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Research Aims

� Create a robust algorithm for solving the NPMLE problem

� One that is fastest in all circumstances

Hierarchical Constrained Newton Method (HCNM)
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Survival Analysis

� Time to event data

� Want to model the distribution of
times to ‘failure’

� Interested in the survival function,
S(t) = P(T > t)

� Example: Time to healing
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Censoring

� Time of event may not be directly measurable

� Check periodically to see if it has occurred

� Example: healing occurred some time between doctor visits

� The event may never occur for some subjects

� Example: end of study or“lost to followup”
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Interval Censoring

� Event times are not known exactly, only within intervals

� Perhaps no event time is observed exactly

� Interval censored: event occurred somewhere in (tL, tR ]

� Right censored: (tL,∞)

� Left censored: (0, tR ]

� Exact observation: event occurred at time t

� Call these intervals Oi for i = 1, . . . , n
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Why Nonparametric?

� Let the data speak for itself

� Don’t make assumptions about the distribution

� Maximise the likelihood

� Explore the data before choosing a parametric model
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The NPMLE Survival Function with
Interval Censored Data

� Partition the positive real line

� All unique values of tL and tR

� Potential support intervals

� Only use maximal cliques

� Support set: Ij for j = 1, . . . ,m

� The clique matrix An×m gives δij

membership of each Oi in each Ij

� NPMLE assigns probability mass to
each support interval

Example Censor Intervals
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Likelihood Function for the NPMLE

� Likelihood of an interval (t1, t2] is S(t1)− S(t2)

� Assign probability pj to support interval Ij

� Probability of observation Oi using A and p

� Take logs and add them up

� Goal: find p̂ ∈ Rm to maximise `(p̂)

� Subject to: p̂ ≥ 0 and p̂T1 = 1
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Honey as Adjuvant Leg Ulcer Therapy (HALT)

� Randomised Clinical Trial, 368 participants

� Clinical Trials Research Unit in Auckland

� Effect of Manuka Honey dressings for treatment of leg ulcers

� Participants assessed weekly and also at a 12-week follow-up

� Nurse changes dressing and assesses healing status

� Event times cannot be observed exactly

� Thanks to Andrew Jull and Varsha Parag of CTRU for
providing the data
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Existing Algorithms for finding the NPMLE

� The Icens package in R provides five algorithms:

� EM, ISDM, EMICM, VEM and PGM

� Subspace-based Newton method (Dümbgen et al. 2006)

� Wang (2008) introduced:

� Constrained Newton Method
� Dimension-reduced approach to improve any algorithm
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Times to compute the NPMLE survival function for 100 Bootstrap
samples of the HALT data using:

� EMICM, PGM and VEM from the
Icens package

� Methods SBN(DR) and
EMICM(DR) from Wang (2008)

� The new HCNM algorithm (and
CNM)

Time (s)

EMICM 113.03
PGM 791.00
VEM 610.42

SBN(DR) 14.34
EMICM(DR) 26.93

HCNM 9.41
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Problems with Existing Algorithms

� Some are very slow and may fail to converge

� No algorithm outperforms the others in all situations

� Inefficent use of Hessian matrix or gradient

� Best choice depends on size of dataset and proportion of
exact observations
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Constrained Newton Method

� Calculates gradient S of `(p) at current estimate p

� Makes use of mixture structure of solution

� Uses NNLS to find new estimate of p

� Computation time of NNLS is of order O(nm2)

� Very fast for fully censored datasets

� Can be slow in cases with many exact observations
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Hierarchical CNM

� Uses a divide and conquer approach

� Breaks the support set up into blocks

� Adapts to the data to make efficient use of Hessian

� Examines data to choose number/size of blocks

� Solves each block using NNLS

� Globally reallocates probability among blocks, calling itself
recursively

� Guaranteed convergence to the solution
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Heatmap of HALT Hessian
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Conclusions

� Where Interval Censoring is present in survival data, it can be
allowed for in the analysis.

� The NPMLE Survival Function combined with Bootstrap
methods can create an informative picture of survival
progression in such cases.

� The HCNM algorithm provides a fast and robust solution to
this problem.
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