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ABSTRACT
PKS B1322–110 is a radio quasar that is located only 8.′5 in angular separation from the bright
B star Spica. It exhibits intraday variability in its flux density at GHz frequencies attributed
to scintillations from plasma inhomogeneities. We have tracked the rate of scintillation of this
source for over a year with the Australia Telescope Compact Array, recording a strong annual
cycle that includes a near-standstill in August and another in December. The cycle is consistent
with scattering by highly anisotropic plasma microstructure, and we fit our data to that model in
order to determine the kinematic parameters of the plasma. Because of the low-ecliptic latitude
of PKS B1322–110 , the orientation of the plasma microstructure is poorly constrained. None
the less at each possible orientation our data single out a narrow range of the corresponding
velocity component, leading to a one-dimensional constraint in a two-dimensional parameter
space. The constrained region is consistent with a published model in which the scattering
material is associated with Spica and consists of filaments that are radially oriented around the
star. This result has a 1 per cent probability of arising by chance.

Key words: circumstellar matter – stars: individual: Spica – ISM: general – ISM: structure –
radio continuum: galaxies – radio continuum: transients.

1 IN T RO D U C T I O N

PKS B1322–110 is a flat spectrum radio source (Griffith et al.
1994), which was recently discovered to undergo extreme intraday
variations (IDV; also used to refer to the class of sources) at GHz
frequencies (Bannister et al. 2017). Rapid flux density variations
in these sources are scintillations resulting from plasma inhomo-
geneities in our Galaxy (Rickett 1990; Jauncey et al. 2016), and
can be used to constrain the apparent size or brightness temperature
of their radio emitting regions (Dennett-Thorpe & de Bruyn 2000;
Kedziora-Chudczer et al. 1997).

Scintillation can be thought of as a spatial flux pattern – i.e.
the source projected through the transparent plasma ‘screen’ – that
drifts relative to the Earth. For sources at cosmological distances,
the velocity of the pattern is essentially that of the screen (Cordes &
Rickett 1998), and therefore the change in the velocity of the Earth
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as it orbits the Sun can strongly affect the variation time-scales.
This annual modulation has so far been reported in a handful of
sources: J1819+3845 (Dennett-Thorpe & de Bruyn 2001, 2003);
QSO B0917+624 (Jauncey & Macquart 2001; Rickett et al. 2001;
Fuhrmann et al. 2002); PKS 1257–326 (Bignall et al. 2003);
PKS B1519–273 (Jauncey et al. 2003); PKS B1622–253 (Carter
et al. 2009); S5 0716+714 (Liu et al. 2012); 0925+504 (Liu &
Liu 2015; Liu et al. 2017); S4 0954+65 (Marchili et al. 2012);
1156+295 (4C+29.45, Liu et al. 2013); and J1128+5925 (Gabányi
et al. 2007b,a). Together with the two-station experiments (Dennett-
Thorpe & de Bruyn 2002; Bignall et al. 2006), which directly
demonstrated the existence of a spatial flux pattern, the annual cycles
provided the key evidence that proved IDV to be scintillation. No
clear annual cycle could be established for the prototypical intrahour
variable PKS 0405–385 due to the intermittency of its variations
(Kedziora-Chudczer 2006).

Annual cycles of the two best-studied intrahour variables,
J1819+3845 and PKS 1257–326 have been shown to be consistent
with highly anisotropic, essentially one-dimensional scattering
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(Walker, de Bruyn & Bignall 2009), and the orientation of the
respective anisotropy axes along with the projected velocity of the
screen were determined. However, although the properties of the
screens have been precisely characterized, the physical context of
the scattering material remains unclear. In the case of J1819+3845,
whose screen is expected to be relatively close, less than 10 pc
from Earth, it was previously suggested that the plasma might be
associated with Vega, a nearby A star that is close to the source in the
sky (Dennett-Thorpe & de Bruyn 2002). Curiously, the anisotropy
axis of J1819+3845 does point towards Vega.

The possibility of a connection between IDVs and hot stars was
reinforced by the realization that the new IDV PKS B1322–110
is just 8.5 arcminutes away from Spica, the Sun’s closest B star
neighbour, prompting Walker et al. (2017) to examine the stars
foreground to J1819+3845 and PKS B1257–326. A conclusion of
that study was that the scintillations of both sources are due to
plasma associated with nearby A stars – the star being Alhakim (ι
Cen), in the case of PKS B1257–326. The picture that was suggested
by Walker et al. (2017) is of plasma filaments that are radially
oriented around the host star, and co-moving with it.

The possible connection between Spica and the IDV of
PKS B1322–110 was left out of that analysis. The reason for the
omission is that the close alignment between Spica and PKS B1322–
110 motivated the idea of an association, and therefore cannot
be used as a test. On the other hand, at the time of writing of
Walker et al. (2017), less than three months after discovering IDV
in PKS B1322–110 , its annual cycle was not established and the
kinematics of the screen were unknown.

