 2 muscles x 3 
treatments x 12 
carcasses = 72 plots 

Create 2 muscles x 3 
treatments x 12 
carcasses = 72 plots 

3 Convert time post 
slaughter into decimal 
hours and plot as X Y 
scatter plot 

Create 2 muscles x 3 
treatments x 12 
carcasses = 72 plots  

Create 2 muscles x 3 
treatments x 12 
carcasses = 72 plots  

4 Fit quadratic equation  Get 12 values of A, B and 
Constant x 2 muscles x 3 
treatments  

Get 12 values of A, B and 
Constant x 2 muscles x 3 
treatments 

5 Calculate means and 
SD for A, B and 
Constant 

Means and SDs result in 
plots for 2 muscles x 3 
treatments = 6 plots 

Means and SDs result in 
plots for 2 muscles x 3 
treatments = 6 plots 

6 Perform statistical 
analysis on 
polynomial 
coefficients 

Analyse for 2 muscle and 
3 stimulation treatment 
and their interactions 

Analyse for 2 muscle and 
3 stimulation treatment 
and their interactions 

7 Plot calculated values of pH decline and temperature decline for each 
stimulation treatment and each indicator muscle; inspect plots for potential 
cold- or heat shortening 

8 Inspect curves in sequence 3 above to show which stimulation treatment 
results in the lowest variability in pH 
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TreatmentBody number Dentition Weight MuscleRatepHtxxRatepHtxRatepHtConRateTtxxRateTtxRateTtConPosition Age days Driploss% L* a* b* Hue angle Saturation Delta E Japan Tenderness TenderSTD

1 1 0 247.5 BLD 1 1 0.000 36.38 17.68 15.69 0.73 23.64 43.39 4.13 6.44 3.4

1 1 0 247.5 BLD 2 5 0.629 30.4 25.98 23.81 0.74 35.24 46.54 5.28 5.89 3.1

1 1 0 247.5 BLD 3 21 1.215 32.69 22.81 21.86 0.76 31.59 45.46 4.83 4.44 2.4

1 1 0 247.5 BLD 4 3 0.462 32.59 21.65 19.22 0.73 28.95 43.59 4.89 6.86 3.6

1 2 4 273.5 BLD 1 14 0.806 28.99 24.25 22.36 0.74 32.99 43.91 5.62 4.09 2.2

1 2 4 273.5 BLD 2 7 0.420 32.29 23.01 22.25 0.77 32.01 45.47 4.91 5.14 2.7

1 2 4 273.5 BLD 3 5 0.430 30.64 24.84 23.64 0.76 34.29 45.99 5.24 4.69 2.5

1 2 4 273.5 BLD 4 14 1.203 30.2 23.58 21.78 0.75 32.10 44.07 5.37 3.74 2.0

Effects of stimulation treatment and indicator muscle on pH and temperature 

decline in the hours following slaughter  

The A, B and Constant values from the polynomial equation at each treatment were 

fitted into a linear mixed effect model to test the main effects and interactions between 

the stimulation methods and muscle, and the rate of pH and temperature decline.  

When there is a significant difference, a multiple comparison procedure, using Tukey 

contrasts, was used to identify where the significance lay.   

Effects of carcass weight on pH and temperature decline in two indicator 

muscles 

In each stimulation treatment, different coloured dots were used to indicate light, 

medium and heavy weight carcasses. The graphs were inspected if there is a 

relationship between carcasses weight and pH-temperature decline rate.   

Effects of pH and temperature decline in two indicator muscles on meat quality 

data in the six muscles  

The pH and temperature data were plotted against meat quality data and inspected for 

trends. 

Data preparation for the effects of stimulation treatment on meat quality 

Figure 28 shows the typical spreadsheet format for these data.  Treatment 1 was 

Stimul 1, the muscle was BLD (infraspinatus) from two carcasses, assigned for 2 x 4 

ageing days.  The data in purple are the meat quality data from that muscle.  (The 

narrowed data in blue are for an indicator muscle.) 

 

 

 

 

 

Figure 28 Typical structure of the spreadsheet serving as the master document for analysis.  
Columns in purple contain the meat quality data for the BLD muscle from two carcasses (Body 
number) and one stimulation treatment (Stimul 1). The narrowed data in blue are for an 
indicator muscle. 
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Effects of stimulation treatment, muscle and days after slaughter on drip loss 

Inspection of the drip loss curves (Figure 48) indicated that an asymptotic equation of 

the form fitted the data well, realising that at Day 0, the percent drip loss was zero: 

 y = Asym * (1 –  exp(– exp(lrc) * x)) 

In this equation y is percent drip, Asym is the theoretical asymptotic value of percent 

drip, lrc is the logarithm of the rate constant, and x is the days after slaughter (ageing) 

to 21 days.  Carcass number was a random term.   

Effects of stimulation treatment, muscle and days after slaughter on Hunter a* 

and b* values, and saturation 

Inspection of the Hunter a* values (Figure 58) indicated that an asymptotic equation of 

the form fitted the data well: 

 y = Asym + (R0 – Asym) * exp(– exp(lrc) * x) 

In this equation, Day 0 (R0 in this equation) was not zero.  Here, y and R0 are Hunter 

value a*, lrc is the logarithm of the rate constant and x is the days of ageing to 21 days 

– both just as for Hunter a*. Carcass number was a random term. Stimul 1 & 3 were 

pooled using this equation. 

This equation has another non-linear form of a quadratic equation, which was used for 

Stimul 2, where a humped relationship (Figure 60 in Appendix) was found for Hunter 

a* values with time: 

y = α (x – β)2 + γ 

where α = indicates shape of the hump, β = x-value when the maximum a* value 

occurs, and γ is the maximum a* value  (Figure 60 in Appendix).  The higher the α 

value, the more humped is the curve.  Hunter b* values and the saturation were 

similarly humped over days of ageing, so the same equation was applied to these data 

too. 

  



51 

 

Effects of stimulation treatment, muscle and days after slaughter on Hue angle 

Hue angle is defined as tan-1(b*/a*), and is the colour that is perceived by the eye.  

Because the functions of a* and b* were usually humped positively, so it was likely 

that plots of Hue angle against days after slaughter would approximate straight lines. 

Figure 50 proved to be the case. 

Effects of stimulation treatment, muscle and days after slaughter on Hunter L* 

and Japan colour assessment 

Hunter L* measures the percent total light reflectance and ‘Japan colour score’ is a 

subjective assessment of colour using meat-coloured tiles as the reference.  The 

relationship between L*, and Japan colour score, and time after slaughter showed 

some curvatures.  Therefore, a flexible generalised additive mixed model (GAMM) was 

used to test for differences between stimulation methods.  For both L* and Japan 

colour score, it was found that the curvature was solely due to Stimul 2; while Stimul 1 

and 3 showed similar linear patterns. 

Consequently, the pooled responses of Stimul 1 and 3 were modelled using a linear 

mixed-effects model fitted by restricted maximum likelihood. The model contained 

stimulation, muscle, days after slaughter (days of aging) and their interactions as fixed 

terms and carcass number as a random term.  The more curved responses of Stimul 2 

was modeled using a GAMM, which includes muscle as factor, a smoother for days 

after slaughter and carcass number as a random term. 

Effects of stimulation treatment, muscle and days after slaughter on cooked 

meat shear force 

Inspection of plots showed a usually negative response of shear force, but with some 

curvature (Figure 55).  Therefore, as for L* and Japan above, a GAMM was used to 

accommodate the curvature seen in the development of shear force over time. The 

model contained stimulation and muscle as factors and a smoothing term for time 

(days after slaughter). Carcass number was a random term. 

To test whether the development of reduced shear force over time followed a common 

pattern across the three stimulation methods, a model with one common smoother 

was compared to a model allowing the smoother term to vary with stimulation.  It 

turned out that pattern of the relationship between shear force and time after slaughter 
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was similar across stimulation method, thus favouring the model with one common 

time smoother across stimulation methods.  However, the development of reduced 

shear force over time varied significantly across muscles; therefore the model with 

individual time smoothers for each muscle is more favourable.  

Layout of results and discussion 

The results and discussions logically fit into two chapters.  Chapter 4 reports the 

experiments with the indicator muscles.  There are three parts to this Chapter, namely 

items 6, 7 and 8 in Table 5:  

6) Plot calculated temperature decline values against pH decline for each 

stimulation treatment and each indicator muscle (Part 1); inspect plots for 

potential cold- or heat shortening on light, medium and heavy weight carcasses.  

7) Effects of stimulation treatment and indicator muscle on pH and temperature 

decline rates in the hours following slaughter (Part 2). 

