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Abstract

Currently, the world is witnessing a mounting avalanche of data due to the tremend-

ous growth of the Information and Communications Technologies (ICT). This trend is

continuing to develop in a quick and diverse manner in the form of big data, which is

emerging as one of the most powerful technological drivers to improve productivity

and support innovation for humanity. But it also gives a non-negligible contribution to

world electricity consumption and carbon dioxide (CO2) footprint as well as their con-

sequences on climate change, which are urgently calling for energy efficient solutions.

Lots of research and development efforts have emphasized on studying energy effi-

ciency metrics, because these metrics are measures and indicators of energy efficiency.

Understanding those metrics provides us a better view on how energy efficiency can be

achieved at every corner, e.g., process, component, equipment, service, application and

network/system level, of an ICT system/network.

From our observation, the energy efficiency metrics in ICT area are conventionally

introduced according to the physical-thermodynamic definition, and the measure of

the ICT-based output in physical unit is the number of bits of the data sequence. The

problem emerges when using physical measurements of data sequence, because it

only measures the quantity of bits, and does not necessarily factor in data quality

considerations. In other words, the metric is not making any distinction between

low and higher quality data sequences. From this basis, it could consequently argue

that the data, when measured in physical amount, cannot be added up or compared
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because it has different qualities. The data quality ignorance is therefore a fundamental

problem in constructing conceptually sound ICT related energy efficiency metrics. This

insight led to the new development of data quality-aware energy efficiency metrics for

more efficient network/system approaches and mechanisms which can be reconfigured

depending on the difference level of data quality.

This thesis selects data processing and storage as an example from the life cycle of

big data. It is proposed that before data processing and storage, the value of data quality

is calculated and prioritized according to the calculation formula of data quality. First,

the concept of data quality classification is proposed, and specific calculation formulas

are given from the aspects of data integrity, consistency, and timeliness.

Secondly, on the premise of data priority determination, an energy-saving schedul-

ing algorithm based on data quality (DQ-TSA) and an energy-saving storage algorithm

based on data quality (DQ-HSA) are proposed.

Finally, the two algorithms are extended and implemented on the simulation

platform Cloudsim, and to verify that whether the concept of pre-graded data quality

can help the data center energy efficiency.
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Chapter 1

Introduction

1.1 Introduction

There are four sections in the first chapter of this thesis. In the first two parts,

the background and motivation of this thesis are introduced respectively. Nowadays,

people’s lives are surrounded by a lot of data. A lot of research has focused on how to

deal with large amounts of data and big data. Indicators that determine whether the data

itself is valid and effective are rarely studied, and the energy consumption indicators

of the electronic devices/methods that collect/process the data are not clearly defined.

This thesis will study the correlation between the quality problem of data itself and the

energy consumption index and propose to develop new index to measure the energy

efficiency of different data, which brings a new measurement perspective and potential

for solving the energy efficiency problem in the emerging era of big data. Finally, we

will present an overview of the structure of this thesis in section 4.
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1.2 Background

Cloud computing, Internet of things, social network and other emerging services

promote the data type and scale of human society to increase at an unprecedented

speed. Data is transformed from a simple processing object into a basic resource

(Manyika et al., 2011). In 2002 there were 5 EB(1EB = 1018Byte) of data on all

the world’s print and film collections, an order of magnitude equivalent to the 37,000

books in the U.S. library of congress. It was estimated that the entire human history

could be stored in just 12 exabytes. By 2007 it had reached 24 exabytes, by 2011 it

had reached 1.4ZB(1ZB = 1021Byte), by 2013 it had reached 4.4ZB, and by 2015

it had generated more data than the previous 5,000 years combined to reach 8.6 ZB

(Majidpour & Hasanzadeh, 2020). According to Gantz and Reinsel (2012) that in the

past decade, emerging markets have increased their share in the expanding data world

from one third to nearly 70%, marking the official arrival of the era of big data (Gantz

& Reinsel, 2012). By 2020, International Data Corporation (IDC) predicts, the data will

be 44ZB, which some have calculated is 57 times the size of all the sand grains on all

the beaches on earth (Majidpour & Hasanzadeh, 2020). Big data contains great value

and has important strategic significance for social, economic, scientific research and

other aspects, providing people with unprecedented wealth of knowledge for deeper

perception, understanding and control of the physical world. Therefore, researches

related to big data have attracted widespread attention in various industries around the

world. Many developed countries have formulated and launched big data research plans

and invested a lot of funds to support big data research.

At the same time, in order to meet the problems of massive data, high concurrency,

rapid response and scalability of big data applications, the construction of cloud data

center also presents the trend of scale development. The proportion of data centers

with more than 100 racks is increasing year by year, reaching 60% in 2016. Energy
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consumption become the biggest expenses, data processing center in 2010, the global

total data center power consumption is 235.5 billion KWH, accounts for about 1.3% of

global electricity consumption in the United States, the proportion of electricity data

center is more high, according to the U.S. environmental protection agency in 2011, a

report on the data center, according to the United States all of the data center energy

consumption accounted for 2% of the total power grid, and it also shows the tendency of

doubling every five years. Such rising energy consumption indirectly causes greenhouse

gas emissions, global warming and other problems.

1.3 Motivation

With the gradual reduction of non-renewable resources and the worsening of

the natural environment in which we live, people have realized the importance of

saving energy. Since the energy consumption of cloud data center is huge and the

energy utilization efficiency is low, it is natural to improve the effective utilization of

resources and reduce the overall energy consumption of cloud data center to become the

mainstream direction of data center construction. In fact, in addition to the high energy

and resource consumption in the data processing phase, a large amount of resources

and energy will be consumed in the whole life cycle of data, such as data generation,

collection, transmission and storage (as Figure 1.1).

Especially with the rapid development of Internet of things technology, in order to

better provide high-quality services for human life, it is inevitable to use a large number

of Internet of things devices to collect data (Wu, Guo, Huang, Liu & Xiang, 2018).

The purpose of this thesis is to discuss the relationship between data quality and

energy consumption from the perspective of how to measure data quality. Then evaluate

the priority of the data based on the data quality. And, follow the principle that the

higher the priority, the better the resources, and match the corresponding processing



Chapter 1. Introduction 4

Figure 1.1: A Big Data Life Cycle

methods to achieve the purpose of energy saving in the data center.

1.4 Contribution

This thesis focuses on the relationship between data quality and energy consump-

tion, and solves the problem of data center energy consumption from the perspective of

data pre-grading.

First of all, with the continuous development of the information society, inform-

ation systems are filled with massive, multi-structured, and multi-dimensional data

resources. The value of big data has been fully recognized by society. How to tap the

value of data has become one of the most concerned applications in various research

fields and industries. Whether the data is garbage or treasure, the most important

question is whether the data to be analyzed is of high quality. A low-quality data source

will not only fail to reflect the value of the data, but may also run counter to the actual

situation, but has a side effect. This article summarizes the dimensions of data integrity,

timeliness, consistency, and accuracy by studying the literature about data quality in the

past, except for the measurement methods of data quality indicators.

Secondly, the existing literature shows that most of the research on reducing energy
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consumption in data centers focuses on optimizing the performance of data scheduling

algorithms. In this paper, prior to data scheduling or storage, data priority is determined

based on the quality of the data. Under this premise, an energy-saving scheduling

algorithm (DQ-TSA) based on data quality and an energy-saving storage algorithm

based on data quality (DQ-HSA) are proposed. After the experiment on the simulation

platform Cloudsim, the results show that the two algorithms based on data priority,

compared with traditional algorithms, have better performance in energy consumption

and time.

1.5 Thesis structure

The thesis is structured as follows:

Figure 1.2: Thesis Structure

In chapter 2, the development trend of social big data is introduced in detail, and

the relationship between the Internet and energy consumption is researched. In addition,

the concept of data quality measurement is proposed based on the existing literature.
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In addition, several existing simulation platforms were studied, and simulation tools

suitable for this paper were selected.

In Chapters 3 and 4, the simulation tools mentioned in Chapter 2 will be used

to implement the algorithm we introduced. In addition, the experimental results and

conclusions will be explained in detail with the support of tables and figures. The

limitations of the project will also be resolved.



Chapter 2

Literature Review

2.1 Introduction

With the increasing popularity of the Internet and related applications, more and

more data are generated and analyzed. With the rapid development of Internet of things

technology, the generation of big data from sensors, cameras and other available data

sources has created great pressure on existing data devices. From the perspective of the

whole life cycle of big data, the generation, transmission, calculation and storage of

data will bring energy consumption.

In response to these problems, there have been many studies in previous work that

have investigated deeply about how to deal with data growth, the correlation between

data (Morley, Widdicks & Hazas, 2018) , energy efficiency and the quality of data (Wu

et al., 2018).

7
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2.2 Big data

2.2.1 Definition of big data

Big data is also a kind of data. The difference between it and data is not only

the most basic volume, but also other differences. The following Figure2.1 reveals

the relationship between data, information, knowledge and wisdom (Bihl, Young II &

Weckman, 2016).

Figure 2.1: DIKW modle

Data is the result of facts or observations, the logical induction of objective things,

and the raw material used to represent objective things. It is an identifiable, abstract

symbol. In general, data is contained and Shared by four storage media: print, film,

magnetism, and optics (Lyman, 2003). Therefore, it not only refers to Numbers in

a narrow sense, but also refers to the combination of characters, letters, numerical

symbols, graphics, images, videos, audio and so on, which have certain meanings. It is

also an abstract representation of the attributes, quantities, positions and their mutual

relations of objective things. For example, "0, 1, 2...", "Yin, rain, fall, temperature",

"students’ records, the transport of goods" and so on are data.However, the data itself

does not represent any potential meaning until it has been processed. Only when the

data needs to be organized and analyzed in a certain way can the significance of the data
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be shown, thus evolving into relevant information, knowledge and wisdom (Salzmann,

2000). The DIKW model is a good model to help us understand the relationship between

Data, Information, Knowledge, and Wisdom. It also shows us how Data is transformed

into Information, Knowledge, and even Wisdom step by step, as Figure 2.1 (Bihl et al.,

2016).

Big data itself is an abstract concept. Literally, it means data on a large scale.But

only large data quantity huge apparently unable to see what is the difference between

this concept and past definition such as "massive data", "very large data". Big data

is not yet an accepted definition, Mayer-Schönberger and Cukier (2013) definition of

big data is straightforward: big data refers to the use of commonly used software tools

to capture, manage, and process data are time consuming more than can tolerate time

data sets. The definition of the different basic characteristics from large data, according

to these characteristics and inductive trying to gives its definition, in these definitions,

the more representative is 3V is defined, which is to think big data to meet the three

features: volume, variety and velocity. In addition, a definition of 4V is proposed, that

is, an attempt to add a new feature to 3V (Takaishi, Nishiyama, Kato & Miura, 2014).

International Data Corporation (IDC) think big data shall also have the value, the value

of big data often presents the sparse sexual characteristics, and IBM think big data must

have veracity. This veracity is not only reflected in the real reaction to the objective

things, but also reflected in the response to the wholeness of the cognitive objects.

Microsoft believes that it has the Value of valuable content (Kambatla, Kollias, Kumar

& Grama, 2014). Big data reflects the integrity of data records. This completeness not

only records a large number of rare events, but also results in the correlation between

data that cannot be represented by local data due to the integrity of the data, which

will lead to the emergence of new valuable events. Other scholars believe that it has

the value of Vitality. Big data records and provides information continuously and

comprehensively, so it can meet customers’ flexible demands for information content.
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These definitions show that big data is a true reflection of the complete set of

information in the objective world. The accuracy of big data analysis and processing is

very important for all walks of life, and it can bring more valuable information to the

society than oil. Therefore, big data is not only huge and complex, but also contains the

meaning of "big" in terms of internal capacity and value.

2.2.2 Research status of big data

Toffler and Alvin (1980) first proposed the concept of "big data". In their book

"the third wave", they predicted that the third wave of social memory would not only

increase in number, but also infuse human memory with life. Big data has been called

the third wave of brilliance.

Azevedo and Santos (2008) pointed that knowledge discovery in databases (KDD)

was coined by Fayyad, Piatetsky-Shapiro and Smyth in 1989. In addition, Fayyad,

Piatetsky-Shapiro and Smyth (1996) proposed that the process of knowledge discovery

in the database is to identify novel, effective, potentially useful and understandable

patterns from a large number of data sets, and pointed out that knowledge discovery is

a high-level process to find such patterns. Many people regard knowledge discovery

and data mining as equivalent concepts. Knowledge discovery is a common term in the

field of artificial intelligence, while the field of database is called data mining.

The title of data scientist was first mentioned by Natahn Yau in 2009, who believed

that a data scientist is a person who can extract data from a large data set and provide

something that can be used by non-data experts (Segaran & Hammerbacher, 2009).