In this paper we report the results of tracking the rate of flux
density variations in PKS B1322–110 for just over a year, from 2017
February to 2018 February, in which an evolution in the scintillation
time-scale is clearly seen. We interpret this evolution in purely
kinematic terms – i.e. we assume that it is an annual cycle arising
from the Earth’s orbit – but with only one year of data we are unable
to demonstrate the repetition that is expected for an annual cycle. In
Section 2 we present the observations and data reduction. Section 3
describes our inference of variability rates; our method allows us to
characterize the scintillation rate during slow phases of the cycle,
where traditional methods of analysis struggle. Section 4 fits the
kinematic parameters of the annual cycle to the data and compares
the results to the predictions of the model that connects the scattering
with Spica. We discuss the degeneracy in our constraints in Section 5
before concluding in Section 6.

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N

We observed PKS B1322–110 with the Australia Telescope Com-
pact Array (ATCA) at 18 epochs, taking between 30 and 110 spectra
extending from approximately 4.3 to 11 GHz, using two quasi-
simultaneous tunings of 150 s integration time each. The summary
of these data is given in Table 1.

To form the light curves used in the variability rate analysis
below, we first filtered outliers from each recorded spectrum in
the sub-bands of interest by discarding data points that deviated
from the mean of the group of their 10 closest neighbours by
more than three times the r.m.s. values of the group, repeating this
procedure twice on the updated spectra. We then visually inspected
the full dynamic spectra and dropped those remaining data points
that were clearly affected by RFI or other instrumental issues. In
particular, we have excluded the entire data set from 2017-10-02
due to a persistent low-amplitude ‘moire’ pattern in the dynamic
spectrum; the origin of this pattern is unclear. Fig. 1 presents

Table 1. Parameters of the 18 observational epochs on which long light
curves were obtained. The right column shows the number of data points
remaining in the (5.5 ± 0.25)/(10 ± 0.25) GHz sub-bands, as used in
Section 3, after RFI excision.

Epoch Date D.o.Y. MJD (mean) #points

1 2017-02-02 32 57 785.70 104/103
2 2017-02-07 37 57 790.69 75
3 2017-02-19 49 57 802.77 30
4 2017-02-21 51 57 804.72 73
5 2017-02-23 53 57 806.68 90
6 2017-03-23 81 57 834.65 105/104
7 2017-03-24 82 57 835.65 102/103
8 2017-04-11 100 57 853.67 75
9 2017-05-10 129 57 882.52 105
10 2017-05-11 130 57 883.51 109
11 2017-08-14 226 58 979.25 39
12 2017-08-30 242 58 995.15 70
13 2017-10-01 274 58 027.10 109/108
14 2017-10-02 275 58 028.11 0/0
15 2017-11-02 306 58 059.02 105/103
16 2017-12-15 348 58 101.90 107
17 2017-12-16 349 58 102.90 90
18 2018-02-24 54(+365) 58 172.72 46

the light curves of PKS B1322–110 observed at all 18 epochs,
averaged over two 0.5 GHz-wide bands centred at 5.5 GHz and
10 GHz.

3 VARI ABI LI TY RATE I NFERENCE

Traditionally, IDV have been analysed by direct computation of the
temporal autocorrelation function (ACF; e.g. Bignall et al. 2003) or
the structure function (e.g. Gabányi et al. 2007a) from the measured
flux densities, and then extracting a characteristic time-scale. How-
ever, either of these methods is difficult to use during slow phases in
the cycle when the entire observing run might not be long enough
to record a single oscillation in the light curve, leading to a biased
estimate of the ACF. The epochs of slow variation are nevertheless
particularly useful in constraining the kinematics of the screen, as
we will see in Section 4.3.2, and we are therefore motivated to try
a new approach in estimating the variability time-scale.

We model the light curves as a realization of a stationary Gaussian
process with an epoch-dependent time axis scaling; this is an
assumption that is motivated by simplicity and the availability
of suitable tools for the subsequent analysis. Let fij be the jth
data point of the ith light curve measured at time tij with some
uncertainty σ ij uncorrelated between the measurements. Neglecting
the correlations between any of our I epochs and assuming that
the variations on a given epoch are due to the time-dependent
magnification of the intrinsic flux density f i , the likelihood of
observing these data for a Gaussian process is given by the product

p
({fij }, {tij }

) =
I∏

i=1

det−1/2 (2πMi)

× exp

⎡
⎣−1

2

∑
jj ′

(
fij − f i

)
(Mi)

−1
jj ′

(
fij ′ − f i

)⎤⎦ , (1)

where Mi is the covariance matrix given by the sum of the
uncorrelated measurement noise and the matrix of the ACF values
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4374 H. Bignall et al.

Figure 1. Observed light curves of PKS B1322–110 , averaged over 0.5 GHz-wide bands near the bottom and top of our bandwidth. The error bars, mostly
too small to be seen, estimate the uncertainty of the mean. The points shown in semitransparent were discarded from the analysis.

MNRAS 487, 4372–4381 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/487/3/4372/5512609 by Auckland U
niversity of Technology user on 28 July 2019



Annual cycle of PKS B1322 4375

at the observed time lags ,

Mi jj ′ = δjj ′σ 2
ij + f

2
i Ki

(
tij − tij ′

)
. (2)

The autocorrelation functions Ki(�t) are unknown, but we will
assume that they derive from the same underlying K(�t) by an
epoch-dependent rescaling of its argument:

Ki(�t) = K(ri�t), i = 1, I . (3)

That assumption reflects the expectation that the variations are
statistically uniform in space with the rate varying only because
of the changing orbital velocity of the Earth. The likelihood of
equation (1) thus encodes information on the rates, ri, via the Bayes
theorem.