8) Inspect pH and temperature curves in 6) to indicate which stimulation treatment 

results in the lowest variability in pH (Part 3) 

Chapter 5 will focus on the effects of stimulation (3 treatments) and muscle (6 of these 

in Table 4) on meat quality attributes as a function of days after slaughter. 
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Chapter 4 Results and discussion 

Part 1 pH-temperature profiles and the risk of heat shortening 

As detailed in Table 2 in Material and Methods section, there were three stimulation 

treatments: 

Stimul 1 was a continous 15 Hz immobilisation for 40 seconds 

Stimul 2 was 4 seconds of 15 Hz, followed by 36 seconds of 400 Hz 

Stimul 3 comprised Stimul 2 plus Smart Stimulation at 30 minutes post slaughter  

The pH and temperature readings were taken hourly on the anterior end of 

longissimus dorsi and deep semimembranosus muscles on the carcass during 

refrigeration. For each treatment, I colour coded the carcass dressed weights into light, 

medium and heavy and plotted pH-temperature graphs for the two indicator muscles. 

From these graphs, it was possible to show which stimulation treatment – if any – 

caused heat or cold shortening, and if the carcass dressed weight had an effect on the 

pH-temperature profile with respect to heat or cold shortening.  

According to MSA grading requirements (Figure 10), to avoid heat shortening, the 

meat pH should not be lower than pH 6 when the meat temperature is above 35°C; 

whereas to avoid cold shortening, the meat pH should be lower than 6 when the meat 

temperature is below 15°C. On the figures, the heat  shortening window is indicated in 

red square; whereas the cold shortening window is in blue square.  

The pH-temperature profile in Figure 29 for Stimul1 is clearly different from those of 

Figure 31 and Figure 32, where there are datapoints above 35°C for Figure 31 and 

Figure 32, but not for Figure 29. This was because of an unforseen and unfortunate 

health and safety concern during the data collection for Stimul 1, where the use of 

ladder in the chiller was not permitted.  As a result, the first measurements did not 

start until the meat had dropped below 35°C.  Inspe ction of Figure 29 suggests that if 

the data were available, there would be a risk of heat shortening.  To check for 

possible heat shortening by Stimul1, historical data of Silver Ferns Farms and Carne 

Technologies were examined (Figure 30 & Table 6) . 
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Figure 29 pH-temperature profile for longissimus dorsi with Stimul1.  Blank dots = light 
weight carcasses; light blue = medium weight; dark blue = heavy weight. In this figure and 
similar plots, the red rectangle represents the likely region for heat shortening and the blue 
rectangle for cold shortening.  

 

According to Carne, with continous 15 Hz (Stimul1), although the pH values were 

variable, it was found that the mean pH decline was very rapid as a result of the 

immobilisation (Table 6).  Indeed, a proportion of the carcasses were in or very near to 

ultimate pH at 50 minutes.  Additionally, they observed some pale Semimembranosus 

muscles in the boning room, which was evidence of heat shortening.  Historical work 

by Silver Fern Farms personnel also demonstrated low pH (less than pH 6) at chiller 

entry (Figure 30).   

 

Table 6 Longissimus dorsi pH at chiller entry.  
Data from by Carne Technologies using Stimul1 

Mean pH 5.7 

Maximum/minimum pH 6.4/5.4 
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Figure 30   Historical data by Silver Fern Farms on the pH-temperature profile with Stimul1, 
for longissimus dorsi and semimembranosus.  Data are for five carcasses.  

 

The conclusion from data in Figure 29, Figure 30 and Table 6 is clear.  There is a high 

risk of heat shortening from Stimul1. 

With longissimus dorsi as the indicator muscle, the pH-temperature profiles from 

Stimul 2 and Stimul 3 showed no risk of heat shortening.  For all stimulation 

treatments (Figure 29, Figure 31 and Figure 32), the carcass dressed weight 
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distribution was widespread and did not appear to have signficant affect on the pH-

temperature profile for longissimus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31  pH-temperature profile for longissimus dorsi with Stimul2.  Blank dots = light 
weight carcasses; light blue = medium weight; dark blue = heavy weight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 pH-temperature profile for longissimus dorsi with Stimul3.  Blank dots = light 
weight carcasses; light blue = medium weight; dark blue = heavy weight.  
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With semimembranosus  as the indicator muscle, the limited Stimul 1 data again 

suggested a potential risk of heat shortening (Figure 30; Figure 33). For Stimul 2 and 

Stimul 3, only a few carcasses showed a risk of heat shortening.   For all stimulation 

treatments (Figure 33, Figure 34 and Figure 35), the carcass dressed weight 

distribution was widespread and did not appear to have signficant affect on the pH-

temperature profile for semimembranosus.  

 

 

 

 

 

 

 

 

 

 

 

Figure 33   pH-temperature profile for semimembranosus with Stimul1.  Blank dots = light 
weight carcasses; light red = medium weight; dark red = heavy weight. 
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Figure 34 pH-temperature profile for semimembranosus  with Stimul2.  Blank dots = light 
weight carcasses; light red = medium weight; dark red = heavy weight 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 pH-temperature profile for semimembranosus  with Stimul3.  Blank dots = light 
weight carcasses; light red = medium weight; dark red = heavy weight.  



59 

 

The six scatter graphs discussed above could also be condensed into graphs plotting 

the pH-temperature profile means.  However, the way the data were recorded differed 

in the time of sampling. This means that the points in the six scatter plots were actual 

pH-temperature values at any time they might be measured after slaughter. In contrast, 

the means shown in Figure 36 and Figure 37 were derived from the quadratic curve 

fitting methods described in Chapter 3.  

Figure 36 and Figure 37 show the average pH-temperature of the two indicator 

muscles under different stimulation treatments. In Figure 36, when the meat 

temperature was higher than 25°C, the pH on Stimul 1 was the lowest, followed by 

Stimul 3, which is about 0.1 pH unit lower than Stimul 2. As temperature fell below 

25°C, the differences between the treatments narrow ed.   

In Figure 37, the pH-temperature profiles for semimembranosus in all stimulation 

treatments were similar.  Although not immediately obvious by inspection, at any 

given temperature, the pH values for semimembranosus were lower than those for 

longissimus (Figure 37). This is because the percentage of Type I fibers is higher in 

longissimus dorsi than in semimembranosus muscles (Hunt & Hedrick, 1977). 

Muscles with higher Type I fibers respond less intensively to electrical 

stimulation.Since the pH-temperature profile of longissimus dorsi in Stimul 1 was 

significantly within the heat shortening window, the more rapid pH decline in 

semimembranosus indicates that this muscle would also pose a risk of heat 

shortening.  

Finally, a comparison of the three longissimus graphs with the three 

semimembranosus graphs (Figure 36 & Figure 37) suggests that semimembranosus 

was slightly at more risk of heat shortening for all stimulation treatments. 
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Figure 36 Mean pH-temperature profile for longissimus under three stimulation conditions. 

 

 

 

 

 

 

 

 

  

 

Figure 37 Mean pH-temperature profiles for semimembranosus under three stimulation 
conditions.  
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Part 2 pH and temperature decline rates and their variability in 

the hours following slaughter 

Using quadratic equations fitted to raw data (Chapter 3), it was a simple matter to plot 

graphs of pH and temperature versus time.  With the equation for each carcass, the 

predicted values of pH and temperture could be calculated at set times after slaughter, 

hours in this case.  Means and standard deviations for 12 carcasses were calculated 

at these times.  After plotting means as a scatter plot in Excel, the points were joined 

by straight lines to create Figure 38 and Figure 39; standard deviations are not shown 

for clarity. 

For both indicator muscles in the first 5 hours after slaughter, Stimul 1 showed lower 

pH values than the other two treatments, but the differences were negligible by 6 

hours.  In Figure 38, the Stimul 3 showed a slightly lower pH than Stimul 2.  However, 

this pattern was reversed for semimembranosus (Figure 39)  Was this reversal 

significantly different?  Table 7 showed that it was not. 

In Table 7, the three terms of the quadratic equations – the squared term (RatepHtxx), 

the linear term (RatepHtx) and the constant (RatepHtcon) – have been statistically 

tested for the effect of stimulation.  Of the three terms, linear term RatepHtx is the 

most important because it dominates the rate of pH fall.  Stimulation had an effect on 

RatepHtx (P = 0.045), but the muscle effect was not significant (P = 0.570), and there 

was no interaction (P = 0.456). 

Figure 40 shows the values of RatepHtx for the two muscles and 3 stimulation 

treatments.  A multiple range comparison showed that the only significant difference 

(P = 0.031) was between Stimul 1 and Stimul 3 (Figure 40). (The Tukey contrasts for 

this are in Table 25, Appendix.) 

Although Stimul 3 showed the steepest decline, what this analysis does not show is 

the likely rapid pH fall for Stimul 1 in 2 hours after slaughter. This is because the data 

were unavailable in that period because of health and safety issues.  If that data were 

available it is possible that the term RatepHtxx (squared term) would have become 

significant for stimulation treatment. 
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Figure 38 pH decline curve for longissimus (n = 12 for each stimulation treatment). 

 

Figure 39 pH decline curve for semimembranosus (n = 12 for each stimulation treatment) 
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Table 7   Results from linear mixed effects models with a carcass random term 
testing the effects of stimulation treatment, indicator muscle group and their 
interaction on the rate of pH decline. 