Davenport and Patil (2012) argues that data scientists need to use a combination of

statistics and programming to extract useful information from the vast amount of data

they collect to identify factors that have a significant impact on a company’s bottom

line.
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Graham-Rowe et al. (2008) stated that With the discovery of more and more

research disciplines, a large amount of data is facing new challenges that need to be

solved as soon as possible, for example, when the researchers study the inner workings

of the cells, they are now collected a large number of genome sequences, protein

sequences, protein structure and function, double molecular interactions, signaling and

metabolic pathways, such as adjusting the motif of the scientific research data, even if

is the smartest scientist will turn to advanced data mining tool, as a result, the term "big

data" began to be widely spread.

Hey, Tansley, Tolle et al. (2009) revealed the fourth paradigm of scientific research,

namely data-intensive scientific discovery, which is complementary to experimental

science, theoretical deduction and computer simulation. And further probes into the

connotation and extension of this new paradigm, including the use of various tools

uninterrupted research data, establishing systematic tools and facilities to manage the

entire data life cycle, the development based on scientific research data analysis and

visualization tools and methods, and further discusses the new paradigm of scientific

research, science, education, academic communication, and the long-term impact of

scientist groups.

Barabási and Gelman (2010) believes that humans have entered the era of big data

and can predict the future. Behind human behaviors lies the "outbreak" of patterns. The

daily behavior patterns of humans are "explosive" rather than random. The deep order

in human behavior is shaped by an explosion, and big data makes it easier than expected

to predict the future. The impact of revealing patterns is comparable to the physics or

genetic revolution of the early 20th century.

Mayer-Schönberger and Cukier (2013) proposed the concept of big data thinking,

and predicted in advance that the emergence of big data would bring great changes

to people’s life, work and thinking, and big data brought great changes to the era.

In addition, it describes the business changes and management changes brought to
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the society under the thinking changes in the era of big data, and holds that the core

of big data is prediction. The three changes of big data thinking have caused great

repercussions in the society. First, big data is not a random sample but all data. Second,

big data is not precise but promiscuous and fuzzy. Third, big data is not causation but

correlation. It is believed that big data can change the fuzzy concept in human life into

quantifiable index and make people’s life change unprecedentedly.

In recent years, the development of big data has always been in the development

stage of technology field, which mainly studies big data from two aspects of data

processing tools and processing difficulty based on data sources. In other words, big

data research is becoming more and more popularized and commercialized from new

technologies in previous years. In particular, the emergence of cloud computing mode

enables network resources to be configured and accessed on demand. Enterprises only

need to invest a small amount of money to enjoy ultra-high-speed computing, super-

capacity storage and high-speed network transmission. At the same time, due to the

continuous advancement of big data research, data-based artificial intelligence, machine

learning, Internet of things and other fields will also make more and more achievements.

For example, the concept of big data cloud map can be used to describe the distribution

of enterprises in the big data industry, and through the analysis of successful enterprises,

people can easily find where the industrial opportunities of big data will emerge and

how to find these opportunities (Stephenson, 2018).

2.2.3 How to respond to data growth

Internet digital technology is widely expected to play a critical role in the transition

to a more sustainable and energy-efficient future (Atat et al., 2018). For example,

interest in smart meters, power grids, and cities. However, the increasing in the number

of connected devices, the number and type of services, and the level of data traffic,
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processing and storage, which means that the energy used to power the Internet is

growing dramatically.

The research conducted by Hazas, Morley, Bates and Friday (2016), use the nature

of data traffic growth on the Internet as a research basis to see if such growth will slow

or limit. Data growth has been intense over the past decade, and there are predictions

that this pattern of sustained growth will continue in the future. Since this phenomenon

is closely related to increased electricity consumption, the global impact of this trend

on reducing carbon emissions is significant. Hazas et al. (2016) selectively explore

the aspects of data growth related to day-to-day practices and how they leverage and

generate Internet data and believe that there are some conceivable limitations to this

growth. In practice, however, the nature of "Internet use" is changing and emerging

forms of growth are out of touch with human activities and time use. For example,

in the trend of the Internet of Things being widely used, the potential self-generation

cycles for data generation, processing and circulation are largely automated and not

limited using human activities.

Widdicks, Bates, Hazas, Friday and Beresford (2017) also believe that the demand

for mobile technologies and related services in people’s lives is unprecedented and

growing. In their study, they conducted quantitative and qualitative surveys of users of

eight Android devices and compared them with quantitative surveys of 398 Android

devices. How to reduce the data requirements for mobile devices beyond the device

itself is studied. These include targeting to watch, listen and use social networks

at specific times of the day; make full use of existing capabilities with SMS; help

ingesting help in the peak demand; pass the time in a positive and relaxed way through

a dedicated lack of mobile technology. Morley et al. (2018) argue that in the Internet,

different services require different amounts of energy, and the more data they move, the

more power they consume. Therefore, the assumption of research on data demand as a

representative of energy demand, conceptualizes several ways to study the processes that
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underpin growing data demand, thereby supporting infrastructure energy demand. These

include the design and delivery of services, the increasingly nature of data-intensive

practices and the more widespread and extensive integration of data-based services

throughout society. While many stresses the importance of improving Information

and Communication Technologies (ICT) energy efficiency, including standby features,

routers, mobile and fixed access networks, and data centres, the idea of limiting data

requirements in any form runs counter to the dominant paradigm of digital services and

government policy design (Chao, Chen & Wu, 2011). Current government policies in

many countries aim not only to extend Internet access to households and citizens who

do not already have Internet access, but also to make existing connections faster and

faster. Addressing the challenge of data demand growth requires a detailed focus on the

trends that underpin data demand. While the statistics clearly show that video traffic is

growing rapidly, by investigating when and how people use online viewing services,

there have been studies that show how the time spent on data traffic becomes relevant

at the national level. At the same time, day-to-day practices, reflected in time usage

data and mobile device usage, are important places to understand these changes. This is

not to say that access to digital services is the most appropriate intervention point. It

is also important to consider how to reorganize the provision of video-related services

and the role of policy, institutions and business organizations in these developments.

For example, activities such as checking social media have become more data-intensive

because videos, including ads, are increasingly embedded in feeds. The shift to UHD

streaming media has also increased the often-invisible energy need to watch television

and movies over the Internet.

All in all, in the context of climate change targets, there must be better options to

deal with Internet-related energy needs, rather than making it a "problem".
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2.3 Energy Efficiency Metrics

Cloud computing was born in 2007 and is the further development of parallel

computing, distributed computing, grid computing and other technologies. As a new

business computing model, it is a fusion product of computer technologies such as

distributed computing, virtualization, network storage and load balancing (V. Chang &

Gütl, 2010).

Cloud computing can allow users to access services at different locations and

operate different terminals, enabling Virtualization technology is used, and the concept

of "cloud resource pool" is also involved (Sreenivas, Prathap & Kemal, 2014). The

resource requested by the user is obtained from this resource pool, rather than a fixed

entity. The application arranged by the user also runs somewhere in the cloud system

without knowing the specific location of the application. Only one Networked terminals

can obtain stronger computing power through the Internet. For the average user, there

is no need to understand the complex mechanisms behind the system, which is the

convenience brought by virtualization (Marston, Li, Bandyopadhyay, Zhang & Ghalsasi,

2011). By using measures such as data multi-copy fault tolerance and interchangeable

homogeneous computing nodes, cloud computing uses multiple computing nodes in

parallel to ensure its reliability. This effective multi-group backup method is analyzed

from a practical perspective, rather than using only local ,the computer is more reliable

(Gawali, June 2014). But in achieving the aforesaid, a data centre requires huge amount

of power needed to process data, to store it so as to fulfil the communication job. Beside

that, a simultaneous negative impacts is also thrust upon the environment(Akula &

Potluri, 2014) in the form of emission of carbon dioxide (CO2). One data centre can

emit 170 Million Metric Tonnes (MMT) carbon per year which can be estimated to be

670 MMT carbon per year by 2020 due to data centres present worldwide over (Ranky,

2010). The huge energy consumption in data centres results into high operational costs.
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Typically data centre utilizes energy as required for 25000 households annually. Hence

the need is imperative as green IT vision for reducing CO2 emissions and enhancing

energy efficiency. Performance and energy efficiency metrics serve as backbone to

achieve this goal (Vatsal & Agarwal, 2019).

Energy efficiency metric can be used by managers to measure and maintain the

implementation of cost saving and CO2 emissions in data centers(Yu & Lai, 2016).

In general, energy efficiency is the use of less energy to produce the same amount

of service or useful output (Wu, Rangan & Zhang, 2016). The formula for calculating

energy efficiency in a broad sense is:

Energy efficiency = Useful output of a process
Energy input of a process

For a study of energy efficiency directions,Patterson (1996) demonstrates the

range of energy efficiency indicators that can be used to define how energy efficiency

indicators can be used to monitor changes in energy efficiency from the perspectives of

kinetics, physical thermodynamics, economic thermodynamics, and economics (Wu,

Guo, Li & Zeng, 2016).

1) From a thermodynamic point of view, the output and input of energy is based

entirely on measurements derived from thermodynamic science.

2) From the perspective of physical thermodynamics, in the calculation formula of

energy consumption, the input is the thermodynamic unit, and the output is the physical

unit.

3) From the perspective of economic thermodynamics, the input of the energy

efficiency formula is a thermodynamic unit, and the output of service provision is

measured at market prices.

4) From the perspective of economics, in the calculation of energy efficiency,

energy input and output of service provision are purely based on market currency value.
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In addition, the impact of energy quality issues on measuring energy indicators is

also considered. They believe that these different sources, different forms of energy,

need to be adjusted before any energy efficiency calculations are made (Hidalgo-León

et al., 2017).

At present, there are some researches on energy consumption monitoring and

management of data center from a global perspective. The energy consumption of the

data center is the total energy consumption of various energy-using equipment in the

data center, including not only the energy consumption of IT equipment such as servers,

but also the energy consumption of auxiliary systems such as air conditioning and

power distribution (Hidalgo-León et al., 2018). The IT system composed of hardware

such as server, storage and network communication is the most energy-consuming part,

accounting for about 50% of the total energy consumption of the data center. The energy

consumption of air conditioning system accounts for about 40%, ranking the second

in the total energy consumption of data centers. Power distribution systems consume

about 10% of the data center’s energy. As Figure 2.2.

Figure 2.2: The total energy consumption of data centers

There are evaluation metrics model for energy efficiency in data center is shown in

Figure 2.3.

To evaluate the efficiency of data centers, ICTs industry experts have come up
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Figure 2.3: Energy Efficiency Metrics for the data centre

with a number of measures, the most influential of which is the Power Usage Efficiency

(PUE) proposed by the Green Grid (Jaureguialzo, 2011).The definition formula of

electric energy use efficiency is as follows:

PUE = The total facility power

The energy used by IT equipment

The metric of Data Center Infrastructure Efficiency (DCiE) just the reciprocal of PUE.

DCiE = 1

PUE
= The energy used by IT equipment

The total facility power

The lower the PUE value, the more efficient the data center. An efficient data

center PUE is typically less than 1.6 (AL-Hazemi, Mohammed, Laku & Alanazi,

2019). Although PUE has long been an important indicator for evaluating the energy

efficiency of data centers, it fails to consider the degree to which data centers pollute

the environment. For example, data centers power ed primarily by new energy sources

may have higher PUEs, but they produce less pollution. In order to evaluate the

Carbon emission of data centers, green grid put forward the indicator of Carbon Usage

Effectiveness (CUE) (Herzog, 2013). It represents the carbon intensity per kilowatt-hour
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of electricity used. The definition formula of CUE is as follows:

CUE = The total CO2emissions of data center

The energy used by IT equipment

Data center energy productivity (DCeP) refers to a measure of the useful work

performed by the data center relative to the energy consumed by the work performed by

the data center (Sego et al., 2012). The formula of DCeP is as follow:

DCeP = Useful work produced

Total energy consumed by the data center

In order to monitor and manage cloud server more fine-grained, a large number

of researches mainly estimate the energy consumption of cloud server (including

physical machine and virtual machine) from the software level, mainly including:

for physical machine, its energy consumption measurement is mainly divided into

three steps: information collection, modeling and estimation. There are two types of

energy consumption models: component energy consumption accumulation model and

utilization model. For each kind of model, it can be divided into linear model and

nonlinear model.

1) Accumulation model of component energy consumption: Resource characterist-

ics are used to represent the energy consumption of corresponding hardware resources,

and finally, they are added up to represent the total energy consumption of the server.

Ge, Feng and Cameron (2009) gave a general energy consumption formula , which can

be expressed as:

EServer = ECPU +EMem +EOther (2.1)

The resource characteristics can be resource utilization, Performance Monitor Counter

(PMC) and hardware counters. From simple to complex, Roy, Rudra and Verma (2013)

first expressed the server energy consumption as the sum of CPU energy consumption
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and memory energy consumption. Jain, Molnar and Ramzan (2005) further decomposed

CPU and memory into the accumulation of data and instruction features respectively.