At the outset of our study it was unclear whether or not a Gaussian
process should provide a good description of the IDV phenomenon,
and our choice of model was driven mainly by the need for a method
that is both tractable and unbiased when the variability time-scales
are long. We will see later that our approach has proved only partially
successful.

In practice, the most computationally expensive part of evaluat-
ing equation (1) is calculating the determinant of M and the value
of the quadratic form in the argument of the exponent, given Ki.
Unless the kernel is chosen very carefully, with numerical efficiency
in mind, Bayesian inference is not computationally feasible even for
moderately sized data sets. Recently a fast algorithm, celerite,
was developed (Foreman-Mackey et al. 2017; see also Rybicki &
Press 1995) that can be used to compute the likelihoods in equation
(1) very efficiently for a class of kernels Ki(�t) represented by a
sum of exponentials with complex coefficients, of which we only
consider even functions:

K(�t) =
N∑

n=1

ane
−cn�t cos dn�t, an, cn, dn > 0. (4)

This form appears well matched to the damped oscillations seen in
the correlation functions of published IDV light curves (e.g Bignall
et al. 2003). We make use of the algorithm realized as a Python pack-
age, celerite, released with the Foreman-Mackey et al. (2017)
paper along with theemcee package (Foreman-Mackey et al. 2013)
for Markov Chain Monte Carlo (MCMC) implementation. We
experimented with the number of terms in equation (4) by running
the optimization code nlopt (Johnson 2010;1 Powell 20092) for a
fixed number of objective function evaluations and various N, and
compared them using the adjusted Akaike information criterion (e.g.
Maier 2013), which produced more consistent results compared
to similarly used Bayesian information criteria. In most cases the
optimum value turned out to be N = 1 and it was never above four;
moreover, the results for ri did not seem to be much affected if just
a single term was used. We thus settled on N = 1 in the MCMC
calculations.

Rather than a single light curve, we record thousands of spectral
channels, which all contain information on the rate of flux density
variation. However, neighbouring channels are not independent
with a decorrelation scale of a few GHz on most epochs, and
the likelihood of the entire data set would need to account for
correlations along the frequency axis by adding a pair of indices
in addition to j, j

′
in equation (1) – and thus greatly increasing the

dimensionality of the parameter space. This correlation structure

1http://ab-initio.mit.edu/nlopt
2http://www.damtp.cam.ac.uk/user/na/NA papers/NA2009 06.pdf

Figure 2. Absolute variation rates (Ri, from equation 5), versus day of
the year, at 5.5 GHz (the 10 GHz sub-band behaves very similarly– by
construction, they only differ in the normalization, as relative rates are
the same for both sub-bands). The open symbol shows our single epoch
of observation in 2018. Error bars extend over 68 per cent variation of the
MCMC samples; points mark the medians of the distributions. The dotted
line shows the prediction of a highly anisotropic model that associates the
scattering plasma with Spica (Walker et al. 2017) – specifically, assumes
that the plasma co-moves with the star while its anisotropy axis points at it
and the source has a brightness temperature of Tb = 1013 K.

is of little interest for the present work but adds substantial
computational expense. To use as much data as possible and at
the same time keep calculations practically feasible we extract two
light curves by frequency averaging the data near the edges of the
observed bandwidth, one centred at 5.5 GHz, the other at 10 GHz,
and replace equation (1) with a product of two such expressions,
one for each sub-band (which assumes that the two light curves are
not correlated). We use 0.5 GHz-wide intervals, the width where
the empirical uncertainty of the mean over the interval (which
includes both noise and real variations with frequency) approaches
the expected thermal noise in the interval. This value is ∼0.3 mJy
for both sub-bands, and we use the empirical uncertainty of the
mean as a measure of σ ij in equation (2). We use the arithmetic
mean of the light curve as an estimate of the intrinsic flux density,
f i = 〈fij 〉j , allowing for its variation from epoch to epoch as
appropriate for a compact flat spectrum source. We attempted to
explore the f i parameter space with the MCMC method but failed to
achieve convergence even after running the chains for several days –
presumably due to the significant dimensionality added. The factors
ri are the same for both light curves. As the likelihood is invariant to
scaling of all rates by the same factor while simultaneously scaling
cn, dn coefficients by its inverse, a reference rate is specified by
keeping r1 ≡ 1 in the code. There are therefore I − 1 + 2 ×
3 parameters (rates for I − 1 epochs relative to the first epoch
plus 3 model ACF parameters for each of 2 sub-bands), which
are all positive and assumed a priori distributed uniformly in log
between e−15 and e15, measured in d−1 for cn, dn, and dimensionless
otherwise.