Parameter 
Degree 
freedom 
(number) 

Degree 
freedom 
(den) 

F P Significance 

RatepHtxx      

Intercept 1 55 54.58 < 0.001 *** 

Stimulation 2 55 1.526 0.227  

Muscle 1 55 0.089 0.767  

Stimul. x 
muscle 2 55 0.655 0.523  

      

RatepHtx      

Intercept 1 55 113.19 < 0.001 *** 

Stimulation 2 55 3.293  0.045 * 

Muscle 1 55 0.327 0.570  

Stimul. x 
muscle 2 55 0.797 0.456  

      

RatepHtcon      

Intercept 1 55 26470 < 0.001 *** 

Stimulation 2 55 12.78 < 0.001 *** 

Muscle 1 55 1.02 0.317  

Stimul. x 
muscle 2 55 1.29 0.283  
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Figure 40 The rate of pH decline (RatepHtx) for the longissimus (A) and semimembranosus 
(B).  The only significant difference (P < 0.05) was between Stimul 1 and Stimul 3, and that 
can be inferred by inspection of Figure 38 and Figure 39.  
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Next, I will examine the parallel data for the rate of temperature decline. The linear 

mixed effects models showed that there was a significant muscle effect (P < 0.001) on 

the RateTtxx and the more important RateTtx, but no significant effect of stimulation 

treatment (Table 8).  The semimembranosus (Muscle B) cooled more rapidly than the 

longissimus (Muscle A). This is very clear from Figure 41. As the carcasses were hung 

by the Achilles tendons in the chillers, the semimembranosus muscles were more 

exposed to the cooling fans that were blown down from the ceiling.   

Table 8 Results from linear mixed effects models with a carcass random term 
testing the effects of electrical stimulation (ES) method, muscle group and their 
interaction on the rate of temperature decline. 

Parameter 
Degree 
freedom 
(number) 

Degree 
freedom 
(den) 

F P Significance 

RateTtxx      

Intercept 1 55 466.493 < 0.001 *** 

Stimulation 2 55 2.216 0.119  

Muscle 1 55 20.457 < 0.001 *** 

Stim. x muscle 2 55 1.390 0.258  

      

RateTtx      

Intercept 1 55 1258.391 < 0.001 *** 

Stimulation 2 55 1.564 0.218  

Muscle 1 55 33.176 < 0.001 *** 

Stim. x muscle 2 55 1.454 0.243  

      

RateTtcon      

Intercept 1 55 14454.685 < 0.001 *** 

Stimulation 2 55 5.536  0.007 ** 

Muscle 1 55 3.857 0.055 ⋅ 

Stim. x muscle 2 55 2.075 0.135  
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Figure 41 The rate of temperature decline (RateTtx) for the longissimus (A) and 
semimembranosus (B).  The only significant difference (P < 0.001) was between the muscles. 
Stimulation (Stimul 1, 2 and 3) had no effect. 

 

Discussion  

From an industry prospective, the most effective electrical stimulation system would be 

one that – on average – not only avoided heat and shortening but also had the lowest 

variability in pH.  Quite simply, the meat quality would be more consistent.  To check 

for this, the individual curves in Figure 38 and Figure 39 have been redrawn with 

standard deviations to indicate the variability. 

For longissimus (Figure 42, Figure 43 and Figure 44), it is obvious that the variability in 

the early hours after slaughter is greatest in Stimul 1 and least for Stimul 3.  The latter 

result suggests that the Smart Stimulation system has been effective in regulating pH 

fall in that muscle. 

For semimembranous (Figure 45, Figure 46 and Figure 47), the theme of greater 

variability for Stimul 1 was again clear.  With Stimul 2, the variability was roughly the 

same as observed for longissimus; but for Stimul 3 it was markedly greater. 
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Figure 42 pH decline curve with standard deviations for Stimul 1. 

 

Figure 43 pH decline curve of longissimus with standard deviations for Stimul2. 
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Figure 44 pH decline curve of longissimus with standard deviation for Stimul3. 

 

 

Figure 45 pH decline curve of semimembranosus with standard deviations for Stimul1. 
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Figure 46 pH decline curve of semimembranosus with standard deviations for Stimul2. 

 

 

Figure 47 pH decline curve of semimembranosus with standard deviations for Stimul3. 
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Some conclusions can be drawn.  Stimul 1 has the highest stimulation effect on both 

indicator muscles. The pHs of longissimus and semimembranosus muscles were 

already below pH 6.0 at 2 hours post slaughter, putting the meat in the risk of heat 

shortening.  Stimul 2 and 3 are much better treatments, in which the meat is getting 

enough stimulation to avoid cold shortening window and at the same time not over-

stimulated to the point of heat shortening.  In respect of Stimul 2 and 3, the rate of pH 

decline was closely similar for semimembranosus, but greater pH decline from Stimul 

3 in longissimus.  Stimul 3 includes Smart Stimulation and the implication is that 

application of its stimulation bar to longissimus, would only accelerate the glycolysis in 

that and neighbouring muscles, but not in semimembranosus. This would explain the 

greater variability of pH in the (unaffected) semimembranosus.    
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Chapter 5 Results and discussion 
Effects of stimulation treatments on meat quality 

Effects of stimulation treatment, muscle and days after slaughter on drip loss 

The commercially important parameter, drip loss increased asymptotically with time 

but there was no significant difference between electrical stimulation methods (P = 

0.157).  However, there was a significant difference between muscles (P < 0.001) 

(Figure 48 a – f).  

On Figure 48 and Table 9, 21 days after slaughter, gluteus medius (RUMH) showed 

the greatest drip loss of around 7.5%, which was significantly greater than the drip loss 

observed in rectus femoris (KNUCK), longissimus dorsi (STRL) and infraspinatus 

(BLD). The BLD has the lowest drip loss of roughly 4% (Figure 48 and Table 9). 

Gluteobiceps (RUMC) and psoas major (TEND) also showed relatively high drip 

losses of around 6% but did not differ significantly from any other muscle (Figure 48c 

and f, Table 9).  

 

 Figure 48 Drip loss percent as a function of days after slaughter by muscle (a – f) and 
electrical stimulation methods (red circles = Stimul1, orange squares = Stimul2, yellow 
diamonds = Stimul3). The lines represent fits from a nonlinear mixed-effects model with 
individual parameter estimates for each muscle based on an asymptotic function. 
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Effects of stimulation treatment, muscle and days after slaughter on Saturation 

Saturation measures colour intensity and combines colour indicator a* (redness) and 

b* (yellowness) in the function √(a*2 + b*2), which is the length of the hypotenuse 

linking the orthogonal a* and b* values.  Saturation is more useful in practical terms 

than a* and b* as stand alone parameters. The larger the saturation value, the more 

intense the colour or hue.  Since a* and b* were often best described by quadratic 

functions (Figure 58 and Figure 61 in Appendix), it was expected that a quadratic 

function would also best describe saturation as a function of days after slaughter.  This 

proved to be the case (Figure 49). 

The saturation development showed a curvilinear response over time, reaching peak 

values approximately 14 days after slaughter (Figure 49).  The stimulation treatments 

had no effect on saturation development over time (P = 0.062). However, the 

relationship between saturation and days after slaughter – the shape value, α – 

differed significantly among the muscles (P < 0.001) (Table 10). TEND and RUMC had 

stronger curvature than BLD and KNUCK (clear from inspection of Figure 49, and α in 

Table 10). The highest saturations occurred after 13 to 19 days of aging (parameter β) 

Table 9 Parameter estimates from a non-linear asymptotic meat drip loss 
model with separate parameter estimates for each muscle (values in brackets 
are standard errors of the parameter estimates). Model parameters: Asym = 
upper asymptote, the maximum and final predicted drip loss % at infinite time lrc 
= logarithm of the rate for drip loss to attain maximum value (determines the 
curvature). Different lower case letters indicate significant differences at P < 
0.05. 

Muscle 
Model parameters (SE) 

Asym lrc 

BLD 3.92 (1.11) a -3.31 (0.37) a 

KNUCK 4.70 (0.60) a -2.52 (0.20) a 

RUMC 6.32 (1.12) ab -2.71 (0.27) a 

RUMH 7.53 (0.78) b -2.17 (0.19) a 

STRL 4.16 (0.61) a -2.70 (0.22) a 

TEND 5.96 (0.88) ab -2.48 (0.24) a 
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but did not differ significantly among muscles (Table 10). The highest saturation 

values between 36 and 37 were seen in RUMC, RUMH and TEND.  By comparison, 

the remaining muscles had significantly lower maximum saturation values, ranging 

between 34 and 35 (parameter γ in Table 10). 

 

Figure 49. Colour intensity indicator saturation, as a function of days after slaughter by 
muscles (a – f) and stimulation treatment (red circles = Stimul1, orange squares = Stimul 2, 
yellow diamonds = Stimul 3).  Lines represent fits from a nonlinear mixed-effects model with 
individual parameter estimates for each muscle based on the alternative quadratic function. 
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Table 10 Results from a pairwise-comparison procedure following a nonlinear mixed-
effects model for saturation with separate parameter estimates for each muscle (values 
in brackets are standard errors of the parameter estimates). Model parameters: α = 
shape parameter, β = days after slaughter (x-axis) when saturation values reached a 
maximum, γ = maximum saturation. Different lower case letters indicate significant 
differences between parameter estimates at P < 0.05. 