In addition to CPU and memory, Tudor and Teo (2013) added IO power consumption

to the model. Song, Barker and Kerbyson (2013) replaced the previous IO energy

consumption with disk and network card energy consumption.

Since energy consumption is the accumulation of power in time, Song et al. (2013)

extended the original formula and expressed the total energy consumption by multiply-

ing the average energy consumption of processor, network card and network equipment

with their respective running time. Lewis, Ghosh and Tzeng (2008) used hardware

counters to model and sum five components separately, including the motherboard, but

the final energy consumption model was still linear. Alan, Arslan and Kosar (2014)

modeled server energy consumption using a linear combination of CPU, memory, disk,

and network card utilization. Lent (2013) further decomposed the resource utilization of

each component into its corresponding child component utilization to establish a linear

model. Generally speaking, the total power Ptotal of the server can also be expressed as

the sum of static power Pstatic and dynamic power Pdynamic (Beloglazov, Buyya, Lee &

Zomaya, 2011), (F. Chen, Grundy, Yang, Schneider & He, 2013), (Xiao, Hu, Liu, Yan

& Qu, 2013).

Ptotal = Pstatic + Pdynamic (2.2)

Among them static power is also called base power which is the active server

to maintain the operation must consume the minimum power, dynamic power is the

program running using different hardware resources to bring variable power.

Bircher and John (2007) proposed to use the performance counters of the micropro-

cessor to model each sub-component (including CPU, memory, disk, I/O and chipset)

separately, and finally combine them together as the energy output of the physical
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machine.Here, the energy consumption model for each sub-component is nonlinear.

2) Resource utilization model: only CPU utilization is used to model the total

energy consumption of the server. For CPUs with multiple frequencies, the different

frequencies can be seen as an indication of utilization. Elnozahy, Kistler and Rajamony

(2002) first gave the energy consumption model of the server under different CPU

frequencies. The power Pfof the server under frequency f was expressed as:

Pf = c0 + c1f 3 (2.3)

c0 and c1 are model coefficients, which can be obtained by linear regression.

Fan, Weber and Barroso (2007) and Gao, Guan, Qi, Wang and Liu (2013) demon-

strated through experiments that the server power and CPU utilization are almost linear,

which is widely used in the energy consumption model of data centers, specifically

expressed as:

Pu = (Ppeak − Pidle)u + Pidle (2.4)

u is resource utilization, while Ppeak and Pidle represent peak power and base

power of the server, respectively.

In addition, there are many literatures that use nonlinear methods to model server

energy consumption. For example, Tang and Dai (2011) added two server-dependent

model parameters to formula (2.4), making the original model more complex. Due to the

constant change of CPU utilization over time, Beloglazov, Abawajy and Buyya (2012)

presented a power consumption model integrating power over time, in which power is a

function related to utilization. H. Li, Casale and Ellahi (2010) proposed a normalized

expression of server power and a compound power model based on utilization. V. Gupta,

Nathuji and Schwan (2011) also status that to estimate the server energy consumption at

different request arrival rates using the queuing theory method. Similarly, literature Tian,

Lin and Li (2014) and Yao, Huang, Sharma, Golubchik and Neely (2012) also modeled



Chapter 2. Literature Review 22

server energy consumption based on utilization and request arrival rate. Horvath and

Skadron (2008) modeled the server in terms of both CPU frequency and utilization.

Relatively speaking, linear model has the advantages of simple, practical and high

accuracy.

For virtual machines, there are two main methods of measuring energy consump-

tion: white box method and black box method (Jiang, Lu, Cai, Jiang & Ma, 2013).

The white box method collects the resource information inside the virtual machine

by inserting the agent program in the virtual machine and makes use of the collected

information for modeling. A typical research paper of Y. Li, Wang, Yin and Guan

(2012), the model is:

Pserver = Pstatic + α
n

∑
i

UCPU
VMi

+ β
n

∑
i

UMem
VMi

+ γ
n

∑
i

U IO
VMi

+ ne (2.5)

Each virtual machine can be calculated using the following formula:

PVMi
= αUCPU

VMi
+ βUMem

VMi
+ γU IO

VMi
+ e (2.6)

(UCPU
VMi

, UMem
VMi

and U IO
VMi

respectively represent the utilization of CPU, memory

and IO collected inside virtual machine i, and e means the migration constant in the

model. In this paper, a piece-wise modeling idea is proposed to divide the data set into

three segments according to the high, medium and low resource utilization. However,

the definition of high, medium and low is vague and too subjective, and it is unfair to

divide the bias in the model evenly to each virtual machine.

The disadvantage of the white box approach is that the resource information

obtained inside the virtual machine is not a good reflection of the virtual machine’s

use of physical hardware resources. To solve this problem, the black box method

first uses the collected physical machine resource characteristics to model the server

energy consumption.Based on the physical machine model, the energy consumption
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of the virtual machine can be calculated by bringing the physical resources occupied

by the virtual machine into the model. In other words, the accuracy of virtual machine

energy consumption measurement depends on the physical machine energy consumption

model.

Kansal, Zhao, Liu, Kothari and Bhattacharya (2010) used the CPU utilization

uCPU , Last Level Cache Misses NLLCM , and IO transfer time bIOto model the energy

consumption of the physical machine, which is expressed as:

PTotal = Pstatic + αuCPU + βNLLCM(T ) + γbIO (2.7)

Bohra and Chaudhary (2010) also used a linear model to model the energy con-

sumption of physical machines, expressed as;

PTotal = αPCPU + βPCache + γPDRAM + δ (2.8)

In order to measure the energy consumption of virtual machines, most studies first

model the energy consumption of physical machines.The commonly used linear model

mainly includes multiple Regression method, Mantis and Lasso Regression (Economou,

Rivoire, Kozyrakis & Ranganathan, 2006), (Rivoire, Ranganathan & Kozyrakis, 2008).

The nonlinear models mainly include polynomial with exponential or Lasso (Bircher &

John, 2007), gaussian mixture model, and support vector regression (Dhiman, Mihic &

Rosing, 2010). McCullough et al. (2011) believed that the more complex the model, the

higher the accuracy.In practical scenarios, however, there is a trade-off between model

accuracy and practicality, so the linear approach is widely used for its simplicity and

high accuracy.
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2.4 Data Quality (DQ)

Big data has the characteristics of large volume, wide sources, variety, high fre-

quency and low value density. With the widespread application of big data in practical

business, data quality problems gradually emerge. In the United States, corporate losses

due to incorrect data exceed $700 billion annually (L. Chen, He, Yang, Niu & Ren,

2017). The detection rate of enterprise error data is between 1% and 30% (Ghemawat,

Gobioff & Leung, 2003). There are many data warehouse projects, and the time spend

on Extract-Transform-Load may account for 30% to 80% of the overall development

time and budget. Improving data quality is crucial for system construction. On the web,

XML is the most common document format, accounting for about 58%, of which only

a third are valid, 14% lack legitimacy, and simple errors like mismatching tags and

missing tags render the entire XML technology useless for these document processing

(Dean & Ghemawat, 2008).

Although the concept of "data quality" seems obvious, in current practice, data

quality is not well defined.Our research shows that data quality has many dimensions

for data users, such as accuracy, reliability, relevance, and timeliness, and requires clear

and unified data quality metrics. However, the fact is that even a relatively obvious

dimension, such as accuracy, does not have a strong enough and generic definition

to make the technique of measuring data accuracy universally acceptable. Thus, the

concept of data quality is relativistic, and what one group of users considers good data

may be bad for another. Only when the evaluation method, knowledge reference, data

set type, use purpose and strategy of data quality can effectively balance the decision

analysis can the data be meaningful and of high quality. In general, the current data

quality focuses on the following aspects : (1) from the user’s perspective, it focuses

on the user’s perception of data; (2) Data quality requires overall governance, a sound

organizational system, and multi-dimensional evaluation of data quality; (3) the data
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quality is a multidimensional concept, a multi-dimensional evaluation criteria, the need

to build a complete evaluation methods. In particular, we need to identify the key data

quality dimensions, the precise definition and significance of each dimension, determine

the evaluation data of each dimension method and calculating each dimension value of

data quality.

Since 1980, accuracy has been the most important dimension in evaluating data

quality.The connotation of data quality is gradually deepened, and its concepts and

methods are also constantly expanded.While accuracy is important, it is not the only

measure of data quality Fox, Levitin and Redman (1994). believes that data quality

is also a multidimensional concept because the data itself has multiple sources and

multiple structures. In the late 1990s, Redman (1995) put forward the following idea:

"Data is of high quality if it is applicable to business operations, decision making,

plan execution, etc. Data is suitable for use if it is complete and has the desired data

characteristics."(F. Chang et al., 2008).

Wang, Storey and Firth (1995) published a survey on data quality in 1995, in

which they recommended the use of dimension sets to describe data quality. Since

then, other scholars have conducted in-depth research on the quality dimension. Based

on the information system model, Wand and Wang (1996) proposes five dimensions

of data quality: accuracy, integrity, consistency, timeliness and reliability. Wang and

Strong (1996) for data users who have rich practical experience and can make correct

decisions on data, It is concluded that data quality is data that is applicable to a business

scenario.And through the in-depth investigation of 179 features of data quality, the

quality of 15 common dimensions is determined.They also point out that data quality

cannot be isolated from the user and must be closely tied to the user experience in order

to be assessed.

In 2003, Kerr, Norris and Stockdale (2007) proposed that data quality solutions

and planning strategies within an organization must consider the needs of data users
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and allow them to evaluate data quality by meeting their needs. That is, the purpose

and users of data should be clear from the very beginning. Redman and Blanton (1997)

indicates that the data quality dimension can be divided into three groups, corresponding

to the concept of view data and data format and data value respectively. Jarke, Lenzerini,

Vassiliou and Vassiliadis (2013) proposes a detailed data quality dimension to guide

the design of data warehouse. Bovee, Srivastava and Mak (2003) defines the quality of

data in data that is suitable for use, including accessibility, interpret-ability, relevance,

and reliability.In order to integrate the WEB information system, Naumann (2003)

defines 4 categories of 21 quality dimensions. Through the above research, correctness,

completeness and consistency are considered as the basic evaluation dimensions, as

shown in the below table 2.1:

Table 2.1: Data Quality Dimensions

Dimension Definition Research work

Accuracy Data accuracy is defined as when the

data value stored in the database is

identical to the data value in the real

world.

Batini and Scan-

napieco (2016)

Data accuracy is a modification of

the data set.

McGilvray (2008)

Accuracy is a measure of how well

a data value matches the real data.

Redman and Blan-

ton (1997)

It is the standard of reliability, accur-

acy and certification of data.

Wang and Strong

(1996)

Continued over page
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Table 2.1: Extended version. . . (continued)

Completeness Data accuracy is defined as when the

data value stored in the database is

identical to the data value in the real

world.

Batini and Scan-

napieco (2016)

Data accuracy is defined as when the

data value stored in the database is

identical to the data value in the real

world.

Wang and Strong

(1996)

Completeness Data accuracy is defined as when the

data value stored in the database is

identical to the data value in the real

world.

Batini and Scan-

napieco (2016)

How helpful the data is to existing

work.

Wang and Strong

(1996)

The perspective of the data collec-

tion process.

Redman and Blan-

ton (1997)

The percentage of real data con-

tained in the data warehouse.

Jarke et al. (2013)

The data contains all the necessary

parts of the entity information.

Batini and Scan-

napieco (2016)

Consistency The data contains all the necessary

parts of the entity information.

Bovee et al.

(2003)

Continued over page
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Table 2.1: Extended version. . . (continued)

Consistent with the semantic rules

defined by the data set.

Wang and Strong

(1996)

reduced Unwanted duplicate measures that

exist for a particular field, record, or

dataset.

McGilvray (2008)

2.5 Simulation tools

Because different applications may have different standards for resource allocation

and deployment requirements, the load, energy consumption and system size of the

application and service models on the cloud infrastructure are constantly changing.

To reduce the cost of accessing the infrastructure in a cloud computing environment,

evaluating and simulating the entire scheduling process before composing, configuring,

and deploying the software is a feasible solution.Therefore, tools that can provide

adjustable simulation environment come into being, which allow users to test their

services for free and repeatable, and adjust performance bottlenecks before deployment,

not only reducing the cost and threshold of research and testing, but also reducing the

cost and risk of experiments (Bahwaireth, Benkhelifa, Jararweh, Tawalbeh et al., 2016).

At present, there are five main cloud computing simulation tools as follows.

2.5.1 GreenCloud

GreenCloud is a package-level network simulator NS2 extension, which complies

with the GPL protocol, is used for advanced energy-sensing research on cloud computing

data centers in actual Settings, and is an open source cloud environment simulator
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(Kliazovich, Bouvry & Khan, 2012). It focuses on the energy perception in the cloud

communication process and the fine-grained modeling of the energy consumption of

the data center, including the energy consumption of the server, network switch and

communication link. It differs from existing emulators in the way it extracts, aggregates,

and provides information about the data center.