Fig. 2 presents the inferred absolute rates, Ri, defined as the
inverse of the ACF half-width at half-maximum (HWHM):

Ri = 1

τi

= ri

τ
, where τ : K(τ ) = K(0)

2
. (5)

We choose to plot the scintillation rates rather than time-scales
because, for a one-dimensional model, the former are proportional
to a component of the effective velocity, v⊥

eff . As such the rates are
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expected to be a sinusoidal function of time, and the information
content of the data is readily perceived. In Section 4.3 we give a
qualitative analysis of the kinematic constraints that can be obtained
from our data; for now we note that the phase of the sinusoid reflects
the orientation of the plasma anisotropy, and the offset reflects the
corresponding component of the plasma velocity.

4 FI T T I N G TH E A N N UA L C Y C L E

4.1 Performance of the Walker et al. (2017) model

The dotted line in Fig. 2 shows the prediction of the Walker et al.
(2017) model in which the scattering plasma is co-moving with
Spica and highly anisotropic with its major axis pointing at the star;
it has no free parameters. The absolute rate of the variations,

R = v⊥
eff

a⊥
, (6)

is determined by the effective transverse velocity (Cordes & Rickett
1998),

veff = vscreen − v⊕, (7)

and a⊥, the HWHM of the ACF of the spatial structure of the
scintillation pattern.

Qualitatively, the model prediction appears broadly consistent
with the shape of the inferred variation rate, which depends on
the kinematics only, but appears slightly off in normalization – i.e.
the model value of a⊥ is too high. Walker et al. (2017) associate
the latter with the angular width of the source projected through
the screen, at distance Ds into the observer’s plane, assuming a
Gaussian source of peak brightness temperature Tb = 1013 K. The
ACF HWHM expected at the wavelength λ is then

a⊥ = λDs

√
f log 2

πkBTb

(8)

and Fig. 2 uses an average f i of 191 mJy resulting in a⊥ ≈ 2.26 ×
105 km for 5.5 GHz and (Spica) distance of 77 pc. In reality a⊥ is
also influenced by other aspects of the problem – the Fresnel scale
and the strength of the scattering, for example Goodman & Narayan
2006). However, apart from normalization, the model appears to
be consistent with the positions of standstills as well as both the
positions and relative amplitudes of the two peaks of the rate annual
curve.

In quantitative terms, the model presented by the dotted line in
Fig. 2 is a poor fit to the data; its χ2 computed from the numbers
in the figure is 101.4. As the fitting procedure treats the 17 rates
inferred in Section 3 as effective measurements (with associated
uncertainties) and the model it is compared to has not been fitted
to this data, the expected value of χ2 is 17, much lower than
measured. Treating a⊥ (estimated to be uncertain by ∼0.5 dex in
Walker et al. 2017), as an additional free parameter reduces the
discrepancy measure to 83.5, still much above the expectation of
16 = 17–1. Interestingly though, by varying all three parameters of
a one-dimensional model – a⊥, orientation of the plasma anisotropy
axis and plasma velocity relative to this axis, c.f. equation (9) and
immediately thereafter – the best fit one can achieve has a χ2 of
75.3, still far above the expected value of 14 = 17–1−2. Although
various interpretations are possible, this comparison suggests that
the error bars in Fig. 2 are underestimated because our statistical
model is not entirely adequate.

That would not be surprising, given that the Gaussian process
assumption and the chosen ACF parametrization were motivated
largely by a need for feasible computations.3 Although any rea-
sonable choice of the likelihood functional form would push the
model to some sort of match with the data, MCMC methods use
the likelihood ratios to decide how often a certain region of the
parameter space is to be explored, and the convergence dynamics
may be adversely affected by a poor statistical description. The
foregoing concerns about the statistical model are reinforced by
examination of our MCMC determinations of the scintillation rates
for the individual epochs. In Fig. 2 we can see examples where
consecutive days – D.o.Y. 81–82 and D.o.Y. 129–130 – yield
highly significant differences between the inferred rates despite
qualitatively similar light curves (Fig. 1). By contrast, no significant
difference is expected between consecutive days if the evolution
of the rates is purely of kinematic origin, as the Earth’s orbital
velocity changes only slightly from day to day. We also note
that epochs close to the expected standstills, where very low rates
are inferred, yield small fractional rate uncertainties, whereas we
expect fractional uncertainty of order unity because of sample
variance (less than one oscillation sampled within our observing
window). Rescaling the error bars by the square root of the 75.3:14
ratio of χ2 values (actual:expected) so as to bring the best-fitting
model reduced χ2 to unity makes the Walker et al. (2017) model
consistent with the data at better than 1 σ level. Fig. 4 illustrates the
effect of rescaling on consistency of rate estimates on consecutive
days.

4.2 Kinematic MCMC fitting

The least-squares analysis of the kind described in the previous
sub-section does not take into account correlations between the
rate estimates, which arise due to the dependence of the likeli-
hood (equation 1) on the global parameters of the ACF model as
well as the individual ri. It is therefore most appropriate to fit the
kinematic model directly to the light curves by substituting ri =
R(ti)/R(t1) with absolute rates Ri given by equation (6) and running
the MCMC code on the parameter space of the kinematic model.