Muscle 
Model parameters (SE) 

α β γ 
BLD -0.023 (0.006) a 19.13 (2.20) a 34.63 (0.40) a 

KNUCK -0.033 (0.006) ab 15.16 (0.88) a 34.16 (0.40) a 

RUMC -0.052 (0.009) bc  14.22 (0.67) a 36.52 (0.58) b 

RUMH -0.049 (0.009) abc 14.58 (0.75) a 36.24 (0.57) b 

STRL -0.044 (0.006) abc 14.84 (0.64) a 34.31 (0.40) a 

TEND -0.065 (0.009) c 12.90 (0.42) a 36.88 (0.60) b 

 

Effects of stimulation treatment, muscle and days after slaughter on hue angle 

Hue angle is defined as arctan (b*/a*), and it is colour that is seen by the eye.  In the 

case of red meat, higher hue angles indicate browner meat. 

Since the functions of a* and b* were usually positively humped (Figure 58 and Figure 

61 in Appendix), it was likely that plots of hue angle against days of ageing would 

approximate straight lines, and so it proved to be (Figure 50). The pattern of the 

relationship between hue angle and days after slaughter was similar across 

stimulation methods (Figure 50) (deltaAIC = 2.20).  This favoured a model with one 

common time smoother across stimulation methods, but the intercepts of this 

relationship varied with stimulation method (P <0.001, Table 26 in Appendix).  Stimul 1 

and 3 shared a similar intercept at Day 0, differing only by 0.003, whereas Stimul 2 

showed a significantly lower intercept, - 0.01.  Thus, the Stimul 2 line was lower and 

was significantly distinct from the Stimul 1 and 3 line (P <0.001). 

The hue angle development over time varied across the muscles (deltaAIC = 45.32) in 

favour of model with individual time smoothers for each muscle. The hue angle 

increased linearly in RUMC, RUMH and STRL muscles; and in a curvilinear fashion in 

TEND (Figure 50). Hue angle did not change significantly over time in BLD and 

showed a slightly undulating pattern in KNUCK (Figure 50).  
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The multiple comparison testing showed that RUMC, RMH and STRL shared the 

same linear pattern of hue angle development (see lower case letters in Table 26 in 

Appendix); also, the smoothing terms for KNUCK and TEND did not differ significantly.  

 

 

 

 

 

 

 

 

 

 

 

Figure 50 Hue angle as a function of days after slaughter by muscles (a – f) and stimulation 
(red circles = Stimul 1, orange squares = 2, yellow diamonds = 3). Lines represent smoother 
terms from a generalised additive mixed model (GAMM), solid lines = fits for the combined 
Stimul1 and 3, dashed lines = fits for Stimul2.  
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Effects of stimulation treatment, muscle and days after slaughter on Hunter L* 

and Japan colour assessment 

Hunter L* is measure of percent total light reflectance – whatever the hue and intensity 

(saturation) of that light –  and ‘Japan’ is a subjective assessment of colour using 

meat-coloured tiles as the reference.  

The relationships between L* and time after slaughter, and the equivalent graphs for 

Japan showed some curvatures.  Therefore for both parameters, a flexible generalised 

additive mixed model (GAMM) was used to test for differences between stimulation 

methods.   

I will first discuss the reflectance L*, and later the Japan colour assessment.  

For the data analysis of the reflectance indicator L*, a model comparison based on the 

difference in AIC between a model with a common smoother term and a model 

allowing smoothers for each stimulation method led strong support to the latter 

(deltaAIC = 20.23), indicating that the relationship between L* and days after slaughter 

varied with the stimulation method.  Thus, the L* showed a linear trend with days after 

slaughter for Stimul1 and 3 (Figure 51), but not for Stimul2 (Figure 52).  

In the Stimul1 and 3 analysis, the L* values showed a linear trend and therefore a 

linear mixed-effect model was used (Figure 51).  Apart from muscle, none of the fixed 

terms was significant (Table 27 in Appendix). The Tukey contrasts tests showed that 

KNUCK had the highest L* values around 37, which was significantly brighter than the 

other muscles (Table 11; Figure 51). TEND and BLD showed similar values at around 

33; whereas the lowest values of around 31 were seen in RUMC, RUMH and STRL. 
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Figure 51  Light reflectance L* as a function of days after slaughter by muscles (a – f) and 
Stimul1 and 3 (red circles = Stimul1, yellow diamonds = 3).  Lines represent fits from a linear 
mixed-effect model. 

 

Table 11  Results from a multiple comparison on the 
estimates for muscle from a linear mixed-effects model for 
L* from Stimul1 and 3, where values in brackets are 
standard errors. Different lower case letters indicate 
significant differences between parameter estimates from 
a multiple-comparison procedure using Tukey contrasts. 

Muscle Model estimate (SE) 

BLD 33.02 (0.46) a 

KNUCK 37.08 (0.47) b 

RUMC 31.00 (0.53) c 

RUMH 30.73 (0.53) c 

STRL 31.01 (0.46) c 

TEND 33.59 (0.53) a 

 

Stimul 2 data for L* were different from Stimul 1 and 3 data, as is clear from inspection 

of Figure 51 and Figure 52. Stimul 2 displayed an undulating response of L* over time, 

which was modelled using a generalised additive mixed model (GAMM) (Figure 52).  
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(A model comparison between a model with one common smoother term for all 

muscles in Stimul2 and a model allowing separate smoother terms for each muscle 

showed that a common smoother term was adequate (deltaAIC = 48.07). However, 

the curves varied considerably in their intercept across muscle (deltaAIC = 110.60 in 

favour of the model including a factor ‘muscle’.) 

A multiple comparison test with Tukey contrasts revealed that BLD and KNUCK, which 

had the largest L* value, differed significantly from all other muscles and from each 

other (Table 12; Figure 52). The remaining muscles did not differ significantly in their 

intercepts.   Importantly, KNUCK was also the muscle in the Stimul1 and 3 analysis 

that showed the greatest L* value. 

 

Figure 52 Light reflectance L* as a function of days after slaughter by muscles (a – f) for 
Simul 2. Lines represent smoother terms from a generalised additive mixed model (GAMM). 
Approximate significance of smooth terms: edf = 3.85, P < 0.001. edf = estimated degrees of 
freedom where an edf of 1 produces a straight lines, and an edf > 1 indicates curvature. 
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Table 12  Results from a multiple comparison on the 
estimates for muscle from a generalised additive mixed 
model of L* for Stimul 2 where values in brackets represent 
standard errors. Different lower case letters indicate 
significant differences between parameter estimates from a 
multiple-comparison procedure using Tukey contrasts.  

Muscle Model estimate (SE) 

BLD 33.39 (0.45) a 

KNUCK 37.10 (0.51) b 

RUMC 30.56 (0.48) c 

RUMH 30.12 (0.47) c 

STRL 30.71 (0.41) c 

TEND 31.81 (0.51) c 

 

Now, we consider the subjective Japan colour score data.  Model comparisons 

showed that the temporal development of the Japan colour score from Stimul 1 and 3 

could be described with one common smoother (deltaAIC = 5.33), but Stimul 2 differed 

greatly from the other two methods (Stimul1 versus 2: deltaAIC = 19.88; Stimul 2 

versus 3: deltaAIC = 11.30).  Thus just as for L*, Japan colour score in Stimul1 and 3 

data were pooled for further analysis and Stimul2 was treated separately.  

Figure 53 and Figure 54 show the temporal plots for the two analyses.  What is 

immediately obvious is a reciprocal relationship between these Japan plots and the 

equivalent L* plots (Figure 51 and Figure 52).  This interesting relationship is 

discussed later. But for the present, the formal temporal analysis is described, just as 

for L* data. 

The Japan colour score showed a linear trend over time for Stimul1 and 3 and 

therefore a linear mixed-effects model was used (Figure 53).  None of the fixed terms 

was significant apart from muscle (P < 0.001, Table 28 in Appendix). RUMC, RUMH 

and STRL showed the highest Japan colour values at around 5.2 and were 

significantly higher than the values displayed by the other muscles (Figure 53; Table 

13).  
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Figure 53  Japan colour score as a function of days after slaughter by muscles (a – f) and 
Stimul1 and 3 (red circles = Stimul1, yellow diamonds = 3). Lines represent fits from a linear 
mixed-effects model. 

 

Table 13. Results from a multiple comparison on the 
estimates for muscle from a linear mixed-effects model for 
Japan data from Stimul1 and 3, where values in brackets 
are standard errors. Different lower case letters indicate 
significant differences between parameter estimates from 
a multiple-comparison procedure using Tukey contrasts. 