Figure 2.4: GreenCloud architecture diagram

At the bottom of it is the core part of the data center – Servers, whose main function

is to perform the assigned tasks. It is a single-core component that presets computing

power, memory, storage space, and differentiated task scheduling policies (Frej, Di-

chter & Gupta, 2018). The server is connected to the access network layer, which is

responsible for data exchange between the server and the secondary switch.The middle

part is the core network layer and the converged network layer, which is mainly the

connection between the switch and the data center.The outermost layer is encapsulated

as a data center, which directly interacts with users. Cloud users can directly access the

data center for business-level operations and task scheduling (see Figure 2.4).
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2.5.2 MDCSim

MDCSim is a multi-tier data center simulation tool released by Pennsylvania

state university.It is designed as a pluggable three-tier architecture that captures all

the important design details of the underlying communication paradigm, kernel-level

scheduling artifacts, and application-level interactions between the three-tier data centers

(Lim, Sharma, Nam, Kim & Das, 2009). The flexibility of the simulator lies in its ability

to experiment with different designs in three layers and compare performance and power

consumption under real workloads. Although MDCSim can run across platforms and

simulate quickly, as a commercial software, it needs to pay for the software license. In

the absence of GUI operation interface and effective functions, it cannot give researchers

sufficient reasons to buy it. The MDCSim architecture is shown in Figure 2.5.

Figure 2.5: Architectural Details of MDCSim

Emulators are divided into communication layer, core layer and user layer. Such an

abstract approach enables the emulators to have better flexibility and greater scalability.

Different communication modes can be integrated into the communication layer only

according to the specification semantics and writing specific protocols.
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2.5.3 iFogSim

iFogSim supports the modeling and simulation of Fog Computing environment

to evaluate the resource management and scheduling policies across edge and cloud

resources in different scenarios (H. Gupta, Vahid Dastjerdi, Ghosh & Buyya, 2017).

Figure 2.6: The Architecture of iFogSim

iFogSim mainly supports the sense-process-actuate application model. In this

model, the sensor publishes the data to the IoT network, the application running on the
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fog device receives and processes the data from the sensor, and finally forwards the

acquired information to the actuator. The core functionality of iFogSim is done by the

CloudSim extension.

Fog = Cloud + Internet of Things (IoT )

Fog computing is the intermediate layer between the remote cloud and the end user, and

addresses the issues of network bandwidth, latency, delay and jitter-all of which can be

avoided. It improves the overall performance of the network environment.

The simulator supports the assessment of resource management strategies, focusing

on their impact on latency, energy consumption, and network congestion on operating

costs.It can simulate the number of edge devices, cloud data centers, and network

connections to measure performance.Its system architecture is shown in Figure 2.6.

2.5.4 WorkflowSim

WorkflowSim is a simulator developed by Weiwei Chen et al., university of south-

ern California. In the absence of support for widely used workflow optimization

techniques (Deelman et al., 2015), such as task clustering, and in the absence of existing

tools that take account of heterogeneous system overhead and failures, CloudSim is

extended to accomplish higher-level workflow management tasks (Wangsom, Lavang-

nananda & Bouvry, 2017) . The principle is to provide a workflow level simulation

based on the existing CloudSim simulation software and introduce a workflow that can

better describe more complex big data applications. The Figure 2.7 is the architecture

diagram of the WorkflowSim. It models the failure and delay of workflow management

system at different levels, then runs it in simulation, and builds a series of popular work-

flow scheduling algorithms (including HEFT, min-min, max-min) and task clustering

algorithm into the system. Run parameters can be obtained and used directly from the
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Figure 2.7: The system architecture of WorkflowSim

actual execution of the same type of workflow management system (such as Pegasus)

running.

2.5.5 Cloudsim

CloudSim is an open source cloud computing simulator developed by the grid

lab Gridbus project team led by professor Rajkumar Buyya from the university of

Melbourne (Buyya, Ranjan & Calheiros, 2009). Its primary goal is to quantify and

compare the scheduling and allocation strategies of different application and service

models on the cloud infrastructure to optimize the allocation of cloud computing

resources. CloudSim is extended on the basis of GridSim simulator to support cloud

resource management and scheduling simulation. It extends a series of interfaces

to provide data-center based virtualization technologies, modeling and simulation of
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virtualized cloud environments.As an open source software, CloudSim is written in Java,

so it can run cross-platform on Windows and Linux, and users can add their own code

according to their own research content, and then recompile the release. The CloudSim

architecture is shown in Figure 2.8.

Figure 2.8: CloudSim architecture

The main function of its underlying layer is to handle the communication between

entities and components, and the whole emulator is event-driven due to the new event

management framework.The second layer is the simulation layer, which supports the

modeling and simulation of the cloud-based data center environment, including the

dedicated interface management of virtual machine, memory, storage capacity and

bandwidth. At the top is the user code layer, which provides interfaces to host entities,

applications, number of virtual machines, number of users, application categories, and

scheduling policies.

Cloudsim has good portability, support large-scale cloud computing data center
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and the joint modeling and simulation of cloud, support for dynamic insert element

simulation, and the network center and messaging have good support, in addition to

the above advantages, for the user custom task scheduling and host resource allocation

strategy, Cloudsim also give the greatest degree of freedom.In recent years, more and

more researchers have focused on the secondary development of CloudSim, which

also demonstrates its scientific value that cannot be ignored.In conclusion, it is quite

appropriate to choose CloudSim as the basic platform for this experiment.

2.6 Summary

In this chapter, we start to study from the definition of data and life cycle, and

analyze the existing literature on energy consumption measurement, data quality re-

search, and also the main energy consumption measurement methods of existing data

centers Also made a certain investigation. I found that at this stage, the main way

people increase energy consumption lies in how to improve the efficiency of the data

center. This efficiency improvement is mainly aimed at optimizing some algorithms

in the data processing process. There is no research aimed at grading data in the data

prepossessing stage. Therefore, in this article, we will propose a method for applying

data grading to cloud computing. Because there are many simulation tools for the

cloud computing platform at this stage, we have also done some research on the current

simulation platform, and finally selected Cloudsim as the simulation platform for this

experiment.



Chapter 3

Data-driven energy efficiency

indicator model

3.1 Introduction

This chapter mainly introduces the measurement formula of data set quality and

the implementation process of applying data quality to cloud computing and cloud

storage.

3.2 Measurement of data quality

In all kinds of data quality evaluation methods, relevant definitions are given for the

main dimension indexes of data quality, and the important characteristics of each index

are emphasized. However, due to different implementation methods, the evaluation

results of data quality even for a specific data set are not the same.From the perspective

of data quality evaluation index, comprehensive operation needs to be managed through

system, process, technology, audit and inspection. In view of the characteristics of large

number, high speed, diversity and low value density of data in the big data environment,

36
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Figure 3.1: Cloud Scheduling/storage based on task priority
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this section puts forward a general calculation formula and calculation method for six

main data quality indexes. For the elements used in the formula, the unified definition

is as follows:

Suppose there are n objects in data set D, which can be defined as:

D = {D1,D2,⋯,Dn}

Take any element Di in D, which has m features and can be defined as:

fi = {(k1, v1) ,⋯, (ki, vi) ,⋯, (km, vm)}

Where, k represents the feature attribute and v represents the eigenvalue. Cij

represents the J th data quality feature of the ith object in the data set. For example, Ci1

represents the first feature of the ith object, namely the completeness in the following.

Qi represents the ith data quality feature of the measured data set, Q1 represents

the integrity of the data set.

3.2.1 Data set integrity calculation

Integrity refers to the completeness of the contents described in a given data set

relative to the data in a real object set.There are two criteria, one is whether there is a

null value and the cause of the null value, the other is whether the correlation between

values is clear. We will integrity into two indicators, one is the integrity of the data, the

other is the integrity of the object. For the integrity of data, it can be considered that

after sampling or discretization of the required data sources, multiple query sampling of

several data sources is carried out. Suppose the number of data sources is S and the

number of queries is T , then the result set returned by the iTH query of the jTH data

source is Rij , then:
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Q1 =
1

T

T

∑
i=1

Rij

⋃T
i=1Rij

(3.1)

According to the integrity definition, the complete feature space of object fi isfi =

{ki, k3, . . . , ks}, Ci2 represents the data integrity of the ith object, and Q2 represents the

object integrity of data set D, then:

Ci2 =
∑m

i=1 fi (vi)
m

,Q2 =
∑n

i=1Ci2

n
(3.2)

3.2.2 Data set consistency calculation

The consistency dimension represents the violation of a semantic rule defined for

a set of data items, that is, the degree of consistency between the data sets.In relation

theory, the uniform constraint can be divided into two basic categories: inter-relation

constraint and inter-relation constraint.Here the first case is called external consistency,

represented by Q3, and Ci3 by the external consistency of item I data.For the values of

two or more data sources that actually correspond to an object, Si is used to represent

the similarity between the two values, Dik is used to represent the data sources that

point to the same objective object with data Di, and the number is represented by nu,

then:

Ci3 =
∑m

i=1∑nu
k=1 Si (Di,Dik)
m ∗ nu ,Q3 =

∑n
i=1Ci3
n

(3.3)

The second case is called internal consistency, which is expressed by Q4 and Ci4

as the internal consistency of item I data. Ra represents the correlation between the

two data (in this formula, it is assumed that the two data characteristics are ki and kj ,

respectively, with values of vi and vj); Ds represents the logical distance between the

data, then:
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Ci4 =
√
∑m

i=1∑m
j=1Ra(ki, kj) ∗Ds (vi, vj)

m
,Q4 =

∑n
i=1Ci4
n

(3.4)

3.2.3 Data set Accuracy calculation

The accuracy of the data indicates the degree to which the data can accurately

reflect the objective things. The smaller the difference between the measurement value

of the accuracy and the actual value of the objective things is, the higher the accuracy of

the data will be. Accuracy is represented by Q5, f5() is the attribute judgment function,

and Ci is the accuracy measurement of the ith data in this set, then:

Ci5 =
∑i=1

m f5 (vi)
m

,Q5 =
∑i=1

n Ci5

n
(3.5)

3.2.4 Data set timeliness calculation

Data timeliness refers to the expectation of time for the accessibility and availability

of information, which represents the ability for data to be available when needed. There

are h data sources, from T1 to Tp discrete points in time, the same condition of the

query, the query number is q, the result set is Rijk = {D111, ⋯, Dkpq} Let CT be

the update function of the obtained results, ET be the earliest time function of the

obtained results, d{} represent the distance function between vectors (the commonly

used Euclidian or Manhattan distance can be used to replace the actual calculation), and

Q6 represent the timeliness measurement of the ith data, then

Q6 =
1

pq

p

∑
j=1

q

∑
k=1

d{CT (Rijk) ,ET (Rijk)} (3.6)
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3.2.5 Data Quality assessment model

According to the above data quality evaluation formula, the data quality value can

be calculated for the data set, and the priority of the data set can be further calculated.

Figure 3.2: Data Quality metric model

As shown in Figure 3.3, the data quality assessment model consists of three parts:

data set, rule series and index comprehensive assessment score.The meaning of each

node element is as follows:

D: Data set to be evaluated.Data set objects that need to be evaluated.

MD: Metadata, that needs to be evaluated, to extract Metadata to establish the

corresponding evaluation Metadata.

R: Rules, specific Rules for each indicator evaluation setting on data set D. The

specific calculation formula can be referred to the formula 3.1, 3.2, 3.3, 3.4, 3.5,3.6.

I: that’s Indicators to be evaluated.

W: Weight, the Weight of the rule series, the sum is 1, the Weight value can be

customized for the user, in order to explain the proportion of each index in the rule

series, the importance of each rule from the user’s perspective.

G: Goal, a comprehensive evaluation of the score.The evaluation score reflects the

result size of index comprehensive evaluation on data set D after the combination of
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each rule series S, that is, the level of data quality.

In the evaluation index system of this thesis, the quality score of the whole data

set can be the average score of all indexes. By combining the weight of each rule

corresponding to each index, namely the weight of each rule series, the calculation of

the data quality evaluation score of each index is obtained as the formula:

Ri =
∑C

j=1wj ∗Qi

c
(3.7)

Where Ri is the evaluation result of the i indicator, C is the total number of

evaluation rules, wj the weight of each rule.

According to the evaluation results of the indicators and the weight of each rule

series, the score of the comprehensive evaluation of data quality can be obtained.

Formula 3.7 for the score calculation of the comprehensive evaluation is as follows:

G = Q =
n

∑
i=1

Ri (3.8)

3.3 An energy-saving scheduling algorithm based on

data quality (DQ-TSA)

3.3.1 The introduction and process of cloud computing task schedul-

ing

In the cloud computing environment, a wide range of application groups will

submit massive tasks and generate different forms of service demands all the time,

so the amount of data that needs to be processed in the cloud computing data is very

large. How to assign tasks to appropriate virtual machines, efficiently implement task

scheduling and meet the corresponding goals has become an important problem to be
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solved in cloud task scheduling, is also a NP-Complete problem (Navimipour & Milani,

2015).