For a highly anisotropic plasma screen, the expected variation
rate is proportional to the (absolute value of the) component of
transverse effective velocity across the anisotropy axis,

a⊥Ri = ∣∣veff (ti)ê⊥∣∣ = ∣∣v⊥
screen − v⊕(ti) sin [PA⊕(ti) − PA]

∣∣ . (9)

The parameter space of our kinematic model is thus two-
dimensional, spanned by the position angle of the anisotropy axis,
PA, and the component of the screen velocity orthogonal to that
axis, v⊥

screen. The velocity component parallel to the anisotropy axis
does not affect rates for the one-dimensional model and cannot be
constrained. It is convenient to keep v⊥

screen non-negative with PA ∈
[0, 2π ), such that

ê⊥ ≡ êDec cos
(

PA + π

2

)
+ êRA sin

(
PA + π

2

)
(10)

and vscreen make an acute angle:

v⊥
screen ≡ (

ê⊥ · vscreen

) ≥ 0. (11)

We calculate the Earth barycentric velocity transverse to the line of
sight using the get body barycentric() function of the as-
tropy.coordinates package (Astropy Collaboration 2018).

3Unfortunately we are at present unable to suggest any better statistical
models.
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Figure 3. Posterior distribution of the parameters of the anisotropic
scattering screen. Colours represent the confidence intervals of the MCMC
posterior distribution, as described in Section 4.2, around its densest point,
marked with a cross. Contour lines show the results of χ2 fitting to the rate
estimates shown in Fig. 2 (ignoring correlations between those estimates),
as described in Section 4.1. Contours are drawn at the levels marked in the
colour bar, which correspond to the standard 1, 2, and 3σ levels of a 1D
Gaussian distribution. Solid contours show χ2 computed using the rates
with unscaled error bars (as shown in Fig. 2); dotted contours show χ2

computed using the rates with error bars scaled up by a factor of 2.32 (as
shown in Fig. 4), which correspond to a minimum χ2 of 14. The location
of the minimum is marked with a plus. The star corresponds to the model
of Walker et al. (2017) that attributes scattering to radial plasma filaments
co-moving with Spica; the model is near the 2σ contour of the MCMC and
unscaled χ2 analysis, and not significantly different from the best χ2 fit if
error bars are inflated.

To handle the non-trivial topology of the PA domain in the MCMC
exploration, technically we reparametrize the problem,

v⊥
screen, PA → x, y :

(
x

y

)
= v⊥

screen

(
cos PA
sin PA

)
, (12)

The priors on x, y are flat within ±300 km s−1. The MCMC
implementation is otherwise the same as for the rate estimates.

Fig. 3 presents the results of this modelling, reparametrized back
to the (v⊥

screen, PA) space. The maximum density of the samples,
represented as shades, is formally achieved near (v⊥

screen, PA) ≈
(11.2 km s−1, 151◦), but an extended region of the parameter space
is consistent with the data. In particular, the position of the
Walker et al. (2017) model, (v⊥

screen, PA) ≈ (16.8 km s−1, 177◦), is
consistent with the data at just inside the 2σ level. Also marked
at (v⊥

screen, PA) ≈ (9.5 km s−1, 144◦) is the model that minimizes
the χ2 difference between the kinematic model and the rates as
shown in Fig. 2. Solid lines show the confidence intervals of this
χ2 statistic, whereas light dotted lines are the same levels after
rescaling the error bars so as to bring the reduced χ2 of the best fit to
unity.

A word of caution concerning the kinematic fitting is that
our Markov Chains could not achieve convergence, as judged
by the conventional heuristics (Hogg & Foreman-Mackey 2017).
However, we do not observe any indications of unusual behaviour
of the emcee walkers, nor do we see significant multimodality of
the posterior distribution. Why the autocorrelation time estimates
continue to rise almost linearly with the chain length is not clear; one
possibility is an inadequacy of the statistical model, as discussed
above. As a result, we are not certain which set of lines or

Figure 4. Annual cycles of the variation rate for the three models marked
in Fig. 3 compared to the values inferred in Section 3 (with inflated error
bars). Despite considerable difference in the input parameters, particularly
in the orientation of the anisotropy, the differences in the predicted curves
are small and, for these error bars, not significant.

shades in Fig. 3 best represents our uncertainty about the kinematic
parameters of the scattering plasma, but it is clear that this region
extends over a large range of position angles.

Fig. 4 partly explains the significant extent of this region
by showing the performance of the three models pinpointed in
Fig. 3 in fitting the variation rates inferred from the light curves.
Qualitatively, the three model curves perform similarly well and
appear hardly distinguishable given the quality of constraints
presented.

4.3 Qualitative analysis

We will now explain the origin of the degeneracy in the kinematic
parameters seen in Fig. 3, see what inferences can be drawn directly
from the rate curve and describe how the annual cycle can be
analysed qualitatively.