Muscle Model estimate (SE) 

BLD 4.75 (0.10) a 

KNUCK 3.86 (0.10) b 

RUMC 5.20 (0.12) c 

RUMH 5.25 (0.12) c 

STRL 5.21 (0.10) c 

TEND 4.62 (0.11) a 

 

The muscles from Stimul 2 displayed an undulating response of Japan data over time, 

which was modelled using a generalised additive mixed model (Figure 54). All 

muscles attained a maximum value at about 14 days after slaughter. A model 
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comparison between a model with one common smoother term for all muscles and a 

model allowing separate smoother terms for each muscle showed that one common 

smoother term was adequate (deltaAIC = 43.21 in favour of the model with common 

smoother for muscles). However, the curves significantly varied in their intercept with 

muscle (deltaAIC = 173.28 in favour of the model including a factor ‘muscle’). Multiple 

comparison analysis with Tukey contrasts showed that BLD and KNUCK differed 

significantly from all other muscles and from each other (Table 14). The KNUCK 

muscle had the lowest Japan colour value, followed by BLD, TEND, STRL, RUMC and 

RUMH.  

 

Figure 54 Japan colour score as a function of days after slaughter by muscles (a – f) for 
Stimul 2. Lines represent smoothing terms from a generalised additive mixed model (GAMM). 
Approximate significance of smooth terms: edf = 3.80, P < 0.001. edf = estimated degrees of 
freedom (edf of 1 produces a straight line, edf > 1 indicates curvature. 
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Table 14 Results from a multiple comparison on the 
estimates for muscle from a generalised additive mixed 
model of Japan colour score for Stimul 2 where values in 
brackets represent standard errors. Different lower case 
letters indicate significant differences between parameter 
estimates from a multiple-comparison procedure using Tukey 
contrasts.  

Muscle Model estimate (SE) 

BLD 4.69 (0.09) a 

KNUCK 3.88 (0.09) b 

RUMC 5.29 (0.11) c 

RUMH 5.38 (0.11) c 

STRL 5.25 (0.09) c 

TEND 5.01 (0.12) ac 

 

Effects of stimulation treatment, muscle and days after slaughter on cooked 

meat toughness by shear force 

The relationship between shear force and days after slaughter was similar across the 

stimulation methods (deltaAIC = 9.41) in favour of a model with one common time 

smoother across stimulation methods (Figure 55). However, the development of 

reduced shear force varied significantly across the muscles (deltaAIC = 45.32 in 

favour of a model with individual time smoothers for each muscle, Table 29 in 

Appedix). The shear force decreased in curvilinear or linear fashion in all muscles 

except TEND. This muscle showed a slight increase in shear force with time (Figure 

55), but on average was the most tender muscle.  

Multiple comparison testing showed that BLD and RUMC shared the same pattern of 

shear force development but all other patterns (smoothers) were significantly different 

from each other (top part of Table 29 in appendix). KNUCK and STRL showed the 

most curvature and their pattern, indicating that shear force reached a steady state 

between 7 and 14 days after slaughter. 
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Figure 55 Meat shear force (kgF) as a function of days after slaughter by muscles (a – f) and 
stimulation method (red circles = Stimul 1, orange squares = 2, yellow diamonds = 3). Lines 
represent smoother terms from a generalised additive mixed model  
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Discussion  

The discussion for Chapter 5 on various meat quality attributes is divided into four 

subsections: drip loss; meat colour described by a*, b* and their derivative values; L* 

value and Japan colour; and cooked meat shear force. 

Drip loss 

Based on the pH-temperature decline curves (Figure 29), it was expected that Stimul 

1 was the most likely to generate heat shortening, and therefore higher drip loss %. 

However, this was not the case. So, we assume that the extent of heat shortening 

from Stimul 1 was minimal and insufficient to denature the myofibrillar proteins of the 

muscles.  

With the data pooled across stimulation treatments, there were some significant 

differences between muscles, but also some non-significant differences.  These non-

significant differences were experienced with 36 animals, but from thousands of 

animals, these subtle differences can become commercially important.  Therefore 

from a commercial perspective, the order of maximum drip loss - described by the 

asymptotic values - is important and irrespective of statistical significance: Gluteus 

medius (RUMH, highest percent drip loss) > Gluteobiceps (RUMC) > Psoas major 

(TEND) > Rectus femoris (KNUCK) > Longissimus dorsi (STRL)> Infraspinatus 

(BLD, lowest percent drip loss).  

Meat colour described by derivatives of a* and b* values  

Positive Hunter a* and b* values represent redness and yellowness, respectively, 

and are combined in the functions √(a*2 + b*2), termed saturation, which represents 

colour intensity. The arctan (b*/a*): hue angle, is the colour that the eye sees. Hunter 

values a* and b* alone are not commercially important. 

The Hunter a* and b* values showed asymptotic or more commonly humped curves 

(refer to Figure 58 and Figure 61 in Appendix), thus the saturation values were also 

humped. Saturation is a measure of colour intensity and Figure 49 showed that the 

peak saturation occurred between about 13 and 19 days after slaughter.  

The stimulation method had no significant effect on saturation values. RUMC, RUMH 

and TEND had significantly higher saturation values than the other three muscles 
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(P< 0.05).  Irrespective of statistical significance, at 15th day from slaughter, the 

descending order of maximum saturation in Table 16 was:  Psoas major (TEND, 

most saturated), gluteobiceps (RUMC) > gluteus medius (RUMH) > infraspinatus 

(BLD) > longissimus dorsi (STRL) > rectus femoris (KNUCK, least saturated).  

For red meat, a higher hue angle value indicates browner meat.  Although the 

maximum value occurred at 21 days, we would expect the values will continue to 

increase over time.  This is evident in Figure 50, where the hue angle tended to 

increase with time. Stimul 1 and 3 pooled had slightly higher hue values than Stimul 

2, but the difference may be undetectable by eye (Figure 50). The brownest muscle 

at 21 days was psoas major. 

Browning is commercially undesirable for product appearance. 13 and 19 days after 

slaughter showed the highest saturation and least hue angle, which suggested that 

the meat within this period would present the most desirable colour.  

Meat colour described by L* and Japan colour 

For Stimul 1 and 3 pooled, L* was unvarying with time, so 13 to 19 days after 

slaughter appears to be optimum for those stimulation treatments.  For Stimul 2, the 

L* values undulate. But, when Figure 51 and Figure 52 were scaled identically, the 

undulations would appear much less important. 

The Japan colour data was also best analysed in two groups, similar as L* values. 

Stimul 1 and 3 were pooled together, and Stimul 2 separately.  What was 

immediately striking was an apparent reciprocal relationship between L* and Japan 

colour within the two analytical groups, where the peak values of the variables were 

plotted near perfect inverse relationships (Figure 56 and Figure 57).  It could be 

argued that L* values would give an objective value of L* – and inversely Japan 

colour – but given the near perfect relationships described, it could be argued that 

colour tiles (Figure 23) were as good, certainly cheaper and more reliable by virtue of 

their simplicity.  
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Figure 56 Inverse relationship between L* and Japan colour score for Stimul 1 and 3.  

 

Figure 57. Inverse relationship between L* and Japan colour score for Stimul 2  

Cooked meat shear force 

There is no significant difference on the stimulation methods for shear force. 

The initial shear force values for infraspinatus (BLD), rectus femoris (KNUCK) 

gluteobiceps (RUMC), gluteus medius (RUMH) and psoas major (TEND) were below 

10 kgF, and would provide an acceptable eating experience even one day after 

slaughter. The initially low value of around 4.8 kgF for psoas major was not 

surprising. The muscle’s location and its function in the live animal guarantee its 

immediate tenderness.  The longissimus dorsi (STRL) showed a high variation of 



87 

 

tenderness (between 5 kgF to 12 kgF): initially meaning that some STRL muscles 

would be unacceptably tough at 1 day after slaughter.  In this respect, STRL was the 

most variable muscle for tenderness, and that variability was maintained to 7 days 

after slaughter.  The tenderness variability of all muscles decrease with time and that 

is consistent with common experience.  All muscles would provide a good eating 

experience a week to 10 days after slaughter. 
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Results summary: 
The results were summarised in the following tables: 

Table 15  Mean drip loss and cooked meat shear force of muscles ranked at key days after slaughter 

 Drip loss  Cooked meat shear force 

 Day 1 Day 15 Day 21  Day 1 Day 15 Day 21 

Most drip Not applicable Gluteus medius Gluteus medius Toughest Longissimus dorsi Gluteus medius Gluteus medius 

 Not applicable Psoas major Gluteobiceps  Rectus femoris Rectus femoris Rectus femoris 

 Not applicable Gluteobiceps Psoas major  Gluteus medius Longissimus dorsi Psoas major 

 Not applicable Rectus femoris Rectus femoris  Gluteobiceps = Psoas major Infraspinatus = 

 Not applicable Longissimus dorsi Longissimus dorsi  =Infraspinatus Infraspinatus =Longissimus dorsi 

Least drip Not applicable Infraspinatus Infraspinatus Tenderest Psoas major Gluteobiceps Gluteobiceps 

 