In general, the task set submitted by users will be divided into multiple MAP

and Reduce tasks by the MAP and Reduce process of the cloud computing distributed

framework. The task model composed of these tasks is the cloud computing task model.

Once the number of these sub-tasks reaches a certain width, they will be uniformly

submitted for scheduling (Zhang & Zhou, 2017). Task scheduling can be divided

into independent task scheduling and workflow task scheduling according to the data

interdependence between tasks (Geng, Mao, Xiong & Liu, 2019). Independent task

refers to that all tasks scheduled are relatively independent and they will not depend

on each other, while workflow task refers to a set of interdependent and mutually

constrained tasks. Task scheduling is based on the constraint conditions between the

tasks assigned to for its also in the appropriate computing resources in data processing,

and through the virtualization technology, data also in each physical HOST will be

mapped to a virtual machine, so the user submits in the process of task scheduling of

each task according to the appropriate scheduling policy choice only is matched with

the virtual machine can complete the whole scheduling process.

Generally, task scheduling can be divided into several steps: task submission, task

demand analysis and search for available resources, resource selection, task scheduling

and real-time monitoring of computing resources.

Suppose there are hosts P in the cloud data centre, and each host can be mapped

to multiple virtual machines (VM) . VM = {VM1, V M2, ...V Mm}. And assume that

the user has also submitted i tasks to the cloud data as T = {T1, T2, ...Ti}.

Cloud computing task scheduling is that when the user submits i tasks, the task

analyzer will analyze the corresponding user requirements of the task and submit these

requirements to the cloud proxy server. The proxy server can find the appropriate

computing resources according to the user’s requirements as an alternative resource set.
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Figure 3.3: Tasks schedule model

These resources can be filtered in accordance with user satisfaction. If the alternative

resource set is already occupied by another task or is in a state where it is not available,

other computing resources in the alternative resource set can be selected for the task.

Once a relatively matched computing resource is selected, the task is assigned to the

selected computing resource according to the corresponding scheduling scheme under

the condition of satisfying user demand. In addition, the operation of computing

resources needs to be monitored in real time during task scheduling. Once the user

releases or adds new computing resources, the information of available resources in the

proxy server needs to be updated in a timely manner to facilitate the next computing

resource allocation.

Where, each task can only be scheduled once, and the number of tasks is more

than the number of virtual machines.
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3.3.2 Cloud task scheduling model based on data quality

As commercial calculation model, cloud computing must meet the needs of users

and experience, the other cloud service providers also to maximize the utilization of

computing resources and energy consumption to improve the service benefits, usually a

cloud task scheduling algorithm of concerns mainly include four aspects, minimizing

the mission completion time, minimize the task execution cost, reliability, and load

balancing.

From an energy saving perspective, when assigning a batch of tasks to multiple

virtual machines, the task end time depends on the time of the last virtual machine

to end.If some virtual machines finish tasks very early and others finish tasks very

late, the resources of virtual machines that finish early will be wasted.Therefore, the

task completion time of each virtual machine should be as close as possible. For this

purpose, naturally, we assign long-running tasks first and short-running tasks later,

because it is easier to align the virtual machine’s task finish time.In addition, it’s not

just a matter of task duration, it’s important to take full advantage of the performance of

the virtual machine at every moment.That is, a virtual machine that always has a 90%

CPU utilization and a virtual machine that always has a 60% CPU utilization can make

better use of resources and therefore complete tasks faster.Therefore, it is important to

pay attention to the final task completion time, task running time and CPU utilization.

In addition, the main purpose of cloud computing is to improve the service satis-

faction of users. High-quality data means that the data submitted to these tasks is more

user-level and timely than other data, in other words, the value of the data itself is pro-

portional to the quality of the data. Therefore, high quality, high value data/tasks should

be prioritized. High quality, high value tasks will be scheduled to better resources,

provide the best resource allocation, and ensure the quality of service.

Therefore, in order to simultaneously meet the basic needs of users and providers
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of cloud services, this paper consider the tasks at the same time, the execution time

and load balancing three properties, design a priority task scheduling algorithm based

on data quality (DQ-TSA), virtual fleet column assembly according to priority size

real-time scheduling, which in the case of guarantee customer satisfaction to achieve

the purpose of energy saving.

3.3.3 The idea of DQ-TSA

In cloud computing, users have different task sizes and types, and the underlying

resources of cloud computing are heterogeneous, which will bring unbalanced prob-

lems to the system. The performance effect of load balancing will affect the overall

performance and resource utilization of cloud computing system.

DQ-TSA algorithm is proposed to improve the load balancing degree of the virtual

machine on the basis of guaranteeing the minimum task scheduling span and energy

consumption. The algorithm uses the following method to measure the load of the

virtual machine: the sum of the execution time of the tasks executing on the virtual

machine and the tasks in the waiting state on the virtual machine is the load of the

virtual machine. As Figure 3.4.

Figure 3.4: DQ-TSA Algorithm Tasks schedule model



Chapter 3. Data-driven energy efficiency indicator model 47

DQ-TSA algorithm idea is as follows:

1) Standardize the specified attributes of the data set, and calculate the data quality

(as fomular 3.12), task running time3.14 and required resources of the task3.13. The

task set is sorted with data quality as the first priority(P1). In the case of the same data

quality, the task with long running time and more CPU resources will be executed first.

2) Calculate the total service capacity of resources,use formula 3.20, 3.19 and

group them into groups, establish the scheduling constraint association between task

group and resource group, and schedule high-priority tasks to better resources to provide

the best resource configuration and guarantee the quality of service.

3) Calculate various resources respectively and give a standard valueNormal(t,Ri,Hk).

The resource with the largest standard value is regarded as the main resource of the

task.Traversing the task, assigning the task to the virtual machine with the least standard

load of the current main resource.

Suppose there is a cloud data center with different types of physical host H , Host

setH = {Ha∣1 <= a <= b}, Ha Represents the Ha = {ID,Comp,Bw, Io,Sto,EC}.

This formula represents the multidimensional attributes of the P , which are host ID,

host computing power, communication power, Io power, storage power and energy

consumption. The host set can be expressed as the matrix below:

Ha =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HID
1 HComp

1 HBw
1 HIo

1 HSto
1 HEC

1

HID
2 HComp

2 HBw
2 H

I/O
2 HSto

2 HEC
2

......

HID
b HComp

b HBw
b HIo

b HSto
b HEC

b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.9)

The task set T , T = {Taski∣1 <= i <= n}, Taski Represents the task i, Taski =

{ID,Length, source,DQ,Comp,Bw, I/O,Sto}.

This set represents the multidimensional attributes of the task, which are task id,
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task length,task source, task quality, task computing power demand, task bandwidth

demand, task IO demand and task storage capacity demand respectively. Among them,

the calculation method of task quality as formula 3.8. The task set can be expressed as

the matrix below:

Ti =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TaskID1 TaskLength1 Tasksource1 TaskDQ
1 TaskComp

1

TaskBw
1 Task

I/O
1 TaskSto1

TaskID2 TaskLength2 Tasksource2 TaskDQ
2 TaskComp

2

TaskBw
2 Task

I/O
2 TaskSto2

......

TaskIDn TaskLengthn Tasksourcen TaskDQ
n TaskComp

n

TaskBw
n Task

I/O
n TaskSton

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.10)

Vm set V m = {V mj ∣1 <= j <=m}, V mi Represents the V mj = {ID,Comp,Bw,

I/O,Sto,EC}. This formula represents the multidimensional attributes of the Vm,

which are Virtual machine ID, virtual machine computing power, communication power,

Io power, storage power, energy consumption. The Vm set can be expressed as the

matrix below:

V mj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V mID
1 V mComp

1 V mBw
1 V m

I/O
1 V mSto

1 V mEC
1

V mID
2 V mComp

2 V mBw
2 V m

I/O
2 V mSto

2 V mEC
2

......

V mID
m V mComp

m V mBw
m V m

I/O
m V mSto

m V mEC
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.11)

The first data priority by mathematical formula, Where xy is the weight of each

attribute,Tquality = G

P1 = x ∗ Tsource + y ∗ Tquality (3.12)

Ri(Hj) represents the total amount of resourcesRi owned by host Hj , the resource
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standard load of a task is used to measure the resource load of a task.The standard load

is calculated as follows:

Load (t,Ri, V mj) = time(t)Normal (t,Ri,Hk) (3.13)

Standard(t,Ri,Hk): The standard value of resource R for the virtual machine

assigned by task x to host Hk.

When task i is scheduled to execute on virtual machine j, if there are still executing

or waiting tasks in virtual machine j, in the case of the same priority, according to the

principle of "first come, first serve", so task i also needs to wait for all tasks in front of

it to complete before starting to execute. The completion time of task i on Vm j is the

sum of the queuing time of task i on Vm j and the execution time on Vm j.

Task running time :

time(t) = TLength

RComp(V m)
(3.14)

Task completion time :

expT ime(t) = time(t) +wait(t) (3.15)

The standard load on a virtual machine’s resources is a measure of how much the

virtual machine has to do with that resource, and is the sum of the standard load on

that resource for all the tasks that are not executed and are being executed in the virtual

machine.

Load (Vmj,Ri) = ∑
t∈E(i)

Load (t,Ri, V mj) (3.16)

The comprehensive results obtained by data of different properties during addition

and subtraction operation cannot correctly reflect the impact of the data on the result, so

the data need to be pre-processed and standardized here. The processed set of virtual
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machine attributes is represented by a matrix ST:

ST (V m) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V mID
1 V mComp

1.st V mBw
1.st V m

I/O
1.st V mSto

1.st V mEC
1

V mID
2 V mComp

2.st V mBw
2.st V m

I/O
2.st V mSto

2.st V mEC
2

......

V mID
m V mComp

m.st V mBw
m.st V m

I/O
m.st V mSto

m.st V mEC
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.17)

V mComp
j.st represents the result after comp attribute data processing of the computational

performance of the J th virtual machine, which can be calculated by referring to the

following formula.Other virtual machine property values are also processed in this

standardized way.

The processed set of Host attributes is represented by a matrix ST :

ST (H) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HID
1 HComp

1.st HBw
1.st H

I/O
1.st HSto

1.st HEC
1.st

HID
2 HComp

2.st HBw
2.st H

I/O
2.st HSto

2.st HEC
2.st

......

HID
b HComp

b.st HBw
b.st H

I/O
b.st HSto

b.st HEC
b.st

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.18)

The overall performance of the virtual machine resources is calculated as follows:

R(V m)j =
√
(V mComp

j.st )
2 + (V mBw

j.st)
2 + (V mI/O

j.st ) + (V mSto
j.st)

2
(3.19)

The overall performance of the Host resources is calculated as follows:

R(H)a =
√
(HComp

a.st )
2 + (HBw

a.st)
2 + (HI/O

j.st ) + (HSto
a.st)

2 (3.20)

The expected energy consumption of a task(expEC(Ti).) refers to the computing

resources, bandwidth resources, Io resources and storage resources of V mjto be used

for the execution of task i on V mj . Thus, the power consumption of virtual machines
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with stronger service capacity should be higher than that of virtual machines with

weaker service capacity.

expEC(Ti) = V mComp
j ∗ time(t) + TaskBw

j + TaskI/Oj + TaskStoj (3.21)

The comprehensive energy efficiency value TimeEc(Ti) refers to the weighted

processing result of the execution time and energy consumption of task i on virtual

machine j. The smaller the value, the lower the task completion time and energy

consumption.

TimeEc(Ti) =
expEC(Ti)
avgEC(Ti)

+ expT ime(Ti)
avgT ime(Ti)

(3.22)

The pseudo code:

Algorithm 1 DQ-TSA
1: Task, resource matrix initialization.T,V m,
2: Calculate the priority of the task,P ,
3: Sort the task in order of priority from high to low,
4: Calculate all Host resource service capabilities,ST (H),
5: Calculate all virtual machine resource service capabilities,ST (V m),
6: Rank virtual machine resources in order of their service capabilities,
7: Initialize the task execution time matrix,time(Ti),
8: Initialize task completion time matrix,expT ime(Ti),
9: Initialize expected energy consumption of a task matrix,expEC(Ti),

10: Determine whether the task queue is empty, if not, take one task, Tx,
11: Calculate the load of theTx on each virtual machine,Load (t,Ri, V mj),
12: Schedule tasks to the virtual machine that corresponds to the minimum load,
13: Updata task completion time matrix,expT ime(Tx),
14: Updata expected energy consumption of a task matrix,expEC(T ).
15: return Task list.