4.3.1 Hodograph

In this section we will extensively use the hodograph of the velocity
vector, which is the locus of the terminal points of a variable vector
as its initial point is held fixed. In particular, the top panel of Fig. 5
plots the hodograph of the component v⊕ of the Earth velocity that is
transverse to the line of sight to PKS B1322–110 . Roman numerals
along the curve mark the start of the corresponding months. The
hodograph is, to a high accuracy, an ellipse, and the low-ecliptic
latitude of PKS B1322–110 (it is just 2

◦
below the ecliptic plane)

gives the hodograph its highly elongated shape.
According to equation (7), the effective velocity veff on a partic-

ular date is given by the vector from the corresponding point on the
hodograph curve to a fixed point in the plot, the transverse velocity
of the screen, vscreen. As an example, Fig. 5 shows the transverse
velocity of Spica with an open star symbol. For highly anisotropic
scattering, only one component of the effective velocity affects the
rate of scintillation, the component v⊥

eff orthogonal to the major axis
of the illumination pattern at a position angle of PA. Geometrically,
this component is equal to the distance between the respective point
on the hodograph curve and the straight line that passes through
vscreen and has the position angle of the pattern anisotropy axis. In
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Figure 5. (Top) Hodograph of the Earth orbital velocity transverse to
the direction to PKS B1322–110 . Roman numerals mark the beginning
of respective months. The effective velocity veff is given by the vector
from the point on the hodograph to the transverse velocity of the screen
(shown with an open star for Spica). In highly anisotropic scattering, the
scintillation rate depends on the component v⊥

eff orthogonal to the anisotropy
axis (shown with a dotted line for PKS B1322–110 -Spica orientation).
(Bottom) The hodograph displaying the location of standstills and extrema
of the rate from Fig. 2 along with the observation dates. The successful
kinematic model should pass through the uncertainty intervals of both
standstills on the hodograph as well as a shaded region inside the curve,
representing the constraint (equation 17) from the extrema. Also shown
are the three kinematic models marked in Fig. 3; all do a reasonable job
reproducing standstills, but struggle somewhat to fit the observed extremal
rates.

contrast, the effective velocity component along this line has no
bearing on the scintillation time-scales; conversely, this component
cannot be deduced from the annual cycle analysis. Hence, the screen
transverse velocity implied by the annual cycle can lie anywhere
along this line and therefore the line itself represents the kinematic
model,

vscreen · ê⊥ = v⊥
screen. (13)

Its two parameters are the position angle PA and distance from
the origin, v⊥

screen, with an n × π ambiguity in the direction of the
major axis resolved by equation (11), such that v⊥

screen ≥ 0. Line
representation is useful for qualitative analysis of the most salient
features of the rate curve – the position of its standstills (where
present), and the positions and relative magnitudes of the rate local
maxima. They have a very simple interpretation on the hodograph
plot: the standstills are the intersections of the hodograph with the

model line (so that the rate proportional to v⊥
eff is zero), and at the

extrema the hodograph tangents are parallel to the line (so that the
line-hodograph distance is stationary). The bottom panel of Fig. 5
shows lines representing the three kinematic models identified in
Fig. 3.

An alternative – and more compact – representation of the
kinematic model is by the end point of the vector

v⊥
screen ≡ v⊥

screenê⊥, (14)

(which is �≡ vscreen, and neither to v⊥
screen as it also depends on

the orientation of the anisotropy axis); a filled star in Fig. 5
marks v⊥

screen of the Walker et al. (2017) model. While less natural
for qualitative analysis, this representation is convenient when
considering multiple models simultaneously – e.g. when comparing
them or representing uncertainty regions, which are difficult to
visualize unambiguously for sets of straight lines.

4.3.2 Standstills

If the annual curve contains standstills, where the rate drops to
zero, accurate knowledge of their positions is sufficient to determine
PA and v⊥

screen with no input from variable epochs. Since the rate
is given by the distance from the point on the hodograph to the
straight line representing the kinematic model (PA, v⊥

screen), this
distance should be zero at standstill – i.e. the line should pass
through the standstill. This is also true of the second standstill, and
the two therefore completely define the kinematic model. Formally,
by requiring equation (9) to vanish, one obtains a sinusoid in the
(v⊥

screen, PA) plane,

v⊥
screen = vstand

⊕ sin
(
PAstand

⊕ − PA
)
, (15)

where vstand
⊕ , PAstand

⊕ are the magnitude and position angle of the
Earth transverse velocity at the time of the standstill, both known.
In the v⊥

screen representation, the condition is

vstand
⊕ · ê⊥ = v⊥

screen ⇔ (
vstand

⊕ · ê⊥) ê⊥ = v⊥
screen (16)

– i.e. that v⊥
screen is an orthogonal projection of vstand

⊕ ; the locus of
such v⊥

screen is a circle of which vstand
⊕ is a diameter. The full solution is

obtained by locating the intersection of the two standstill sinusoids(
v⊥

screen, PA
)

or circles
(
v⊥

screen

)
.