Table 16  Mean saturation and hue of muscles ranked at key days after slaughter 

 Saturation  Hue 

 Day 1 Day 15 Day 21 Day 1 Day 15 Day 21 

Most colour Psoas major= Psoas major= Gluteus medius Most brown Rectus femoris Rectus femoris Psoas major 

 =Gluteobiceps =Gluteobiceps Gluteobiceps  Infraspinatus Psoas major Rectus femoris 

 =Gluteus medius =Gluteus medius Infraspinatus  Psoas major Infraspinatus Infraspinatus 

 =Rectus femoris Infraspinatus= Psoas major  Gluteobiceps Gluteobiceps Gluteobiceps 

 =Infraspinatus =Longissimus dorsi Longissimus dorsi  Gluteus medius Gluteus medius Gluteus medius 

Least colour =Longissimus dorsi =Rectus femoris Rectus femoris Least brown Longissimus dorsi Longissimus dorsi Longissimus dorsi 
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Table 17  Mean lightness of muscles ranked at key days after slaughter 

 Lightness L* (Stimul 1&3)  Lightness L* (Stimul 2) 

L* Day 1 Day 15 Day 21 L* Day 1 Day 15 Day 21 

Lightest Rectus femoris Rectus femoris Rectus femoris Lightest Rectus femoris Rectus femoris Rectus femoris 

 Psoas major= Psoas major= Psoas major=  Infraspinatus Infraspinatus Infraspinatus 

 =Infraspinatus =Infraspinatus =Infraspinatus  Psoas major Psoas major Psoas major 

 Longissimus dorsi Longissimus dorsi Longissimus dorsi  Longissimus dorsi Longissimus dorsi Longissimus dorsi 

 =Gluteobiceps =Gluteobiceps =Gluteobiceps  =Gluteobiceps =Gluteobiceps =Gluteobiceps 

Darkest =Gluteus medius =Gluteus medius =Gluteus medius Darkest =Gluteus medius =Gluteus medius =Gluteus medius 

Table 18 Mean lightness and Japan colour of muscles ranked at key days after slaughter 

 Japan colour score (Stimul 1&3)  Japan colour score (Stimul 2) 

Japan  Day 1 Day 15 Day 21 Japan Day 1 Day 15 Day 21 

Most colour Gluteus medius= Gluteus medius= Gluteus medius= Most colour Gluteus medius= Gluteus medius= Gluteus medius= 

 =Longissimus dorsi =Longissimus dorsi =Longissimus dorsi  =Gluteobiceps =Gluteobiceps =Gluteobiceps 

 =Gluteobiceps =Gluteobiceps =Gluteobiceps  =Longissimus dorsi =Longissimus dorsi =Longissimus dorsi 

 Infraspinatus= Infraspinatus= Infraspinatus=  Psoas major Psoas major Psoas major 

 =Psoas major =Psoas major =Psoas major  Infraspinatus Infraspinatus Infraspinatus 

Least colour =Rectus femoris =Rectus femoris =Rectus femoris Least colour Rectus femoris Rectus femoris Rectus femoris 
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Chapter 6 
Concluding Discussion 

 

Chapter 4 and Chapter 5 reported the results and discussion for the two parts of this 

project, where bovine carcasses were subjected to three electrical treatments after 

slaughter.  

The first part (Chapter 4) reported on the pH-temperature profiles in two indictor 

muscles, longissimus dorsi and semimembranosus, and the required outcome was a 

decision on which  electrical stimulation treatments was the best in terms of meat 

quality. This was of much concern to Silver Fern Farms because the traditional 15Hz 

immobilisation proved to accelerate glyoclysis which results in a faster pH decline at 

an earlier time, while the meat temperature is high; and poses heat shortening, 

especially on the deep muscles like Semimembranosus.  The high 400Hz did 

accelerate some glycolysis, which is sufficient to avoid cold shortening window and 

not fall into heat shortening. However, with 400Hz applied at immobilisation, the 

setting results in higher incidence of burst tenderloins and ecchymosis, more 

commonly known as blood splash in the industry. These issues came to light in 

many beef processing plants after upgrading to 400Hz. Therefore, a mixture of 15Hz 

and 400Hz was used to replace 400Hz. 

The three stimulation treatments chosen here were: 

Stimul 1 was a continous 15 Hz immobilisation for 40 seconds 

Stimul 2 was 4 seconds of 15 Hz, followed by 36 seconds of 400 Hz 

Stimul 3 comprised Stimul2 plus Smart Stimulation at 30 minutes post slaughter  

Although the data were unfortunately limited for Stimul 1, historical data strongly 

suggested that there would be a severe risk of heat shortening from that treatment, 

particularly in the deeper semimembranous muscle.   

By contrast, Stimul 2 and 3 showed little tendency for heat shortening.  The 

contemporary data also showed that carcass weight had no effect on the time 

temperature profiles, perhaps unexpected because in theory larger carcasses should 

cool more slowly, which will accelerate glycolysis and pH decline. As reported 

earlier, the 15 Hz and 400 Hz combination in Stimul 2 reduces the incidence of burst 
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tenderloins and ecchymosis.  Also, Stimul 2 is an inexpensive, easy-to-operate and 

worker-safe electrical treatment. The 15 Hz stimulation (Stimul 1) is useful for 

accelerating pH decline, but needs to be controlled to prevent excessive pH fall; 40 

seconds clearly being too long.   

Stimul 3 requires application of SmartStim, after application of Stimul 2.  Its 

installation in an abattoir adds cost and the question is: is it worth in terms of the 

temperature-pH-time profiles and their variability between carcasses?  The pH-time 

graphs in Chapter 4 answer this question for the two indicator muscles, and the meat 

quality data in Chapter 5 answer this question over a wider range of muscles. 

I will consider the indicator muscles first.  For longissimus dorsi, Stimul 1 had the 

most variable pH values, particularly at early times after slaughter.  Clearly this could 

result in more variable meat quality.  Variability was reduced in Stimul 2 and – 

especially - Stimul 3 (Smart Stimulation).  Thus from these data, Stimul 3 appears 

more attractive.  Carne Technology claims that the Smart Stimulation (Stimul 3) can 

control the rate of pH fall and ultimate pH prediction.  Stimul 3 did demonstrate an 

ability to control pH decline rate in the first few hours but only in longissimus dorsi.  

However, any advantage of reduced variability did not extend to semimembranosus. 

This is possibly because the SmartStim stimulation bar is applied only to longissimus 

dorsi and the contact time is very short, i.e. <15 seconds when compared to the 

alternative Smart Stimulation tunnel, about 80 seconds.  Outside the scope of this 

project, I performed another pH and temperature window assessment in the 

Auckland Meat Processor abattoir.  The immobilisation settings at AMP have a short 

period (2 seconds) of 15 Hz, followed by about 18 seconds of continuous high 

frequency. The immobilisation setup is similar to that at Silver Fern Farms (15 Hz + 

400 Hz), but the 15 Hz duration is shorter by 87%. Their Smart Stimulation tunnel is 

located after grading and before chiller entry. When observed, each carcass side 

spent about 80 seconds in the tunnel and the stimulation stops when desired pH is 

attained. The results from AMP are very similar to those for Stimul 3, where the 

Smart Stimulation is likely to yield more consistent meat eating quality in longissimus 

dorsi and possibly proximate muscles. 

Consider now the results in Chapter 5, where we evaluate the effect of the three 

stimulation treatments on meat quality in six indicator muscles at various days after 

slaughter.  Stimulation treatment had no effect on drip loss, but the data reveal the 
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rank order of drip loss amongst muscles is the same as the other meat quality 

variables shown in the Results summary: Table 15, Table 16, Table 17 and Table 

18.  Stimulation had no effect on saturation, but hue angle was lower (less brown) in 

Stimul 2, however whether this could be detected by eye is unknown. 

This study did not have a non-stimulated control group, but provides a comparison 

between three stimulation systems. This explains why there was few significant 

differences in meat quality attributes due to stimulation systems, as any of the 

stimulation system can improve meat quality. The current work is aimed to choose 

which stimulation system could benefit the company the most in meat quality 

consistency, operating cost and any added objective measurement system.  

The question about the efficacy of Smart Stimulation (Stimul 3) can now be 

answered.  In terms of meat quality, it appears to give minimal advantage over a 

Stimul 2-type protocol. In hindsight, the meat processor could choose an inexpensive 

Stimul 2 protocol and tailor the duration of the15 Hz and 400 Hz frequencies for 

process optimisation, in terms of pH-temperature profile.  On a separate trial, I have 

been working with Carne Technology on ultimate pH prediction work on beef and 

lamb, but with little success in the last few years.  At present, the company has yet to 

get a significant commercial benefit from Smart Stimulation. So Stimul 2 is currently 

in practice for all Silver Fern Farms beef processing plant.  

On a more positive note, the results on Table 15, Table 16, Table 17 and Table 18 

are useful contribution for Silver Ferns Farm’s portion size product development 

project.  As a general rule, the muscles that were studied in this project will reach an 

optimum tenderness and colour at Day 15. However, a larger data set will be 

required for validity.   