DQ-TSA algorithm aims to improve the system load balancing degree of task

scheduling on the premise of ensuring low energy consumption and short completion

time.This algorithm also takes load balancing as an optimization objective when carrying
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out intra-group scheduling. Before scheduling, the current load of each resource should

be determined to prevent scheduling on the resource from overloading the resource.

The process of DQ-TSA algorithm, 3.5

Figure 3.5: The process of DQ-TSA algorithm
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3.4 An energy-saving storage algorithm based on data

quality(DQ-HSA)

At present, the cloud storage technology research content includes the data security,

data access control, data migration, data and direction, such as to improve the system’s

high availability and storage performance and reducing energy consumption as a basic

part of the cloud storage technology system (Hale, 2013). In order to realize the system

resource utility maximization, optimized data storage place is direct and effective means.

In the existing researches on cloud storage data optimization storage placement,

data access rules are mostly monitored through metadata information of data files, and

data storage placement decisions are made according to their respective data storage

value evaluation methods, so as to meet some system performance optimization ob-

jectives. Other schemes rely on the functional features inherent in the cloud storage

system or the newly applied optimization technology to make data optimization storage

placement decisions.The optimization schemes proposed in this part of the study have

their own performance optimization focus and technical characteristics, and have dif-

ferent degrees of system storage utility improvement, but there are still the following

problems.

1) Due to the huge amount of data in the cloud storage system, frequent reliance

on metadata to fully monitor data access rules will also consume system resources and

bring a large additional cost.At the same time, for the stored data, the factors to evaluate

the data quality should also fully consider the data heat evaluation basis and refine the

classification of the data.

2) The performance structure of device resources in cloud storage system is com-

plex, and the heterogeneous nature is obvious. The homogeneous data placement and

layout method is difficult to apply to the differentiated device configuration.

3) There are many performance optimization indexes of cloud storage system,
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which are related to each other and restrict each other. Therefore, the performance

optimization direction of cloud storage system needs to be considered on the whole.

Based on the above research and the shortcomings of existing technology, this paper

presents a decision scheme of hierarchical cloud storage based on data quality. Firstly,

according to the quality of data and the existing data classification method (You, Dong,

Zhou, Huang & Jiang, 2015), a method of data classification and hierarchical storage

based on data quality (DQ-HSA) is designed to improve the efficiency of hierarchical

decision making. At the same time, by considering the storage performance indexes

of cloud storage system, a hierarchical decision-making method of multi-objective

optimization was designed and realized based on the decomposing multi-objective

optimization framework. The model presented in this paper takes into account four

system performance metrics that most hierarchical schemes take into account, including

average access time, average access delay, average migration cost, and load variation.

3.4.1 The system model of DQ-HSA

Given that there are m different storage devices and n different data files to be

stored in the cloud storage cluster, the hierarchical processing process can be summar-

ized as: the storage placement mapping process from the data items in the list of files to

the list of devices. See Figure 3.6.

The Figure 3.6 shows the basic data storage placement process in the cloud storage

system, so it can be seen that the main processing objects of optimization storage

placement decision are data files and storage devices. Therefore, the main work of the

system model in this paper can be simply summarized as obtaining data quality and data

heat distribution, organizing storage devices, and optimizing data storage placement.

In the actual application process of cloud storage, the data access arrival pattern

roughly follows the Zipf distribution and has diversified access characteristics(Abad,
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Figure 3.6: Data storage placement in cloud storage environment

Luu et al., 2012). The proposed hierarchical cloud storage scheme should fully con-

sider the access characteristics of data. In addition, during the construction of cloud

storage cluster, most cloud storage service providers use mixed and heterogeneous

device management schemes including SSD, HDD, NAS, etc. (Hale, 2013), which can

provide corresponding data storage services according to the storage requirements of

users.Therefore, the proposed hierarchical cloud storage also needs to meet the stor-

age requirements of users and device performance constraints, combined with device

hierarchical organization and management, to select the optimal storage target for data.

Combined with the above research and problem analysis, the hierarchical cloud

storage model proposed in this paper manages cloud storage resources through the

organization of three-level storage classification, so as to store and place data with
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different storage values at different levels (Kakoulli & Herodotou, 2017). Data storage

quality assessment based on file granularity can comprehensively evaluate data quality

and locate hot data in the cloud storage environment with complex data access charac-

teristics (Xie & Sun, 2009). Therefore, this paper conducts a heat assessment on the file

data stored in the cluster and carries out a fine-grained classification to pre-configure

matching storage targets for each type of data (Zhou, Feng, Tan & Zheng, 2018). Finally,

with the average access time, average access delay, average migration cost and load

change as the optimization objectives (Long, Zhao & Chen, 2014), the decomposition

based multi-objective optimization method (Carvalho, Saldanha, Gomes, Lisboa &

Martins, 2012) was applied to make the optimal decision on the placement mapping of

data to storage targets. Cloud storage cluster manages heterogeneous storage devices

and provides resource-shared data storage services. The application of hierarchical

storage scheme can fit the heterogeneous characteristics of cluster devices and optimize

the placement of data storage. Therefore, on the basis of Figure 3.6, the hierarchical

cloud storage data placement optimization model proposed in this paper is shown in

Figure 3.7.

3.4.2 Functional module design of DQ-HSA

Based on the above discussion, the modules of DQ-HSA proposed in this thesis

mainly include hierarchical organization, value assessment and data pre-classification,

as well as data storage placement decision modules.

1) Hierarchical organization management module: by evaluating the storage per-

formance of devices in the cloud storage cluster, the storage devices are divided into

three hierarchical organizational structures: hot storage, basic storage and cold storage.

2) Data pre-classification module based on value assessment: according to the prin-

ciple of information life cycle, by evaluating the storage value of data in different stages,
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Figure 3.7: The system model of DQ-HSA

the data is pre-processed by classification, and the storage target area of corresponding

level is pre-selected.

3) Data storage placement decision module: through the improved multi-objective

optimization algorithm, the optimal storage device is selected for each data.

Hierarchical organization management module

For m Storage devices in the cluster, by calculating their Storage performance,

the hashed Storage device set is divided into Storage Level (SL) according to a certain

ratio, that is, the three-level Storage structure of hot Storage SL1, basic Storage SL2

and cold Storage SL3, as shown in Figure 3.7 .Different from the device hierarchical

organization management scheme proposed in the existing hierarchical storage method

(Kakoulli & Herodotou, 2017), the hierarchical management of heterogeneous mixed

cloud storage cluster resources can reduce the implementation difficulty of the scheme

to a certain extent and facilitate the expansion of storage function of the system.

As can be seen from Figure 3.7, the three-level storage structure in this paper can
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cope with complex data quality classification and data headline performance.Among

them, the hot spot storage layer is a set of high-performance storage devices, which is

used to store hot spot data with a relatively small amount of data and a high frequency

of access, so as to ensure a high Io rate of hot spot data.The basic storage layer has

a general performance and a large number of devices, which are used to store a large

number of data with a general heat performance, so as to balance the load of the system

and improve the throughput of the system.The storage device of cold zone storage layer

has low performance, low cost and easy access, and is used to store the data with low

value density and long time unaccessed, so as to ensure the availability of data.

Data pre-classification module

In the cloud storage environment, there is a large amount of data storage. Before

the final storage optimization and placement decision, it is necessary to conduct feature

processing on the data and analyze the distribution of data value to improve the perform-

ance optimization ability.Due to the files stored in the cluster, the value of data storage

is constantly changing in the information life cycle, and frequent data optimization

storage places increase the system consumption.

Therefore, the data pre-processing classification algorithm proposed in this paper

only performs data access feature statistics within the stage time ∆T . The stage time

∆T is a dynamically configurable time interval, whose size is shown by the frequency

of the system carrying out data access feature statistics, and the usual configuration

parameter is 12 or 24 hours. Then calculate the data heat of the data file within the stage

time ∆T and use this as the data classification basis.
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Data classification and hierarchical storage based on data quality algorithm (DQ-

HSA)

This thesis integrates the above hierarchical organization management module

with the data pre-classification module, that is, the pre-selection process of the data

storage target area, which can be described as an algorithm 2 : DQ-HSA.

Algorithm 2 Data classification and hierarchical storage based on data quality algorithm
(DQ-HSA)

Input FileList F = {f1, f2,⋯, fn}
, StorageList S = {s1, s2,⋯, sm}

Output FSML // A mapping collection of pending data files and a list of preselec-
ted storage devices

1: for each doSj in StorageList S = {s1, s2,⋯, sm}
2: PV Sj = Performance Calculation (Sj)
3: Levelj = Storage Tiering (PV Sj, Sleft , Sright )
4: SL ∪ {sj, levelj}
5: end for
6: for each dofi in FileList {f1, . . . fi, . . . fn} do
7: TFi = Temperature Calculation (fi)
8: DCLlist= Data Classification (TFi, nowTime )
9: end for

10: for each dofi in D CList do FSM(fi) = Selection(fi, SL)
11: end for
12:

To classify the calculated files, the classification rules are: According to the

classification of data quality and data heat value, the files are divided into hot, normal,

and cold data. For the newly created file, because the access operation probability may

be higher in the next stage, and its current access volume is less, it is not conducive to

assess its popularity. Therefore, this algorithm directly divides this part of data into

normal data.

The processing steps of this algorithm are as follows

First, calculate the quality of the data set according to the calculation formula of

data quality 3.8.
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Secondly, according to the number of file accesses during the time ∆T of the statist-

ical stage, the access heat is calculated to evaluate the storage value. In the algorithm DQ-

HSA, take the attribute tuple of the file FV = {FVsize, FVUers, FVIo, FVLastT ime, FVRW ,

FVTF}. The calculation formula of TF is as follows:

TF =
FVuser ∗ FVIo ∗ FVR

FVW

FVsize ∗ (FVLastT ime − nowtime) ∗CTF

(3.23)

FVR

FVW
is the file read-write ratio, which means that the more file read operations,

the higher the heat value, and nowTime is the current time of the system. Based on

the file’s most recent access time, it is used to assess the frequency of recent file access

operations, CTF is the constant for evaluating file heat value.

In addition, the performance of each storage device should be calculated, and the

storage device should be divided into three hierarchical hierarchical structures.Take the

performance set as PV = {CPU, storage capacity, read/write rate, I/O, bandwidth,

latency, energy consumption...}. For performance evaluation and calculation.Therefore,

for each storage device Sj , the performance calculation method shown in formula 3.24.

PV Sj =
N

∑
k=1

εkPVk (3.24)

Where, PVk is the performance attribute of the device, and εkis the evaluation

parameter of the performance attribute.Sort all storage devices according to their per-

formance, and grade them by the storage cabinet value Slefgt;Snght, divides the original

storage device set S into hot storage layer SL1, basic storage layer SL2, and cold storage

layer SL3.

Finally, the optimized storage area is selected for the data divided by storage value.

The pre-selection rule is to pre-select the underlying storage layer for normal data

or new data, and select the storage area for promotion and degradation of old data
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according to the change of storage value through threshold comparison. As Figure 3.8

Figure 3.8: Preselection rules for hierarchical storage of data

The relevant parameters of this algorithm are shown in Table 3.1

Table 3.1: The relevant parameters of DQ-HSA algorithm

Parameters Parameter Description

† FV the attribute tuple of the file FV =

{FVsize, FVUers, FVI/O, FVLastT ime, FVRW , FVQuality}.

† FVsize The size of file

† FVUser User number

† FVI/O Io rate

† FVLastT ime Time of last visit

† FVRW Read/write ratio

† FVQuality The quality of file

† PV the attribute tuple of the file FV =

{PVCPU , PVRAM , PVI/O, PVbw, PVdelay, PVEC}.

† PVK The kth performance attribute of the storage device

† PV SJ The performance evaluation value of storage device Sj

Continued over page
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Table 3.1: Extended version. . . (continued)

Parameters Parameter Description

† εk The kth attribute evaluation parameter of the storage device

† Sleft, Sright Thresholds for performance grading of storage devices

† ∆T Periodic statistical evaluation interval

† TF The heat value of the current phase of the data file

† FSML A mapping collection of pending data files and a list of

preselected storage devices

3.5 Summary

In this chapter, we propose the measurement and calculation methods of six

important data quality indicators in the big data environment.At the same time, according

to the formula of data quality measurement, an energy saving scheduling algorithm

based on data quality (DQ-TSA) and an energy saving storage algorithm based on data

quality (DQ-HSA) are proposed in the cloud data center.

In the DQ-TSA algorithm, when a user submits a task to the cloud data center, it

first calculates the quality level of the data, using the quality of the data, the source, and

the length of the task as the adjustment parameters of the task priority. Sort tasks by

task priority, and then traverse the task to assign it. The data with high priority will

be assigned a high performance Vm and will be executed first. In the process of task

execution, the load of Vm will also be concerned, and the task will be assigned to the

virtual machine with the least resource load.

The core idea of the DQ-HSA algorithm is similar to the DQ-TSA algorithm,

which is to first evaluate the data quality of the stored data, and classify the stored data

by data quality and data popularity. And divide the storage device into a three-level
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hierarchical organizational structure of hot storage, cold storage and ordinary storage.