In practice, the position of a standstill is known with some
uncertainty due to gaps in variability monitoring. In fact, it is not
possible to know for sure if an observed lull in fluctuations is due
to the Earth being stationary with respect to the structure in the
flux distribution, or because the flux distribution happens to have a
locally flat area there. This replaces a pair of points on the hodograph
track with a pair of uncertainty regions that contain the standstills,
and any line passing through both regions is a potential solution.
Likewise, the constraint lines in the parameter planes are replaced
by sinusoidal

(
v⊥

screen, PA
)

or circular
(
v⊥

screen

)
bands of non-zero

(and varying) width.
Generally, the further apart the two uncertainty regions in

the hodograph, the better constrained the position angle and the
orthogonal component of the screen velocity are. However, the
case in Fig. 5 seems to be closer to the other extreme, with the
kinematic parameters quite uncertain. Looking at the light curves
in Fig. 1 and inferred rates in Fig. 2 one might argue that the
standstills are observed around D.o.Y. 240 ± 15 (in particular,
the light curve on D.o.Y. 242 seems featureless in both sub-
bands) and D.o.Y. 350 ± 15, as highlighted in the bottom panel
of Fig. 5. Because of the low-ecliptic latitude of PKS B1322–110

MNRAS 487, 4372–4381 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/487/3/4372/5512609 by Auckland U
niversity of Technology user on 28 July 2019



Annual cycle of PKS B1322 4379

the hodograph is tightly squeezed in the latitudinal direction and the
two uncertainty regions are quite close to each other. As a result,
the position angle of the line passing through these constraints can
be anywhere from ∼120

◦
to 290

◦
(N → E) and its distance from

the origin similarly varies from �3 to �22 km s−1.
We note that the configuration of the standstill seasons ob-

served in PKS B1322–110 is close to as bad as it gets in this
sense. A different arrangement could, in principle, have been
much better constraining, but in practice one is less likely to
obtain a favourable configuration for a source that has low-ecliptic
latitude. One can typically expect much better constraints from
standstills in the annual cycles of IDVs that are far from the ecliptic
plane.

4.3.3 Extrema

Another easily interpretable trait of rate cycles, whether displaying
standstills or not, is the timing and relative magnitude of the
local extrema. For a one-dimensional model, the tangents to the
hodograph at the extrema positions are parallel to the anisotropy
axis; to a very high accuracy, they should be opposite to each other
in the hodograph (and very close to half a year apart in the rate
curve). The relative magnitudes of the rate extrema in turn require
the kinematic constraint line to pass through a point vr on the line
connecting extrema positions vext

⊕,1,2, whose distances to the two
points are in the same ratio as the respective extremal rates, r1,2.
There are two such points, one in between the extrema positions
and the other behind the extremum vext

⊕,1 of smaller magnitude
r1:

vr = vext
⊕,1(1 − q) + vext

⊕,2q, q = ± 1
r2
r1

± 1
, r1 < r2; (17)

only the in-between case (+) is consistent with cycles displaying
standstills for a one-dimensional model.

The requirement that the constraint line passes through this point

vr · ê⊥ = v⊥
screen, (18)

represents a circle of diameter vr in the v⊥
screen space, or a sinusoid,

v⊥
screen = vr sin (PAr − PA) , (19)

in the (PA, v⊥
screen) space. In the Solar system barycentre frame we

expect vext
⊕,1 ≈ −vext

⊕,2 very accurately, hence

vr ≈ vext
⊕,1(1 − 2q) ⇔ vr ≈ vext

⊕,1

r2 ∓ r1

r2 ± r1
, PAr ≈ PAext

1 ; (20)

the upper sign is to be taken for cycles with standstills.
Similarly to the standstill constraints, uncertainties in the mea-

sured positions and relative magnitudes of the extrema blur the
location of the point through which the kinematic constraint line
should pass. Fig. 2 suggests that the extrema are located around
D.o.Y. 290 ± 20 and D.o.Y. 100+30

−50, with the latter particularly
uncertain, and the ratio of the extremal rates is about 3+2

−1. The
constraint that corresponds to these estimates is shown in Fig. 5
as a shaded region inside the hodograph of the Earth’s transverse
velocity, and provides an upper limit on the magnitude of v⊥

screen as
well as a sign of its projection on the ecliptic plane. On the other
hand, the extrema themselves are located near the ‘pointy’ ends of
the hodograph, where the position angle of the tangent line makes
effectively a full swing rendering the inference of PA unreliable.
Similarly to the case of standstills, this is partly due to the low-
ecliptic latitude of PKS B1322–110 .

The standstill and extrema constraints are not automatically
consistent but they have to be so for a one-dimensional scattering
model, which might help identify the limits of its applicability to the
data. For more general anisotropy the situation can be quite different
– for example, standstills are not generally expected in such models,
as that would require the two components of the effective velocity
to vanish simultaneously. Likewise, the extrema are not generally
expected to lie on the opposite sides of the hodograph, with a
six month separation. The analysis of the more general case goes
beyond the scope of this paper.

5 D ISCUSSION

As is clear from the qualitative analysis of the hodograph, accurate
knowledge of two standstill positions is sufficient to uniquely
determine the two kinematic parameters of the totally anisotropic
scattering model. However, near standstills the scintillation rate is
difficult to constrain via traditional ACF estimation methods, and
that was part of the motivation for our Bayesian analysis. For any
cycle displaying standstills, it is therefore highly desirable to obtain
good coverage near the standstill epochs to pin down the timing as
tightly as possible. That is not practicable in the first monitoring
season because the standstill positions are initially unknown, but
becomes easier in subsequent years; we are currently obtaining
such data for PKS B1322–110 .