As for future work, there are some areas of interest that could be further studied. On 

a separate visit to another meat processor, I was under the impression that most 

beef plants in New Zealand are operating under an alternating frequency (15 Hz + 

>300 Hz) during immobilisation. It could be of interest to understand the myology and 

muscle contraction % of beef muscle under the high frequency stimulation system, 

particularly >300Hz. The incidence of blood splash is historically associated with 

animal handling practice and delay in bleeding, however on this study, we believe 
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that the high frequency immobilisation could be the factor and no one has done such 

study. 

The remarkably precise inverse relationship between the Japan colour score and L* 

means that colour tiles were as good, certainly cheaper and more reliable by virtue 

of their simplicity. This colour grading technique is currently adapted by Silver Fern 

Farms BeefEQ grading system. 

If this project were to be repeated, a number of recommendations can be made. 

Firstly, a larger scale study using an unvarying electrical input profile across multiple 

abattoir to create a better muscle profile database. Secondly, the carcass selection 

criteria could be modified to include marbling, ossification and hump height, which 

are also contributors to consumer eating experience. 
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Appendix 
The colour  

The redness indicator a* varied significantly with electrical stimulation condition 

during the days after slaughter ( P < 0.001)  (Figure 58). All stimulation treatments 

had similar maxima around 25.  While the Stimul 1 and 3 levelled to a plateau, Stimul 

2 showed a terminal decline, which suggested that a quadratic model would be more 

useful.  In Stimul 2, the initial response (R0 = 19.48) was significantly higher and the 

rate constant (lrc = -2.17) was significantly lower than Stimul 1 and 3.  Stimul 1 and 3 

shared similar estimates for both parameters (Table 19). Therefore, 1 and 3 were 

pooled for further analysis using an asymptotic model, whereas Stimul 2, which 

showed a more humped response was treated separately using an alternative 

quadratic model. 

  

Figure 58 Redness indicator a* as a function of days after slaughter by stimulation method 
(a – c) and muscles. Lines represent fits from a nonlinear mixed-effects model with varying 
parameters for electrical stimulation method based on an asymptotic regression function.  
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Table 19 Results from a multiple-comparison procedure following a nonlinear mixed-
effects model with separate parameter estimates for each electrical stimulation method 
(values in brackets are standard errors of the parameter estimates). Model parameters: 
Asym = asymptote, maximum a* value, R0 = response when the predictor is zero, lrc = 
logarithm of the rate for a* to attain maximum value.  Different lower case letters indicate 
significant differences between parameter estimates at P < 0.05.   

Stimulation 

method 

Model parameters 

Asym R0 lrc 

Stimul 1 24.46 (0.29) a 17.11 (0.77) a -1.06 (0.19) a 

Stimul 2 25.82 (0.72) a 19.48 (0.47) b -2.17 (0.30) b 

Stimul 3 24.85 (0.29) a 17.27 (0.74) a -1.11 (0.18) a 

 

The pooled Stimul 1 and 3 analysis for a* as a function of days after slaughter 

showed significant differences between muscles (P < 0.001) (Figure 59).  Apart from 

BLD, all muscles reached peak values in colour indicator ‘a*’ within 10 days of 

slaughter (Figure 59) and there was little variation in the maximum a* values (see 

parameter Asym, Table 20).  Overall, all muscles had similar a* values to start with 

(parameter R0 in Table 20). The rate to attain maximum ‘a’ values (parameter lrc, 

Table F) increased in a similar manner across muscles except for BLD muscle. This 

muscle demonstrated a more gradual increase and thus differed significantly in lrc 

from all muscles but RUMC (Table 20). The only significant difference occurred 

between KNUCK and RUMH, which showed the lowest and largest a* values, 

respectively. 
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Figure 59  Redness indicator a* as a function of days after slaughter by muscles (a – f) and 
stimulation method (red circles = Stimul 1, yellow diamonds = Stimul 3). Lines represent fits 
from a nonlinear mixed-effects model with individual parameter estimates for each muscle 
based on an asymptotic regression function. 

Table 20 Results from a pairwise-comparison procedure following an asymptotic 
nonlinear mixed-effects model for redness indicator a* with individual parameter 
estimates for each muscle (values in brackets are standard errors of the parameter 
estimates).  Model parameters: Asym = asymptote, maximum a* value R0 = a* when 
days after slaughter is zero, lrc = logarithm of the rate for a* to attain maximum 
value.   Different lower case letters indicate significant differences between 
parameter estimates at P < 0.05.   

Muscle 
Model parameters (SE) 

Asym R0 lrc 

BLD 26.60 (1.32) ab 19.21 (0.62) a -2.37 (0.43) a 

KNUCK 23.85 (0.36) a 16.18 (1.72) a -0.97 (0.26) b 

RUMC 25.46 (0.51) ab  18.00 (1.74) a -0.98 (0.39) ab 

RUMH 25.79 (0.47) b 15.61 (1.91) a -0.79 (0.31) b 

STRL 24.54 (0.37) ab 16.79 (1.01) a -1.11 (0.24) b 

TEND 24.76 (0.40) ab 11.92 (3.92) a -0.27 (0.39) b 
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For the stand-alone Stimul 2 slaughter, a model comparison between an asymptotic 

model and a quadratic model supported the latter, which was subsequently used 

(AICasymptotic = 957 vs. AICquadratic = 943).  Muscles in the Stimul 2 analysis showed an 

expected more humped relationship between a* and days after slaughter, except for 

the infraspinatus (BLD) muscle.  That muscle displayed an almost linear relationship 

(Figure 60).  

 

 

Figure 60  Redness indicator a* as a function of days after slaughter by muscles (a – f) for 
Stimul 2. Lines represent fits from a nonlinear mixed-effects model with individual parameter 
estimates for each muscle based on an alternative quadratic function.  

There were no significant differences in the curvature among the muscles group 

(parameter α in Table 21). However, BLD and KNUCK muscles were excluded from 

pair-wise comparisons because their parameter estimates for the shape parameter α 

were not significant; whereas BLD was also excluded from pair-wise comparisons on 

β for the same reason.  Overall, all muscles attained the highest a* value around 15 

days of aging (refer to β values), except for BLD muscle. Its peak values were 

attained later. However, due to the large variation seen in the parameter estimate for 

BLD muscles, this difference was statistically not significant (see parameter β in 

Table 21 and Figure 60). The highest a* values were observed in RUMC (γ = 27.27) 
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and TEND (γ = 26.97) which did not differ from the maximum values in other 

muscles, except for KNUCK. This muscle showed the lowest maximal a* colour 

value of γ = 24.30. 

Table 21 Results from a pairwise-comparison procedure following a nonlinear 
quadratic model for colour indicator a* with separate parameter estimates for each 
muscle within Stimul 2 (values in brackets are standard errors of the parameter 
estimates). Model parameters: α = shape parameter, β = days after slaughter (x-axis) 
when a* attained its maximum value, γ = maximum a* value. Different lower case letters 
indicate significant differences between parameter estimates at P < 0.05.  Grey-shaded 
areas: BLD and KNUCK were excluded from pairwise comparisons for the shape 
parameter α (BLD was also excluded from β comparisons), because their estimate of α 
(β) was not significant. 

Muscle 
Model parameters (SE) 

α β γ 

BLD -0.008 (0.008)  27.18 (14.84)  25.23 (1.78) ab 

KNUCK -0.013 (0.008) 17.61 (4.12) a 24.30 (0.51) a 

RUMC -0.043 (0.011) a  14.44 (1.07) a 27.27 (0.73) b 

RUMH -0.029 (0.011) a 14.66 (1.68) a 26.04 (0.73) ab 

STRL -0.029 (0.008) a 15.33 (1.30) a 25.32 (0.52) ab 

TEND -0.046 (0.011) a 13.49 (0.85) a 26.97 (0.77) b 

 

 

The relationship between yellowness colour indicator b* and time after slaughter 

varied significantly across stimulation methods (P < 0.001, Figure 61). Specifically, 

there were significant differences in the curvature of the relationship (parameter α) 

and the maximum b* value between Stimul 2 and 3 (parameter γ, Table 22). Stimul 1 

had an intermediate parameter estimates and thus did not differ significantly from the 

other stimulation methods. There were no significant differences between the 

stimulation methods in the time to reach maximum b* values, ranging from 14 to 17 

days (parameter β, Table 22). Because there was a significant difference in the 

maximal b* values (parameter γ, Table 22), Stimul 1 and 2 were pooled for further 

analysis; whereas Stimul 3 was analysed in isolation. 
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Figure 61 Yellowness indicator b* as a function of days after slaughter by stimulation 
method and muscle. The lines represent fits from a nonlinear mixed-effects model with 
varying parameters for stimulation method based on the alternative quadratic equation. 

  

Table 22 Results from a pairwise-comparison procedure following a nonlinear model 
for colour indicator b* with separate parameter estimates for each stimulation method 
(values in brackets are standard errors of the parameter estimates). Model parameters: 
α = shape parameter, β = days after slaughter (x-axis) when b* value reached 
maximum, γ = maximum b* value. Different lower case letters indicate significant 
differences between parameter estimates at P < 0.05.   