According to the priority of the data, select the optimal storage device for each data.

In the next chapter, we will conduct a large number of simulation studies to

verify and evaluate these two proposed algorithms.The purpose is to verify that these

two algorithms are more energy efficient than traditional cloud data center resource

scheduling and cloud storage algorithms.



Chapter 4

Simulation studies

4.1 Introduction

In this chapter, we will use the cloudSim as simulation platform to verify the

DQ-TSA algorithm and DQ-HSA algorithm proposed in the previous chapter.

In the next section, we’ll Introduce the running environment of cloudsim and its

core.

4.2 Cloudsim Simulations

CloudSim needs to run in a Java runtime environment. The development environ-

ment used in this paper is as follows:

Operating System: Windows 10 professional edition 64-bit

System Model: ASUS ROG GX531

Processor: Intel(R) Core(TM) i7-9750 CPU @ 2.60GHz

Memory: 16384MB RAM

Runtime Environment: JRE 1.8.0_131

64
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The configuration process of Cloudsim is very simple. First, to go to the offi-

cial website (http://www.cloudbus.org/cloudsim/) to download the toolkit. After the

download is complete, unzip the toolkit, create a new project in it, add a custom name

to this project, and add all the packages in the directory to this one. In this way, the

configuration work is completed, in this project, you can call the corresponding various

classes and interfaces in accordance with the custom cloud computing task scheduling

requirements.

The core classes of Cloudsim, as shown in table 4.1.

Table 4.1: Core classes in Cloudsim

Core classes The main function

† Cloudlet Used to build the tasks (Cloudlet) submitted by the user to

the DatacenterBroker, which allows the user to configure the

number of tasks, CloudletLength, and Cloudletid properties.

† Datacenter It is used to model cloud data as well, to customize the con-

figuration of the property W in the data as well as parameter

values such as number of virtual machines, computing en-

ergy and memory, and to define virtual machine allocation

policies in this class.

† DatacenterBroker This class is used in the simulation data as a proxy.The

relevant CIS are queried through the user’s quality of service

requirements and the cloud service provider that can meet

the requirements is selected.Researchers can design a series

of task scheduling policies in this class and evaluate and test

them.

Continued over page
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Table 4.1: Core classes in Cloudsim. . . (continued)

Core classes The main function

† Host This class is a host class that defines properties such as the id

of the physical resource, the memory size, VmScheduler, and

so on.Each data also contains at least one physical resource,

and each physical resource can be instantiated into multiple

virtual machines.

† Vm It is used to simulate the virtual machine instance, define the

id, MIPS and other basic attributes of the virtual machine,

and the virtual machine can be instantiated according to the

predefined sharing policy.

† VmScheduler This class is used to simulate resource sharing for multiple

VMS on the same host.

† VmAllocationPolicy This class is used to define the allocation scheme of mapping

host to Vm, that is, to select the available physical hosts

in the Cloud Data Center that can meet the configuration

requirements of virtual machine CPU, memory, etc.

4.3 Case study 1: DQ-TSA algorithm

The details of the CloudSim simulation process are as follows: first create the

data center and CPU, memory, bandwidth and other data resources. The data center

entity then sends a registration message to the Cloud Information Service (CIS) for

registration, and when the user request arrives, the CIS will select the appropriate one

from the list of Cloud Service providers according to the request and provide it to the

user. And then, the data center agent queries the CIS to see if there is any available
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data, and if so, creates a virtual machine on the data for task scheduling. As Figure 4.1.

During the run, resources are repeatedly allocated and recycled at regular intervals. At

each interval, the Data center calculates the energy consumption of each host. Finally,

when all the cloudlets are complete, we will get the the states of Cloudlet and power

consumption.

Figure 4.1: Data simulation communication process

Due to the adoption of virtualization technology, the resource scheduling problem

of cloud computing data center is different from the traditional distributed computing

resource scheduling mode. It is divided into two levels of scheduling. Scheduling tasks

to a virtual machine according to a certain strategy is a first-level scheduling, while

the deployment of virtual machines on physical servers is a second-level scheduling.

The scheduling of virtual machine to physical host is to choose the appropriate host

for virtual machine and to adopt certain strategies to solve the problem of insufficient

resources when the requirements of users cannot be met.The simulation experiment in
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this chapter is oriented to the research of first-level scheduling, that is, task scheduling.

Task scheduling is the task scheduling to the virtual machine to run according to certain

strategy, at the same time must satisfy some conditions, such as energy, time, SLA

violation. The overall goal of cloud computing task scheduling is to schedule the tasks

submitted by users to the resources that best meet the needs of users and to improve

the overall throughput rate of cloud computing system as much as possible. When

dispatching user tasks to virtual machines for execution, the scheduling strategy needs

to consider optimal task scheduling span, quality of service (QoS), and for service

providers, system resource utilization, system load balance, economic cost and other

factors.

4.3.1 Energy consumption model

The overall energy consumption of a cloud computing system can be expressed as

the formula 2.2.

In this simulation, the detail of calculate energy consumption in terms of the

following formula:

ECloud = ENode +ESwitch +EStorage +EOther (4.1)

ENode represents the node’s energy consumption, ESwitch represents the energy

consumption of all the switching equipment. EStorage represents the energy consump-

tion of the storage device. EOthers represents the energy consumption of other parts,

including the fans, the current conversion loss and others. The above formula can

be further decomposed, a cloud computing environment with n nodes, m switching

equipment and a centralized storage device, its energy consumption can be expressed
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as:

ECloud =n(ECPU +ERam +EDisk +EMain−board +ENIC)

+m(EChassis +ELinecards +EPorts) + (ENASServer)

+EStorageController +EDiskArray) +EOthers

(4.2)

Generally, CPU is the most energy consuming part of cloud system. Moreover,

for computer-intensive applications, CPU utilization is proportional to cloud system

load. For CPU, the power of the idle server is still 70 percent of that of the full-load

server, indicating that setting the idle server to sleep mode can reduce the overall

energy consumption of the system. In this experiment, the power model of linear

rating relationship based on DVFS (dynamic voltage frequency adjustment) technology

will be used to calculate the function of CPU. The algorithm idea about DVFS is: in

consideration of the insufficient CPU utilization when performing tasks, reduce the

CPU power supply voltage and clock frequency to achieve the purpose of reducing CPU

performance. This method can not only greatly reduce CPU power consumption, but

also ensure service performance.

The power model in this thesis is as follows:

P (u) = k ∗ Pmax + (1 − k) ∗ Pmax ∗ u

Pmax is the maximum power consumption when the system is fully loaded, k is

the proportion of power consumption when the system is idle, and u is the utilization

rate of CPU. Generally, load execution in a cloud system is dynamic, therefore, u is

usually represented as u(t), so, total energy consumption is E. It can be defined as:

ECPU = ∫
t1

t0
P (u(t))dt
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Memory power model. We design the following simple memory power model

(implemented in the class called PowerModelRamSimple), where P denotes power (the

unit is Watt), u denotes memory utilization, PMax denotes the power when memory

utilization is 100% and r denotes the total host memory. The unit of r is MB and means

1024 MB memory brings about one W energy consumption.

P = u ∗ PmaxPmax = r/1024

Suppose there are m physical machines available to support application execution

in the cloud environment, denoted as H = {H1,H2, . . . . . . ,Hm}. Physical hosts can be

located in a single data center or distributed across data centers.

A physical host in a cloud data center is seen as consisting of a large number of

resource blocks, that is, multiple instances of virtual machines with the same configura-

tion. Resource requirements for data-intensive computing tasks can be measured by the

number of virtual machine instances.

Cloud service providers typically provide multiple types of virtual machine in-

stances for cloud users to choose from. For example: computationally intensive virtual

machine instances, memory optimized virtual machine instances, high I/O virtual ma-

chine instances, and memory intensive virtual machine instances. Each type of virtual

machine represents the primary configured resources of the virtual machine. For ex-

ample, computationally intensive virtual machine instances typically allocate more

CPU resources. When a user selects a virtual machine instance for a data-intensive

computing task, it is usually preferred to select the computationally intensive virtual

machine instance to run the task. The execution time of a task is determined by the

length of the task and the computing power of the virtual machine it occupies. In the

case of a certain task length, the stronger the computing power of the virtual machine,
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the shorter the corresponding execution time. The computational performance of a vir-

tual machine is usually based on its specific resource configuration and is determined by

the performance of the physical machine it maps to. In general, the physical machines

in cloud data centers have different computing capabilities.

4.3.2 The simulation configuration

In the simulation environment, 25 physical host of each specification were selected,

a total number of Host is 100. According to the literature (Beloglazov & Buyya, 2012)

(Baker, 2019), the energy consumption of various host is shown in the following table

4.2.Basic energy consumption accounts for 60% of peak energy consumption.

Table 4.2: Physical Host hardware configuration

Parameter Type 1 Type 2 Type 3 Type 4

Host
HP ProLiant SL390S G7
Intel Xeon 5640

HP ProLiant BL460c G6
Intel Xeon 5630

HP ProLiant ML110 G5
Intel Xeon 3075

HP ProLiant ML110 G4
Intel Xeon 3040

CPU Frequency
(MHz) 3060 2530 2600 1860

RAM(GB) 16 8 4 4
I\O 500 MB/s 400 MB/s 300 MB/s 300 MB/s
Basic
Energy Consumption(W) 342 192 93.7 86

Peak
Energy Consumption(W) 570 320 156.2 143.3

Virtual machine number 4 6 3 2
Frequency 1843 3067 2048 2500

4.3.3 The simulation results

To verify the effectiveness of the algorithm, the comparison algorithm will include

simple assignment algorithm (SIMPLE), random assignment algorithm (RANDOM),

resource balancing algorithm algorithm (BALANCE) and DQ-TSA algorithm.

SIMPLE algorithm is to assign tasks to the virtual machine in the order in which

they come. After each virtual machine is assigned a task, it can be re-assigned (Calheiros,

Ranjan, Beloglazov, De Rose & Buyya, 2011).
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RANDOM algorithm assigns tasks to the virtual machine with equal probability in

the order they arrive (Pars & Maleki, 2009).

The BALANCE algorithm places the demand of CPU resources under dynamic

workload, and the CPU demand changes as the task execution progresses (a cloud task

based on progress). The change model (strategy) is determined by the utilization data

in the workload file(Lin, Xu, He & Li, 2017).

Time, energy consumption and host SLA violation rate were evaluated. The host

SLA violation rate is a measure built into Cloudsim that indicates that the CPU resource

requirements of the running task exceed the allocated CPU resources within a certain

period of time.The SLA violation rate is calculated by dividing the host SLA violation

time by the host execution time.

System energy consumption

As shown in Figure 4.2, the system energy consumption of the four scheduling

methods will increase with the increase of the task volume. However, the DQ-TSA

algorithm proposed in this paper has a low energy consumption.

Among them, RANDOM algorithm has the highest energy consumption, and

sometimes the energy consumption generated by this algorithm is more than twice that

of DQ-TSA algorithm.

SIMPLE algorithm and BALANCE algorithm have little difference in system

energy consumption. Even so, the energy consumption of the DQ-TSA algorithm

was only 55% of that of the SIMPLE algorithm and 53% of that of the BALANCE

algorithm.

Simulation time

As shown in Figure 4.3, SIMPLE algorithm consumes the most time, while DQ-

TSA algorithm consumes the least. The graphs of the RANDOM algorithm and
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Figure 4.2: Compare the energy consumption of different algorithms

Figure 4.3: Compare the simulation time of different algorithms
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BALANCE algorithm are basically familiar with each other. Both of them reach the

peak value when the number of tasks is 200, and then drop to the lowest value when the

number of tasks is 400, and then slowly rise when the number of tasks reaches 800. The

time use curve of RANDOM algorithm is relatively smooth, with no big fluctuation.

It all rises with the increase of the number of tasks. The increase of time is directly

proportional to the increase of the assignment book. The time-consuming curve of

DQ-TSA algorithm is different from the others. It goes up from cloudlet 100 to 400,

and then peaks at 400, and then it starts to go down, and then it goes down from cloudlet

400 to 800. This indicates that the DQ-TSA algorithm will perform better with more

tasks.

SLA violation

As can be seen from Chart 4.4 and 4.5 , both the DQ-TSA algorithm and BAL-

ANCE algorithm have a very good performance in teams of SLA violation. The

BALANCE algorithm is superior to the DQ-TSA algorithm when the number of tasks

is small(100-200). However, when the number of tasks increases to 800, the DQ-TSA

algorithm is still more ideal.