In this paper we have mostly concerned ourselves with the analy-
sis of the shape of the annual cycle, while paying comparatively little
attention to its absolute scale. The latter, however, is of interest in
connection with the distance to the scattering screen. The prescrip-
tion used by Walker et al. (2017) associates the spatial scale of the
scintillation pattern with the source angular size multiplied by the
screen distance. In the case of PKS B1322–110 , and a screen placed
at the distance of Spica, that prescription matched the value fit for
the same (v⊥

screen, PA) to better than 10 per cent although, given the
simplicity of the prescription Walker et al. (2017) suggested likely
errors of 0.25 dex, this match must be considered a coincidence. One
thing to bear in mind is that although specific assumptions about
the character of the scattering plasma – conventionally, a Gaussian
random field with a power-law spectrum of density inhomogeneities
– allows one to calculate a precise value of the HWHM of the
ACF of the scintillation pattern as a function of screen distance,
pinning down the appropriate values of those parameters is not
easy, and the unknown source structure (frequency-dependent size
and shape) always remains a part of the mix. Indeed, the screen
distance estimates obtained by such detailed modelling for the three
best-studied IDVs (PKS 0405–385, J1819+3845, and PKS 1257–
326) have uncertainties of a factor of a few, and might vary by an
order of magnitude between different models (Dennett-Thorpe & de
Bruyn 2000; Rickett, Kedziora-Chudczer & Jauncey 2002; Bignall
et al. 2006; Macquart & de Bruyn 2006, 2007). Furthermore,
theoretical models often assume the scattering to be isotropic (e.g.
Goodman & Narayan 2006), and are thus not applicable to the
present data for which the shape of the annual cycle indicates strong
anisotropy; a similar resource for anisotropic plasma would be
valuable.

5.1 Does Spica host the scattering plasma?

One of our main interests in following the scintillations of
PKS B1322–110 over the last year was the possibility of testing the
suggestion of Walker et al. (2017) that the structures responsible
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for IDV are associated with foreground, hot stars. We have already
shown (Section 4) that our data are consistent with that model,
but that could be a fortuitous agreement arising in the context
of a completely different model, and it is useful to evaluate the
probability of such a coincidence. To do that we need to construct
a statistical model for the distribution of the relevant parameters
– position angle and perpendicular velocity – of the population of
blobs of scattering plasma. Our adopted model is this: isotropic
distribution of plasma microstructure orientation, and an isotropic
Gaussian distribution of the transverse velocity components. These
properties are generic to a large class of models, and as such are
reasonable assumptions. To fully specify the prior we need, in
addition, a value of the dispersion of the velocity distribution. Rather
than making an ad hoc assumption, we note that very small and very
large values of the velocity dispersion would both yield vanishingly
small probabilities of obtaining our results by chance. We therefore
proceed by determining the value of the velocity dispersion that
maximizes the chances of a coincidence, so that the probability we
obtain is an upper limit.

To compute that limit we integrate the probability distribution
of our prior over the region of parameter space that matches our
data at least as well as the Walker et al. (2017) prediction (Fig. 4).
Doing so we find a probability of 0.0051 (at a velocity dispersion
of 13.0 km s−1), if the MCMC kinematic distribution is used to
measure the quality of fit. If, on the other hand, we use the χ2

results then the probability is 0.0073 (at a velocity dispersion of
11.9 km s−1). Therefore we could indeed have obtained the observed
agreement by chance, but the likelihood of doing so is less than
1 per cent. That figure is small enough to conclude that our data
support the Walker et al. (2017) model, but not small enough to put
it beyond doubt.

6 C O N C L U S I O N S

Monitoring of PKS B1322–110 has revealed a strong annual cycle
in the rate of its scintillations. The cycle, which appears to include
two standstills, is consistent with a highly anisotropic model of the
scattering plasma. Quantifying the time-scale of the scintillations
is challenging because it is often comparable to, and sometimes
much larger than, the extent of the observing window. Using the
celerite MCMC package we evaluated the scintillation rate
for each epoch, by determining a scaling factor for a temporal
autocorrelation function whose shape is assumed constant over the
year. The rates determined in this way exhibit highly significant
differences between consecutive days, whereas the Earth’s orbital
velocity hardly changes at all, and we conclude that our statistical
model underestimates the uncertainties. To bring the reduced χ2 of
the best-fitting model to unity, we needed to increase the error bars
on the rates by a factor of 2.3.

Although our data for PKS B1322–110 prefer a model in
which the plasma microstructure points ∼30

◦
away from Spica, the

preference is weak, and a radial orientation – as suggested by Walker
et al. (2017) – is included in the 68 per cent confidence interval for
the χ2 surface (after rescaling the error bars on the rates). The
very broad angular distribution of the acceptable kinematic models
is understood as a direct consequence of the low-ecliptic latitude
(−2

◦
) of PKS B1322–110 , which makes the shape of the annual

cycle insensitive to microstructure orientation.
Despite the large uncertainty in the position angle of the plasma

filaments, the relatively narrow range of preferred velocities at each
orientation means that we have a one-dimensional constraint region

in a two-dimensional space. Making use of a generic, isotropic prior
for the statistics of the kinematics of the scattering material, we find
a 1 per cent probability of discovering, by chance, a screen whose
properties are at least as close to the data as those of the Walker
et al. (2017) prediction. Our data thus provide some support for that
model.
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