Stimulation method 
Model parameters (SE) 

α β γ 

Stimul 1 -0.027 (0.004) ab 15.34 (0.75) a 23.86 (0.26) a 

Stimul 2 -0.020 (0.004) a 17.32 (1.34) a 23.35 (0.25) a 

Stimul 3 -0.037 (0.004) b 14.29 (0.44) a 24.75 (0.26) b 

 

 

In the pooled analysis of Stimul 1 and 2 data for b*, the yellowness indicator, the 

curvature was similar for most muscles (Figure 62). The BLD and KNUCK showed 

the weakest curvature and differed significantly from TEND that displayed the 

strongest curvature (parameter α in Table 23, Figure 62). The time to reach 

maximum b* values ranged from 13 to nearly 20 days but did not differ significantly 

among muscles due to large variations (parameter β, Table 23). TEND showed the 

highest b* value, which was significantly larger than the values seen for BLD, 
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KNUCK and STRL but not significantly different from the values reached in RUMC 

and RUMH (parameter γ, Table 23, Figure 62).  

 

 

Figure 62  Colour indicator b* as a function of days after slaughter by muscles (a – f) and 
Stimul 1 and 2 (red circles = 1, orange squares = 2). Lines represent fits from a nonlinear 
mixed-effects model with individual parameter estimates for each muscle based on the 
alternative quadratic function.  
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Table 23 Results from a pairwise-comparison procedure following a nonlinear mixed-
effects model yellowness indicator b* (pooled response for Stimul 1 and 2) with separate 
parameter estimates for each muscle (values in brackets are standard errors of the 
parameter estimates). Model parameters: α = shape parameter, β = days after slaughter 
(x-axis) when b* value reached a maximum, γ = maximum b* value. Different lower case 
letters indicate significant differences between parameter estimates at P < 0.05. 

Muscle 
Model parameters (SE) 

α β γ 

BLD -0.015 (0.006) a 19.50 (3.49) a 23.43 (0.42) ab 

KNUCK -0.015 (0.006) a 17.65 (2.83) a 23.50 (0.38) ab 

RUMC -0.029 (0.008) ab  15.81 (1.54) a 24.42 (0.53) ac 

RUMH -0.030 (0.008) ab 15.52 (1.46) a 24.37 (0.53) ac 

STRL -0.023 (0.006) ab 16.64 (1.63) a 22.69 (0.37) b 

TEND -0.046 (0.008) b 13.14 (0.61) a 25.26 (0.57) c 

 

In the isolated analysis of Stimul 3 data for b*, the yellowness indicator, the curvature 

was similar for most muscles (Figure 63).The model with individual parameters for 

each muscle provided a better fit than the restricted model with common parameter 

estimates suggesting significant differences across muscles (P < 0.01). However, the 

differences were not very large and after P-value correction for multiple testing, none 

of the pairwise comparisons was significant (Table 24).  The maximum b* values of 

around 25 were reached about 14 days after slaughter (Figure 63, Table 24). 
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Figure 63 Colour indicator b* as a function of days after slaughter by muscles (a – f) for 
Stimul 3. Lines represent fits from a nonlinear mixed-effects model with individual parameter 
estimates for each muscle based on the alternative quadratic function.  

 

Table 24 Results from a pairwise-comparison procedure following a nonlinear mixed-
effects model of yellowness indicator b* for Stimul 3 with separate parameter estimates 
for each muscle (values in brackets are standard errors of the parameter estimates). 
Model parameters: α = shape parameter, β = days after slaughter (x-axis) when b* value 
reached a maximum, γ = maximum b*. Different lower case letters indicate significant 
differences between parameter estimates at P < 0.05. 

Muscle 
Model parameters (SE) 

α β γ 

BLD -0.022 (0.007) a 17.37 (2.14) a 24.70 (0.44) a 

KNUCK -0.036 (0.007) a 13.95 (0.77) a 24.53 (0.47) a 

RUMC -0.052 (0.010) a  13.05 (0.63) a 26.12 (0.67) a 

RUMH -0.047 (0.010) a 14.35 (0.89) a 25.13 (0.66) a 

STRL -0.041 (0.007) a 13.94 (0.66) a 24.00 (0.47) a 

TEND -0.039 (0.010) a 13.70 (0.94) a 25.59 (0.67) a 
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Table 25 Rate of pH decline results from a multiple comparison procedure using Tukey 
contrasts 

Linear 
hypotheses 

Estimate SE z P Significant 

RatepHtx      

    2 – 1 = 0 -0.045 0.043 -1.025  0.557  

    3 – 1 = 0   -0.136 0.054 -2.523 0.031 * 

    3 – 2 = 0 -0.092 0.045 -2.042 0.101  

      

RatepHtcon      

    2 – 1 = 0 0.378 0.100 3.764 < 0.001 *** 

    3 – 1 = 0   0.544 0.109 5.006  < 0.001 *** 

    3 – 2 = 0 0.167 0.063 2.628 0.022 * 
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Table 26 Results from a generalised additive mixed model (GAMM) for hue 
angle applying individual time smoothers for each muscle. edf = estimated 
degrees of freedom. Different lower case letters indicate significant differences 
between smoothers (multiple-comparison procedure using Tukey contrasts). s = 
smoother term. 

Parametric  

coefficients 
Estimate (SE) t P 

Intercept of Stimul 1 0.759 (0.003) 227.81 <0.001 

Stimul 2 -0.010 (0.003) -3.46 <0.001 

Stimul 3 0.003 (0.003) 1.04 0.300 

KNUCK 0.011 (0.003) 3.70 <0.001 

RUMC -0.016 (0.004) -4.56 <0.001 

RUMH -0.026 (0.004)  -7.10 <0.001 

STRL -0.028 (0.003) -8.71 <0.001 

TEND 0.004 (0.003) 1.22 0.224 

    

Approx. significance of smooth terms 

 edf F P 

s(time) : BLD a 1.00 0.09 0.764 

s(time) : KNUCK b 2.96 4.40 <0.01 

s(time) : RUMC c 1.93 12.94 <0.001 

s(time) : RUMH c 1.00  28.34 <0.001 

s(time) : STRL c 3.20 36.97 <0.001 

s(time) : TEND b 1.00 8.91 <0.001 
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Table 27 Results from a backwards selection testing the significance of the fixed 
terms of the linear mixed-effects model for L* in Stimul1 and 3 based on the AIC 
(Akaike Information Criterion) and likelihood ratio tests.  

Eliminated term AIC Likelihood 
ratio 

Degrees 
freedom P 

None (full model) 2069.89    

Stimul method × muscle × time 2066.71 6.82 5 0.234 

Muscle × time 2065.68 8.97 5 0.110 

Stimul method × time 2064.72 0.01 1 0.928 

Stimul method × muscle 2061.99 5.28 5 0.383 

Time 2059.95 3.10 1 0.078 

Stimul method 2057.20 0.34 1 0.558 

Muscle 2226.82 177.97 5 <0.001 

 

Table 28 Results from a backwards selection testing the significance of the fixed 
terms of the linear mixed-effects model for Japan in Stimul 1 and 3 based on the AIC 
(Akaike Information Criterion) and likelihood ratio tests.  

Eliminated fixed term AIC Likelihood 
ratio 

Degrees 
freedom P 

None (full model) 761.92    

Stimul method × muscle × time 758.58 6.66 5 0.247 

Muscle × time 756.32 7.74 5 0.171 

Stimul method × time 756.61 0.03 1 0.860 

Stimul method × muscle 753.86 5.28 5 0.382 

Time 747.89 0.29 1 0.589 

Stimul method 748.06 0.47 1 0.494 

Muscle 920.36 180.77 5 <0.001 

 
  



110 

 

 

 

Table 29  Results from a GAMM for meat shear force applying individual time 
smoothers for each muscle.  edf = estimated degrees of freedom.  All t and F 
distribution values were larg e and highly significant. Different lower case letters 
indicate significant differences between parameter estimates or between smoother, 
by a multiple-comparison procedure using Tukey contrasts.  

Muscle 
Estimated 

mean (SE) 
t P 

BLD 5.36 (0.10) a 54.84 <0.001 

KNUCK 5.96 (0.10) b 59.33 <0.001 

RUMC 5.15 (0.12) a 43.43 <0.001 

RUMH 6.48 (0.12) c 55.22 <0.001 

STRL 5.98 (0.10) b 58.64 <0.001 

TEND 4.98 (0.12) a 42.91 <0.001 

Approximate significance of smoother terms 

 edf F P 

s(time): BLD a 2.33 18.39 <0.001 

s(time): KNUCK b 2.96 14.80 <0.001 

s(time): RUMC a 1.93 21.96 <0.001 

s(time): RUMH c 1.00  16.96 <0.001 

s(time): STRL d 3.20 46.92 <0.001 

s(time): TEND e 1.00 5.03 0.025 

 