Summary

DQ-TSA algorithm had the best performance in terms of energy consumption,

time and SLA violation. It differs from other algorithms in that it already ranks the data

that needs to be processed by the quality of the data before the cloud task is submitted,

following the principle that high-level data is allocated to high-performance processing

machines. Moreover, the energy consumption of DQ-TSA algorithm is about half that

of the traditional SIMPLE algorithm when the number of tasks is larger.
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Figure 4.4: Compare the overall SLA violation of different algorithms

Figure 4.5: Compare the average SLA violation of different algorithms
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4.4 Case study 2: DQ-HSA algorithm

This thesis used the cloud storage workload generator Mimesis(Abad, Roberts, Lu

& Campbell, 2012), which can help generate more complex cloud workloads, especially

file-granular cloud storage workload testing.Meanwhile, Cloud storage system (HDFS)

without integrated data classification algorithm, hot-spot sensing storage placement

algorithm (Ha Daap) (Xiong, Du, Jin & Luo, 2018), and DQ-HAS algorithm based on

data quality proposed in this paper are implemented in Cloud Sim for final performance

comparison.

4.4.1 The simulation configuration

Based on the extended Cloud Sim platform, this paper simulates the hierarchical

Cloud storage model proposed above, and realizes the final data optimization storage

placement process by improving the open MOEA/D toolkit. Storage device perform-

ance is an important factor affecting cloud storage system. Table 4.3 shows various

performance parameters of storage device in the process of simulation test. In the

experiment in this paper, a series of storage devices with different performance were

simulated through CloudSim, including a small number of high-performance memory

SSD for storing hot file data and a large number of low-performance memory HDD for

storing hot file data.At the same time, all the devices have some differences in various

storage performance indicators.The specific storage device configuration is shown in

table 4.3.

4.4.2 Workload

Due to the need to test the hierarchical cloud storage scheme proposed in this

article, this paper uses the workload in the cloud storage platform as the data set used

for the test. Therefore, in addition to the storage device performance configuration
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Table 4.3: Storage device configuration

Type Capacity IOPS Latency Transfer
Rated

Power Count

SSD 5 5000 15 300 12.6 1
8 4000 18 290 11.2 2
10 3000 20 280 9.6 3

HDD 15 250 30 200 4.3 4
28 200 40 180 3.8 6
20 150 50 160 3 8

described above, workload is another important factor affecting the performance of

cloud storage systems. Xie and Sun (2009) found that in the actual cloud environment,

the workload had complex data access characteristics, and the experimental scheme of

existing methods could not reach the complexity of data access in the actual workload.

To better describe the actual workload in a cloud storage cluster, the load tests in this

article used the load simulation generator Mimesis (Abad, Roberts et al., 2012) to

generate a more realistic workload trace.

By improving the load simulation generator Mimesis, the simulation test was

completed in the Cloud sim-based simulation hierarchical Cloud storage system, using

the file access load with diverse statistical characteristics. As a hierarchical storage

solution associated with this article content, in the traditional hierarchical storage

method, generic data storage Load test tool has the Load Runner, Post mark, Io zone

etc, this part of the tool is limited to direct to Load test data storage, and file storage

system including data write, random, speaking, reading and writing.

Beside that, both Ceph and Hadoop have a cloud workload trace collection mech-

anism, namely Bench Mark collection Device. Mimesis focuses on the workload

generation implementation of the data storage part based on Bench Mark’s implement-

ation, which can generate load data sets with the same statistical characteristics as
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Yahoo Home02 and EECS data sets. The advantages of applying Mimesis to test load

generation over other workload data sets are:

1) Mimesis focuses on data storage load generation in the cloud environment,

which has the same statistical characteristics as Yahoo trace. Mimesis is also capable of

generating complex data metadata information structures and data file directory tree

structures for the purposes of this article.

2) Mimesis is implemented in Java, which provides an open source and independent

coding structure. All the load generation modules provide flexible statistical feature

parameter setting, which is easy to simulate the cloud storage working environment

under different conditions. The generated workload is suitable for simulation testing.

According to Abad, Roberts et al. (2012) and Xie and Sun (2009) and others cloud

workload statistics characteristics of analysis, this paper improved the Mimesis of part

of the code, the final test pass and parameter configuration, characteristics of different

data access to reflect the complex cloud workload on the system, the influence of this

scheme is presented in table 4.4 main test load characteristic parameters, the parameters

of the concrete content as shown below.

1) Number of documents.The load test in this paper starts from 1000 files and has

a high test load volume.

2) File size and quantity distribution.Used to describe how many files’ data sizes

fall within a specific interval in a workload .In particular, the definition range of small

files and the skew of the number of small files are set based on the fact that most small

files are in the actual file access load

3) The distribution of files and visits is the main load feature of file access. Based

on the feature performance of the actual load (zipf-like feature), the experiment in this

paper gives the skewness setting of multiple groups of file access.

4) File read-write ratio.The default read-write ratio of the file in the load test in

this paper is set to 0.7:0.3. On this basis, through the random optimization of a certain
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Table 4.4: Workload parameters

Parameter Value
Distribution of the number of file [1000, 3000, 5000, 8000, 10000, 15000]

Default:8000

Distribution of number of file size Size interval:[0K-40G]
FSC:Most file size concentrated [0K-
100M]
Skewness of FSC: [0.1-0.3]

Distribution of number of file
access(zipf like)

X:Y=0.2:0.8, 0.25:0.75, 0.3:0.7,
0.35:0.65 Default:0.3:0.7

Read and Write rated R:W=0.7:0.3

Advance storage rate of file <=0.1

Delete rate of file <=0.05

ratio, the characteristics of the file being written once and read many times in the actual

load process are simulated.

5) File pre-storage rate, and file deletion rate in the load process.By setting a certain

amount of pre-stored files, it avoids the disadvantage of starting from 0 in the traditional

hierarchical storage scheme in the test, and then by setting a low file deletion rate, it

can describe the diversified storage life cycle of files in the actual load .

In addition, when testing, this paper simulates a single statistical feature and

combines the correlation effects of multiple statistical features to cover the complexity

of the actual workload as much as possible. The specific test application can be seen in

the following section.
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4.4.3 The simulation results

In this chapter, the file volume and file access distribution in the workload charac-

teristic variables are used as independent variables during performance testing. During

the testing process, the system energy consumption, average migration cost, and load

changes are discussed as goals. HDFS default storage is analyzed. The storage perform-

ance of the process, Ha Daap algorithm, and the DQ-HST algorithm proposed in this

thesis.

System energy consumption

As shown in Figure 4.6, in different file load tests, the system energy consumption

of the three storage methods increases with the increase of file size.In general, the DQ-

HST algorithm proposed in this paper has lower system energy consumption than HDFS

and Ha Daap.Among them, when the amount of files is low, the energy consumption

level of the three storage methods differs little.When the amount of files reaches a certain

level, HDFS system has the highest power consumption.Compared with HDFS, Ha

Daap and DQ-HST have obvious energy consumption reduction effect, and compared

with Ha Daap, DQ-HST algorithm has lower system energy consumption.

In particular, as shown in Figure 4.6, along with the increase in the file, the Ha

Daap and DQ-HST node in the fifth contrast difference of system energy consumption

rate is reduced, this is because when a file is high (roughly around 10000), in order

to close to the actual work load more, when generate simulated load, this article to a

certain extent, to broaden the definition of small files interval, correspondingly reduced

the number of small files centralized skewness. However, at the 6th comparison node,

compared with HDFS and Ha Daap, the energy consumption of DQ-HST is the highest,

among which, the energy consumption of DQ-HST is 32.84% lower than THAT of

HDFS and 17.32% lower than that of Ha Daap. This shows that DQ-HST has a better
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Figure 4.6: The system energy consumption of the algorithm under different file sizes

energy-saving effect in the case of large file size.

As shown in Figure 4.7, with the increase of frequency between files and visit,

the system energy consumption of HDFS basically remains the same, while that of Ha

Daap and DQ-HST obviously decreases. While both Ha Daap and DQ-HST regard

reducing system energy consumption as the optimization goal, as DQ-HST realizes

a more fine-grained data heat pre-classification process, DQ-HST has a better energy

saving effect when the skew degree of files and visits increases. As can be seen from

Figure 4.7, when the file access concentration is high, the system energy consumption

of DQ-HST is 79.23% lower than that of HDFS and 28.36% lower than that of Ha

Daap.

System time consumption

As shown in Figure4.8, with the increase of file size, the system service time of

the three storage schemes increases accordingly. Compared with HDFS, Ha Daap and
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Figure 4.7: The system energy consumption of the algorithm under different file access
frequencies

DQ-HST have lower system service time. Meanwhile, the system service time of Ha

Daap and DQ-HST is not different. The Figure 4.8 shows that with the increase of file

size, the average service time of DQ-HST decreases by 41.5% compared with HDFS

and 7.1% compared with Ha Daap.

As shown in Figure4.9, the system service time of HDFS basically remains un-

changed, and the system service time of Ha Daap and DQ-HST decreases accordingly.

Meanwhile, the DQ-HST system has the lowest service time. This is because DQ-HST

is based on the rule of file access and evaluates the heat through multiple file access

attributes. The Figure 4.9 shows that DQ-HST is very sensitive to the system load in the

access set. Compared with HDFS, system service time decreases by 34.4% on average,

and system service time decreases by 19.63% on average compared with Ha Daap.
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Figure 4.8: Time comparison between different file volumes

Figure 4.9: Time comparison between different file visits
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Workload variation

As shown in Figure 4.10, the load changes of the three storage schemes are not

significantly different in the early stage (compare node 1 to node 3). In the middle and

late stage (comparison node 4 6), the load change rate of the three storage schemes

decreased. The Figure 4.10 shows that when the system file volume is high, the load

change rate of DQ-HST is the lowest, which is 45.57% lower than HDFS and 19.21%

lower than Ha Daap.

Figure 4.10: Workload comparison between different file volumes

As shown in Figure 4.11, the load change rate of HDFS increases with the increase

of skew between files and visits. The load change rate of Ha Daap increases once

in the middle period, and then decreases gradually. This is because when the skew

of files and visits increases, the hotspot awareness algorithm adopted by Ha Daap

also increases its responsiveness to the centralized access load, data mobility and load

change rate. Finally, as the skew of files and visits continues to increase, the load

change rate decreases due to Ha Daap’s dual placement scheduling of hot and cold
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data.Compared to the HDFS and Ha Daap, due to the heat DQ - HST has realized

the data evaluation classification process, the data storage device when the choice is

not directly selecting a particular goal, but adopting the processing mode of regional

selection through multi-objective optimization algorithm to choose the final goal of

storage, therefore, DQ-HST load rate as the file with the traffic steadily decreased with

the rise of skewness. As can be seen from Figure 4.11, when the skew between files

and page views increases, the load change rate of DQ-HST is about 45% lower than

HDFS and 21.29% lower than Ha Daap.

Figure 4.11: Workload between comparison between different file visits

Summary

This chapter introduces the test environment of the final experiment. Then the

generating tool of the test workload is introduced, several important load statistical

features are determined, and the parameter configuration of each load statistical feature

is given. Finally, gives the HDFS, Ha Daap and this DQ-HST algorithm under different
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experimental configuration of various performance test results, from the point of the final

results, this paper puts forward the DQ-HST algorithm saves energy consumption to a

certain extent, reduce the service time, improve the system load balance, and increase

the load characteristics of complexity still has a stable performance improvements in

performance.



Chapter 5

Conclusion and Future Work

This chapter mainly summarizes the work done in this paper and looks into the

future. Summarizes the The deficiencies of the paper, and give the future solution.

5.1 Conclusion

With the advent of the era of big data, great changes have taken place in people’s

lives. More and more science and technology are developing around data science. Data

not only brings convenience to human life, but also has an impact on environmental

pollution.For example, the rise of more and more data centers. At present, many

researches are improving various algorithms to improve the energy efficiency of data

centers, and few literature have proposed the relationship between data classification

and energy consumption.

This thesis puts forward the concept of data hierarchical measurement, analyzes

the data characteristics under the big data environment through the sorting of big data

technology. Puts forward the general index of data quality under the big data environ-

ment, defines the formularized measurement method of the index system, and provides

effective guidance for data quality management and evaluation. In addition, in the

87
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life cycle of big data, two parts of calculation and storage are selected to simulate the

concept of data classification. Cloud task scheduling algorithm DQ-TSA and hierarch-

ical storage algorithm DQ-HSA are respectively proposed based on data classification.

The main idea of both algorithms is to level the data before it is processed (stored) so

that the higher the level of data, the better the physical resources (host performance,

storage performance, bandwidth, etc.). Simulation experiments in CloudSim show that

both DQ-TSA and DQ-HST have excellent performance in energy saving.

5.2 Future Work

In this practice of our thesis, more factors should be taken into account, such

as the energy consumption of equipment other than IT equipment in the data center.

And the simulation experiments in this article is only selected the data life cycle of

the computing and storage the feasibility of the two parts to verify the theory, in the

future in the study of simulation experiment can be expanded range, starting from the

data acquisition phase, for example, will collect data terminal equipment also use data

classification concept to define, different terminal equipment acquisition data quality is

also different.
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